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Preface

This volume contains the proceedings of the 27th International Symposium on Algorithms
and Computation (ISAAC 2016), held in Sydney, Australia, December 12-14, 2016. ISAAC
is an annual international symposium that covers the very wide range of topics in the field of
algorithms and computation. The main purpose of the symposium is to provide a forum for
researchers working in algorithms and theory of computation from all over the world.

In response to our call for papers, we received 155 submissions from 36 countries. Each
submission was reviewed by at least three Program Committee members, possibly with the
assistance of external reviewers. After an extremely rigorous review process and extensive
discussion, the Program Committee selected 62 papers. Two special issues of Algorithmica
and International Journal of Computational Geometry and Applications will publish selected
papers from ISAAC 2016.

The best paper award was given to “Optimal Composition Ordering Problems for Piecewise
Linear Functions” by Yasushi Kawase, Kazuhisa Makino and Kento Seimi. Selected from
submissions authored by students only, the best student paper award was given to “Adaptivity
vs. Postselection, and Hardness Amplification in Polynomial Approximation” by Lijie Chen.

In addition to selected papers, the program also included invited talks by two prominent
invited speakers, Xuemin Lin, University of NSW, Australia, and Kunsoo Park, Seoul
National University, Korea.

We thank all the Program Committee members and external reviewers for their professional
service and volunteering their time to review the submissions under time constraints. We also
thank all authors who submitted papers for consideration, thereby contributing to the high
quality of the conference. We would like also to acknowledge our supporting organizations for
their assistance and support, in particular the University of Sydney and the NSW Department
of Industry, through the NSW Office of Science and Research. Finally, we are deeply indebted
to the Organizing Committee members, Peter Eades and Amyra Meidiana, whose excellent
effort and professional service to the community made the conference an unparalleled success.
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Towards Processing of Big Graphs: from Theory,
Algorithm to System

Xuemin Lin

University of New South Wales, Sydney, Australia
lxue@cse.unsw.edu.au

—— Abstract

Graphs are very important parts of Big Data and widely used for modelling complex structured
data with a broad spectrum of applications such as bioinformatics, web search, social network,
road network, etc. Over the last decade, tremendous research efforts have been devoted to many
fundamental problems in managing and analysing graph data. In this talk, I will present some
of our recent research efforts in processing big graphs including scalable processing theory and
techniques, distributed computation, and system framework.

1998 ACM Subject Classification H.2.8 Database Applications, H.2.4 Systems
Keywords and phrases Graph Processing, Big Data, Cloud Computing
Digital Object Identifier 10.4230/LIPIcs.ISAAC.2016.1

Category Invited Talk

© Xuemin Lin;
37 licensed under Creative Commons License CC-BY
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Compressed and Searchable Indexes for Highly
Similar Strings*
Kunsoo Park

Dept. of Computer Science and Engineering, Seoul National University, Korea
kpark@theory.snu.ac.kr

—— Abstract

The collection indexing problem is defined as follows: Given a collection of highly similar strings,
build a compressed index for the collection of strings, and when a pattern is given, find all
occurrences of the pattern in the given strings. Since the index is compressed, we also need a
separate operation which retrieves a specified substring of one of the given strings.

Such a collection of highly similar strings can be found in genome sequences of a species
and in documents stored in a version control system. Many indexes for the collection indexing
problem have been developed, most of which use classical compression schemes such as run-length
encoding and Lempel-Ziv compressions to exploit the similarity of the given strings.

We introduce a new index for highly similar strings, called FM index of alignment. We start
by finding common regions and non-common regions of highly similar strings. We need not find
a multiple alignment of non-common regions. Finding common and non-common regions is much
easier and simpler than finding a multiple alignment. Then we make a transformed alignment of
the given strings, where gaps in a non-common region are put together into one gap. We define
a suffix array of alignment on the transformed alignment, and the FM index of alignment is an
FM index of this suffix array of alignment. The FM index of alignment supports the LF mapping
and backward search, the key functionalities of the FM index. The FM index of alignment takes
less space than other indexes and its pattern search is also fast.

1998 ACM Subject Classification E.1 [Data Structures] Arrays, Tables, F.2 Analysis of Al-
gorithms and Problem Complexity, F.2.2 [Nonnumerical Algorithms and Problems] Pattern
matching

Keywords and phrases Index for similar strings, FM index, Suffix array, Alignment
Digital Object ldentifier 10.4230/LIPIcs.ISAAC.2016.2

Category Invited Talk

* This research was supported by the Bio & Medical Technology Development Program of the NRF
funded by the Korean government, MSIP (NRF-2014M3C9A3063541).

© Kunsoo Park;
37 licensed under Creative Commons License CC-BY
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Streaming Verification of Graph Properties*

Amirali Abdullah!, Samira Daruki?, Chitradeep Dutta Roy?3, and
Suresh Venkatasubramanian?

Department of Mathematics, University of Michigan, USA
School of Computing, University of Utah, USA
School of Computing, University of Utah, USA
School of Computing, University of Utah, USA

W N =

——— Abstract

Streaming interactive proofs (SIPs) are a framework for outsourced computation. A computa-
tionally limited streaming client (the verifier) hands over a large data set to an untrusted server
(the prover) in the cloud and the two parties run a protocol to confirm the correctness of result
with high probability. SIPs are particularly interesting for problems that are hard to solve (or
even approximate) well in a streaming setting. The most notable of these problems is finding
maximum matchings, which has received intense interest in recent years but has strong lower
bounds even for constant factor approximations. In this paper, we present efficient streaming
interactive proofs that can verify maximum matchings ezactly. Our results cover all flavors of
matchings (bipartite/non-bipartite and weighted). In addition, we also present streaming veri-
fiers for approximate metric TSP. In particular, these are the first efficient results for weighted
matchings and for metric TSP in any streaming verification model.

1998 ACM Subject Classification F.1.2 Modes of Computation, F.2.2 Nonnumerical Algorithms
and Problems

Keywords and phrases streaming interactive proofs, verification, matching, travelling salesman
problem, graph algorithms

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2016.3

1 Introduction

The shift from direct computation to outsourcing in the cloud has led to new ways of thinking
about massive scale computation. In the verification setting, computational effort is split
between a computationally weak client (the verifier) who owns the data and wants to solve a
desired problem, and a more powerful server (the prover) which performs the computations.
Here the client has only limited (streaming) access to the data, as well as a bounded ability
to talk with the server (measured by the amount of communication), but wishes to verify the
correctness of the prover’s answers. This model can be viewed as a streaming modification
of a classic interactive proof system (a streaming IP, or SIP), and has been the subject of
a number of papers [26, 47, 23, 17, 22, 16, 38, 39] that have established sublinear (verifier)
space and communication bounds for classic problems in streaming and data analysis.

In this paper, we present streaming interactive proofs for graph problems that are
traditionally hard for streaming, such as for the maximum matching problem (in bipartite
and general graphs, both weighted and unweighted) as well for approximating the traveling

* A full version of the paper is available at http://arxiv.org/abs/1602.08162.
T This research was supported in part by the NSF under grants I1IS-1251049, CNS-1302688.
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Table 1 Our Results. All bounds expressed in bits, upto constant factors. For the matching
results, p = min(n, C) where C' is the cardinality of the optimal matching (weighted or unweighted).
Note that for the MST, the verification is for a (1 + €)-approximation. For the TSP, the verification
is for a (3/2 + ¢)-approximation. (*) 7' is a linear function of v and is strictly more than 1 as long
as vy is a sufficiently large constant.

log n rounds ~v = O(1) rounds
Problem Verifier Space | Communication | Verifier Space Communication
Triangle Counting log?n log?n logn n'/7logn
Matchings (all versions) log?n (p + logn)logn logn (p+ n1/7’) logn (*)
Connectivity log? n nlogn logn nlogn
Minimum Spanning Tree log? n nlog? n/e logn nlog? njfe
Travelling Salesperson log?n nlog®n/e logn nlog®n/e

salesperson problem. In particular, we present protocols that verify a matching ezactly in
a graph using polylogarithmic space and polylogarithmic communication apart from the
matching itself. In all our results, we consider the input in the dynamic streaming model,
where graph edges are presented in arbitrary order in a stream and we allow both deletion
and insertion of edges. All our protocols use either logn rounds of communication or (if the
output size is sufficiently large or we are willing to tolerate superlogarithmic communication)
constant rounds of communication.

To prove the above results, we also need SIPs for sub-problems like connectivity, minimum
spanning tree and triangle counting. While it is possible to derive similar (and in some
cases better) results for these subroutines using known techniques [30], we require explicit
protocols that return structures that can be used in the computation pipeline for the TSP.
Furthermore, our protocols for these problems are much simpler than what can be obtained
by techniques in [30], which require some effort to obtain precise bounds on the size and depth
of the circuits corresponding to more complicated parallel algorithms. We summarize our
results in Table 1. Due to space constraints subproblems like triangle counting, connectivity,
bipartiteness and MST are presented in the full version [1].

Significance of our Results

While the streaming model of computation has been extremely effective for processing
numeric and matrix data, its ability to handle large graphs is limited, even in the so-called
semi-streaming model where the streaming algorithm is permitted to use space quasilinear
in the number of vertices. Recent breakthroughs in graph sketching [43] have led to space-
efficient approximations for many problems in the semi-streaming model but canonical graph
problems like matchings have been shown to be provably hard.

It is known [36] that no better than a 1 — 1/e approximation to the maximum cardinality
matching is possible in the streaming model, even with space O(n). It was also known that
even allowing limited communication (effectively a single message from the prover) required
a space-communication product of Q(n?) [16, 22]. Our results show that even allowing a
few more rounds of communication dramatically improves the space-communication tradeoff
for matching, as well as yielding exact verification. We note that streaming algorithms for
matching vary greatly in performance and complexity depending in whether the graph is
weighted or unweighted, bipartite or nonbipartite. In contrast, our results apply to all forms
of matching. Interestingly, the special case of perfect matching, by virtue of being in RNC [37],
admits an efficient SIP via results by Goldwasser, Kalai and Rothblum [30] and Cormode,
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Thaler and Yi [23]. Similarly for triangle counting, the best streaming algorithm [5] yields
3 error estimate in polylogarithmic space, and again in the annotation model
(effectively a single round of communication) the best result yields a space-communication
tradeoff of n?log? n, which is almost exponentially worse than the bound we obtain. We

an additive en

note that counting triangles is a classic problem in the sublinear algorithms literature, and
identifying optimal space and communication bounds for this problem was posed as an open
problem by Graham Cormode in the Bertinoro sublinear algorithms workshop [21]. Our
bound for verifying a 3/2+ e approximation for the TSP in dynamic graphs is also interesting:
a trivial 2-approximation in the semi-streaming model follows via the MST, but it is open to
improve this bound (even on a grid) [46].

In general, our results can be viewed as providing further insight into the tradeoff between
space and communication in sublinear algorithms. The annotation model of verification
provides 2(n?) lower bounds on the space-communication product for the problems we
consider: in that light, the fact that we can obtain polynomially better bounds with only
constant number of rounds demonstrates the power of just a few rounds of interaction. We
note that as of this paper, virtually all of the canonical hard problems for streaming algorithms
(INDEX [17], DISJOINTNESS [9, 10], BOOLEAN HIDDEN MATCHING [28, 15, 40]) admit efficient
SIPs. A SIP for INDEX was presented in [17] and we present SIPs for DISJOINTNESS and
BOOLEAN HIDDEN MATCHING in the full version [1]. Our model is also different from a
standard multi-pass streaming framework, since communication must remain sublinear in
the input and in fact in all our protocols the verifier still reads the input exactly once.

From a technical perspective, our work continues the sketching paradigm for designing
efficient graph algorithms. All our results proceed by building linear sketches of the input
graph. The key difference is that our sketches are not approximate but algebraic: based on
random evaluation of polynomials over finite fields. Our sketches use higher dimensional
linearization (“tensorization”) of the input, which might itself be of interest. They also
compose: indeed, our solutions are based on building a number of simple primitives that we
combine in different ways.

2 Related Work

Outsourced computation

Work on outsourced computation comes in three other flavors in addition to SIPs: firstly,
there is work on reducing the verifier and prover complexity without necessarily making the
verifier a sublinear algorithm [30, 29, 35], in some cases using cryptographic assumptions
to achieve their bounds. Another approach is the idea of rational proofs [8, 19, 32, 31], in
which the verifier uses a payment function to give the prover incentive to be honest. Moving
to sublinear verifiers, there has been research on designing SIPs where the verifier runs in
sublinear time [33, 45].

Streaming Graph Verification

All prior work on streaming graph verification has been in the annotation model, which in
practice resembles a 1-round SIP (a single message from prover to verifier after the stream
has been read). In recent work, Thaler [47] gives protocols for counting triangles, and

computing maximum cardinality matching with both nlogn space and communication cost.

For matching, Chakrabarti et al. [16] show that any annotation protocol with space cost
O(n'~?) requires communication cost Q(n'*%) for any § > 0. They also show that any
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annotation protocol for graph connectivity with space cost O(nl_‘s) requires communication
cost Q(n+9) for any § > 0.

It is also proved that every protocol for this problem in the annotation model requires (n?)
product of space and communication. This is optimal upto logarithmic factors. Furthermore,
they conjecture that achieving smooth tradeoffs between space and communication cost is
impossible, i.e. it is not known how to reduce the space usage to o(nlogn) without blowing
the communication cost up to £2(n?) or vice versa [16, 47]. Note that in all our protocols,
the product of space and communication is O(n poly logn).

Streaming Graph Algorithms

In the general dynamic streaming model, poly log 1/e-pass streaming algorithms [2, 3] give
(14-¢)-approximate answers and require O(n) space in one pass. The best results for matching
are [20] (a parametrized algorithm for computing a maximal matching of size k using O(nk)
space) and [7, 42] which gives a streaming algorithm for recovering an né-approximate
maximum matching by maintaining a linear sketch of size O~(n2*36) bits. In the single-pass
insert-only streaming model, Epstein et al. [27] give a constant (4.91) factor approximation for
weighted graphs using O(nlogn) space. Crouch and Stubbs [24] give a (4 + €)-approximation
algorithm which is the best known result for weighted matchings in this model. Triangle
counting in streams has been studied extensively [11, 13, 14, 34, 44]. For dynamic graphs,
the most space-efficient result is the one by [5] that provides the aforementioned additive en?
bound in polylogarithmic space. The recent breakthrough in sketch-based graph streaming [4]
has yielded O(n) semi-streaming algorithms [43] for computing the connectivity, bipartiteness
and minimum spanning trees of dynamic graphs.

3 Preliminaries

We will work in the streaming interactive proof (SIP) model first proposed by Cormode et
al. [23]. In this model, there are two players, the prover P and the verifier V. The input
consists of a stream 7 of items from a universe Y. Let f be a function mapping 7 to any
finite set S. A k-message SIP for f works as follows:
1. V and P read the input stream and perform some computation on it.
2. V and P then exchange k messages, after which V either outputs a value in S U {1},
where 1 denotes that V is not convinced that the prover followed the prescribed protocol.
V is randomized. There must exist a prover strategy that causes the verifier to output
f(7) with probability 1 — e, for some . < 1/3. Similarly, for all prover strategies, V must
output a value in {f(7), L} with probability 1 — &5 for some 5 < 1/3. The values ¢. and
€, are respectively referred to as the completeness and soundness errors of the protocol.
The protocols we design here will have perfect completeness (g, = 0).! We note that the

annotated stream model of Chakrabarti et al. [16] essentially corresponds to one-message
SIPs.?

1 The constant 1 /3 appearing in the completeness and soundness requirements is chosen by convention
[6]. The constant 1/3 can be replaced with any other constant in (0, 1) without affecting the theory in
any way.

Technically, the annotated data streaming model allows the annotation to be interleaved with the stream
updates, while the SIP model does not allow the prover and verifier to communicate until after the
stream has passed. However, almost all known annotated data streaming protocols do not utilize the
ability to interleave the annotation with the stream, and hence are actually 1-message SIPs, but without
any interaction from the verifier to prover side.
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Input Model

We will assume the input is presented as stream updates to a vector. In general, each element

of this stream is a tuple (i,0), where each ¢ lies in a universe U of size u, and § € {+1,—1}.

The data stream implicitly defines a frequency vector a = (ay,...,a,), where a; is the sum
of all ¢ values associated with 4 in the stream. The stream update (¢,0) is thus the implicit
update a[i] « a[i] + ¢. In this paper, the stream consists of edges drawn from U = [n] X [n]
along with weight information as needed. As is standard, we assume that edge weights are
drawn from [n°] for some constant c. We allow edges to be inserted and deleted but the final

edge multiplicity is 0 or 1, and also mandate that the length of the stream is polynomial in n.

Finally, for weighted graphs, we further constrain that the edge weight updates be atomic,
i.e. that an edge along with its full weight be inserted or deleted at each step.

There are three parameters that control the complexity of our protocols: the vector
length u, the length of stream s and the maximum size of a coordinate M = max;a;. In the
protocols discussed in this paper M will always be upper bounded by some polynomial in
u, i.e. log M = O(logw). All algorithms we present use linear sketches, and so the stream
length s only affects verifier running time. In full version of the paper [1] we discuss how to
reduce the verifier update time to polylogarithmic on each step.

Costs

A SIP has two costs: the verifier space, and the total communication, expressed as the
number of bits exchanged between V and P. We will use the notation (A, B) to denote a SIP
with verifier space O(A) and total communication O(B). We will also consider the number of
rounds of communication between V and P. The basic versions of our protocols will require
log n rounds, and we later show how to improve this to a constant number of rounds while
maintaining the same space and similar communication cost otherwise.

4 Overview of our Techniques

For all the problems that we discuss the input is a data stream of edges of a graph where for
an edge e an element in the stream is of the form (i, j, A). Now all our protocols proceed as
follows. We define a domain U of size u and a frequency vector a € Z* whose entries are
indexed by elements of U. A particular protocol might define a number of such vectors, each
over a different domain. Each stream element will trigger a set of indices from U at which
to update a. For example in case of matching, we derive this constraint universe from the
LP certificate, whereas for counting triangles our universe is derived from all O(n?) possible
three-tuples of the vertices.

The key idea in all our protocols is that since we cannot maintain a explicitly due
to limited space, we instead maintain a linear sketch of a that varies depending on the
problem being solved. This sketch is computed as follows. We will design a polynomial
that acts as a low-degree extension of f over an extension field F and can be written as
p(r1,. . 2a) = D ey a[ulgu(®1, T2, . . ., 2q4). The crucial property of this polynomial is that
it is linear in the entries of a. This means that polynomial evaluation at any fixed point
r=(ry,ra,...,7q) is easy in a stream: when we see an update afu] + a[u] + A, we merely
need to add the expression Ag,(r) to a running tally. Our sketch will always be a polynomial
evaluation at a random point r. Once the stream has passed, V and the prover P will engage
in a conversation that might involve further sketches as well as further updates to the current
sketch. In our descriptions, we will use the imprecise but convenient shorthand “increment
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afu]” to mean “update a linear sketch of some low-degree extension of a function of a”. It
should be clear in each context what the specific function is.

As mentioned earlier, a single stream update of the form (¢, j, A) might trigger updates
in many entries of a, each of which will be indexed by a multidimensional vector. We will
use the wild-card symbol ’+’ to indicate that all values of that coordinate in the index should
be considered. For example, suppose U C [n] X [n] x [n]. The instruction “update a[(i, *, j)]”
should be read as “update all entries a[t] where t € {(i,s,J) | s € [n], (4,s,7) € U}". We show
later how to do these updates implicitly, so that verifier time remains suitably bounded.

5 Some Useful Protocols

We will make use of two basic tools in our algorithms: Reed-Solomon fingerprints for testing
vector equality, and the streaming SUMCHECK protocol of Cormode et al. [23]. We summarize
the main properties of these protocols here: for more details, the reader is referred to the
original papers.

Multi-Set Equality (MSE)

We are given streaming updates to the entries of two vectors a,a’ € Z" and wish to check
a = a’. Reed-Solomon fingerprinting is a standard technique to solve MSE using only
logarithmic space.

» Theorem 1 (MSE, [22]). Suppose we are given stream updates to two vectors a,a’ € Z*
guaranteed to satisfy |a;|,|al] < M at the end of the data stream. Let t = max(M,u). There
is a streaming algorithm using O(logt) space, satisfying the following properties: (i) If a = a’,
then the streaming algorithm outputs 1 with probability 1. (ii) If a # a’, then the streaming
algorithm outputs 0 with probability at least 1 — 1/t2.

The SumCheck Protocol

We are given streaming updates to a vector a € Z" and a univariate polynomial h: Z — Z.
The Sum CHECK problem (SUMCHECK) is to verify a claim that ), h(a;) = K.

» Lemma 2 (SuMCHECK, [23]). There is a SIP to verify that 3,1, h(a;) = K for
some claimed K. The total number of rounds is O(logu) and the cost of the protocol
is (log(u) log [F|, deg(h) log(u) log ).

Here are the two other protocols that act as building blocks for our graph verification
protocols.

Inverse Protocol (Finv)

Let a € Z" be a (frequency) vector. The inverse frequency function F ! for a fixed k is the
number of elements of a that have frequency k: Fj '(a) = |{i | a; = k}|. Let hy(i) = 1 for
i = k and 0 otherwise. We can then define F},'(a) = 3", hi(a;). Note that the domain of &y,
is [M] where M = max; a;. We will refer to the problem of verifying a claimed value of F !
as FINV. By using Lemma 2, there is a simple SIP for FINV. We restate the related results
here [23].

» Lemma 3 (Finv, [23]). Given stream updates to a vector a € Z* such that max; a; = M
and a fized integer k there is a SIP to verify the claim F},"(a) = K with cost (log? u, M log® u)
in logu rounds.
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Remark 1. Note that the same result holds if instead of verifying an inverse query for
a single frequency k, we wish to verify it for a set of frequencies. Let S C [M] and let
Fg' = |{ila; € S}|. Then using the same idea as above, there is a SIP for verifying a claimed
value of Fg ! with costs given by Lemma 3.

Remark 2. Note that in the protocols presented in this paper later, the input to the FINV
is not the graph edges itself, but instead the FINV is applied to the derived stream updates
triggered by each input stream elements. As stated before, a single stream update of the
form (4,7, A) might trigger updates in many entries of vector a, which is defined based on
the problem.

Subset Protocol

We now present a new protocol for a variant of the vector equality test described in Theorem 1.

While this problem has been studied in the annotation model, it requires space-communication
product of Q(u?) communication in that setting.

» Lemma 4 (SUBSET). Let E C [u] be a set of elements, and let S C [u] be another set
owned by P. There is a SIP to verify a claim that S C E with cost (log® u, (|S] + logu) log u)
in logu rounds.

Proof. Consider a vector a with length w, in which the verifier does the following updates:
for each element in set F, increment the corresponding value in vector a by +1 and for each
element in set S, decrements the corresponding value in vector a by —1. Let the vector

a € {0,1}* be the characteristic vector of E, and let a’ be the characteristic vector of S.
Thus, a = a — a’. By applying F—_11 protocol on a, verifier can determine if S C F or not.

Note that in vector a, M = 1. Then the protocol cost follows by Lemma 3. <

6 SIP for MAX-MATCHING in Bipartite Graphs

We now present a SIP for maximum cardinality matching in bipartite graphs. The prover P
needs to generate two certificates: an actual matching, and a proof that this is optimal. By
Konig’s theorem [41], a bipartite graph has a maximum matching of size k if and only if it
has a minimum vertex cover of size k. Therefore, P’s proof consists of two parts:

(a) Send the claimed optimal matching M C E of size k.

(b) Send a vertex cover S C Vof size k.
V has three tasks:

(i) Verify that M is a matching and that M C E.

(ii) Verify that S covers all edges in FE.
(iii) Verify that |M| = |S].
We describe protocols for first two tasks and the third task is trivially solvable by counting
the length of the streams and can be done in logn space. V will run the three protocols in
parallel.

Verifying a Matching

Verifying that M C E can be done by running the SUBSET protocol from Lemma 4 on F
and the claimed matching M. A set of edges M is a matching if each vertex has degree at
most 1 on the subgraph defined by M. Interpreted another way, let 7); be the stream of
endpoints of edges in M. Then each item in 7, must have frequency 1. This motivates the
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following protocol, based on Theorem 1. V treats 75, as a sequence of updates to a frequency
vector a € Z!V| counting the number of occurrences of each vertex. V then asks P to send a
stream of all the vertices incident on edges of M as updates to a different frequency vector
a’. V then runs the MSE protocol to verify that these are the same.

Verifying that S is a Vertex Cover

The difficulty with verifying a vertex cover is that V no longer has streaming access to E.
However, we can once again reformulate the verification in terms of frequency vectors. S is a
vertex cover if and only if each edge of E is incident to some vertex in S. Let a,a’ € 7(%)
be vectors indexed by U = {(i,7),4,j € V,i < j}. On receiving the input stream edge
e=(i,7,A),i < j, V increments a[(¢, j)] by A.

For each vertex i € S that P sends, we increment all entries a’[(4, *)] and a’[(*,4)]. Now
it is easy to see that S is a vertex cover if and only there are no entries in a — a’ with value
1 (because these entries correspond to edges that have not been covered by a vertex in S).
This yields the following verification protocol.

1. V processes the input edge stream for the Ffl protocol, maintaining updates to a vector

a.

2. P sends over a claimed vertex cover S of size ¢* one vertex at a time. For each vertex

1 € S,V decrements all entries a[(i, )] and a[(x,17)] .

3. V runs FINV to verify that F; '(a) = 0.

The bounds for this protocol follow from Lemmas 3, 4 and Theorem 1.

» Theorem 5. Given an input bipartite graph with n vertices, there exists a streaming
interactive protocol for verifying the mazximum-matching with logn rounds of communication,
and cost (log? n, (¢* + logn)logn), where ¢* is the size of the optimal matching.

7 SIP for Maximum-Weight-Matching in General Graphs

We now turn to the most general setting: of maximum weight matching in general graphs
and the bipartite case is moved to the full version [1]. This of course subsumes the easier
case of maximum cardinality matching in general graphs, and while there is a slightly simpler
protocol for that problem based on the Tutte-Berge characterization of maximum cardinality
matchings [48, 12], we will not discuss it here.

We will use the odd-set based LP-duality characterization of maximum weight matchings
due to Cunningham and Marsh. Let Q(V') denote the set of all odd-cardinality subsets of V.
Let y; € [n°] define non-negative integral weight on vertex v;, zy € [n°] define a non-negative
integral weight on an odd-cardinality subset U € O(V), w;; € [n°] define the weight of an
edge e = (i,7) and ¢* € [n°"!] be the weight of a maximum weight matching on G. We

define y and z to be dual feasible if y; +y; + > vecowv) 2u = wij, Vi, j.
i,jEU
A collection of sets is said to be laminar, if any two sets in the collection are either disjoint
or nested (one is contained in the other). Note that such a family must have size linear in the

size of the ground set. Standard LP-duality and the Cunningham-Marsh theorem state that:

» Theorem 6 ([25]). For every integral set of edge weights W, and choices of dual feasible
integral vectors y and z, ¢* < Y v Yy + ZUE(O)(V) zu |3|U|]. Purthermore, there exist
vectors y and z that are dual feasible such that {U : zy > 0} is laminar and for which the
above upper bound achieves equality.
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GED

LI=1 LI=2

Figure 1 A Laminar family.

We design a protocol that will verify that each dual edge constraint is satisfied by the
dual variables. The laminar family {U : zy > 0} can be viewed as a collection of nested
subsets (each of which we call a claw) that are disjoint from each other. Within each claw, a
set U can be described by giving each vertex v in order of increasing level £(v): the number
of sets v is contained in (see Figure 1).

The prover will describe a set U and its associated zy by the tuple (LI, ¢, ry, 0U), where
1 < LI < n is the index of the claw U is contained in, £ = ((U), ru = >~y 2ur and
OU = U\ UyrcyU”. For an edge e = (3,7) let r. = Zi,jerUe@)(V) zy represent the weight
assigned to an edge by weight vector z on the laminar family. Any edge whose endpoints
lie in different claws will have r, = 0. For a vertex v, let 7, = min,cy ry. For an edge
e = (v,w) whose endpoints lie in the same claw, it is easy to see that r. = min(r,,r.),
or equivalently that 7c = Targ min(e(v),e(w))- For such an edge, let £, | = min(¢(u),£(v)) and
le+ = max(f(u),£(v)). We will use LI(e) € [n] to denote the index of the claw that the
endpoints of e belong to.

The Protocol

V prepares to make updates to a vector a with entries indexed by U = Uy UlUs. U; consists
of all tuples of the form {(i,j,w,y,y’, LI, ¢, ¢ ,r)} and Uy consists of all tuples of the form
{(#,J,w,9,y',0,0,0,0)} where i < j,4,7, LI, £,¢ € [n], y,y’,r,w € [n°] and tuples in U; must
satisfy 1) w < y+ ¢’ + r and 2) it is not simultaneously true that y + ¢ > w and r > 0.
Note that a € Z* where u = O(n***3) and all weights are bounded by n¢.

1. V prepares to process the stream for an F5_1 query. When V sees an edge update of form
(e, we, A), it updates all entries a[(e, we, *, *, *, *, *, *)].

2. P sends a list of vertices (7, y;) in order of increasing i. For each (i,y;), V increments by 1
the count of all entries a[(i, *, *, y;, *, %, *, *, %] and a[(x, 1, %, *, y;, *, %, *, x)] with indices
drawn from U;. Note that P only sends vertices with nonzero weight, but since they are
sent in increasing order, V can infer the missing entries and issue updates to a as above.
V also maintains the sum of all y;.

3. P sends the description of the laminar family in the form of tuples (LI, ¢, 7y, 0U), sorted
in lexicographic order by LI and then by ¢. V performs the following operations.

a. V increments all entries of the form (7, *, *,y;,*,0,0,0,0) or (x,4,x*,*,y;,0,0,0,0) by 2
to account for edges which are satisfied by only vector y.

b. V maintains the sum X g of all ryy seen thus far. If the tuple is deepest level for a given
claw (easily verified by retaining a one-tuple lookahead) then V adds ry to a running
sum Xmax-

c. V verifies that the entries appear in sorted order and that 7y is monotone increasing.

d. V updates the fingerprint structure from Theorem 1 with each vertex in OU.

e. For each v € 9U, V increments (subject to our two constraints on the universe) all
entries of a indexed by tuples of the form (e, we, *, *, LI, x, £, ) and all entries indexed
by tuples of the form (e, we, *, %, LI, £, %, ), where e is any edge containing v as an
endpoint.
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f. V ensures all sets presented are odd by verifying that for each LI, all |0U| except the
last one are even.

4. P sends V all vertices participating in the laminar family in ascending order of vertex
label. V verifies that the fingerprint constructed from this stream matches the fingerprint
constructed earlier, and hence that all the claws are disjoint.

5. V runs a verification protocol for F; '(a) and accepts if F; '(a) = m, returning %, and
Enlax'

Define ¢® as the certificate size, which is upper bounded by the matching cardinality.
Then:

» Theorem 7. Given dynamic updates to a weighted graph on n vertices with all weights
bounded polynomially in n, there is a SIP with cost (log®n, (¢® + logn)logn), where ¢ is
the cardinality of maximum matching, that runs in logn rounds and verifies the size of a
mazimum weight matching.

Proof. In parallel, V and P run protocols to verify a claimed matching as well as its optimality.
The correctness and resource bounds for verifying the matching follow from Section 6. We now
turn to verifying the optimality of this matching. The verifier must establish the following
facts:

(i) P provides a valid laminar family of odd sets.

(ii) The lower and upper bounds are equal.
(iii) All dual constraints are satisfied.

Since the verifier fingerprints the vertices in each claw and then asks P to replay all
vertices that participate in the laminar structure, it can verify that no vertex is repeated and
therefore that the family is indeed laminar. Each QU in a claw can be written as the difference
of two odd sets, except the deepest one (for which QU = U. Therefore, the cardinality of
each OU must be even, except for the deepest one. V verifies this claim, establishing that
the laminar family comprises odd sets.

Consider the term ), zy|[|U|/2] in the dual cost. Since each U is odd, this can be
rewritten as (1/2)(3_, zu|U| — >_p zv). Consider the odd sets Uy D Uy D ... D U; in a
single claw. We have ry; = >, 2u,, and therefore > . ry, = >, >, 2v,. Reordering,
this is equal to 37, > 2v, = >, 2v,|Ui|. Also, ry, = 32, zy,. Summing over all claws,
Y, =Y y2v|U| and Enax = > 2v. Therefore, >, y; + 3, — Xiax equals the cost of the
dual solution provided by P.

Finally we turn to validating the dual constraints. Consider an edge e = (i,5) whose
dual constraints are satisfied: i.e. P provides y;,y; and zy such that y; + y; + rij > we.
Firstly, consider the case when r;; > 0. In this case, the edge belongs to some claw LI.
Let its lower and upper endpoints vertex levels be s,t, corresponding to odd sets Ug, U;.
Consider now the entry of a indexed by (e, y;,y;, L1, s,t,r;;). This entry is updated when e
is initially encountered and ends up with a net count of 1 at the end of input processing.
It is incremented twice when P sends the (¢,y;) and (j,y;). When P sends Uy this entry is
incremented because r;; = ry, = min(ry,, 7y, ) and when P sends U, this entry is incremented
because U, has level ¢, returning a final count of 5. If r;; = 0 (for example when the edge
crosses a claw), then the entry indexed by (e, we, ¥:,y;,0,0,0,0) is incremented when e is
read. It is not updated when P sends (¢,y;) or (j,y;). When P sends the laminar family, V
increments this entry by 2 twice (one for each of ¢ and j) because we know that y; +y; > we.
In this case, the entry indexed by (¢, 7, we, ¥i, ¥;, 0,0,0,0) will be exactly 5. Thus, for each
satisfied edge there is exactly one entry of a that has a count of 5.
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Conversely, suppose e is not satisfied by the dual constraints, for which a necessary
condition is that y; + y; < we. Firstly, note that any entry indexed by (i, j, we, *, *,0,0,0,0)
will receive only two increments: one from reading the edge, and another from one of y; and y;
but not both. Secondly, consider any entry with an index of the form (i, j, we, *, %, LT, %, x, *)
for LI > 0. Each such entry gets a single increment from reading e and two increments when
P sends (i,y;) and (j,y;). However, it will not receive an increment from the second of the
two updates in Step 3(e), because y; + y; + r;j < we and so its final count will be at most
4. The complexity of the protocol follows from the complexity for FINV, SUBSET and the
matching verification described in Section 6. |

8 Streaming Interactive Proofs for Approximate Metric TSP

We can apply our protocols to another interesting graph streaming problem: that of computing
an approximation to the min cost travelling salesman tour. The input here is a weighted
complete graph of distances. We briefly recall the Christofides heuristic: compute a MST T'
on the graph and add to T all edges of a min-weight perfect matching on the odd-degree
vertices of T. The classical Christofides result shows that the sum of the costs of this MST
and induced min-weight matching is a 3/2 approximation to the T'SP cost. In the SIP setting,
we have protocols for both of these problems. The difficulty however is in the dependency:
the matching is built on the odd-degree vertices of the MST, and this would seem to require
the verifier to maintain much more states as in the streaming setting. We show that this is
not the case, and in fact we can obtain an efficient SIP for verifying a (3/2 + ¢)-approximation
to the TSP. To summarize our SIP for verifying an approximate MST, here first we state
two main results which are used as subroutine: Connectivity and Bipartiteness.

For establishing the number of connected components in graph G, we devise SIPs to
verify spanning trees, as well as the disjointness and maximality of any claimed connected
components by prover. We show the results here and move full details of the protocols to
the full version [1].

» Lemma 8. Given an input graph G with n vertices, there exists a SIP protocol for
verifying the number of connected components G; with (logn) rounds of communication, and
(log? n,nlogn) cost.

By applying the verification protocol for connectivity on both the input graph G and the
bipartite double cover [4] of G we obtain the following results for testing bipartiteness:

» Lemma 9. Given an input graph G with n vertices, there exists a SIP protocol for testing
bipartiteness on G with (logn) rounds of communication, and (log®n,nlogn) cost.

Now for MST protocol, we follow a reduction for stratifying graph edges by weight and
counting the number of connected components at each level introduced in [18] and later
generalized to streaming setting [4]. This finally yields us:

» Theorem 10. Given a weighted graph with n vertices, there is a SIP protocol for
verifying MST within (1 + €)-approximation with (logn) rounds of communication, and
(log® n,nlog® n/e) cost.

We note here that while we could have used known parallel algorithms for connectivity and
MST combined with the protocol of Goldwasser et al. [30] and the technique of Cormode,
Thaler and Yi [23] to obtain similar results, we need an explicit and simpler protocol with
an output that we can fit into the overall TSP protocol.

3:11
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What remains is how we verify a min-cost perfect matching on the odd-degree nodes of
the spanning tree. We employ the procedure described in Section 7 for maximum weight
matching along with a standard equivalence to min-cost perfect matching. In addition to
validating all the LP constraints, we also have to make sure that they pertain solely to
vertices in ODD. We do this as above by using the fingerprint for ODD to ensure that we
only count satisfied constraints on edges in ODD. We present the details of TSP in the full
version of the paper [1]. Finally, the approximate TSP cost is the sum of the min-weight
perfect matching on ODD and the MST cost on the graph.

» Theorem 11. Given a weighted complete graph with n vertices, in which the edge weights
satisfy the triangle inequality, there exists a streaming interactive protocol for wverifying
optimal TSP cost within (% + €)-approzimation with (logn) rounds of communication, and
(log? n,nlog?n/e) cost.
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—— Abstract

Classical clustering problems search for a partition of objects into a fixed number of clusters.
In many scenarios however the number of clusters is not known or necessarily fixed. Further,
clusters are sometimes only considered to be of significance if they have a certain size. We
discuss clustering into sets of minimum cardinality k without a fixed number of sets and present
a general model for these types of problems. This general framework allows the comparison of
different measures to assess the quality of a clustering. We specifically consider nine quality-
measures and classify the complexity of the resulting problems with respect to k. Further, we
derive some polynomial-time solvable cases for k& = 2 with connections to matching-type problems
which, among other graph problems, then are used to compute approximations for larger values
of k.
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1 Introduction

Clustering problems arise in different areas in very diverse forms with the only common
objective of finding a partition of a given set of objects into, by some measure, similar parts.
Most models consider variants of the classical k-MEANS or k-MEDIAN problem in the sense
that £ is a fixed given integer which determines the number of clusters one searches for. In
some applications however it is not necessary to compute a partition with exactly k parts,
sometimes it is not even known which number for £ would be a reasonable choice. We want
to discuss a clustering model which does not fix the number of clusters but instead requires
that each cluster contains at least k objects. This constraint can be seen as searching for
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a clustering into parts of a specified minimum significance. For general classification or
compression tasks, one might consider small clusters as disposable outliers.

One concrete scenario for this type of partitioning is LOAD BALANCED FAcILITY LOCA-
TION [11], a variant of the facility location problem where one is only interested in building
profitable facilities. In this scenario a facility is not measured by the initial cost of building
it but by its profitability once it is opened. Consequently, it is only reasonable to build a
facility if there are enough (but maybe not too many) customers who use it but aside from
this constraint it is possible to build an unrestricted number of facilities. The considered
cardinality-constraint also models the basic principle of “hiding in a crowd” introduced by
the concept of k-anonymity [14] which introduces formal problems such as r-GATHER [1] and
k-MEMBER CLUSTERING [4]. A cluster in this scenario is a collection of personal records
which has to have a certain minimum cardinality in order to be considered anonymous.

We want to consider the general task of computing a clustering into sets of minimum
cardinality k£ € N with the objective to introduce an abstract framework to model such
types of problems. For this purpose, we define the generic problem (]| - ||, f)-k-CLUSTER
and specifically discuss nine variants of it, characterised via three different choices for
each f and | -||; a detailed description of these variants follows in Section 2. Our main
contributions are the abstract model and the complexity- and approximation-results which
become more apparent due to this model, as they are derived mostly via similarities to other
graph problems. Section 3 compares the nine problem variants with respect to structural
differences. In Section 4 and 5, we classify the complexity for small values of k£ by identifying
polynomial-time solvable cases with connections to matching-type problems and deriving
(also improving known) NP-hardness results for the remaining cases. Section 6 uses a large
variety of connections to other graph problems, including the results from Section 4, to
develop approximation-algorithms. A more detailed description of the results as well as the
comparison to results from related work follows in the respective sections and is summarised
in the conclusions.

2 General Abstract Model

In the following, we consider the general task of partitioning a set of n given objects into
sets of cardinality at least k. Our model represents the n input-objects as vertices of an
undirected graph G = (V, E). A feasible solution is any partitioning P, ..., Ps of V such that
|P;| > k for all i € {1,...,s}, in the following we will refer to such a partition as k-cluster.
Recall that in contrast to the classical clustering problems like s-MEANS or s-MEDIAN, the
number of clusters s is not necessarily part of the input. Of course, one does not search for
just any k-cluster but for a partitioning which preferably only combines objects which are in
some sense “close”. This similarity can be very hard to capture and the appropriate way to
measure it highly depends on the clustering-task and the structure of the input. We therefore
consider an arbitrary given distance function d: V? — R, which for any two objects u,v € V/
represents the distortion which is caused by combining u and v. This general view allows to
simultaneously study many different measures for dissimilarity.

In our model, the distance d is defined via a given edge-weight function wg: £ — R,.
For two vertices u,v € V we define d(u,v) := wg({u, v}) if {u,v} € E, and if {u,v} ¢ E, the
distance d(u,v) is defined by the shortest path from u to v in G. We will say that d satisfies
the triangle inequality (and hence is a metric) if d(u, v) < d(u,w) + d(w,v) for all u,v,w € V.
Observe that our definition allows for distances d which do not satisfy this property, a simple
example is the complete graph over V = {u,v, w} with wg({u,v}) = wg({u,w}) = 1 and
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wg({v,w}) = 3. Distances which are defined directly via an edge are the only possible non-
metric’ distances. Edges hence do not necessarily imply similarity but can reflect a difference
greater than the shortest path between two objects and make it more unattractive to cluster
them together; very different from the multiedges introduced in the hypergraph-model for
k-anonymous clustering from [17], where hyperedges reflect similar groups.

The overall cost of a partitioning P, ..., Ps is always in some sense proportional to the
dissimilarities within each set or cluster P;. On an abstract level, the global cost induced by
a partitioning Py, ..., Py is calculated by first computing the local cost of each cluster and
second by combining all this individual information. In this paper, we discuss three different
measures for the local cost caused by a cluster P;:

Radius: rad(P;) := mingep, maxyep, d(z,y).

Diameter: diam(FP;) := maxgep, maxycp, d(,y).

Average Distortion: avg(P;) := ﬁ ‘mingep, Y, cp, AT, Y).

The overall cost of a k-cluster Pi,..., Ps is then given by a certain combination of the

local costs f(P1),..., f(Ps) with f € {rad, diam, avg}. In order to model the most common

problem-versions we consider the following three possibilities:

Worst Local Cost: The maximum cost of an individual cluster: maxj<i<s f(F;). Because
of its structure with respect to the values f(P1),..., f(Ps), denoted by ||-||..-

Worst Weighted Local Cost: The maximum cost of an individual cluster, weighted by its
size: maxi<i<s || f(P;), denoted by ||-[|”.

Accumulated Local Cost: The sum of the distortion for each cluster, denoted by |||, with

respect to the cost of the individual clusters computed by: > 7_, || f(F;).

Any combination of f € {rad,diam, avg} with ||-[l€ {||- |l |- |_,[|-[l..} yields a different
problem. (Structural properties discussed in Section 3 will explain why we do not consider
the unweighted 1-norm.) For a fixed k € N, the general optimisation-problem is given by:

(|| |I, f)-k-CLUSTER
Input: Graph G = (V, E) with edge-weight function wg : E — Ry, k € N.
Output: k-cluster Pi,..., P; of V for some s € N, which minimises || (f(P1),..., f(Ps))]-

(Il ., rad)-k-CLUSTER, for example, searches for a k-CLUSTER which minimises:

max min max d(x,y).

1<i<s z€P; yeP;

Some of the variants of (||-]|, f)-k-CLUSTER are already known under different names. The
variant (|| - ||, diam)-k-CLUSTER is also known as k-MEMBER CLUSTERING [4] and with
d chosen as the Euclidean distance, (|| -||..,rad)-k-CLUSTER is the so-called r-GATHER
problem [1] (with r = k). Variant (|| - ||T,avg)—k—CLUSTER is LOAD BALANCED FACILITY
LOCATION [11] with unit demands and without facility costs and, with Euclidean distance,
also models MICROAGGREGATION [6].

Choosing between the cluster-measures and norms allows adjustment for specific types of
objects and different forms of output representation. The norm decides if the desired output
has preferably uniformly structured clusters with or without uniform cardinalities (co-norms)
or builds clusters of object-specific irregular structure (1-norm). For cohesive clustering,
the diameter-measure is more suitable for the choice of f. Average distortion is best used
when the output chooses one representative of each cluster and projects all other objects in
this cluster to it; a scenario which for example occurs for facility-location type problems. If
the output does not project to one representative but considers clusters as circular areas,
the radius measure is the most reasonable choice for f. Optimal k-clusters may differ for
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different choices of ||-|| and/or f as we will discuss in the next section. Still, we will see that
there are also very useful similarities.

3  Structural Properties of Optimal Partitions

The diverse behaviour for different choices of f and || - || is nicely displayed in the cluster-
cardinalities of optimal solutions. For the example V := {c,v1,v2,...,v,} with wg(c,v;) =1
for all 4, we find that for radius and average distortion, the single cluster V is the optimal

w

solution with ||-|| or |||, . If wg(v;,v;) ;= D for some large value D, any k-cluster with

1
more than one set is arbitrarily worse. For the diameter-measure however we know that in

general diam(S) < diam(P) for all sets S C P, which immediately yields:

w

» Proposition 1. For any k € N and any || - [|€ {|| - I, - |_. || - I..}, optimal solutions
Py, ..., Ps for (||-]|, diam)-k-CLUSTER can be assumed to satisfy |P;| < 2k for all1 <i <s.

For radius we only have the weaker property that rad(S) < rad(P) for all sets S C P such
that the center of P is contained in S. Average distortion lacks such monotone behaviour
entirely. Observe that a large cardinality of a cluster can sort of “smooth over” some larger

distances, for example for three vertices u,v,w with wg(u,v) := 3 and wg(u,w) = 1,
adding w to the cluster {u,v} decreases the average distortion from % to %. Examples

like this show that, even with triangle inequality for d, we can not in general restrict the
maximum cluster-cardinality for (|- ||..,avg)-k-CLUSTER, which is a bit unsetteling, given
that most applications also like to have some natural upper bound on the cardinality (not
too many customers). In a realistic scenario, we encounter sets of cardinality 2k or larger
in optimal solutions for (|| - .., avg)-k-CLUSTER, if they contain an object (often called
outlier) which has a large distance from all objects. Deleting such outliers before computing
clusters is generally a reasonable pre-processing step, which makes large clusters in (|||,
avg)-k-CLUSTER unlikely.

In general, we would like the computation of global cost to somehow favour finer partitions
in order to exploit the difference to clustering models which bound the number of sets.
This is the reason why we do not consider the unweighted 1-norm, formally computed
by | (f(P1),..., f(Ps)) |l,:=Yi_, f(P). For the example V = {v},v?: 1 < i < n} with

17 7
wp({v},v}}) =1forie{l,...,n} and wg({v},vf}) =n—1fori,je{l,...,n} withi #j
and h, k € {1,2}, the best 2-clustering w.r.t. ||-||, with any choice for f is V itself, while the
most reasonable 2-clustering for most applications one can think of for this graph is obviously
{{v},v?}: 1 <i < n}. This makes ||-||, very unattractive for our clustering-purposes, observe
that triangle inequality does not improve this behaviour, since the distance d for this example
satisfies it. Triangle inequality however makes a big difference for the worst-case example in

the beginning of the section and allows to conclude:

» Theorem 2. If d satisfies the triangle inequality, the restriction to partitions into sets
of cardinality at most 2k — 1 yields a 2-approzimation for (|||, rad)-, (|||, rad)- and
(I- ||T, avg)-k-CLUSTER. and is optimal for (||- H:, avg)- and (|| H:, rad)-k-CLUSTER.

As we will look at the cases k = 2 and k& = 3 in the next section, we further conclude:

» Corollary 3. If d satisfies the triangle inequality, sets in partitions for (|| - ||1, avg)-2-
CLUSTER can be assumed to have cardinality two or three.

Proof. For a cluster S := {x1,25...,2,} with center z; and r > 3, a further partitioning
into {was, x9i41} for i € {1,...,2 — 1} with z = | 5] and {21, 22.,2,} does not increase the
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global cost for (||-||1,avg)-2-CLUSTER, since:

|Slavg(S)
r z—1
= d(zi,z,) < (r = 22)d(w22,7,) + (2, 722 1) + > d(w20,70) + (w2141, T7)
i=1 =1
z—1
<H{z1, 2., 2, Havg({z1, 222, 20 }) + Z 2avg({z2i, v2i11}) - <

i=1

4 Connections to Matching Problems

The graph-representation we chose to define (|-, f)-k-CLUSTER reveals relations to other
well studied graph problems, interestingly in case of k = 2 not to classical clustering but to
matching problems. Some variants can be reduced to finding a minimum weight edge cover,
a problem which can be reduced to finding a minimum weight perfect matching (a simple

reduction is described, e.g., in the first volume of Schrijver’s monograph [[15], Section 19.3]).

As a consequence, a minimum weight edge cover can be found in O(n?) time by the results
of Edmonds and Johnson [8].

» Theorem 4. (|- ||T, avg)-2-CLUSTER can be solved in O(n?3) time.

Proof. (|||, ,avg)-2-CLUSTER searches for a 2-cluster Py,..., P, minimising:

Zmin{ Z d(z,y): = € P;}.

yeP;

In other words, for any graph G = (V| E), the global cost is the weight of the cheapest
edge-set E' C V2 for which the graph G’ := (V, E’) has s connected components P, ..., Ps
with at least 2 vertices such that the induced subgraph of each P; is a star-graph. This
property is equivalent to E’ being a minimum weight edge cover for the complete graph on V'
with edge-weights equal to the distance d; observe that the graph (V, E’) is a forest without
isolates and without paths of length three for every minimum weight edge cover E’ which
means that its connected components are star-graphs. |

» Theorem 5. (|||, rad)-2-CLUSTER can be solved in O(n?) time.

Proof. For a graph G = (V, E), first check all vertices in V' and find the smallest value ¢ > 0
such that each vertex v has distance at most ¢ from at least one other vertex. This c is
obviously a general lower bound on the global cost, since each vertex needs at least one
partner. For k = 2, this c is also the optimal value since any minimal edge cover for the
graph G’ := (V, E’) with E' := {(u,v): 0 < d(u,v) < ¢} yields a 2-cluster for G with radius
at most ¢ for each cluster. |

With respect to diameter, this edge-cover strategy is not applicable for clusters of cardinality
larger than two. Even for k = 2 there are cases for which clusters of cardinality three are
required in every optimal solution. It seems difficult to define a correct way to compute
the diameter of a cluster by summing up certain edge-weights. We therefore consider the
following matching problem which is more involved but still solvable in O(n3m?logn) [2]:

SIMPLEX MATCHING
Input: Hypergraph H = (V, F) with F C (V2 U V3) and cost-function ¢ : F — R satisfying:

4:5
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1. {{u,v}, {v,w}, {u,w}} C F for all {u,v,w} € F. (subset cond.)

2. c({u,v}) + c({v,w}) + e({u, w}) < 2¢({u,v,w}) for all {u,v,w} € F. (simplex cond.)
Output: A perfect matching of H (that is a collection S of hyperedges such that every vertex

in V appears in exactly one hyperedge of S) of minimal cost.

» Corollary 6. (||-||.", diam)-2-CLUSTER can be solved in O(n®logn) time.

Proof. Let G = (V, E) be an input graph for (||-|||, diam)-2-CLUSTER. The corresponding
input for SIMPLEX MATCHING is the hypergraph H = (V,V?2 U V?3) which obviously satisfies
the subset condition. By Proposition 1, there exists an optimal solution for (||-||,", diam)-
2-CLUSTER among the perfect matchings for H. According to the original problem, the
cost-function ¢ for any u,v,w € V is defined as: c¢({u,v}) := 2d(u,v) and c({u,v,w}) :=
3max{d(u,v),d(v,w),d(u, w)} and hence satisfies the simplex condition. Since this complete
hypergraph has O(n?®) hyperedges, the overall running-time is in O(n”logn). <

Diameter combined with the oo-norms can be solved using Corollary 6 by fixing some
maximum diameter D and multiplying all hyperedge-costs which exceed D with a large
value C, say C = nmax{d(u,v): u,v € V}. This does not violate the simplex condition
for the cost-function and there exists a solution for (|||, diam)-2-CLUSTER of value D for
the original graph if and only if the hypergraph with adjusted costs has a (]| ||1U7diam)—2—
CLUSTER solution of value less than C. Relating to an easier problem, we can do a little
better. If we remove the hyperedges which exceed D instead of changing their cost, we arrive
at a hypergraph which still satisfies the subset condition (diam({u,v}) < diam({u, v, w}) for
any u,v,w € V) and we are only interested in any perfect matching, regardless of its weight.
The computation of such a perfect matching is the problem called SIMPLEX COVER [19]*.
The augmenting-path strategy from [16] for 2-GATHERING?, can be used to solve SIMPLEX
COVER in time O(m?), where m is the number of hyperedges of the input graph.

» Corollary 7. (|| ||.., diam)- and (|| -||"., diam)-2-CLUSTER and if d satisfies the triangle
inequality also (|||, avg)-2-CLUSTER can be solved in O(nSlogn) time.

» Remark. We would like to point out that SIMPLEX MATCHING is also an interesting
way to solve a sort of geometric version of (||- ||, avg)-2-CLUSTER, originally introduced as
MICROAGGREGATION in [6], which considers clustering a set of vectors in R? and measures
local cost for a cluster {z1,...,2:} by S¢_, ||z; — 2|3 where z is the centroid Har 4+ ay).
With the hypergraph (V,V? U V3) with V = {vy,...,v,} representing {z1,...,z,} and
the cost-function ¢ defined by: c({vi,vj, v}) == X pesjny ll2n — (@ +xj + ay)||3 for all
1<i<j<k<nandc({vi,v;}) = %||a; — ||} forall 1 < i < j < n, the simplex condition
holds, since 2¢({v;, v;,vi}) = 3(c({vi,v;}) + c({vj,vi}) + c({vi,vx})). This construction
gives a polynomial-time algorithm to solve 2-MICROAGGREGATION which improves on the
2-approximation from [7].

As powerful as SIMPLEX MATCHING may seem, the estimated worst-case running-time is
fairly large. We believe that an augmenting path strategy which is specifically tailored to
the above problems can yield significant improvement. Observe that similar construction
for (|||, rad)-2-CLUSTER does not work, since the cluster-cardinality is not bounded by
three. Also, even if d satisfies the triangle inequality, the corresponding cost-function ¢

! This covering problem is equivalent to {K2, K3}-PACKING an old, well studied generalisation of the
classical matching problem [5].
2 Confusingly, 2-GATHERING in [16] is not equivalent to the r-GATHERING problem from [1] with r = 2.
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would not satisfy the simplex condition, since for the small example of three vertices u, v, w
with d(u,v) = d(u,w) = 1 and d(v,w) = 2, the cost with respect to radius would give
1= c({u,v,w}) < 3(c({u,v}) + c({u, w}) + c({v,w})) = 2. Similar problems arise for the
other so far unresolved variants of (|||, f)-2-CLUSTER.

5 Complexity Results

In [1], the problem r-GATHER, which is (||- || ,rad)-k-CLUSTER with r = k with Euclidean
distance, was shown to be NP-complete for £k > 7. In [3] this result was strengthened
by a reduction from EXACT-t-COVER to k > 3, however for a type of problem where the
cluster-center exists as an input vertex but is assigned to a different cluster (i.e., with the
radius of a cluster P; calculated by: mingey maxyep, d(z,y)) which is not allowed in our
formal definition. We establish in the following a different reduction from the EXACT-t-
COVER problem which shows NP-hardness for all our variants of k-cluster and extends for
all measures f which are strictly monotone with respect to radius, diameter or average
distortion. With EXACT-t-COVER we refer to the problem of deciding for a given collection
C ={S51,...,S5,} of subsets of a universe X = {x1,...,2,} with |S;| = ¢ for all 4, if there
exists C" C C such that |C’| = n/t and Jgeer S = X, which is NP-hard for all ¢ > 3 [9].

» Theorem 8. All variants of (|| - ||, f)-k-CLUSTER are NP-hard for k > 3 even with the
restriction to distances d which satisfy the triangle inequality.

Proof (Sketch). We reduce from ExacT-t-COVER with ¢t = (k — 1)%. Let Si,...,S, be
subsets of {x1,...,2z,}, with |S;] = t. The graph G for (|||, f)-k-CLUSTER only contains

edges of weight one and vertices uy, ..., u, representing x1,...,z, and, for all ¢ € {1,...,7},
we have vertices w}, ..., wF ™! representing an arbitrary fixed partition Pj,..., Pi_, of S;

with |P;;| = k —1 for all j, and some additional vertices v; for sets which are not in the cover.
Edges connect u; to with w;, if u; € P]. Other edges are included depending on f. We want
a solution C' C {S1,...,S,} with |C| = n/t for EXACT-t-COVER to translate to the k-sets of
vertices {w?,u;: x; € P!} for all i with S; € C. Assigning v; to the set {w}, ..., w¥™'} for i
with S; € C' then partitions the remaining vertices. There is a k-clustering which only uses
these types of clusters for w; if and only if S5,...,S, is an exact cover.

For f = diam, we use £ := r — % vertices v1, ..., v, and turn each of the sets {u1,...,u,}
and w}, ... ,wf_l for i € {1,...,r} into a clique, and connect each v, with h € {1,...,¢}
to all w? (i € {1,...,r} and z € {1,...,k}). With this, there exists an exact cover for
S1,...,5- if and only if a there exists a k-cluster of maximum diameter one.

For f € {rad, avg}, we use r vertices v1,...,v, and edges (v;,w?) for i € {1,...,r} and
z€{1,...,k —1} and further include vertices y/ for i € {1,..., Ztand je{l,...,k—1}
with edges (yi,y}) and (yi,v;) foreach i € {1,...,2}, he{2,...,k—1}and j € {1,...,r}.
With this construction there exists an exact cover for Si,...,S, if and only if there is a
clustering such that all clusters have cardinality k and radius one.

In particular, there exists an exact cover for Si,...,S, if and only if there exists a
k-cluster with global cost 1, k and 2n + (k — 1)r + 25 for radius with norm |||, |- |
and ||-[|;’, respectively and %, k—1and 2n + f(tr — n) for average distortion with norm
1l Il ”: and ||-||;, respectively. <

The previous section only provided polynomial-time solvability for roughly half of the variants
of (||, f)-2-cLUSTER. We will now complete the complexity-picture for k = 2.

» Theorem 9. (|- ||:, rad)-2-CLUSTER is APX-hard, even with the restriction to distances d
which satisfy the triangle inequality.

4:7
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Proof (Sketch). We reduce from VERTEX COVER restricted to cubic graphs which is APX-
hard by [13]. Let G = (V, E) with V = {vy,...,v,} be the input for VERTEX COVER, we
define G’ = (V/,E') by V' := {v},v?: 1 <i <n}U{ve: e € E} and E' = {{v},0?}:1 <
i <n}U{{v},v.}: v; € e} with weights wg({v},v?}) =1 and wg({v},v.}) = 2. With these
definitions, G has a vertex cover of cardinality k if and only if there exists a solution for
(I ]I, , rad)-2-CLUSTER with global cost 2n + 2k + 2m. Since m = 3n/2 and k > n/2 for a

cubic graph, this reduction preserves non-approximability. |

The reduction above can not be altered for the cases of (|| - ||, f)-2-CLUSTER with some
oo-norm which were not shown to be polynomial-time solvable so far. We therefore consider
a completely different problem for these cases to show:

» Theorem 10. (|- ||:, avg)-, (|| -1, avg)- and (|| H:, rad)-2-CLUSTER are all NP-hard,
for the latter two even with the restriction to distances d which satisfy the triangle inequality.

Proof (Sketch). Reduction from (3, 3)-SAT, i.e., satisfiability with at most three variables
in each clause and where each variable occurs (positively or negatively) in at most three
clauses, which remains NP-hard by [18]. Let v1,...,v, be the variables and ¢y, ..., ¢y, be
the clauses. We construct G by introducing for each v; the subgraph displayed on the below.

For each clause c; we introduce a vertex y; connected with edges of weight b to t; if v; is a
literal in ¢; and to f; if v; is a literal in ¢;. Witha =1, b= 1 for (||-]|_,rad)-, a=2,b=3
for (||-]|..,avg)-anda=1, b= % and also additional edges {y;,y;} for all i # j of weight
one for (]| ||:,avg)—2—CLUSTER, the clause is satisfiable if and only if the clustering-problem
has a solution of global cost one. |

6 Approximation results

We will only consider the case where d satisfies the triangle inequality in this section.
This restriction is not just reasonable but in some sense necessary to achieve any kind of
approximation. If we reconsider the reduction from Theorem 8 and turn the constructed
graph G into a complete graph with additional edges of a large weight w, the difference in
global cost in case of “yes”- or “no”-instance of EXACT-t-COVER increases with w, which
implies:

» Proposition 11. If d violates the triangle inequality, there is no constant-factor approxim-
ation for (||-||, f)-k-CLUSTER in time polynomial in |V|, unless P = NP.

A closer look at the metric given by the shortest paths for the original construction from
Theorem 8, reveals that the global cost differs by a factor of two between “yes”- and
“no”-instance for some problem-variants. Explicitly this means:

» Proposition 12. There is no (2 — g)-approxzimation in polynomial time for (|| - |, f)-k-
CLUSTER with f € {rad, diam} and ||-||€ {||- ||, |- ||:} for any € > 0 unless P = NP, even
if d satisfies triangle inequality.
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Known approximation results for clustering with size constraints include a 9-approximation
from [3] for LOAD BALANCED FACILITY LOCATION without facility cost, which is related
to (|||, avg)-k-CLUSTER here, but with the additional constraint that at each customer
should be assigned to the nearest open facility. The techniques used for this result highly rely
on the additional constraint, which unfortunately means that they can not be applied here.
Other approximations for this problem instead relax the constraint that each cluster needs
to contain at least k vertices; [11] for example presents a 2k-approximation which constructs
clusters of cardinality at least k/3. We will see that for our problem such an approximation
factor can be achieved without relaxing the cardinality constraints. In general, our results
however do not extend to LOAD BALANCED FACILITY LOCATION, since the addition of
facility-costs yields a very different type of problem; we especially lose the upper bound of
2k — 1 on the cardinality of clusters in an optimal solution from Theorem 2.

Other known approximation results however also apply here and can even be altered to
yield results for other problem-variants. The problem (||-||_.,rad)-k-CLUSTER is discussed
under the name r-GATHER in [1], where r takes the role of k. The concept for the 2-
approximation presented there can be altered, even simplified, and also used to compute a
2-approximation for (]| -], diam)-k-CLUSTER.

» Theorem 13. (||||_.,rad)- and (]|-||., diam)-k-CLUSTER are 2-approzimable for all k > 2.

Proof (Sketch). We try all values D that occur as pairwise distances d(u, v) for u,v € V for
the following greedy strategy: Start with V; := V and iteratively, until V; = @, choose ¢; € V;,
build clusters P(¢;) := {v € V;: d(¢;,v) < D} and set V;11 = V;\ P(c;). This yields a partition
of V into a finite number of clusters P(c;). If some cluster P(c¢;) has less than k vertices,
consider S(i,7) = {v € P(¢;) \ {¢;}: d(v,¢;) < D} and move min{|S(,7)], |P(c;)| — k}
vertices from S(, j) to P(¢;) for each j € {1,...,7— 1} until |P(¢;)| > k. If this procedure is
successful, we arrive at a k-cluster for V with maximum radius D and maximum diameter
2D. This procedure is successful for D = 2r* and D = D* if r* and D* are optimal values
for (||-]..,rad)- and (]|-]|,,diam)-k-CLUSTER respectively. <

» Remark. A greedy procedure for (||-||..,avg)-k-CLUSTER could build up the sets P(c;) by
successively adding argmin{d(v,¢;): v € V; \ P(c;)} until avg(P(¢;)) exceeds D but moving
vertices from S(4, j) to P(c;) could unfortunately increase the average distortion of P(c;).

In [12] results from [10] for the so-called PROPER CONSTRAINT FOREST PROBLEM are used
to compute an 8(k — 1)-approximation for MICROAGGREGATION. We will use a different
result from [10]: a 2-approximation for LOWER CAPACITATED TREE PARTITIONING with
capacity k£ which is the problem of computing a spanning forest of minimal cost for which
each connected component has cardinality at least k. A spanning forest is characterised by a
set of edges and its cost is defined as the sum of the weights of these edges.

» Corollary 14. (|- HT, avg)-k-CLUSTER is 2k-approximable for all k > 2.

» Remark. For k = 2, Theorem 4 showed that (|| - ||;U,avg)—k‘—CLUSTER can be solved in
polynomial time which also translates to LOWER CAPACITATED TREE PARTITIONING with
capacity k = 2; tree partitioning with capacity two is equivalent to weighted edge-cover.

Essential for the result above is the fact that components of a minimal spanning forest do not
contain paths of length 2k or more. This property implies the existence of a central vertex
which can reach all vertices in its component in at most k steps and allows to bound the
average distortion. This property does not prevent a component from containing arbitrarily
many vertices. An algorithm for (||- ||T,diam)— or (|- ||1w ,rad)-k-CLUSTER requires such an
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upper bound on the cardinality to prove an approximation factor. We therefore consider
LOWER CAPACITATED PATH PARTITIONING, the restriction of LOWER CAPACITATED TREE
PARTITIONING to paths as connected components. With triangle inequality, [10] provides a
4-approximation for this problem and it is clear that minimal solutions can be assumed to
have connected components with at most 2k — 1 vertices each, which yields:

» Corollary 15. (|||, diam)-k-CLUSTER is (8k — 7)-approzimable for all k > 2.

One advantage of the unified model for (]|-||, f)-k-CLUSTER is that if d satisfies the triangle
inequality, the different measures relate in the following way:

avg(P;) < rad(P;) < diam(P;) < 2rad(F;). (1)
This relation with Corollary 15 immediately yields:
» Proposition 16. (||-||., rad)-k-CLUSTER is (16k — 14)-approzimable for all k > 2.

By definition, the two co-norms also relate optimal values in the following way for every
choice of f € {rad,diam,avg}, where we denote by opt(G,d, ||- ||, f, k) the global cost of an
optimal solution for (|||, f)-k-CLUSTER on G with distance d:

Opt(Ga d7 fv H : ||:;7 k) > k- Opt(G7d7 f7 || ' Hoo7k) . (2)
This equation is helpful to derive approximations for the weighted co-norm:

» Corollary 17. (||-||", diam)-k-CLUSTER is 4-approzimable and (||-||", rad)-k-CLUSTER is
8-approximable for all k > 2.

For (||-]|”,avg)-k-CLUSTER we do not have a result for (||-||__,avg)-k-CLUSTER to transfer.
Interestingly, a variant with different norm and measure can be used instead:

» Corollary 18. (||-||”, avg)-k-CLUSTER is (4k — 2)-approzimable for all k > 2.
Proof. We first show that opt(G,d, avg, || - ||;,k) > opt(G,d,diam, |- || ., k). Consider any

set P in an optimal solution for (||-|_,,avg)-k-CLUSTER. Triangle inequality yields:

o > mi S _ .
| Plavg(P) rcrélgzé;d(c,p) = min max, d(u,c) +d(v,c) > [nax, d(u,v) = diam(P)

Theorem 13 and Proposition 1 produce a 2-approximation for (]| - ||, diam)-k-CLUSTER
for which each set contains at most 2k — 1 vertices. The weighted co-norm of the average
distortion of this partition is at most 2(2k — 1)-opt(G, d, diam, ||- ||, k), and hence yields a
(4k — 2)-approximation for (|| H: ,avg)-k-CLUSTER. <

At last, we want to present an approximation which exploits the unified model in an even more
surprising way. The solutions for k = 2 derived in Section 4 for two different problem-variants
are combined to compute an approximate solution for k = 4. Explicitly, we will combine the
SIMPLEX MATCHING approach for (|||, diam)-2-CLUSTER and the EDGE COVER approach
for (||-]|1,avg)-2-CLUSTER.

» Theorem 19. The problem (||- ||1U7 diam)-4-CLUSTER can be approximated in polynomial

time within a factor o %".
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Proof (Sketch). Consider as input any graph G = (V, E) with induced distances d. First,
compute an optimal solution Py, ..., Ps for (||-[|,,diam)-2-CLUSTER, for which the optimal
value || (diam((Py),...,diam(Py)) ||, is at most D* :=opt(G, d, diam, |- ||.", 4), simply because
any 4-cluster is also a 2-cluster. Next, consider the complete graph G’ = (P, P?) with vertices
P :={p1,...,ps} and edge-weights w defined by w(p;,p;) := min{d(u,v): v € P;,v € P;}.
It can be shown that D* > 3-opt(G’, w, avg, || - H?,Q) and use an optimal solution S, ..., .S,
for (||-[|;,avg)-2-CLUSTER on G', such that |S;| < 3 for all i by Corollary 3. The partition
S = {Upiesj P;:1 < j < gq}isa 4-cluster for G. If S, = {p;,pj, px} with center p; for
some i, j,k € {1,...,s} with |P;| = 3, we replace the cluster P = P, U P; U Py in S by
the two clusters P’ := P; U {u;} and P” := P\ P’, where we choose u; € P; such that
w(p;, pj) = min{d(u;,v): v € P;}. These new clusters satisfy:

|P'|diam(P’) < 4(diam(P;) + w(pi, p;)) < 2|Pj|diam(P;) + 4w(p;, p;) and
|P"|diam(P") < 2|P;|diam(P;) + 2| Py|diam(Py) + 5w (p;, pr)

Counsider any set R € S which is not the result of splitting up a cluster. Worst case
is R = P, U P; U P, with p; as center of S; = {pi,p;,pr}, we know that |R| < 7 and
diam(R) < diam(FP;) + diam(P;) + diam(Py) + w(pi, p;) + w(ps, px), hence:

|Rldiam(R) < 7 (||Pildiam(FP;) + | Pj|diam(F;) + [ P|diam(Py)) +7(w(pi, pj) +w(pi, b)) -
Overall, this yields:
> |R|diam(R) < § ,lePildiam(R)Jrﬁ > wpip)+7 > w(pi,p)+w(pi pr)

ReS RCP;UP; R=P;UP;UPy
w q * * *
< % || (diam((P1), ..., diam(P;)) ||, —1—7231 |Silavg(S;) < %D + %D = %D . <

» Remark. Equation 1 translates the above result to a 32-approximation for (|- |, rad)-4-
CLUSTER. Since the approximation-ratios from Theorem 19 are significantly better than the
path-partitioning approximation from Corollary 15 (factor 25 and 50 respectively), it would
be interesting to nest this construction further and extend it for larger values of k.

7 Conclusions

We have introduced and discussed the general problem (|| - ||, f)-k-CLUSTER in order to
model clustering-tasks which do not fix the number of clusters but require each cluster to
contain at least k£ objects. The nine chosen problem-variants in this paper generalise many
previous models but, of course, do not capture every possible way to measure the quality of
the clustering. We however tried to cover many previous models while maintaining a clear
framework in which similarities turned out to be quite fruitful.

Our NP-hardness result for & = 3 for all variants of (]| - ||, f)-k-CLUSTER generalises all
known complexity-results for these types of problems. Further, we completely characterise
the complexity with respect to k with the following results for (|||, f)-2-CLUSTER:

k=2 rad diam avg

Il || in P (Ebce Cover) Th.5 in P (SmvpLex Cover) Cor.7 NP-complete Th.10
I-11s NP-complete Th.10 in P (SmvpLex Cover) Cor.7 NP-complete Th.10

-0y APX-hard Th. 9 in P (SmvpLex Marching) Cor.6 | in P (WeicaTED EDGE CovER) Th.4
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Building Clusters with Lower-Bounded Sizes

The restriction to distances d which satisfy the triangle inequality already simplified exact
solvability for the general NP-hard problem (||| ,avg)-2-CLUSTER which turned out to
be solvable with SIMPLEX COVER in this case. We further showed that this restriction is
necessary for approximations in time polynomial in the number of objects and derived a
number of approximation strategies, mostly based on different other graph-problems. Our
approximation-ratios (which are the best and/or only ones known) are:

rad diam avg
o 2 Th.13 2 Th.13 2
””:v 8 Cor.17 4 Cor.17 4k — 2 Cor.18
11l || 16k — 14 Prop.16 | 8k —7 Cor.15 | 2k Cor. 14

An interesting open question is whether (||| ,avg)-k-CLUSTER can be approximated within
some constant ratio or at least within some ratio in O(k). The lack of monotonicity for
average distortion makes this measure the most challenging for approximation.

—— References

1 G. Aggarwal, R. Panigrahy, T. Feder, D. Thomas, K. Kenthapadi, S. Khuller, and An Zhu.
Achieving anonymity via clustering. ACM Transactions on Algorithms, 6(3), 2010.

2 E. Anshelevich and A. Karagiozova. Terminal Backup, 3D Matching, and Covering Cubic
Graphs. SIAM J. Comput., 40(3):678-708, 2011.

3  A. Armon. On min-max r-gatherings. Theoretical Computer Science, 412(7):573-582, 2011.

4 J-W. Byun, A. Kamra, E. Bertino, and N. Li. Efficient k-anonymization using clustering
techniques. In R. Kotagiri, P. R. Krishna, M. Mohania, and E. Nantajeewarawat, editors,
Advances in Databases: Concepts, Systems and Applications, volume 4443 of LNCS, pages
188-200. Springer, 2007.

5 G. Cornuéjols, D. Hartvigsen, and W. Pulleyblank. Packing subgraphs in a graph. Opera-
tions Research Letters, 1(4):139-143, 1982.

6 J. Domingo-Ferrer and J. M. Mateo-Sanz. Practical Data-Oriented Microaggregation for
Statistical Disclosure Control. IEEE Transactions on Knowledge and Data Engineering,
14(1):189-201, 2002.

7 J. Domingo-Ferrer and F. Sebé. Optimal Multivariate 2-Microaggregation for Microdata
Protection: A 2-Approximation. In J. Domingo-Ferrer and L. Franconi, editors, Privacy
in Statistical Databases, PSD’06, volume 4302 of LNCS, pages 129-138. Springer, 2006.

8 J. Edmonds and E. L. Johnson. Matching, euler tours and the chinese postman. Mathem-
atical Programming, 5:88-124, 1973.

9 F. Ergiin, R. Kumar, and R. Rubinfeld. Fast approximate pcps. In Proceedings of the
Thirty-First Annual ACM Symposium on Theory of Computing, May 1-4, 1999, Atlanta,
Georgia, USA, pages 41-50, 1999.

10 M. Goemans and D. Williamson. A general approximation technique for constrained forest
problems. SIAM J. Comput., 24(2):296-317, 1995.

11  S. Guha, A. Meyerson, and K. Munagala. Hierarchical placement and network design prob-
lems. In In Proceedings of the 41th Annual IEEE Symposium on Foundations of Computer
Science, FOCS’00, pages 603—-612. IEEE Computer Society, 2000.

12 M. Laszlo and S. Mukherjee. Approximation Bounds for Minimum Information Loss Micro-
aggregation. IEEE Transactions on Knowledge and Data Engineering, 21(11):1643-1647,
2009.



F. Abu-Khzam, C. Bazgan, K. Casel, and H. Fernau

13

14

15
16

17

18

19

C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity
classes. Journal of Computer and System Sciences, 43:425-440, 1991.

P. Samarati. Protecting respondents’ identities in microdata release. IEEE Transactions
on Knowledge and Data Engineering, 13(6):1010-1027, November 2001.

A. Schrijver. Combinatorial Optimization. Springer, 2003.

A. Shalita and U. Zwick. Efficient algorithms for the 2-gathering problem. ACM Transac-
tions on Algorithms, 6(2), 2010.

K. Stokes. On computational anonymity. In Privacy in Statistical Databases — UNESCO
Chair in Data Privacy, International Conference, PSD 2012, Palermo, Italy, September
26-28, 2012. Proceedings, pages 336-347, 2012.

C. Tovey. A Simplified NP-complete Satisfiability Problem. Discrete Applied Mathematics,
8(1):85-89, 1984.

D. Xu, E. Anshelevich, and M. Chiang. On survivable access network design: Complexity
and algorithms. In INFOCOM 2008. 27th IEEE International Conference on Computer
Communications, Joint Conference of the IEEE Computer and Communications Societies,
13-18 April 2008, Phoenix, AZ, USA, pages 186-190, 2008.

4:13

ISAAC 2016






Simultaneous Feedback Edge Set:
A Parameterized Perspective*

Akanksha Agrawal', Fahad Panolan?, Saket Saurabh?®, and
Meirav Zehavi*

1 Department of Informatics, University of Bergen, Norway
akanksha.agrawal@uib.no

2 Department of Informatics, University of Bergen, Norway
fahad.panolan@uib.no

3 Department of Informatics, University of Bergen, Norway; and
The Institute of Mathematical Sciences, HBNI, Chennai, India
saket@imsc.res.in

4  Department of Informatics, University of Bergen, Norway
zehavimeirav@gmail.com

—— Abstract

In a recent article Agrawal et al. (STACS 2016) studied a simultaneous variant of the classic
FEEDBACK VERTEX SET problem, called SIMULTANEOUS FEEDBACK VERTEX SET (SIM-FVS).
In this problem the input is an n-vertex graph G, an integer k& and a coloring function col :
E(G) — 2[° and the objective is to check whether there exists a vertex subset S of cardinality
at most k in G such that for all ¢ € [a], G; — S is acyclic. Here, G; = (V(G),{e € E(G) |
i € col(e)}) and [o] = {1,...,a}. In this paper we consider the edge variant of the problem,
namely, SIMULTANEOUS FEEDBACK EDGE SET (SIM-FES). In this problem, the input is same
as the input of SIM-FVS and the objective is to check whether there is an edge subset S of
cardinality at most &k in G such that for all i € [a], G; — S is acyclic. Unlike the vertex variant
of the problem, when o = 1, the problem is equivalent to finding a maximal spanning forest and
hence it is polynomial time solvable. We show that for « = 3 SIM-FES is NP-hard by giving a
reduction from VERTEX COVER on cubic-graphs. The same reduction shows that the problem
does not admit an algorithm of running time O(2°®)n®M) unless ETH fails. This hardness
result is complimented by an FPT algorithm for SIM-FES running in time O(2wketelogkyO1)y,
where w is the exponent in the running time of matrix multiplication. The same algorithm gives
a polynomial time algorithm for the case when o« = 2. We also give a kernel for SIM-FES
with (ka)©(®) vertices. Finally, we consider the problem MAXIMUM SIMULTANEOUS ACYCLIC
SUBGRAPH. Here, the input is a graph G, an integer ¢ and, a coloring function col : E(G) — 2l
The question is whether there is a edge subset F' of cardinality at least ¢ in G such that for
all i € [a], G[F}] is acyclic. Here, F; = {e € F | i € col(e)}. We give an FPT algorithm
for MAXIMUM SIMULTANEOUS ACYCLIC SUBGRAPH running in time O(2¢9n®M)).  All our
algorithms are based on parameterized version of the MATROID PARITY problem.
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1 Introduction

Deleting at most k vertices or edges from a given graph G, so that the resulting graph
belongs to a particular family of graphs (F), is an important research direction in the
fields of graph algorithms and parameterized complexity. For a family of graphs F, given a
graph G and an integer k, the F-DELETION (EDGE F-DELETION) problem asks whether we
can delete at most k vertices (edges) in G so that the resulting graph belongs to F. The
F-DELETION (EDGE F-DELETION) problems generalize many of the NP-hard problems like
VERTEX COVER, FEEDBACK VERTEX SET, ODD CYCLE TRANSVERSAL, EDGE BIPARTIZATION,
etc. Inspired by applications, Cai and Ye introduced variants of F-DELETION (EDGE F-
DELETION) problems on edge colored graph [7]. Edge colored graphs are studied in graph
theory with respect to various problems like MONOCHROMATIC AND HETEROCHROMATIC
SUBGRAPHS [15], ALTERNATING PATHS [6, 8, 20], Homomorphism in edge-colored graphs [3],
GRAPH PARTITIONING in 2-edge colored graphs [5] etc. One of the natural generalization
to the classic F-DELETION (EDGE JF-DELETION) problems on edge colored graphs is the
following. Given a graph G with a coloring function col : E(G) — 2% and an integer k, we
want to delete a set S of at most k edges/vertices in G so that for each i € [a], G; — S belongs
to F. Here, G; is the graph with vertex set V(G) and edge set as {e € E(G) | i € col(e)}.
These problems are also called simultaneous variant of F-DELETION (EDGE F-DELETION).

Cai and Ye studied the DUALLY CONNECTED INDUCED SUBGRAPH and DUAL SEPARATOR
on 2-edge colored graphs [7]. Agrawal et al. [1] studied a simultaneous variant of FEEDBACK
VERTEX SET problem, called SIMULTANEOUS FEEDBACK VERTEX SET, in the realm of
parameterized complexity. Here, the input is a graph G, an integer k, and a coloring function
col : E(G) — 2!l and the objective is to check whether there is a set S of at most k vertices in
G such that for all i € [a], G; — S is acyclic. Here, G, = (V(G),{e € E(G) | i € col(e)}). In
this paper we consider the edge variant of the problem, namely, SIMULTANEOUS FEEDBACK
EDGE SET, in the realm of parameterized complexity.

In the Parameterized Complexity paradigm the main objective is to design an algorithm
with running time f(y) - n©M, where p is the parameter associated with the input, n is the
size of the input and f(-) is some computable function whose value depends only on u. A
problem which admits such an algorithm is said to be fized parameter tractable parameterized
by u. Typically, for edge/vertex deletion problems one of the natural parameter that is
associated with the input is the size of the solution we are looking for. Another objective in
parameterized complexity is to design polynomial time pre-processing routines that reduces
the size of the input as much as possible. The notion of such a pre-processing routine
is captured by kernelization algorithms. The kernelization algorithm for a parameterized
problem @ takes as input an instance (I, k) of @, runs in polynomial time and returns an
equivalent instance (I, k') of ). Moreover, the size of the instance (I’, k') returned by the
kernelization algorithm is bounded by g(k), where g(+) is some computable function whose
value depends only on k. If g(-) is polynomial in k, then the problem @ is said to admit a
polynomial kernel. The instance returned by the kernelization is referred to as a kernel or
a reduced instance. We refer the readers to the recent book of Cygan et al. [9] for a more
detailed overview of parameterized complexity and kernelization.

A feedback edge set in a graph G is S C E(G) such that G — S is a forest. For a graph
G with a coloring function col : E(G) — 20, simultaneous feedback edge set is a subset
S C E(G) such that G; — S is a forest for all ¢ € [a]. Here, G; = (V(G), E;), where
E; ={e€ E(G) | i€ col(e)}. Formally, the problem is stated below.
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SIMULTANEOUS FEEDBACK EDGE SET (SIM-FES) Parameter: k, «
Input: An n-vertex graph G, an integer k and a coloring function col : E(G) — 2!
Question: Is there a simultaneous feedback edge set of cardinality at most k in G

FEEDBACK VERTEX SET (FVS) is one of the classic NP-complete [13] problems and has
been extensively studied from all the algorithmic paradigms that are meant for coping with
NP-hardness, such as approximation algorithms, parameterized complexity and moderately
exponential time algorithms. The problem admits a factor 2-approximation algorithm [4],
an exact algorithm with running time O(1.7217"n®M) [12], a deterministic parameterized
algorithm running in 0(3.619¥n°M)) time [16], a randomized algorithm running in O(3*n°1))
time [10], and a kernel with O(k?) vertices [24]. Agrawal et al. [1] studied SIMULTANEOUS
FEEDBACK VERTEX SET (SIM-FVS) and gave an FPT algorithm running in time 20(@*%) @)
and a kernel of size O(ak*@*1)). Finally, unlike the FVS problem, SiM-FES is polynomial
time solvable when a = 1, because it is equivalent to finding maximal spanning forest.

Our results and approach. In Section 3 we design an FPT algorithm for SIM-FES by
reducing to a-MATROID PARITY on direct sum of elongated co-graphic matroids of Gj,
i € [a] (see Section 2 for definitions related to matroids). This algorithm runs in time
O(2wkatalogkpO))  Unlike the vertex counterpart, we show that for a = 2 (2-edge colored
graphs) SIM-FES is polynomial time solvable. This follows from the polynomial time
algorithm for the MATROID PARITY problem. In Section 4 we show that for a = 3, SIM-FES
is NP-hard. Towards this, we give a reduction from the VERTEX COVER in cubic graphs
which is known to be NP-hard [22]. Furthermore, the same reduction shows that the problem
cannot be solved in 2°®)n®M) time unless Exponential Time Hypothesis (ETH) fails [14]. We
complement our FPT algorithms by showing that SIM-FES is W[1]-hard when parameterized
by the solution size k (Section 5). When a = O(|V(G)|), we give a parameter preserving
reduction from the HITTING SET problem, a well known W{[2]-hard problem parameterized by

the solution size [9]. However, SIM-FES remains W[1]-hard even when oo = O(log(|V(G)])).

We show this by giving a parameter preserving reduction from PARTITIONED HITTING SET
problem, a variant of the HITTING SET problem, defined in [1]. In [1], PARTITIONED HITTING
SET was shown to be W[1]-hard parameterized by the solution size. In Section 6 we give a
kernel with O((ka)©(®)) vertices. Towards this we apply some of the standard preprocessing
rules for obtaining kernel for FEEDBACK VERTEX SET and use the approach similar to the
one developed for designing kernelization algorithm for SIM-FV'S [1]. In Section 7 we give
an FPT algorithm for the problem, when parameterized by the dual parameter. Formally,
this problem is defined as follows.

MAXIMUM SIMULTANEOUS ACYCLIC SUBGRAPH (MAX-SIM-SUBGRAPH) Parameter: ¢
Input: An n-vertex graph G, a positive integer ¢ and a function col : E(G) — 2[*].
Question: Is there a subset F' C E(G) such that |F| > ¢ and for all i € [a], GIFNE(G;)]
is acyclic?

For solving MAX-SIM-SUBGRAPH we reduce it to an equivalent instance of the a-MATROID
PARITY problem. As an immediate corollary we get an exact algorithm for SIM-FES running
in time O(29ne”pCM).

2 Preliminaries

We denote the set of natural numbers by N. For n € N, by [n] we denote the set {1,...,n}.

For a set X, by 2% we denote the set of all subsets of X. We use the term ground set/ universe
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to distinguish a set from its subsets. We will use w to denote the exponent in the running
time of matrix multiplication, the current best known bound for which is w < 2.373 [25].

Graphs. We use the term graph to denote undirected graph. For a graph G, by V(G) and
E(G) we denote its vertex set and edge set, respectively. We will be considering finite graphs
possibly having loops and multi-edges. In the following, let G be a graph and let H be a
subgraph of G. By dp(v), we denote the degree of the vertex v in H, i.e, the number of
edges in H which are incident with v. A self-loop at a vertex v contributes 2 to the degree
of v. For any non-empty subset W C V(G), the subgraphs of G induced by W, V(G) \ W
are denoted by G[W] and G — W respectively. Similarly, for FF C F(G), the subgraph of G
induced by F is denoted by G[F; its vertex set is V(G) and its edge set is . For F' C E(G),
by G — F we denote the graph obtained by deleting the edges in F. We use the convention
that a double edge and a self-loop is a cycle. An a-edge colored graph is a graph G with
a color function col : E(G) — 2[®l. By G; we will denote the color i (or i-color) graph of
G, where V(G;) = V(G) and E(G;) = {e € E(G)|i € col(e)}. For an a-edge colored graph
G, the total degree of a vertex vis Y i | dg,(v). We refer the reader to [11] for details on
standard graph theoretic notations and terminologies.

Matroids and Representable Matroids. A pair M = (E,Z), where F is a ground set and
7 is a family of subsets (called independent sets) of E, is a matroid if it satisfies the following
conditions: (I1) p € Z. (12) If A’ C Aand A€ Zthen A’ € Z. (I13) If A, B € 7 and |A| < |B|,
then there is e € (B '\ A) such that AU {e} € Z. We refer the reader to [23] for more details.

Let A be a matrix over an arbitrary field F and let E be the set of columns of A. For A,
we define matroid M = (E,Z) as follows. A set X C E is independent (that is X € 7) if the
corresponding columns are linearly independent over F. The matroids that can be defined by
such a construction are called linear matroids, and if a matroid can be defined by a matrix A
over a field F, then we say that the matroid is representable over F. A matroid M = (FE,7)
is called representable or linear if it is representable over some field F.

Direct Sum of Matroids. Let My = (E1,71), My = (F2,1s), ..., My = (Ey,Z;) be t
matroids with F; N E; = 0 for all 1 < ¢ # j <t. The direct sum M; @ - - ® M, is a matroid
M = (E,7I) with FE := U’;:l E; and X C FE is independent if and only if X N E; € Z; for
all i € [t]. Let A; be the representation matrix of M; = (E;,Z;) over field F. Then, a
representation matrix of My @ -+ @ M, over F can be found in polynomial time [21, 23].

Uniform Matroid. A pair M = (E,Z) over an n-element ground set E, is called a uniform
matroid if the family of independent sets is given by Z = {A C F | |A| < k}, where k is some
constant. This matroid is also denoted as Uy, j.

» Proposition 2.1 ([9, 23]). Uniform matroid U, is representable over any field of size
strictly more than n and such a representation can be found in time polynomial in n.

Graphic and Cographic Matroid. Given a graph G, the graphic matroid M = (E,Z) is
defined by taking the edge set E(G) as universe and F' C E(G) is in Z if and only if G[F] is a
forest. Let G be a graph and 7 be the number of components in G. The co-graphic matroid
M = (E,T) of G is defined by taking the the edge set F(G) as universe and F' C E(G) is in
7 if and only if the number of connected components in G — F is 7.

» Proposition 2.2 ([23]). Graphic and co-graphic matroids are representable over any field
of size > 2 and such a representation can be found in time polynomial in the size of the graph.
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Elongation of Matroid. Let M = (F,Z) be a matroid and k be an integer such that
rank(M) < k < |E|. A k-elongation matroid My of M is a matroid with the universe as F
and S C F is a basis of My, if and only if, it contains a basis of M and |S| = k. Observe
that the rank of the matroid Mj, is k.

» Proposition 2.3 ([18]). Let M be a linear matroid of rank r, over a ground set of size n,
which is representable over a field F. Given a number £ > r, we can compute a representation
of the £-elongation of M, over the field F(X) in O(nrf) field operations over F.

a-Matroid Parity. In our algorithms we use a known algorithm for a-MATROID PARITY.
Below we define a-MATROID PARITY problem formally and state its algorithmic result.

a-MATROID PARITY Parameter: «,q
Input: A representation A,s of a linear matroid M = (E,Z), a partition P of E into
blocks of size o and a positive integer q.

Question: Does there exist an independent set which is a union of ¢ blocks?

» Proposition 2.4 ([18, 21]). a~-MATROID PARITY can be solved in O(249%||Ax||CM) time.

3 FPT Algorithm for Simultaneous Feedback Edge Set

In this section we design an algorithm for SIM-FES by giving a reduction to a-MATROID
PARITY on the direct sum of elongated co-graphic matroids associated with graphs restricted
to different color classes.

We describe our algorithm, Algo-SimFES, for SIM-FES. Let (G, k, col : B(G) — 2¢1) be
an input instance to SIM-FES. Recall that for i € [a], G; is the graph with vertex set as V(G)
and edge set as F(G;) = {e € E(G) | i € col(e)}. Let n = |V(G)|. Note that n = |V(G;)| for
all i € [a]. Let n; be the number of connected components in G;. To make G; acyclic we
need to delete at least |E(G;)| —n+mn; edges from G;. Therefore, if there is ¢ € [a] such that
|E(G;)| —n+n; > k, then Algo-SimFES returns No. We let k; = |E(G;)| — n 4+ n;. Observe
that for i € [a], 0 < k; < k. We need to delete at least k; edges from F(G;) to make G;
acyclic. Therefore, the algorithm Alg-SimFES for each i € [a], guesses k., where k; <k, < k

and computes a solution S of SIM-FES such that |[S N E(G;)| = k. Let M; = (E;,Z;) be
the kl-elongation of the co-graphic matroid associated with G;.

» Proposition 3.1 (). Let G be a graph with n connected components and M be an -
elongation of the co-graphic matroid associated with G, where r > |E(G)| — |V (G)|+n. Then
B C E(G) is a basis of M if and only if the subgraph G — B is acyclic and |B| = r.

By Proposition 3.1, for any basis F; in M;, G; — F; is acyclic. Therefore, our objective
is to compute F' C E(G) such that |F| = k and the elements of F' restricted to the
elements of M; form a basis for all i € [a]. For this we will construct an instance of
a-MATROID PARITY as follows. For each e € E(G) and i € col(e), we use ¢’ to denote
the corresponding element in M;. For each e € E(G), by Original(e) we denote the set of
elements {e’ | j € col(e)}. For each edge e € E(G), we define Fake(e) = {e? | j € [a] —col(e)}.
Finally, for each edge e € E(G), by Copies(e) we denote the set Original(e) U Fake(e). Let
Fake(G) = U.cp(q) Fake(e). Furthermore, let 7 = |Fake(G)| = >_.cp () |Fake(e)| and

! Proofs of results marked with (*) can be found in the full version of the paper [2].
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Algorithm 1: Pseudocode of Algo-SimFES

Input: A graph G,k € N and col : E(G) — 2%,
Output: YES if there is a simultaneous feedback edge set of size < k and No
otherwise.
1 Let 7; be the number of connected components in G; for all i € [a]
2 ki :=|E(G;)| —n+mn,; for all i € [a]
3 if there exists i € [ such that k; > k then
4 L return No
5 for (ki,...,k}) € ([k]U{0})™ such that k; < k} for alli € [a] do
6 Let M; be the kj-elongation of the co-graphic matroid associated with G;.
7 Let Mo41 = Uy over the gound set Fake(G), where, &' ==, (k — k7).
8 Let M := D, cioq1 Mi-
9 For each e € E(G), let Copies(e) be the block of elements of M.
10 if there is an independent set of M composed of k blocks then
11 L return YES

12 return NO

K = Zie[a] (k — k). Let Myy1 = (Eat1,Za+1) be a uniform matroid over the ground
set Fake(G). That is, M,11 = U, . By Propositions 2.1 to Proposition 2.3 we know
that M;s are representable over IF,,(X), where p > max(7,2) is a prime number and their
representation can be computed in polynomial time. Let A; be the linear representation of
M; for all i € [« + 1]. Notice that E; NE; =0 for all 1 <i # j < a+ 1. Let M denote
the direct sum M; @ --- @ M,4+1 with its representation matrix being Ap;. Note that the
ground set of M is |J,cp () Copies(e). Now we define an instance of a-MATROID PARITY,
which is the linear representation Ay; of M and the partition of ground set into Copies(e),
e € E(G). Notice that for all e € E(G), |Copies(e)| = a. Also for each i € [a], rank(M;) = k|
and rank(Ma1) = k' = 3,14y (k — k}). This implies that rank(M) = ak.

Now Algo-SimFES outputs YES if there is a basis (an independent set of cardinality ak)
of M which is a union of k blocks in M and otherwise outputs No. Algo-SimFES uses the
algorithm mentioned in Proposition 2.4 to check whether there is an independent set of M,
composed of blocks. A pseudocode of Algo-SimFES can be found in Algorithm 1.

» Lemma 3.2. Algo-SimFES is correct.

Proof. Let (G, k,col : B(G) — 2[*) be a YES instance of SIM-FES and let F C E(G), where
|F| = k be a solution of (G, k,col : B(G) — 21°)). Let k; = |E(G;)| — n + 1, where 7; is the
number of connected components in G;, for all i € [a]. For all i € [a], let k] = |F N E(G;)].
Since F' is a solution, k; < k] for all ¢ € [a]. This implies that Algo-SimFES will not execute
Step 4. Consider the for loop for the choice (ki,...,k.). We claim that the columns
corresponding to S = | J, . Copies(e) form a basis in M and it is union of k blocks. Note
that |S| = ak by construction. For all i € [a], let F* = {e’ | e € F,i € col(e)}, which is
subset of ground set of M;. By Proposition 3.1, for all i € [a], F* is a basis for M;. This
takes care of all the edges in U.cpOriginal(e). Now let S* = S — U;c(o]F" = UcepFake(e).
Observe that [S*| = > ¢, (k — ki) = k’. Also, S* is a subset of ground set of Uy and
thus is a basis since |S*| = k’. Hence S is a basis of M. Note that S is the union of blocks
corresponding to e € F' and hence is union of k blocks. Therefore, Algo-SimFES will output
YES.



A. Agrawal, F. Panolan, S. Saurabh, and M. Zehavi

In the reverse direction suppose Algo-SimFES outputs YES. This implies that there is a
basis, say S, that is the union of k£ blocks. By construction S corresponds to union of the
sets Copies(e) for some k edges in G. Let these edges be F' = {ey,...,er}. We claim that F'
is a solution of (G, k,col : B(G) — 2[®l). Clearly |F| = k. Since S is a basis of M, for each
i€ la], B(i)=Sn{e'|ee€ E(G;)} is a basis in M;. Let F(i) = {e | ¢’ € B(i)} C F. Since
B(i) is a basis of M;, by Proposition 3.1, G; — F(i) is an acyclic graph. <

» Lemma 3.3. Algo-SimFES runs in deterministic time O(2**atalogk|y(G)|OM),

Proof. The for loop runs (k+ 1) times. The step 10 uses the algorithm mentioned in Propos-
ition 2.4, which takes time O(2<F||A;]|OM) = O(2+%|V(G)|°M). All other steps in the al-
gorithm takes polynomial time. Thus, the total running time is QO (2«*eFlos k|7 (G)|O(1), <

Since a-MATROID PARITY for a = 2 can be solved in polynomial time [19] algorithm
Algo-SimFES runs in polynomial time for o = 2. This gives us the following theorem.

» Theorem 3.4. SIM-FES s in FPT and when oo = 2 SIM-FES s in P.

4 Hardness results for Sim-FES

In this section we show that when o = 3, SIM-FES is NP-Hard. Furthermore, from
our reduction we conclude that it is unlikely that SiM-FES admits a subexponential-time
algorithm. We give a reduction from VERTEX COVER (VC) in cubic graphs to the special
case of SIM-FES where o« = 3. Let (G, k) be an instance of VC in cubic graphs, which
asks whether the graph G has a vertex cover of size at most k. We assume without loss
of generality that k& < |[V(G)|. It is known that VC in cubic graphs is NP-hard [22] and
unless the ETH fails, it cannot be solved in time O*(2°UV(@IHIEED)2 [17]. Thus, to prove
that when a = 3, it is unlikely that SIM-FES admits a parameterized subexponential time
algorithm (an algorithm of running time O*(2°(%))), it is sufficient to construct (in polynomial
time) an instance of the form (G',k" = O(|V(G)| + |E(G)|),col’ : E" — 2I3]) of SiM-FES
that is equivalent to (G, k). Refer Figure 1 for an illustration of the construction.

To construct (G', k', col’ : B(G") — 2B), we first construct an instance (@, E) of VC in sub-

cubic graphs which is equivalent to (G, k). We set V(G) = V(G) U (U, uyepe){®ou Tunl),

~

and E(G) = {{zvu, Tup} : {v,u} € E(G)} U (Upuyenc) v zouts {u, zupt}). That is,
the graph G is obtained from the graph G by subdividing each edge in E(G) twice.

» Lemma 4.1 (x). G has a vertex cover of size k if and only zf@ has a vertex cover of size
k=k+|EQG)

Observe that in G every path between two degree-3 vertices contains an edge of the form
{Zyu, Tuw}. Thus, the following procedure results in a partition (M7, Ms, M3) of E(CA?) such
that for all ¢ € [3], {v,u} € M; and {v',uv'} € M;\ {{v,u}}, it holds that {v,u}N{v',u'} = 0.
Initially, My = My = M3 = (. For each degree-3 vertex v, let {v,z}, {v,y} and {v,z} be
the edges containing v. We insert {v, z} into My, {v,y} into M, and {v, z} into M3 (the
choice of which edge is inserted into which set is arbitrary). Finally, we insert each edge of
the form {z, 4, %y} into a set M; that contains neither {v, x, o} nor {u, z, .}

We are now ready to construct the instance (G/, k', col’ : E(G') — 2Bl). Let V(G') =

~

V(é) U V™, where V* = {v* v € V(é)} contains a copy v* of each vertex v in V(G). The

2 (O* notation suppresses polynomial factors in the running-time expression.
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Input (partial) Qutput (partial)

Figure 1 The construction given in the proof of Theorem 4.3.

set E(G") and coloring col” are constructed as follows. For each vertex v € V(é), add an
edge {v,v*} into E(G’) and its color-set is {1,2,3}. For each i € [3] and for each {v,u} € M;,
add the edges {v,u} and {v*,u*} into E(G’) and its color-set is {i}. We set k' = k. Clearly,
the instance (G', k', col’ : E(G’) — 23]) can be constructed in polynomial time, and it holds
that &' = O(|[V(GQ)| + | E(G))).

Lemma 4.2 proves that (G, k) is a YES instance of VC if and only if (G/, k', col’ : E(G') —
2[3]) is a YES instance of SIM-FES. Observe that because of the above mentioned property
of the partition (My, Ma, M3) of E(@), we ensure that in G’, no vertex participates in
two (or more) monochromatic cycles that have the same color. By construction, each

~

monochromatic cycle in G’ is of the form v — v* — u* — u — v, where {v,u} € E(G), and for

each edge {v,u} € E(G"), where either v,u € V(G) or v,u € V*, G’ contains exactly one
monochromatic cycle of this form.

» Lemma 4.2 (x). (G, k) is a YES instance of VC if and only if (G', K, col : E(G') — 203
is a YES instance of SIM-FES.

We get the following theorem and its proof follows from Lemma 4.1 and Lemma 4.2.

» Theorem 4.3. SIM-FES where a = 3 is NP-hard. Furthermore, unless the Exponential
Time Hypothesis (ETH) fails, SIM-FES when a = 3 cannot be solved in time O*(2°(F)),

5 Tight Lower Bounds for Simultaneous Feedback Edge Set

We show that SIM-FES parameterized by k is W|[2] hard when o = O(|V(G)|) and W[1]
hard when o = O(log(|V(G)|)). Our reductions follow the approach of Agrawal et al. [1].

W][2] Hardness of Sim-FES when a = O(|V(G)|). We give a reduction from HIT-
TING SET (HS) to SIM-FES where o = O(|V(G)]). Let (U = {u1,uz,...,uy},F =
{F1,Fy,...,Fi 5}, k) be an instance of HS, where F C 2V which asks whether there exists
a subset S C U of size at most k such that for all FF € F, SN F # (). It is known that HS
parameterized by k is W[2]-hard (see, e.g., [9]). Thus, to prove the result, it is sufficient to
construct (in polynomial time) an instance of the form (G, k, col : E(G) — 2[¢]) of SIM-FES
that is equivalent to (U, F, k), where a = O(|[V(G)|). We construct a graph G such that
V(G) = O(|U||F]|) and the number of colors used will be w = |F|. The intuitive idea is to
have one edge per element in the universe which is colored with all the indices of sets in the
family F that contains the element and for each F; € F creating a unique monochromatic
cycle with color ¢ which passes through all the edges corresponding to the elements it contain.
We explain the reduction formally in the next paragraph.
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Without loss of generality we assume that each set in F contains at least two elements
from U. The instance (G, k,col : E(G) — 20) is constructed as follows. Initially, V(G) =
E(G) = 0. For each element u; € U, insert two new vertices into V(G), v; and w;, add
the edge {v;,w;} into E(G) and let {j | F; € F,u; € F}} be its color-set. Now, for all
1 <i<yj<|U|and forall 1 <t < |F|such that u;,u; € F; and {ujy1,...,uj—1} NF; =0,
perform the following operation: add a new vertex into V(G), s; ; ¢, add the edges {w;, s; j+}
and {s; ;+,v;} into E(G) and let their color-set be {t}. Moreover, for each 1 <t < |F|, let u;
and u; be the elements with the largest and smallest index contained in F;, respectively, and
perform the following operation: add a new vertex into V(G), s; ;+, add the edges {w;, s; ¢}
and {s; j,v;} into E(G), and let their color-set be {t}. Observe that |V(G)| = O(|U||F])
and that o = |F|. Therefore, « = O(|V(G)]). It remains to show that the instances
(G, k,col) and (U, F,k) are equivalent. By construction, each monochromatic cycle in G
is of the form Uiy — Wiy — Siyyin,t — Vip — Wiy — Sigigt — " — Ui\Ftl - wi‘m — Si\Ft\,il,t — U4y y
where {u;,, iy, ..., U, } = F¢ € F, and for each set F; € F, G contains exactly one such
monochromatic cycle.

» Lemma 5.1 (x). (U, F, k) is a YES instance of HS if and only if (G, k, col : E(G) — 2[])
1s a YES instance of SIM-FES.

» Theorem 5.2. SIM-FES parameterized by k, when oo = O(|V(G)|), is W|[2]-hard.

WI[1] Hardness of Sim-FES when oo = O(log |V (G)|). We modify the reduction given
in the proof of Theorem 5.2 to show that when a = O(log |V (G)]), SIM-FES is W[1]-hard
with respect to the parameter k. This result implies that the dependency on « of our
O((20(@))knOMW)_time algorithm for SIM-FES is optimal in the sense that it is unlikely that
there exists an O((2°(*))*n®M)_time algorithm for this problem.

We give a reduction from a variant of HS, called Partitioned Hitting Set (PHS), to
SIM-FES where a = O(log |V (G)]|). The input of PHS consists of a universe U, a collection
F ={F1, F,...,FF}, where each Fj is a family of disjoint subsets of U, and a parameter k.
The goal is to decide the existence of a subset S C U of size at most k such that for all f €
(Uper F), SNf # 0. It is known that the special case of PHS where |F| = O(log(|U||(J F)I))
is W[1]-hard when parameterized by k (see, e.g., [1]). Thus, to prove the theorem, it is
sufficient to construct (in polynomial time) an instance of the form (G, k,col : E(G) — 2l°1)
of SIM-FES that is equivalent to (U, F, k), where o = O(log |[V(G)|). The construction of
the graph G is exactly similar to the one in Theorem 5.2. But instead of creating a unique
monochromatic cycle with a color i for each f; € |JF, for each F; € F we create |F;| vertex
disjoint cycles of same color i. Since for each F' € F the sets in F' are pairwise disjoint,
guarantees the correctness. Formal description of the reduction is given below.

Without loss of generality we assume that each set in (J,.» F' contains at least two
elements from U. The instance (G, k, col : E(G) — 2[°1) is constructed as follows. Initially,
V(G) = E(G) = 0. For each element u; € U, insert two new vertices v; and w; into V(G),
and add the edge {v;,w;} into E(G) with its color-set being {j : F; € F,u; € (| Fj)}. Now,
forall 1 < i < j <|U|and for all 1 <t < |F| such that there exists f € F; satisfying
ui,uj € f and {uis1,...,uj—1} N f =0, perform the following operation: add a new vertex
si,j.¢ into V(G), add the edges {w;, s; ;¢ } and {s; j, v;} into E(G) with both of its color-set
being {t}. Moreover, for each 1 < ¢ < |F| and f € F}, let u; and u; be the elements
with the largest and smallest index contained in f, respectively, we perform the following
operation: add a new vertex into V(G), s; ¢, add the edges {w;, s; ;+} and {s; ;,v,;} into
E(G), and let their color-set be {t}. Observe that |V (G)| = O(|U||(J F)|) and that o = |F|.
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Since |F| = O(log(|U||(UF)|)), we have that o = O(log |V (G)|). Since the sets in each
family F; are disjoint, the construction implies that each monochromatic cycle in G is of
the form v;, — Wi, — Si; int — Viy — Wiy — Sigigt —  °° — Viyg) = Wiy = Sijginst — Vins where
{ui17ui27"'7ui|pt\} = f for a set f € F; € F, and for each set f € F; € F, G contains a
monochromatic cycle of this form. By using the arguments similar to one in the proof of
Lemma 5.1, we get that the instances (G, k, col : E(G) — 2[°l) and (U, F, k) are equivalent.
Hence we get the following theorem.

» Theorem 5.3. SIM-FES parameterized by k, when a = O(log |V (G)|) is W|[1]-hard.

6 Kernel for Simultaneous Feedback Edge Set

In this section we give a kernel for SIM-FES with O((ka)©(®)) vertices. We start by applying
preprocessing rules similar in spirit to the ones used to obtain a kernel for FEEDBACK VERTEX
SET, but it requires subtle differences due to the fact that we handle a problem where edges
rather than vertices are deleted, as well as the fact that the edges are colored (in particular,
each edge in SIM-FES has a color-set, while each vertex in SIM-FVS is uncolored). We
obtain an approximate solution by computing a spanning tree per color. We rely on the
approximate solution to bound the number of vertices whose degree in certain subgraphs of
G is not equal to 2. Then, the number of the remaining vertices is bounded by adapting the
“interception”-based approach of Agrawal et al. [1] to a form relevant to SIM-FES.

Let (G, k,col : E(G) — 2[°]) be an instance of SIM-FES. For each color i € [a] recall G;
is the graph consisting of the vertex-set V(G) and the edge-set E(G;) includes every edge in
E(G) whose color-set contains the color i. It is easy to verify that the following rules are
correct when applied exhaustively in the order in which they are listed. We note that the
resulting instance can contain multiple edges.

Reduction Rule 1: If k < 0, return that (G, k, col : E(G) — 2[°l) is a No instance.
Reduction Rule 2: If for all i € [a], G; is acyclic, return that (G, k,col : B(G) — 21} is
a YES instance.

Reduction Rule 3: If there is a self-loop at a vertex v € V(G), then remove v from G
and decrement k by 1.

Reduction Rule 4: If there exists an isolated vertex in G, then remove it.

Reduction Rule 5: If there exists ¢ € [a] and an edge whose color-set contains ¢ but
it does not participate in any cycle in G;, remove i from its color-set. If the color-set
becomes empty, remove the edge.

Reduction Rule 6: If there exists i € [a] and a vertex v of degree exactly two in G,
remove v and connect its two neighbors by an edge whose color-set is the same as the
color-set of the two edges incident to v (we prove in Lemma 6.1 that the color set of two
edges are same).

» Lemma 6.1 (). Reduction rule 6 is safe.

We apply Reduction Rule 1 to 6 exhaustively (in that order). The safeness of Reduction
Rules 1 to 5 are easy to see. Lemma 6.1 proves the safeness Reduction Rule 6. After this, we
follow the approach similar to that in [1] to bound the size of the instance. This gives the
following theorem.

» Theorem 6.2 (x). SIM-FES admits a kernel with (ka)®(®) vertices.
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7 Maximum Simultaneous Acyclic Subgraph

In this section we design an algorithm for MAXIMUM SIMULTANEOUS ACYCLIC SUBGRAPH.
Let (G, g, col : E(G) — 21} be an input to MAX-SIM-SUBGRAPH. A set F' C F(G) such that
for all i € [a], G[F;] is acyclic is called simultaneous forest. Here, F; = {e € F | i € col(e)},
denotes the subset of edges of F' which has the integer 7 in its image when the function col is
applied to it. We will solve M AX-SIM-SUBGRAPH by reducing to an equivalent instance of
the a-MATROID PARITY problem and then using the algorithm for the same.

We start by giving a construction that reduces the MAX-SIM-SUBGRAPH to a-MATROID
PARITY. Let (G, q,col : E(G) — 2[°1) be an input to MAX-S1M-SUBGRAPH. Given, (G, ¢, col :
E(G) — 2lel), for i € [a], recall that by G; we denote the graph with the vertex set
V(G;) = V(G) and the edge set E(G;) = {e' | e € E(G) and i € col(e)}. For each edge
e € E(G), we will have its distinct copy in G; if ¢ € col(e). Thus, for each edge e € E(G),
by Original(e) we denote the set of edges {e’ |j € col(e)}. On the other hand for each edge
e € E(G), by Fake(e) we denote the set of edges {e¢’ |j € [a] — col(e)}. Finally, for each
edge e € E(G), by Copies(e) we denote the set Original(e) U Fake(e). Let M; = (E;,I;)
denote the graphic matroid on G;. That is, edges of GG; forms the universe F; and Z;
contains, S C E(G;) such that G;[S] forms a forest. By Proposition 2.2 we know that
graphic matroids are representable over any field and given a graph G one can find the
corresponding representation matrix in time polynomial in |[V(G)|. Let A; denote the linear
representation of M;. That is, A; is a matrix over Fo, where the set of columns of A; are
denoted by E(G;). In particular, A; has dimension d x |E(G;)|, where d = rank(M;). A
set X C E(G;) is independent (that is X € Z;) if and only if the corresponding columns
are linearly independent over Fy. Let Fake((7) denote the set of edges in |J ¢ p(q) Fake(e).
Furthermore, let 7 = |Fake(G)| = }_.c () |Fake(e)|. Let Mqy1 be the uniform matroid over
Fake(G) of rank 7. That is, E,11 = Fake(G) and Myy1 = U, ;. Let I, denote the identity
matrix of dimension 7 x 7. Observe that, A,+1 = I, denotes the linear representation of
M1 over Fy. Notice that E; N E; =0 for all 1 <i# j < a+ 1. Let M denote the direct
sum of My @ --- @ My41 with its representation matrix being Ajy.

Now we are ready to define an instance of a-MATROID PARITY. The ground set is the
columns of Aps, which is indexed by edges in UeeE(G) Copies(e). Furthermore, the ground
set is partitioned into Copies(e), e € E(G), which are called blocks. The main technical
lemma of this section on which the whole algorithm is based is the following.

» Lemma 7.1 (x). Let (G,q,col : E(G) — 2[°1) be an instance of MAX-SIM-SUBGRAPH.
Then G has a simultaneous forest of size q if and only if (A, LﬂeeE(G) Copies(e), q) is a YES
instance of a-MATROID PARITY. Furthermore, given (G, q,col : E(G) — 2[®) we can obtain
an instance (An, W c g Copies(e), q) in polynomial time.

We will use the polynomial time reduction provided in Lemma 7.1 to get the desired FPT
algorithm for MAX-SIM-SUBGRAPH. Towards this will use the following FPT result regarding
a-MATROID PARITY for our FPT as well as for an exact exponential time algorithm.

Given an instance (G,q,col : E(G) — 2[®) of MAX-SIM-SUBGRAPH we first apply
Lemma 7.1 and obtain an instance (Anr, W c g () Copies(e), g) of a-MATROID PARITY and
then apply Proposition 2.4 to obtain the following result.

» Theorem 7.2. MAX-SIM-SUBGRAPH can be solved in time O(2+9°|V(G)|©M).

Let (G,q,col : E(G) — 2°)) be an instance of MAX-SIM-SUBGRAPH. Observe that
q is upper bounded by «(|V(G)| — 1). Thus, as a corollary to Theorem 7.2 we get an
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exact algorithm for finding the largest sized simultaneous acyclic subgraph, running in time
02" |V(G)|OW).
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—— Abstract

In the DIRECTED FEEDBACK VERTEX SET (DFVS) problem, we are given a digraph D on
n vertices and a positive integer k and the objective is to check whether there exists a set of
vertices S of size at most k such that ' = D — S is a directed acyclic digraph. In a recent paper,
Mnich and van Leeuwen [STACS 2016 | considered the kernelization complexity of DFVS with
an additional restriction on F', namely that F' must be an out-forest (OUT-FOREST VERTEX
DELETION SET), an out-tree (OUT-TREE VERTEX DELETION SET), or a (directed) pumpkin
(PUMPKIN VERTEX DELETION SET). Their objective was to shed some light on the kernelization
complexity of the DFVS problem, a well known open problem in the area of Parameterized
Complexity. In this article, we improve the kernel sizes of OUT-FOREST VERTEX DELETION
SET from O(k3) to O(k?) and of PUMPKIN VERTEX DELETION SET from O(k'8) to O(k3). We
also prove that the former kernel size is tight under certain complexity theoretic assumptions.
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SET (UFES)) consists of an undirected graph G and a positive integer k, and the question
is whether there exists a subset S C V(G) (S C E(QG)) such that the graph obtained after
deleting the vertices (edges) in S is a forest.

All of these problems, excluding UNDIRECTED FEEDBACK EDGE SET, are NP-complete.
Furthermore, FEEDBACK SET problems are among Karp’s 21 NP-complete problems and
have been topic of active research from algorithmic [2, 4, 5, 6, 7, 8, 9, 10, 12, 13, 18, 19, 20,
22, 24, 27, 32| as well as structural points of view [17, 21, 23, 26, 28, 29, 30]. In particular,
such problems constitute one of the most important topics of research in Parameterized
Complexity [6, 8, 9, 10, 12, 13, 22, 20, 24, 27, 32|, spearheading development of new techniques.
In this paper we study the parameterized complexity of restrictions of DFVS.

In Parameterized Complexity each problem instance is accompanied by a parameter k.
A central notion in this field is the one of fized-parameter tractability (FPT). This means,
for a given instance (I,k), solvability in time f(k)|I|°") where f is some function of k.
Another central notion is the one of kernelization. A parameterized problem is said to admit
a kernel of size f(k) for some function f of k if there is a polynomial-time algorithm, called
a kernelization algorithm, that translates any input instance to an equivalent instance of the
same problem whose size is bounded by f(k). In case the function f is polynomial in k, the
problem is said to admit a polynomial kernel. For more information on these concepts we
refer the reader to monographs such as [16, 11].

In contrast to UFVS which admits a polynomial kernel, the existence of a polynomial
kernel for DFVS is still an open problem. The lack of progress on this question led to
the consideration of various restrictions on input instances. In particular, we know of
polynomial kernels for DFVS in tournaments as well as various generalizations [1, 3, 15].
However, the existence of a polynomial kernel for DFVS is open even for planar digraphs.
Recently, in a very interesting article, to make progress on this question Mnich and van
Leeuwen [25] considered DFVS with an additional restriction on the output rather than the
input. Essentially, the basic philosophy of their program is the following: What happens to
the kernelization complexity of DF'VS when we consider subclasses of DAGs?

Mnich and van Leeuwen [25] inspected this question by considering the classes of out-
forests, out-trees and (directed) pumpkins. An out-tree is a digraph where each vertex has
in-degree at most 1 and the underlying (undirected) graph is a tree. An out-forest is a disjoint
union of out-trees. On the other hand, a digraph is a pumpkin if it consists of a source vertex
s and a sink vertex t, s # t, together with a collection of internally vertex-disjoint induced
directed paths from s to t. Here, all vertices except s and ¢ have in-degree 1 and out-degree
1. The examination of the classes of out-forests and out-trees was also motivated by the
corresponding questions of UFVS and TREE DELETION SET in the undirected settings.
Formally, Mnich and van Leeuwen [25] studied the following problems.

OUT-FOREST VERTEX DELETION SET (OFVDS) Parameter: k
Input: A digraph D and a positive integer k.
Question: Is there a set S C V(D) of size at most k such that F' = D\ S is an out-forest?

OuT-TREE VERTEX DELETION SET (OTVDS) and PUMPKIN VERTEX DELETION SET
(PVDS) are defined in a similar manner, where instead of an out-forest, F' should be an
out-tree or a pumpkin, respectively. Mnich and van Leeuwen [25] showed that OF VDS and
OTVDS admit kernels of size O(k3) and PVDS admits a kernel of size O(k1%).

Our Results and Methods. The objective of this article is to give improved kernels for
OFVDS and PVDS. In this context, we obtain the following results.
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OFVDS admits an O(k?) kernel and PVDS admits an O(k3) kernel. These results
improve upon the best known upper bounds O(k?) and O(k'®), respectively.

For any € > 0, OFVDS does not admit a kernel for of size O(k?~¢) unless coNP C
NP /poly.

To get the improved kernel for OFVDS we incorporate the Expansion Lemma as well as
a factor 3-approximation algorithm for OFVDS in the kernelization routine given in [25].
The significance of this improvement also lies in the fact that we show that it is essentially
tight. Due to space constraints, the lower bound is omitted from this version of the paper.

The kernelization algorithm for PVDS given in [25] works roughly as follows. It has two
phases: (a) first it gives an O(k®) kernel for a variant of the problem where we know the
source and the sink of the pumpkin obtained after deleting the solution vertices; and (b)
in the second phase, it reduces PVDS to polynomially many instances of a variant of the
problem mentioned in the item (a) and then composes these instances to get a kernel of
size O(k'®). In fact given an instance (D, k) of PVDS, the kernelization algorithm of [25]
outputs an equivalent instance (D', k') such that &’ = O(k'®). We take a completely different
route and use “sun-flower style” reduction rules together with a marking strategy to obtain
an equivalent instance (D', k) such that |V (D)| + |E(D)| = O(k?) and k' < k. We believe
the method applied in this algorithm could be useful also in other kernelization algorithms.

2 Preliminaries

We denote the set of natural numbers from 1 to n by [n], and we use standard terminology
from the book of Diestel [14] for graph-related terms which are not explicitly defined
here. A digraph D is a pair (V(D), E(D)) such that V(D) is a set of vertices and E(D)
is a set of ordered pairs of vertices. The underlying undirected graph G of D is a pair
(V(GQ), E(GQ)) such that V(G) = V(D) and E(G) is a set of unordered pairs of vertices
such that {u,v} € E(G) if and only if either (u,v) € E(D) or (v,u) € E(D). Let D be
a digraph. For any v € V(D), we denote by N~ (v) the set of in-neighbors of v, that is,
N~ (v) = {(u,v) | (u,v) € E(D)}. Similarly, we denote by N (v) the set of out-neighbors
of v, that is, N*(v) = {(v,u) | (v,u) € F(D)}. We denote the in-degree of a vertex v by
d=(v) = |[N~(v)| and its out-degree by d*(v) = NT(v). We say that P = (uq,...,u;) is a
directed path in the digraph D is us,...,u € V(D) and for all ¢ € [l — 1], (u;, ui41) € E(D).
A collision is a triplet (u,w,v) of distinct vertices such that (u,w), (v,w) € E(D).

3 Improved Kernel for Out-Forest Vertex Deletion Set

The aim of this section is to present an O(k?) kernel for OFVDS. In Section 3.1 we state
definitions and results relevant to our kernelization algorithm. Next, in Section 3.2, we design
an algorithm for OFVDS that outputs a 3-approximate solution, which will also be used by
our kernelization algorithm. Finally, in Section 3.3, we present our kernelization algorithm.

3.1 Prerequisites

We start by giving the definition of a g-expansion and the statement of the Expansion Lemma.

» Definition 1 (g-Expansion). For a positive integer ¢, a set of edges M C E(G) is a g-
expansion of A into B if (i) every vertex in A is incident to exactly ¢ vertices in M, and (ii)
M saturates exactly g|A| vertices in B (i.e., there is a set of g|A| vertices in B which are
incident to edges in M).
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» Lemma 2 (Expansion Lemma [11, 31]). Let g be a positive integer and G be an undirected
bipartite graph with vertex bipartition (A, B) such that |B| > g|A|, and there are no isolated
vertices in B. Then, there exist nonempty vertex sets X C A andY C B such that there exists
a g-expansion of X into Y, and no vertexr in'Y has a neighbor outside X (i.e., N(Y) C X ).
Furthermore, the sets X and Y can be found in time polynomial in the size of G.

We will also need to rely on the well-known notion of [-flowers.

» Definition 3 (I-Flower). An undirected graph G contains an [-flower through v if there is
a family of cycles {C1,...,Ci} in G such that for all distinct ¢, 5 € [I], V(C;) N V(C;) = {v}.

» Lemma 4 ([11, 31]). Given an undirected graph G and a vertex v € V(G), there is a
polynomial-time algorithm that either outputs a (k + 1)-flower through v or, if no such flower
exists, outputs a set Z, C V(G)\{v} of size at most 2k that intersects every cycle that passes
through v in G.

3.2 Approximation Algorithm for Out-Forest Vertex Deletion Set

This section presents a 3-factor approximation algorithm for OFVDS. Given an instance of
OFVDS, let OPT be the minimum size of a solution. Formally, we solve the following.

3—APPROXIMATE OUT-FOREST VERTEX DELETION SET (APPROX-OFVDS)
Input: A DAG D.
Output: A subset X C V(D) such that D\ X is an out-forest and |X| < 3-OPT.

Given three distinct vertices uq,us,us € V(D), we say (u,us,usz) is an obstruction
if u; and wugy are in-neighbors of uz. Observe that any solution to OFVDS (and hence,
APPROX-OFVDS) must intersect any obstruction in at least 1 vertex. Moreover, it must
intersect any cycle in at least 1 vertex. These observations form the basis of this algorithm.

» Lemma 5. ApPROX-OFVDS can be solved in polynomial time.

Proof. Given a digraph D, the algorithm first constructs (in polynomial time) a family F of
obstructions and induced cycles in D such that the vertex sets of the entities in this family
are pairwise disjoint. To this it, it initializes F = (). Then, as long as there exists a vertex
v € V(D) with at least two in-neighbors, uy and ug, it inserts (v, u;, u2) into F and removes
v,u; and us from F (only for the purpose of the construction of F). Once there is no vertex
v € V(D) such that d~(v) > 2, the digraph is a collection of directed vertex-disjoint cycles
and paths. Each of these cycles is inserted into the family F.

Let us now construct a solution, Sgpp, for APPROX-OFVDS. For every obstruction in F,
we let S,p, contain each of the three vertices of this obstruction. From every cycle C' in F
we pick an arbitrary vertex and insert it into S,p,. Clearly, |Sapp| < 3|F|. It is now sufficient
to prove is that D\ S, is an out-forest. Observe that no vertex v in D \ Sy, has in-degree
at least 2, otherwise the obstruction consisting of v and two of its in-neighbors would have
been inserted into F and hence also into S,p,. Moreover, there is no directed cycle C in
D\ Supp- Indeed, if the cycle C' intersects an obstruction in F, it is clear that it cannot exist
in D\ Sypp, and otherwise it would have been inserted into F and hence one of its vertices
would have been inserted into Sgp,. We thus conclude that the theorem is correct. <

3.3 Kernelization algorithm for Out-Forest Vertex Deletion Set

We are are now ready to present our kernelization algorithm. Let (D, k) be an instance of
OFVDS. We note that during the execution of our algorithm, D may become a multigraph.
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Preprocessing. We start by applying the following reduction rules exhaustively, where a
rule is applied only if its condition is true and the conditions of all of the preceding rules are
false. Rule 4 is given in [25], and its correctness is proven in that paper. It will be clear that
the other first five rules can be applied in polynomial time, while for the last rule, we call
the algorithm given by Lemma 4. Moreover, it is straightforward to verify that each of these

rules, except Rule 4, is safe (i.e., the instance it returns is equivalent to the input instance).

» Reduction Rule 1. If there exists a vertex v € V(D) such that d*(v) =0 and d~(v) < 1,
remove v from D.

» Reduction Rule 2. If there exists a directed path P = (wo, w1, ..., w;,wi+1) in D such
that 1 > 2 and for all i € [I], d™ (w;) = d* (w;) = 1, remove each vertex in {wy,...,wi_1}
from D and add the edge (wq,w;) to D.

» Reduction Rule 3. If there exists an edge (u,v) € E(D) with multiplicity at least 3, remove
all but two copies of it.

» Reduction Rule 4. If there exist collisions (u1,w1,v), ..., (Ugt1, Wgt1,v) that pairwise
intersect only at v, remove v from D and decrease k by 1.

» Reduction Rule 5. If there exists a vertex v € V(D) such that d~(v) > k + 2, remove v
from D and decrease k by 1.

» Reduction Rule 6. Let G be the underlying graph of D. If there exists a vertez v € V(G)
such that there is a (k + 1)-flower through v in G, remove v from D and decrease k by 1.

Bounding Out-Degrees. Next, we aim to bound the maximum out-degree of a vertex in
D. To this end, suppose that there exists a vertex v € V(D) with d*(v) > 16k + 1. Let
G be the underlying graph of D. Since Reduction Rule 6 is not applicable, we let Z, be
the set obtained by calling the algorithm given by Lemma 4. Moreover, we let Sgp, be a
3-factor approximate solution obtained be calling the algorithm given by Theorem 5. We
can assume that |S,py| < 3k, since otherwise the input instance is a NO-instance. Denote
Xy = (Sapp U Zy) \ {v}. Since |Z,| < 2k, we have that |X,| < 5k.

We proceed by examining the set C, = {C1,Cs, ..., C|c,|} of the connected components in

G\ (X, U{v}). Since Sy is an approximate solution, each component C; € C, is an out-tree.

Moreover, for any component C; € C,, v has at most one neighbor in C;, since otherwise there
would have been cycle passing through v in G\ Z,,, contradicting the definition of Z,,. For each
component C; € C,, let u; be the root of C;. Let D, = {C; | C; € Cy, (v,u;) € E(D)} and

f)v ={C;|C;eC,(v,u) € E(D),u € C;,u # u;}. Observe that d*(v) < |D,| + |1~?U| + | X, .

Moreover, since Reduction Rule 4 is not applicable, |D,| < k 4 1. Since dt(v) > 16k + 1,

we have that |D,| > 10k. Without loss of generality, let D, = {C4,...,C,} where p = |D,|.

Since Reduction Rule 1 is not applicable, for any component C; € D,, there exists an edge in
E(G) with one endpoint in C; and the other in X,.

We now construct an auxiliary (undirected) bipartite graph H with bipartition (A4, B),
where A = X, and B is a set of new vertices denoted by by,...,b,. For any u € A and
b; € B, (u,b;) € E(H) if and only if there exists an edge in G between u and some vertex
in C;. Since |B| > 2|A| and there are no isolated vertices in B, we can use the algorithm
given by Lemma 2 to obtain nonempty vertex sets X! C A and Y] C B such that there is a
2-expansion of X into Y, and N(Y,) C X!. Let D, = {C; | b; € Y, }.

» Reduction Rule 7. Remove each of the edges in D between v and any vertex in a component
in D). For every vertex x; € X, insert two copies of the edge (v,z;) into E(D).
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» Lemma 6. Reduction Rule 7 is safe.

Proof. Let D’ be the graph resulting from the application of the rule. We need to prove
that (D, k) is a YES-instance if and only if (D’, k) is a YES-instance.

Forward Direction. For the forward direction, we first claim that if (D, k) has a solution S
such that v ¢ S, then it has a solution S’ such that X C S’. To this end, suppose that (D, k)
has a solution S such that v & S. Let 5" = (S\ Ug,ep, V(Ci)) UX]. Tt holds that [S'] < |S]
since for each z € X! \ S, at least one vertex from at least one of the two components in
its expansion set must belong to the solution. Suppose for the sake of contradiction that
F =D\ 5 is not an out-forest. First, assume that there exists a vertex in F' with in-degree
at least 2. Note that V(D) = g, ce, V(Ci) U X, U{v}. Recall that the neighborhood of
each of the vertices in the connected components that belong to DJ is contained in {v} U X/.
Moreover, v only has out-neighbors in the components that belong to D, and each C; € C,, is
an out-tree. Therefore, since D \ S has no vertex of in-degree at least 2, so does D\ S’. Now,
assume that there is a cycle C'in F.. Then, if V(C)N (SN Ug, ep V(Ci)) = 0, then C is also
a cycle in D\ S, which is a contradiction. Thus, V/(C) N (SN Ug,ep' V(C)i) # 0. However,
any cycle that passes through a component in D) also passes through v and a vertex in X/.
Since X, C S, no such cycle exists. This finishes the proof of the claim.

Let S be a solution to (D, k). If v € S, then it is clear that D’ \ S is an out-forest.
Otherwise, if v € S, our claim implies that (D, k) has a solution S’ such that X/ C S’. Then,
D'\ S’ is an out-forest.

Backward Direction. For the backward direction, let us prove the following claim. If (D', k)
has a solution S such that v € S, then X! C S. Suppose, by way of contradiction, that the
claim is incorrect. Then, there exists z € X such that z ¢ S. However, this implies that
D’\ S is not an out-forest as it contains the double edges (v, z;).

Now, let S be a solution to (D’,k), and denote FF = D'\ S. Suppose v € S. Then,
F =D\ S is an out forest and thus S is solution to (D, k). If v ¢ S, then by our previous
claim, X/ C S. Observe that each vertex u; € S is a root in F. Moreover, each such vertex
u; and v belong to different out-trees of F'. This implies that if we add (to D’) the edges
between v and each vertex w; that have been removed by the application of the rule, F’ will
remain an out-forest. Thus, S is a solution to (D, k). <

After an exhaustive application of Reduction Rule 7, the out-degree of each vertex in D is
at most 16k. However, since this rule inserts edges into E(G), we need the following lemma.

» Lemma 7 (*!). The total number of applications of the reduction rules is bounded by a
polynomial in the input size.

Correctness. By relying on counting arguments as well as Lemmas 6 and 7, we obtain the
main result of this section.

» Theorem 8 (*). OFVDS admits an O(k?)-kernel.

We also prove that the size of the kernel given in Theorem 8 is tight, that is OF VDS
does not admit an O(k?~¢) size kernel unless coNP C NP/poly. This result follows from
an easy polynomial time parameter preserving transformation from the VERTEX COVER
problem parameterized by the solution size to OFVDS.

! Due to space constraints, proofs of results marked with (*) were omitted.
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4 Improved Kernel for Pumpkin Vertex Deletion Set

In this section we prove the following theorem.
» Theorem 9. PVDS admits an O(k3)-vertex kernel.

Let (D, k) be an instance of PVDS. We assume that |V (D)| > k3, else we are done. Let
HO={veV |d(v) >k+2}and Hl = {v € V | d”(v) > k + 2}. That is, HO and HlI
are vertices of high out-degrees and high in-degrees, respectively. Mnich and Leeuwen [25]
proved that the following reduction rule is safe.

» Reduction Rule 4.1. If |[HO| > k+1 or |HI| > k + 1, return that (D, k) is a NO-instance.

For the sake of clarity, we divide the presentation of the kernelization algorithm into
two subsections. At the end of Section 4.1, we will simplify the instance in a way that will
allow us to assume that if there is a solution S, then both the source and sink of the pumpkin
D\ S belong to HO U HI (Assumption 17). This assumption will be at the heart of the
“marking approach” of Section 4.2, which will handle instances which have been reduced with
respect to the reduction rules in Section 4.1. An intuitive explanation of the necessity of
our marking process is given at the beginning of Section 4.2. Throughout this section, if k
becomes negative, we return that (D, k) is a NO-instance, and if D becomes a pumpkin and
k is positive or zero, we return that (D, k) is a YES-instance.

4.1 Simplification Phase

For any v € V(D), denote by X, the set of in-neighbors of v, that is, X, = N~ (v) and
by Y, the set of every vertex y € V(D) for which there exists a vertex z € X, such that
(z,y) € E(D). Note that X, and Y, may or may not be disjoint sets. We now give a
construction of an auxiliary graph that will be used to prove the safeness of the upcoming
reduction rule. For this, consider a set Y, of new vertices such that there is exactly one
vertex y' € Y, for any y € Y,,. That is, Y, is a set containing a copy for each of the vertex
in Y,. By construction, X, and Y, are disjoint sets. Let H, be the (undirected) bipartite
graph on the vertex set X, UY, where for all x € X, and ¢ € Y, {z,v'} € E(H,) if and
only if (z,y) € E(D). Let match™ (v) be the size of a maximum matching in H, .

» Reduction Rule 4.2. If there exists a vertex v € V(D) such that match™ (v) > 2(k + 1),
remove v from D and decrease k by 1.

» Lemma 10. Reduction Rule 4.2 is safe.

Proof. For the backward direction, trivially if S is a pumpkin deletion set in D\ {v} of
size at most k — 1, then S U {v} is a pumpkin deletion set in D of size at most k. For
the forward direction, it is sufficient to show that if (D, k) is a YES-instance then every
solution S contains v. For a contradiction, assume that there exists a solution S that does
not contain v. Let M be a maximum matching in the graph H,_ . Observe that for every
edge {z,y’'} € M where x € X,, if = is not the source of the pumpkin D \ S, it holds that
|SN{x,y}| > 1 (otherwise the pumpkin D \ S contains a vertex, which is not its source, and
has at least two out-neighbors). Moreover, for every edge {z,y'} € M where z € X, if y
is the source of the pumpkin D \ S, it holds that x € S. We thus deduce that for all but
one of the edges {x,y'} € M, we have that |S N {x,y}| > 1. Since M is a matching, for every
vertex u € S, the vertex u can belong to at most one edge in M, and the vertex v’ (if it
belongs to Y;) can also belong to at most one edge in M. However, |S| < k, and therefore
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SU{y €Y, :y e S} can intersect at most 2k edges in M. Since SU{y’ €Y, : y € S} must
intersect all but one edge of M and |M| > 2(k + 1), we obtain a contradiction. <

Now, to present the symmetric rule, for any vertex v € V(D), denote by X, the set of
out-neighbors of v, that is, X,, = N*(v). Let Y, be the set of vertices y € V(D) for which
there exists a vertex € X, such that (y,z) € E(D). Let Y, be a set containing a copy y’
of each vertex y € Y. Let H; be the bipartite graph on the vertex-set X, UY, which for all
x € X, and y’ € Y/ contains the edge {z,%'} if and only if (y,x) € E(D). Let match™ (v) be
the size of a maximum matching in H, . Then, the following reduction rule is safe.

» Reduction Rule 4.3. If there exists a vertex v € V(D) such that match™ (v) > 2(k + 1),
remove v from D and decrement k by 1.

We also need the following rule, proved by Mnich and Leeuwen [25].

» Reduction Rule 4.4. Let P = (wo, -+ ,w;) be an induced directed path, that is for all
i€l —1] d (w;) =d"(w;) =1, with £ > k+2 in D. Then, delete wy from D and add the
edge (wo, w2).

Consider some hypothetical solution S (if such a solution exists). Let s and ¢ denote
the source and sink, respectively, of the pumpkin D\ S. Let A (or B) denote the set of
out-neighbors (resp. in-neighbors) of s (resp. t) in the pumpkin. Clearly, |A| = |B|. Let
C=V(D)\ (SUAUBU{s,t}). Next, we prove a series of useful claims relating to S.

» Lemma 11 (*). (i) Every vertez in {s} UAU B UC has in-degree (in D) at most k + 1,
and (ii) every vertex in {t} U AU BUC has out-degree (in D) at most k + 1.

» Lemma 12 (*). For any vertez v € V(D), [N~ (v) NC|,|INt(v)NC| < 2(k +1).

The set of in-neighbors (or out-neighbors) of any vertex v € V(D) is contained in
AUBUCUSU{s,t}. Since |[A| < d*t(s), |B| <d (t) and |S| < k, Lemma 12 gives us the
following corollary.

» Corollary 13. For any vertex v € V(D), d~(v),d*(v) < 3k +d*(s) +d~(t) + 4.
We further strengthen this corollary to obtain the following result.

» Lemma 14 (*). For any vertex v € V(D), d~(v),d" (v) < min{dk + 2d* (s) + 4,4k +
2d(t) +4}.

Let M = max,cy(py{d*(v),d (v)}. The next corollary (derived from Lemma 14) and
rule will bring us to the main goal of this subsection, summarized in Assumption 17 below.

» Corollary 15 (*). If M > 6k + 6, then s € HO and t € HI.
» Reduction Rule 4.5. If |V(D)| > 2k*M + 4kM + k + 2, return (D, k) is a NO-instance.
» Lemma 16 (*). Reduction Rule 4.5 is safe.

By Rule 4.5, if M < 6k + 6, we obtain the desired kernel. Thus, by Corollary 15, we have
the following observation.

» Assumption 17. From now on, we can assume that if a solution exists, in the resulting
pumpkin the source belongs to HO and the target belongs to HI.

Next, it will be convenient to assume that Hl and HO are disjoint sets. To this end, we
apply the following rule exhaustively, where safeness follows directly from Lemma 11.
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» Reduction Rule 4.6. Remove all vertices in HI N HO and decrease k by |HIN HO|.

We will also assume that the following rule has been applied exhaustively. This assumption
will be used at the end of the following subsection (in the proof of Lemma 25).

» Reduction Rule 4.7. If there exists a vertex v ¢ HIUHO such that N~ (v)N(V(D)\Hl) =0
or NT(v) N (V(D)\ HO) =0, delete v from D and decrease k by 1.

» Lemma 18 (*). Reduction Rule 4.7 is safe.

4.2 Marking Approach

We are now ready to present our marking approach, handling instances to which Assump-
tion 17 applies and none of the rules in Section 4.1 is applicable. Let P* is the set of connected
components in D \ (HO U HI) that are directed paths whose internal vertices have in-degree
1 and out-degree 1 in D, and let V* be the union of the vertex-sets of the paths in P*. It
turns out that by relying on Lemma 12 and Rule 4.4, one can directly bound the number
of vertices in V(D) \ V* by O(k?), assuming that the input instance is a YES-instance (see
the proof of Lemma 23). However, bounding the size of V* is more tricky, and our marking
process is devoted to this cause. In this process, we will mark O(k?) vertices from V*, and
prove that because we are handling instances to which Assumption 17 applies, all of the
vertices that are not marked are essentially irrelevant. We will perform two “rounds” of
marking. Roughly speaking, for each pair of vertices in HO (or HI) the first round aims to
capture enough vertices of paths that describe the relation between the vertices in this pair,
or, more precisely, why one of the vertices of the pair is a “better choice” than the other
when one should decide which vertex (from HO) is the source of the pumpkin. However, this
round is not sufficient, since some vertices in HO (or HI) have conflicts (independent of the
other vertices in HO U HI) relating to the endpoints of the paths in P*. In the second round
of marking, for each vertex in HO U HI, we mark enough vertices from these problematic
paths.

First Round of Marking. Towards the performance of the first round, we need the following
notations. For each vertex v € V(D) \ (HI UHO), let P(v) denote the connected component
in D\ (HIUHO) containing v. For cach s € HO, let N(s) denote the set of each out-neighbor
v € V(D) \ (HIUHO) of s such that P(v) € P* and the first vertex of (the directed path)
P(v) is v. Symmetrically, for cach ¢ € HI, let N(t) denote the set of each in-neighbor
v € V(D) \ (HIUHO) of ¢ such that P(v) € P* and the last vertex of P(v) is v. By Rule 4.6,
HINHO = @, and therefore these notations are well defined (i.e., we have not defined N
twice for the same vertex). Given u € (HIUHO), we also denote P(u) = {P(v) | v € N(u)}.
Observe that the paths in ﬁ(u) are pairwise vertex-disjoint.

Next, we identify enough vertices from paths that capture the relation between each pair
of vertices in HO (or HI). For each pair (s,s’) € HO x HO, let MK p(s, s') be an arbitrarily
chosen set of minimal size of paths from P(s) \ P(s') that together contain at least k + 1
vertices not having s’ as an in-neighbor. In this context, observe that only the last vertex on
a path in P(s) \ P(s') can have s’ as an in-neighbor. In this case, the path must contain at
least two vertices (since its first vertex cannot have s’ as an in-neighbor), and while we insert
the entire path into MK p(s,s’), its last vertex is not “counted” when we aim to obtain at
least k + 1 vertices not having s’ as an in-neighbor. If there are not enough paths to obtain
at least k + 1 such vertices, let MK p(s,s') = P(s) \ P(s'). Symmetrically, for each pair
(t,t') € HI x HI, let MKp (t,t') be an arbitrarily chosen set of minimal size of paths from
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7/5(75) \ ’ﬁ(t’) that together contain at least k + 1 vertices not having ¢’ as an out-neighbor. If
there are not enough paths, let MK p(t,t') = P(t) \ P(t').
Finally, given a pair (v,v") € (HO x HO) U (HI x HI), let M K (v,v") denote the union of

—

the vertex-sets of the paths in MK p(v,v’). We have the following claim.

» Lemma 19 (*). For each pair (v,v") € (HO x HO) U (HI x HI), \m(v,v'ﬂ <3(k+1).

Second Round of Marking. We proceed to the second round of marking. For this purpose,
we need the following notation. For each v € HIUHO, let M K p(u) denote the set of each
directed path in P* whose first and last vertices are both neighbors of w.

» Reduction Rule 4.8. If there exists u € HIU HO such that |MK p(u)| > k + 1, delete u
from D and decrease k by 1.

» Lemma 20 (*). Reduction Rule 4.8 is safe.

For each v € HIUHO, let ]\?f((u) be the union of the vertex-sets of the paths in mp(u).
Since at this point, Rules 4.4 and 4.8 are not applicable, we have the following lemma.

» Lemma 21. For each u € HIU HO, |MK (u)| < (k + 1)(k +2).

The Size of the Kernel. For the sake of abbreviation, we define the following sets.
MKp = (U(u,u’)e(HOxHO)U(HIUHI) MK p(u,u')) U (Uy,enoumn MEp(u)), and
MK = (U(u,u/)e(HOxHO)U(HIuHI) MK (u,u’)) U (UueHOUHI MK (u)).

By Lemmas 19 and 21, and since Rule 4.1 is not applicable, we bound |M K| as follows.
» Lemma 22. [MK|<2-(3(k+1)%+ (k+1)%(k+2)) < 8(k +2)°.

Let VT denote the set of unmarked vertices in V*, i.e., V*\ M K. We construct the
graph D’ by removing from D all of the vertices in V¥, adding a set Ny o of k + 2 new
vertices, and for each of the new vertices, adding an edge from each vertex in HO as well as
an edge to each vertex in HI. If V/(D') contains at most 2k + 4 vertices, add to it one-by-one
a vertex-set of a path in P* until its size becomes at least 2k + 5 (by Lemma 4.4, the size
will not exceed 3k + 6, and because |V (D)| > k?, we will reach the desired size).

» Lemma 23 (*). If |[V(D')| > 30(k + 2)3, (D', k) is a NO-instance of PVDS.

Correctness. Finally, Theorem 9 follows from Lemma 23 and the two lemmas below.
» Lemma 24 (*). If (D, k) is a YES-instance then (D', k) is a YES-instance.
» Lemma 25. If (D', k) is a YES-instance then (D, k) is a YES-instance.

Proof. Let S be a solution to (D', k). Let s and ¢ be the source and target, respectively,
of the pumpkin D'\ S. Because of the set Njy2 of k 4+ 2 vertices added to D’ at its
construction, and since |S| < k, s € HO and ¢ € HI. Moreover, by the definition of HO and
HI, (HOUHI)\ {s,t} € S. We can also assume that S does not contain any vertex added to
D' at its construction since by removing such a vertex from .S, we still have a pumpkin. Our
goal will be to show that S is also a solution to (D, k), which will imply that the lemma is
correct. To this end, we will show that D\ S is a pumpkin with source s and sink ¢.

First, note that we can assume that in D\ S there exists a path from s to ¢. Indeed, if
this is not true, then D’ \ S consists only of s, t and newly added vertices. That is, V(D')
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contains at most 2k 4 4 vertices, which contradicts its construction. By the definition of P*,
each path in P* has only internal vertices that have in-degree 1 and out-degree 1 in D , and
its endpoints can only be adjacent to vertices in Hl U HO and in the path itself. Thus, to
prove the lemma, it is sufficient to show that for each path in P*\ M Kp, its first vertex has
s as an ingoing neighbor, its last vertex has ¢ as an out-neighbor, and if it contains at least
two vertices, its first vertex is not a neighbor of ¢ and its last vertex is not a neighbor of s.

Consider some path P € P*\ M Kp. First suppose, by way of contradiction, that the
first vertex v of P does not have s as an in-neighbor. Because Rule 4.7 is not applicable,
v has at least one in-neighbor s’ € HO. Thus, since v ¢ MK, MK (s',s) contains at least
k + 1 vertices that are not out-neighbors of s and such that each of them belongs to a path
in P* whose first vertex is not an out-neighbor of s. The vertices in MK (s', s) belong to
D’. Since |S| < k, at least one of these vertices, say some u, should belong to the pumpkin
D'\ S. However, in D'\ ((HHUHO) \ {s}), which is a supergraph of D’ \ S, u cannot be
reached from s, which contradicts the fact that D’ \ S is a pumpkin. Symmetrically, it is
shown that the last vertex of P has t as an out-neighbor.

Now assume that P contains at least two vertices. Suppose, by way of contradiction,
that the first vertex of P has t as a neighbor. We have already shown that the last vertex of
P is also a neighbor of ¢, and therefore P € Wp(t). However, ]\7[7(p(t) C M Kp, which
contradicts the fact that P € P*\ M Kp. Symmetrically, it is shown that the last vertex of
P does not have s as a neighbor, concluding the proof of the lemma. <
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—— Abstract

Motivated by the increasing popularity of electric vehicles (EV) and a lack of charging stations
in the road network, we study the shortest path hitting set (SPHS) problem. Roughly speaking,
given an input graph G, the goal is to compute a small-size subset H of vertices of G such that
by placing charging stations at vertices in H, every shortest path in G becomes EV-feasible, i.e.,
an EV can travel between any two vertices of G through the shortest path with a full charge. In
this paper, we propose a bi-criteria approximation algorithm with running time near-linear in
the size of G that has a logarithmic approximation on |H| and may require the EV to slightly
deviate from the shortest path. We also present a data structure for computing an EV-feasible
path between two query vertices of G.
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1 Introduction

Motivation. Electric vehicles (EVs) are becoming increasingly popular as we transition
from fossil fuels to cleaner energy. One of the main challenges in the popularization of EVs
is the lack of charging facilities in the road network. Ideally, one should be able to reach
a charging station quickly anywhere on the road network, as in the case of gas stations.
However, due to resource constraints and the relatively small fraction of EVs currently on
the road, it is desirable to first build a small number of charging stations to satisfy the most
basic transportation needs of EV owners. One natural such need is that an EV, with an
initial full charge, should be able to travel between any two locations via the shortest path
without draining the battery. In other words, any shortest path in the road network contains
sufficient number of charging stations. We study the problem of placing the minimum number
of charging stations to satisfy the above condition.
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Figure 1 Illustration of the definition of highway dimension: a ball of radius r, and three vertices
that intersect all shortest paths within the ball whose lengths are Q(r).

Problem statement. The input consists of a graph G = (V, E) of n = |V| vertices and
m = |E| edges, which represents a road network, and a positive length function ¢(-) on the
edges in F. We assume that an EV can travel a fixed distance r (e.g., 200km) in G with a
full charge. More sophisticated models have been proposed for the battery capacity, which
not only consider the distance but also the topography of the underlying terrain. But we use
this simpler model because the problem is challenging even in this model and furthermore,
on realistic terrains the EV will travel distance in the range [Z,cr], for some small constant
¢ > 1, with a full charge. For any two vertices u,v € V, let mg(u,v) denote the shortest
path from u to v in graph G; it is abbreviated 7(u,v) when there is no ambiguity. For
convenience, we set p(u,v) := £(m(u,v)). For a subset X C V and a vertex v € V, let
(v, X) := minge x p(v, x).

Given a set X of vertices, a path P is said to be hit by X if X contains an interior
vertex of P — a vertex of P other than its starting and ending vertices. We say a path P
is r-EV-feasible with respect to X (charging stations) if every contiguous subpath of P of
length more than r is hit by X. An r-shortest-path hitting set (r-SPHS) of G is a subset
H C V such that for all u,v € V, 7(u,v) is r-EV-feasible with respect to H. Similarly, given
§ € (0,1), a d-approzimate r-SPHS of G is a subset H C V such that for all u,v € V, there
exists an r-EV-feasible path P (with respect to H) between u,v with £(P) < (1 + &)u(u, v).
The goal of the shortest-path hitting-set (SPHS) problem is to compute a minimum-size
r-SPHS of G. In the rest of the paper, for simplicity, we may leave out parameter r and just
write SPHS and EV-feasible.

The problem of computing minimum number of charging stations reduces to an instance
of the classical hitting-set problem, and is NP-complete by a simple reduction from the
vertex-cover problem. Since we are not aware of a proof of the NP-completeness in the
literature, we describe the details of the reduction in Section 2. We propose an efficient
approximation algorithm for the SPHS problem that exploits the structure of road networks.

Related work. In the last few years, there has been extensive work on a variety of optim-
ization problems on road networks, which are modeled as “sparse” graphs with additional
structural properties. In particular, Abraham et al. [3, 1, 2] introduced the notion of highway
dimension to give provable guarantees of efficiency for many popular shortest-path heuristics,
such as reach, contraction hierarchies, and transit node; see also [6]. Roughly speaking, the
graph G has highway dimension & if, for any x > 0 and any vertex v € V, there exist h
vertices that intersect all shortest paths of length at least = that are within O(z) distance of
v. See Figure 1 for illustration and Section 2 for the definition. Abraham et al. argued that
real-world road networks have small highway dimension.

Storandt and Funke [21] formulated the problem of placing minimum number of charging
stations such that there exists some EV-feasible path between any two vertices. They gave a
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polynomial-time algorithm that achieves O(logn) approximation. However, the EV-feasible
path computed by their algorithm can be much longer than the shortest path. This drawback
was addressed by Funke et al. [13]. They require the shortest path between any two vertices
to be EV-feasible. They modeled the problem as a hitting-set problem (defined in Section 2),
and obtained an O(logn) approximation using a greedy algorithm. Constructing the hitting
set instance requires computing as many as O(n?) shortest paths, and can take O(n?) time in
the worst case, which is formidable when the road network is large. Funke et al. [13] applied
a number of techniques to speed up the computation, but without provable guarantees of
the running time and approximation.

Several variants of the SPHS problem have been studied. For example, the road network
may be small so that one can always drive from one location to another without recharging.
In these cases, the charging stations are placed to satisfy other constraints. For example,
Xiong et al. [26] take EV drivers’ behavior into consideration and compute a set of charging
stations in Singapore that optimizes the equilibrium utility of a congestion game. There are
other optimization criteria considered in the literature, such as charging demand coverage
[11] and EV access cost [22].

Another set of literature study the EV routing problem. Baum et al. [7] gave an algorithm
that plans routes minimizing overall trip time, including time for necessary rechargings on
the way. Their model allows the charging time to be a function of the remaining battery
level. Goodrich and Pszona [14] formulated a bi-criteria path optimization problem, where
two objectives (e.g., travel time and energy cost) are optimized, and their algorithm outputs
a path that optimizes one objective before reaching some vertex and switches to the other
objective afterwards. See also [8, 19] for work on computing energy-efficient paths.

As discussed above, the SPHS problem is an instance of the hitting-set problem, one of
the twenty-one problems in Karp’s original list of NP-complete problems [17]. The natural
greedy algorithm that chooses the element that hits the most remaining sets gives an O(logn)
approximation [9], which is optimal up to o(1) factor unless P=NP [10]. For geometric
instances, however, where the input consists of points and shapes (e.g., disks, rectangles),
better approximation guarantees can be obtained. For example, a PTAS exists when the
shapes are half-spaces in R? [18] and O(loglog OPT) approximation can be obtained when the
shapes are axis-parallel rectangles [5]. Recently, Agarwal and Pan [4] gave near-linear-time
approximation algorithms for computing hitting set and set cover of many geometric instances.
The hitting-set problem has also been used to compute a subset of vertices that intersect
every path [12] or every shortest path [23] that contains at least k vertices.

Our result. We present a bi-criteria approximation algorithm for the SPHS problem by
allowing an EV to slightly deviate from the shortest path. Our result is summarized as
follows.

» Theorem 1. Let G = (V, E), £:V — R be a weighted graph of constant highway dimen-
sion h, with |V| =n and |E| = O(|V|). Let r >0 and 6 € [1%%, 2] be two parameters where
a =maxecg l(e), and let k be the size of a smallest r-SPHS of G. A §-approxzimate r-SPHS
H CV of size O(rlog k) can be computed in randomized expected time O(csnlog? nlogk),

where cg = h™10829

In this paper, we assume 10c/r < § < 2/15, where the constants 10 and 2/15 are chosen
for convenience of the analysis. Since G represents a road network, the length of a road edge
in E is much smaller than the range of an average EV. Hence, 10a/r < 1 and ¢ can be set
to a small constant under the assumption. We also assume |E| = O(|V]) since G represents
a road network and the average degree of a vertex is usually small.
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At a high level, we improve the running time from O(n?) to near linear by relaxing
the shortest-path requirement slightly. The algorithm works in two stages. The first stage
computes a small set C' of “center” vertices such that there exists a path between any pair
of vertices in G that is not much longer than the shortest path and can be decomposed
into shortest paths between center vertices, called critical paths. Furthermore, C is a d-
approximate r-SPHS, but the size of C' may be much larger than «. The second stage chooses
a smaller d-approximate 7-SPHS. In particular, it computes a small-size hitting set for the
critical paths. With the assumption that G has constant highway dimension, we show that
the number of center vertices is small, and the optimal hitting set for the critical paths has
similar size as the optimal SPHS. The algorithm uses the framework in [4], together with the
dynamic trees [20] data structure, to efficiently compute a hitting set for critical paths.

Finally, we describe a data structure for the feasible path queries that, given two query
vertices u, v, computes in O(,‘ilog2 k) time the sequence of charging stations on an r-EV-
feasible path P between u,v with £(P) < (1 + 6)u(u,v). The actual path in G can be
recovered by performing shortest-path queries in G between adjacent charging stations. Since
the highway dimension of G is bounded, each shortest-path query can be answered quickly [3].

2 Preliminaries

In this section, we define several concepts that are used by our algorithm, including the
highway dimension and doubling dimension of a graph, and the hitting set and e-net of a
range space. We also describe a proof of the NP-completeness of the SPHS problem.

Given z > 0 and a vertex u € V, let B(u,z) = {v € V' | u(u,v) < x} be the ball of radius
x centered at u under the shortest path metric on G.

» Definition 2. The highway dimension of a graph G = (V, E) is the smallest integer h that
satisfies the following condition: for all z > 0 and u € V, there exists a set S C B(u, 6x) of
at most h vertices that contains a vertex from every shortest path inside B(u, 6x) of length
more than z.!

A metric space has doubling dimension d if any ball of radius x is contained in the union
of at most 2¢ balls of radius z/2. We will always use d to denote the doubling dimension of
the shortest path metric of G and h to denote the highway dimension of G. Lemma 3 relates
these two quantities.

» Lemma 3 ([2]). d <logy(h+1).

Let ¥ = (X, R) be a finite range space where X is a finite set of elements and R is a family
of subsets of X called ranges. A subset H C X is called a hitting set of X if H intersects
every range in R. Given a parameter € € (0, 1] and a weight function w(-) on elements of X,
an e-net for ¥ is a subset N C X that intersects every e-heavy range, i.e., every range that
has weight at least ew(X).

The VC-dimension [24] of a range space ¥ = (X,R) is the largest positive integer b
satisfying the following condition: there exists a subset ¥ C X with |Y| = b such that
{SNY | S € R} =2° The following e-net theorem was proved in [16] (see also [15]).

! We remark that the original paper [3] that introduces highway dimension uses a constant 4 as the
multiplier of the radius of the ball, but leaves open the possibility of larger constants (with adjusted
constants in other bounds). We use a larger constant 6 for convenience of our analysis.
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» Lemma 4 ([16]). Given a range space (X,R) of VC-dimension B and parameters €, ¢ €
(0,1), a set of O(g(log% + log %) independent random samples of X is an e-net of (X, R)
with probability at least 1 — ¢.

In this paper, we will be interested in range spaces Xg = (V,R) where each range in R
corresponds to the vertices on a shortest path in G. Abraham et al. [1] showed that the
VC-dimension of ¥ is two when R contains all shortest paths in G. By the definition of
VC-dimension, it is easy to check that the VC-dimension of ¥4 is no more than two when R
contains a subset of all shortest paths in G. It is summarized in the following lemma.

» Lemma 5 ([1]). The VC-dimension of X¢ is at most two.

The decision version of the SPHS problem is as follows: given a graph G, a parameter
r > 0 and an integer k, determine whether there exists an r-SPHS of G of size at most k.

» Theorem 6. The SPHS problem is NP-complete.

Proof. We reduce the vertex-cover problem to the SPHS problem. Recall that given a graph
G1 = (V1,E1), a subset A C V; is a vertex cover if {u,v} N A # () for all (u,v) € E;. We
construct another undirected graph Go = (Va, Es), where Vo = Vi U{ue, v | e = (u,v) € Eq}
and Ey = E1 U {(u,u.), (v,ve) | e = (u,v) € E1}, and {(e) = 1 Ve € E;. We claim that a
vertex cover in (G1 corresponds to a 2-SPHS of G5. Suppose S; C V; is a vertex cover for G.
Then S; must be a 2-SPHS of G5 because every shortest path of length more than 2 in G,
must contain at least one edge from F; in its interior. On the other hand, suppose So C V5
is a 2-SPHS of G2. Then every edge e = (u,v) € E; is covered by Ss because u,v are the
only interior vertices of the shortest path from wu. to v, and one of them must be in S5. The
claim is proved.

Finally, the SPHS problem is in NP because one can verify whether a given set of vertices
hits every shortest path of a graph of length more than r in polynomial time. <

3 The algorithm

In this section, we describe a bi-criteria approximation algorithm for the SPHS problem,

whose worst-case running time is near-linear in the size of the input graph.

Let 6 € [10c/r,2/15] be a parameter. We assume that the highway dimension h and the
doubling dimension d are constants. We first give a high level overview of the algorithm,
which consists of three main steps.

(i) Compute a set C' C V of “center” vertices of size O(k/d?), such that every vertex of V
is within distance O(dr) from some center in C.

(ii) Construct a set of shortest paths, called critical paths, between center vertices of length
roughly r/2, such that between every pair of vertices in V, an approximately shortest
path can be constructed by concatenating critical paths.

(iii) Compute hitting set H for critical paths, and return H.

Next, we describe the details of each step in the following subsections.

3.1 Computing centers

We compute the set C of center vertices using a greedy algorithm, which was originally
proposed for the k-center problem (i.e., find k vertices so that the distance to the farthest
vertex from them is as small as possible). Initially, add an arbitrary vertex c¢; to C; in the
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i-th iteration, add to C' the vertex c¢; that is farthest from C. The algorithm terminates
when p(v,C) < dér/8 for allv € V.
For i > 1, let C; be the set of chosen vertices after ¢ iterations.

» Lemma 7. During the entire algorithm, for any pair ¢; # c¢; € C, p(ci, ;) > 0r/8.

Proof. Suppose there exist two centers ¢;, c; € C with ¢ < j such that u(c;, ¢;) < dr/8. Then
w(ej, Cj—1) < or/8, which means the algorithm terminates before adding ¢; to C. <

The next lemma upper bounds the number of center vertices added to C.
» Lemma 8. |C| = O(r/d?).

Proof. Let H* denote the optimal r-SPHS of size k. Then by the definition of r-SPHS,
w(v, H*) < r for all v € V because otherwise a shortest path with v as an endpoint is not
r-EV feasible. By the same analysis of the greedy algorithm for the k-center problem [25], we
can claim that for all v € V, u(v, C) < 2r. In other words, V' C .o B(c, 2r). Recall that
the doubling dimension of the shortest path metric of G is d. By definition, a radius-2r ball
can be covered by O(6~¢) balls of radius §r/16. Thus, V can be covered by x = O(k5~?) balls
of radius dr/16. Again by the property of the k-center greedy algorithm, adding = centers
greedily to C' can guarantee that every vertex of V' is within distance 2 x (6r/16) = or/8 of
some center in C. <

The greedy algorithm can be implemented efficiently, as follows. Let D denote the
diameter of G; then D < an < ndr. We maintain the distance from each vertex of V to C
in a priority queue; initially, the distance is oo as C' = ). Suppose the shortest path distance
from ¢; to C' is x; when ¢; is added to C. To find ¢; 11, we compute the shortest path tree
rooted at ¢; that contains vertices of V' whose distances to ¢; are less than x;, and updates
the priority queue if the distance from some vertex v to C' is decreased because of ¢;. We
then choose the first vertex of the priority queue (farthest from C) to be ¢;11.

» Lemma 9. The greedy algorithm for computing the set C' of centers takes O(n log®n +
mlogn) time.

Proof. To analyze the running time, we divide the above implementation into O(log g)
L 2] If a vertex v is
traversed when computing the shortest path tree rooted at a center ¢, then u(v,c) < D/2971.
On the other hand, any two centers chosen in phase j have distance more than %. So there
can be at most 2¢ = O(1) centers that traverse v when computing shortest path tree in
phase j. Similarly, each edge is also traversed O(1) times in phase j. It takes O(logn) time
to traverse a vertex and O(1) time to traverse an edge in Dijkstra’s algorithm and O(logn)
time to update the priority queue. Therefore, the running time is O((m 4 nlogn)log g) =

O(nlog®n +mlogn). <

phases. In phase j, the farthest distance from a vertex to C' lies in (

We remark that the set C is a 6-approximate r-SPHS. However, the size of C, O(x/5%),
can be very large when ¢ is small. Our algorithm computes a solution of size O(k log k).

3.2 Computing critical paths

For each vertex ¢ € C, we construct a shortest path tree T, called a center tree, rooted at
¢ with radius r/2, i.e., T, contains all vertices of V' that are no more than r/2 away from
c. For every ¢’ € C with pu(c,c’) € [(1 —6)§ — a, 5], we add the shortest path 7(c,c’) as a
critical path.
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K

» Lemma 10. The number of critical paths is O(557), and they can be computed in O(%(m—}—
nlogn)) time.

Proof. Consider any center ¢ € C'. We bound the number of critical paths that has c as
one endpoint. By construction, if there is a critical path between ¢ and some ¢’ € C, then
wule, ) <r/2,ie., ¢ € B=B(c,r/2). By definition of doubling dimension, B can be covered
by O(1/5%) smaller balls of radius ér/16. By Lemma 7, there can be at most one center
inside each smaller ball, so, there are O(1/§%) centers in B. The bound on the number
of critical paths follows. Similarly, a vertex v € V or an edge e € F is traversed during
the construction of O(1/6%) center trees. Summing over all center trees, the total time is
O(3:(m +nlogn)). <

3.3 Computing approximate hitting set

We compute an approximate hitting set of the critical paths using an algorithm framework
by Agarwal and Pan [4]: Let R denote the set of ranges induced by the critical paths, i.e.,
each range in R corresponds to the set of interior vertices of a critical path. Let € = (V,R)
be the resulting range space. By Lemma 5, € has VC-dimension 2. Let A denote the size of
the optimal hitting set of . We guess an integer A via binary search such that A < X < 2.

At a high level, the algorithm works in three stages: the preprocessing stage removes
some vertices and ranges such that no remaining range contains too many vertices; the
weight-assignment stage assigns a non-negative weight to each vertex so that every range
in R is (1/2Xe)-heavy; and the net-construction stage computes an (1/2Xe)-net of €. Since
every range in R is (1/2)\e)-heavy, the third stage computes a hitting set of €.

Preprocessing stage. In this stage, we compute a %—net Hj of (V,R) with uniform weights
on V, and include Hy in the final hitting set. We then (conceptually) remove Hy and
all ranges in R hit by Hy from consideration. By definition of e-net, no remaining range
in R contains more than n/ X vertices. This property ensures that the weight-assignment
stage has small running time. A simple e-net construction algorithm is described in the
net-construction stage. To remove ranges of R hit by Hy, we traverse all the center trees and

mark every critial path hit by Ho, which takes O(} ..o |Te]) = O(n/6%) time.

Weight-assignment stage. Recall that given a weight function w : V' — R>¢, a range
R € R is called e-heavy if w(R) > ew(V); otherwise, R is e-light. The algorithm assigns the
weights in O(log(n/\)) rounds. Initially, the w(v) = 1 for all v € V.

In each round, the algorithm processes every range R € R one by one. If R is %—hght, it
doubles the weights of all vertices in R, the so-called weight-doubling step, repeatedly until R
becomes %—heavy. Once R becomes %—heavy, it is not processed again in the current round,
even though it may become %—ligh‘c again later in the current round while w(V') increases.
If 2) weight-doubling steps have been performed in the current round, the algorithm aborts
the current round and moves to the next round. On the other hand, if all ranges have been
processed with less than 2\ weight-doubling steps, the algorithm terminates.

The argument in [4] shows that if A > )\, the algorithm always terminates with all ranges
1

T 2xe”

double the value of A and repeat the algorithm. The data structure described below will

be used to compute the current weight of a range and to double it efficiently, the only two

nontrivial steps in this stage.

being e-heavy with € = If the algorithm terminates and some ranges are still e-light, we

17
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Net-construction stage. The algorithm returns a e-net, for € = i, of € as a hitting set of
C. By Lemma 4, a natural algorithm for computing an e-net of (V,R) is to draw O(% log é)
random samples from V', with respect to the final weights on the vertices in V. We then
verify whether the set of samples is an e-net of C: traverse all the center trees and check
whether each e-heavy critical path is hit. This takes O(}_ ¢ |T¢|) = O(n/6?) time. If the
samples do not form an e-net, we repeat the above steps. In expectation, O(1) repetitions
are required. Therefore, an e-net of the range space € of size O(% log i) can be computed in
n

O(% + Llog 1) expected time.

Data structure. We maintain all the center trees and the weights of vertices in these trees
using the dynamic trees data structure [20]. The data structure was proposed to maintain
a forest of rooted trees where each tree vertex has an arbitrary number of unordered child
vertices and the vertices have weights. The main operations supported include:

root(v): Return the root of the tree containing vertex v.

link(v,u): Make vertex v a new child of vertex u by adding edge (v, u). This assumes

v, u are in different trees and v is the root of its tree.

cut(v): Delete the edge between vertex v and its parent.

path-aggregate(v): Return an aggregate, such as max/min/sum, of the weights of vertices

on the path from v to root(v).

update(v,x): Add x to the weight of each vertex on the path from v to root(v).

Each of the above operation takes O(log .. |T¢|) = O(logn) time [20]. In our case,
the structure of the center trees remain the same, so we do not use the link, cut operations.
We retrieve the weight of a critical path using the path-aggregate operation, which is the
sum of weights of the vertices along a path from some center vertex ¢ to root(c). We double
the weight of an individual vertex v by running update(v, w(v)) and update(parent(v), —w(v)).
Note that a vertex v can appear in as many as O(1/6%) center trees. Thus, when we update
the weight of a vertex v, we make the update for all copies of v in O(1/§%) center trees.
The results of computing an approximate hitting set of € is summarized as follows.

» Lemma 11. A hitting set of C of size O(Alog ) can be computed in O((a%nlog%z +
Alog A log \) expected time, where X is the size of the optiml hitting set of C.

Proof. The size of the hitting set is equal to the size of the 2§e-net computed in the net-
construction stage of the algorithm, which is O(XAlog \) = O(Alog A). The preprocessing and
the net-construction stages both involve computing an e-net, and take time O(n /3% + Xlog \).
In each round of the weight-assignment stage, retrieving the weights of the ranges in R
takes O(§7 logn) = (57 logn) time. There are at most 2 weight-doubling steps, and each
weight-doubling step updates the weights of no more than n/A vertices. Therefore, the
weight-doubling steps take O(g; logn) time in each round. With O(logn) rounds in the
weight-assignment stage and O(log \) itertions of guessing A, the total running time of the

algorithm is O((57n log? n 4+ Alog A) log \). <

4  Analysis

We now analyze the performance of our algorithm.

» Lemma 12. X = O(hk).
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Figure 2 Construction of EV-feasible path P (dashed curve) between wo and ws. The solid curve
denotes the shortest path.

Proof. Let H* denote the optimal r-SPHS of G. By definition, H* must hit all shortest
paths that are longer than r. On the other hand, the critical paths constructed by our
algorithm have lengths no more than r/2. Let P be a critical path between a pair of vertices
u,v. Then there is a vertex w € H* with u(u,w) <r. So P C B(w, 3r/2). In other words,

each critical path is contained in the ball of radius 3r/2 centered at some vertex in H*.

By definition of highway dimension, for any w € H*, there exists a subset S of at most h
vertices in B(w, 3r/2) that intersect every shortest path of length more than r/4 contained
in B(w, 3r/2). Let 8§ denote the union of such subsets S in the balls centered at vertices in
H*. With § < 2/15 and a < §r/10, the interior of each critical path has length more than
r/4. Therefore, 8 hits all the critical paths, and |8] = O(hk). <

Let H denote the hitting set computed by our algorithm. Lemmas 11 and 12 immediately
imply the following corollary:

» Corollary 13. |H| = O(hxlog(hk)).
We show that H satisfies the following property.

» Lemma 14. H is a §-approzimate r-SPHS of G.

Proof. If p(u,v) < r, m(u,v), the shortest path between u, v, is automatically EV-feasible.

We therefore focus on the case pu(u,v) > 7. We construct another path P between u,v from

m(u,v) as follows. For convenience, denote wy = u and w; = v. We find vertices wy, - -+ , wy—1
along 7(u,v) from u to v such that p(w;, wi41) € (3 —$)r—a, (3 —2)r], fori=1,--- ,t—1.
Let ¢; € C denote the nearest center to w;. We set P as the concatenation of the shortest
paths m(wo, ¢o), m(co, c1), - -+ ,m(ct—1,¢t), m(cr, we). See Figure 2. Then

t—1

U(P) = p(wo, co) + (e, we) + Z,u(c,—,ciﬂ)
i=1

5
SZ +Z Czawz +N’(wszz+1)+:u(wl+17cl+1))

<9 +Z(1+@) (wi,wir1) (6 <2/15) < (14 8)pu(u,v)
< 4’1" 2 1 U Wi, Wit < < ulu,v).

Next, we show that path P is EV-feasible with respect to H. By triangle inequality, it
is easy to check that p(ci,cis1) € (3 — $)r — a, 37]; thus 7(c;, ciy1) is a critical path and
contains a vertex of H in its interior. P is EV-feasible since every subpath of P of length

larger than 7 contains a vertex of H. |

Putting Lemmas 9, 10, 11, and 12 together, the expected running time of our algorithm

is O(55(m + nlog?nlog k) +mlogn) = O((%dnlogQ nlog k) with the assumption m = O(n).

This bound along with Corollary 13 and Lemma 14 proves Theorem 1.
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5 Feasible path query

Given a J-approximate r-SPHS H, we consider the task of computing the shortest r-EV-
feasible path between any two vertices u,v € V with respect to H. By definition of
approximate SPHS, the length of this path is at most (1 + ¢)u(u, v). A shortest feasible path
can be compactly represented by the sequence of charging stations in H it passes through;
the distance between any two consecutive stations is at most . We can recover the whole
feasible path by retrieving the shortest paths between consecutive stations in G.

We first show that the d-approximate r-SPHS H output by our algorithm can be postpro-
cessed and replaced with a smaller d-approximate r-SPHS H such that |[H N B(v,r)| is small
for any v € V.2 This property of H ensures small feasible path query time with respect to a
set of charging stations H.

Postprocessing step. We show that H can be replaced by another approximate r-SPHS H
such that |H| < |H| and for any u € H, |B(u,r) N H| = O(1), where the constant depends
on the highway dimension of G. The algorithm works as follows.

The algorithm maintains an 7-SPHS H. Initially, H = H. For each vertex v € V, it also
maintains the set H, = {u € H | pu(u,v) < r}, i.e., B(v,r) N H, and the value |H,|. We fix a
constant ¢ and call a vertex v € V' heavy if |H,| > chlnh. At each step, the algorithm checks
whether there is a heavy vertex in V. If there is no heavy vertex, it returns the current set
H as H. Otherwise, let v be a heavy vertex. Let ¥, = (V,R,) be a range space where R,
corresponds to critical paths intersecting B (v, ). Since each critical path has length no more
than r/2, all the critical paths in R, lie inside B(v, 3r/2). By definition of highway dimension,
there exists a hitting set of size h for ¥,. We can use the same hitting-set algorithm [4]
to compute a hitting set X, of ¥, of size at most chlnh in O((%dnlog2 n) expected time.
It then replaces H with (H \ H,) U X,. Finally, we compute B(u,r) for each u € X, and
update the sets H,, for all w in these balls.

Since v is heavy, each step of the algorithm except the last one reduces the size of H by
at least one, so it terminates within |H| rounds. H is a §-approximate r-SPHS since it hits
every critical path. Hence, we obtain the following.

» Lemma 15. A §-approximate r-SPHS HCV of size O(klogk) can be computed in
O(é%fmlogznlog k) time so that |B(v,r) N H| = O(1) for allv e V.

Feasible path query. A shortest r-EV-feasible path must pass through a sequence of charging
stations, and any two consecutive charging stations on the path must be at most r apart.
Define the graph N = (H, E) where E = {(u,v) | u(u,v) < r}. For each edge (u,v) € E,
define ¢(u,v) = p(u,v). By Lemma 15, |E| = O(|H|) = O(xlog k). By constructing B(u,r)
for all u € H, we can construct the edges in E and their lengths.

As for computing a shortest feasible path between any pair of vertices of G, we maintain,
for each v € V, H, = B(v,r) N H along with their distances from v. Given s,t € V, we
augment N by adding edges from s to H, and t to H;, and compute a shortest path from s to
t in N using the Dijkstra’s algorithm. Putting everything together, we obtain the following.

» Theorem 16. Let G = (V,E), £ : V — RT be a weighted graph of constant highway

dimension h, with |V| = n and |E| = O(|V|). Let r > 0 and 6 € [1%, 2] be two para-

2 We conjecture that H already satisfies |B(u,r) N H| = O(log &) for all v € V, and no postprocessing is
needed, but so far we have run into technical difficulties in proving this conjecture.
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meters where & = max.cg {(€), and let k be the size of a smallest r-SPHS of G. In time
O((sidfm log® nlog k), a d-approzimate r-SPHS H can be computed and G can be processed
into a data structure of size O(klogk) such that for any two vertices s,t € V', a compact
representation of a shortest r-EV-feasible path from s to t, using f[, can be computed in
O(rlog® k) time.

6 Conclusion

In this paper, we presented a bi-criteria approximation algorithm for the r-SPHS problem
whose running time is near-linear in n. The algorithm assumes the input graph has constant
highway dimension, a concept introduced to give rigorous proofs of efficiency for many
popular heuristic shortest path algorithms [3]. Our algorithm is the first for such problems
with provable guarantees on the approximation and running time. We also give an algorithm
for computing the shortest EV-feasible paths given the set of charging stations computed by
the first algorithm.

It is also interesting to know whether it is possible to improve the size of the e-net
for the range space of shortest paths from O(21log1) to O(1). If so, it will improve the
approximation ratio of our algorithm from O(log k) to O(1).

Additionally, no efficient algorithm is known for the maximum coverage version of the
SPHS problem. Given a collection P of input paths in a graph G (may or may not be
shortest) and an integer k, the goal is to compute a subset of k vertices such that the number
of EV-feasible paths in P (with respect to the subset) is maximized . This problem is not
submodular because it can take more than one vertex to make one long path in P EV-feasible.

Finally, we have shown that the SPHS problem is NP-complete for general graphs, but
we do not known whether it is NP-complete for graphs of constant highway dimension. A
proof of NP-completeness may require more insights into the structure of such graphs.

Acknowledgements. We thank Dan Halperin and Eli Packer for introducing the problem
to us and for helpful discussions.
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—— Abstract

We present algorithms and techniques for several problems related to finding multiple simple
shortest paths and cycles in a graph. Our main result is a new algorithm for finding k simple
shortest paths for all pairs of vertices in a weighted directed graph G = (V, E). For k = 2 our
algorithm runs in O(mn +n?logn) time where m and n are the number of edges and vertices in
G. For k = 3 our algorithm runs in O(mn? 4+ n3logn) time, which is almost a factor of n faster
than the best previous algorithm.

Our approach is based on forming suitable path extensions to find simple shortest paths; this
method is different from the ‘detour finding’ technique used in most of the prior work on simple
shortest paths, replacement paths, and distance sensitivity oracles.

We present new algorithms for generating simple cycles and simple paths in G in non-
decreasing order of their weight. The algorithm for generating simple paths is much faster,
and uses another variant of path extensions.
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1 Introduction

We present new algorithms and fundamentally new techniques for several problems related
to finding multiple simple shortest paths and cycles in a graph.

Computing shortest paths in a weighted directed graph is a very well-studied problem.
Let G = (V, E) be a directed graph with non-negative edge weights, with |V| = n, |E| = m.
A shortest path for a single pair of vertices in G, or for a single source, can be computed
in O(m) time using Dijkstra’s algorithm, and the all pairs shortest paths (APSP) can be
computed in O(mn) time [4], where O hides polylog(n) factors.

A related problem is one of computing a sequence of k shortest paths, for k > 1. If the
paths need not be simple, the problem of generating k£ shortest paths is well understood,
and the most efficient algorithm is due to Eppstein [8], which has the following bounds —
O(m + nlogn + k) for a single pair of vertices and O(m + nlogn + kn) for single source.

In the k simple shortest paths (k-SiSP) problem, given a pair of vertices s, ¢, the output
is a sequence of k simple paths from s to t, where the i-th path in the collection is a shortest
simple path in the graph that is not identical to any of the ¢ — 1 paths preceding it in the
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output. (Note that these k simple shortest paths need not have the same weight.) It is noted
in [8] that the k-SiSP problem is more common than the version where a path can contain
cycles.

In this paper we consider the problem of generating multiple simple shortest paths (SiSP)
and cycles (SiSC) in a weighted directed graph under the following set-ups: the k simple
shortest paths for all pairs of vertices (k-APSiSP), k simple shortest paths in the overall
graph (k-All-SiSP), and the corresponding problem of finding simple shortest cycles in the
overall graph (k-All-SiSC). We obtain significantly faster algorithms for k-APSiSP for small
values of k, and fast algorithms, that also appear to be the first nontrivial algorithms, for
the remaining two problems for all £ > 1. Implicit in our method for k-All-SiSC are new
algorithms for finding k simple shortest cycles through a specified vertex (k-SiSC) and
through every vertex (k-ANSiSC) in weighted directed graphs.

The techniques we use in our algorithms are of special interest: We use two path extension
techniques, a new method for k-APSiSP, and another for k-All-SiSP that is related to a
method used in [5] for fully dynamic APSP, but which is still new for the context in which
we use it.

1.1 Related Work

For the case when the k shortest paths need not be simple, the all-pairs version (k-APSP)
was considered in the classical papers of Lawler [15, 16] and Minieka [17]. The most efficient
current algorithm for k-APSP runs the k-SSSP algorithm in [8] on each of the n vertices
in turn, leading to a bound of O(mn + n?logn + kn?). It was noted in Minieka [17] that
the all-pairs version of k shortest paths becomes significantly harder when simple paths are
required, i.e., that the problem we study here, k-APSiSP, appears to be significantly harder
than k-APSP.

Even for a single source-sink pair, the problem of generating k£ simple shortest paths
(k-SiSP) is considerably more challenging than the unrestricted version considered in [8].
Yen’s algorithm [24] finds the k simple shortest paths for a specific pair of vertices in
O(k - (mn+n?logn)). This time bound was improved slightly [9], using Pettie’s faster APSP
algorithm [18], to O(k(mn + n?loglogn)). On the other hand, it is shown in [23] that if the
second simple shortest path for a single source-sink pair (i.e., kK = 2 in k-SiSP) can be found
in O(n37%) time for some & > 0, then APSP can also be computed in O(n3~%) time for some
a > 0; the latter is a major open problem. Thus, for dense graphs, where m = ©(n?), we
cannot expect to improve the O(mn) bound, even for 2-SiSP, unless we solve a major and
long-standing open problem for APSP.

The k-SiSP problem is much simpler in the undirected case and is known to be solvable
in O(k(m + nlogn)) time [14]. For unweighted directed graphs, Roditty and Zwick [19] gave
an O(km+/n) randomized algorithm for directed k-SiSP. They also showed that k-SiSP can
be solved with O(k) executions of an algorithm for the 2-SiSP problem.

A problem related to 2-SiSP is the replacement paths problem. In the s-t version of
this problem, we need to output a shortest path from s to ¢ when an edge on the shortest
path p is removed; the output is a collection of |p| paths, each a shortest path from s to
t when an edge on p is removed. Clearly, given a solution to the s-t replacement paths
problem, the second shortest path from s to ¢ can be computed as the path of minimum
weight in this solution. This is essentially the method used in all prior algorithms for 2-SiSP
(and with modifications, for k-SiSP), and thus the current fastest algorithms for 2-SiSP and
replacement paths have the same time bound. For the all-pairs case that is of interest to
us, the output for the replacement paths problem would be O(n?) paths, where each path
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is shortest for a specific vertex pair, when a specific edge in its shortest path is removed.

In view of the large space needed for this output, in the all-pairs version of replacement
paths, the problem of interest is distance sensitivity oracles (DSO). Here, the output is a
compact representation from which any specific replacement path can be found with O(1)

time. The first such oracle was developed in Demetrescu et al. [7], and it has size O(n?logn).

The current best construction time for an oracle of this size is O(mnlogn + n? log® n) time
for a randomized algorithm, and a log factor slower for a deterministic algorithm, given in
Bernstein and Karger [3]. Given such an oracle, the output to 2-APSiSP can be computed
with O(n) queries for each source-sink pair, i.e., with O(n?®) queries to the DSO.

To the best of our knowledge, for k > 1 the problem of generating k simple shortest
cycles in the overall graph in non-decreasing order of their weights (k-All-SiSC) has not been
studied before, and neither has k-SiSC (k Simple Shortest Cycles through a given node) or
k-ANSiSC (k All Nodes Simple Shortest Cycles); for k = 1, 1-All-SiSC asks for a minimum
weight cycle and 1-ANSiSC is the ANSC problem [25], both of which can be found in O(mn)
time, and 1-SiSC can be solved in O(m + n) time. On the other hand, enumerating simple
(or elementary) cycles in no particular order — which is thus a special case of k-All-SiSC — has
been studied extensively [21, 22, 20, 11]. The first polynomial time algorithm was given by
Tarjan [20], and ran in O(kmn) time for k cycles. This result was improved to O(k - m + n)
by Johnson [11]. We do not expect to match this linear time result for k-All-SiSC since it
includes the minimum weight cycle problem for k = 1.

In this paper, we concentrate on results for truly sparse graphs with arbitrary non-negative
edge weights. Hence we do not consider results for small integers weights or for dense graphs;
several subcubic results for such inputs are known using fast matrix multiplication.

1.2 Qur Contributions

We present several algorithmic results on finding k simple paths and cycles in a directed
graph with non-negative edge weights.! A summary of our results is given in Table 1.

Computing k simple shortest paths for all pairs (k-APSiSP) in G. We present a new
approach to the k-APSiSP problem, which computes the sets P} (z, y) as defined below. Our
method introduces the key notion of a ‘nearly k SiSP set’, Qx(z,y), defined as follows.

» Definition 1.1. Let G = (V, E) be a directed graph with nonnegative edge weights. For

k > 2, and a vertex pair z,y, let k* = min{r, k}, where r is the number of simple paths from

x to y in G. Then,

(i) Pi(z,y) is the set of k* simple shortest paths from x to y in G

(i1) Qr(z,y) is the set of k nearly simple shortest paths from x to y, defined as follows. If
k* =k and the k — 1 simple shortest paths from x to y share the same first edge (z, a)
then Qg (z,y) contains these k—1 simple shortest paths, together with the simple shortest
path from z to y that does not start with edge (x,a), if such a path exists. Otherwise
(i.e, if either the former or latter condition does not hold), Qx(z,y) = P (z,y).

! Except for k-All-SiSP (see Section 3.1), we can also handle negative edge-weights as long as there are
no negative-weight cycles, by applying Johnson’s transformation [12] to obtain an equivalent input
with nonnegative edge weights. If the resulting edge-weights include weight 0, we will use the pair
(wt(p),len(p)) as the weight for path p, where len(p) is the number of edges in it; this causes the weight
of a proper subpath of p to be smaller than the weight of p.
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Our algorithm for k-APSiSP first constructs Qg (x,y) for all pairs of vertices z,y, and
then uses these sets in an efficient algorithm, COMPUTE-APSISP, to compute the P (x,y)
for all 2,y. The latter algorithm runs in time O(k-n? +n?logn) for any k, while our method
for constructing the Qx(x,y) depends on k. For k = 2 we present an O(mn + n?logn) time
method to compute the Q2(x,y) sets; this gives a 2-APSiSP algorithm that matches Yen’s
bound of O(mn + n?logn) for 2-SiSP for a single pair of vertices. It is also faster (by a
polylogarithmic factor) than the best algorithm for DSO (distance sensitivity oracles) for the
all-pairs replacement paths problem [3]. In fact, we also show that the Q2(x,y) sets can be
computed in O(n?) time using a DSO, and hence 2-APSiSP can be computed in O(n?logn)
time plus the time to construct the DSO.

For k > 3 our algorithm to compute the Q. sets makes calls to an algorithm for (k — 1)-
APSiSP, so we combine the two components together in a single recursive method, APSISP,
that takes as input G and k, and outputs the P} sets for all vertex pairs. The time bound
for APSISP increases with k: it is faster than Yen’s method for & = 3 by a factor of n (and
hence is faster than the current fastest method by almost a factor of n), it matches Yen for
k =4, and its performance degrades for larger k.

If a faster algorithm can be designed to compute the @y, sets, then we can run COMPUTE-
APSISP on its output and hence compute k-APSiSP in additional O(k - n? + n?logn) time.
Thus, a major open problem left by our results is the design of a faster algorithm to compute
the @ sets for larger values of k.

New Approach: Computing simple shortest paths without finding detours. Our method
for computing k-APSiSP (using the Qg (z,y) sets) extends an existing simple path in the data
structure to create a new simple path by adding a single incoming edge. This approach differs
from all previous approaches to finding k simple paths and replacement paths. All known
previous algorithms for 2-SiSP compute replacement paths for every edge on the shortest
path (by computing suitable ‘detours’). In fact, Hershberger et al. [10] present a lower bound
for k-SiSP, exclusively for the class of algorithms that use detours, by pointing out that all
known algorithms for k-SiSP compute replacement paths, and all known replacement path
algorithms use detours. In contrast, our method may enumerate and inspect paths that are
not detours, including paths with cycles (e.g., Step 17 in algorithm CoMPUTE-APSISP in
Section 2.1). Thus our method is fundamentally new.

Generating k simple shortest cycles and paths (k-All-SiSC, k-SiSC, k-ANSiSC) and k-
AllI-SiSP. We consider the problem of generating the k simple shortest cycles in the graph
G in nonincreasing order of their weight (k-All-SiSC). In Section 3 we present an algorithm
for k-All-SiSC that runs in O(k -mn) time by generating each successive simple shortest
cycle in G in O(mn) time. The same algorithm can be used to enumerate all simple cycles
in G in nondecreasing order of their weights. Recall that the related problem of simply
enumerating simple cycles in a graph in no particular order was a very well-studied classical
problem [21, 22, 20, 11] until an algorithm that generates successive cycles in linear time was
obtained [11]. Our algorithm does not match the linear time bound per successive cycle, but
it is to be noted that 1-All-SiSC (i.e., the problem of generating a minimum weight cycle) is
a very fundamental and well-studied problem for which the current best bound is O(mn).

Our algorithm for k-All-SiSC creates a auxiliary graph on which suitable SiSP computation
can be performed to generate the desired output. We give fast algorithms for £-SiSC and
k-ANSISC using the same auxiliary graph.

Complementing our result for k-All-SiSC, we present in Section 3.1 an algorithm for
k-All-SiSP that generates each successive simple path in O(k) time if k& < n, and in O(n)
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time if k > n, after an initial start-up cost of O(m) to find the first path. This time bound
is considerably faster than that for k-All-SiSC. Our method, ALL-SISP, is again one of
extending existing paths by an edge (as is COMPUTE-APSISP); it is, however, a different
path extension method.

Path Extensions. We use two different path extension methods, one for k-APSiSP and the
other for k-All-SiSP. Path extensions have been used before in the hidden paths algorithm
for APSP [13] and more recently, for fully dynamic APSP [5]. These two path extension
methods differ from each other, as noted in [6]. Our path extension method for k-All-SiSP is
inspired by a method in [5] to compute ‘locally shortest paths’ for fully dynamic APSP. Our
path extension method for k-APSiSP appears to be new.

Here are the main theorems we establish for our algorithmic results. In all cases, the
input is a directed graph G = (V, E) with nonnegative edge weights, and |V| = n, |E| = m.

» Theorem 1.2. Given an integer k > 1, and the nearly simple shortest paths sets Qp(x,y)
(Definition 1.1) for all z,y € V, Algorithm COMPUTE-APSISP (Section 2.1) produces the k
simple shortest paths for every pair of vertices in O(k -n? +n?logn) time.

» Theorem 1.3.
(i) Algorithm 2-APSISP (Section 2.2.1) correctly computes 2-APSiSP in O(mn + n?logn)
time.
(ii) For k > 2, Algorithm APSISP (Section 2.2.2) correctly computes k-APSiSP in
T(m,n, k) time, where T(m,n,k) <n-T(m,n, k—1)+ O(mn+n?- (k+logn)).
(iii) T(m,n,3), the time bound for algorithm APSISP for k =3, is O(m -n? + n®-logn).

» Theorem 1.4 (k-All-SiSC)). After an initial start-up cost of O(mn+n?logn) time, we can
compute each successive simple shortest cycle in O(mn + n?loglogn) time. This computes
k-All-SiSC (Section 3).

» Theorem 1.5 ((k-All-SiSP)). After an initial start-up cost of O(m) time to generate the
first path, Algorithm ALL-SISP (Section 3.1) computes each succeeding simple shortest path
with the following bounds:

(i) amortized O(k +logn) time if k = O(n) and O(n + logk) time if k = Q(n);

(ii) worst-case O(k -logn) time if k = O(n), and O(n -logk) time if k = Q(n).

Space Bounds. Our k-APSISP algorithm uses O(k? - n?) space, which is a factor of k
larger than the bound on the size of the output. In contrast, the earlier path extension

algorithms for APSP [13] and for fully dynamic APSP [5] use 2(mn) space in the worst case.

All of our other algorithms use space O(kn?) or better.
Only proof sketches are given here; the full proofs of most results as well as details of the
algorithms for simple cycles are in the arXiv paper [1]. Table 1 lists our main results.

2 The k-APSiSP Algorithm

In this section, we present our algorithm to compute k-APSiSP on a directed graph G = (V, E)
with nonnegative edge-weight function wt. The algorithm has two main steps. In the first
step it computes the nearly k-SiSP sets Qy(z,y) for all pairs x,y. In the second step it
computes the exact k-SiSP sets P (x,y) for all =,y using the Qg (x,y) sets. This second step
is the same for any value of k, and we describe this step first in Section 2.1. We then present
efficient algorithms to compute the Qj sets for k = 2 and k£ > 2 in Section 2.2.
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Table 1 Our results for directed graphs. All algorithms are deterministic. (DSO stands for
Distance Sensitivity Oracles).

’ PROBLEM ‘ KNOwWN RESULTS ‘ New RESULTS ‘
2-APSiSP (Sec. 2.2.1) ‘ O(n® + mnlog®n) ‘ O(mn +n?logn) ‘

(using DSO [3])
3-APSiSP (Sec. 2.2.2) | O(mn?®) [24] O(mn? + n®logn)
k-SiSC (Sec. 2.3) - O(k - (mn + n?loglog n))
k-ANSiSC (Sec. 2.3) - O(mn + n®logn) if k=2
and O(k - (mn® + n®loglogn)) if k > 2
k-All-SiSC (Sec. 3) - O(kmn)
| k-AlL-SiSP (Sec. 3.1) | - | O(k) if k < n and O(n) if k > n per path |

’ ‘ ‘ amortized, after a startup cost of O(m) ‘

In all of our algorithms we will maintain the paths in each P} (x,y) and Qx(z,y) set in
an array in nondecreasing order of edge-weights.

2.1 The Compute-APSiSP Procedure

In this section we present an algorithm, COMPUTE-APSISP, to compute k-APSiSP. This
algorithm takes as input, the graph G, together with the nearly k-SiSP sets Qg (z,y), for
each pair of distinct vertices z,y, and outputs the £* simple shortest paths from = to y in the
set P} (z,y) for each pair of vertices z,y € V' (note that k*, which is defined in Definition 1.1,
can be different for different vertex pairs x,y). As noted above, the construction of the
Qk(z,y) sets will be described in the next section.

The right (left) subpath of a path 7 is defined as the path obtained by removing the first
(last) edge on 7. If 7 is a single edge (z,y) then this path is the vertex y (z).

» Lemma 2.1. Suppose there are k simple shortest paths from x to y, all having the same
first edge (x,a). Then Vi, 1 <i <k, the right subpath of the i-th simple shortest path from x
to y has weight equal to the weight of the i-th simple shortest path from a to y.

Proof. The result is trivial for £k = 1. If it holds for £ — 1 and not k, then the k-th lightest
path p from a to y must contain x, and then we would have a shorter path from x to y that
avoids edge (z,a). <

Algorithm CoMPUTE-APSISP computes the P (x,y) sets by extending an existing path
by an edge. In particular, if the k-SiSPs from x to y all use the same first edge (z,a), then it
computes the k-th SiSP by extending the k-th SiSP from a to y (otherwise, the sets P} (z,y)
are trivially computed from the sets Qx(x,y)). The algorithm first initializes the P} (x,y)
sets with the corresponding Qx(x,y) sets in Step 4. In Step 5, it checks whether the shortest
k — 1 paths in P/ (x,y) have the same first edge and if so, by definition of Qx(x,y), this
P}(z,y) may not have been correctly initialized, and may need to update its k-th shortest
path to obtain the correct output. In this case, the common first edge (z,a) is added to the
set Extensions(a,y) in Step 7. We explain this step below.

We define the k-Left Extended Simple Path (k-LESiP) 7y, from z to y as the path
Tgay = (T, a) 0 Ty, where the path 7, , is the k-th shortest path in Qx(a,y), and o denotes
the concatenation operation. In our algorithm we will construct k-LESiPs for those pairs z, y
for which the k& — 1 simple shortest paths all start with the edge (z,a). The algorithm also
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maintains a set Fxtensions(a,y) for each pair of distinct vertices a, y; this set contains those
edges (z,a) incoming to a which are the first edge on all k£ —1 SiSPs from « to y. In addition
to adding the common first edge (z,a) in the (k — 1) SiSPs in P (x,y) to Extensions(a,y)
in Step 7, the algorithm creates the k-LESIiP with start edge (z,a) and end vertex y using
the k-th shortest path in the set P} (a,y), and adds it to heap H in Steps 8-10. Let U denote
the set of P} (x,y) sets which may need to be updated; these are the sets for which the if
condition in Step 5 holds.

In the main while loop in Steps 12-17, a min-weight path is extracted in each iteration.

We establish below that this min-weight path is added to the corresponding P} in Step 14
or 15 only if it is the k-th SiSP; in this case, its left extensions are created and added to the
heap H in Step 17, and we note that some of these paths could be cyclic.

» Lemma 2.2. Let G = (V, E) be a directed graph with nonnegative edge weight function wt,
and Vx,y € V, let the set Qr(x,y) contain the nearly k-SiSPs from x toy. Then, algorithm
COMPUTE-APSISP correctly computes the sets Py (x,y) Yo,y € V.

Proof. We first show that every path in P;(z,y) is simple. The initialization in Step 4 adds
only simple paths. After that, P} (z,y) is updated only if it is in &/. Assume so, and let
(x,a) € Extensions(a,y). As the algorithm only extends along the edges in the Extensions
sets, every path from z to y in H has (z,a) as first edge. Now if a cyclic path (say mzq,y)
is added to P} (z,y) from H, then it contains a subpath 744 ,, but this implies that either
Tway, OF & path from x to y with smaller weight but not using (z,a) as the first edge, is
present in Q(z,y). This means that the check in Step 15 will be false, and 744, will not be
added to P} (z,y).

To show that P (x,y) contains the k shortest simple paths from x to y at termination,
we observe that it was initialized with Qg (z,y), so we only need to ensure that the path
of largest weight in P; (z,y) is indeed n%, , the k*-th shortest simple path from x to y. We
argue this by showing that 7,,, the path obtained from =%, by removing its first edge (z,a),
must be in P (a,y) and must have been extended to z and added to H. <

It is straightforward to see that Algorithm CoMPUTE-APSISP runs in O(kn? + n?logn)
time and uses O(kn?) space.

2.2 Computing the Q) Sets
2.2.1 Computing Q. for k = 2

We now give an O(mn +n?logn) time algorithm to compute Q2 (z,y) for all pairs z,y. This
method uses the procedure FAST-EXCLUDE from Demetrescu et al. [7], which we now briefly
describe (full details of this algorithm can be found in [7]).

Given a rooted tree T, edges (u1,v1) and (uz2,v2) on T are independent|[7] if the subtree
of T rooted at v; and the subtree of T rooted at ws are disjoint. Given the weighted
directed graph G = (V, E), the SSSP tree T rooted at a source vertex s € V, and a set
S of independent edges in T, algorithm FAST-EXCLUDE in [7] computes, for each edge
e € S, a shortest path from s to every other vertex in G — {e}. This algorithm runs in time
O(m + nlogn).

We will compute the second path in each Q2(z,y) set, for a given x € V, by running
FAST-EXCLUDE with z as source, and with the set of outgoing edges from x in the shortest
path tree rooted at x, T,, as the set S. Clearly, this set S is independent, and hence
algorithm FAST-EXCLUDE will produce its specified output. Now consider any vertex y # =z,
and let (x,a) be the first edge on the shortest path from x to y in T,. By its specification,
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Algorithm 1 ComMpUTE-APSISP(G = (V, E), wt, k,{Qx(z,y),Vz,y})
1: Initialize:
2: H<«+ ¢ {H is a priority queue.}
3: for all z,y € V,z # y do

4: Pz, y) < Qr(z,y)

5: if the k — 1 shortest paths in P} (x,y) have the same first edge then

6: Let (z,a) be the common first edge in the (k — 1) shortest paths in P (x,y)
7: Add (z,a) to the set Extensions(a,y)

8: if |Qr(a,y)| = k then

9: 7 < the path of largest weight in Qx(a,y)

10: 7' < (z,a) om; add 7’ to H with weight wt(z, a) + wt(nw)

11: Main Loop:

12: while H # ¢ do

13: 7 < EXTRACT-MIN(H); let m = (xa,y) and 7’ a path of largest weight in P} (x,y)

14: if |P}(x,y)| = k — 1 then add 7 to P}(z,y) and set update flag

15: else if wt(r) < wt(n’) then replace n’ with 7 in P}(z,y) and set update flag

16: if update flag is set then

17: for all (z/,z) € Extensions(z,y) do add (z',z) o to H with weight wt(z’, z) +
wit(m)

Algorithm 2 2-APSISP(G = (V, E); wt)
1: for each z € V do
2: Compute a shortest path in each Qa(z,y), y € V — {z} (Dijkstra with source x)
3: Compute the second path in each Q2(x,y), y € V — {x}, using FAST-EXCLUDE with
source z and S = {(z,a) € T, }

4: CoMPUTE-APSISP(G, wt, 2, {Q2(z,y),Vx,y})

FAST-EXCLUDE will compute a shortest path from x to y that avoids edge (z, a) in its output,
which is the second path needed for Q2(2,y). This holds for every vertex y € V — {x}. Thus
we have:

» Lemma 2.3. The Qa(x,y) sets for pairs x,y can be computed in O(mn + n?logn) time.

This leads to the following algorithm for 2-APSiSP. Its time bound in Theorem 1.3, part (i)
follows from Lemma 2.3 and the time bound for COMPUTE-APSISP given in Section 2.1.

The space bound is O(n?) since the Qs sets contain O(n?) paths and the call to COMPUTE-
APSISP takes O(n?) space. In the full paper [1] we give a simple alternate algorithm that
computes the Qs sets in O(mn) time if a DSO is available. It is not clear if we can efficiently
compute 2-APSiSP directly from a DSO in O(mn) time, without using the Qy sets and
CoMPUTE-APSISP.

2.2.2 Computing Qy, for k£ > 3

Our algorithm will use the following types of sets. For each vertex z € V, let I, be the set of
incoming edges to z. Also, for a vertex x € V, and vertices a,y € V — {z}, let P;*(a,y) be
the set of k simple shortest paths from a to y in G — I, the graph obtained after removing
the incoming edges to x. Recall that we maintain all P* and @ sets as sorted arrays.
Algorithm APSISP(G, k) first computes the sets P”,(a,y), for all vertices a,y € V.
Then it computes each Qr(z,y) as the set of all paths in the set P;_;(z,y), together with a
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Algorithm 3 APSISP(G = (V, E), wt, k)

1: if £ = 2 then
2 compute @2 sets using algorithm in Section 2.2.1
3: else
4 for each z € V do
5: I, + set of incoming edges to x
6 Call APSISP(G — I;,wt, k — 1) to compute P, (u,v) Yu,v € V
7 for each y € V — {2} do
s Qula,y) — P2\ (2.y)
9: for all (x,a) € E do count, < number of paths in Qx(x,y) with (x,a) as the
first edge
10: Qr(z,y) + Qr(x,y) U{ a shortest path in U{(%a) outgoing from z} (z,a) o

P (a,y)[count, + 1]}
11: CoMPUTE-APSISP(G, wt, k, {Qx(x,y) Vr,y € V})

shortest path in U{(w,a) outgoing from x}{(x, a)op | pée P (a,y)} (which is not present
in Py (z,y)).

To compute the P;*, sets, APSISP(G, wt, k) recursively calls APSISP(G — I, wt, k — 1)
n times, for each vertex z € V. Once we have computed the P}”, sets, the Qi (x,y) sets
are readily computed as described in steps 8 - 10. After the computation of Qg (x,y) sets,
APSISP(G, wt, k) calls COMPUTE-APSISP (G, wt, k, {Qr(z,y) Vz,y € V}) to compute the
Py sets. This establishes part (i) of Theorem 1.3.

Proof of Theorem 1.3, part (iii). The for loop starting in Step 4 is executed n times, and
for £ = 3 the cost of each iteration is dominated by the call to Algorithm 2-APSISP in
Step 6, which takes O(mn + n?logn) time. This contributes O(mn? + n3logn) to the total
running time. The inner for loop starting in Step 7 is executed n times per iteration of the
outer for loop, and the cost of each iteration is O(k + d,). Summing over all z € V|, this
contributes O(kn? 4+ mn) to the total running time. Step 11 runs in O(n?logn) time as
shown in Section 2.1. Thus, the total running time is O(mn? + n®logn). |

The space bound for APSISP is O(k? - n?), as the P}, and Qy sets contain O(kn?)
paths, and each recursive call to APSISP(G — I, wt, k — 1) needs to maintain the P* ; and
Q, sets at each level of recursion. The call to COMPUTE-APSISP takes O(kn?) space as
noted earlier.

The performance of Algorithm APSISP degrades by a factor of n with each increase in
k. Thus, it matches Yen’s algorithm (applied to all-pairs) for k = 4, and for larger values of
k its performance is worse than Yen.

2.3 Generating k Simple Shortest Cycles

k-SiSC. This is the problem of generating the k simple shortest cycles through a specific
vertex z in G. We can reduce this problem to k-SiSP by forming G,
’, we place a directed edge of weight 0 from z; to z,,
and we replace each incoming edge to (outgoing edge from) z with an incoming edge to z;
(outgoing edge from z,) in G’,. Then the k-th simple shortest path from z, to z; in G, can
been seen to correspond to the k-th simple shortest cycle through z in G. This gives an
O(k - (mn + n*loglogn)) time algorithm for computing k-SiSC using [9]. We also observe

where we replace
vertex z by vertices z; and z, in G
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that we can solve k-SiSP from s to ¢ in G if we have an algorithm for k-SiSC: create G’ by
adding a new vertex z* and zero weight edges (z*, s), (¢, 2*), and then call k-SiSC for vertex
x*. Thus k-SiSP and k-SiSC are equivalent in complexity in weighted directed graphs.

k-ANSiSC. This is the problem of generating k simple shortest cycles that pass through
a given vertex x, for every vertex x € V. For k = 1 this problem can be solved in
O(mn + n?loglogn) time by computing APSP [25]. For k = 2, we can reduce this problem
to k-APSiSP by forming the graph G’ where for each vertex x, we replace vertex z in G
by vertices z; and z, in G’, we place a directed edge of weight 0 from z; to z,, and we
replace each edge (u,z) in G by an edge (u,,2;) in G’ (and hence we also replace each
edge (x,v) in G by an edge (z,,v;) in G'). For k > 2, k-ANSiSC can be computed in
O(k -n - (mn +n?loglogn)) time by computing k-SiSC for each vertex.

3 Enumerating Simple Shortest Cycles and Paths

In this section, we first give a method to generate each successive simple shortest cycle in
G = (V, E) (k-All-SiSC) and then in Section 3.1 we give a faster method to generate simple
paths in nondecreasing order of weight (k-All-SiSP).

Enumerating Simple Shortest Cycles (k-All-SiSC). Our algorithm for k-All-SiSC creates
an auxiliary graph G’ = (V/, E’) as in the construction for k-ANSiSC in Section 2.3. Our
algorithm also maintains a set C of candidate simple shortest cycles. Initially, our algorithm
computes a shortest cycle for each vertex j € V' by running Dijkstra’s algorithm with source
vertex j, on the subgraph G; of G’ induced on V] = {x;, %, | z > j}, to find a shortest path
p from j, to j; . We store these shortest cycles in C.

For each k > 1, we generate the k-th simple shortest cycle in G by choosing a minimum
weight cycle in C. Let this cycle corresponds to some vertex r and is the k,-th SiSP from
vertex 7, to vertex r; in G... We then replace this cycle in C by computing the (k. 4+ 1)-th
SiSP from vertex r, to r; in G..

The initialization takes O(mn + n?logn) time for the n calls to Dijkstra’s algorithm.
Thereafter, we generate each new cycle in O(mn + n?loglogn) time using the k-SiSP
algorithm [9], by maintaining the relevant information from the computation of earlier cycles.

3.1 Generating Simple Shortest Paths (k-All-SiSP)

Our algorithm for k-All-SiSP is inspired by the method in [5] for fully dynamic APSP. With
each path m we will associate two sets of paths L(w) and R(w) as described below. Similar
sets are used in [5] for ‘locally shortest paths’ but here they have a different use.

Let P be a collection of simple paths. For a simple path 7., from z to y in P, its left
extension set L(m,) is the set of simple paths ' € P such that n’ = (2, z) o 7y, for some
«’ € V. Similarly, the right extension set R(mg,) is the set of simple paths 7" = 74, o (y,y’)
such that 7"/ € P. For a trivial path 7 = (v), L(w) is the set of incoming edges to v, and
R(7) is the set of outgoing edges from v.

Algorithm ALL-SISP initializes a priority queue H with the edges in G, and it initializes
the extension sets for the vertices in G. In each iteration of the main loop, the algorithm
extracts the minimum weight path 7 in H as the next simple path in the output sequence.
It then generates suitable extensions of 7 to be added to H as follows. Let the first edge
on 7 be (x,a) and the last edge (b,y). Then, ALL-SISP left extends 7 along those edges
(2, z) such that there is a path 7., in L(I(7)); it also requires that x’ # y, since extending
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Algorithm 4 ALL-SISP(G = (V, E); wt)
1: Initialization:
2: H+«+ ¢ {H is a priority queue.}
3: for all (z,y) € E do
4: Add (z,y) to priority queue H with wi(x,y) as key; add (x,y) to L({y)) and R((z))
5. Main loop:
6: while H # ¢ do
7 7 < EXTRACT-MIN(H); add 7 to the output sequence of simple paths
8: Let myp = £(m) and mqy = 7(7) (so (z,a) and (b, y) are the first and last edges on )
9: for all 7,1, € L(mwy) with 2’ # y do
10: Form 7,y < (2/,2) o w and add 7y, to H with wt(m,,) as key
11: Add Tyry tO L(Tl'xy) and to R(mp)
12: for all ., € R(m,,) with ' # = do perform steps complementary to Steps 10-11

to o’ would create a cycle in the path. It forms similar extensions to the right in the for loop
starting at Step 12.

To establish Theorem 1.5, we first need to show that every path added to H is simple.
All edges added in Step 4 are clearly simple paths. Consider a path ¢ added to H in Step 10.
We show that both ¢(o) and r(o) must already be in H, and hence must be simple paths.
So, the only way that o could contain a cycle is if its first and last vertices are the same. But
this is explicitly forbidden in the condition in Step 9. A similar argument applies to Step 12.

To show that no simple path in G is omitted in the sequence of simple shortest paths
generated, we observe that if 7 is a simple path of smallest weight not generated by Algorithm
ALL-SISP, then ¢(7) and r(7) must have been generated. We can then show that 7 will be
added to H in the iteration of Step 6 when the heavier of ¢(7) and r(7) is extracted.

The amortized bound in Theorem 1.5 is obtained by implementing H as a Fibonacci
heap and the worst-case bound is obtained by using a binary heap.

4 Discussion

Our k-All-SiSP algorithm is nearly optimal if the paths need to be output. It is also not
difficult to see that our bounds for 2-APSiSP and k-All-SiSC (for constant k) are the best
possible to within a polylog factor for sparse graphs unless the long-standing O(mn) bounds
for APSP and minimum weight cycles are improved. In recent work [2] we give several
fine-grained reductions that demonstrate that the minimum weight cycle problem holds a
central position for a class of problems that currently have O(mn) time bound on sparse
graphs, both directed and undirected.

For undirected graphs, our k-All-SiSP result gives an algorithm with the same bound.
Also, our k-APSiSP algorithm works for undirected graphs, and this gives a faster algorithm
for k¥ = 2 and matches the previous best bound (using [14]) for ¥ = 3. However, our
algorithms for the three variants of finding simple shortest cycles do not work for undirected
graphs. This is addressed in our recent work in [2].

The main open question for k-APSiSP is to come up with faster algorithms to compute
the Qx(x,y) sets for larger values of k. This is the key to a faster k-APSiSP algorithm using
our approach, for k > 2.
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1 Introduction

Given a set S of n points in the plane and an integer k, we are interested in finding &
edge-disjoint non-crossing spanning trees Hy, Hy, ..., Hy on S such that the length BE(H; U
HyU---U Hy,) of the bottleneck edge (the longest edge which is used) is as short as possible.
Each tree H; is referred to as a layer of G. We require each layer to be non-crossing, but
edges from different layers are allowed to cross each other. For k£ = 1, the minimum spanning
tree MST(S) solves the problem: its longest edge BE(MST(S)) is a lower bound on the
bottleneck edge of any spanning subgraph, and it is non-crossing. For larger k, we take
BE(MST(S)) as the yardstick and measure the solution quality in terms of BE(MST(S))
and k.

The particular variation that we consider comes motivated from the field of sensor
networks. Imagine one wants to construct a network so that afterwards communication
between sensors is possible. One of the most important requirements for such a network
is that we can send messages through it easily. Ideally, we want a method that — given
the source, destination, information on the current position (and possibly O(1) additional
information) — computes the next node to visit in order to reach our destination.

One of the most famous such methods is called face routing [7], which guarantees the
delivery under the above constraints provided that the underlying graph is plane. Indeed,
when considering local routing algorithms in the literature that are guaranteed to succeed,
most route deterministically on a plane spanning subgraph of the underlying graph where
the plane subgraph can be computed locally. Even though there exist routing strategies for
non-plane graphs, in most cases they route through a plane subgraph (for example, Bose
et al. [2] showed how to locally identify the edges of the Gabriel graph from the unit disk
graph). Extending these algorithms for non-plane graphs is a long-standing open problem.

It seems counter-intuitive that having additional edges cannot help in the delivery of
messages. In this paper, we provide a different way to avoid this obstacle. Rather than
limiting considerations to one plane graph, we aim to construct several disjoint plane spanning
graphs. If we split all the messages among the different layers (and route through each layer
with routing strategies that work on plane graphs) we can potentially spread the load among
a larger number of edges. Another important feature to consider when creating networks is
energy consumption. The required energy for sending a message increases with the distance
between the two points (usually with the third or fourth power) [4]. Since we want to avoid
high energy consumption at one particular node, it is desirable to apply the bottleneck
criterion and to minimize the longest edge [6].

Previous Work. This problem falls into the family of graph packing problems, where we
are given a graph G = (V, E) and a family F of subgraphs of G. The aim is to pack
pairwise disjoint subgraphs Hy = (V, E), Ho = (V, E5),... into G. A related problem is
the decomposition of G. In this case, we also look for disjoint subgraphs but require that
U;F; = E. For example, there are known characterizations of when we can decompose
the complete graph of n points into paths [9] and stars [8]. Dor and Tarsi [3] showed that
to determine whether we can decompose a graph G into subgraphs isomorphic to a given
graph H is NP-complete. Aichholzer et al. [1] showed that any set of n points contains
Q(y/n) disjoint plane spanning trees. This bound has been improved to |n/3] by Garcia [5].

In our case, the graph G consists of the complete graph on S, and F consists of all plane
spanning trees of G. We are interested in minimizing a geometric constraint (Euclidean
length of the longest edge among the selected graphs of F). To the best of our knowledge,
this is the first packing problem of such type.
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Results. We give two different approaches to solve the problem. In Section 2 we give a
construction for k = 2 trees. This construction is centralized in a classical model that assumes
that the position of all points are known and computed in a single place. Our construction
guarantees that all edges (except possibly one) have length at most 2BE(MST(.S)). The
remaining edge has length at most 3BE(MST(S)). We complement this construction with a
matching worst-case lower bound.

Following the spirit of sensor networks, in Section 3 we use a different approach to
construct k disjoint plane graphs (not necessarily trees). The construction works for any
k < n/12 in an almost local fashion. The only global information that is needed is 3:
BE(MST(S)) or some upper bound. Each point of S can compute its adjacencies by only
looking at nearby points: those at distance O(kf).

A simple adversary argument shows that it is impossible to construct spanning networks
locally without knowing BE(MST(S)) (or an upper bound). The lower bound of Section 2
shows that a neighborhood of radius Q(kBE(MST(.S))) may be needed for the network, so
we conclude that our construction is asymptotically optimal in terms of the neighborhood.

For simplicity, throughout the paper we make the usual general position assumption that
no three points are colinear. Without this assumption, it might be impossible to obtain more
than a single plane layer (for example, when all points lie on a line).

2 Centralized Construction

In this section we look for a centralized algorithm to construct two layers. We start with
some properties on the minimum spanning tree of a set of points.

» Lemma 1. Let S be a set of points in the plane and let uv and vw be two edges of MST(S).
Then the triangle uvw does not contain any other point of S.

Proof. Observe that, as v is adjacent to both w and w in MST(S), uw is the longest edge of
the triangle wvw (otherwise one could locally shorten MST(S)).

Suppose for the sake of contradiction that there is a point p € S in the interior of uvw.

We split uvw into two sub-triangles by the line ¢ through v perpendicular to the supporting
line of v and w. Let A, be the sub-triangle that has u as a vertex, and assume w.l.o.g. that
p lies in A,. Note that the edge uv is the hypotenuse of the right-angled triangle A, and
hence max{|pul, [pv|} < |uv].

Consider the paths in MST(.S) from p to u and v, respectively. Since MST(S) is a tree,
one of the two paths must use the edge uv (as otherwise there would be a cycle). Suppose
first that this edge is used in the path to u. By removing the edge uv and adding the edge
pu to MST(S) we would obtain a connected (not necessarily plane) tree whose overall weight
is smaller, a contradiction. If the edge used is in the path to v, the addition of edge pv yields
a similar contradiction. <

» Lemma 2. Let S be a set of points in the plane. Let v € S be a point of degree k > 3 in
MST(S), with {vg,...,vk_1} being the neighbors of v in MST(S) in counterclockwise order
around v. Then for every triple (vi—1,v;,v;y1) (indices modulo k), the neighbors of v; in
MST(S) are inside the wedge W; that is bounded by the rays vv;—1 and vv;11 and contains
the edge vv;.

Proof. Let u € S\{v} be a neighbor of v; in MST(S), and assume for the sake of contradiction
that u is not in W;. Then the edge v;u intersects the boundary of W; and hence one of the
rays starting at v and going through v;—; and v;41, respectively. Assume without loss of
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generality that v;u intersects the ray from v through v;41. As MST(S) is plane, the edge v;u
does not intersect the edge vv;;1. Hence, the triangle (v, v;,u) contains the point v;41 in its
interior. As the path vv;u is a subgraph of MST(S), this contradicts Lemma 1. <

We denote by MST?(S) the square of MST(S), the graph connecting all pairs of points
of S that are at distance at most 2 in MST(S). We call the edges of MST(S) short edges
and all remaining edges of I\/IST2(S) long edges. For every long edge uw, the points u and w
have a unique common neighbor v in MST(S), which we call the witness of uw. We define
the wedge of uw to be the area that is bounded by the rays vu and vw and contains the
segment uw. Next we state a simple fact on crossings of the edges in MSTQ(S).

» Lemma 3. Let S be a set of points in the plane. Two edges e and f of MST2(S) cross if

and only if one of the following two conditions is fulfilled:

1. At least one of {e, f} is a long edge with witness v and wedge W, and the other edge has
v as an endpoint and lies inside W.

2. Both of {e, f} are long edges with the same witness v, and their wedges are intersecting
but none is contained in the other.

Proof. Clearly, if both e and f are short edges, i.e., edges of MST(S), then they do not
cross. Let f = ww be a long edge with witness v and wedge W. Every edge e = vz of
MST?(S), z € S\ {u,v,w} that lies inside W either crosses f or has z inside the triangle
A = (u,v,w). The latter is a contradiction to Lemma 1. Obviously, f is neither crossed by
any edge incident to w or w, nor crossed by any edge incident to v but not lying inside W.

It remains to prove that every long edge e = 2z of MST*(S), 2,2 € S\ {u,v,w} that
crosses f fulfills Condition 2. Note that for e to cross f, either e has an endpoint inside A
or e is also crossing one edge out of {uv,vw} € MST(S). The former is a contradiction to
Lemma 1. If e is a short edge (i.e., an edge of MST(S)), then the latter is a contradiction to
the planarity of MST(S). Hence, e is a long edge (with wedge W) and is also crossing one
edge g out of {uv,vw} € MST(S). This also implies that the wedges W and W' intersect
in their interiors but none of W, W’ is contained in the other. Finally, if e has witness
y # v, then either g has an end point in the triangle zyz or g crosses one edge out of
{zy,yz} € MST(S). Again, the former is a contradiction to Lemma 1 and the latter is a
contradiction to the planarity of MST(S). Hence the witness of e must be v. <

With the above observations we can proceed to show a construction that almost works
for two layers. To this end we consider the minimum spanning tree MST(.S) to be rooted
at a leaf r. For any v € S, we define its level £(v) as its distance to r in MST(S). That is,
£(v) = 0 if and only if v = r. Likewise, £(v) = 1 if and only if v is adjacent to r etc.

For any v € S\ {r}, we define its parent p(v) as the first vertex traversed in the
unique shortest path from v to r in MST(S). Similarly, we define its grandparent g(v) as
g(v) = p(p(v)) if £(v) > 2 and as g(v) = r otherwise (i.e., g(v) = p(v) = r if {(v) = 1). Each
vertex ¢ for which v = p(q) is called a child of v.

» Construction 4. Let S be a set of points in the plane and let MST(S) be rooted at one of
its leaves, r € S. We construct two graphs R = G(S, Er) and B = G(S, Ep) as follows: For
any vertex v, € S whose level is odd, we add the edge v,p(v,) to Er and the edge v,g(v,)
to Ep. For any vertex v, € S\ {r} whose level is even, we add the edge veg(v.) to Er and
the edge vep(ve) to Ep.

For simplicity we say that the edges of R = G(S, Er) are colored red and the edges of
B = G(S, Ep) are colored blue. An edge in both graphs is called red-blue.
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» Theorem 5. Let MST(S) be rooted at r. The two graphs R = G(S, Er) and B = G(S, Ep)
from Construction 4 fulfill the following properties:

1. Both R and B are plane spanning trees.

2. max{BE(R),BE(B)} < 2BE(MST(S)).

3. ErN Eg = {rs}, with r = p(s), i.e., |EgN Ep| = 1.

Proof. Recall from Construction 4 that r is a leaf of MST(.S). Hence r has a unique neighbor
s in MST(S) and we have r = p(s) = g(s) and £(s) = 1. Let S, C S\{s} be all v, €S whose
level £(v,) is odd. Likewise, let S, C.S\{r} be all v. €S whose level £(v.) is even. By the
construction, the set of red edges is Er =, cg. {voP(v0)} UU,_ cg, {veg(ve)} U {rs} and
the set of blue edges is Ep =, cg, {009(vo)} UU,, cs. {vep(ve)} U {rs}. Thus, the edge
rs is the single shared edge between the sets Er and Ep, as stated in Property 3.

As Er and Ep are subsets of the edge set of MSTZ(S), the vertices of every edge in Er
and Ep have link distance at most 2 in MST(.S), and the bound on max{BE(R),BE(B)}
stated in Property 2 follows.

Further, both R and B are spanning trees, i.e., connected and cycle free graphs, as
each vertex except r is connected either to its parent or grandparent in MST(.S). To prove
Property 1, it remains to show that both trees are plane.

Assume for the sake of contradiction that an edge f is crossed by an edge e of the same
color. Recall that all edges of Er and E'p are edges of MSTQ(S ) whose endpoints have different
levels. By Lemma 3, at least one of {e, f} has to be a long edge. Without loss of generality
let f = uw be a long edge and let v be the witness of f with f(u) = ¢(v) — 1 = L(w) — 2.
First note that v cannot be an endpoint of e due to its level. That is, uv is not crossing f
(common endpoint) and all other edges incident to v in Er and Epg are either blue if f is
red, or red if f is blue. Further, v cannot be the witness of e due to its level. All edges Er
and Ep with witness v have u as one of its endpoints (as for all other edges with witness v
in MST?(S), both endpoints have the same level). With u as a shared vertex, the edges e
and f cannot cross. As e is neither incident to v nor has v as a witness, e crossing f is a
contradiction to Lemma 3. This proves Property 1 and concludes the proof. |

The properties of our construction imply a first result stated in the following corollary.

» Corollary 6. For any set S of n points in the plane, there exist two plane spanning trees
R = G(S,ER) and B = G(S,Ep) such that |Er N Ep| = 1 and max{BE(R),BE(B)} <
2BE(MST(S5)).

Construction 4 is almost valid in the sense that only one edge was shared between both
trees. In the following we enhance this construction so as to avoid the shared edge.

Let N C (S\ {r}) be the set of neighbors v~ € N~ of s in MST(S) such that the
ordered triangle rsv™ is oriented clockwise. Let Nt C (S\ {r}) be the set of neighbors
vt € NT of s in MST(S) such that the ordered triangle rsv* is oriented counter-clockwise.
Let T~ be the subtree of MST(S) that is connected to s via the vertices in N~ and let
T be the subtree of MST(S) that is connected to s via the vertices in NT. Let S~ C S
consist of 7 and the set of vertices from T~ and let ST C S consist of r and the set of
vertices from TF. Observe that S~ NSt = {r,s}. Let E, C Eg (Ez C Eg) be the
subset of edges that have at least one endpoint in S~ \ {r,s} and let E}t C Er (E}; C Ep)
be the subset of edges that have at least one endpoint in St \ {r,s}. Note that by this
definition Ep = E; U E}, U {rs} and Ep = E5 U Ef U {rs}. With this we define the
subgraphs R~ = G(S™,Ey), R = G(S*,E}), B~ = G(S7,Ep), and Bt = G(S*, E}).
The following property follows from Lemma 3.

9:5

ISAAC 2016



9:6

Packing Short Plane Spanning Trees in Complete Geometric Graphs

» Lemma 7. For any set S of n points in the plane, let R = G(S, Er) and B = G(S, Ep)
be the graphs from Construction 4. Then no edge in Ep crosses an edge in Eg and no edge
n Eg crosses any edge in Eg.

Proof. Consider any edge e € E that is not incident to . By Lemma 3, such an edge e
can be crossed only by an edge incident to at least one vertex of S~ \ {r, s}. Hence, e does
not cross any edge of Ef.

Assume for the sake of contradiction that there exists an edge f € Eg that crosses an
edge e € Ey, that is incident to r. By construction, e = rz is a long edge of MST?(S) with
witness s and wedge W. By Lemma 3, f has to be incident to s, since s cannot be the
witness of any blue edges by construction. If f is a short edge, then f is not in W by our
definition of S~ and S, which is a contradiction to Lemma 3. Hence, let f = sc be a long
edge of MST?(S) with witness b. Following Lemma 3, the witness b must be s, which is in
contradiction to the fact that s cannot be a witness of any blue edge. This concludes the
proof that no edge in E; is crossed by an edge in Eg. Symmetric arguments prove that no
edge in EE is crossed by an edge in Fj. |

With this observation we can now prove that the two spanning trees from Construction 4
actually exist in 4 different color combination variants.

» Lemma 8. Let S be a set of n points in the plane. Let R = G(S,Egr) and B = G(S, Ep)
be the graphs from Construction 4 and let R~ = G(S™,Eg), RT = G(S*,E}), B~ =
G(S™,E3), and Bt = G(S*,E}) be subgraphs as defined above. Then R and B can be
recolored to be (1) R = G(S,Er) and B = G(S,Eg) (the “original coloring”), (2) R =
G(S,Ep) and B = G(S, ER) (the “inverted coloring”), (3) R = G(S,E5 U E} U{rs}) and
B = G(S,EzUELU{rs}) (the “— side inverted coloring”), and (4) R = G(S, ER UE{U{rs})
and B = G(S,Eg U E} U{rs}) (the “+ side inverted coloring”), such that the properties
from Theorem 5 hold for all versions.

Proof. The statement is trivially true for recolorings (1) and (2). It is easy to observe that
this really is corresponding to a simple recoloring. Hence, Properties 2 and 3 of Theorem 5
are also obviously true. By Lemma 7, both R and B are plane for the recolorings (3) and (4)
and thus fulfill Property 1 of Theorem 5 as well. <

With these tools we now show how to construct two disjoint spanning trees. For technical
reasons we use two different constructions based on the existence of a vertex in the minimum
spanning tree where no two consecutive adjacent edges span an angle larger than 7.

» Theorem 9. Consider a set S of n points in the plane for which the minimum spanning
tree MST(S) has a vertex v where between any two consecutive adjacent edges the angle is
smaller than w. Then there exist two plane spanning trees R = G(S, Eg) and B = G(S, Ep)
such that Er N Ep = () and max{BE(R), BE(B)} < 2BE(MST(S)).

Proof (sketch). When removing v from the tree, we obtain up to five connected compon-
ents (assuming general position). For each of these, we individually re-add v and apply
Construction 4 with v as the root using one of the variants of Lemma 8. This leaves some
components of the tree disconnected, but this is resolved by adding additional edges from v
to its neighbors and between adjacent neighbors of v. Full details of the construction and a
proof can be found in the full version of this paper. <

The remaining case considers that for every vertex in MST(SS) there exist two consecutive
adjacent edges that span an angle larger than 7. In such an MST(S), every vertex has degree
at most three, since the angle between adjacent edges is at least 7/3.
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Figure 1 Tllustration of one of the cases for the proof of Theorem 10. Grey subtrees indicate
potential continuations of the MST and dashed edges indicate edges from MST?(S). In (b) colored
arrows indicate how the subtrees connect to P. Note that half of these arrows are from Construction 4.

» Theorem 10. Consider a set S of n > 4 points in the plane for which every vertex in
the minimum spanning tree MST(S) has two consecutive adjacent edges spanning an angle
larger than w. Then there exist two plane spanning trees R = G(S, Eg) and B = G(S, Ep)
such that Er N Ep = 0 and max{BE(R),BE(B)} < 3BE(MST(S)) (where at most one edge
of Er U Ep is larger than 2BE(MST(S5))).

Proof (sketch). This case is dealt with using similar ideas as for Theorem 9. The main
difference is that we now use a cluster P = {vg, v1,v2,v3} of 4 points that are connected
in MST(S) to serve as roots for up to three subtrees. The exact choice of P depends on
the exact embedding of the tree, which leads to several potential embeddings of P and the
subtrees of MST(S) attached to P. For this proof sketch we focus on one specific case shown
in Figure 1, where v3 is a leaf and vg, vy, vg form a path that, starting from v3, takes a left
and right turn. For ease of description we root the entire MST at v3, creating parent and
child relations between nodes. The subtrees we consider are Ty, T1, T defined as follows:

Ty, consisting of v1, vy, and the subtrees rooted at the children of vy, rooted at v;.

Ty, consisting of vy, vy and the subtrees rooted at children of vy, rooted at vg.

Ty, consisting of vo, v; and the subtrees rooted at children of vo, rooted at vy.

Each of these trees is colored using one of the variants of Lemma 8, but we remove all

edges going to the roots of the respective subtrees, leaving its children disconnected from P.

We then re-attach them as follows. The roots of disconnected subtrees of T are connected
to v1, those from T3 are attached to vy and those from T5 to v;. By construction, the red
and blue trees then form spanning trees with a maximum edge length of 3BE(MST(5)) as
all edges except vous are part of MST?(S), and wgvs is part of MST?(S). For planarity,

non-crossing of edges that are not vgvs follows relatively easily from Lemma 3 and Theorem 5.

To see that vgvs cannot be crossed, one can observe that by Lemma 1 the convex hull of P
must be empty and from Lemma 2 and 3 it follows that no edge can cross the convex hull
through vsvy to vy or ve. Full details of the construction and correctness arguments can be
found in the full version of this paper. <

» Corollary 11. For any set S of n > 4 points in the plane, there exist two plane spanning
trees R = G(S, ER) and B = G(S, Eg) such that Er N Ep = 0 and max{BE(R),BE(B)} <
3BE(MST(S)).

We now show that the above construction is worst-case optimal.

» Theorem 12. For any n > 3 and k > 1 there exists a set of n points such that for any k
disjoint spanning trees, at least one has a bottleneck edge larger than (k + 1)BE(MST(S)).

Proof. A counterexample simply consists of n points equally distributed on a line segment.

(The points can be slightly perturbed to obtain general position.) In this problem instance
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Figure 2 Extracting one layer: (a) The three sectors defined by vo, vz, and Vp2n ) (b)
Connecting the points to the representative of their sector. The red edges connect the representatives.

there are kn— (k(k+1)/2) edges whose distance is strictly less than (k+1)BE(MST(S)) = k+1.
However, we need kn — k edges for k disjoint trees and thus it is impossible to construct that
many trees with sufficiently short edges. |

3 Distributed Approach

The previous construction relies heavily on the minimum spanning tree of S. It is well known
that this tree cannot be constructed locally, thus we are implicitly assuming that the network
is constructed by a single processor that knows the location of all other vertices. In ad-hoc
networks, it is often desirable that each vertex can compute its adjacencies using only local
information.

In the following, we provide an alternative construction. Although the length of the edges
is increased by a constant factor, it has the benefit that it can be constructed locally and
that it can be extended to compute k layers. The only global property that is needed is a
value 8 that should be at least BE(MST(S)). We also note that these plane disjoint graphs
are not necessarily trees, as large cycles cannot be detected locally.

Before we describe our approach, we report the result of Garcia [5] that states that every
point set of at least 3k points contains k layers. Since the details of this construction are
important for our construction and the manuscript is not yet available, we add a proof sketch.

» Theorem 13 ([5]). Every point set that consists of at least 3k points contains k layers.

Proof. First, recall that for every set of n points, there is a center point ¢ such that every
line through ¢ splits the point set into two parts that each contain at least n/3 points. For
ease of explanation, we assume that every line through ¢ contains at most one point. Number
the points vy, v1,...,v,—1 in clockwise circular order around c. We split the plane into three
angular regions by the three rays originating from ¢ and passing through vy, CIEYR and v 2,
see Figure 2. Since every line through the center contains at least n/3 points on each side,
the three angular regions are convex. We declare vy to be the representative of the angular
region between the rays through vy and ey and connect the vertices vq, Uz in this
region to vg. Similarly, we assign v|a) to be the representative of angle between the rays
center through ey and V| 2n | and connect vertices V% ]415- VU 2n | tO v 2. Finally, we
connect vertices v 241, Unol to v E This results in a non-crossing spanning tree.
For the second tree, we use vy, Va4, and Vyzn g, and so on. <

While this construction provides a simple method of constructing the k layers, it does
not give any guarantee on the length of the longest edge in this construction. To give such a
guarantee, we combine it with a bucketing approach: we partition the point set using a grid
(whose size will depend on k and f3), solve the problem in each box with sufficiently many
points independently, and then combine the subproblems to obtain a global solution (see
Figure 3).
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Figure 3 The distributed approach: a grid is placed over the point set and different representatives
construct different graphs ((a) and (b)). The red and black edges form the tree in each dense cell,
blue edges connect the dense cells, and orange edges connect the vertices in sparse cells.

b)

We place a grid with cells of height and width 6k8 and classify the points according to
which grid cell contains them (if a point lies exactly on the separating lines, pick an arbitrary

adjacent cell). We say that a grid cell is a dense boz if it contains at least 3k points of S.

Similarly, it is a sparse bozx if it contains points of S but is not dense. We observe that dense
and sparse boxes satisfy the following properties.

» Lemma 14. Given two non-adjacent boxes B and B’', the points in B and B’ cannot be
connected by edges of length at most 5 using only points from sparse boxes.

Proof. Suppose the contrary and let B and B’ be two dense boxes s.t. there is a path that
uses edges of length at most 8 between a point in B to a point in B’ visiting only points
in sparse boxes. This path crosses the sides of a certain number of boxes in a given order;
let o be the sequence of these sides, with adjacent duplicates removed. Observe first that
horizontal and vertical sides alternate in o, as otherwise the path would have to use at least
6k — 1 points to traverse a sparse box, but there are only at most 3k — 1. Since B and B’ are
non-adjacent, w.l.o.g., there is a vertical side s that has two adjacent horizontal sides in o
with different y-coordinates. Hence, between the two horizontal sides, the corresponding part
of the path has length at least 6k, and may use only the points in the two boxes adjacent
to s. But since any sparse box contains at most 3k — 1 points and the distance between two
consecutive points along the path is at most 3, that part of the path can have length at most
(6k — 1)8, a contradiction. <

» Corollary 15. Dense bozes are connected by the 8-neighbor topology.

» Lemma 16. Any set S of at least 4 - (3k — 1) + 1 points with § > BE(MST(S)) contains
at least one dense boz.

Proof. Assume S consists of only sparse boxes. This implies that the points are distributed
over at least five boxes, and thus, there is a pair of boxes that is non-adjacent. Using

Lemma 14, this means that these boxes cannot be connected using edges of length at most
BE(MST(S)), a contradiction. <

» Lemma 17. In any set S of at least 4 - (3k — 1) + 1 points with > BE(MST(S)), all
sparse boxes are adjacent to a dense box.

Proof. This follows from Lemma 14, since any sparse box that is not adjacent to a dense box
cannot be connected to any dense box using edges of length at most 8 > BE(MST(S)). <«
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Figure 4 The Voronoi cells of the centers of the dense boxes.

Next, we assign all points to dense boxes. In order to do this, let ¢cg be the center of a
dense box B. Note that cp is not necessarily the center point of the points in this box. We
consider the Voronoi diagram of the centers of all dense boxes and assign a point p to B if p
lies in the Voronoi cell of cg. Let Sp be the set of points of S that are associated with a
dense box B. We note that each dense box B gets assigned at least all points in its own box,
since in the case of adjacent dense boxes, the boundary of the Voronoi cell coincides with the
shared boundary of these boxes (see Figure 4).

Furthermore, we can compute the points assigned to each box locally. By Lemma 17
all sparse boxes are adjacent to a dense box, and hence for any point p in a sparse box B
its distance to its nearest center is at most 3¢/v/2, where ¢ = 6k{3. It follows that only the
centers of cells of neighbors and neighbors of neighbors need to be considered.

» Lemma 18. For any two dense bozes B and B’, we have that the convez hulls of Sp and
Sp: are disjoint.

Proof. We observe that the convex hull of Sp is contained in the Voronoi cell of cg. Hence,
since the Voronoi cells of different dense boxes are disjoint, the convex hulls of the points
assigned to them are also disjoint. <

For each dense box B, we apply Theorem 13 on the points inside the dense box to compute
k disjoint layers of Sp. Next, we connect all sparse points in Sp to the representative of
the sector that contains them in each layer. Since all points in the same sector connect to
the same representative and the sectors of the same layer do not overlap, we obtain a plane
graph for each layer within the convex hull of each Sp.

Hence, we obtain k pairwise disjoint layers such that in each layer the points associated to
each dense box are connected. Moreover, since the created edges stay within the convex hull
of each subproblem and by Lemma 18 those hulls are disjoint, each layer is plane. Thus, to
assure that each layer is connected, we must connect the construction between dense boxes.

We connect adjacent dense boxes in a tree-like manner using the following rules:

Always connect a dense box to the dense box below it.

Always connect a dense box to the dense box to the left of it.

If neither the box below nor the one to the left of it is dense, connect the box to the

dense box diagonally below and to the left of it.

If neither the box above nor the one to the left of it is dense, connect the box to the

dense box diagonally above and to the left of it.

To connect two dense boxes, we find and connect two representatives p and ¢ (one from
each dense box) such that p lies in the sector of ¢ and ¢ lies in the sector of p; see Figure 5 (a).

» Lemma 19. For any layer and any two adjacent dense boxes B and B’, there are two
representatives p and q in B and B’, respectively, s.t. p lies in the sector of q and q lies in
the sector of p.
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Figure 5 Connecting two dense boxes by means of p and g. The half-circles in (a) indicate which
sector each representative covers. The red edges connect the dense boxes internally and the blue
edge connects the two dense cells. (b) illustrates the sectors involved in connecting two neighboring
dense boxes.

Proof. Consider two boxes B and B’ with center points (of their respective point sets) ¢
and ¢’. Now let W; and W] with representatives r; and r] denote the sectors containing ¢/
and ¢, respectively; see Figure 5. The other sectors Wy and W3 of B with representatives ry
and r3 are ordered clockwise. We use ¢; to denote the ray from ¢ containing r;. If ry € W{
and r; € W7 we are done. So assume that r] & W1, the case when r1 ¢ W] (or when both
r1 € Wi and ] & W) is symmetric. It follows that ] is in sector Wy if the line segment ¢'r]
intersects £ or sector Wy if the segment intersects o and ¢5. Assume that 7} is in sector Ws
(again the argument is symmetric when 7} is in sector W3). Now 73 can be positioned on #5
between ¢ and the intersection point with ¢/ or behind this intersection point when viewed
from c. In the former case r} is in Ws and 75 is in W] and we are done. In the latter case
the segments cry and ¢'r] cross. Since ¢,r3 € B and ¢/, r] € B’ this crossing would imply
that B and B’ are not disjoint, a contradiction. |

Now that we have completed the description of the construction, we show that each layer
of the resulting graph is plane and connected, and that the length of the longest edge is
bounded.

» Lemma 20. Each layer is plane.

Proof. Since dense boxes are internally plane and the addition of edges to the sparse points
do not violate planarity, it suffices to show that the edges between dense boxes cannot cross
any previously inserted edges and that these edges cannot intersect other edges used to
connect dense boxes.

We first show that the edge used to connect boxes B and B’ is contained in the union of
the Voronoi cells of these two boxes. If B and B’ are horizontally or vertically adjacent, the
connecting edge stays in the union of the two dense boxes, which is contained in their Voronoi
cells. If B and B’ are diagonally adjacent, we connect them only if their shared horizontal
and vertical neighbors are not dense. This implies that at least the two triangles defined
by the sides of B and B’ that are adjacent to their contact point are part of the union of
the Voronoi cells of these boxes. Hence, the edge used to connect B and B’ cannot intersect
the Voronoi cell of any other box. Since all points of a dense box in a sector connect to the
same representative and these edges lie entirely inside the sector, the edge connecting two

adjacent boxes can intersect only at one of the two representatives, but does not cross them.

Therefore, an edge connecting two adjacent dense boxes by connecting the corresponding
representatives cannot cross any previously inserted edge.

Next, we show that edges connecting two dense boxes cannot cross. Since any edge
connecting two dense boxes stays within the union of the Voronoi cells of B and B’, the
only way for two edges to intersect is if they connect to the same box B and intersect in

9:11

ISAAC 2016



9:12

Packing Short Plane Spanning Trees in Complete Geometric Graphs

the Voronoi cell of B. If the connecting edges lie in the same sector of B, they connect to
the same representative and thus they cannot cross. If they lie in different sectors of B, the
edges lie entirely inside their respective sectors. Since these sectors are disjoint, this implies
that the edges cannot intersect. |

» Lemma 21. FEach layer is connected.

Proof. Since the sectors of the representatives of the dense boxes cover the plane, each point
in a sparse box is connected to a representative of the dense box it is assigned to. Hence,
showing that the dense boxes are connected, completes the proof.

By Corollary 15, the dense boxes are connected using the 8-neighbor topology. This
implies that there is a path between any pair of dense boxes where every step is one to a
horizontally, vertically, or diagonally adjacent box. Since we always connect horizontally
or vertically adjacent boxes and we connect diagonally adjacent boxes when they share no
horizontal and vertical dense neighbor, the layer is connected after adding edges as described
in the proof of Lemma 19. |

» Lemma 22. The distance between a representative in a dense box B and any point
connecting to it is at most 12v/2kf3.

Proof. Since the representatives of B are connected only to points from dense and sparse
boxes adjacent B, the distance between a representative and a point connected to it is at
most the length of the diagonal of the 2 x 2 grid with B as one of its boxes. Since a box has
width 6k, this diagonal has length 2v/2 - 6k3 = 12v/2k(. |

» Theorem 23. For all point sets with at least 4(3k — 1) + 1 points, we can extract k plane
layers with the longest edge having length at most 12v/2kBE(MST(S)).
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—— Abstract

Given n line segments in the plane, do they form the edge set of a weakly simple polygon; that is,
can the segment endpoints be perturbed by at most ¢, for any € > 0, to obtain a simple polygon?
While the analogous question for simple polygons can easily be answered in O(nlogn) time, we
show that it is NP-complete for weakly simple polygons. We give O(n)-time algorithms in two
special cases: when all segments are collinear, or the segment endpoints are in general position.
These results extend to the variant in which the segments are directed, and the counterclockwise

traversal of a polygon should follow the orientation.

We study related problems for the case that the union of the n input segments is connected.
(i) If each segment can be subdivided into several segments, find the minimum number of subdi-
vision points to form a weakly simple polygon. (ii) If new line segments can be added, find the
minimum total length of new segments that creates a weakly simple polygon. We give worst-case
upper and lower bounds for both problems.
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1 Introduction

In the design and analysis of geometric algorithms, the input is often assumed to be in general
position. This is justified from the theoretical point of view: degenerate cases can typically be
handled without increasing the computational complexity, or symbolic perturbation schemes
can reduce any input to one in general position [4]. In this paper, we present a geometric
problem about simple polygons in the plane, which has a straightforward solution if the
input is in general position, but is NP-complete otherwise.

Suppose we are given n line segments in the plane. It is easy to decide in O(nlogn)
time whether they form a simple polygon by detecting intersections in a line sweep: if the
segments are disjoint apart from common endpoints, then they form a plane graph, and a
simple traversal can determine whether the graph is a cycle. If the input segments overlap,
more than two segments have a common endpoint, or some segment endpoints lie in the
interior of another segment, then they definitely do not form a simple polygon, but they
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might still be perturbed into a simple polygon (i.e., they form a weakly simple polygon). We
study the decision problem for weakly simple polygons in this paper.

Organization and Results. We start with necessary definitions, and formulate the problem
of reconstructing a weakly simple polygons from a set of edges (Section 2). We present
polynomial-time algorithms when the given segments form a geometric graph or are collinear
(Sections 3). The problem in general, however, is strongly NP-hard by a reduction from
PLANAR-MONOTONE-3SAT (Section 4). Nevertheless, every set of noncrossing line segments
in the plane can be turned into the edge set of a weakly simple polygon by (i) subdividing the
edges into several edges, or (ii) inserting new edges. In Sections 5 we show that if G = (V| E)
is Eulerian, the edges can be subdivided O(n) times to obtain a weakly simple Euler tour.
We also show that inserting new edges of total length at most 3||E| is always sufficient
and sometimes necessary to create a weakly simple Euler tour. We conclude with future
directions (Section 6). Omitted proofs are available in the full paper [2].

Related Work. Reconstruction of simple polygons from partial information (such as vertices,
visibility graphs, visibility angles, cross sections) has been studied for decades [3, 6, 11, 12,
16]. For example, an orthogonal simple polygon can be uniquely reconstruction from its
vertices [16], but if the edges have 3 or more directions, the problem becomes NP-hard [12].
For a simple polygon, the set of all edges (studied in this paper) gives complete information:
the cyclic order of the edges is easy to recover. In contrast, a set of edges may correspond
to exponentially many weakly simple polygons, and the reconstruction problem becomes
nontrivial. The problems considered in Section 5 are closely related to geometric graph
augmentation and subgraph problems: (i) Can a given plane straight-line graph be augmented
with new edges into a simple polygon, a Hamiltonian plane graph, or a 2-connected plane
graph [14, 17, 18, 19]? (ii) Does a given a geometric graph contain certain noncrossing
subgraphs (e.g., spanning trees or perfect matchings) [15]?

2 Preliminaries

A polygon P = (po,...,pn—1) is a cyclic sequence of points in the plane (vertices), where
every two consecutive vertices are connected by a line segment (edge). The cycle of edges
can be parameterized by a piecewise linear curve v : S' — R2. Polygon P is simple if v is
a Jordan curve (i.e., 7y is injective); equivalently, if (po,...,pn—1) is the plane embedding
of a Hamiltonian cycle. Polygon P is weakly simple if, for every € > 0, the vertices p; can
be perturbed to points pf, ||p:ip}|| < €, such that P’ = (py,...,pl,_1) is a simple polygon.
The function |.|| denotes the Euclidean length of a line segment. Equivalently, a polygon
given by v is weakly simple if it can be perturbed to a Jordan curve v’ : S' — R? such that
the Fréchet distance of the two curves is bounded by ¢ (i.e., distp(v,v") < €) [7]. We can
test whether a polygon P = (po, ..., pn—1), is simple or weakly simple, respectively, in O(n)
time [8] and O(nlogn) time [1].

We define the WEAKLYSIMPLEPOLYGONRECONSTRUCTION (WSPR) problem as the
following decision problem: Given a multiset E of line segments in R?, does there exist a
weakly simple polygon P whose edge multiset is E? For a multiset E of directed segments,
we also define DIRECTED-WSPR that asks whether there exists a weakly simple polygon
P = (po,-..,pn—1) such that {pipit1 modn : 0 <i<n—1} = FE. In both undirected and
directed variants, we represent the input segments as a straight-line multigraph G = (V, E),
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Figure 1 (a) A multi-set of line segments. Circles indicate common segment endpoints. (b) A
weakly simple Euler tour. (¢) An Eulerian graph that has no weakly simple Euler tour. An edge
subdivision (d) or the insertion of two edges (e), yields a weakly simple Euler tour.

where V is the set of all segment endpoints. Note that G may have overlapping edges, and
an edge may pass through vertices, so it need not be a geometric graph.

Two Necessary Conditions. Two line segments cross if they share exactly one interior
point. If the multiset of segments E forms a weakly simple polygon, then no two segment
cross. This condition can be easily tested in O(|E|log|E|) time by a line sweep.

If there is a weakly simple polygon P = (po,...,pn—1) with edge set E, then P is an
Euler tour of the graph G = (V, E). (However, an Euler tour need not be weakly simple; see

Fig. 1(b)). A graph is Eulerian if and only if it is connected and every vertex has even degree.
A simple (undirected) plane graph G is Eulerian if and only if its dual graph is bipartite.

This result extends to plane multigraphs when an edge of multiplicity & is embedded as k
interior-disjoint Jordan arcs, that enclose k — 1 faces. A directed graph is Eulerian if and
only if all vertices are part of the same strongly connected component and if, for each vertex,
the in-degree equals the out-degree.

3 Special Cases

We show that both WSPR and Directed-WSPR admit polynomial-time algorithms in the
special cases that (i) G = (V, E) is a simple geometric graph, that is, no two edges overlap,

and no vertex lies in the interior of an edge, and (ii) all edges in G = (V, E) are collinear.

We assume that G satisfies both necessary conditions.

3.1 Geometric Graphs

Note that in an Eulerian geometric graph the boundary of each face is a weakly simple
circuit, where repeated vertices are possible, but there are no repeated edges. The following
is a modified version of Hierholzer’s algorithm [13]. It computes a weakly simple Euler tour
P in the Eulerian graph G, or reports that no such tour exists.

Algorithm A (G)

1. 2-color the faces of G white and gray so that the outer face is white; and create a list L
of circuits on the boundaries of the gray faces.

2. If G is directed and the edges around a gray face do not form a directed circuit or if there
exist both clockwise (¢cw) and counterclockwise (ccw) circuits in L, report that G has no
weakly simple Euler tour.

3. Choose an arbitrary circuit in L, remove it from L and call it P.

4. While there is a circuit in L, do:

4.1 Find two consecutive edges, (u,v) and (v, w), along a white face such that (u,v) € P
and (v,w) € C for some C € L.

10:3
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Figure 2 (a) Merging two cycles. The vertices circled by the dotted ellipse correspond to the
same vertex v. (b) If v has two consecutive incoming edges (a,v) and (c,v), G does not admit a
weakly simple Euler tour.

4.2 Remove C from the list L, and merge C' and P by traversing C starting with the edge
(v, w) followed by the traversal of P that ends with the edge (u,v); see Figure 2(a).

5. Return P.

» Theorem 1. A simple geometric graph G = (V, E) admits a weakly simple Euler tour
if and only if G is Eulerian and, if G is directed, the circular order of edges around each
vertex alternates between incoming and outgoing. A weakly simple Euler tour, if exists, can
be computed in O(|E|) time.

Proof. If G = (V, E) is undirected, the algorithm construct an Euler tour P [13]; and the
tour is weakly simple by construction. In the remainder of the proof, we consider a directed
Eulerian geometric graph G. First, we show that if G satisfies the conditions of Theorem 1,
then Algorithm A returns a weakly simple Euler tour. If the circular order of edges around
each vertex alternates between incoming and outgoing, then all edges on the boundary
of a face of G have the same orientation (ccw or cw), and adjacent faces have opposite
orientations. Without loss of generality, the edges on the boundaries of white (resp., gray)
faces are oriented ccw (resp., cw). Hnece, the condition in step 2 of the algorithm is satisfied.

We show that the Euler tour P constructed by Algorithm A is weakly simple, that is,
it can be perturbed into a simple polygon. Initially, each circuit C' = (po,...,pk—1) in L is
the boundary of a gray face, and hence it is a simple polygon. Let C' = (p,...,p}_,) be
perturbation obtained by moving each point p; to the interior of the face along an angle
bisector of Zp;_1p;pi+1. Initially P is a weakly simple polygon (one of the circuits). It is
enough to show that Step 4.2 maintains a weakly simple polygon, that is, when we merge P
and a circuit C, their Jordan curve perturbations P’ and C’ can also be combined. Edges
(u,v) and (v, w) are adjacent to a common white face fo; they correspond to an edge (py,py)
in P’ and (g, q) in C’, where both p, and g, lie in the e-neighborhood of v in two different
gray faces adjacent to fo. We can modify P’ and C’ in the e-neighborhood of v, by removing
a short Jordan arc from each and reconnecting them across the white face fy into a single
Jordan curve. By induction, we can obtain a Jordan curve within € Frechet distance from
the output polygon P. Hence, the algorithm returns a weakly simple Euler tour P.

Now, we show that if G has a vertex v with two consecutive incoming (resp., outgoing)
edges (a,v) and (c,v), then G does not admit a weakly simple Euler tour. Suppose, for
contradiction, that there exists a weakly simple Euler tour P. Since both (a,v) and (¢, v) are
directed into v, the tour P contains edge-disjoint paths (a,v,b) and (¢, v, d). Since P is weakly
simple, the circular order of these four edges incident to v must be as shown in Figure 2(b).
The polygon must contain edge-disjoint paths 71 = (v,b,...,¢,v) and m = (d,...,a). The
perturbation of 7y is 7} = (v, ¥/,..., ¢/, v"”) where v’ # v”. Note that a and d are on opposite
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Figure 3 Every collinear Eulerian tour can be transformed in a y-monotonic simple polygon.

sides of the cycle ' U v'v”. The perturbation of w9, path 7}, can intersect neither 7] nor
v'v" | because (a,v) and (¢, v) are adjacent to the same face. Hence P is not weakly simple.

Finally, Algorithm A runs in O(|E|) time. Step 1 and 2 can be done by traversing the
dual graph of G. Step 4 executes O(|E|) merges, each of which takes constant time. <

» Corollary 2. A geometric multigraph G = (V, E) admits a weakly simple Euler tour if and
only if G is Eulerian. A weakly simple Euler tour, if exists, can be computed in O(|E|) time.

Proof. Replace every edge e of multiplicity k£ by k edge-disjoint paths of length two whose
interior points are close to the midpoint of e. We obtain a simple Eulerian geometric graph
with |V| + 2| E| vertices. Theorem 1 completes the proof. <

» Remark. In the case that G = (V| E) is a directed multigraph, replace every directed edge
(u,v) of multiplicity k by edge-disjoint paths (u,w;,v), with new (subdivision) vertices w;,
i =1,...k, and denote by G’ the resulting simple directed graph. The alternating direction
condition of Theorem 1 requires that the multiplicity of (u,v) and (v,u) differ by at most
one. If their multiplicities differ by exactly one, then there is a unique way to interleave
the replacement paths between v and v. In fact, if any edge of G has odd multiplicity, the
alternating direction condition determines the cyclic order of all paths (u,w;,v), and we
can apply Theorem 1 for G’. If, however, all edges of G have even multiplicity, then there
are two possibilities for the cyclic orders, both of which yield weakly simple Euler tours by
Theorem 1.

3.2 Collinear Line Segments

» Theorem 3. If all edges of a graph G = (V, E) are collinear, then every Euler tour of G
is a weakly simple polygon.

Proof. Without loss of generality, assume that all vertices are on the z-axis. Let € > 0 be
given. Let P = (po, ..., pn—1) be an Euler tour of G, and let py be a leftmost vertex. For each
vertex p;, i € {0,...,n — 1}, create a point p} with z(p}) = x(p;) and y(p}) = ie/(2n). The
polygonal path (pj,...,p},_1) is strictly y-monotonic and therefore does not cross itself. The
edge (p},_1, () can be realized as a one-bend polyline (p,_1, ¢, py) with ¢ = (—€/2,¢/2), which
is outside of the axis-aligned bounding box of all other edges. Therefore P/ = (pj,...,ph_1),
illustrated in Figure 3, is a simple polygon where distp(P, P') < ¢. |

4 NP-Completeness

In this section we analyze the general case of WSPR. First we discuss the undirected case
and then the direct version.

» Lemma 4. Both WSPR and Directed-WSCR are in NP.
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Figure 4 (a) Variable gadget, (b) clause gadget and (c) the reduction from PLANAR-MONOTONE-
3SAT to undirected WSPR.

Proof. Given a polygon P = (po,...,pn—1) and a (directed) straight-line multigraph G =
(V, E), we can check whether P is a (directed) Euler tour in G in O(|E|) time, and whether
P is weakly simple in O(nlogn) time [1]. <

We prove that both directed and undirected WSPC are strongly NP-hard in the general
case by a reduction from PLANAR-MONOTONE-3SAT, which is strongly NP-hard [5]. An
instance of PLANAR-MONOTONE-3SAT consists of a plane bipartite graph G g whose partite
sets are variables nodes and clauses nodes. The variable nodes are on the x-axis, the clause
nodes are above or below the z-axis; each clause is adjacent to three variables. A clause is
positive if it lies above the z-axis, and negative otherwise. PLANAR-MONOTONE-3SAT asks
if there is a binary assignment from {true,false} to the set of variables such that every
positive clause is adjacent to at least one true variable and every negative clause is adjacent
to at least one false variable.

» Lemma 5. Undirected WSPR is NP-hard.

Proof. Given an instance of PLANAR-MONOTONE-3SAT, we build an instance of undirected
WSPR as shown in Figure 4(c). We split the construction into two basic gadgets. A variable
and a clause gadget are shown in Figure 4(a) and (b), respectively. The figure shows collinear
edges distorted and colored for clarity. All vertices shown as small black disks are on the
x-axis and vertices circled with a dotted ellipse represent the same graph vertex.

First, place vertices vy, ..., v, equally spaced on the variable line from left to right. The
variable gadget corresponding to the ¢th variable consists of two collinear paths between v;_1
and v;, which are called red and black paths; see Figure 4. The red path is a single edge v;_1v;;
and the black path is made of p + 1 edges where p is the degree of the i-th variable in the
bipartite graph Gp. We assign a vertex in the interior of this path to each edge connected to
the variable, naming the vertex l; o, for the edge connecting the i-th variable to the a-th clause.
We call such vertices literal vertices. The clause gadget is composed of 9 edges arranged in a
cycle as shown in Figure 4(b). The three labeled vertices correspond to the literal vertices
in the clause gadgets. The planar embedding of the PLANAR-MONOTONE-3SAT instance
grantees that we can embed the graph of the directed WSPR instance.

Assume that the PLANAR-MONOTONE-3SAT instance have a satisfying assignment. We
build a weakly simple Euler tour P as follows. Each individual gadget defines a cycle. As
in Algorithm A, we will merge the cycles into the polygon P. Every cycle will be traversed
clockwise, however, cycles defined by variable gadgets are collinear and there is no clear
definition of winding direction for them. We perturb the red edges based on the truth values
of the variables. For each variable assigned true (resp., false), we perturb the red edge to
pass below (resp., above) the xz-axis. All variable cycles can be safely merged into a single
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Figure 5 Simple polygon that certifies that an Euler tour of P is weakly simple.

circuit. We merge each clause to the variable cycle through a literal vertex of a true variable
if the clause is positive or through a literal vertex of a false variable otherwise.

To show that P is weakly simple, we build a simple polygon P’ within & Fréchet distance
from P as follows (see Figure 5). For each v; create two vertices v;" and v; located /2 above
and below v; respectively. If the solution assigns the i-th variable true, move vertices I; , up
by /2, replace vertices v;_1 and v; by ’U;r_ , and v;r in the black edges (of the corresponding
gadget) and by v;_; and v; in the red edges. Connect vertices vy and v, with an edge.
Do the same for v;" and v, . If the variable is assigned false, do analogous replacements
symmetrically about the z-axis. For each clause gadget, choose a literal [; , with a true
value, split /; , into two vertices, I} , and I},
apart, such that they each are incident to one edge of the variable gadget and one edge of
with the
same z-coordinate and § distance apart, such that the one closer to the z-axis is incident to

with the same y-coordinate and e distance

the clause gadget. For the other two literals, split [; , into two vertices, l;fa and [; ,,
two edges of the variable gadget, and the other to two edges of the clause gadget. The result
is a simple polygon and therefore undirected WSPR have a positive solution.

Now assume that the graph produced by the reduction admits a weakly simple Euler tour
P. Then, there exist a simple polygon P’ within an arbitrarily small Fréchet distance from

P. Such a polygon determines a vertical order between the paths of each variable gadget.

Since every literal vertex has degree 4, there are only two possible ways to match its incident
edges in a noncrossing manner: matching two horizontal edges and two clause edges, or a
horizontal with a clause edge. In both cases, the two horizontal black edges incident to a
literal vertex are placed above or below the red path. Therefore, all edges of the black path
of a variable gadget are on the same side of its red path. For each variable, assign true if the
black path of its gadget is above the red path and false otherwise. Since each clause gadget
needs to be connected to some edge in a variable gadget, if the clause is positive/negative,
one of its corresponding variables were assigned true/false. Hence, the assignment satisfies
all clauses and the PLANAR-MONOTONE-3SAT instance have a positive solution. |

» Lemma 6. Directed-WSPR is NP-hard.
As a consequence of Lemmas 4, 5, and 6, we have the following result.
» Theorem 7. Both WSPR and Directed-WSPR are NP-complete.

» Remark. Our reduction can be modified by perturbing the points in our variable gadgets
so that: (i) points belonging to the same gadget are collinear; (ii) no three points, each
belonging to a different gadget are collinear; and (iii) no edge crossing is introduced. By
reducing from PLANAR-MONOTONE-(2,3)-SAT-3 [10], in which clauses may have two or
three literals and each variable can appear only in up to three clauses, we can show that
WSPR remain NP-hard even if the number of mutually collinear points is constant.
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5 Related problems

Since WSPR is NP-complete in the general case, we study related problems in which a weakly
simple polygon is always achievable by allowing edge subdivision and insertion of new edges.

5.1 Edge subdivision

Given a noncrossing graph G = (V, E) where every vertex has even degree and the point set
U E is connected, we define the problem WSPR* as finding a sequence of edge subdivision
operations that produces a graph G* = (V, E*) that admits a weakly simple Euler tour. The
subdivision of an edge uv at a vertex w € relint(uv) replaces uv by two edges uw and ww.

It is easy to see that WSPR* is always feasible with O(n?) subdivisions where n = |V|.
Indeed, subdivide every edge uv recursively at each vertex that lies in the interior of uv. We
obtain a connected geometric multigraph with even degrees, which admits a weakly simple
Euler tour by Corollary 2. The main result of this section is the following.

» Theorem 8. Every noncrossing graph G = (V, E) such that every v € V' has even degree
and UE is connected, can be transformed into a graph G* = (V, E*) using O(|E|) edge
subdivisions, and this bound cannot be improved.

Before the proof, we introduce some notation (from [1, 7, 9]). Let G = (V,E) be a
noncrossing graph. The transitive closure of the overlap relation is an equivalence relation on
E. The union of all edges in an equivalence class is called a bar, it is a line segment. A vertex
v € b is called b-odd if v is incident to an odd number of edges contained in b, or b-even
otherwise. A vertex can be b-odd and b'-even for different bars b and b (see Figure 6(b)).

Our algorithm will compute simple paths formed by subdivided edges. Let b be a
horizontal bar with vertices p1,ps € b, (p1) < x(p2). Let q1¢2 € E be an edge that contains
p1 and its right endpoint has minimum z-coordinate. A subdivided paths, denoted by p1ps, is
a path between p; and ps, defined recursively (see Fig. 6(d)): (i) if z(p1) = z(p2), pip2 = 0;
(ii) if p2 € q1g2, then subdivide ¢1¢o into three edges e; = q1p1, e2 = p1p2, and ez = paga
and put pipz = (e2); (iii) if p2 € q1ge, then subdivide ¢1¢2 into two edges e; = g1p; and
es = p1g2, and put p1ps = (e2) & ¢2p2, where & denotes concatenation. Consequently, if
the segment p;ps contains k vertices, a path p;ps can be constructed using at most k edge
subdivisions. An example is shown in Figure 6(c).

Proof of Theorem 8. The proof of the upper bound is constructive. The algorithm sub-
divides edges within each bar independently. Let b be a bar containing m vertices. We apply
O(m) edge subdivisions and partition the edges in b into subsets: Subsets M™ and M~
will consists of subdivision paths between the intersection points of b with other bars lying
above and below b, respectively; all remaining edges will be partitioned into tours (each of
which is a weakly simple polygon by Theorem 3). The algorithm is divided into three phases:
Phase 1 creates M™ and M™; phase 2 forms circuits; and phase 3 establishes common
vertices between the subdivision paths and circuits. Refer to Figure 6.

Phase 1. Compute a list BT (resp., B™) of points p in the interior of b such that p is &’-odd
for some bar o’ that is above or collinear to b (resp., below b). A point can appear more
than once in each list if it is odd in multiple bars &’. Sort the lists by x(p), ties are broken
by clockwise (resp., counterclockwise) order of the corresponding bars b'. If the left (resp.,
right) endpoint of b is b-odd, add it to the beginning (resp., end) of the list BT. If any of
the lists have odd cardinality, append the right endpoint of b at the end of the list. Create a
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Figure 6 (a) A bar b and its adjacent bars. (b) Each bar b’ is shown with its ¥’-odd and

b'-even vertices shown in red and green respectively. (c) The subdivided path p;p> is shown in blue.

Examples of (d) M* and M~; (e) O" and O~. (f) Connecting a component of B’ to a path in O"
with two polygonal paths shown in magenta.

perfect matching of consecutive endpoints in each list. Construct edge disjoint subdivided
paths between each pair of matched points, and let M™ and M~ denote the set of edges in
such paths for BT and B, respectively (see Figure 6(d)).

Phase 2. Let B be the set of (subdivided) edges that lie on b and are not in M*™ U M™.
The union of edges in B may be a disconnected point set (e.g., as shown in Figure 6(d)).

Let the line segment 179 be one of the connected components of | JB. Construct two edge
disjoint subdivided paths 7173 and 7173~ from the edges in B. For every path p1ps in M+
(resp., M) that overlaps with 7175, identify an edge of 7175 " (resp., 7172 ) that contains a
vertex of pipz and subdivide it at such vertex (see Figure 6(e)). Let O (resp., O~) be the
set of edges in 7172 (resp., 7173 ) for all components 7175 of the union of edges in B.

Phase 3. Let B’ be the set of edges in B\ (OT U O~). For every component C of the
subgraph induced by B’, let pg be the leftmost vertex of C, identify the edge in OF that
contains py and subdivide it at pg. This concludes the construction of G*.

Correctness. Now we prove that G* admits a weakly simple Euler tour. Notice that G*
is connected since the subdivisions in phase 2 connects every component of M* or M~ to
every overlapping component of Ot or O, and phase 3 connects every component of B’ to
some component in O7F. Since edge subdivisions do not change the parity of degrees, every
vertex in G* has even degree, hence G* is Eulerian. We construct an Eulerian geometric
graph G’ such that every Euler tour in G’ is within /2 Fréchet distance from an Euler
tour in G*. Theorem 1 will then imply that there exists a simple polygon within & Fréchet
distance from an Euler tour in G*.

We recall some notation introduced in [7]. For every vertex v € V, let D, be a disk
centered at v of radius §. For a bar b between ug and uyg, let Dy be the €2 neighborhood
of b setminus D, U D,, . Assume that € € (0, %) is so small that the disks D, are pairwise
disjoint; a disk D,, intersects Dy, only if v € b, and the neighborhoods D, are pairwise disjoint.

For each bar b with vertices uy, ..., ug, we perturb the edges of E* contained in b into
noncrossing simple polygons and polygonal chains. Embed each subdivided path in M™
(resp., M ™) w;u; in the upper (resp., lower) boundary of the region D such that u; is on
the boundary of D, and u; is on the boundary of D,,;. Subdivide Dy with £ + 1 horizontal
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Figure 7 Lower bound constructions.

lines where / is the number of components of the subgraph induced by B’. Embed all edges
in OF (resp., O7) in the first (resp., ¢ + 1-th) such line.

Recall that every vertex of G has even degree. If b contains a b-odd vertex p, there
must exist a bar b’ such that p is ’-odd. Because M+ and M~ matches such points, the
subgraph induced by B contain only even degree vertices. By construction the edges in
OT U O~ form nonoverlapping disjoint circuits. Hence, the subgraph induced by B’ contains
only even degree vertices. Consequently, each of its components is Eulerian and forms a
weakly simple polygons that we denote by ~1(b),...,7:(b), sorted by the z-coordinates of
their left endpoints. Perturb ~;(b),...,7¢(b) into simple polygons that lie in the interior
of Dy, separated by one of the £+ 1 lines, in this linear order (ties are broken arbitrarily).
For i =0,...,k, consider all polygons ;(b) whose leftmost vertex is u;. Connect the left
endpoints of each such v;(b) to the copy of u; in O by two polygonal paths within D,
(these paths connect different copies of vertex u; € V*, see Figure 6(f)). Similarly, for each
subdivision performed in phase 2 at u; of an edge in OV (resp., O7) in a path 7173, connect
the copy of u; in this path to a copy in M™ (resp., O~) by two polygonal paths within the
disk D,,,. Connect the endpoints of the overlapping paths in OF and O~ (forming a cycle
of each), and if the right endpoint of b is not b-odd and was added to B*, B~, connect the
copies of uy in M™* and M™. For each matching in B™ and B~ involving a point u; that is
a b’-odd endpoint of a bar b’, connect the paths in M™ or M~ that correspond to a match
in b to the path in M™ of &’ that contains p. Finally, for each point u; that is the endpoint
of a bar ¥’ and is b’-even, connect the corresponding copies of u;, making the graph induced
by all edges containing a point on b connected. This concludes the construction of G’.

Theorem 1 completes the proof: An Euler tour P of G' can be perturbed into a simple
polygon P such that distg(P, 13) < 5. The tour p maps to an Euler tour P* of G* by
identifying the vertices that lie in the same disk D,,, v € V*; and diStF(ﬁ, P*) < 5.

Our lower bound construction is shown in Figure 7(a). It consists of a graph G = (V, E)
containing a long edge eg (shown in red) and a path of (|E|+ 5)/7 non-overlapping collinear
edges that connects the endpoints of er. Each vertex in the interior of ep is also incident to
two small cycles above and below eg respectively. Although the graph is Eulerian, it does
not admit a weakly simple Euler tour. Each vertex p in the interior of the red edge eg is
incident to two small triangles. Suppose that epr is not subdivided at p. Then p has degree 6.
In any perturbation of a weakly simple Euler tour, vertex p is split into 3 copies, each of
degree 2, and each lying above or below egr. Suppose only one copy of p lies below eg. Then
it is incident to two edges of a small triangle below eg, which is then disconnected from
the rest of the graph, a contradiction. Consequently, er must be subdivided at all interior
vertices. Figure 7(b) shows that O(|E|) subdivisions of er suffice in this case. <
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5.2 Edge insertion

We define the problem WSPR™ as finding a set of edges E* such that GT = (V, EU E™)
admits a weakly simple Euler tour. Denote by || E|| and ||E*||, respectively, the sum of the
lengths of all edges in E and E™. If the point set | J F is disconnected, then there is no upper
bound on ||ET||. Otherwise, we can establish worst-case upper and lower bounds for ||E*||
in terms of || E|.

» Theorem 9. Let G = (V, E) be a noncrossing multigraph such that | ) E is a connected point
set. Then there exists a set of line segments E™ such that | ET|| < 3||E|| and Gt = (V, EUE™)
admits a weakly simple Fuler tour.

Proof. We construct E7 as follows. Partition F into bars (equivalence classes of the transitive
closure of the overlap relation on E). Denote by b the union of edges in a bar. W.l.o.g., we
may assume that b is horizontal. Denote by uy, ..., ux € V the vertices of V along b sorted
by z-coordinates (where b = uguy). For i =1,...,k, add an edge u;_1u; to ET if the edges
of E in the bar cover the line segment w;_ju; an odd number of times. The old and new
edges in the bar b jointly form a graph of even degree that we denote by G(b). By Theorem 3,
every component of G(b) admits a weakly simple Euler tour. Finally, add two more copies of
edge u;_1u; to ET for all i = 1,... k. After repeating the above steps for every bar, we have
|ET| < 3||E| and Gt = (V, EU E™) is Eulerian.

We omit the proof of correctness (which is provided in the full paper [2]), that shows that
G™ admits a weakly simple Euler tour, since it is similar to the proof of Theorem 8. <

Lower bound constructions. All our lower bound constructions are graphs G = (V, E) in
which an edge connects two points on the boundary of the convex hull of V, denoted ch(V').

» Theorem 10. Let G be a family of noncrossing multigraphs. For G = (V,E) € G, let ET
be an edge set of minimum length ||[E™|| such that Gt = (V, EU E™) admits a weakly simple
Euler tour; and let N(G) = supgeg [|E1||/||E||. Then:

1. MG1) > 1, where G1 = {Eulerian noncrossing multigraphs}.

2. XN(G2) > &, where Go = {connected noncrossing multigraphs}.

3. X(Gs) > 3, where G5 = {noncrossing multigraphs G = (V, E) such that | J E is connected}.

Proof.
(1) Refer to Figs. 7(a)~(c). Let n € N and § € (0,3). Place vertices v; = (i,0), for
i =0,...,n, on the z-axis. A red edge of length n connects vy and v,. A black edge of

length 1/n connects v;—1 and v; for 1 <4 < n. A small cycle of length § < % is placed on
each v;, 1 <17 € n — 1, on each side of the z-axis. The total length of the construction is
IE| = 2n + 2(n — 1)6.

Let GT = (V, EU E™) be a multigraph in which P is a weakly simple Euler tour; and
let P’ be an e-perturbation into a simple polygon, for some 0 < € < §. We define a pair of
vertical lines ¢; :x =i+ 6 and ¢] : v = (i+1) — 6, for 0 < i < n — 1. The portion of P’

between any two of these lines consists of disjoint paths whose endpoints are on the lines.

By Morse theory, P’ contains an even number of paths between any two of these lines; and
the length of such a path is at least the distance between the parallel lines. The input edges

already contain two line segments between any two of these lines: a red and a black segment.

We claim that G* contains at least 4 paths between ¢; and E;‘ for all but at most one
index 0 < ¢ < n — 1. Indeed, suppose that there are two such paths between ¢; and @' and
between ¢ and Ej (0<i<j<mn-—1). We may assume w.l.o.g. that the black edge is
above the red edge between ¢; and ¢;. Then the black edge must be above the red edge
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between E; and E;, as well. Consequently, P’ cannot reach the small cycles at v;;1,...,v;.
This confirms the claim. It follows that |[EU ET|| > (4n — 2)(1 — 28). This lower bound
tends to 2||E|| as n — oo and én — 0.

Due to space restrictions, we omit the proofs for cases 2 and 3. |

6 Conclusions

We have shown that WSPR is NP-complete. It follows that the decision version of the
problems in Section 5 are also NP-complete: It is NP-complete to find up to k subdivision
points to form a weakly simple polygon, or to find an edge set with length up to k£ that
produce a weakly simple polygon. We have shown that ©(|E|) subdivision points are always
sufficient and sometimes necessary when the input is Eulerian; and new edges of length
O(||E||) are always sufficient and sometimes necessary when | J F is connected. However, the
best constant coeflicients are not known in most cases. We conjecture that every noncrossing
Eulerian graph G = (V, E) can be augmented into a graph GT = (V, E U E™) that admits a
weakly simple Euler tour such that ||[ET| < || E].

If the segments in £ do not form a weakly simple polygon, we can subdivide segments or
insert new segments to create a weakly simple polygon. On the other end of the spectrum, a
set of n line segment may form an exponential number of weakly simple polygons, even if
all segments are collinear. It is an open problem to count exactly how many weakly simple
polygons can be obtained from the same set of line segments. Finally, we mention an open
problem about reconstructing simple polygons from a subset of its edges. It is NP-complete
to decide whether a geometric graph G = (V, E) can be augmented into a simple polygon
P = (V,EUET) [17]. However, it is not known whether the problem remains NP-hard when
G is a perfect matching.

Acknowledgements. We thank Adrian Dumitrescu for bringing this problem to our atten-
tion.
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—— Abstract

We investigate the problem of computing a minimum-volume container for the non-overlapping
packing of a given set of three-dimensional convex objects. Already the simplest versions of
the problem are NP-hard so that we cannot expect to find exact polynomial time algorithms.
We give constant ratio approximation algorithms for packing axis-parallel (rectangular) cuboids
under translation into an axis-parallel (rectangular) cuboid as container, for packing cuboids
under rigid motions into an axis-parallel cuboid or into an arbitrary convex container, and for
packing convex polyhedra under rigid motions into an axis-parallel cuboid or arbitrary convex
container. This work gives the first approximability results for the computation of minimum
volume containers for the objects described.
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1 Introduction

The problem of efficiently packing objects without overlap arises in a large variety of contexts.
Apart from the obvious ones, where concrete objects need to be packed for transportation or
storage, there are more abstract ones, for example cutting stock or scheduling. Given a set of
objects that have to be cut out from the same material the objective is to minimize the waste,
i.e., place the pieces to be cut out as close as possible. In the case of scheduling, a list of
jobs is given. Each job needs a certain amount of given resources and the aim is to minimize
under certain constraints this need of resources such as time, space, or number of machines.
Altogether, this situation can be described as a problem of packing high-dimensional cuboids
into a strip with bounded side lengths. So, both problems can be viewed as a given list of
objects for which a container of minimum size is wanted.

In this work, we consider the more general and abstract problem of packing three-
dimensional convex polyhedra into a minimum volume container. All variants of this problem
are N'P-hard and we will develop constant factor approximation algorithms for some of them.
The worst case constant factors are still very high, but probably they will be much lower for
realistic inputs. The major aim of this paper, however, is to show the existence of constant
factors at all, i.e., that the problems belong to the complexity class APX.
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Related Work

So far, there are only few results about finding containers of minimum volume. Related
problems include strip packing and bin packing. In two-dimensional strip packing the width
of a strip is given and the objects should be packed in order to minimize the length of the
strip used. In three dimensions, the rectangular cross section of the strip is fixed. Bin-packing
is the problem where the complete container is fixed and the objective is to minimize the
number of containers to pack all objects. For both problems usually only translations are
allowed to pack the objects.

For two-dimensional bin packing there exists an algorithm with an asymptotic approx-
imation ratio of 1.405 [3] and Bansal et al. proved that there cannot be an APTAS unless
P =NP [2]. For two-dimensional strip packing there exists an AFPTAS [7]. In three
dimensions there are algorithms with an asymptotic approximation ratio of 4.89 for bin
packing [9] and an asymptotic approximation ratio of % + ¢ for strip packing [6]. The best
known worst case (non-asymptotic) approximation ratio for three-dimensional strip packing
is 22 [5].

For two dimensions, von Niederhdusern [11] gave algorithms for packing rectangles or
convex polygons in a minimum-area rectangular container with approximation ratios 3 and 5
respectively. A recent result shows that packing convex polygons under translation into a
minimum-area rectangular or convex container can be approximated with ratios 17.45 and
27 respectively [1].

PARTITION can be reduced to one-dimensional bin packing and one-dimensional bin
packing is a special case of higher dimensional bin or strip packing. If one-dimensional bin
packing could be approximated with a ratio smaller than %, we could solve PARTITION.
Therefore, none of the mentioned problems can be approximated better than with ratio %
unless P = NP. PARTITION can also be reduced to our problem showing A/P-hardness.

Our Results

In this work we give the first approximation results for packing three-dimensional convex
objects in a minimum-volume container. For packing axis-parallel rectangular cuboids under
translation into an axis-parallel rectangular cuboid as a container, we achieve a 7.25 + ¢
approximation. If we allow the cuboids to be packed under rigid motions (translation and
rotation) then we achieve an approximation ratio of 17.737 for an axis-parallel cuboid as
container and an approximation ratio of 29.135 for an arbitrary convex container. For
packing convex polyhedra under rigid motions we achieve an approximation ratio of 277.59
for computing an axis-parallel cuboid as container and 511.37 for a convex container.

2  Preliminaries and Reduction to Strip Packing

For most algorithms considered here, the input is a set of rectangular boxes B = {b1,ba, ... b, }.
We denote a box b; in axis-parallel orientation by a tuple of its height, width and depth
(hi,w;, d;). We denote by hpmax = max {h; | b; € B}, wmax = max{w; | b; € B} and dpax =
max {dz | b; € B}

For points P and @ we denote by PQ the line segment between P and @ of length |PQ)|.
PQ denotes the vector from P to ). When we write "axis-parallel container" we mean
"axis-parallel rectangular cuboid as a container'. We use the term box as a synonym for
rectangular cuboid.
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Packing under translation means that a separate translation is applied to each object
moving it inside the container. The translated objects are not allowed to overlap. Packing
under rigid motion means that a (separate) rotation may be applied to each object before it
is translated into the container.

» Definition 1 (strip packing). An instance for the strip packing problem consists of an axis
parallel strip and a set of axis parallel boxes, i.e. in two dimensions the width and in three
dimensions the width and the depth are fixed and the objective is to pack the boxes under
translation such that the height is minimized.

» Definition 2 (orthogonal minimal container packing — OMCOP). An instance of this
problem is a set of convex polyhedra. The aim is to pack these polyhedra non-overlapping
such that the minimal axis-parallel container has minimal volume. Variants include the kind
of motions allowed or that more specialized objects are to be packed.

This work only considers algorithms in two or three dimensions. For ease of notation we
always assume the lower left (front) corner of the container to lie in the origin. Vg denotes
the minimal possible volume for a container.

The following algorithm was given by von Niederhdusern [11]. It will be used later as a
subroutine. For an example see Figure 1.

Algorithm 1:
Input: A list S of rectangles r;, denoted by their width w; and height h;, a width for
the strip w

Order the rectangles in S by decreasing width, such that if i < j then w; > wj.

Split S in sublists S; = {ri €S| 5 > wi > 2%} for 7 > 1.

Start with packing the rectangles in S; on top of each other in the strip [0, w] X [0, 00).

Split the remaining strip in two substrips with width 5 and pack the rectangles in So
one after another into these substrips. Each rectangle r; is packed in the substrip with

= W=

current minimal height.
5. Again split the substrips into two and pack S3. Iterate that process until everything is
packed.

» Remark. Note that the strip is half filled with rectangles up to the lower boundary of the
highest rectangle that touches the upper end of the packing. Otherwise,this rectangle could
have been placed lower. That means that the strip is half filled with rectangles except for a
part with area at most w - hyax-

» Remark. Steps 1 and 2 can be done in O (nlogn) time where n is the size of S. Steps 4
and 5 are presented in a simplified way in order to convey the idea of the algorithm in a more
understandable manner. In reality it may happen that sublists S; are empty and therefore
splitting all substrips until they have the suitable width takes too much time. Hence, we split
off a new substrip of suitable width from an existing one only when needed. To maintain all
substrips with their currently occupied height, a heap-like data structure is used. Then, we
can perform steps 3 to 5 in O (nlogn) time.

In this section we consider the version of OMCOP where the given objects are axis-
parallel boxes that are to be packed under translation. The idea behind the reduction of
OMCOP to strip packing is to test different base areas for the strip and to return the result
with minimal volume. Assuming that the lower left corner of the base area is located at
the origin, we test each point in a set S as a possible upper right corner for the base area.
Testing means that we call a strip packing algorithm with the given boxes and the base area
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half
filled

Figure 1 Result of Algorithm 1.

implied by the point of S. S will be determined by a parameter e: the smaller €, the more
elements S contains, the better the approximation ratio gets.

Note that for the width W of an optimal container, the following inequalities hold:

1. Wype < Wy, where Wy denotes the sum of all widths of the boxes to be packed. It is an
upper bound because the width of an optimal container has to be the sum of the widths
of some of the objects. Otherwise they can be pushed together reducing the width of the
container and thereby its volume.

2. Wopt > Wmax, Where wmay denotes the width of the widest box. Since this box needs to
be packed, this is a lower bound for the width of the container.
The analogous bounds for the depth of an optimal container hold for the same reasons. In
the following Hopt, Wopt, Dopt, and Vopy denote the height, width, depth, and volume of the
13

same optimal container. Let ¢/ = 5-5— for a constant « defined later.
2(e+a)

The set S is obtained by dividing the intervals of possible width and depth logarithmically:

S=(We(1—¢) [ieN,Wsg(l—¢) > wnax} U {Wmax} X
{DE (1 - gl)j ‘ ] S Na DZ (1 - 5/)j > dmax} U {dmax}-

For an example for S see Figure 2.

» Theorem 3. If we use an a-approzimation algorithm of runtime T'(n) to pack n bozes under
translation into the strips and the set S defined above, we obtain an (« + €)-approzimation
algorithm for the OMCOP wariant where n azis aligned boxes are to be packed under

translation. Its runtime is O (T(n)kf@)

Proof. There exist a,b € N with Wy (1—¢)*"" < Wopt < Wx(1—¢€)" and
Dy (1 - < Dy < Dy (1 — ¢/)°. Eventually the boxes will be packed in a strip with
base area W x D with W = Wy (1—¢)* and D = Wx (1 —¢')’. Since W > Wopt and
D > Dgpt, the minimal height for a strip packing with base area W x D is at most Hopg.
Therefore, we obtain a packing with height H < aH,pe. The associated container has volume
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Figure 2 Example for Set S with € = g and o = 1.5.

V with
V=HWD

< (aHop) (W (1-)") (D5 (1= ¢)")

W D,
< ot (122 ) (1225

«

o
< -
- 1-2¢

The size of S is

|S| = ({logﬁ WE—‘ — {log# wmaxJ + 1) ([logﬁ Dz—‘ - {log# dmaxJ + 1)

IN

3

Vopt = (v +¢€) Vopy , since ¢/ = Sera)

log?
=0 #2 , since We < n, where n is the number of boxes
(710g (1 75’)) Wmax

log?n
-o(*%")

since —log (1 — x) > z for z € [0,1] and &’ > ce for some constant ¢ > 0.

Therefore we get the desired running time. |

If we use the algorithm given by Diedrich et al. [5] to pack the boxes into the strips, we
obtain the following corollary.

» Corollary 4. There exists a (7.25 + €)-approzimation algorithm for packing azxis-parallel
bozes under translation into a minimum volume axis-parallel box with running time polynomial
in both the input size and é

3 Algorithms for Variants of OMCOP

In this section, we will give algorithms for variants of OMCOP. The basic idea is to get rid
of the third dimension by dividing the set of objects into sets of objects with similar height
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dmax

(a) Cut strip (b) Pieces obtained from one strip
stacked on top of each other

Figure 3

and then packing those using an algorithm for two-dimensional boxes. These containers then
get cut into pieces with equal base area and the pieces will be stacked on top of each other.

3.1 Packing Cuboids under Translation

Even though this algorithm gets outperformed by the construction in the previous section,
we state it here as base for the algorithms for the other variants. Let o € (0,1) and ¢ > 1 be
two parameters that we will choose later.

Algorithm 2:
Input: A set of axis parallel boxes B = {b1,...,b,}
1. Partition B into subsets of boxes that have almost the same height:
Bj = {bl eB | Amax - ol < hi < hmax - Oéj_l}.

2. Pack the boxes of every B; into a strip with width wmax and height Apax - ad=1
considering the depth of the boxes instead of the height, i.e., the strip grows into the
depth. This is done by applying Algorithm 1 to pack the lower facets of the boxes
(rectangles) into the lower facet of the strip (2d-strip).

3. Divide the strips into pieces with depth (¢ — 1) - dpax, ignoring the last part of the
strip of depth dpax. (Parts of boxes contained in this part of the strip will be covered
in step 5 anyway.)

4. Assign each box to the piece its front lies in.

5. Extend each piece to depth ¢ - dyax such that every assigned box lies entirely in the
piece.

6. Stack the pieces on top of each other.

For an illustration of steps 3 to 6 see Figure 3. The first step can be done in O(n) time.
The second step needs time O(nlogn) (see Remarks on Algorithm 1). The rest can be done
in linear time. Therefore, Algorithm 2 runs in O(nlogn) time. We obtain

» Theorem 5. For suitable values of ¢ and o Algorithm 2 computes a 7,\/%%11.542 -

approximation for the variant of three-dimensional OMCOP where n azis parallel cuboids
are packed under translation in O(nlogn) time.

Proof. Let D; denote the depth of the strip obtained in step 2 for the boxes in B;. Then we

get by step 3 {%—‘ pieces. After step 5 each piece has volume ¢ - dmaxWmaxPmax0? 1.
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Consider the total volume V; of the pieces obtained for the subset B;:

Dj - dmax
(¢ — 1) dmax

1 i1
- dmax) wmathaxa] +c- dmaxwmathaxaj .

j—1
-‘ wmathaxaj

We know from the two-dimensional packing algorithm that the base area of the strip is half
filled with boxes except for the last part of depth at most dyax (see Remarks on Algorithm 1),
50 (D — dmax) Wmax < 2 Zbij Ap (b) where Ap (b) denotes the base area of box b. We also

know that for every b; € B; the inequality hmaxa/ ™ < % holds. Therefore, we get for the
total volume of the packing V' that

ng(c_Cl(D
<Z

) —1 ) —1
7 dmax) wmathaxOfj +c- dmaxwmathaxa] >

j—1
+c- Wmax * dmax : hmaxa']

cfl ZV

bEB
C—l beZBV +c- wmax' max' max ZOL (1)
N—— <Vopt
<Vopt
2¢ C
< Vopt.- )
‘(a<c—1>+1—a> (2)

The factor before V,pt in term (2) is minimized if the partial derivatives with respect to c
and a are 0. Solving the resulting system of equations we get ¢ = \3f 2+ 1 =~ 2.2599 and
(2 — 4+ \[) ~ 0.5575. This gives an approximation ratio of 7,7 ~ 11.542. <

3.2 Packing Cuboids under Rigid Motions
3.2.1 Cuboid as Container

Now we consider the variant of OMCOP where the objects to be packed are boxes and
rigid motions are allowed. Let V¢ denote the volume of an optimal container for the given
setting. We basically use the algorithm stated above but with an extra preprocessing step,
namely rotating every box b; € B such that it becomes axis parallel and h; > w; > d;. This
can be done in @(n) time. To prove the performance bound of this algorithm we need the
following lemma.

» Lemma 6. If every b; = (h;,w;,d
dmax S \/6 : Vopt-

Proof. Since an optimal container has to contain the box determining h,.x, it contains a
line segment of length hpy.x. The projection of that line segment on at least one of the axes
has to have length at least %hmax. W.lo.g. let this axis be the x-axis. Therefore, the

;) € B is oriented such that h; > w; > d;, then

hmax * Wmax *

optimal container has an extent of at least %hmax in x-direction.
Since every box is at least as high as wide, a box with width wp.x contains a disk D with
diameter wyax and so the optimal container does. Observe that D contains a diametric line

segment [ which is parallel to the y-z-plane. Consequently, the projection of [ and therefore

the one of the whole box on the y-axis or on the z-axis has a length of at least fwrmx.

W.lo.g. let this be the y-axis.

11:7

ISAAC 2016



11:8

Approximating Smallest Containers for Packing Three-Dimensional Convex Objects

A box with depth dpyax contains a sphere with diameter dy,.x. The projection of this
sphere on any axis has length at least dpax.
Summarizing, each optimal box has volume at least %hmax * Wmax * Amax |

Observe that every argument leading to inequality (1) still holds for this variant of the
algorithm. Using Lemma 6 to estimate Amax + Wmax * dmax We get an approximation factor of
. Minimizing this expression as before yields the following theorem.

2 /6
a(cil) + Cl—a
» Theorem 7. The given algorithm computes a 17.738-approximation for the variant of
three-dimensional OMCOP where n axis parallel cuboids are packed under rigid motions in
O(nlogn) time.

3.2.2 Convex Container

If we allow a convex container instead of an orthogonal container, we can use the same
algorithm but adapt the analysis. The arguments leading to inequality (1) still hold since
they only use the total volume of the boxes as estimate for the volume of an optimal container.
To estimate Amax - Wmax - @max, We use the following lemma. Note that V¢ here denotes the
volume of a minimal convex container instead of an axis parallel container.

» Lemma 8. If cvery b; = (h;,w;,d;) € B is oriented such that h; > w; > d;, then
hmax * Wmax * dmax S 6- Vopt-

Proof. Consider the line segment, disk and sphere from the proof of Lemma 6. The line
segment has length Ay .. The disk with diameter wpy,x contains a line segment of length
Wmax that is perpendicular to the first line segment. The sphere with diameter dp,,x contains
a line segment of length d,.x that is perpendicular to the first two line segments. It is well
known (see, e.g., Lemma 6 from [8]) that the convex hull of these three line segments has a
volume of at least éhmaxwmaxdmax. <

2c
a(c—1)

This leads with inequality (1) to the approximation ratio + %. Minimizing this

term as before yields the following theorem.

» Theorem 9. Using the algorithm described in section 3.2 we get a 29.135-approzimation
for packing n axis parallel boxes under rigid motions into a smallest-volume convex container
in time O(nlogn).

3.3 Packing Convex Polyhedra under Rigid Motions
3.3.1 Cuboid as Container

We use the algorithm from the previous sections to pack convex polyhedra under rigid
motions into an axis-parallel box of minimal volume. To do so, we add another preprocessing
step where we compute a bounding box for every polyhedron according to the following
lemma. We then pack these boxes with the algorithm discussed in the previous section.

» Lemma 10. For every m-vertex convex polyhedron K in R?, there is a box B that contains
K with V(B) < d\V(K) that can be computed in O(d*m?) time, or O(mlogm) time if d = 3.

Proof by induction on the dimension d. In one dimension, the Lemma holds obviously.
In higher dimensions d, let P, @ be two points of K with maximum distance and |PQ| = .

Let mp be the hyperplane normal to PQ in the point P. Let K’ be the orthogonal projection

of K onto mp. By the inductive hypothesis there is a (d—1)-dimensional box B’ containing K’
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Figure 4 Box with a point of the enclosed polyhedron in every facet and the projection of the
box on a plane perpendicular to TB. By construction, the images of 7" and B under the projection
are the same.

for which V/(B’) < (d—1)!V'(K') where V' denotes the (d — 1)-dimensional volume. Then K
is contained in the box B with base B’ and height [ and V(B) = IV'(B’) < l(d—1)'V'(K'). Tt
is well known (see e.g. [8]) that for any convex body K, its projection K’ on some hyperplane
mp, and a line segment ! perpendicular to 7p, it holds: V (K) > % -1-V'(K'). Hence, we
get for the volume of B: V(B) < d!V(K). B can be computed by testing every pair of
vertices to find P and @ that have maximal distance. This takes O(dm?) time. Then K gets
projected on a hyperplane perpendicular to PQ. This is possible in O(dm) time. Then we
proceed recursively with the projection of K. In total we need O(d?m?). The asymptotically
fastest algorithm for dimension three however has runtime O(mlogm), see [10]. |

The construction in the proof of Lemma 10 is the same as in Lemma 7 from [8]. We get a
total running time of O (mlogm) for computing the bounding boxes of three-dimensional
polyhedra with m vertices in total.

For the analysis of the algorithm presented in this section we need several notations
and lemmata that follow. Consider the box b = (h,w,d) obtained from the polyhedron p

by Lemma 10 after the algorithm rotated it in axis-parallel position such that h > w > d.

Notice that in every facet of b lies at least one point of p. We call the top and bottom one T’
and B, which are unique by construction. In the left and right facet of b, we choose such a
point from each and call them L and R. By construction, the distance from them to the
front facet has to be the same. We do the same for the front and rear facet and call them F
and D respectively. We know from the construction that |[TB| = h and TB is parallel to
the longest edge of b. If we project the polyhedron onto a plane perpendicular to T B, we

call the images of T, L, R, F' and D under the projection 77, L', R', F’ and D’, respectively.

See Figure 4 for illustration. Due to the construction of b, |L'R'| = w holds.

» Lemma 11. Let b = (h,w,d) with h > w > d be the enclosing box obtained for polyhedron
p by the algorithm from Lemma 10. Then, parallel to any given plane, p contains a line
segment of length at least w - %

Proof. Consider the points T, B, L and R as described above. The distance between line

segment 7B and L or the distance between line segment 7B and R is at least 5. Let w.lo.g.

L be the point with larger distance to TB. Consider the triangle A(T, B, L) with edges and
angles labeled according to Figure 5a. Notice that av < 90° and 8 < 90°. Let a; be the height
of the triangle on edge t, a; on edge b, and a; on edge .
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T B
(a) Labelled triangle A(T, B, L) (b) Possible triangles A(T, B, L)

Figure 5

Due to the construction of A(T, B, L), we know that a; > §. We will later show that
ap > % and a; > . If we choose a plane parallel to the given one, such that the intersection
between the plane and A(T, B, L) contains T, B or L but is not only one point, then we
know that the intersection is at least a line segment with length at least min (a¢, ap, a;) > %
which completes the proof. It remains to show that a;, a; > *%.

We only show that ap > % since the proof for a; is analogous. Figure 5b depicts possible
triangles with given distance |[T'B| and height ;. ay is the distance between B and the line
defined by T and L. Since § < 90° this distance is minimal for 8 = 90°.

Let A be the area of A(T, B, L) with 8 = 90°.

It holds

a - |TB| _
o =

4= @ |TL]

Hence

2
ar-h=ap-\/h?+a?,

since |T'B| = h and using Pythagoras’ theorem for replacing |T'L|. That gives

= <

» Lemma 12. Let b = (h,w,d) with h > w > d be the enclosing box obtained for a convex
polyhedron p by the algorithm from Lemma 10. Then the projection of p onto any arbitrary
line g has length at least ﬁd.

This Lemma is shown by an elaborate construction, where we find four line segments inside
p such that the projection of at least one of them onto g has length at least S—%d. See
Appendix A for the complete proof.

Summarized, the algorithm for packing convex polyhedra works as follows: First, we
compute a bounding box for every polyhedron with the algorithm from Lemma 10, then we
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rotate each box b; together with its contained polyhedron p; in an axis-prallel orientation
such that h; > w; > d;. Finally, we run Algorithm 2 with the rotated boxes.

Now consider the polyhedra pi, p2, ps that determine hpax, Wmax and dmax in the place-
ment of the enclosing boxes the described algorithm computes. p; contains a line segment of
length hpax and so its projection to at least one of the axes is at least %hmax. W.lo.g. let
this axis be the x-axis. Furthermore, by Lemma 11 the projection of ps onto the y-z-plane

contains a line of length at least %wmax. Therefore, the projection of py onto the y-axis or

the one onto the z-axis has length at least % . %wmax = \/%—meax- The projection of p3
to the remaining axis has length at least ﬁdmax by Lemma 12. An axis parallel box with
minimal volume containing p1, p2, p3s has at least the described side lengths and so we get

the following lemma.

» Lemma 13. For packing convex polyhedra under rigid motions into a minimum-volume
axis parallel container, the following inequality holds: Rmax - Wmax * dmax < 24V 10Vop;.

From Lemma 10 we know that the volume of the smallest enclosing box for a polyhedron is
at most 6 times the volume of the polyhedron. With the previous lemma and this knowledge
we derive the following approximation ratio from inequality (1):

12¢ c-24+/10
a(e—1) l—a

(3)

The running time of this algorithm is determined by the computation of the bounding boxes
and the packing of these boxes: O (mlogm + nlogn) = O (mlogm) where m is the total
number of vertices of the polyhedra. Hence, by minimizing term (3) as before we get the
following theorem.

» Theorem 14. The given algorithm computes an orthogonal container with volume at
most 277.59 times the volume of an orthogonal minimal container for the variant of three-
dimensional OMCOP where a set of convexr polyhedra having m vertices in total are to be
packed under rigid motions. The runtime of the algorithm is O (mlogm).

3.3.2 Convex Container

Next, we show that the algorithm from the previous section is not only a constant factor
approximation for the smallest axis parallel cuboid under rigid motions but even for the
smallest convex container. Of course, the approximation factor is higher and, first, we get
the following lemma instead of Lemma 13:

» Lemma 15. For packing convex polyhedra under rigid motions into a minimum-volume
convex container, the following inequality holds: hmax - Wmax * dmax < 48V 15Vopt.

Proof. As before let p1,p2, p3s be the polytopes that determine Apax, Wmax and dmax. P1
contains a line segment of length hy.x. By Lemma 11, py contains a line segment of length
L\/‘gx that is perpendicular to the first line segment. By Lemma 12, p3 contains a line

segment with length ‘é‘“ﬁ that is perpendicular to the first two lines. Since any convex body
containing three pairwise perpendicular line segments of length a, b, ¢ has volume at least
Fabe (cf. Lemma 6 in [8]), we get a lower bound on the volume of the convex hull which is
also a lower bound for the volume of an optimal container. <

As before we use Lemma 10 and the previous lemma to estimate inequality (1) and obtain

12¢ 4 c-48v15
a(c—1) 11—«

the following approximation ratio: . Minimizing this term as before yields

the following result.
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» Theorem 16. The algorithm given in Section 3.3 computes a convex container with volume
at most 511.37 times the volume of a minimal convex container for packing a set of convex
polyhedra having m vertices in total under rigid motions in time O (mlogm).
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A  Proof of Lemma 12

We construct four line segments inside of p such that the projection of at least one of them
onto the line has the desired length.

Consider the projection of p onto a plane perpendicular to TB as described above
(Figure 4). Then A(L', R, F’) or A(L’, R, D’) has an area A > %”. The perimeter of the
projection of the box, namely 2(w + d), gives an upper bound for the perimeter u of the
triangles. It is well known (see, e.g.,[4]) that the radius of the incircle of a triangle with area

A and perimeter u is r = %. Hence, we know that the projection of p contains a circle with
radius r where
2A dw 1
r=—>————>—d,sinced < w. 4
u — 4(d+w) ~ 8 - )

See Figure 6a for an example.
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Now we can find points U’, V/, W' in the projection, such that U’, V/, W’ lie on the
circle with radius 7 and [T'V'| =k > r, [U'W'| =1 = 2r and T'V’ L U'W’. To obtain V’,
we shoot a ray from T” through the center of the circle until we hit the circle and call this
point V/. U'W’ is the diameter of the circle perpendicular to 7'V’. See Figure 6b for an
example.

Let U, V, W be preimages of U’, V', W/ under the projection. Hence, they lie inside p.

The line segments whose projections on the given line g we consider are BT, BV, VT and
WU.

The length of the projection of a line segment onto g is the scalar product of the vector
between the endpoints of the line segment and a unit vector with same direction as g. To
simplify the computation of the scalar product, we define the coordinate system as follows:
B is equal to the origin. T lies on the z-axis. The y-coordinate of V is 0. Then U and W
have the same x-coordinate. Now we have

0 k 0
BT = 0 BV=1| o VT = 0 wo=|{ 1 |,

h hy h—hy hwu

for values k, | with properties described above, and hy, hywy where 0 < hy < h and
x

|hwo| < h. Let 7 =1 v be the direction of ¢ in the defined coordinate system, with
z

|7| = 1. We now look at the lengths of the projections of the line segments onto the given

line and distinguish four cases.

Case 1: |z| > % Then, using inequality (4), if sgn(z) = sgn(x)

1
V3-8

|B7 L > kx| > 2| > d

or, if sgn(z) # sgn(x)

1
VT3> klz| > ——d.
| 7> |33\_\/§.8
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Case 2: |z|-h > \/_ f Then
1

BT -F|=h-|z| > d

BT-Fl=h-lel > 7
Case 3: |y| > % and sgn(y) = sgn(hwyz). Then

1

WU -1 > Uyl > ——d

WO 712 1>
Case 4: |y| > —3 and sgn(y) # sgn(hwyz) and |z| - h < \/_8 D hwoz] <

hlz] < 1 —sd and lly| = 2rly| > 2 —55d, hence

WU -7 = ily| -

1
hwozl > ——d.
lhwu ‘_\/§~8

Since | ¢| =1, |z| > % vyl > == 75 Or |z| > f holds. Hence, at least one of the 4 cases
occurs because h > d .
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—— Abstract

We examine the complexity of the online Dictionary Matching with One Gap Problem (DMOG)
which is the following. Preprocess a dictionary D of d patterns, where each pattern contains
a special gap symbol that can match any string, so that given a text that arrives online, a
character at a time, we can report all of the patterns from D that are suffixes of the text that
has arrived so far, before the next character arrives. In more general versions the gap symbols
are associated with bounds determining the possible lengths of matching strings. Online DMOG
captures the difficulty in a bottleneck procedure for cyber-security, as many digital signatures of
viruses manifest themselves as patterns with a single gap.

In this paper, we demonstrate that the difficulty in obtaining efficient solutions for the DMOG
problem, even in the offline setting, can be traced back to the infamous 3SUM conjecture. We
show a conditional lower bound of Q(6(Gp)+op) time per text character, where Gp is a bipartite
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1 Introduction

Understanding the computational limitations of algorithmic problems often leads to algorithms
that are efficient for inputs that are seen in practice. This paper, which stemmed from
an industrial-acdemic connection [31], is a prime example of such a case. We focus on an
aspect of Cyber-security which is a critical modern challenge. Network intrusion detection
systems (NIDS) perform protocol analysis, content searching and content matching, in order
to detect harmful software. Such malware may appear non-contiguously, scattered across
several packets, which necessitates matching gapped patterns.

A gapped pattern P is one of the form P, {a, 8} P, where each subpattern Py, Py is
a string over alphabet ¥, and {«, 5} matches any substring of length at least « and at
most 3, which are called the gap bounds. Gapped patterns may contain more that one
gap, however, those considered in NIDS systems typically have at most one gap, and are a
serious bottleneck in such applications [31]. Analyzing the set of gapped patterns considered
by the SNORT software rules shows that 77% of the patterns have at most one gap, and
more than 44% of the patterns containing gaps have only one gap. Therefore, an efficient
solution for this case is of special interest. Though the gapped pattern matching problem
arose over 20 years ago in computational biology applications [28, 19] and has been revisited
many times in the intervening years (e.g. [27, 10, 25, 9, 16, 29, 32]), in this paper we study
what is apparently a mild generalization of the problem that has nonetheless resisted many
researcher’s attempts at finding a definitive efficient solution.

The set of d patterns to be detected, called a dictionary, could be quite large. While
dictionary matching is well studied (see, e.g. [2, 4, 12, 5, 15]), NIDS applications motivate
the dictionary matching with one gap problem, defined formally as follows.

» Definition 1. The Dictionary Matching with One Gap Problem (DMOG), is:
Input: A text T of length |T'| over alphabet X, and a dictionary D of d gapped patterns
P, ..., Py over alphabet ¥ where each pattern has at most one gap.
Output:  All locations in T' where a pattern P; € D, 1 < i < d, ends.

In the offline DMOG problem T and D are presented all at once. We study the more
practical online DMOG problem. The dictionary D can be preprocessed in advance, resulting
in a data structure. Given this data structure the text 7' is presented one character at a time,
and when a character arrives the subset of patterns with a match ending at this character
should be reported before the next character arrives. Three cost measures are of interest: a
preprocessing time, a time per character, and a time per match reported. Online DMOG is
a serious bottleneck for NIDS, though it has received much attention from both the industry
and the academic community.

1.1 Previous Work

Finding efficient solutions for DMOG has proven to be a difficult algorithmic challenge as,
unfortunately, little progress has been obtained on this problem even though many researchers
in the pattern matching community and the industry have tackled it. Table 1 describes a
summary and comparison of previous work. It illustrates that previous formalizations of
the problem, either do not enable detection of all intrusions or are incapable of detecting
them in an online setting, and therefore, are inadequate for NIDS applications. Table 1
also demonstrates that our upper bounds are essentially optimal (assuming some popular
conjectures, as described in Section 2).
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Table 1 Comparison of previous work and some new results. The parameters: [sc is the longest
suffix chain of subpatterns in D, socc is the number of subpatterns occurrences in T', op is the
number of pattern occurrences in T, ™ and * are the minimum left and maximum right gap
borders in the non-uniformly bounded case, §(Gp) is the degeneracy of the graph Gp representing
dictionary D.

Preprocessing Total Query Time Algorithm Remark
Time Type
[24] none O(T| +|D|) online reports only
first occurrence
[32] o(|D)) O(T| +d) online reports only
first occurrence
[18] O(|DJ) O(|T| - lsc + socc) online reports one occurrence
per pattern and location
[7] o(|D)) O(IT|(B — @) + op) offline DMOG
[20] o(|D)) O(|T|(B* — a*) + op) offline DMOG
his o(p O(IT| - 6(Gp) -1 I DMOG
paper 2] (IT[-6(Gp) - Lsc + op) online
: . 1—o(1) .
This o(|D)) Q(|T|-0(Gp) o + op) online DMOG
paper o(|D)) QUT|- (B —a)*=°® 4 op) | or offline

1.2 New Results

The DMOG problem has several natural parameters, e.g., |D|, d, and the magnitude of the
gap. We establish almost sharp upper and lower bounds for the cases of unbounded gaps
(a =0, = 00), uniformly bounded gaps where all patterns have the same bounds, « and S,
on their gap, and the most general non-uniform gaps version, where each pattern P; € D has
its own gap bounds, «; and 3;. We show that the complexity of DMOG actually depends on a
“hidden” parameter that is a function of the structure of the gapped patterns. The dictionary
D can be represented as a graph G p, which is a multi-graph in the non-uniformly bounded
gaps case, where vertices correspond to first or second subpatterns and edges correspond to
patterns’. We use the notion of graph degeneracy §(Gp) which is defined as follow. The
degeneracy of an undirected graph G = (V, E) is §(G) = maxycy min,ey dg, (1), where
dq,, is the degree of u in the subgraph of G induced by U. In words, the degeneracy of G is
the largest minimum degree of any subgraph of G. A non-multi graph G with m edges has
§(G) = O(y/m), and a clique has 6(G) = O(y/m). The degeneracy of a multi-graph can be
much higher.

Vertex-triangle queries. A key component in understanding both the upper and lower
bounds for DMOG is the vertez-triangles problem, where the goal is to preprocess a graph
so that given a query vertex u we may list all triangles that contain u. The vertex-triangles
problem, besides being a natural graph problem, is of particular interest here since, as will
be demonstrated in Section 2, it is reducible to DMOG. Our reduction demonstrates that
the complexity of the DMOG problem already emerges when all patterns are of the form of
two characters separated by an unbounded gap. This simplified online DMOG problem is

! While it may be more natural to consider a directed or bipartite graph, the notion of degeneracy ignores
directions, and so let Gp here be an undirected graph for sake of explaining the notion.
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equivalent to the following Induced Subgraph (ISG) problem. Preprocess a directed graph
G = (V, E) such that given a query sequence of vertices online (these vertices need not
be all of V), after vertex v; arrives, all edges (vj,v;) € E with j < i are reported. Notice
that answering consecutive queries is done independently. Thus, characters and gapped
patterns in DMOG correspond to vertices and edges in ISG, respectively. We show that
vertex-triangles queries are reducible to ISG.

This reduction serves two purposes. First, in Section 2 we prove a conditional lower bound
(CLB) for DMOG based on the 3SUM conjecture by combining a reduction from triangle
enumeration to the vertex-triangles problem with our new reduction from the vertex-triangles
problem to DMOG. Our lower bound states that any online DMOG algorithm with low
preprocessing and reporting costs must spend Q(6(Gp)'~°M)) per character, assuming the
3SUM conjecture. Interestingly, the path for proving this CLB deviates from the common
conceptual paradigms for proving lower bounds conditioned on the 3SUM conjecture, and
is of independent interest. In particular, the common paradigm considers set-disjointness
or set-intersection type problems, which correspond to edge triangle queries, while here we
consider vertex-triangle queries. Moreover, our CLB holds for the offline case as well, and can
be rephrased in terms of other parameters. For example, in the DMOG problem with uniform
gaps {a, B}, we prove that the per character cost of scanning 7 must be Q((3 — a)'=°M).
This gives some indication that some recent algorithms for the offline version of DMOG
problem are essentially optimal ([7, 20]).

Second, in Section 3 we provide optimal solutions (under the 3SUM conjecture), up to
subpolynomial factors, for ISG and, therefore, also for vertex-triangles queries, with O(|E|)
preprocessing time and O(4(G) 4 op) time per each vertex, where op is the size of the output
due to the vertex arrival. The connection between ISG and DMOG led us to extend the
techniques used to solve ISG, combine them with additional ideas and techniques, thereby
introduce several new online DMOG algorithms whose dependence on 6(G) is linear. Thus,
graph degeneracy seems to capture the intrinsic complexity of the problem. On the other
hand, the statement of our general algorithmic results is actually a bit more complicated
as it depends on other parameters of the input, namely [sc, the length of the longest suffiz
chain in the dictionary, i.e., the longest sequence of dictionary subpatterns such that each is
a proper suffix of the next. While the parameter [sc could theoretically be as large as d, in
practice it is very small [31]. Nevertheless, we also present algorithms that in the most dense
cases reduce the dependence on [sc.

Lower bounds leading to practical upper bounds. After trying to tackle the DMOG
problem from the upper bound perspective, we suspected that a lower bound could be proven,
and indeed were successful in showing a connection to the 3SUM conjecture. The CLB proof
provides insight for the inherent difficulty in solving DMOG, but is also unfortunate news
for those attempting to find efficient upper bounds. Fortunately, a careful examination of
the reduction from 3SUM to DMOG reveals that the CLB from the 3SUM conjecture can be
phrased in terms of §(Gp), which turns out to be a small constant in the input instances
considered by NIDS (according to an analysis of the graph created using SNORT rules) [31].
This lead to designing algorithms whose runtime can be expressed in terms of §(Gp), and can
therefore be helpful in practical settings. The following table summarizes our upper-bounds
for DMOG.

The design of our algorithms stem from a solution for ISG using O(m) preprocessing time
and O(0(G) + op) query time. This solution for ISG is extended to solutions for the various
DMOG versions. However, since subpatterns can be suffixes of each other, up to lsc vertices
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Table 2 A summary of upper bounds for DMOG described in this paper. Unbounded, uniform
and non-uniform refer to the type of gap bounds under consideration. M is the maximal length of a
subpattern in the dictionary D.

Gaps Preprocessing Query Time Space
Type Time per Text Character
unbounded o(|DJ) O(6(Gp) - lsc + op) O(|D))
uniform o(|DJ) O(6(Gp) - lsc+ op) O(|D| 4+ lsc(B—a+ M) + a)
non-uniform o(|DJ) O(5(Gp) - lsc + op) O(|D| +lsc(B* — a* + M) + a*)
uniform o(|D)) O(lsc +lsc - d + op) O(|D]| +lsc(B—a+ M)+ «)
non-uniform | O(|D] O(Wlsc-d(B* — o + M) + op) O(|D| + d(B* — a*)
+d(8* — o)) +Visc-d(B* —a" + M)+ ")

can arrive simultaneously in G p, the time of our algorithms have a multiplicative factor of
lsc. We emphasize that we are not the first to introduce the lsc factor even in solutions
for simplified relaxations of the DMOG problem [18]. Also, since subpatterns may be long,
we must accommodate a delay in the time a vertex corresponding to a second subpattern
is treated as if it has arrived, thus inducing a minor additive space usage. Finally, in [6]

we obtain more efficient bounds that depend linearly on Visc-d when §(Dg) > \/% , by
first considering special types of graph orientations, called threshold orientations, and then
carefully applying data-structure techniques. Notice that while in the uniformly bounded
case we have 6(Gp) = O(V/d), in the non-uniform case §(Gp) could be much higher and so
these new algorithms become a vast improvement.

Paper Contributions. The main contributions of this paper are:
Obtaining algorithms for DMOG that are asymptotically fast for practical inputs.
Proving matching conditional lower bounds (up to sub-polynomial factors) from the

3SUM conjecture, which in particular deviate from the common paradigm of such proofs.

Formalizing the ISG problem. This problem serves in this paper for supplying a deeper
understanding of the DMOG problem, but is also of independent interest.

Paper Organization. Section 2 describes our conditional lower bounds. In Section 3 we
introduce a solution for ISG, which is then extended to simplified versions of the uniformly
and non-uniformly bounded DMOG problems in Sections 3.1 and 3.2. In Section 4.1, the
ISG algorithms are extended to solutions for the various DMOG versions. More details and
results appear in [6].

2 3SUM: Conditional Lower Bounds

In this section we prove that conditioned on the 3SUM conjecture we can prove lower bounds
for the vertex-triangles problem, the ISG problem, and the (offline) unbounded DMOG
problem. Since the other two versions of DMOG (uniformly and non-uniformly bounded)

can solve the unbounded DMOG version, the lower bounds hold for these problems as well.

Background. Polynomial (unconditional) lower bounds for data structure problems are
considered beyond the reach of current techniques. Thus, it has recently become popular to
prove CLBs based on the conjectured hardness of some problem. One of the most popular
conjectures for CLBs is that the 3SUM problem (given n integers determine if any three
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sum to zero) cannot be solved in truly subquadratic time, where truly subquadratic time is
O(n?= M) time. This conjecture holds even if the algorithm is allowed to use randomization
(see e.g. [30, 1, 23, 17]). In this section we show that the infamous 3SUM problem can
be reduced to DMOG, which sheds some light on the difficulty of the DMOG problem.
Interestingly, our reduction does not follow the common paradigm for proving CLBs based
on the 3SUM conjecture, providing a new approach for reductions from 3SUM. This approach
is of independent interest, and is described next.

Triangles. Patragcu [30] showed that 3SUM can be reduced to enumerating triangles in
a tripartite graph. Kopelowitz, Pettie, and Porat [23] provided more efficient reductions,
thereby showing that many known triangle enumeration algorithms ([21, 13, 11, 22]) are
essentially and conditionally optimal, up to subpolynomial factors. Hence, the offline version
of triangle enumeration is well understood. The following two indexing versions of the triangle
enumeration problem are a natural extension of the offline problem. In the edge-triangles
problem the goal is to preprocess a graph so that given a query edge e all triangles containing
e are listed. The vertex-triangles problem is defined above. Clearly, both these versions solve
the triangle enumeration problem, which immediately gives lower bounds conditioned on the
3SUM conjecture.

The edge-triangles problem on a tripartite graph corresponds to preprocessing a family
F of sets over a universe U in order to support set intersection queries in which given two
sets S, S’ € F the goal is to enumerate the elements in S NS’ (see [23]). Indeed, the task of
preprocessing F' to support set-intersection enumeration queries, and hence edge-triangles, is
well studied [14, 22]. Furthermore, the set intersection problem has been used extensively as
a tool for proving that many algorithmic problems are as hard as solving 3SUM [30, 1, 23].
However, the vertex-triangles problem has yet to be considered directly?.

The Lower Bounds. We use the vertex-triangles problem in order to show that the ISG
problem is hard, and thus the simplest DMOG version of (offline) unbounded setting is
3SUM-hard. Our proof begins from the conditional lower bounds for triangle enumeration
introduced in [23]. The most significant conditional lower bounds that we prove are stated by
the following theorems. Due to space limitations the proofs of these theorems, together with
some more conditional lower bounds, are given in Appendix A. To understand the statements
of the following theorems, when the total query time of an algorithm can be formulated as
O(tq + op - t,) time, we say that ¢, is the query time and ¢, is the reporting time.

» Theorem 2. Assume 3SUM requires Q(n>=°W) expected time. For any algorithm that
solves the ISG problem on a graph G with m edges, if the amortized expected preprocessing
time is O(m - §(G)'=2MW)) and the amortized expected reporting time is sub-polynomial, then
the amortized expected query time must be Q((6(G))'—°M).

» Theorem 3. Assume 3SUM requires Q(n*>=°W) expected time. For any algorithm that
solves the DMOG problem on a dictionary D with d patterns, if the amortized expected
preprocessing time is O(|D| - §(Gp)*~%M) and the amortized expected reporting time is
sub-polynomial, then the amortized expected query time must be Q((6(Gp))'—°M).

2 The closely related problem of deciding whether a given vertex is contained by any triangle (a decision
version) has been addressed [8].
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3 The Induced Subgraph Problem

An Upper Bound via Graph Orientations. In graph orientations the goal is to orient the
graph edges while providing some guarantee on the out-degrees of the vertices. Formally,
an orientation of an undirected graph G = (V, E) is called a c-orientation if every vertex
has out-degree at most ¢ > 1. The notion of graph degeneracy is closely related to graph
orientations [3]. Chiba and Nishizeki [13] linear time greedy algorithm assigns a §(G)-
orientation of G. We preprocess G using this algorithm, thereby obtaining a c-orientation
with ¢ = §(G), and use it for solving ISG problem as follows. First, we view an orientation as
assigning “responsibility” for all data transfers occurring on an edge to one of its endpoints,
depending on the direction of the edge in the orientation (regardless of the actual direction
of the edge in the input graph G). We exploit this distinction by using the notation of an
edge e = (u,v) as oriented from u to v, while e could be directed either from u to v or from
v to u. We say that u is responsible for e, and that e is assigned to u. Furthermore, u is a
responsible-neighbor of v and v is an assigned-neighbor of w.

The Bipartite Graph. We begin by converting G = (V| E) to a bipartite graph by creating
two copies of V called L (the left vertices) and R (the right vertices). For every edge
(u,v) € E we add an edge in the bipartite graph from u;, € L to vg € R, where uy, is a
copy of u and vg is a copy of v. All edges are originally directed from L to R (before the
orientation). Furthermore, each vertex in V' that arrives during query time is replaced by its
two copies, first the copy from R and then the copy from L. This ordering guarantees that a
self loop in G is not mistakenly reported the first time its single vertex arrives. Notice that
the degeneracy of G is unchanged, up to constant factors, due to this reduction. From here
onwards we assume that G is already in this bipartite representation.
The unbounded case discussion and the omitted proofs appear in [6].

3.1 Uniformly Bounded Edge Occurrences

In this case, the ISG problem is restricted with two positive integer parameters o and 3 so
an edge (vj,v;) can only be reported if @ < i—j < 41 (recall that ¢ and j are arrival
times of v; and vj, respectively). The interval between § time units ago and « time units
ago is called the active window. It is maintained via a list Lg of the last 8 vertices. In
addition, each vertex v € R maintains a reporting list L., which is a linked list containing the

responsible-neighbors of v which have appeared during the active window, without repetition.

Furthermore, each vertex u € L has an ordered list of time stamps 7, of the times u arrived
in the current active window.
At query time ¢, Lg is updated by removing v;_g_1 and inserting v;, which is the vertex

arriving at time 7. If v;_g_; € L then the time stamp of i — 8 — 1 is removed from 7,,_,_,.

In case 7,,_,_, becomes empty then we remove v;_g_1 from all of the reporting lists of its
assigned-neighbors.
When a vertex v; arrives, the data structures of the vertices are updated accordingly, as
follows. If v; € R,
1. The elements of the reporting list £,, are scanned and their edges (u,v;) are reported
according to 7.
2. The edges for which v; is their responsible-neighbour are scanned, and those for which
the assigned-neighbour v is marked as arrived are reported.
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Ifv,_o_1 € L,

1. v;_o—1 is marked as arrived.

2. If 7,,___, was empty before the current arrival, then v;_,_; is added to the reporting
lists of its assigned neighbours.

3. i—a—1isadded to 7, _,_,-

» Theorem 4. The Induced Subgraph problem with uniformly bounded edge occurrences on
a graph G with m edges and n wvertices can be solved with O(m + n) preprocessing time,
O(6(G)+op) time per query vertex, where op is the number of edges reported at vertex arrival,
and O(m + ) space.

3.2 Non-Uniformly Bounded Edge Occurrences

In non-uniformly bounded edge occurrences each edge e = (vj,v;) has its own boundaries

[, Be] and can only be reported if a, < i —j < S, + 1. Notice that in this case the

input is a multi-graph. The active window for this ISG version is the time window between

B* = maxeep{fB.} and o = min.cg{a.} time units ago.

Similar to Section 3.1, a dynamic list Lg- of the last 3* vertices that have appeared is
maintained. However, this approach of a general active window introduces a new challenge.
If 7, includes all the appearances of u within the active window, as was done in Section 3.1,
when a vertex v; € R arrives, the information in £,, cannot be automatically reported, as
some of the appearances of nodes u € L,, are not within the gaps of edge (u,v;), thus only
part of their 7, list needs to be reported. A naive filtering considers for each u € £,, a
scan of 7, and reports only time stamps j where i — 5, < j < i — @, which sums up to
B* — a* time per query vertex. To avoid an overhead in query time, our filtering mechanism
checks all appearances of all responsible-neighbours of v; in a batched query, where each
responsible-neighbour appearance is filtered according to the edge’s gaps. This is achieved by
maintaining for each vertex v € R a fully dynamic data structure S, for supporting 4-sided
2-dimensional orthogonal range reporting queries instead of £,. Given an [z, yo] X [1,y1]-
range, it returns the points of S, that have (x,y) coordinates in the given range. For each
responsible-neighbor v; € L of v that arrived in the active window, where e = (v;,v), the
point (i + e + 1,7+ B + 1) is inserted into S, yielding the occurrences in S, are from the
“point of view” of v.

To implement S,, we use Mortensen’s data structure [26] that supports the set of |S,|
points from R? with O(|S,|log”#¢|S,|) words of space, insertion and deletion time of
O(logwg"'6 |S,|) and O(% + op) time for range reporting queries on S, where op is
the size of the output.

When a vertex v; arrives at query time 4, in addition to adding it to Lg«, the following
happens. If v; € R,

1. A range query of [0,i] X [¢, 00] is performed over S,,. The edges representing the range
output are reported.

2. The edges for which v; is their responsible-neighbour are scanned, and those for which
the assigned-neighbour v is marked as arrived are reported according to a search in their
time stamp.

Ifvig«_1 €L,

1. v;_o+_1 is marked as arrived.

2. For each assigned-neighbour v, such that e = (v;_q+—1,v), (i — a* + @, i — a* + B;) is
inserted to S,.

3. i—a*—1lisadded to7,, _._,.
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» Theorem 5. The Induced Subgraph problem with non-uniformly bounded edge occurrences
on a graph G with m edges and n vertices can be solved with O(m + n) preprocessing time,
O(3(G) + op) time per query vertex, where op is the number of edges reported due to the
vertex arriving, and O(m + 6(G)(B* — o*) + a*) space.

4 Solving DMOG
4.1 DMAOG via Graph Orientations

When extending ISG to online DMOG, the longer subpatterns introduce new challenges
that need to be addressed. It is helpful to still consider the bipartite graph presentation
of the DMOG instance, where vertices correspond to subpatterns and edges correspond to
patterns. The algorithms from Section 3 are used as basic building blocks in our algorithms
for DMOG by treating a subpattern arriving as the vertex arriving in the appropriate graph,
while addressing the difficulties that arise from subpatterns being arbitrarily long strings.

First, a mechanism for determining when a subpattern arrives is needed. One way of
doing this is by using the the Aho-Corasick (AC) Automaton [2], using a standard binary
encoding technique so that each character costs O(log |X|) worst-case time. For simplicity we
assume that |3| is constant. However, while in the ISG problem each character corresponds
to the arrival of at most one subpattern, in the DMOG with unbounded gaps each arriving
character may correspond to several subpatterns which all arrive at once, since a subpattern
could be a proper suffix of another subpattern. We, therefore, phrase the complexities of our
algorithms in terms of [sc, which is the maximum number of vertices in the bipartite graph
that arrive due to a character arrival. This induces a multiplicative overhead of at most [sc
in the query time per text character relative to the time used by the ISG algorithms.

Finally, there is an issue arising from subpatterns no longer being of length one, which
for simplicity we first discuss this in the unbounded case. When u € L arrives and it has an
assigned vertex v € R where m,, is the length of the subpattern associated with v, then we
do not want to report the edge (u,v) until at least m, — 1 time units have passed, since the
appearance of the subpattern of v should not overlap with the appearance of the subpattern
of w. Similarly, in the bounded case, we must delay the removal of u from L, by at least
m, — 1 time units. Notice that if we remove u from L, after a delay of m, — 1, then we may
be forced to remove a large number of such vertices at a given time. We, therefore, delay
the removal of w by M — 1 time units, where M is the length of the longest subpattern that
corresponds to a vertex in R. This solves the issue of synchronization, however, some of the
reporting lists now have elements that should not be reported. Nevertheless, we can spend
time in a reporting list that corresponds to the size of the output using standard list and
pointer techniques.

Combining these ideas with the algorithms in Section 3 gives Theorems 6, 7 and 8.

» Theorem 6. The DMOG problem with one gap and unbounded gap borders can be solved
with O(|D|) preprocessing time, O(6(Gp) - lsc + op) time per text character, where op is the
number of patterns that are reported due to the character arriving, and O(|D|) space.

» Theorem 7. The DMOG problem with uniformly bounded gap borders can be solved such
that dictionary patterns are reported online in: O(|D|) preprocessing time, O(6(Gp) - lsc+ op)
time per text character, where op is the number of patterns that are reported due to the
character arriving, and O(|D| +lsc- (8 — o+ M) + a) space.

» Theorem 8. The DMOG problem with non-uniformly bounded gap borders can be solved
such that dictionary patterns are reported online in: O(|D]) preprocessing time, O(6(Gp) -
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lsc+ op) time per text character, where op is the number of patterns that are reported due to
the character arriving, and O(|D| + lsc-0(Gp)(8* — a* + M) + a*) space.
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A  Full Details for Section 2

» Theorem 9 ([23]?). Assume 3SUM requires Q(n?>=°W) expected time. Then for any
constant 0 < x < 1/2, any algorithm for enumerating all triangles in a graph G with m edges,
O(m!'=*) vertices, and d = §(G) = O(m®), where d is the average degree of a vertex in G,
must spend Q(m - 6(G)'=°M)) expected time.

» Theorem 10. Assume 3SUM requires Q(n?—°() expected time. For any algorithm that
solves the vertez-triangles problem on a graph G with m edges, if the amortized expected
preprocessing time is O(m - §(G)'=M) and the amortized expected reporting time is sub-
polynomial, then the amortized expected query time must be at least Q((d-5(G))—°M), where
d is the degree of the queried vertex.

Proof. We reduce the triangle enumeration problem considered in Theorem 9 to the vertex-
triangles problem. We preprocess G and then answer vertex-triangles queries on each of the
m!~7 vertices thereby enumerating all of the triangles in G. If we assume a sub-polynomial
reporting time, then by Theorem 9 either the preprocessing takes Q(m - §(G)'~°(1)) time
or each query must cost at least Q(%ﬁ;om) = Q((m*6(@))1 M) = Q((d - §(G)) o)

time. <
We are now ready to prove Theorems 2 and 3.

Proof of Theorem 2 and Theorem 3. We reduce the vertex-triangles problem considered
in Theorem 10 to ISG as follows. We preprocess the graph G for ISG queries. Now, to

3 The actual statement in [23] refers to the arboricity of G instead of the degeneracy of G. However, both
terms are the same, up to a factor of 2.

12:11

ISAAC 2016


http://dx.doi.org/10.1089/106652703322756140
http://dx.doi.org/10.1145/1806689.1806772
http://dx.doi.org/10.1016/j.ipl.2009.12.007
http://dx.doi.org/10.1016/j.ipl.2009.12.007

12:12

Mind the Gap: Online Dictionary Matching with One Gap

answer a vertex-triangle query on some vertex u, we input all of the neighbors of u into
the ISG algorithm. Thus, there is a one-to-one correspondence between the edges reported
by the ISG algorithm and the triangles in the output of the vertex-triangles query. Since
each vertex-triangle query must cost Q(dA - 0(G)'=°M) amortized expected time then the
amortized expected time spent for each of the d neighbors of u must be at least Q(6(G)' M)
amortized expected time. Since ISG is a special case of DMOG, and given Theorem 2, the
proof of Theorem 3 follows directly. |

» Theorem 11. Assume 3SUM requires Q(n?>=°W) expected time. For any algorithm that
solves the uniformly bounded DMOG problem on a dictionary D with d patterns, if the
1=QM)Y and the amortized expected

reporting time is sub-polynomial, then the amortized expected time spent on each text character
must be at least Q((B — a)t—°W).

amortized expected preprocessing time is O(|D| - 6(Gp)

Proof. The proof is similar to the proofs of Theorems 2 and 3. First, we convert the
input graph G of the vertex-triangles problem to a tripartite graph G by creating three
copies of the vertices V7, Va2, V5 and for each edge (u,v) in G we add 6 edges to G between
all possible copies of © and v. We also add a dummy vertex to Gy with degree 0. Each
triangle in G corresponds to a constant number of triangles in Gr. Let a be any positive
integer and let § = o + 2d. We use ISG to solve vertex-triangles queries in Theorem 2,
but we only ask queries on the neighbors of vertices in V; in a specially tailored way as
follows. We first list the neighbors of u from V5, followed by « copies of the dummy vertex,
and then list the neighbors from V3. From the construction of the tripartite graph and
the input to the ISG algorithm, two vertices of an edge that is part of the output of the
ISG algorithm must be separated in the input list by at least « vertices, and by at most
the length of the list which is 8. Thus, the time spent on each vertex must be at least
Q(5(G)°W) = Q((m*)r=°W) = Q((B — a)' =) amortized expected time. Since ISG is a
special case of DMOG, the theorem follows directly. <
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—— Abstract

We study the version of the C-PLANARITY problem in which edges connecting the same pair of
clusters must be grouped into pipes, which generalizes the STRIP PLANARITY problem. We give
algorithms to decide several families of instances for the two variants in which the order of the
pipes around each cluster is given as part of the input or can be chosen by the algorithm.
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1 Introduction

Visualizing clustered graphs is a challenging task with several applications in the analysis of
networks that exhibit a hierarchical structure. The most established criterion for a readable
visualization of these graphs has been formalized in the notion of c-planarity, introduced by
Feng, Cohen, and Eades [12] in 1995. Given a clustered graph C(G,T) (c-graph), that is, a
graph G equipped with a recursive clustering 7 of its vertices, problem C-PLANARITY asks
whether there exist a planar drawing of G and a representation of each cluster as a topological
disk enclosing all and only its vertices, such that no “unnecessary” crossings occur between
disks and edges, or between disks. Ever since its introduction, this problem has been attracting
a great deal of research. However, the question about its computational complexity withstood
the attack of several powerful algorithmic tools, as the Hanani-Tutte theorem [13, 15], the
SPQR-tree machinery [9], and the Simultaneous PQ-ordering framework [5].

The clustering of a c-graph C(G,T) is described by a rooted tree 7 whose leaves are
the vertices of G and whose each internal node pu, except for the root, represents a cluster
containing all and only the leaves of the subtree of 7 rooted at u. A c-graph is flat if T
has height 2. The clusters-adjacency graph G 4 of a flat c-graph is the graph obtained by
contracting each cluster into a single vertex and by removing multi-edges and loops.

Cortese et al. [10] introduced a variant of C-PLANARITY for flat c-graphs, which we call
C-PLANARITY WITH EMBEDDED PIPES, whose input is a flat c-graph together with a planar
drawing of its clusters-adjacency graph, where vertices are represented by disks and edges by
pipes. The goal is to produce a c-planar drawing in which each vertex lies inside the disk
representing the cluster it belongs to and each inter-cluster edge lies inside the corresponding
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pipe. In [10] this problem is solved when the underlying graph is a cycle. Chang, Erickson,
and Xu [8] observed that in this case the problem is equivalent to determining whether a
closed walk of length n in a simple plane graph is weakly simple, and improved the time
complexity to O(nlogn). For the special case in which the clusters-adjacency graph is a
path, known by the name of STRIP PLANARITY, there exist polynomial-time algorithms
when the underlying graph has a fixed planar embedding [2] and when it is a tree [13].

We remark that polynomial-time algorithms for the C-PLANARITY problem are known
under strong limitations on the number or on the arrangement of the components in the
clusters. A component of a cluster is a maximal connected subgraph induced by its vertices.
In particular, C-PLANARITY can be decided in linear time when each cluster contains one
connected component [9, 12] (the c-graph is c-connected). However, even when each cluster
contains at most two connected components, polynomial-time algorithms are known only
when further restrictions are imposed on the c-graph [5, 14]. The results we show in this
paper are also based on imposing constraints on the number of certain types of components.

A component is multi-edge if it is incident to at least two inter-cluster edges, otherwise
it is single-edge. Also, it is passing if it is adjacent to vertices belonging to at least two
other clusters in 7, otherwise it is originating. For STRIP PLANARITY the originating
components can be further distinguished into source and sink components, based on whether
the inter-cluster edges incident to them only belong to the lower or to the upper strip.

Our contributions. We give polynomial-time algorithms for instances of STRIP PLANARITY
with a unique source component (Section 3) and for instances of C-PLANARITY WITH EMBED-
DED PIPES with certain combinations of originating and passing multi-edge components in
the clusters (Section 4). Finally, in Section 5 we introduce a generalization of C-PLANARITY
WITH EMBEDDED PIPES, which we call C-PLANARITY WITH PIPES, in which the inter-cluster
edges are still required to be grouped into pipes, but the order of the pipes around each disk
is not prescribed by the input. By introducing a new characterization of C-PLANARITY, we
give an FPT algorithm for C-PLANARITY WITH PIPES that runs in g(K,c) - O(n?) time,
with g(K,c) € O(K°¥=2)) where K is the maximum number of multi-edge components
in a cluster and c is the number of clusters with at least two multi-edge components. We
remark that our results imply polynomial-time algorithms for all the three problems in the
case in which each cluster contains at most two components.

Due to space limitations, complete proofs are deferred to the full version of the paper [1].

2 Preliminaries

For the standard definitions on planar graphs, planar drawings, planar embeddings, and
connectivity we point the reader to [11]. We call rotation scheme the clockwise circular
ordering of the edges around each vertex in a planar embedding, and refer to the containment
relationships between vertices and cycles in the embedding as relative positions. Also, if
block of a 1-connected graph consists of a single edge, we call it trivial, otherwise non-trivial.

PQ-trees. A PQ-tree [7] T is an unrooted tree, whose leaves are the elements of a set A and
whose internal nodes are either P-nodes or @Q-nodes, that can be used to represent all and
only the circular orderings O(T) on A satisfying a given set of consecutivity constraints on
subsets of A. The orderings in O(T) are all and only the circular orderings on the leaves of
T obtained by arbitrarily ordering the neighbours of each P-node and by arbitrarily selecting
for each Q-node a given circular ordering on its neighbours or its reverse ordering.
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Connectivity. A k-cut of a graph is a set of at most k vertices whose removal disconnects
the graph. A graph with no 1-cut is biconnected. The maximal biconnected components of a
graph are its blocks. Without loss of generality, we will assume that the clusters-adjacency
graph of C(G, T ) is connected and that for every component ¢ of every cluster u € T:

(i) there exists at least an inter-cluster edge incident to c,

(ii) every block of ¢ that is a leaf in the block-cut-vertex tree of ¢ contains at least a vertex
v such that v is not a cut-vertex of ¢ and it is incident to at least an inter-cluster edge,
and

(i) if there exists exactly one vertex in ¢ that is incident to inter-cluster edges, then ¢
consists of a single vertex.

Simultaneous Embedding with Fixed Edges. Given planar graphs G, = (V,E;) and
G, = (V, E,), problem SEFE asks whether there exist planar drawings I'; of G| and I'y of
G, such that (i) any vertex v € V' is mapped to the same point in I'; and I'y, and (ii) any
edge e € £, N E, is mapped to the same curve in I'; and I'y. Graphs G, = (V, E, N E,) and
Gy = (V, E; U E,) are the common and the union graph, respectively. See [4] for a survey.

We state here a theorem on SEFE that will be fundamental for our results. Even though
this theorem has never been explicitly stated in the literature, it can be easily deduced from
known results [6]. We discuss this in the full version of the paper [1].

» Theorem 1. Let G, = (V,E,) and Gy = (V, E,) be two planar graphs whose common
graph G~ = (V,E, N E,) is a forest and whose cut-vertices are incident to at most two
non-trivial blocks. It can be tested in O(|V'|?) time whether (G, G5) admits a SEFE.

3 Single-source Strip Planarity

In this section we prove a result of the same flavour as that by Bertolazzi et al. [3] for the
upward planarity testing of single-source digraphs. Namely, we show that instances of STRIP
PLANARITY with a unique source component can be tested efficiently. The STRIP PLANARITY
problem takes in input a planar graph G = (V, E) and a mapping v : V — {1,...,k} of each
vertex to one of k unbounded horizontal strips such that, for any edge (u,v) € E, it holds
|v(u) — v(v)| < 1. The goal is to find a planar drawing of G in which vertices lie inside the
corresponding strips and edges cross the boundary of any strip at most once. This problem
is equivalent to C-PLANARITY WITH EMBEDDED PIPES when G4 is a path [2].

We start with an auxiliary lemma. An instance (G,v) of STRIP PLANARITY on k > 1
strips is spined if there exists a path (vi,...,v;) in G such that v(v;) = i, vertex vy is the
unique vertex in the k-th strip, and each vertex v; with ¢ # 1 induces a component in the i-th

strip. Path (vq,...,vg) is the spine path of (G,~) and (v;,v;+1) is the i-th edge of this path.

» Lemma 2. Any positive spined instance (G,~) of STRIP PLANARITY admits a strip-planar
drawing in which the intersection point between the first edge of the spine path of (G,~) and
the horizontal line separating the first and the second strip is the left-most intersection point
between any inter-strip edge and such a line.

» Lemma 3. Let (G = (V,E),~) be a spined instance of STRIP PLANARITY on k > 1 strips
with a unique source component c. It is possible to construct in linear time an equivalent
spined instance (G' = (V' E'),~") on k — 1 strips with a unique source component ¢ .

Proof Sketch. First note that the source component c lies in the first strip. We construct

an auxiliary planar graph G, as follows. Initialize G. = ¢ and add a dummy vertex v to it.
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For each inter-strip edge e incident to a vertex u in ¢, add to G, a dummy vertex v, and
edges (v,v.) and (ve,u). If G, has cut-vertices, then let B, be the block of G, that contains
v. Then, construct a PQ-tree 7T, representing all possible orders of the edges around v in a
planar embedding of B.. This can be done by applying the planarity testing algorithm by
Booth and Lueker [7], in such a way that v is the last vertex of the st-numbering of B.. Note
that the leaves of PQ-tree 7. are in one-to-one correspondence with the vertices v, in B..
We construct a representative graph G, from T, as described in [12], composed of (i) wheel
graphs (that is, graphs consisting of a cycle, called rim, and of a central vertex connected to
every vertex of the rim), of (ii) edges connecting vertices of different rims not creating any
simple cycle that contains vertices belonging to more than one wheel, and of (iii) vertices of
degree 1, which are in one-to-one correspondence with the leaves of 7. (an hence with the
dummy vertices v, in B.), each connected to a vertex of some rim. As proved in [12], in any
planar embedding of G'7, in which all the degree-1 vertices are incident to the same face, the
order in which such vertices appear in a Eulerian tour of such a face is in O(7¢).

Counstruct (G',~') as follows. For ¢ = 2,..., k and for each vertex v with y(v) =i, add v
to V' and set 7/(v) =i — 1, that is, assign all the vertices of the i-th strip of (G, ), with
i > 2, to the (i — 1)-th strip of (G’,~'). Further, add to E’ all edges in EN (V' x V). Also,
add all vertices and edges of G7. to V' and to E’, respectively, and set 7/(u) = 1 for each
vertex u of Gr.. Finally, for each inter-strip edge e = (z,y) in E with y(z) = 1 and y(y) = 2,
add to E’ an intra-strip edge between y and the degree-1 vertex of G corresponding to v,.

Instance (G’,7') can be constructed in linear time [7, 12] and its size is linear in the
one of (G,~). Further, (G’,7') has a unique source component, which contains Gr, as a
subgraph, and is spined. We now show the equivalence between the two instances.

Suppose that (G,7) admits a strip-planar drawing I'. Note that all the vertices of ¢
incident to inter-strip edges lie on the outer face of ¢ in I". To construct a strip-planar
drawing T of (G',~'), subdivide each inter-strip edge incident to ¢ with a dummy vertex v,
lying in the interior of the first strip of I'. By the construction of 7. and of G, each vertex
v, corresponds to exactly one degree-1 vertex of G7.. Let ¢t be the subgraph of G induced
by the vertices in ¢ and by all the vertices ve. Since the order in which the vertices v, appear
in a Eulerian tour of the outer face of ¢t in I' is in O(7.), we can replace the drawing of ¢t
in I with a drawing of G'7, in which each degree-1 vertex is mapped to its corresponding
vertex v.. To obtain IV, we merge the first two strips of I" into the first strip of I".

Suppose that (G’,~’) admits a strip-planar drawing IV, we show how to construct a strip-
planar drawing T of (G, ). First, by Lemma 2, we can assume that in I the intersection
point between the first edge of the spine path of (G’,+’) and the line separating the first
and the second strip in I is the left-most intersection point between any edge (x,y) with
v(z) = 1 and v(y) = 2 and such a line. Further, we can assume the following.

» Claim 4. For every wheel W in Gt., the rim of W contains in its interior its central
vertex and no other vertex in T”.

Initialize T" as the drawing in I” of the subinstance of (G’,~’) induced by the vertices not
in G, where the i-th strip in T is mapped to the (i + 1)-th strip in I'. First, draw G,
in the first strip of T" as it is drawn in I. Then, draw each inter-strip edge (z,y) with y in
G, which corresponds to an intra-strip edge incident to G, in IV, as a curve composed
of six parts. The first part coincides with the drawing of (x,y) in I'/; the second is a curve
arbitrarily close to the drawing in I of a path in G, from y to the first vertex v; of the spine
path of (G',~'); the third is a curve arbitrarily close to the drawing in I” of the first edge of
the spine path of (G’,~’) till a point p in the interior of the first strip of IV and arbitrarily
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close to the boundary of the second strip; the fourth is a horizontal segment connecting p to
a point ¢ lying to the left of I"; the fifth is a vertical segment connecting g to a point r in
the interior of the first strip of I'; and the sixth is a curve connecting r to y. By Claim 4, the
degree-1 vertices of G, lie on its outer face in I'V (and hence in I"). Thus, the inter-strip
edges incident to G'r, can be drawn without crossings, as they preserve the same containment
relationship between vertices and cycles in I" as the corresponding intra-strip edges in I".
Let H be the graph obtained from B, by subdividing each edge e incident to v with a
dummy vertex v, and by removing v. Replace the drawing of G'r, in I' with a planar drawing
of H such that the vertices v, appear in a Eulerian tour of its outer face in the same clockwise
order as the corresponding degree-1 vertices appear in a Eulerian tour of the outer face of
G, in I'. Recall that these vertices are on the outer face of G, in I', by Claim 4. Such a
drawing of H exists since this order is in O(7;) [12]. To complete T', for each cut-vertex z of
G, separating B, from a subgraph G, of G, draw graph G, arbitrarily close to z. Note that
no vertex of G, except possibly for z, is incident to an inter-strip edge. |

Let (G,~) be an instance of STRIP PLANARITY on k > 1 strips satisfying the properties of
Lemma 3. By applying this lemma k& — 1 times, we obtain an instance of STRIP PLANARITY
on k = 1 strips, that is, an instance whose strip-planarity coincides with the planarity of its
underlying graph, which can be tested in linear time [7]. Hence, we get the following.

» Lemma 5. Let (G = (V, E),7) be a spined instance of STRIP PLANARITY on k > 1 strips
with a unique source component c. It is possible to decide in O(k x n) time whether (G,~)
admits a strip-planar drawing.

Given an instance of STRIP PLANARITY, one can create O(n) spined instances by attaching
the spine path to each of the O(n) vertices in the first strip. The next theorem follows.

» Theorem 6. Let (G,v) be an instance of STRIP PLANARITY on k strips such that there
exists a unique source component c. It is possible to decide in O(n®) time whether (G,~)
admits a strip-planar drawing.

4 C-Planarity with Embedded Pipes

In this section we show that the C-PLANARITY WITH EMBEDDED PIPES problem is solvable
in quadratic time for a notable family of instances.

Let ¢ be an originating component belonging to a cluster € T and let v # p € T be the
cluster to which the vertices of ¢ are adjacent to. We say that c is originating from p to v.

» Lemma 7. Let (C(G,T),T4) be an instance of C-PLANARITY WITH EMBEDDED PIPES
and let S be the maximum number of originating multi-edge components in a cluster that are
incident to the same pipe. It is possible to construct in linear time an equivalent instance
(G1,Gy) of SEFFE such that (i) G is a spanning forest, (ii) each cut-vertex of G, = (V, E,)
is incident to at most one non-trivial block, and (iii) each cut-vertex of G, = (V, Ey) is
incident to at most S non-trivial blocks.

Proof. We show how to construct (G, G5) starting from (C(G,T),Ta). The frame gadget H
is an embedded planar graph defined as follows. Refer to Fig. 1.a. For each intersection point
between a disk representing a cluster u € 7 and a segment delimiting a pipe representing
an edge of G4 incident to u in the drawing I'4 of G 4, we add a vertex at this point. This
results in a planar drawing of a graph; we set H to be this graph. We call disk cycle of u the
cycle in H obtained from the disk of p in T'4. Similarly, we call pipe cycle of an edge (u, v)
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(a) (b)

Figure 1 (a) Drawing I'4 of the clusters-adjacency graph G, with vertices at the intersections
of disks and pipes. The disk cycle for cluster p and the pipe cycle for edge (u,v) of Ga are orange
and gray tiled regions, respectively. (b) Frame gadget H. (c) Partial instance (G, G5) of SEFE
constructed from I"4; graphs G, G5, and G are subdivisions of triconnected planar graphs.

of G4 the cycle in H obtained from the pipe representing edge (i, v) in T'4. Note that, for
clusters incident to exactly one pipe, this operation introduced two copies of the same edge;
subdivide with a dummy vertex the copy that is not incident to the interior of this pipe.
Then, add a vertex v,,; in the outer face of H, connected to all the vertices incident to this
face, and triangulate all the faces of H not corresponding to the interior of any cluster cycle
or of any pipe cycle, hence obtaining a triconnected embedded planar graph. See Fig. 1.b.

Initialize G4 = H. For each edge e € E(H) separating a pipe from a disk, remove e
from G (not from G,); this implies that disk cycles and pipe cycles only belong to G.
Further, for each two edges €’ and e” corresponding to the two segments (uy ., u,,,) and
(Vp,ps Vy,,) delimiting a pipe representing an edge (u, v) of G 4, subdivide e’ with four dummy
vertices a;, ,,, b, ,,b,, ,,a, ,, and € with four dummy vertices ay, ,, b} ,, b, ,,a, ,, and add
edges (a,, ,,a, ) and (a;, ,,a; ) to G; and edges (), ,, by, ) and (b, ,, by ) to G,

For each cluster p € T, augment (G,,G5) as follows; see Fig. 2.a. Subdivide an edge of
G that corresponds to a portion of the boundary of the disk representing p in I'y with a
dummy vertex v,, and add to G, a star C},, whose central vertex is adjacent to v,, with
a leaf z(¢;) for each multi-edge component ¢; of p. Also, add to G each component ¢; of
p Finally, for each edge (u1, ) of G 4, subdivide (v, a;, ) with a dummy vertex a,, and
(al; b)) with a dummy vertex 3, ,. Add to G, a star A, , (B, ), whose central vertex is
adjacent to «,,,, (is identified with 8, ,), with a leaf a,,(e) (a leaf b, (e)) for each inter-cluster
edge e incident to a component of p and to a component in v. To complete (G, G5), add the
following edges only belonging to GG; and to G,. For each inter-cluster edge e = (z,y) with
z € pand y € v, add to G, edges (z,a,(e)), (y,a,(e)), and (b,(e),b,(e)), and add to G,
edges (a,(e),b,(e)) and (a,(e), b, (e)). Also, for each vertex = of a component ¢; of a cluster
w such that z is incident to at least an inter-cluster edge, add to G5 an edge (z, z(¢;)).

Clearly, (G, G4) can be constructed in linear time. We now prove that G; and G, satisfy
the properties of the lemma. We note that G, and G, are connected, since each vertex
of a component ¢; is connected to the frame gadget by means of paths in G, and in G4
passing through stars A, , and C,,, respectively. Also, for each cluster 1 € T, graph G,
contains cut-vertices v, the center of star C,,, and vertices z(c;), for each component ¢; of y.
However, vertex v, is incident to exactly one non-trivial block, that is, the one containing all
the vertices and edges of the frame gadget; the center of C), is incident only to non-trivial
blocks; and vertices z(¢;), for each component ¢; of u, are incident to at most one non-trivial
block, that is, the one containing all the vertices and edges in ¢;. Also, for each cluster p € T,
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v v

u u

(b)

Figure 2 (a) Augmentation of instance (G, Go) focused on cluster i € 7. (b) Replacing an edge
e = (u,v) to make G, acyclic.

all the passing components in p belong to the biconnected component of ; containing all
the vertices and edges of the frame gadget, while each multi-edge component originating
from p to a cluster v determines a non-trivial block incident to «, ., and each single-edge
originating component from y to a cluster v determines a trivial block incident to «, ,. Since
the number of multi-edge components originating from any cluster to any other cluster is at
most S, graph G satisfies the required properties. The following claim implies that G can
be transformed into a spanning forest without altering the properties of (G, G,).

» Claim 8. Fach cycle of G can be removed without altering the properties of (G, Gy) by
replacing one of its edges with the gadget in Fig. 2.b.

We now prove the equivalence. Suppose that (G, G5) admits a SEFE (I';, T';). We show
how to construct a c-planar drawing with embedded pipes I of (C(G,T),T'4). Without loss
of generality, assume that vertex v,; is embedded on the outer face of (I';,T',). Note that
the paths in G, corresponding to the segments delimiting the pipes representing an edge of
G 4 incident to a cluster u € T appear in (I';,T'5) in the same clockwise circular order as the
corresponding pipes appear around the disk representing @ in I'4. This is due to the fact
that the frame gadget is a triconnected planar graph whose unique planar embedding is the
one obtained from I"4. Note that in (I';,T'y) all the vertices in V appear either in the interior
or on the boundary of disk cycles or of pipe cycles. This is due to the fact that removing
all the vertices on the boundary of such cycles leaves a connected subgraph of G, and that

there exists a unique face of H to which all the vertices belonging to such cycles are incident.

The proof is based on the fact that any SEFE of (G, G,) has the following properties.
1. For each cluster 1 € T, the central vertex of star C,, lies in the interior of the disk cycle
of u, and hence all the vertices and edges of the components ¢; of u lie in the interior of
such a cycle, since G, is connected.
2. For each two clusters u, v € T, the vertices of the components of y and of the those of v
lie in the interior of different cycles of GGy, since all the components of each cluster p are

connected by paths in G; to the leaves of a star A, ¢, where £ is a cluster adjacent to p.

Also, all the leaves of these stars lie in the interior of a cycle of GG; delimited by edges of
Gr and by edges (aj, . ,a) ), for all the clusters &; adjacent to f.
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3. For each inter-cluster edge e connecting a vertex v of a component ¢; of u to a cluster v,
edge (v,a,(e)) in G, crosses edge (4., vy, ). This is due to the previous two points and
the fact that the leaves of A, , lie outside the disk cycle of 1. We can assume that each
of these edges crosses edge (u, ., v,,,) exactly once, as otherwise we could redraw them
to fulfill this requirement.

4. For two adjacent clusters u,v € T, the order in which the edges in G, incident to the
leaves of A,, ,, cross (u,,.,v,,) from u,, to v, is the reverse of the order in which the
edges in G| incident to the leaves of A, , cross (u,,,,v,,,) from u, , to v, ,, where the
identification between an edge incident to a leaf a,(e) of A, , and an edge incident to a
leaf a, (e) of A, is based on the inter-cluster edge e they correspond to. In fact, the order
in which the edges in 7, incident to the leaves of A, cross (u, ., v, ) is transmitted to
the leaves of B,,,, via edges in G, then it is transmitted to the leaves of B, ,, via edges
in G, and finally to the leaves of A, ,, via edges in G5. Note that all the leaves of these
stars lie in the interior of the pipe cycle corresponding to edge (i, v) of G 4.

We describe how to obtain a c-planar drawing with embedded pipes I of (C(G,T),T'4)
from (I';,T'y). For each p € T, draw region R(u) as the simple closed region whose boundary
coincides with the drawing in I', of the disk cycle of u. Each component ¢; of a cluster u has
the same drawing in I" as ¢; in (I'y,T';). For each inter-cluster edge e = (z,y) with € u
and y € v, the portion of e in the interior of R(u) (of R(v)) coincides with the drawing
of edge (z,a,(e)) (of edge (y,a,(e))) between x (between y) and the intersection point of
this edge with edge (uy,.,,v,,,) (with edge (uy,,u,v0,,)). To complete the drawing of all the
inter-cluster edges between p and v in the interior of the pipe representing edge (u,v) of G4,
connect the intersection points between the corresponding edges in G| and edges (uy. ., v,,.)
and (uy,,,vy,,,) by means of a set of non-intersecting curves. This is possible since the order
in which the edges in G incident to the leaves of A, , cross (uy,,,v,,) from u,, to v,,
is the reverse of the order in which the edges in ¢ incident to the leaves of A, , cross
(Wy,p, Vy,y) from w,,, to v,,,. This implies that T is a c-planar drawing of C(G,7 ). The
fact that I" can be continuously deformed into a c-planar drawing with embedded pipes
of (C(G,T),T4) is due to the fact that the paths in G corresponding to the segments
delimiting the pipes incident to each cluster u € T appear in (I';,T';) in the same clockwise
order as the corresponding pipes appear around the disk representing p in I'4.

For the other direction, the goal is to construct a SEFE (I'}, T'y) of (G, G,) that satisfies all
the properties describe above starting from a c-planar drawing with pipes I" of (C(G,T),T4).
For each cluster p € T, draw the disk cycle of p as the boundary of the disk of p in I'4.
Also, for each edge (u,v) of G4, draw the corresponding pipe cycle as the boundary of the
pipe of edge (u,v) in I'y. For each cluster u € T, each component ¢; of p has the same
drawing in (I';,I'y) as ¢; in I'. For each edge (u,v) of G4, the stars A, ., By ., Ay, and
B, ,, are drawn in (I';,T'y) so that the order of their leaves is the same or the reverse of the
order in which the inter-cluster edges between u and v traverse the boundary of the disk
of p in I'. Note that this order is the reverse of the order in which these edges traverse the
boundary of the disk of v in I'. This allows to draw all the edges in G; and in G, that are
incident to such leaves without introducing crossings between edges of the same graph. The
drawing of star C,,, for each cluster u € T, and of the edges in G, incident to its leaves can
be easily obtained to respect the circular order of the inter-cluster edges incident to each of
the components of u. This concludes the proof of the lemma. |

By Lemma 7 and Theorem 1 we have the following main result.
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(b)

Figure 3 (a) A c-planar drawing with pipes I, with regions R’ (blue) and R delimited by B(u)
and B(v), and by e; and ez (dashed), where region R’ does not contain any vertex of G'\ (uUv). (b)
A c-planar drawing with pipes I'* corresponding to I'” in which inter-cluster edges are inside pipes.

» Theorem 9. C-PLANARITY WITH EMBEDDED PIPES can be solved in O(n?) time for
instances (C(G,T),T4) such that for each cluster p € T and for each edge (p,v) in Ga
either (CASE 1) cluster u contains at most one originating multi-edge component from p to
v or (CASE 2) cluster u contains at most two multi-edge originating components from u to v
and does not contain any passing component that is incident to v.

5 C-Planarity with Pipes

In this section we introduce and study problem C-PLANARITY WITH PIPES. A c-planar
drawing T" of a flat c-graph C(G,T) is a c-planar drawing with pipes if, for any two clusters
u,v € T that are adjacent in G 4 and for any two inter-cluster edges e; and e, that are
incident to both p and v, one of the two regions delimited by B(u), by B(v), by e1, and by
ez does not contain any vertex of G\ (uUv); see Fig. 3.

Problem C-PLANARITY WITH PIPES asks for the existence of a c-planar drawing with pipes
of a given flat c-graph. We first prove that this problem is a generalization of C-PLANARITY
WITH EMBEDDED PIPES.

» Lemma 10. C-PLANARITY WITH EMBEDDED PIPES reduces in linear time to C-PLANARITY
WITH PIPES. The reduction does not increase the number of multi-edge components in
any cluster.

We now present an FPT algorithm for C-PLANARITY WITH PIPES with two parameters,
namely the maximum number K of multi-edge components in a cluster and the number ¢ of
clusters with at least two multi-edge components. Our result builds on a characterization of
C-PLANARITY of flat c-graphs in terms of a new constrained embedding problem.

5.1 A Characterization of Flat C-Planarity

We start with some definitions. Let C(G,T) be a flat c-graph. A components tree X,, of a
cluster ; € T is a rooted tree in which every internal vertex is a multi-edge component ¢
of u and in which every leaf z,(e) corresponds to an inter-cluster edge e incident to one of
such components. A neighbor-clusters tree Y, of u is a rooted tree in which there exists an
internal vertex v for each cluster v adjacent to u, plus a set of additional internal vertices,
and every leaf y,(e) corresponds to an inter-cluster edge e incident to p. Let I' be a c-planar
drawing of C(G,T), let X, be a components tree of i rooted at a multi-edge component p,,,
and let Y,, be a neighbor-clusters tree of ;1 rooted at a cluster £, such that there exists an
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(b)

Figure 4 (a) A c-planar drawing I" focused on cluster u. Edges incident to p are solid. Component
¢ is nested into component p,. Trees (b) X, and (c) Y, such that I" is consistent with X, and Y.
(d) A c-planar drawing that is not a c-planar drawing with pipes, even if the inter-cluster edges
incident to the same cluster are consecutive (see the annuli around clusters), due to the presence of
trivial block (u,v).

inter-cluster edge e, incident to both p, and §,. Let O, be the clockwise linear order in
which the edges incident to p traverse B(u) in I', starting from and ending at e,,. Drawing T’
is consistent with X, if, for each vertex c € X,,, the leaves of the subtree of X, rooted at
c are consecutive in the restriction of O, to the inter-cluster edges incident to multi-edge
components of p. Also, I' is consistent with Y, if, for each vertex v € Y),, the leaves of the
subtree of Y}, rooted at v are consecutive in O,,. Let X and Y be two sets containing a
components tree X,, and a neighbor-clusters tree Y),, respectively, for each p € 7. Drawing
I' is consistent with (X,Y) if, for each p € T, it is consistent with both X,, and Y,.

Given a flat c-graph C(G,T), together with two sets X and Y of components trees
and of neighbor-clusters trees, respectively, for all the clusters in 7, problem INCLUSION-
CONSTRAINED C-PLANARITY asks whether a c-planar drawing of C(G,7T ) exists that is
consistent with (X, ).

» Theorem 11. A flat c-graph C(G,T) is c-planar if and only if there exist two sets X and
Y of components trees and of neighbor-clusters trees, respectively, for all the clusters in T,
such that (C(G,T),X,Y) is a positive instance of INCLUSION-CONSTRAINED C-PLANARITY.

Proof Sketch. The “only if part” trivially follows from the definition of
INCLUSION-CONSTRAINED C-PLANARITY. For the “if part”; let I' be any c-planar drawing of
C(G,T) and let u be a cluster in 7. Suppose that u contains at least a multi-edge component
Pu, as otherwise X, is the empty tree and I' is consistent with it. Let e, be any inter-cluster
edge incident to p, and to a cluster {,. Let O, be the clockwise linear order of the edges
incident to u starting from e, and ending at e,. Since I' is c-planar, no two pairs of edges
incident to two different components of p (two different clusters adjacent to u) alternate
in O,. Hence, order O, defines a hierarchical inclusion of the components of x and of the
clusters adjacent to pu with respect to p,, and to &, respectively, which can be described by
means of two trees X, and Y),; see Fig. 4.a-4.c. Clearly, I' is consistent with such trees. <«

In the following theorem, whose proof is deferred to the full version of the paper [1], we
show that the INCLUSION-CONSTRAINED C-PLANARITY problem can be solved efficiently.

» Theorem 12. INCLUSION-CONSTRAINED C-PLANARITY can be solved in quadratic time.

In the following we prove that, for each cluster p of a c-graph C(G,T), there exists a
neighbor-clusters tree Y), such that every c-planar drawing with pipes of C(G,T) is consistent
with Y,,. Hence, an FPT algorithm for C-PLANARITY WITH PIPES can be based on generating,
for each cluster, all the possible components trees and its unique neighbor-clusters tree, and
on testing these instances of INCLUSION-CONSTRAINED C-PLANARITY by Theorem 12.
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5.2 Neighbor-clusters Trees in C-Planar Drawings with Pipes

In the following theorem we give a characterization of the c-graphs that are positive instances
of C-PLANARITY WITH PIPES based on the possible orders of inter-cluster edges around each
cluster in any c-planar drawing. We first consider only c-graphs whose clusters-adjacency
graph G4 has no trivial blocks; however, we prove later that this is not a restriction.

» Theorem 13. Let C(G,T) be a flat c-graph such that Ga has no trivial block. Then,
C(G,T) is a positive instance of C-PLANARITY WITH PIPES if and only if C(G,T) admits
a c-planar drawing T in which, for each cluster y € T, the inter-cluster edges between p and
any cluster v adjacent to 1 in G4 are consecutive in the order in which the inter-cluster
edges incident to p cross B(u) in T.

Proof Sketch. The “only if part” descends from the definition of a c-planar drawing with
pipes. We prove the “if part”; see Fig. 4.d. Let I be a c-planar drawing of C(G, T') satisfying
the conditions of the theorem and consider two clusters u,v € T with two inter-cluster
edges e; and es incident to p and v. If both the regions delimited by e;, ea, B(u), and B(v)
contain vertices in G \ (1 U v), then all the clusters in one of the regions are only connected
to p and all the clusters in the other region are only connected to v, due to the conditions of
the lemma. Hence, (u,v) is a trivial block of G4, a contradiction. <

We exploit Theorem 13 to construct a neighbor-clusters tree Y, of each cluster u € 7" such
that any c-planar drawing with pipes of C(G,7') is consistent with Y,?. Tree Y7 is rooted at
a vertex wy,. There exists a child v of w, for each cluster v adjacent to u, having a leaf y,,(e)
for each inter-cluster edge e incident to y and to v. We call Y the pipe-neighbor-clusters tree
of p. Theorem 13 and the construction of Y7, for each cluster u € 7, imply the following.

» Corollary 14. Let C(G,T) be a c-graph whose clusters-adjacency graph has no trivial
blocks. Then, C(G,T) admits a c-planar drawing with pipes if and only if C(G,T) admits a
c-planar drawing I' in which, for each p € T, drawing I' is consistent with Y.

By Corollary 14 we can reduce C-PLANARITY WITH PIPES for a c-graph whose clusters-
adjacency graph G 4 has no trivial blocks to INCLUSION-CONSTRAINED C-PLANARITY, where
the role played by the neighbor-clusters trees is taken by the pipe-neighbor-clusters trees. In
the full paper [1] we explain how to overcome the requirement that G4 has no trivial block.

» Lemma 15. Let C(G,T) be an instance of C-PLANARITY WITH PIPES in which G4
contains trivial blocks. It is possible to comstruct in linear time an equivalent instance
C*(G*,T*) of C-PLANARITY WITH PIPES in which G% has no trivial block. Further,
K, = K and ¢, = ¢, where K (K.) is the mazimum number of multi-edge components in
a cluster of C(G,T) (of C*(G*,T*)) and c (c.) is the number of clusters of C(G,T) (of
C*(G*,T*)) with at least two multi-edge components.

5.3 An FPT Algorithm for C-Planarity with Pipes

In the following we prove the main result of the section.

» Theorem 16. C-PLANARITY WITH PIPES can be tested in O(K°5=2)).0(n?) time, where
K is the mazimum number of multi-edge components in a cluster and c is the number of
clusters with at least two multi-edge components.

Proof Sketch. Let C(G,T) be a c-graph, which can be assumed to have no trivial block by
Lemma 15. Construct the set ) containing the unique pipe-neighbor-clusters tree Y7 of each
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cluster € 7. Then, construct all the possible sets X' of components trees, over all clusters
in 7. For each pair (X,)), apply Theorem 12 to test whether (C(G,T),X,Y) is a positive
instance of INCLUSION-CONSTRAINED C-PLANARITY. By Theorem 13 and Corollary 14,
c-graph C(G,T) is a positive instance if and only if at least one of such tests succeeds. <«

We observe two notable corollaries of Theorem 16 (for the second, see Lemma 10).

» Corollary 17. STRIP PLANARITY can be tested in O(K*5=2)).0(n?) time, where K is
the mazimum number of multi-edge components in a strip and s is the number of strips
containing at least two multi-edge components.

» Corollary 18. C-PLANARITY WITH EMBEDDED PIPES can be tested in KK=2) .0 (n?)
time, where K 1is the mazimum number of multi-edge components in a cluster and c is the
number of clusters with at least two multi-edge components.

6 Conclusions and Open Problems

In this paper we studied the problem of constructing c-planar drawings with pipes of flat
c-graphs. We presented algorithms to test the existence of such drawings when the number
of certain components is small, in different scenarios, namely when the clusters-adjacency
graph is a path (STRIP PLANARITY), when it has a fixed embedding (C-PLANARITY WITH
EMBEDDED PIPES), and when it has no restrictions (C-PLANARITY WITH PIPES).

Several questions are left open. We find particularly interesting to determine whether
there exist combinatorial properties of the nesting of the components allowing us to reduce
the number of possible components trees, analogous to the ones we could prove for the
pipe-neighbor-clusters trees. We remark that the introduction of the components trees makes
the running time of our FPT algorithms independent of the size of each component.
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—— Abstract

In this paper, we investigate the L; geodesic farthest neighbors in a simple polygon P, and
address several fundamental problems related to farthest neighbors. Given a subset S C P, an
Ly geodesic farthest neighbor of p € P from S is one that maximizes the length of L; shortest
path from p in P. Our list of problems include: computing the diameter, radius, center, farthest-
neighbor Voronoi diagram, and two-center of S under the L; geodesic distance. We show that
all these problems can be solved in linear or near-linear time based on our new observations on
farthest neighbors and extreme points. Among them, the key observation shows that there are at
most four extreme points of any compact subset S C P with respect to the L; geodesic distance
after removing redundancy.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases simple polygon, L1 geodesic distance, farthest neighbor, farthest-neighbor
Voronoi diagram, k-center

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2016.14

1 Introduction

The geometry of points in a simple polygon P has been one of the most attractive research
subjects in computational geometry since the 1980s. As a metric space, P is often associated
with a distance function d induced by shortest paths that stay inside P. Indeed, there
are several ways to define a shortest path between two points in P, depending on which
underlying metric is adopted to determine the length of a segment in P. Most common
are the Euclidean and the L; metrics that define the Euclidean and the L, shortest paths,
respectively, in P. The length of a shortest path between two points p,q € P is called the
(Euclidean or L;) geodesic distance d(p, q).

In this paper, we are interested in fundamental problems related to geodesic farthest
neighbors in P. Given a set S of points in P, a farthest neighbor of p € P from S is one
that maximizes the geodesic distance d(p, ¢) from p to every g € S. Specifically, our list of
problems include those of computing the following:

The farthest-neighbor Voronoi diagram of S.

The diameter of S: diam(S) := max,ecs maxyes d(q,q').

The radius of S: rad(S) := miny,ec p maxqees d(p, ).

A center of S: a point ¢ € P such that max,egs d(c, ¢) = rad(S).

A two-center of S: a pair of points ¢1, co € P that minimizes max e min{d(c1, ¢), d(c2,q)}.
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In the Euclidean case, where d denotes the Euclidean geodesic distance, these problems
have been intensively studied. Aronov et al. [2] presented an O((n + m)log(n + m))-time
algorithm that computes the farthest-neighbor Voronoi diagram of S if .S consists of m points
and P is an n-gon. Very recently, Oh et al. [11] showed that the diagram can be computed
faster in O(nloglogn + mlog(n + m)) time, or in O(nloglogn) time when S is the set of
vertices of P. Note that computing the diameter, radius, and center of S is reduced from the
farthest-neighbor Voronoi diagram in linear time. On the other hand, in a special case where
S = P, it is known that we can compute them in linear O(n) time [9, 1]. The problem of
computing a two-center of S under the Euclidean geodesic distance was recently addressed
by Oh et al. [12] and Oh et al. [10], resulting in two algorithms that run in O(n?log®n) time
when S = P and in O(m?(m + n)log®(m + n)) time when S is a set of m points in P.

The problems in the L geodesic distance have attained less interest compared to those
in the Euclidean case. This is probably because most of results for the Euclidean counterpart
automatically hold for the L, geodesic distance. Note that the Euclidean shortest paths in
P are also L shortest paths, and the algorithm of Aronov et al. [2] can be implemented
for computing the L; geodesic farthest-neighbor Voronoi diagram. However, it is not clear
whether the approach by Oh et al. [11] can be extended to compute the L; diagram. Bae et
al. [3] exhibited some geometric observations on the L; geodesic distance that are different
from the Euclidean one, and exploited them to devise linear-time algorithms that compute
the diameter, radius, and center of a simple polygon P, i.e., the special case where S = P.
Prior to this work, no algorithm for the two-center of S in the L; geodesic distance was
known in the literature.

In this paper, we reveal that farthest neighbors in the L; geodesic distance behave quite
different from — indeed much nicer than — gthose in the Euclidean geodesic distance. Based
on our new observations, we show that all the problems listed above in the L; geodesic
distance can be computed in linear or near-linear time:

O(n 4+ mlogn) time when S is a set of m points in P, or

O(n) time when either S = P or S equals the set of vertices of P.

It is worth noting that our algorithms runs in time linear to each of n and m, while the
O(mlogn) term was unavoidable for evaluation of the geodesic distance d(p, q). Note that,
in particular, our algorithms for the farthest-neighbor Voronoi diagram and the two-center
are faster than the currently best algorithms for those in the Euclidean case: roughly by a
factor loglogn for the farthest-neighbor Voronoi diagram [11], and by a factor of n or of
m? for the two-center problem [12, 10]. All these algorithmic results are based on a key
observation that for any compact subset S C P of P, there are at most four extreme points
of S in general. Note that in the Euclidean case, there can be linearly many extreme points.

This phenomenon can be understood as an extension of the relation between the L,
plane and the Euclidean plane. In the plane associated with the L; metric, there are at
most four extreme points of S in the four directions corresponding to the four segments of
the L; metric balls, while in the plane associated with the Euclidean metric, every point
of S lying on the boundary of its convex hull is considered to be extreme. An immediate
implication is that the farthest-neighbor Voronoi diagram in the L; metric consists of at
most four nonempty regions and thus has O(1) complexity, while this is not the case for the
Euclidean metric. Similarly, an L; (or rectilinear) two-center of m points in the plane can
be computed in O(m) time [5], while the best known algorithm that computes a Euclidean
two-center in the plane runs in O(mlog® m(loglogm)?) deterministic time [4]. Our results
thus provide a series of analogies on farthest neighbors in the L; plane into those in the
metric space (P, d), where P is a simple polygon and d is the Ly geodesic distance in P.
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2 Preliminaries

For any subset A C R2, we denote by 0A and intA the boundary and the interior of A,
respectively. For p,q € R2, denote by pg the line segment with endpoints p and ¢. For any
path 7 in R?, let |7| be the length of 7 under the L; metric, or simply the L; length. Note
that [pg| equals the L; distance between p and gq.

The following is a basic observation on the L; length of paths in R?. A path is called
monotone if any vertical or horizontal line intersects it in at most one connected component.

» Lemma 1. For any path 7 between p,q € R, |7| = [pq| if and only if w is monotone.

Let P be a simple polygon with n vertices. We regard P as a compact set in R?, so its
boundary 0P is contained in P. An L; shortest path between p and ¢ is a path joining p
and ¢ that lies in P and minimizes its L; length. The L, geodesic distance d(p,q) is the Lq
length of an L shortest path between p and ¢. For any p, ¢ € P, let II(p, ¢) be the set of all
L, shortest paths from p to q.

Analogously, a path lying in P minimizing its Fuclidean length is called the Euclidean
shortest path. Tt is well known that there is always a unique Euclidean shortest path between
any two points in a simple polygon [7]. We let m3(p,q) be the unique Euclidean shortest
path from p € P to ¢ € P. The following states a crucial relation between Euclidean and L
shortest paths in a simple polygon.

» Lemma 2 (Hershberger and Snoeyink [8]). For any two points p,q € P, the Euclidean
shortest path ma(p, q) is also an Ly shortest path between p and q. That is, w2(p, q) € I(p, q).

Lemma 2 enables us to exploit several structures for Euclidean shortest paths such as Guibas
et al. [7] and Guibas and Hershberger [6].

Another important concept regarding the shortest paths in P is the relative convexity. A
subset A C P is called relative convex if mo(p,q) C A for any p,q € A. For any subset A C P,
the relative convex hull rconv(A) of A is the smallest relative convex set including A. If A is
the set of m points in P, then its relative convex hull forms a weakly simple polygon in P
with O(m + n) vertices. Touissant [13] presented an O((n + m)log(n 4+ m))-time algorithm

that computes rconv(A), and Guibas and Hershberger [6] improved it to O(n+mlog(n+m)).

Throughout the paper, unless otherwise stated, a shortest path and the geodesic distance
always refer to an L, shortest path and the L, geodesic distance d.

3 Properties of L; Shortest Paths

In this section, we observe several useful properties of L1 shortest paths in P.

We define a chord of P to be a maximal segment contained in P. For any z € P, let h;
and h be the left and right endpoints, respectively, of the horizontal chord through z, while
v, and v} denote the lower and upper endpoints, respectively, of the vertical chord through
z. Note that the horizontal or vertical chord may intersect the boundary 0P of P in several

connected components by definition. We also consider the four segments zh; , zhd, zv; and
zv¥, called the leftward, rightward, downward, and upward half-chords from z, respectively.

Let z € P be fixed and p € P be any point. We say that = € II(p, 2) chooses a half-chord
from z if 7 intersects it at a point other than z. Then, Lemma 1 implies that every 7 € II(p, 2)

chooses at most one half-chord from z or none of the four. We then observe the following.

» Lemma 3. For any p,z € P, there are no two shortest paths w, 7" € I(p, z) such that
chooses a half-chord from z and 7’ chooses its opposite half-chord from z.
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Figure 1 Partition around z.

This implies that any p € P avoids at least two half-chords that are not opposite by
shortest paths to z. We thus consider the four regions of P according to the pair of excluded
half-chords. More precisely, for any 01,02 € {+,—}, let P71°2 C P be the set of points

p € P such that no shortest path = € II(p, z) chooses zh3" or zv3?, where ¥ = — and — = +.
Lemma 3 guarantees that P = P;~ U P, U PF~ U P/ for any 2z € P, while these four
regions are not disjoint. Also, note that P, N P+t ={z} and P, * N PS~ = {z}.

In order to gain a comprehensive understanding on the four regions P72, we consider
the following eight subsets of P around z: Define H?! := P71~ N PJ1F V72 := P72 N\ Pfo2,
and I7192 := P7172 \ (HJ' UV7?). Observe that H, for example, is the set of points p € P
such that no shortest path in II(p, z) chooses the downward, upward, or rightward half-chord
from z, and I~ is the set of points p € P that admit two shortest paths 7,7’ € TI(p, 2)
such that 7 chooses the leftward half-chord and 7’ chooses the downward half-chord from 2.
See Figure 1 for an illustration. Note that these eight subsets HJ', V72, and I7'7? form a
partition of P around z. In most cases where the horizontal and vertical chords through z
intersects 0P only at their endpoints, we have HJ' = zhJ" and V72 = 2022, However, this
is not always the case. -

To be more precise, consider the complement C, := P\ (hz hfUvs vj), which in general
consists of several connected components. Such a component C C C, is said to be adjacent
to a half-chord from z if its boundary OC' intersects the half-chord at a point other than z.
Note that any component of C, is adjacent to at least one and at most two half-chords from
2. The following describes how H; , H}, V7, and V" are formed.

z z z
» Lemma 4. Let z € P and 01,02 € {+,—}. Then, HJ* is equal to the union of zhZ* and

the components of C, that are adjacent to zhZ' but to none of the others. Analogously, V2
is equal to the union of zvZ? and the components of C, that are adjacent to zvs? only.

Thus, any component C of C, that is adjacent to exactly one half-chord is included into
the corresponding subset HJ* or V72 for some 01,02 € {+,—}. On the other hand, if a
component C' of C, is adjacent to two half-chords from z, then the boundary of C' must
contain z. Thus, there are at most four such components of C,, and each of them forms 1772
for some 01,09 € {+,—}. Lemma 4 and the above discussion imply the following corollary.

» Corollary 5. Suppose that HZ* \ zhZ' # 0 for oy € {+,—}. Then, either z € {v;,v]}
or there exists a vertex u of P lying on zh; such that for all p € HZ' \ zhI' any shortest
path © € M(p, z) passes through u. An analogous claim also holds for the set V.72 with
o9 € {+, —}.

We then prove the following properties of L; shortest paths in terms of the partition
around a point z € P.
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» Lemma 6. Let p,q,z € P. Ifp,q € A, then every 7 € Il(p, q) is contained in A, where A is
equal to one of the following sets: HJ', V72, 17192 2192 JQ17'°2, IJ\ 72 UHJ, IZ172 UV 72,
and P21 for any 01,02 € {+,—}.

» Lemma 7. Let p,q,z € P be any three points. Then, d(p,q) = d(p,z) + d(z,q) if and only
if p € P22 and q € PZ1°2 for some 01,09 € {+,—}.

4 L, Geodesic Farthest Neighbors and Extreme Points

Let S C P be a nonempty, compact subset of P. We are interested in farthest neighbors
of each p € P from S. For each p € P, let ®5(p) := maxyes d(p,q). This is well defined
since S is a compact set. We call such a ¢ € S with d(p, q) = Ps(p) an L geodesic farthest
neighbor of p from S, or shortly a farthest neighbor of p when there is no confusion. There
can be several farthest neighbors of p € P from S. We denote by Fis(p) the set of all farthest
neighbors of p from S. In order pick a representative among them, we impose a total order
< on S, such as the lexicographical order. We then define fs(p) € Fs(p) to be the least with
respect to the order < among the farthest neighbors of p in Fs(p). We call ¢ € S an (L
geodesic) extreme point of S if ¢ = fs(p) for some p € P.

There are two fundamental quantities defined by farthest neighbors in P: the (L1 geodesic)
diameter diam(S) := maxzes Ps(q) and the (L1 geodesic) radius rad(S) := min,ep ®s(p) of
S. The diameter and radius of S are well defined since P and S are compact sets. A pair of
points ¢, ¢" € S is called diametral if d(q,q') = diam(S), while a point ¢ € P is called an (L
geodesic) center of S if ®g(c) = rad(S). Let cen(S) be the set of all centers ¢ € P of S.

In this section, we fully reveal the behavior of the L, farthest neighbors and extreme
points of any compact set .S in P, and finally prove the following theorem.

» Theorem 8. In a simple polygon P, there are at most four extreme points of any compact
subset S C P with respect to the L1 geodesic distance.

In order to prove Theorem 8, we consider farthest neighbors constrained in regions. For
01,02 € {+,—}, define f3'?*(p) to be the farthest neighbor of p from SN P72 that is
the least with respect to <. In the case where SN P72 = (), f3'°*(p) is undefined. Then
observe that fg(p) is the farthest one that is the least with respect to < among the four

candidates fg " (p), f5 " (p), f5~(p), and f§~ (p).
We first gather some useful properties of farthest neighbors.

» Lemma 9. Given any p € P, suppose that f3'7*(p) € Fs(p) for 01,09 € {+,—}. Then,

[§7%(p) € Fs(p') for any p’ € P7*72, and fs(p') = f3*°*(p) for any p" € IT7>. Moreover,

if fs(p) = f3'7*(p), then fs(p') = f5'7*(p) for any p’ € PJ 2.

» Lemma 10. For any p € P, let z € m be a point on a shortest path w € Il(p, fs(p)) Then,

for any 01,09 € {+,—} with p € P7172 and fs(p) € P72, it holds that fs(p) = f5' 72 (z).
Note that such 01,09 € {+,—} with p € P712 and fs(p) € P72 in Lemma 10 always

exist by Lemma 7 since z is a point on a shortest path from p to fs(p), so d(p, fs(p)) =

4.1 Proof of Theorem 8

Now, we give a proof of Theorem 8. The case where S consists of at most one point is trivial,
so we assume that S consists of more than one point. For a center ¢ € cen(S) of S, we
consider the set Fs(c) of its farthest neighbors. Since ¢ is a center and S consists of at least
two points, we have |Fs(c)| > 2 and d(c¢, x) = ®s(c) = rad(S) for any x € Fs(c).
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X1

()

Figure 2 (a) The path # through c € cen(S) partitions P into Pt and P~. (b) Illustration to
Claims 13 and 14. Shaded region represents rconv(S U {p1,p2}). (c) Illustration to Claim 15.

» Lemma 11. For any ¢ € cen(S), there exist x1,x2 € Fs(c) satisfying the following:
(i) d(x1,x2) = d(x1,¢) + d(c, x2), and (ii) fs(x1) = x2 and fs(x2) = x1-

From now on, we fix any two farthest neighbors x1, x2 € Fs(c) of ¢ with the property of
Lemma 11. Note that x; and y2 are extreme points of S. Since d(x1, x2) = d(x1,¢)+d(c, x2),
we have x1 € P7192 and y2 € P7' 72 for some 01,03 € {+,—} by Lemma 7. Without loss of
generality, we assume that o1 = 09 = —, s0 x1 € P.~ and x2 € PF™T.

Let 7 := ma(x1, ¢)Uma(c, x2) be a path from x; to x2. Since d(x1, x2) = d(x1, ¢)+d(c, x2),
7 is a shortest path from x; to x2, that is, 7 € II(x1, x2). Then, by Lemma 10, we have
x1 = fg (c) and x2 = fd¥(c), as ¢ € 7. This further implies that fs(p) = x2 for any
p €I, and fs(p) = x1 for any p € It by Lemma 9 since x1, x2 € Fs(c).

We will need the following lemma, which rephrases the Ordering Lemma by Aronov et
al. [2]. Note that every extreme point of S appears on the boundary of the relative convex
hull rconv(S) of S.

» Lemma 12 (Aronov et al. [2]). Suppose that there are three distinct extreme points x1, X2, X3
of S in the counter-clockwise order along drconv(S). Let p; € OP be a point on the boundary
of P such that fs(p;) = x: for each i € {1,2,3}. Then, p1,p2,ps appear in this order along
OP in the counter-clockwise direction.

Consider the extension of the last segment of ma(c, x;) for each i € {1,2} until it hits the
first boundary point x; € OP. Let 7 be the shortest path from y; to x> obtained by these
extensions from 7; that is, # = ma (X1, ¢) Uma(c, X2). Note that fs(x1) = x2 and fs(¥X2) = x1
by Lemma 9. The path # partitions P into two parts P~ and P+, where 9P~ consists of &
and the chain along OP from y; to ¥» in the counter-clockwise direction, and P consists
of # and the chain along OP from Y3 to Xy in the counter-clockwise direction. See Figure 2(a)
for an illustration. In the following, we show that there are at most one more extreme point
of S, other than y; and s, in each of P~ and PT. Recall that an extreme point of S is
q € S such that ¢ = fs(p) for some p € P.

Suppose to the contrary that there are two extreme points ¢, go of S such that ¢1, g, € PT
and the four points x1, x2,q1, g2 are all distinct. Then there exist two boundary points
p1,p2 € OP such that fe(p1) = ¢1 and fg(p2) = g2. Such boundary points pq,ps are
guaranteed to exist by Lemma 9. Our proof will be done by a contradiction based on the
following four claims.

» Claim 13. Both py and py lie in I} ~.

In the following, we assume that the four points x2,q1, g2, x1 appear in this order along
Orconv(S) in the counter-clockwise direction. Then, Lemma 12 implies the following.
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» Claim 14. The four points p1,p2,q1,q2 appear in this order along Orconv(S U {p1,p2}).

See Figure 2(b) for an illustration to the above two claims. Note that Claim 13 implies
that p1,ps € P~ as I~ C P, so any shortest path from p; to ¢; crosses #. On the other
hand, Claim 14 implies that ma(p1,q1) and m2(p2, g2) cross each other.

Let 8 := OI+f~ \ OP. Note that 3 is a subset of the union of the rightward half-chord ch
and the downward half-chord cve from c. By Claim 13, the paths 72 (p1,¢1) and 72 (p2, g2)
must cross over 3 as p1,p2 € [T and q1,q2 € PT. For each i € {1,2}, let ¢; be the first
intersection point of ma(p;,q;) N B when walking from p; to g; along ma(p;, q;). We then
observe the following.

» Claim 15. Fori € {1,2}, we have p; € P}~ and ¢; € P

See Figure 2(c) for an illustration to Claim 15. Our last claim to prove Theorem 8 is the
following.

» Claim 16. There exists ¢ € P such that p1,ps € P:,rf and q1,q2 € PCT+,

Now, we are ready to achieve the final contradiction. Let ¢’ € P be such a point described
in Claim 16. Then, we have d(p;,q;) = d(p;, ') +d(c, ¢;) for i € {1,2} by Lemma 7. Since
fs(pi) = ¢; and g; € P, *, we have f5(c') = ¢; for each i € {1,2} by Lemma 10. This leads
to a contradiction since fg *(c’) is uniquely determined by definition.

Consequently, there are no two disticnt extreme points q1,q2 € S of S such that ¢1,q2 €
P, implying that there is at most one extreme point of S in P* or P~. This completes the
proof of Theorem 8. <

5 L, Geodesic Center

In this section, we investigate the set cen(S) of Ly geodesic centers of S in P. Recall that
an L; geodesic center ¢ of S minimizes ®g(c’) over all ¢’ € P, so ®g(c) = rad(S). Another
remarkable consequence from the discussions in the previous section is the following.

» Lemma 17. For any nonempty compact subset S C P, there is a diametral pair (x1,x2)
of S such that fs(x1) = x2 and fs(x2) = x1-

The above lemma and its proof indeed show the following.

» Corollary 18. For any nonempty compact subset S C P, it holds that rad(S) = diam(S)/2.

Bae et al. [3] considered a special case where S = P, and proved that diam(P) = 2rad(P)
by using a Helly-type theorem: any family of L, geodesic balls has Helly number at most
two. It is worth noting that we generalize it to any compact subset S of P with a relatively
direct argument in terms of extreme points of S.

For p e Pand r € R, let B,(r) :== {z € P | d(z,p) <r} be the Ly geodesic ball at p with
radius r. Bae et al. [3] also exhibited several basic properties of the L; geodesic balls; among
them is that B,(r) is relative convex for any p € P and r € R.

We fully characterize the set cen(S) of all centers of S by using those known results.

» Lemma 19. For any nonempty compact subset S C P, cen(S) is equal to the intersection
of at most four geodesic balls (), ¢ x By (rad(S)), where X is the set of extreme points of S.
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In the following, we assume that S consists of at least two points. Then, the set X
of extreme points of S consists of at least two and at most four points. Let (x1,x2) be a
diametral pair such that fs(x1) = x2 and fs(x2) = x1. Such a diametral pair exists by
Lemma 17. Since fs(x1) = x2 and fs(x2) = x1, both x; and y2 are extreme points of S,
that is, x1, x2 € X. By Corollary 18, we know that diam(S) = 2rad(S). Thus, B, (rad(S5))
and By, (rad(S)) intersect only in their boundaries. Let B := B,, (rad(S)) N By, (rad(5)).
Since any L; geodesic ball is relative convex, as shown in [3], we observe that BN JP is
either ), a single point, or two points. Again by the relative convexity, B already forms a
line segment of slope 1 or —1, since the boundary of any L; geodesic ball in the interior of P
consists of line segments of slope 1 or —1. By Lemma 19, it holds that cen(S) C B. This
implies the the following.

» Corollary 20. The set cen(S) of centers of any nonempty compact subset S C P forms a
line segment of slope 1 or —1, unless it is a point.

Let ¢1,c2 € P be the endpoints of the segment cen(S). By Lemma 19, we know that
cen(S) = BNU,ex\(x1,x0} Bx(tad(S)). Thus, if [X] > 3, then a third extreme x5 € X with
X3 # X1, X2 determines an endpoint ¢; or cs of cen(S) as the intersection B N 0B, (rad(S)).
More precisely, we observe the following.

» Corollary 21. Suppose that X = {x1,x2,---, Xkt with 3 < k < 4, and (x1,x2) s a
diametral pair of S with fs(x1) = x2 and fs(x2) = x1. Then, for each 3 < i < k,
0B,, (rad(S)) N 0By, (rad(S)) N 0By, (rad(S)) determines an endpoint of cen(S).

6 L, Geodesic Farthest-Neighbor Voronoi Diagram

We then turn our attention to the L; geodesic farthest-neighbor Voronoi diagram. Given a
set S of sites in P, its Ly geodesic farthest-neighbor Voronoi diagram FVD(S) is a partition
of P into regions according to the farthest-neighbor relation between P and S. A common
degenerate case of Voronoi diagrams occurs when a point p € P has four or more equidistant
sites in S. There are two popular approaches in the literature to resolve such a degenerate
case: assume a general position or impose a total order < on S. We take the latter as done
so far to give a precise definition of FVD(S).

The L1 geodesic farthest-neighbor Voronoi region FR(q,S) for each g € S is defined to be

FR(q,S) ={p€ P| fs(p) = q}-
Then, the L; geodesic farthest-neighbor Voronoi diagram FVD(S) is defined to be

FVD(S) := U OFR(q,S) \ 0P,
qeSs

the union of the boundaries of each farthest-neighbor Voronoi region, except 0P.

By definition, the Voronoi region FR(q,S) for ¢ € S is nonempty if and only if ¢ is an
extreme point of S. By Theorem 8, this implies that FVD(S) coincides with the diagram
of at most four points in S. This enables us to define the Voronoi diagram FVD(S) for any
nonempty compact subset S C P, even if .S consists of an infinite number of points.

Let X C S be the set of extreme points of S. Lemma 17 guarantees the existence of a
diametral pair (x1,x2) of S with fs(x1) = x2 and fs(x2) = X1, 80 X1, X2 € X. We first
observe the following property of such a diametral pair.
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2

(b)

Figure 3 (a) The partition around the center cen(S). Points in S are depicted as dots. (b)
Ilustration to FVD(S). Shaded regions depict FR(xs,S) and FR(x4,S), respectively. In this
example, S has four extreme points x1, X2, X3, X4 and we assume that x3 < x1 < x4 < Xx2.

» Lemma 22. Let (x1, x2) be any diametral pair of S with fs(x1) = x2 and fs(x2) = x1.
Then, there exist 01,09 € {+,~} such that x1 = f3'*(c) and x2 = f3*7*(c) for all
¢ € cen(S). Moreover, if cen(S) forms a line segment of positive length, then o1 = oo when
cen(S) is of slope —1, or o = T3, otherwise.

Note that if there are two distinct such pairs (x1, x2) and (x}, x5), then Lemma 22 implies
that the four points x1, x2, X1, x5 must be all distinct. Since |X| < 4 by Theorem 8, this
implies that there are at most two such pairs.

We then observe the following.

» Lemma 23. Suppose that cen(S) forms a line segment of slope (c1) for o € {+,—} or a
point. Let ¢= and ¢ be the left and right endpoints of cen(S). Then, the following hold:
179 CFR(f&%(c), S) and I} C FR(f5°(c),S) for any c € cen(S).
177 CFR(f&7(c™),8) and I C FR(f57(cT),S).
H_\{c"} CFR(fi%(c7),S) and VZ\{c™} C FR(f$'"(c™),S) where o1,03 € {+,—}.
HE\{ct} C FR(f572(c*), S) and VI \ {cT} C FR(f3°(c"), S) where o, o} € {+,—}.

Lemma 23 fully describes the farthest-neighbor Voronoi diagram FVD(S), according to the
shape of cen(S). Assume without loss of generality that cen(S) forms a line segment of slope

—1 or a point. Let I_ ¢ = Ucccen(s) le ~ and I:;I(s) = Ucecen(s) I 7+ Then, observe
that the eight subsets I‘;;(S), Vi, I:T, Hcﬁ, Ije:lr(s), ch, I;f, and H__ form a partition

of P around cen(S). See Figure 3 for an illustration. Lemma 23 describes to which Voronoi

region each of these eight subsets of P belongs. Note that each of the four subsets Icen( s

I:,Cf, I;I(S)v and I;f may be empty, when ¢~ or ¢™ lies on OP. If cen(S) = {c} consists of a
single point, then we have ¢t = ¢~ = ¢, Linisy =1c, and [;;:(S) = It. Otherwise, cen(9)
forms a line segment of positive length. Then, since cen(S) is of slope —1, by Lemma 22,
we have 1, x2 € X such that x1 = f5 () and x2 = fd T (c) for any ¢ € cen(S). Lemma 23

tells us that ICJ;(S) C FR(x1,S5) and I;;;(S) C FR(xz2,5). On the other hand, if IZ;,‘?’ £ ()

for any ¢’ € {+, —}, then the endpoint ¢ is not a boundary point in JP. In particular, if

27" (¢”") ¢ {x1, X2}, then we have a third extreme point x3 = f3'° (¢”') as described in
Corollary 21.

Since the boundaries of any two of the eight subsets around cen(S) always intersect in a

subset of a half-chord from ¢~ or from ¢T, we conclude the following.
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» Theorem 24. For any compact subset S C P with |S| > 2, its Ly geodesic farthest-neighbor
Voronoi diagram FVD(S) consists of cen(S) and a subset of the following four segments: two
segments that are subsets of half-chords from each endpoint of cen(S).

7 Algorithms

Now, we are ready to describe our algorithms that compute the extreme points X of .S, the
diameter, radius, center of S and the farthest-neighbor Voronoi diagram FVD(S). We keep
the generality by setting S to be any nonempty compact subset of P, while an operation that
computes fg(p) for any p € P is supposed to be processed in at most T time as a black box.

We first describe how to compute the set X of extreme points of S. Pick any gy € S.
Let ¢; := fs(gi—1) for ¢ > 0, and compute g; until we have qx4+1 = qx—1 for some k > 2. By
Theorem 8, this ends up with k < 4. If k = 4, then let x; := ¢; for each i € {1,2, 3,4}, and we
are done as X = {x1, X2, X3, xa} by Theorem 8. Otherwise, we let x1 := gr—1 and X2 := gx.
Note that fs(x1) = x2 and fs(x2) = x1. Let r := d(x1,x2)/2. Then, we compute B, (r)
and B,, (r), and their intersection By, (r) N By, (r). Since r = d(x1, x2)/2, By, (1) N By, (r)
forms a line segment 2z~ z% of slope 1 or —1, where 2z~ is to the left of 2T, possibly being
a point z~ = zT. Without loss of generality, assume that z—z% is of slope —1. For each

o € {+,—1}, let p? € P be any point in 127 if 177 is nonempty, or let p° := 27, otherwise, if
122 = 0. Let x3 := fs(p~) and x4 := fs(p"). Then, we have X = {x1, X2, X3, X4 -

» Lemma 25. Let S C P be a given compact subset, and suppose that fs(p) for any p € P
can be computed in T time. The above algorithm correctly computes the set X of extreme
points of S in O(n+T) time.

The diameter, radius, center, and farthest-neighbor Voronoi diagram of .S can be computed
in the same time bound.

» Lemma 26. Let S C P be a given compact subset, and suppose that the set of extreme
points of S is known. Then, the following can be computed in O(n) time: diam(S), rad(S),
cen(S), and FVD(S).

Proof. Let X be the set of extreme points of S. Note that diam(S) = max,,ex d(x, x’)-
Thus, diam(S) and a diametral pair can be computed in additional O(n) time [7], as
|X| < 4 by Theorem 8. By Corollary 18, we have rad(S) = diam(S)/2. The set cen(S)
can be computed by intersecting at most four geodesic balls B, (rad(S)) for x € X by
Lemma 19. This can be done in additional O(n) time by computing the shortest path
maps [7]. After computing cen(S), the farthest-neighbor Voronoi diagram FVD(S) can be
found by considering the eight subsets around cen(S) by Lemma 23. As FVD(S) consists of
at most five segments, it can be found in additional O(n) time. <

Now, we describe the subprocedure that computes fs(p) for any p € P. Here, we assume
that S is a finite set of m points.

» Lemma 27. Let S be a set of m points in P. Then, fs(p) for any p € P can be computed
in O(n 4+ mlogn) time. If the order of S N Orconv(S) along drconv(S) is provided, then
O(n 4+ m) time is sufficient.

Proof. As a preprocessing, we build in O(n) time the data structure of Guibas and Her-
shberger [6] that evaluates d(p, q) for any p,q € P in O(logn) time. Given any p € P, we
compute d(p, q) for all ¢ € S, and gather the set Fs(p) of farthest neighbors of p in O(mlogn)
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time. And pick the least element in Fis(p) with respect to the total order <, and report it as
fs(p). This takes O(n + mlogn) time.

If the order of SNdrconv(S) along drconv(S) is known, then we can apply the fast matrix
search technique of Hershberger and Suri [9]. This takes O(n + m) time. <

Another interesting case is when S = P. Since rconv(P) = P, in this case, we know the
order of points P N drconv(P) = dP. Moreover, since fp(p) is always a vertex of P, we have
the following corollary.

» Corollary 28. For any p € P, fp(p) can be computed in O(n) time.
Combining all these results, we obtain the following theorems.

» Theorem 29. Let P be a simple n-gon and S be a set of m points in P. Then, the set
of Ly geodesic extreme points of S, diam(S), rad(S), cen(S), and FVD(S) can be computed
in O(n + mlogn) time. If the order of S N Orconv(S) along Orconv(S) is provided, then
O(n +m) time is sufficient.

» Theorem 30. Let P be a simple n-gon. Then, the set of Ly geodesic extreme points of P,
diam(P), rad(P), cen(P), and FVD(P) can be computed in O(n) time.

8 L, Geodesic Two-Center

In this section, we address the two-center problem for any compact subset S C P under the
L, geodesic distance. The Ly geodesic two-center problem asks a pair of points ¢, co € P that
minimize max,es min{d(q,c1),d(q,c2)}. Such a pair (c1,¢2) is called an Ly geodesic two-
center of S in P, or shortly a two-center of S. Let rads(S) := max,es min{d(q, ¢1),d(q,c2)}
be the optimal objective value for the problem, called the two-radius or 2-radius of S.
A two-center (c1,c2) induces a bipartition (S7,S2) of S such that S; = S N B, (rads(S))
and Sy = S\ S1. Conversely, a bipartition (S1,S2) of S is called optimal if rads(S) =
max{rad(S7),rad(S2)}. Note that in general we have max{rad(S7),rad(S2)} > rady(S) if
S1USy = S. Given an optimal bipartition (S7,S2) of S, observe that any ¢; € cen(S7) and
¢ € cen(S2) form a two-center (¢1,c2) of S. Thus, the two-center problem is equivalent to
finding an optimal bipartition of S.

Another closely related problem is the minmaz-diameter bipartition problem that asks
a bipartition (S7,S52) of S such that max{diam(S;),diam(S2)} is minimized. Thus, this
problem is to compute the 2-diameter diams(S) of S defined to be the minimum value of
max{diam(S7), diam(S3)} over all possible bipartitions (S, S2) of S. In the L; geodesic
case, the two-center problem is equivalent to the minmax-diameter bipartition problem.

» Lemma 31. For any compact subset S C P, it holds that rada(S) = diams(.S)/2.

Thus, if (S1,S2) is the optimal solution to the minmax-diameter bipartition problem, then it
is an optimal bipartition for the two-center problem.
In the following, we let X be the set of extreme points of S.

» Lemma 32. There exists an optimal bipartition (S1,S2) of S such that for each x € X,
X € S1 if and only if fs(x) € Sa.

The following is our key lemma.

» Lemma 33. There exists an optimal bipartition (S5,S5) of S such that

si=sn |J FR(.S) and S3=5n |J FR(x.S9)
XEXNS X€XNST
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Our algorithm that computes a two-center of S is described as follows: First, compute
the set X of extreme points of S, and the farthest-neighbor Voronoi diagram FVD(S).
For each bipartition (X7, X5) of X that satisfies the property of Lemma 32, let Sy :=
SNUyex, FR(x, S) and Sz := SN, cx, FR(X, S). Then, compute diam(51) and diam(S2),
and keep the minimum of max{diam(S;), diam(S3)} for all such bipartitions of X.

Let (S7,55) be the bipartition of S with a minimum value of max{diam(S7), diam(S3)}.
Then, (S7,S55%) is an optimal bipartition and diams(S) = max{diam(S7), diam(S3)} by
Lemmas 31 and 33. A two-center (c1,c2) of S can be found by choosing any ¢; € cen(S7)
and any co € cen(Ss).

The above algorithm works properly when S is a finite set of points in P.

» Theorem 34. Let S be a set of m points in a simple n-gon P. Then, an L, geodesic
two-center of S can be computed in O(n 4+ mlogn) time.

Another interesting special case is when S = P.

» Theorem 35. An Ly geodesic two-center of a simple n-gon can be computed in O(n) time.
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—— Abstract

In this paper we consider two metric covering/clustering problems — Minimum Cost Covering
Problem (MCC) and k-clustering. In the MCC problem, we are given two point sets X (clients)
and Y (servers), and a metric on X UY. We would like to cover the clients by balls centered at
the servers. The objective function to minimize is the sum of the a-th power of the radii of the
balls. Here o > 1 is a parameter of the problem (but not of a problem instance). MCC is closely
related to the k-clustering problem. The main difference between k-clustering and MCC is that
in k-clustering one needs to select k balls to cover the clients.

For any ¢ > 0, we describe quasi-polynomial time (1 + ¢) approximation algorithms for both
of the problems. However, in case of k-clustering the algorithm uses (1 4 ¢)k balls. Prior to
our work, a 3% and a ¢* approximation were achieved by polynomial-time algorithms for MCC
and k-clustering, respectively, where ¢ > 1 is an absolute constant. These two problems are thus
interesting examples of metric covering/clustering problems that admit (1 + €)-approximation
(using (1 + €)k balls in case of k-clustering), if one is willing to settle for quasi-polynomial time.
In contrast, for the variant of MCC where « is part of the input, we show under standard
assumptions that no polynomial time algorithm can achieve an approximation factor better than
O(log|X]) for a > log | X|.
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tions
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1 Introduction

We consider two metric covering/clustering problems. In the first problem, we are given two
point sets X (clients) and Y (servers), and a metric d on X UY. For z € X UY and r > 0,
the ball B(z,r) centered at z and having radius r > 0 is the set {y € X UY|d(z,y) <r}. A
cover for a subset P C X is a set of balls, each centered at a point of Y, whose union contains
P. The cost of a set B={DBy,..., B} of balls, denoted by cost(B), is E?Zl r(B;)“, where
r(B;) is the radius of B;, and a > 1 is a parameter of the problem (but not of a problem
instance). The goal is to compute a minimum cost cover for the clients X. We refer to this
problem as the Minimum Cost Covering Problem (MCC).

In the second problem, we are given a set X of n points, a metric d on X, and a positive
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integer k. Unlike in the case of MCC, here each ball is centered at a point in X.!' The cost
cost(B) of a set B of balls is defined exactly in the same way as in the case of MCC. The
goal is to find a set B of k balls whose union contains all the points in X and cost(B) is
minimized. We refer to this problem as k-clustering.

Inspired by applications in wireless networks, MCC has been well studied [22]. One can
consider the points in Y as the potential locations of mobile towers and the points in X
as the locations of customers. A tower can be configured in a way so that it can serve the
customers lying within a certain distance. But the service cost increases with the distance
served. The goal is to serve all the customers minimizing the total cost. For modelling the
energy needed for wireless transmission, it is common to consider the value of a to be at
least 1.

For the MCC problem with a = 1, a primal-dual algorithm of Charikar and Panigrahy
[10] leads to an approximation guarantee of 3; their result generalizes to o > 1, with an
approximation guarantee of 3%. The problem is known to be NP-hard for o > 1, even when
X and Y are points in the Euclidean plane [2]. The case a = 1 has received particular
attention. The first PTAS for the Euclidean plane was designed by Lev-Tov and Peleg
[22]. Later, Gibson et. al [17] have designed a polynomial time exact algorithm for this
problem when X and Y are points in the plane, and the underlying distance function d is
either the [y or [, metric. For the Iy metric they also get an exact algorithm if one assumes
two candidate solutions can be compared efficiently; without this assumption, they get a
(1+¢) approximation. Their algorithm is based on a separator theorem that, for any optimal
solution, proves the existence of a balanced separator that intersects with at most 12 balls in
the solution. In a different work they have also extended the exact algorithm to arbitrary
metric spaces [16]. The running time is quasi-polynomial if the aspect ratio of the metric
(ratio of maximum to minimum interpoint distance) is bounded by a polynomial in the
number of points. When the aspect ratio is not polynomially bounded, they obtain a (1 + €)
approximation in quasi-polynomial time. Their algorithms are based on a partitioning of the
metric space that intersects a small number of balls in the optimal cover.

When a > 1, the structure that holds for & = 1 breaks down. It is no longer the case,
even in the Euclidean plane, that there is a good separator (or partition) that intersects
a small number of balls in an optimal solution. In the case a = 2 and the Euclidean
plane, the objective function models the total area of the served region, which arises in
many practical applications. Hence this particular version has been studied in a series of
works. Chuzhoy developed an unpublished 9-factor approximation algorithm for this version.
Freund and Rawitz [15] present this algorithm and give a primal fitting interpretation of the
approximation factor. Bilo et. al [9] have extended the techniques of Lev-Tov and Peleg [22]
to get a PTAS that works for any « > 1 and for any fixed dimensional Euclidean space. The
PTAS is based on a sophisticated use of the shifting strategy which is a popular technique in
computational geometry for solving problems in R? [13, 19]. For general metrics, however,
the best known approximation guarantee for o > 1 remains the already mentioned 3% [10].

The k-clustering problem has applications in many fields including Data Mining, Machine
Learning and Image Processing. Over the years it has been studied extensively from both
theoretical and practical perspectives [9, 10, 12, 16, 17, 23]. The problem can be seen as a
variant of MCC where Y = X and at most k balls can be chosen to cover the points in X.
As one might think, the constraint on the number of balls that can be used in k-clustering

L QOur results do generalize to the problem where we distinguish between clients and servers as in the

MCC.



S. Bandyapadhyay and K. Varadarajan

makes it relatively harder than MCC. Thus all the hardness results for MCC also hold for
k-clustering. For o = 1, Charikar and Panigrahy [10] present a polynomial time algorithm
with an approximation guarantee of about 3.504. Gibson et. al [16, 17] obtain the same results

for k-clustering with a = 1 as the ones described for MCC, both in R¢ and arbitrary metrics.

Recently, Salavatipour and Behsaz [8] have obtained a polynomial time exact algorithm for

« = 1 and metrics of unweighted graphs, if we assume that no singleton clusters are allowed.

However, in case of a > 1 the best known approximation factor (in polynomial time) for
general metrics is ¢®, for some absolute constant ¢ > 1; this follows from the analysis of
Charikar and Panigrahy [10], who explicitly study only the case a = 1. In fact, no better
polynomial time approximation is known even for the Euclidean plane. We note that though
the polynomial time algorithm in [9] yields a (1 + ¢) approximation for k-clustering in any
fixed dimensional Euclidean space and for o > 1, it can use (1 4 )k balls.

In addition to k-clustering many other clustering problems (k-means, k-center, k-median
etc.) have been well studied [5, 11, 24, 18].

In this paper we address the following interesting question. Can the techniques employed
by [9] for fixed dimensional Euclidean spaces be generalized to give (1 + ¢) approximation
for MCC and k-clustering in any metric space? Our motivation for studying the problems
in a metric context is partly that it includes two geometric contexts: (a) high dimensional
Euclidean spaces; and (b) shortest path distance metric in the presence of polyhedral obstacles
in R? or R3.

1.1  Our Results and Techniques

In this paper we consider the metric MCC and k-clustering with o > 1. For any € > 0, we
design a (1 + €)-factor approximation algorithm for MCC that runs in quasi-polynomial time,
that is, in 2(°6™7/2)° time, where ¢ > 0 is a constant, m = |Y|, and n = |X|. We also have
designed a similar algorithm for k-clustering that uses at most (1 + €)k balls and yields a
solution whose cost is at most (1 + ¢) times the cost of an optimal k-clustering solution. The
time complexity of the latter algorithm is also quasi-polynomial. As already noted, somewhat
stronger guarantees are already known for the case a = 1 of these problems [16], but the
structural properties that hold for o = 1 make it rather special.

The results in this paper should be compared with the polynomial time algorithms [10]
that guarantee 3% approximation for MCC and ¢® approximation for k-clustering. The MCC
and k-clustering are thus interesting examples of metric covering/clustering problems that
admit (1 4 ¢)-approximation (using (1 + ¢)k balls in case of k-clustering), if one is willing to
settle for quasi-polynomial time. From this perspective, our results are surprising, as most of
the problems in general metrics are APX-hard. The MCC and k-clustering are also examples
where the techniques used in fixed dimensional Euclidean spaces generalize nicely to metric
spaces. This is in contrast to the facility location problem [3].

The algorithms that we have designed for both of the problems use similar techniques
that exploit the following key property of optimal covers: there are only a “small” number
of balls whose radius is “large”. We can therefore afford to guess these balls by an explicit
enumeration. However, there can be a “large” number of balls with “small” radius. To help
‘find’ these, we partition the metric space into blocks (or subsets) with at most half the
original diameter, and recurse on each block. We have to pay a price for this recursion in the
approximation guarantee. This price depends on the number of blocks in the partition that
a small radius ball can intersect. (This is not an issue in the case @ = 1, where each ball
that is not guessed intersects precisely one of the blocks [16].)

We are led to the following problem: is there a way to probabilistically partition a metric
space into blocks of at most half the diameter, so that for any ball with “small” radius, the
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expected number of blocks that intersect the ball can be nicely bounded? The celebrated
partitioning algorithms of Bartal [6] and Fakcharoenphol, Rao, and Talwar [14] guarantee
that the probability that such a ball is intersected by two or more blocks is nicely bounded.
However, their bounds on the probability that a small ball is intersected do not directly
imply a good bound on the expected number of blocks intersected by a small ball. Indeed, if
one employs the partitioning algorithm of [14], the expected number of blocks intersected
by a small ball can be quite “large” . Fortunately, the desired bound on the expectation
can be shown to hold for the algorithm of Bartal [6], even though he did not study the
expectation itself. We use a similar partitioning scheme and derive the expectation bound in
Section 2, using an analysis that closely tracks previous work [1, 7, 20]. While the bound
on the expectation is easily derived from previous work, our work is the first to study and
fruitfully apply this bound.

The algorithms for MCC and k-clustering, which use the partitioning scheme of Section 2,
are described in Section 3 and 4, respectively. In Section 5, we consider the approximability
of a variant of the MCC where we allow « to be part of the input. For a > log|X]|, we show,
under standard complexity theoretic assumptions, that no polynomial (or quasi-polynomial)
time algorithm for MCC can achieve an approximation factor better than O(log|X]|). This
partly explains the dependence on « of the running time of our algorithms.

2  The Partitioning Scheme

Let Z be a point set with an associated metric d, let P C Z be a point set with at least

2 points, and n > |P| be a parameter. For @ C Z, denote the maximum interpoint

distance (or diameter) of @ by diam(Q). Consider any partition of P into subsets (or blocks)

{P, P,,..., P}, where 2 <t < |P|. Abusing notation, we will also view {Py, Ps,..., P;}

as a sequence of blocks. We say that P; non-terminally (resp. terminally) intersects a ball

B if P; intersects B and it is not (resp. it is) the last set in the sequence Pi, Ps,..., P

that intersects B. We would like to find a partition {Py, Ps, ..., P;} of P that ensures the

following properties:

1. For each 1 <i <t, diam(P;) < diam(P)/2.

2. For any ball B (centered at some point in Z) of radius r < dfg{géi), the expected size
of the set {i|P, N B # 0} is at most 1 + C Trampy 108 1, where ¢ > 0 is a constant. In
other words, the expected number of blocks in the partition that intersect B is at most
1+ cm logn.

3. For any ball B (centered at some point in Z) of radius r < dlig Eg;)’

of blocks in the partition that non-terminally intersect B is at most cm log n, where
c > 0 is a constant.

the expected number

We note that the second property follows from the third, as the number of blocks that
intersect ball B is at most one more than the number of blocks that non-terminally intersect
B. We design a probabilistic partitioning algorithm that finds a partition with the desired
properties. We refer the reader to the full version of the paper for the algorithm and its
analysis [4]. We conclude by summarizing the result.

» Theorem 1. Let Z be a point set with an associated metric d, let P C Z be a point set
with at least 2 points, and n > |P| be a parameter. There is a polynomial-time probabilistic
algorithm RAND-PARTITION(P) that partitions P into blocks {Py, Ps,..., P} and has the
following guarantees:

1. For each 1 < i <t, diam(P;) < diam(P)/2.
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2. There is a constant ¢ > 0 so that for any ball B (centered at some point in Z) of radius

r< dfg;géi), the expected size of the set {i|P; N B # 0} is at most 1 + Crampy logn and

the expected number of blocks that non-terminally intersect B is at most CW(P) logn.

3 Algorithm for MCC

We now describe our (1 + ¢)-factor approximation algorithm for the MCC problem. Recall
that we are given a set X of clients, a set Y of servers, and a metric d on X UY. We wish to
compute a cover for X with minimum cost. Let m = |Y] and n = | X|.

For P C X, let opt(P) denote some optimal cover for P. Denote by cost(B) the cost of a
ball B (the a-th power of B’s radius) and by cost(B) the cost ) s cost(B) of a set B of
balls.

To compute a cover for P, our algorithm first guesses the set Q C opt(P) consisting of
all the large balls in opt(P). As we note in the structure lemma below, we may assume that
the number of large balls in opt(P) is small. We then use the algorithm of Theorem 1 to
partition P into {Py, Ps, ..., P;}. For each 1 <i < t, we recursively compute a cover for the
set P! C P; of points not covered by Q.

To obtain an approximation guarantee for this algorithm, we use the guarantees of
Theorem 1. With this overview, we proceed to the structure lemma and a complete description
of the algorithm.

3.1 A Structure Lemma

It is not hard to show that for any v > 1 and P C X such that diam(P) is at least a constant

factor of diam(X UY’), opt(P) contains at most (c¢/v)® balls of radius at least diam(P)/~.

Here c is some absolute constant. The following structural lemma extends this fact.

» Lemma 2. Let PC X, 0< A< 1 and vy > 1, and suppose that opt(P) does not contain
any ball of radius greater than or equal to 2c - diam(P)/X. Then the number of balls in opt(P)
of radius greater than or equal to diam(P)/v is at most ¢(\, ) := (9ay/N)*.

Proof. Suppose that opt(P) does not contain any ball of radius greater than or equal
to 2« - diam(P)/A. Note that each ball in opt(P) intersects P and has radius at most
2a - diam(P)/A. Thus the point set {z € X UY | z € B for some B € opt(P)} has diameter
at most diam(P) + 8« - diam(P)/A < 9a - diam(P)/A. Tt follows that there is a ball centered
at a point in Y, with radius at most 9« - diam(P)/A that contains P.

Let ¢ denote the number of balls in opt(P) of radius greater than or equal to diam(P)/~.
By optimality of opt(P), we have ¢ - (diam(P)/v)* < (9« - diam(P)/A)*. Thus t < (9ary/A)“.

<

3.2 The Algorithm

We may assume that the minimum distance between two points in X is 1. Let L =
1+ log(diam(X)). As we want a (1 + &)-approximation, we fix a parameter A\ = ¢/2L. Let
= Ck’%, where c is the constant in Theorem 1. Denote D to be the set of balls such that
each ball is centered at a point of y € Y and has radius r = d(z, y) for some z € X. We note
that for any P C X, any ball in opt(P) must belong to this set. Note that |D| < mn. Recall
that c¢(A,v) = (9ay/A)e.
With this terminology, the procedure POINT-COVER(P) described as Algorithm 1
returns a cover of P C X. If | P| is smaller than some constant, then the procedure returns an
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Algorithm 1 POINT-COVER(P)

Require: A subset P C X.
Ensure: A cover of the points in P.

if |P| is smaller than some constant x then
return a minimum solution by checking all covers with at most x balls.
sol < the best cover with one ball
cost < cost(sol)
Let {P,..., P-} be the set of nonempty subsets returned by RAND-PARTITION(P)
Let B be the set of balls in D having radius greater than (M%I(P)
for each Q C B of size at most ¢()\,v) do
for i =1 to 7 do
Let P/ ={p€ P | p & Upco B}
Q'+ QUJ_, POINT-COVER(F)
if cost(Q’) < cost then
cost + cost(Q’)
sol + @’
: return sol

e e
Ll vl

optimal solution by searching all covers with a constant number of balls. In the general case,
one candidate solution is the best single ball solution. For the other candidate solutions, the
procedure first computes a partition {P,..., P} of P, using the RAND-PARTITION(P)
procedure. Here RAND-PARTITION(P) is called with Z = X UY and n = | X| > |P|. Then
it iterates over all possible subsets of D of size at most ¢(},~) containing balls of radius
greater than diam(P)/~. For each such subset Q and 1 < ¢ < 7, it computes the set P/ C P,
of points not covered by Q. It then makes recursive calls and generates the candidate solution
QUJ;_, POINT-COVER(F}). Note that all the candidate solutions are actually valid covers
for P. Among these candidate solutions the algorithm returns the best solution.

Our overall algorithm for MCC calls the procedure POINT-COVER(X) to get a cover
of X.

3.3 Approximation Guarantee

For P C X, let level(P) denote the smallest non-negative integer i such that diam(P) < 2°.
As the minimum interpoint distance in X is 1, level(P) = 0 if and only if |P| < 1. Note that
level(X) < L.

The following lemma bounds the quality of the approximation of our algorithm.

» Lemma 3. POINT-COVER(P) returns a solution whose expected cost is at most (1 +
M) cost(opt(P)), where | = level(P).

Proof. We prove this lemma using induction on {. If [ = 0, then |P| < 1 and POINT-
COVER(P) returns an optimal solution, whose cost is cost(opt(P)). Thus assume that { > 1
and the statement is true for subsets having level at most [ — 1. Let P C X be a point
set with level(P) = [. If |P| is smaller than the constant threshold x, POINT-COVER(P)
returns an optimal solution. So we may assume that |P| is larger than this threshold. We
have two cases.

Case 1: There is some ball in opt(P) whose radius is at least 2a.- diam(P)/\. Let B denote
such a ball and r(B) > 2a-diam(P) /) be its radius. Since (1+A/2a)r(B) > r(B)+diam(P),
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the concentric ball of radius (1 + \/2a)r(B) contains P. It follows that there is a cover for
P that consists of a single ball and has cost at most

(14 X/20)%r(B)® < (1 + X)cost(opt(P)) < (1 + A)cost(opt(P)).

Case 2: There is no ball in opt(P) whose radius is at least 2a.-diam(P)/A. Let Qo C opt(P)
contain those balls of radius at least diam(P)/~. It follows from Lemma 2 that |Qp| < ¢(A, 7).
Thus the algorithm considers a Q with @ = Q. Fix this iteration. Also fix the partition
{P,..., P} of P computed by RAND-PARTITION(P). RAND-PARTITION ensures that
diam(P;) < diam(P)/2 for 1 < i < 7. Thus diam(P/) < diam(P)/2 and the level of each P/
is at most [ — 1. Hence by induction the expected value of cost(POINT-COVER(F/)) is at
most (1 + \)""tcost(opt(F})).

Let 8" = opt(P) \ Qp. We argue below that the expected value of ZT: cost(opt(PY)) is at

i=1

most (1 + A)cost(S’). Assuming this, we have

Elcost(Qo U | POINT-COVER(P)))] < cost(Qu) + (1 + A)HE[ET: cost(opt(F7))]
- cost(Qp) + (1 + A)ZCOSt(S_I)
(1 + \)'cost(opt(P)).

INIA

Thus POINT-COVER(P) returns a solution whose expected cost is at most (1+\)'cost(opt(P)),
as desired.

We now argue that the expected value of >-7_; cost(opt(P})) is at most (1 + X)cost(S’).
Let B; consist of those balls in &’ that intersect P;. For B € &', let u(B) denote the number
of blocks in the partition {Pi,..., P.} that B intersects. Because B; is a cover for P/, w
have cost(opt(P/)) < cost(;). Thus

Zcost opt(Fy)) < Z cost(B Z w(B)cost(DB).

BeS’

By definition of Qg, any ball B € 8’ = opt(P)\ Qp has radius at most diar:(P) = )"(chlisz)),
where c is the constant in Theorem 1. We may assume that ¢ > 16 and hence Mcilaoizlff) <
dlig ing). Theorem 1 now implies that

c-r(B)logn clogn  \-diam(P)
Eln(B) <1 <1 . =14+
(Bl =1+ diam(P) — diam(P) clogn +
Thus the expected value of Y°7_, cost(opt(P/)) is at most

Z E[u(B)]cost(B) < (1 + A) Z cost(B) = (1 + \)cost(S'),

Bes’ Bes'
as claimed. <

We conclude that the expected cost of the cover returned by POINT-COVER(X) is at
most (1 + \)Lcost(opt(X)) < (1 + ¢)cost(opt(X)), since A = /2L.

Now consider the time complexity of the algorithm. POINT-COVER(P) makes (mn)?¢(A7)
direct recursive calls on subsets of diameter at most diam(P)/2. Thus the overall time com-
plexity of POINT-COVER(X) can be bounded by (mn)?(¢ANE) | Plugging in A\ = /2L,
v =clogn/A, and ¢(A,v) = (9ay/A)%, we conclude

ISAAC 2016
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aLQIOgn ar
Oo( 2 ) and

» Theorem 4. There is an algorithm for MCC that runs in time (mn)
returns a cover whose expected cost is at most (1 + ) times the optimal. Here L is 1 plus the
logarithm of the aspect ratio of X, that is, the ratio of the mazimum and minimum interpoint

distances in the client set X.

Using relatively standard techniques, which we omit here, we can pre-process the input
to ensure that the ratio of the maximum and minimum interpoint distances in X is upper
bounded by a polynomial in #*. However, this affects the optimal solution by a factor of
at most (1 +¢€). After this pre-processing, we have L = O(log ™). Using the algorithm
in Theorem 4 after the pre-processing, we obtain a (1 + €) approximation with the quasi-
polynomial running time O(QIOgO(l) ™). Here the O(1) hides a constant that depends on «

and €.

4 Algorithm for k-clustering

Recall that in k-clustering we are given a set X of points, a metric d on X, and a positive
integer k. Let |X| = n. For P C X and integer £ > 0, let opt(P, ) denote an optimal
solution of k-clustering for P (using balls whose center can be any point in X). We reuse the
notions of level(P), cost(B) and cost(B) from Section 3, for a point set P, a ball B, and a
set B of balls, respectively. Denote D to be the set of balls such that each ball is centered at
a point of y € X and has radius r = d(x, y) for some x € X. We note that for any P C X
any ball in opt(P, k) must belong to this set. Note that |D| < n?.
To start with we prove a structure lemma for k-clustering.

» Lemma 5. Let P C X, k be a positive integer, and v > 1. Then the number of balls in
opt(P, k) of radius greater than or equal to diam(P)/v is at most ¢(y) = <.

Proof. Note that any ball centered at a point in P and having radius diam(P) contains all
the points of P. Now by definition of diam(P) and D, there is a point x € P such that the
ball B(z,diam(P)) € D. Hence opt(P, k) < diam(P)*.

Let ¢ denote the number of balls in opt(P, ) of radius greater than or equal to diam(P)/~.
By optimality of opt(P, k), we have ¢ - (diam(P)/v)* < diam(P)*. Thus t < . <

Like in the case of MCC, we assume that the minimum distance between two points in
X is 1. Let L =1 + log(diam(X)). We fix a parameter A = /6L. Let v = CIO%, where ¢ is
the constant in Theorem 1.

We design a procedure CLUSTERING(P, k) (see Algorithm 2) that given a subset P
of X and an integer k, returns a set of at most (1 + 3\)' balls whose union contains P,
where | = level(P). We overview this procedure, focussing on the differences from the
procedure POINT-COVER() used to solve the MCC problem. In CLUSTERING(P, k),
RAND-PARTITION(P) is called with Z = X and n = |X| > |P|. We require two properties
of the partition {Py,...,P;} of P computed by RAND-PARTITION(P). Let Qy be the
set containing the large balls of opt(P, k), that is, those with radius at least diam(P)/~.
Let 8" = opt(P, k) \ Qo denote the set of small balls, and let §'; C &’ consist of those
balls that contain at least one point in P; that is not covered by Qp. We would like (a)
oI cost(S’;) < (14 3X\)cost(S’), and (b) D°7_; 8’| < (1 + 3X)|S’|. Theorem 1 ensures
that each of (a) and (b) holds in expectation. However, we would like both (a) and (b) to
hold simultaneously, not just in expectation. For this reason, we try ©(logn) independent
random partitions in Line 6, ensuring that with high probability, properties (a) and (b) hold
for at least one of them.
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Algorithm 2 CLUSTERING(P, k)

Require: A subset P C X, an integer k.

Ensure: A set of balls whose union contains the points in P.
1: if |P| is smaller than some constant 5 then
2:  return a minimum solution by checking all solutions with at most min{x, 3} balls.
3: sol < the best solution with one ball
4: cost < cost(sol)
5: [ + level(P)

6: for all 2logg,, n iterations do

7

8

9

Let {Pi,..., P-} be the set of nonempty subsets returned by RAND-PARTITION(P)

Let B be the set of balls in D having radius greater than dt%(m
for each Q C B of size at most ¢(7y) do

10: for i =1to T do

11: Let P/ ={p € P |p¢UBeQB}

12: for each 1 < i <7and 0<x; < (143)\)x do

13: cluster(P/, k1) + CLUSTERING(F/, k1)

14: forz'—OtOT—ldo

15: R~ Uj_in P

16: for k1 =0 to (1—1—3/\)/@ do

17: cluster(R,_1, K1) < cluster(P’, k1)

18: foralli=7—2to0and 0 <k < (14+3\)k do

19: Kinin ¢ argmin,.g<, <., cost(cluster(P;, ;, k") U cluster(R;1, k1 — K'))

20: cluster(R;, k1) = cluster(Py, 1, Ky,;,) U cluster(Riy1, k1 — Kpyiy)
21: Q' + Q U cluster(Ryg, (1 4+3)) - (k —|9Q]))

22: if |Q'| < (1+3)\)'x and cost(Q’) < cost then

23: cost «— cost(Q')

24: sol «+ Q'

25: return sol

Now let us fix one of these ©(logn) trials where we got a partition { Py, ..., P} satisfying
properties (a) and (b), and also fix an iteration in Line 9 where we have Q = Q. Let
P! C P; be the points not covered by Qp. Foreach 1 <i<7and 0<x; < (1+ 3/\)/£ we set
cluster(P/, k1) to be the cover obtained by recursively invoking CLUSTERING(FP/, k1) (as
in Line 13).

Let us call a tuple (K1, ko, ..., K,) of integers valid if 0 < k; < (1 + 3\)(k —|Qo|) and
Sk < (143N (k— Qo). We would like to minimize Y_, cost(cluster(P/, x;)) over all

valid tuples (k1, Ko, ..., kr). As there are too many valid tuples to allow explicit enumeration,

we solve this optimization problem in Lines 14-21 via a dynamic programming approach.

This completes our overview. Our overall algorithm for k-clustering calls the procedure
CLUSTERING(X, k). Next we give the approximation bound on the cost of the solution
returned by CLUSTERING(P, k).

» Lemma 6. For any P C X and an integer k > 1, CLUSTERING(P, k) returns a solution
consisting of at most (1 + 3\)'s balls and with probability at least 1 — ‘Pl ! , the cost of the
solution is at most (1 + 3)\) cost(opt(P, k)), where | = level(P).

We refer the reader to the full version of the paper [4] for the proof of Lemma 6. Overall,

it is similar to the proof of Lemma 3, and the key differences have already been anticipated
in our overview.

15:9
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Since A = £/6L, (1+3A)L < 1+4e&. Thus we conclude that with probability at least 1 — 1,
CLUSTERING(X, k) returns a solution with at most (1 + &)k balls whose cost is at most
(14 )cost(opt(X, k)).

Now consider the time complexity of the algorithm. CLUSTERING (P, ) makes n©(¢()
direct recursive calls on subsets of diameter at most diam(P)/2. Thus the overall time
complexity of CLUSTERING (X, k) can be bounded by n®¢™M%) Plugging in A = /6L,
v = clogn/A, and ¢(y) = v*, we conclude

» Theorem 7. There is a randomized algorithm for k-clustering that runs in time n®( ML)

and with probability at least 1 — % returns a solution with at most (14 &)k balls whose cost is
at most (1 + €) times the optimal. Here L is 1 plus the logarithm of the aspect ratio of X,
that is, the ratio of the maximum and minimum interpoint distances in the set X.

5 Inapproximability Result

In this section we present an inapproximability result which complements the result in Section
3. In particular here we consider the case when « is not a constant. The heart of this result
is a reduction from the dominating set problem. Given a graph G = (V, E), a dominating
set for G is a subset V' of V such that for any vertex v € V'\ V', v is connected to at least
one vertex of V' by an edge in E. The dominating set problem is defined as follows.

Dominating Set Problem (DSP)
INSTANCE: Graph G = (V, E), positive integer k < |V|.
QUESTION: Is there a dominating set for G of size at most k7

The following inapproximability result is proved by Kann [21].

» Theorem 8. There is a constant ¢ > 0 such that there is no polynomial-time clog |V |-factor
approximation algorithm for DSP assuming P # NP.

The following theorem shows an inapproximability bound for MCC when « > log | X]|.

» Theorem 9. For o > log|X|, no polynomial time algorithm for MCC' can achieve an
approzimation factor better than clog|X| assuming P # N'P.

Proof. To prove this theorem we show a reduction from DSP. Given an instance (G =
(V,E),k) of DSP we construct an instance of MCC. The instance of MCC consists of
two sets of points X (clients) and Y (servers), and a metric d defined on X UY. Let
V ={v1,vq,...,0,}, where n = |V|. For each v; € V, Y contains a point y; and X contains
a point z;. For any point p € X UY, d(p,p) = 0. For ¢,j € [n], d(x;,y;) is 1 if ¢ = j or
the edge (v;,v;) € E, and d(z;,y;) is 3 otherwise. For i,j € [n] such that i # j, we set
d(zi, z;) = d(yi, y;) = 2.

Consider two nonadjacent vertices v; and v;. For any x; € X such that t # 4,7,
d(z;, x¢) + d(x¢,y;) > 3. Similarly, for any y; € Y such that ¢ # ¢, 4, d(z;, y¢) + d(ye, y;) > 3.
Thus d defines a metric. Next we will prove that G has a dominating set of size at most k iff
the cost of covering the points in X using the balls around the points in Y is at most k.

Suppose G has a dominating set J of size at most k. For each vertex v; € J, build a
radius 1 ball around y;. We return this set of balls B as the solution of MCC. Now consider
any point z; € X. If v; € J, then z; is covered by the ball around y;. Otherwise, there must
be a vertex v; € J such that (v;,v;) € E. Then d(z;,y;) is 1 and z; is covered by the ball
around y;. Hence B is a valid solution of MCC with cost at most k.
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Now suppose there is a solution B of MCC with cost at most k. If k > |X]|, then V is a
dominating set for G of size | X| < k. If k < |X|, our claim is that the radius of each ball in
B is 1. Suppose one of the balls B has a radius more than 1. Then the way the instance of
MCC is created the radius should be at least 3. Hence k > 3% > 3°8IX| > | X|, which is a
contradiction. Now consider the set of vertices J corresponding to the centers of balls in B.
It is not hard to see that J is a dominating set for G of size at most k.

Let OPT be the cost of any optimal solution of MCC for the instance (X,Y,d). Then by
the properties of this reduction the size of any minimum dominating set for G is OPT. Thus if
there is an approximation algorithm for MCC that gives a solution with cost (clog|X])-OPT,
then using the reduction we can produce a dominating set of size (clog|V|)-OPT. Then from
Theorem 8 it follows that P = N'P. This completes the proof of our theorem. <

6 Conclusions

One generalization of the MCC problem that has been studied [10, 9] includes fixed costs for
opening the servers. As input, we are given two point sets X (clients) and Y (servers), a
metric on Z = X UY, and a facility cost f, > 0 for each server y € Y. The goal is to find a
subset Y’ C Y, and a set of balls {B,, |y € Y and B, is centered at y} that covers X, so as
to minimize }_ .y (fy +7(By)®). It is not hard to see that our approach generalizes in a
straightforward way to give a (1 + ¢) approximation to this problem using quasi-polynomial
running time. To keep the exposition clear, we have focussed on the MCC rather than this
generalization.

The main open problem that emerges from our work is whether there one can obtain a
(1 + &)-approximation for the k-clustering problem in quasi-polynomial time.
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—— Abstract

This paper considers steganography — the concept of hiding the presence of secret messages in
legal communications — in the computational setting and its relation to cryptography. Very re-
cently the first (non-polynomial time) steganographic protocol has been shown which, for any
communication channel, is provably secure, reliable, and has nearly optimal bandwidth. The
security is unconditional, i.e. it does not rely on any unproven complexity-theoretic assumption.
This disproves the claim that the existence of one-way functions and access to a communication
channel oracle are both necessary and sufficient conditions for the existence of secure steganogra-
phy in the sense that secure and reliable steganography exists independently of the existence of
one-way functions. In this paper, we prove that this equivalence also does not hold in the more
realistic setting, where the stegosystem is polynomial time bounded. We prove this by construct-
ing (a) a channel for which secure steganography exists if and only if one-way functions exist
and (b) another channel such that secure steganography implies that no one-way functions exist.
We therefore show that security-preserving reductions between cryptography and steganography
need to be treated very carefully.

1998 ACM Subject Classification E.3 Data Encryption

Keywords and phrases provable secure steganography, cryptographic assumptions, pseudoran-
dom functions, one-way functions, signature schemes

Digital Object ldentifier 10.4230/LIPIcs.ISAAC.2016.16

1 Introduction

Digital steganography has recently received substantial interest in modern computer science
since it allows secret communication without revealing its presence. Currently, using freely
available steganographic software, one party is able to spread secret messages over widely
accessible services, such as photo-sharing websites, camouflaging the presence of the messages
in legal communications. Although the uploads and views by other users can be recorded
and analyzed it is fairly difficult to distinguish the altered documents containing a secret
message from those of millions of the other ordinary documents. For more details on applied
steganography see the textbook [16] or the current survey [38] and the literature therein.
For applications of steganography in other areas, like covert computation, broadcasting, or
anonymous communication see e.g. [6, 7, 14, 18, 24, 35].

A common computational model for secret-key steganography, also used in this paper,
was introduced by Hopper, Langford, and von Ahn [21, 22, 23]. Independently, Katzenbeisser
and Petitcolas [25] provided a similar formulation. In this setting, a stegosystem is defined as
a pair of probabilistic algorithms, called encoder and decoder, which share a secret-key. The
aim of the encoder (often called Alice or the steganographer) is to hide a secret message in a
document and to send it to the decoder (Bob) via a public channel C, which is completely
? Sebastian Berndt a}nd Maciej Liéki.ewicz;
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monitored by an adversary (Warden or steganalyst). The channel is modeled by a cover-
document sampler that can be queried adaptively, in a black-box manner and the adversary’s
task is to distinguish those from altered ones called stego-documents.

To hide a secret message m, the encoder can take sample cover-documents, based on past
communication, and manipulate them to embed m. The decoder, receiving stego-documents,
should be able to decode the hidden message correctly. The stegosystem is called reliable if
the decoder succeeds with high probability. The adversary is a probabilistic algorithm with
access to additional knowledge about the channel. A stegosystem is secure if no adversary
of polynomial time complexity is able to distinguish with significant probability between
cover- and stego-documents generated by the stegosystem’s encoder. This implies in general
that the distributions of cover-documents and stego-documents have to be fairly close in
a complexity-theoretic sense. The insecurity of a stegosystem is the advantage of the best
adversary to distinguish between cover- and stego-documents. Thus, a stegosystem is secure
if its insecurity is sufficiently small, i.e. negligible in the security parameter x defining the
length of the shared secret-key.

The security and reliability are necessary attributes of any reasonable stegosystem.
Additionally, the system should be efficient in terms of the transmission rate (payload), i.e.
the number of bits transmitted per single stego-document should be as high as possible.
The stegosystems used in practice (not necessary provable secure in the computational
model) typically achieve a rate of y/n [26], where n := n(x) denotes the length of a single
document that is polynomial in k. A longstanding conjecture, the Square Root Law of
Steganographic Capacity [15, 27] says that a rate of the form (1 — ¢)/n is always achievable
in the information-theoretic setting.

Importantly, in the definition of the computational model Hopper, Langford and von Ahn
[21, 22, 23] do not bound the running time of the stegosystem, while the time complexity of
the adversary is required to be bounded by a polynomial. For this setting we have shown very
recently the strongest possible result; namely, that there exists a universal stegosystem which
for any channel is secure, reliable and achieves almost optimal rate. Recall, that a system is
called universal® if the encoding method does not rely on knowledge of the distribution for
the channel C except that its min-entropy is sufficiently large.

» Theorem 1 ([4], Informal). There exists a universal (non-polynomial time) stegosystem S
that is unconditionally secure and reliable. Moreover S is rate-efficient.

This disproves the widely circulated result claimed in [21, 23] that the existence of
one-way functions and access to a communication channel oracle are both necessary and
sufficient conditions for the existence of secure steganography (see e.g. the textbook [16] for a
discussion). In fact, secure and reliable (non-polynomial) steganography exists independently
of the existence of one-way functions.

In this paper we investigate a more reasonable setting in which the stegosystem’s running
time is bounded by a polynomial and study provably secure steganography and its relation
to cryptography. We prove that, despite strong connections, polynomial time steganography
is not cryptography. More precisely we show that, similarly as in the case of non-polynomial
time steganography, the equivalence between the existence of one-way functions and the
existence of secure, reliable, and rate-efficient (polynomial time) steganography does not hold.

! In the literature universal stegosystems are also called ”black-box”.
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1.1 Previous Works

As we discuss in [4], a commonly heard argument for the premise that steganography
is cryptography goes as follows: Let m and m’ be two different secret messages and s
and s’ be stego-documents which embed m, resp. m’. If the distributions of s and s’ are
indistinguishable from the distribution of the cover-documents, then by the triangle-inequality,
the distributions of s and s’ are also indistinguishable. Hence, a secure stegosystem is also a
secure cryptosystem.

While the argument concerning the triangle-inequality is true, the argument ignores the
channel oracle. If the channel documents are e.g. natural digital pictures, the cryptosystem
simulating the stegosystem needs access to samples of those documents. But an efficient
sampler for this channel seems highly unlikely. Thus, this reasoning is wrong and in fact we
show in [4] that (non-polynomial time) steganography exists independently of the existence
of one-way functions. Below we discuss known results in this direction.

In contrast to the non-polynomial case, universal steganography is very limited when
requiring polynomial running time. In [10], Dedi¢ et al. proved that for every stegosystem S
with security parameter x (describing the length of the secret key) which hides A := A(k)
bits, takes ¢ := ¢(k) samples per stego-document and runs in time p := p(k) there exists a
channel C(k) of min-entropy pol(x) such that
e-q

-5 — ¥, k) —o(1). (1)

InSec(x) + UnRel(k) > o

DO | =

Here, InSec(k) denotes the insecurity (against polynomial time bounded wardens) and
UnRel(k) the unreliability of S on C(x), and ¥ describes a term caused by the insecurity of
the pseudorandom function used in the construction of C(x). From this result we get that
if restricted to polynomial time steganography, Theorem 1 does not hold unless one-way
functions do not exist:

» Theorem 2 ([10], Informal statement). Assuming one-way functions exist there exists no
secure and reliable universal polynomial time stegosystem of rate w(log k).

Interestingly, the logarithmic bound on the bandwidth above is sharp. Due to Hopper et
al. [23] and Dedié et al. [10] we know that the existence of one-way functions implies the
existence of a secure and reliable universal (polynomial time) stegosystem of rate O(log k).

Theorem 2 shows a very important property, interesting in itself: when requiring polyno-
mial time, the applicability of universal steganography is very limited. Due to this reason it
makes sense to consider the security of a stegosystem S only for a specific channel or for
channels of a specific family, and do not to require its security for all possible channels. This
is also a common approach in practical steganography where a system has to satisfy security
properties for a specific channel, like e.g. natural images in JPEG-format, but its security
for texts, audio signals, TCP/IP transmission packages, etc. is irrelevant. For this setting
the relationship between steganography and cryptography remains unsolved. Particularly, it
is not known whether for any channel C(x) there exists a secure, reliable, and rate-efficient
(polynomial time) stegosystem for C(k). The question remains open both for unconditional
security and under some unproven assumptions like the existence of one-way functions.

Note that the lower bound (1) above does not allow to answer this question. To prove
their result, Dedié¢ et al. [10] show that for every (polynomial time) stegosystem S there
exists a channel C(k) that satisfies inequality (1). However, every channel C(x) of [10] has a
secure, reliable and rate-efficient (polynomial time) stegosystem (for a proof see e.g. [31]).
Also the following lower bound provided by Hopper et al. [23] does not suffice to solve this
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problem. They show that for any function ¢(x) bounded by a polynomial in & there exists a
channel C(k) such that for every (polynomial time) stegosystem S of query complexity ¢(x)
which hides A(k) bits per document it is true

InSec(k) + UnRel(k) > 1—¢/2* — 27", (2)

In case A(k) € w(logk) the right-hand side of the inequality (2) is big, meaning that S is
insecure or unreliable, but again in in this situation one can construct a (polynomial time)
stegosystem S’ of query complexity ¢(k) + 1 that is secure, reliable and rate-efficient on C(k).

Hence both of these lower bounds prove that every stegosystem that hides w(log &) bits is
insecure or unreliable on some channel from a channel family F. On the other hand, for all of
those channels, one can construct a secure and reliable stegosystem. Hence, the insecurity or
unreliability of the stegosystem on those channels comes from the fact that the stegosystem
must work for all channels in F and not necessarily from the complexity of a single channel.

1.2 Qur Contributions

We prove that polynomial time bounded, provably secure, reliable, and rate-efficient stega-
nography is independent of cryptographic assumptions, such as the existence of one-way
functions. This is a consequence of the following results.

» Theorem 3 (Informal). Assuming one-way functions exist there exists a channel C(k) such
that for C(k) no secure and reliable polynomial time stegosystem of rate w(log k) is possible.

The logarithmic bound on the bandwidth above is sharp unless one-way functions do not
exist. One can conclude even more, namely that if Theorem 3 holds for rate O(log k), no
one-way functions exists. More formally, we have the following:

» Corollary 4. If proposition (a) is true:

(a) Assuming one-way functions exist there exists a channel C(k) such that for C(k) no
secure and reliable polynomial time stegosystem of rate O(log k) is possible;

then one-way functions do not exist.

To see this, again from [23] and [10] we know that: (b) If one-way functions exist then
for every channel C(k) there exists secure and reliable polynomial time stegosystem of rate
O(log k). Thus, proving the proposition (a) in Corollary 4 would be possible only if one-way
functions do not exist — only in this case both of the proposition (a) and (b) are true. Clearly,
current research is far from proving anything like proposition (a).

Theorem 3 is the main technical achievement of this paper. We complement our result
by showing a channel for which the existence of one-way functions implies the existence of
a secure, reliable, and rate-efficient polynomial time stegosystem. Constructions of similar
channels are known in the steganography community however, for the sake of correctness
and completeness we formulate and prove a suitable result in our paper:

» Theorem 5 (Informal). There exists a channel C(k) such that if one-way functions exist
then secure, reliable, and rate-efficient polynomial time stegosystem for C(k) exists.

The proofs of the theorems are constructive. Interestingly, the channel C(k) satisfying
Theorem 3 is specified by a cryptographic signature scheme protocol that is widely used in
practice. While C(k) per se is artificial, its close relative, the channel of cryptographic signed
emails on the internet, is widely used. In this work we prove also that there exist more such
hard channels satisfying the conditions of Theorem 3. In fact we show that any channel
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which can express the signature scheme belongs to this family. Our construction is inspired
by the technique used in the work of De et al. [9] which apply this method to show that it is
not possible to uniformly generate satisfying assignments to a 3-CNF formula if one is given
polynomial many samples of satisfying assignments. The channels satisfying the conditions
of Theorem 5 are channels that can be sampled by an algorithm in polynomial time.

1.3 Relevant Work

The running time of universal steganography was improved by Kiayias et al. in [28] by using
t-wise independent family of functions instead of a pseudorandom function to choose the
corresponding documents from the channel. They also showed that a key length of (1+0(1))n
is sufficient to achieve information-theoretic security of 2=/ log®™ (n) for message length n.

Van Le and Kurosawa [29] used arithmetic coding techniques to improve upon the rates
of the universal systems proposed in [23] and [10]. In order to achieve this they assume that
the system has access to additional knowledge on the channel. Their work thus does not fit
into the model introduced by Hopper et al. [23].

Von Ahn and Hopper [36] gave the first complexity-theoretic definitions of public-key
steganography, where the running time of the stegosystem is polynomial time bounded.
Their work was extended by Backes and Cachin [2], who introduced stronger security
definitions and presented a universal non-rate-efficient stegosystem for one of their definitions.
Hopper [20] then proceeded by proving that every so-called efficiently sampleable channel
has a non-rate-efficient stegosystem that achieves the strongest security definition.

Universal stegosystems have also been studied in the information-theoretic setting, where
the information-theoretic distance between the distribution of the channel documents and
the distribution of the stego-documents must be bounded. The first information-theoretic
definitions of steganography were given by Cachin [5]. Wang and Moulin [37] presented
a whole framework to study the optimal embedding rate of information-theoretic perfect
stegosystems. For more information on this see e.g. [8, 15, 33].

The paper is organized as follows: The next section contains the basic definitions regarding
stegosystems, their security and the cryptographic primitives we make use of. The proof
of Theorem 3 and its extension can be found in Section 3, while Theorem 5 is proved in
Section 4. Finally, we conclude our paper and discuss the future work in Section 5.

2 Preliminaries and Definitions

We say that an algorithm A has oracle access to a probability distribution D (denoted as
AP),if A can sample an element d according to D in unit time. The elements are sampled
independently. If D is parameterized by p1, pa, ..., pr, we write AP(P12P) to describe the
situation, where all of the parameters are fixed. If D is allowed to choose the parameter p;
itself, this is denoted by a dot, as in APP1-pPi-1pit10Pk) - More generally, we also use
dots in the parameters of an algorithm to indicate that this parameter may be chosen freely.

If one tries to hide the transfer of a secret message via unsuspicious communication, one
first needs to define a model for this type of communication. This is done via the notion of a
channel C on an alphabet .

» Definition 6. A channel C on the alphabet ¥ is a function taking an n € N and a history
h € (£")* to a probability distribution on £", denoted by Cp, .

Note that we do not require the distributions Cj 1,Cp 2, ... to be polynomial time con-
structible, as the typical channels in use may be of high complexity, e.g., pictures or poems.
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As usual, a communication channel has a certain capacity, that is bounded by the
entropy of the channel. The min-entropy H(D) of a probability distribution D is defined as
H(D) := mingesupp(py{—1log D(d)}. The min-entropy H(C,) of a channel C with respect to
n € N is then defined as H(C,,) = min,{H(Cp »)}. The number of bits embeddable into a
single document is bounded by #(C,,) (see e.g. [22] for a proof).

To give a sound formal treatment, we parameterize the behaviour of all parties by the
security parameter x — the length of the secret key k. We therefore say that a function
f: N —[0,1] is negligible, if for every ¢ and all sufficiently large n, it holds that f(n) < n™°.

Informally, a stegoencoder S'E has access to samples of C and embeds a message m into a
sequence of documents dy, ..., d, thereby producing a sequence dj,...,d;. The goal of SE
is that no efficient algorithm can distinguish the distributions of d1,...,d, and d7,...,d}.

» Definition 7. A stegosystem S for the polynomial time constructible message space
{ M} ven with document length n: N — N and output length £: N — N is a pair of
probabilistic, polynomial time Turing machines (PPTMs) [SE,SD] with the following
functionality upon security parameter x:
The encoding algorithm SE takes as input a key k € {0, 1}", a message m € M, a history
h and a state information s € {0,1}* and produces a document d and state information
s' € {0,1}* by having access to Cj . By SEC(k,m,h), we denote the outcome of:

Steganographic Encoding SEC(k,m, h)

1. s:= \; //initialize the first state as the empty string
2. fori=1,...,¢

3. (d,s) < SECnne) (k,m, h, s);

4. h:= hd;; // concatenate h with the new document

5. return dy,...,dy
. J

Note that SE is only allowed to get samples for the i + 1-th document, after it produced
the i-th document. For the sake of simplicity, we sometimes write SEC(k, m, h); to denote
the i-th document d;.
The decoding algorithm SD takes as input a key k € {0,1}" and a sequence of documents
dy,...,dp and outputs a message m’.
The sampling complezity q(k) of SE is the number of calls of SE to its sampling oracle. The
transmission rate b(k) is defined as b(k) := loglsupp(M)l/¢(x) < n(K).

The key k € {0,1}" is shared by SE and SD before the embedding process. Clearly, SD
should be able to reconstruct the original message with high probability. We say that S is
p-reliable, if the maximum probability of an error (i.e. SD(k, SEC(k,m,h)) # m) is bounded
by 1 — p(k) for every message m and every history h. If S is p-reliable for a negligible p, we
call S reliable. In addition to this, SE wants to embed as much information as possible into a
document in order to reduce the overhead of the transmission. We say that S is rate-efficient,
if there is constant a > 0 such that b(x) > H(Cy(,))® for all £ (we thus embed n® bits per
document with entropy n).

2.1 Security of a Stegosystem

A warden W is a PPTM that should decide whether the communication parties use steganog-
raphy or not. In order to do so, W chooses a history and a message and presents this to a
challenge oracle CH which, on key k, message m and history h outputs a sequence of £(k)
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documents dy, . .., d;. This sequence is either the output of the stegosystem SEC(k,m, h) for
a uniformly chosen key k or the ¢-fold output C¢(m, h) of the channel with the distribution
Ce(m, h) ~ (Chon(r) Chdyn(s)s - -+ > Chdydaede_1m(x))-

The goal of W is now to reconstruct whether the challenge oracle is SEC(k,-,-) (it
outputs 0 or »Stego«) or Cy(+,-) (it outputs 1 or »not Stego«). More precisely, we consider

the following experiment for an chosen hiddentext attack (CHA):
e

Steganographic Security cHA,(W,S,C)

k « {0,1}"%;

b+ {0,1};

if b=0then CH := SE(k,-,-) else CH := Cy(-,");

b WCneCHEN (1%): // W chooses h and m for CH

L if b =V then return 1 else return 0 )

R

Note that the warden has several liberties: It may choose the history for the channel oracle
(the stegosystem can only work with its given history), the history submitted to the challenge
oracle and the message submitted to the challenging oracle.

As W is able to chose the message (or the hiddentext), we say that the chosen hiddentext

attack (CHA) advantage Advyy's o (k) of W on the stegosystem S on channel C is given as

Advyys o(k) =2- |Pr[cHA, (W, S,C) = 1] — 1/2

)

where the probabilities are taken over the random choice of k£ and the randomness of CH, W
and the channel. The random hiddentext attack (RHA) advantage Advyy’s o(k) of a warden
W is defined similarly with the difference that the messages given to the challenge oracle CH
are chosen randomly instead of adversarially. This is a much weaker security requirement
than CHA-security. Finally, for X € {CHA,RHA}, the X-insecurity InSecs((q,t, %) of a

stegosystem S on the channel C is defined as

InSecy c(q,t, k) = HlV%X{AdV)I;/)S7C(H)}.

The maximum is taken over all wardens W that make an expected number of ¢(k) queries
and run in expected time ¢(x). We say that S is X-e-secure, if InSecs ¢(q,t, k) < () for all
polynomials ¢ and ¢ and X-secure if it is X-negl-secure for a negligible function negl.

2.2 Cryptographic Primitives

We recall briefly the definitions of the following three cryptographic primitives and the known
relationships between them. For exact definitions see e.g. the literature quoted below.

One-Way Function. A polynomial time computable function F': {0,1}* — {0,1}* is called
a one-way function, if every algorithm (inverter) upon input F'(z) fails to produce an element
x’ such that F(z') = F(x).

Signature Scheme. A signature scheme SZG consists of a probabilistic key-generation
algorithm G, that produces a secret key and a public key, a probabilistic signing algorithm
S, that takes the secret key, a message and produces a signature for the message and a
deterministic verifying algorithm V', that takes the public key and tests whether a message-
signature pair is valid. An attacker either gets random valid message-signature pairs (random-
message attack (RMA)) or can produce valid signatures for chosen messages (chosen-message
attack (CMA)). Its goal is to produce a fresh message-signature pair.
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Symmetric Encryption Scheme. A symmetric encryption scheme SES consists of an
encryption algorithm ENC, which takes a secret key and a plain text and produces a
cyphertext. This cyphertext can be decoded by the decryption algorithm DEC with the
help of the same secret key. An attacker is given access to an oracle, which either encrypts
a message chosen by the attacker (the real message) or gives a totally random cyphertext
(the random message). The goal of the attacker is to distinguish those cases. We denote
the advantage of an attacker A to distinguish real messages from random ones (ROR) on a
symmetric encryption scheme SES with key length & by Advggs 4(k). Also, the probability
that the decrypted message does not equal the original message must be negligible.

There is a deep connection between those primitives, as all of them are equivalent to each
other. The groundbreaking works [3, 13, 17, 19, 32] imply the following:

» Theorem 8 (informal). One-Way functions exists < RMA-secure signature schemes exists
& CMA-secure signature schemes exists < secure symmetric encryption schemes exist

In Section 3, we construct an RMA-forger on a special signature scheme ‘Sﬁ, that is
“complete” for all signature schemes, i.e., if gSTi\g is insecure, every signature scheme is insecure.
The construction of such a complete signature scheme relies on the following theorem of
Levin which states the existence of a complete one-way function F:

» Theorem 9 (Levin [30]). The function F is a one-way function iff one-way functions exist.

Combining Theorem 8 and Theorem 9, we get the following corollary needed to construct
the “complete” signature scheme SZG:

» Corollary 10. The signature scheme STG is RMA-secure iff one-way functions exist.

3 A Channel C such that Efficient Steganography on C Does Imply
the Non-existence of One-way Functions

The main result of this section, Corollary 14, says that for the widely used channel specified
by a signature scheme protocol, secure and efficient steganography implies that one-way
functions do not exist. Then we show that our construction can be generalized for more
channels. We will only work with RHA-secure stegosystems in this section, as impossibility
results upon this weaker notion imply the same results for CHA-secure stegosystems.

Our first technical goal is to formalize the following intuition: A secure and reliable
stegosystem for a channel C must (a) have negligible probability of producing documents
outside of supp(Cp, ) and (b) be able to generate new documents out of the sampled documents.
These properties have been formulated first in [10] for universal stegosystems.

We start with showing that the probability that the output of a secure stegosystem is
not in the support of the channel is small (under the assumption that Warden can efficiently
test whether a document belongs to the support of the channel). Before, let us introduce an
auxiliary notion of a membership-testable channel with confidence parameter v: We say that C
is membership-testable with confidence parameter v if there exists a probabilistic polynomial
time algorithm, call it Test, which takes a polynomial number & = 21, x2, ..., x4 of documents
such that Cyypy. .z, _, (2;) > 0 for every ¢ > 1 and a document z and it either returns 1 or
0 such that the probability Prz. gupp(c,.,.)[Test(Z,2) = 1] is > 1 — v, if 2 € supp(Cz,») and
< v otherwise.

Con

» Lemma 11. Let § = [SE,SD] be a stegosystem for the message space {My}nen with
document length n and output length ¢ for the channel C such that & is RHA-e-secure.
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Furthermore, let C be membership-testable with parameter v. Then for all Kk € N, m €
supp(M,), histories h, and all i = 1,...,4(k), it holds for d; = SE€(k,m,h); that
Pri 0,13+ [di & supd(Chdyd,...d; 1 n(x))] < €(k) + 20

Next, we will prove that, as long as the support of Cp,, is large enough, a reliable
stegosystem needs to produce non-seen examples of supp(Cp ). Intuitively, we need to
embed | supp(M,,)| ~ 2" messages (hereby creating at least 2" different documents) while
we only have access to pol(n) example documents. Note that for a rate-efficient polynomial

time stegosystem, the term % = b(k) is of the form k“ for a a > 0 and thus the
o(r) o) £(k) | (k) .
term |Sﬁ$)(m)| = 2(11’((':3»13(@ = <2qb((i))> ~ (p;,f('f)) is negligible.

» Lemma 12. Let S = [SE, SD] be a p-reliable stegosystem for the message space { My }nen
with sample complexity ¢ and output length ¢ for the channel C. Then for every k, the

probability that the encoder SE produces a cover-document, which was not provided by the
q(r)“

channel oracle, is at least 1 — p(k) — Teupp M-

The proofs of the lemmas above are similar to those presented in [10], thus we skip them.

We will now combine the two lemmas in order to construct an attacker to a signature
scheme. For a signature scheme SZG = [G, S, V], define the channel Cszg with probability
distributions Cj, ,, as follows: If h is the empty history &, the probability distribution Cg ,, is
the uniform distribution on all public keys generated by G(1™). If (pk, sk) € supp(G(1™)),
the probability distribution Cpy », is then created by the following experiment:

Distribution of Cpy »,

1. m + M8 g « S(sk,m); return (m,o)

n

Furthermore, for every i > 1 and every series of valid (with respect to (pk, sk)) message-
signature pairs (m1,01), (M2, 02) ... the distribution Cp(m, 01 )(ms,o)...(ms,0:),n 15 also equal
to Cpk,n. Note that Cszg is membership-testable with confidence parameter 0 due to the
public key. A similar technique was used by Dwork et al. [12] and later by Ullman [34] in
the context of differential privacy [11]. They prove that a certain class of databases exists
such that any algorithm for a given set of counting queries is either not differentially private
or inaccurate.

» Theorem 13. Let STG = [G,S,V] be a signature scheme. If there exists a polynomial
time stegosystem S = [SE, SD] for Cszg for the message space { My, }nen with rate b, output
length £ and sampling complezity q such that S is RHA-e-secure and p-reliable on Cszg, then
there exists an efficient forger on STG with advantage at least 1 — e(k) — p(k) — %

for every k.

Combining Theorem 13 and Corollary 10 with 6@, we obtain the following result that
directly implies Theorem 3.

» Corollary 14. The existence of a secure, reliable and rate-efficient polynomial time stego-
system on the channel CS/I\Q implies that one-way functions do not exist.

In the rest of this section we show that the proof of Theorem 13 can be generalized
to more channels if they can express the signature scheme. Examples for such channels
include satisfying assignments of 3-CNF formulas or satisfying assignments of monotone
2-CNF formulas. Our construction is inspired by the work of De et al. [9] who used a similar
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technique to show that it is not possible to uniformly generate satisfying assignments to a
3-CNF formula if one is given polynomial many samples of satisfying assignments.

Let SZG = [G, S, V] be a signature scheme and in(x) be an upper bound on the size of
every message-signature pair constructed by the signing algorithm .S on security parameter .
Let B be a function class of Boolean functions such that there is a polynomial time
invertible Levin reduction [A, B, C] from CIRCUIT-SAT (see e.g. [1] for a formal definition)
to B. Such a reduction transforms a circuit € into a function f := A(€) and a satisfying
assignment (3 of € into a value x := B(£, ) with f(z) = 1. Furthermore, every ' with
f(@’) =1 can be transformed into a satisfying assignment 8’ := C(f,z’) of €& Moreover
let v: A(CIRCUIT-SAT) — {0, 1}* be a polynomial time encoding of the functions generated
by the reduction such that red(k) is an upper bound on |y(A(£))|, if € has in(k) input
gates. Furthermore, let C be a channel with probability distributions Cj, ,, defined as follows.
For the empty history @, the distribution Cg , is the uniform distribution on v(A({€ |
€ has in(x) input gates})) C {0,1}7°4®). For every history ho = v(A(€)) the probability
distribution Cp, , is the uniform distribution on documents x € {0,1}"(*) with A(€)(z) = 1.
Furthermore, for every ¢ > 1 and every series of documents z1,zs,... € {0, 1}”’(”) with
A(€)(z;) = 1 for every j, the probability distribution Cpyz,a,...2,,x i also the uniform
distribution on the documents x € {0,1}™*) with A(€)(z) = 1. Moreover, assume C is
membership-testable with confidence parameter v.

» Theorem 15. Let SZG be a signature scheme and let C be a channel as defined above.
Assume S is a polynomial time stegosystem for the message space { M, }nen with transmission
rate b, output length £ and sampling complexity q for C such that S is RHA-e-secure and
p-reliable on C. Then for every k, there is a polynomial forger for SIG (k) with advantage at

K L(r)
least 1 — e(k) — 2v — p(k) — %

4 A Channel C such that Efficient Steganography on C Does Imply
the Existence of One-way Functions

We will now show a channel C such that secure and reliable steganography on it implies the
existence of one-way functions (this will follow from the theorem below and Theorem 8).
The channel is assumed to be efficiently sampleable, i.e. such for which a polynomial time
algorithm simulating sampling from C exists. Then a straightforward argument implies the
following equivalences between steganography and cryptography.

» Theorem 16. Let C be a channel with Cp, , = Cpy 4 := Cy, for all histories h,h' and assume
C is efficiently sampleable. If there exists a secure, reliable, and rate-efficient (polynomial
time) stegosystem S = [SE,SD] for the channel C with message space { My }nen, then
there exists a secure symmetric encryption scheme SES for the plaintexts { MP™ ),y with
MPRIN = M, and cyphertexts { MSPPY o with MEYPher = Cf;((';))

» Theorem 17. Let SES be a secure symmetric encryption scheme on plaintexts { MR}
and cyphertexts {MSYPher} . Let C be a channel with the documents supp(MSYPEer) and
Chon = MSYPET for every h. There exists a secure, reliable, and rate-efficient (polynomial
time) stegosystem S for C with message space { My }nen with M,, = MPin,

n

Thus, reasonable steganography on e.g. the channel C, that is the uniform distribution
on {0,1}", is equivalent to the existence of one-way functions. This proves Theorem 5.
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5 Conclusions and Further Work

We have proved that steganography and cryptography are somehow orthogonal to each
other. To show this statement, we constructed a specific channel based upon secure signature
schemes and proved that every rate-efficient stegosystem on this channels breaks the security
of the signature scheme. By using a universal one-way function due to Levin, we were then
able to show that the existence of such a rate-efficient stegosystem implies that one-way
functions do not exist. This is a generalization of the result of Dedié et al. [10], who only
proved the existence of a family of channels F such that the existence of a rate-efficient
stegosystem that works for every channel in F implies the non-existence of one-way functions.
We thus proved that there is a channel C; such that rate-efficient steganography on C; implies
the non-existence of one-way functions. On the other hand, we also gave a simple channel Cy
and proved that rate-efficient steganography on Cy implies the existence of one-way functions.

The existence of those channels thus implies that statements of the form “Steganography
is Cryptography” or “Steganography implies Cryptography” are wrong in this universality.
Furthermore, it proves that the communication channel is a fundamental object in steganog-
raphy and can not be ignored. In order to explore the fascinating connection between
steganography and cryptography, it would be interesting to broaden our understanding of the
influence of the communication channels. The work of Liskiewicz et al. [31] already showed
that knowledge or ignorance about some aspect of the channels has a significant impact on
the steganographic setting.
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—— Abstract

Guarding a polygon with few guards is an old and well-studied problem in computational geo-
metry. Here we consider the following variant: We assume that the polygon is orthogonal and
thin in some sense, and we consider a point p to guard a point ¢ if and only if the minimum
axis-aligned rectangle spanned by p and ¢ is inside the polygon.

A simple proof shows that this problem is NP-hard on orthogonal polygons with holes, even if
the polygon is thin. If there are no holes, then a thin polygon becomes a tree polygon in the sense
that the so-called dual graph of the polygon is a tree. It was known that finding the minimum
set of r-guards is polynomial for tree polygons (and in fact for all orthogonal polygons), but the
run-time was O(n'7). We show here that with a different approach one can find the minimum set
of r-guards can be found in tree polygons in linear time, answering a question posed by Biedl et
al. (SoCG 2011). Furthermore, the approach is much more general, allowing to specify subsets
of points to guard and guards to use, and it generalizes to polygons with h holes or thickness K,
becoming fixed-parameter tractable in h + K.

1998 ACM Subject Classification 1.3.5 Computational Geometry and Object Modeling

Keywords and phrases Art Gallery Problem, Orthogonal Polygons, r-Guarding, Treewidth,
Fixed-parameter Tractable

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2016.17

1 Introduction

The art gallery problem is one of the oldest problems studied in computational geometry.
In the standard art gallery, introduced by Klee in 1973 [21], the objective is to observe a
simple polygon P in the plane with the minimum number of point guards, where a point
p € P is seen by a guard if the line segment connecting p to the guard lies entirely inside the
polygon. Chvétal [4] proved that |[n/3| point guards are always sufficient and sometimes
necessary to guard a simple polygon with n vertices. The art gallery problem is known to be
NP-hard on arbitrary polygons [18] and orthogonal polygons [24]. Even severely restricting
the shape of the polygon does not help: the problem remains NP-hard for simple monotone
polygons [17] and for orthogonal tree polygons (defined precisely below) if guards must be at
vertices [26]. Further, the art gallery problem is APX-hard on simple polygons [9], but some
approximation algorithms have been developed [12, 17]. A number of other types of guards
have been studied, especially for orthogonal polygons. See for example guarding with sliding
cameras [15, 8], guarding with rectangles [10] or with orthogonally convex polygons [20]. Also,
different types of visibility have been studied, especially for orthogonal polygons: guards
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could be only seeing along horizontal or vertical lines inside P, or along an orthogonal
staircase path inside P [20], or use r-visibility (defined below).

Definitions and Model. Let P be an orthogonal polygon with n vertices. The pizelation
of P (also called dent diagram [6] and related to a rectangleomino [1]) is the partition of
P obtained by extending a horizontal and a vertical ray inward at every reflex vertex, and
expand it until it hits the boundary. Let ¥ be the resulting set of rectangles that we call
pizels (also called basic regions [27]). See Figure 1 for an example. Note that |¥| could be
quadratic in general. We will sometimes interpret the pixelation as a planar graph, with one
vertex at every corner of a pixel and an edge for each side of a pixel. Define the dual graph
D of a polygon P to be the weak dual graph of the pixelation of P, i.e., D has a vertex for
every pixel and two pixels are adjacent in D if and only if they have a common side.

An orthogonal polygon P is called a thin polygon if any pixel-corner lies on the boundary
of P. It is called a tree polygon if its dual graph is a tree. One can easily see that a tree
polygon is the same as a thin polygon that has no holes (see also Lemma 9). For most of
this paper, polygons are assumed to be thin polygons.

We say that point g r-guards a point p if the minimum axis-aligned rectangle R(g,p)
containing g and p is a subset of P. The (standard) rGuarding problem hence consists of
finding a minimum set S of points such that any point in P is r-guarded by a point in S.
However, our results work for a broader problem as follows. Let U C P be the region that
we wish to guard. In particular, we could choose to guard only the vertices of P, or only
the boundary, or only those parts of the art gallery that truly need to be watched. Let T’
be the set of guards that are allowed to be used (in particular, we could choose to use only
vertices as guards). In the standard problem, T' is the set of all points in P. Biedl et al. [1]
introduced pizel-guards, where one guard consists of all the points that belong to one pixel
(see Figure 1). Our approach allows pixel-guards, so I' C PUW. Now the (U,T, P)-rGuarding
problem consists of finding a minimum set S of guards in I' such that all of U is r-guarded
by some guard in S (or to report that no such set exists).

Restricting the region that needs to be guarded exacerbates some degeneracy-issues for
r-guarding. Previous papers were silent about what happens if rectangle R(g,p) (in the
definition of r-guarding) is a line segment. For example, in Figure 1, does g guard u4? Does
uy guard uyg? This issue can be avoided by assuming that only the interior of pixels must be
guarded (as seems to have been done by Keil and Worman [27], e.g. their Lemma 1 is false
for point uy4 located in the pixel ¥ in Figure 1, because uy4 sees ¢ € P but not all points in
110 do). When the entire polygon needs to be guarded, then this is a reasonable restriction
since the guards that see the interior also see the boundary in the limit. But if only a subset
of P must be guarded, then we must clarify how degeneracies are to be handled. We say
that an axis-aligned rectangle R is degenerate if it has area 0 (i.e., is a line segment) and
there exists no rectangle R’ with positive area and R C R’ C P. In Figure 1, R(g,uy) is
degenerate while R(uy,u4) is not. Our approach is broad enough that it can handle both
allowing and disallowing the use of degenerate rectangles when defining r-guarding.

Related Results. The problem of guarding orthogonal polygons using r-guards was in-
troduced by Keil [16] in 1986. He gave an O(n?)-time exact algorithm for the rGuarding
problem for horizontally convex orthogonal polygons. The complexity of rGuarding in simple
orthogonal polygons was a long-standing open problem until 2007 when Worman and Keil [27]
gave a polynomial-time algorithm for it. However, the algorithm by Worman and Keil is
quite slow: it runs in O(n'7)-time, where n denotes the number of the vertices of P and O
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Figure 1 A tree polygon with pixels {u1,...,%13} and maximal axis-aligned rectangles
{p1,...,ps}; rectangle ps is degenerate. Pixel-guard s guards us via its top-right corner.

hides a poly-logarithmic factor. As such, Lingas et al. [19] gave a linear-time 3-approximation
algorithm for rGuarding in simple polygons. Faster exact algorithms are known for a number
of special cases of orthogonal polygons [16, 6, 22]. All these algorithms require the polygon
to be simple. We are not aware of any results concerning the rGuarding problem for polygons

with holes, or if only the vertices or only the boundary need to be guarded or used as guards.

The first results on guarding thin polygons were (to our knowledge) in [1]; they studied
guarding pixelations and asked whether this can be done more easily if the dual graph
is a tree. However, no better results than applying [27] were found. Later, Tomas [26]
showed that indeed guarding tree polygons' is NP-hard in the traditional guarding-model
(i.e. g guards p if the line segment gp is in P), and if all guards must be at vertices. The
complexity of guarding thin polygons in the r-guarding model remained open. Paper [1] was
also (apparently) the first paper to consider pixel-guards in place of point-guards.

Our Results. In this paper, we resolve the complexity of the rGuarding problem on thin
polygons. We show with a simple reduction from Vertex Cover in planar graphs that this
problem is NP-hard on polygons with holes, even if the polygon is thin. As our main result,

we show that the rGuarding problem is linear-time solvable on thin polygons without holes.

Comparing our results to the one by Worman and Keil [27], their algorithm works for
a broader class of polygons (they do not require thinness), but is slower. Moreover, their
approach crucially needs that the polygon is simple, that the entire polygon needs to be
guarded, and that any point in the polygon can guard. In contrast to this, our approach
generalizes easily to a number of other scenarios. First of all, it is not crucial that the polygon
is simple; we can deal with any constant number h of holes. Secondly, we can choose what
has to be guarded and what to guard with; we can hence also solve all art gallery variants
where only the vertices or only the boundary need to be guarded, or where only guards at
the vertices or the boundary are allowed to be used. Finally, the restriction on thinness can
be relaxed. We use thinness only to bound the treewidth of the dual graph of the polygon,
and as long as the treewidth is bounded the approach works. In particular, if the polygon is
K-thin in some sense, and has at most h holes, then for constants A and K our algorithm is
still linear, and the rGuarding problem hence is fixed-parameter tractable in h + K.

! Tomas constructs only simple polygons and hence used the term “thin polygon” for tree polygons.
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Figure 2 Converting an orthogonal drawing without bends into a polygon for rGuarding. R. is
hatched, R, is gray, and s, is dotted.

2 NP-hardness

In this section, we prove that rGuarding is NP-hard in polygons with holes. The reduction
is from Vertex Cover in planar graphs with maximum degree 3; it is well-known that this
is NP-hard [11]. So let G = (V, E) be a planar graph with maximum degree 3. Let G*® be
the graph obtained from G by subdividing every edge twice. It is folklore (see e.g. [23]) that
G has a vertex cover of size k if and only if G® has a vertex cover of size |E| + k. G has a
planar orthogonal drawing with at most one bend per edge (see e.g. [14]). By placing one
subdivision vertex of each edge at such a bend (if any) and placing the other subdivision
vertex arbitrarily, we hence obtain a drawing I' of G* where every vertex is a point, every edge
is a horizontal or vertical line segment, and edges are disjoint except at common endpoints.

We construct a polygon P as a “thickened” version of I'. After possible scaling, we may
assume that I' resides in an integer grid with consecutive grid-lines at least 2n units apart,
where n = |V|. Replace each horizontal edge e by a rectangle R, of unit height, spanning
between the points corresponding to the ends of e. Similarly replace each vertical edge by a
rectangle of unit width. These rectangles will get moved later, but never so far that they
would overlap edge-rectangles from other rows or columns.

We replace vertex-points by small gadgets as illustrated in Figure 2. Thus, let v be a
vertex of degree 3 in G*; up to rotation it has incident edges e1, ea, e3 on the left, right and
top in I'. Replace v by two adjacent pixels, one above the other; we denote the resulting
gadget by R,. Then, attach R, at the top of the upper pixel, R., at the left side of the
upper pixel and R., at the right side of the lower pixel. Let s, be the side common to the
two pixels of R,. Rectangles R., and R., are not quite horizontally aligned, resulting in one
of them being offset from the grid-line. However, in total over all vertices in the row, there
are at most n offsets, and so edge-rectangles remain disjoint. For any vertex of degree 2,
omit the third rectangle and also any pixel that is not needed.

» Observation 1. For any vertex v, any point in s, guards the rectangles R, of any incident
edge e = (v, w), as well as the pizel of w where R, attaches. Moreover, for any edge e = (v, w),
if any point in R, is r-guarded from a point q, then q belongs to R., R, or R,,.

Using this observation, the reduction is immediate. Namely, let C' be a vertex cover of
G of size k. For any v € C, place a guard anywhere along s,. Since C was a vertex cover,
this r-guards R, for all edges, and also R,, for all w ¢ C since each pixel of R,, is attached
to some R.. Vice versa, if we have a set S of r-guards, then we can create a set C' as follows:
For any vertex v, if R, contains a guard in S, then add v to C. For any edge e = (v, w), if
R, contains a guard in S that is in neither R, nor R,,, then arbitrarily add one of v, w to C.
Clearly |C| < |S|, and since any rectangle R, was guarded, any edge in F is covered by C.
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Inspection of Figure 2 shows that the constructed polygon is thin. Observe that it has
holes, namely, one per face of G. Since rGuarding is clearly in NP, we can conclude:

» Theorem 2. The rGuarding problem is NP-complete on thin polygons.

3 Polygons Whose Dual Has Bounded Treewidth

We now show how to solve the rGuarding problem in a tree polygon in linear time. In fact,
we show something stronger, and prove that the rGuarding problem can be solved in linear
time in any polygon for which the dual graph D has bounded treewidth, and under any
restriction on the set U to be guarded and the set I" that may serve as guards.

The approach is to construct an auxiliary graph H, and argue that solving the rGuarding
problem reduces to a graph problem in H. Then we argue that the treewidth of H satisfies
tw(H) € O(tw(D)) and that the graph problem is linear-time solvable in bounded treewidth
graphs. This auxiliary graph is different from the so-called region-visibility-graph used by
Worman and Keil [27] in that it encodes who can guard what, rather than who can be
guarded by a common guard.

3.1 Simplifying U and T

We first show that we can simplify the points to guard and the point-guards to use such that
only a constant number of each occur at each pixel.

» Lemma 3. Let U C P be any (possibly infinite) set of points in P. Then there exists a
finite set of points U' C U such that U’ is r-guarded by a set S if and only if U is. Moreover,
for any pizel v, at most 4 points in U’ belong to .

Proof. We construct the set U’ as follows.
For every pixel ¢, if the interior of ¥ intersects U, then add one point from this intersection
into U’.
For every pixel-side e, if neither incident pixel has a point of U in its interior, but the
open set e intersects U, then add one point from this intersection to U’,
For every pixel-corner ¢, if ¢ € U, and if none of the incident pixels or pixel-sides has
added a point to U’, then add ¢ to U’.
Correctness can be shown easily (see the full version [2]), by arguing that any two points in
the strict interior of one pixel ¥ are guarded by the same set of guards, and similarly for
points in the relative interior of a side of a pixel. <

» Lemma 4. Let T' C P be any (possibly infinite) set of points in P. Then there exists a
finite set of points I C T' such that for any pizel ¢, at most 4 points in T” belong to 1.
Moreover, if some set S C T' r-guards a set U C P, then there exists a set S C T with
|S’] < |S| that also r-guards U.

Proof. We construct the set T follows:
For every pixel-corner c, if ¢ € I" then add ¢ to I".
For every pixel-side e, if neither endpoint of e is in I', but some interior point of e is in I,
then add one such point to I".
Finally, for every pixel v, if no corner is in I' and no side has a point in I', but the interior
of 1 contains points in I', then add one such point to I".

Correctness can be shown easily (see the full version [2]). <
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Figure 3 The graph H corresponding to Figure 1 for the chosen U and I'. The thick red path
corresponds to the pixel-guard 15 seeing the point usz since both intersect rectangle p3. Rectangle
ps and its incident edges are included in H only if we allow degenerate rectangles.

3.2 Maximal Rectangles and an Auxiliary Graph

Assume we are given a polygon P, a region U C P to be guarded, and a set I' of guards
allowed to be used. In what follows, we treat any element v € I" as a set, so either vy = is a
pixel-guard or v = {p} is a point-guard.
As a first step, apply Lemmas 3 and 4 to reduce U and the point-guards in I" so that they
are finite sets, each pixel contains at most 4 points of U, and at most 4 point-guards of T'.
Let R be the set of maximal axis-aligned rectangles in P, i.e., p € R if and only if p C P
and there is no axis-aligned rectangle p’ with p C p’ C P. In this definition of R, we use
the one that was meant for r-guarding, i.e., we include degenerate rectangles in R if and
only if a degenerate rectangle R(g,p) is sufficient for ¢ to r-guard p. Now define graph H
as follows. The vertices of H are U UR UT, i.e., we have one vertex for every point that
needs guarding, one for every maximal rectangle in P, and one for every potential guard.
We define edges of H via containment as follows (see also Figure 3).
(i) There is an edge from a point u € U to a rectangle p € R if and only if u € p.
(ii) There is an edge from a potential guard v € I to a rectangle p € R if and only if their
intersection is non-empty.

» Lemma 5. 4 point u € U is r-guarded by v € I' if and only if there exists a path of length
2 from u to v in H.

Proof. If u is r-guarded by <, then there exists some g € ~ such that the axis-aligned
rectangle R spanned by p and ¢ is inside P. Expand R until it is maximal to obtain p € R.
More precisely, if R is non-degenerate, then use as p some maximal rectangle that has
non-zero area and contains R. If R is degenerate, then obviously degenerate rectangles were
allowed for r-guarding, and so expanding R into a maximal line segment within P gives an
element p of R. Either way u € R C pand g € R C p and we have a path u —p — g in H.
Vice versa, if there exists such a path, then it must have the form u — p — v for some
maximal rectangle p by construction of H. By definition of the edges, u € p and some point
g € ~y satisfies g € p, which means that the axis-aligned rectangle spanned by u and g is
inside p C P and so g (and with it ) guards u. <

So, the rGuarding problem reduces to finding the minimum subset S C I' such that all
u € U have a path of length 2 to some vy € S, or reporting that no such S exists. We call
this the restricted distance-2-dominating set since this is the distance-2-dominating set [25]
with restrictions on who can be chosen and who must be dominated. Therefore, we have:



T. Biedl and S. Mehrabi

(Vg ¥r) (7,1s)

Pz¢ P6 ¢ ¢P7
P ost or 1 o o] [0 4. %n o
| P4 P55 Po (V11,912) (Y12, ¢13)
[ Y . _e-
P5 P 2 1 g P8
1o 1/111 W12, ) - )
1 Vi3 1,9 (Prs. )

P4, P55 P6

Figure 4 The tree decomposition TH = (I, XH) of graph H corresponding to a sub-polygon of
the one in Figure 1. We label the bags with the edges of the tree they correspond to.

» Lemma 6. The (U, T, P)-rGuarding problem has a solution of size k if and only if the
restricted distance-2-dominating set in H has a solution of size k.

3.3 Constructing a Tree Decomposition

Recall graph D, the weak dual graph of the pixelation of polygon P. Assume now that the
dual graph D has small treewidth, defined as follows. A tree decomposition of a graph D
consists of a tree I and an assignment X : I — 2V(P) of bags to the nodes of I such that
(a) for any vertex v of D, the bags containing v form a connected subtree of I and (b) for
any edge (v, w) of D, some bag contains both v and w. The width of such a decomposition
is maxxex |X| — 1, and the treewidth tw(D) of D is the minimum width over all tree
decompositions of D.

Fix a tree decomposition 7 = (I, X) of D that has width tw(D). We now construct a
tree decomposition of H from 7 while increasing the bag-size by a constant factor. Any bag
X € X consists of vertices of D, i.e., pixels of P. To obtain 7' = (I, X’), modify any bag
X € X to get X' as follows: For any pixel ¢ € X, add to X’

any point of U that is in 1,

any guard of I' that intersects v, and

any rectangle in R that intersects 1.

Finally we may (optionally) delete all pixels from all bags, since these are not vertices of
H. We call the final construction 7H = (I, X*). See also Figure 4.

» Lemma 7. For any polygon, TH = (I, X*) is a tree decomposition of H. If P is thin,
then the tree decomposition has width O(tw(D)).

Proof. First we argue that for any vertex of H the bags containing it are connected. Crucial
for this is that for any pixel v, the bags that used to contain ¢ in 7 are a connected subtree
since T was a tree decomposition. First consider a point p. (We use p for both the point
and for the vertex in H representing it.) Vertex p was added to all bags that contained a
pixel ¢ with p € . There may be multiple such pixels (if p is on the side or the corner of a
pixel), but the union of them is a connected subgraph of D. For any connected subgraph,
the bags containing vertices of it form a connected subtree. So the bags to which p has been
added form a connected subtree of the tree I of the tree decomposition as required.

The connectivity-argument is identical for a point-guard, and similar for pixel-guards
and rectangles. Namely, consider a vertex of H representing a pixel-guard ~. This guard
was added to all the bags that contained a pixel ¢ that intersects 7. Again there may be
many such pixels (up to 9), but they are connected via ¢ and so the bags to which ~ is
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added are connected. Finally, consider a rectangle p € R which was added to all bags of
pixels intersecting p. The pixels that p intersects form a connected subset of P (because they
are connected along p), and hence correspond to a connected subgraph of D. So the bags
containing p form a connected subtree. Now we must verify that for any edge of H, both
endpoints appear in a bag. Let (u, p) be an edge from some point u to some rectangle p. Let
1 be a pixel containing u. Then p N O {u} is non-empty and so p was added to any bag
containing 1. We also added u to any bag containing 1, so u and p appear in one bag. Now
consider some edge (7, p) from a guard ~ to some rectangle p. This edge exists because some
point g € v belongs to p. Again fix some pixel 1 that contains g and observe that any bag
that contained ¥ has both g and p added to it.

It remains to discuss the width of the tree decomposition. Consider a bag X of 7 and
one pixel ¥ in X. Since we reduced U and I' with Lemma 3 and 4, pixel ¥ intersects at most
4 points in U and at most 4 point-guards. It also intersects at most 9 pixel-guards. Finally,
one can show that in a thin polygon ¢ intersects at most 6 maximal rectangles. (A more
general statement will be proved in Lemma 14.) Thus when creating bag X’ from bag X we
add O(1) new items per pixel and hence |X’| € O(|X|) and T has width O(tw(D)). =

3.4 Solving 2-dominating Set

To solve the restricted distance-2-dominating set problem on H, we first show that the
problem can be expressed as a monadic second-order logic formula [5]. In particular, a set S
is a feasible solution for this problem if and only if

SCT AN YueU3TpeRIyeS: adj(u,p) Aadj(p,7)

where adj is a logic formula to encode that its two parameters are adjacent in H. Since H
has bounded treewidth, we can find the smallest set S that satisfies this or report that no
such S exists in linear time using Courcelle’s theorem [5]. Here “linear” refers to the number
of bags and hides a term that only depends on the treewidth. One can show that a thin
polygon has O(n) pixels (we will show something more general in Lemma 13). Therefore
graph D has O(n) vertices and hence a tree decomposition with O(n) bags. In consequence
the run-time is hence O(f(tw(D))n) for some computable function f.

3.5 Run-time considerations

We briefly discuss here how to do all other steps in linear time, under some reasonable
assumptions. The first step is to find the pixels. To do so, we need to compute the
vertical decomposition (i.e., the partition obtained by extending only vertical rays from
reflex vertices), which can be done in O(n) time [3]. Likewise, compute the horizontal
decomposition. Since (in a thin polygon) none of the rays intersect, we can obtain the pixels
(and with it, the pixelation-graph and D) in linear time. Since D is planar, we can compute
an O(1)-approximation of its treewidth in linear time [13], and hence can find 7 with width
O(tw(D)). Next we need to simplify U and I'. The run-time to do so depends on the exact
form of the original U and T', but as long as those have a simple enough form that we can
answer queries such as “does the interior of pixel v intersect U” in constant time, the overall
time is O(1) per pixel and hence overall linear.

Next we need to find the rectangles R. In a thin polygon, all maximal rectangles are either
a “slice” defined by the vertical or horizontal decomposition, or are a maximal line segment
composed of pixel sides. All such slices and maximal line segments can be found from the
pixelation in linear time, and there are O(n) of them. This may yield some rectangles that



T. Biedl and S. Mehrabi

are not maximal, but we can retain those without harm since even then any pixel intersects
O(1) rectangles. Constructing H from these three sets, and building 7% given T, can also
clearly be done in linear time. Putting everything together, we hence have:

» Theorem 8. Let P be a thin polygon for which the dual graph has treewidth k. Then
for any set U C P and ' C PU Y, we can solve the (U, T, P)-rGuarding problem in time
O(f(k)n) time for some computable function f.

4  Generalizations

In this section, we give some applications and generalizations of Theorem 8.

4.1 Thin Polygons with Few Holes

We claimed earlier that a simple thin polygon is a tree polygon, and give here a formal proof
because it will be useful later.

» Lemma 9. Let P be a thin polygon. If P has mo holes, then the dual graph D of the
pizelation of P is a tree.

Proof. Assume for contradiction that D contains a cycle. By tracing along the midpoints of
the pixels-sides corresponding to this cycle, we can create a simple closed curve C that is
inside P, yet has pixel-corners both inside and outside C. In a thin polygon, all pixel-corners
are on the boundary of P, so the boundary of P has points both inside and outside a simple
closed curve that is strictly within P. This is possible only if P has holes. <

Since every tree has treewidth 1, we hence have:

» Corollary 10. Let P be a thin polygon that has no holes. Then for any sets U C P and
I C PUW, we can solve the (U,T, P)-rGuarding problem in O(n) time.

Inspecting the proof of Lemma 9, we see that in fact every cycle of D gives rise to a hole
that is inside the curve defined by the cycle. If D has f inner faces, then each face defines a

cycle in D, and the insides of these cycles are disjoint. Therefore, D has at least f holes.

Turning things around, if the polygon has h holes, then D has at most h inner faces. In
consequence, D is a so-called h-outerplanar graph (i.e., if we remove all vertices from the
outer-face and repeat h times, then all vertices have been removed). It is well-known that
h-outerplanar graphs have treewidth O(h) (see e.g. [7]).

» Corollary 11. Let P be a thin polygon with h holes. Then for any sets U C P and
' CPUY, we can solve the (U,T', P)-rGuarding problem in time O(f(h)n) time for some
computable function f.

4.2 Polygons That are not Thin

The construction of the tree decomposition of H in Section 3.3 works even if P is not thin.

However, the bound on the resulting treewidth, and the claim on the linear run-time both
used that the polygon is thin. We can generalize these results to polygons that are somewhat
thicker. More precisely, we say that a polygon is K-thin (for some integer K > 1) if the
dual graph D of P contains no induced (K + 1) x (K + 1)-grid. A thin polygon is a 1-thin
polygon in this terminology, because a pixel-corner is in the interior if and only if the four
pixels around it form a 4-cycle, hence a 2 x 2-grid, in D. Notice that K-thin is equivalent
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to saying that the pixelation-graph has no induced (K + 2) x (K + 2)-grid. We need some
observations:

» Lemma 12. Let P be a K-thin polygon. Then, for any pizel-corner p, there exists a point
on the boundary of P that is in the first quadrant relative to p and has distance at most
2K + 1 from p, where distance is measured by the length of the path in the pizelation-graph.

Proof. Consider any path in the pixelation graph that starts at p and goes upward or
rightward for at most K + 1 edges each. If some such path reaches a point on the boundary
after at most 2K + 1 edges, then we are done. Else the union of these paths forms a
(K +2) x (K 4+ 2)-grid in the pixelation-graph, and P is not K-thin. <

» Lemma 13. The pizelation of a K-thin polygon with n vertices has O(K?n) pizels.

Proof. There are O(n) boundary vertices: one for each vertex of P, and one whenever a ray
hits the boundary (of which there are at most n — 4 since there are n/2 — 2 reflex vertices
and each emits two rays). Each vertex on the boundary has O(K?) pixel-corners within
distance 2K + 1. By the previous lemma all pixel-corners must be within such distance, so
there are O(K?n) pixel-corners, and hence O(K?n) pixels. <

Since a K-thin polygon contains no (K + 2) x (K + 2)-grid in the pixelation, one can
also show the following (details are in the full version [2]):

» Lemma 14. Any pizel 1 in a K-thin polygon P is intersected by O(K?) mazimal axis-
aligned rectangles inside P.

» Theorem 15. Let P be a K-thin simple polygon. Then for any set U C P and ' C PUW,
the (U,T, P)-rGuarding problem can be solved in O(f(K?)K?n) time for some computable

function f(.).

Proof. The pixelation of P has O(k?*n) vertices by Lemma 13, and can be constructed in
O(k?n) time by constructing the vertical decomposition and then ray-shooting along the
horizontal rays emitted from reflex vertices. For any pixel-corner p, there exists a point on
the boundary of P that and has distance at most 2K + 1 from p. It follows that the pixelation
graph is (2K + 1)-outerplanar, and hence it (and also its dual graph D) have treewidth O(k).
Find a tree decomposition of D with treewidth O(k) and O(k?*n) bags; this can be done in
linear time since D is planar [13]. Replace each pixel in each bag of T by points, guards
and rectangles as explained in Section 3.3. Since each pixel belongs to O(k?) rectangles, the
resulting tree decomposition has width O(k®). Now solve the restricted 2-dominating set
problem using Courcelle’s theorem. The run-time is as desired since we have O(k?n) bags
and treewidth O(k3). <

4.3 K-Thin Polygons with Few Holes

Both of the above generalizations can be combined, creating an algorithm that is fixed-
parameter tractable in both the thinness and the number of holes.

» Lemma 16. Let P be a polygon that is K-thin and that has h holes. Then the dual graph
of P has treewidth O(K(h + 1)).

Proof. Let D’ be the (full) dual graph of the pixelation graph, i.e., it is graph D plus a
vertex for each hole and for the outerface, connected to all incident pixels. We claim that all
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vertices in D’ have distance O(K (h + 1)) from the outerface-vertex. This implies that D’
(and hence also D) is O(K (h + 1))-outerplanar and so has treewidth O(K (h + 1)).

To prove the distances, we first connect holes as follows. If H is a hole, then let ¢ be a
corner of H that maximizes the sum of the coordinates (breaking ties arbitrarily). Let 1
be a pixel incident to ¢ and let ¢’ be some other corner of 1. By Lemma 12, there exists a
pixel-corner p on the boundary of P within distance 2K + 1 from ¢/. Moreover, the path from
¢ to p goes only up and right. Thus p is incident to the outer-face or to a hole H’, where
H' # H by choice of ¢. Following this path, we can hence find a path in D of length O(K)
from the vertex representing H to the vertex representing H' or the outer-face. Combining
all these paths, we can reach the outer-face from any hole in a path of length O(K (h + 1)).

Now for any other vertex in D (hence pixel ¢), let ¢ be one pixel-corner, and find a path
in the pixelation of length at most 2K + 1 from ¢ to some point on the boundary. Following
this path, we can find a path of length O(K) in D from v to some hole or the outer-face,
and hence reach the outer-face along a path of length O(K (h + 1)). The result follows. <

The following summarizes this approach, and includes all previous results.

» Theorem 17. Let P be a polygon that is K-thin and has h holes. Then for any set U C P
andT C PUY, the (U,T, P)-rGuarding problem can be solved in O(f((K (h+1))3)(K (h+1))?n)
time for some computable function f(.). In particular, the rGuarding problem is fized-
parameter tractable in K + h.

5 Conclusion

In this paper, we studied the problem of guarding a thin polygon under the model that a
guard can only see a point if the entire axis-aligned rectangle spanned by them is inside
the polygon. We showed that this problem is NP-hard, even in thin polygons, if there are
holes. If there are few holes or, more generally, the dual graph of the polygon has bounded
treewidth, then we solved the problem in linear time. Our approach is quite flexible in that
we can specify which points must be guarded and which points/pixels are allowed to be used
as guards. In fact, with minor modifications even more flexibility is possible. We could allow
any guard that consists of a connected union of pixels (as long as any pixel is intersected by
O(1) guards). We could even consider other guarding models by replacing the rectangles
in R by arbitrary connected unions of pixels and pixel-sides (again as long as any pixel is
intersected by O(1) such shapes). For all these, the (naturally defined) auxiliary graph H
has treewidth O(tw(D)) in thin polygons, and we can hence solve r-guarding by solving the
restricted distance-2-dominating set.

Our results mean that the complexity of r-guarding is nearly resolved, with the exception
of polygons that have O(1) holes but are not K-thin for a constant number K. For such
polygons, is the problem still NP-hard? Also, for polygons that have a large number of holes,
is the problem APX-hard, or can we develop a PTAS?

Acknowledgments. The authors would like to thank Justin Iwerks and Joe Mitchell; the
discussions with them made us consider thin polygons in the first place.
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—— Abstract

Given a static reference string R and a source string S, a relative compression of S with respect to
R is an encoding of S as a sequence of references to substrings of R. Relative compression schemes

are a classic model of compression and have recently proved very successful for compressing
highly-repetitive massive data sets such as genomes and web-data. We initiate the study of
relative compression in a dynamic setting where the compressed source string .S is subject to edit
operations. The goal is to maintain the compressed representation compactly, while supporting
edits and allowing efficient random access to the (uncompressed) source string. We present new
data structures that achieve optimal time for updates and queries while using space linear in
the size of the optimal relative compression, for nearly all combinations of parameters. We
also present solutions for restricted and extended sets of updates. To achieve these results, we
revisit the dynamic partial sums problem and the substring concatenation problem. We present
new optimal or near optimal bounds for these problems. Plugging in our new results we also
immediately obtain new bounds for the string indexing for patterns with wildcards problem and
the dynamic text and static pattern matching problem.
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1 Introduction

Given a static reference string R and a source string S, a relative compression of S with
respect to R is an encoding of S as a sequence of references to substrings of R. Relative
compression (or external macro compression) is a classic model of compression defined by
Storer and Szymanski [34, 35] in 1978 and has since been used in a wide range of compression
scenarios [26, 27, 23, 24, 6, 9, 19]. To compress massive highly-repetitive data sets, such as
biological sequences and web collections, relative compression has been shown to be very
practical [23, 24, 19].

Relative compression is often applied to compress multiple similar source strings. In such
settings relative compression is superior to compressing the source strings individually. For
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instance, human genomes are 99% similar and hence relative compression might be used to
compress a large collection of sequenced genomes using, e.g., the human reference genome as
the static reference string. We focus on the case of compressing a single source string, but
our results trivially generalize to compressing multiple source strings.

In this paper we initiate the study of relative compression in a dynamic setting, where
the compressed source string S is subject to edit operations (insertions, deletions, and
replacements of single characters). The goal is to maintain the compressed representation
compactly, while supporting edits and allowing efficient random access to the (uncompressed)
source string. Efficient data structures supporting these operations allow us to avoid costly
recompression of massive data sets after updates.

We provide the first non-trivial bounds for this problem. We present new data structures
that achieve optimal time for updates and queries while using space linear in the size of the
optimal relative compression, for nearly all combinations of parameters. We also present
solutions for restricted and extended sets of updates.

To achieve these results, we revisit the dynamic partial sums problem and the substring
concatenation problem. We present new optimal or near optimal bounds for both of these
problems (see detailed discussion below). Furthermore, plugging in our new results immedi-
ately leads to new bounds for the string indexing for patterns with wildcards problem [25, 5]
and the the dynamic text and static pattern matching problem [2].

1.1 Dynamic Relative Compression

Given a reference string R and a source string S, a relative compression of S with respect
to R is a sequence C' = (i1,]1), ..., (||, Jjc|) such that S = R[i1,j1]--- R[i|c|, jjc|]. We
call C a substring cover for S. The substring cover is optimal if |C| is minimum over all
relative compressions of S with respect to R. The dynamic relative compression problem is
to maintain a relative compression of S under the following operations. Let i be a position
in S and « be a character.

access(z): return the character S[i],

replace(i, a): change S[i] to character a,

insert(i, a): insert character a before position ¢ in S,
delete(¢): delete the character at position 4 in S.

Note that operations insert and delete change the length of S by a single character. In all
bounds below, the access(i) operation extends to decompressing an arbitrary substring of
length ¢ using only O(¢) additional time.

Our Results. Throughout the paper, let r be the length of the reference string R, NV be the
length of the (uncompressed) string S, and n be the size of an optimal relative compression
of S with regards to R. All of the bounds mentioned below and presented in this paper
hold for a standard unit-cost RAM with w-bit words with standard arithmetic and logical
operations on a word. This means that the algorithms can be implemented directly in
standard imperative programming languages such as C [22] or C++ [36]. An index into R or
S can be stored in a single word and hence w > log(n + r).

» Theorem 1. Let R and S be a reference and source string of lengths r and N, respectively,
and let n be the length of the optimal substring cover of S by R. Then, we can solve the
dynamic relative compression problem supporting access, replace, insert, and delete

(i) in O(n +r) space and O (logign + loglog T) time per operation, or

(ii) in O(n+ rlogr) space and O (mﬁign) time per operation, for any constant € > 0.
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These are the first non-trivial bounds for the problem. Together, the bounds are optimal for
most natural parameter combinations. In particular, any data structure for a string of length
N supporting access, insert, and delete must use Q(log N/loglog N) time in the worst-case
regardless of the space [13] (this is called the list representation problem). Since n < N,
we can view O(logn/loglogn) as a compressed version of the optimal time bound that is
always O(log N/loglog N) and better when S is compressible. Hence, Theorem 1(i) provides
a linear-space solution that achieves the compressed time bound except for an O(loglogr)
additive term. Note that whenever n > (logr)°8"1°87 for any € > 0, the logn/loglogn term
dominates the query time and we match the compressed time bound. Hence, Theorem 1(i)
is only suboptimal in the special case when n is almost exponentially smaller than r. In this
case, we can use Theorem 1(ii) which always provides a solution achieving the compressed
time bound at the cost of increasing the space to O(n + rlog®r).

We note that dynamic compression under different models of compression has been
studied extensively [17, 11, 10, 33, 16, 12, 21, 28]. However, all of these results require
space dependent on the size of the original string and hence cannot take full advantage of
highly-repetitive data.

1.2 Dynamic Partial Sums

The partial sums problem is to maintain an array Z[1..s] under the following operations.

sum(Z): return 22:1 Z[1],

update(i, A): set Z[i] = Z[i] + A,

search(t): return 1 < ¢ < s such that sum(i — 1) < ¢ < sum(i). To ensure well-defined
answers, we require that Z[7] > 0 for all i.

The partial sums problem is a classic and well-studied problem, see e.g., [8, 32, 20, 13, 18, 30].
In our context, we consider the problem in the word RAM model, where each array entry
stores a w-bit integer and the element of the array can be changed by d-bit integers, i.e.,
the argument A can be stored in ¢ bits. In this setting, Patragcu and Demaine [30] gave
a linear-space data structure with ©(log s/ log(w/d)) time per operation. They also gave a
matching lower bound.

We consider the following generalization supporting dynamic changes to the array. The
dynamic partial sums problems is to additionally support the following operations.

insert(¢, A): insert a new entry in Z with value A before Z[i],

delete(z): delete the entry Z[i] of value at most A.

merge(¢): replace entry Z[i] and Z[i 4+ 1] with a new entry with value Z[i] + Z[i + 1].
divide(¢,t): , where 0 <t < Z[i]. Replace entry Z[i] by two new consecutive entries with
value t and Z[i] — t, respectively.

Hon et al. [18] and Navarro and Sadakane [29] presented optimal solutions for this problem
in the case where the entries in Z are at most polylogarithmic in s (they did not explicitly
consider the merge and divide operation).

Our Results. We show the following improved result.

» Theorem 2. Given an array of length s storing w-bit integers and fixed parameter 8, such
that A < 2%, we can solve the dynamic partial sums problem supporting sum, update, search,
insert, delete, merge, and divide in linear space and O(log s/log(w/d)) time per operation.
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Note that this bound simultaneously matches the optimal time bound for the standard partial
sums problem and supports storing arbitrary w-bit values in the entries of the array, i.e., the
values we can handle in optimal time are exponentially larger than in the previous results.

To achieve our bounds we extend the static solution by Patragcu and Demaine [30]. Their
solution is based on storing a sampled subset of representative elements of the array and
difference encode the remaining elements. They pack multiple difference encoded elements in
words and then apply word-level parallelism to speedup the operations. To support insert and
delete the main challenge is to maintain the representative elements that now dynamically
move within the array. We show how to efficiently do this by combining a new representation
of representative elements with a recent result by Patragcu and Thorup [31]. Along the way
we also slightly simplify the original construction by Patragcu and Demaine [30].

1.3 Substring Concatenation

Let R be a string of length . A substring concatenation query on R takes two pairs of indices
(4,7) and (i’,j') and returns the start position in R of an occurrence of R[i, j]R[i’, j'], or NO
if the string is not a substring of R. The substring concatenation problem is to preprocess R
into a data structure that supports substring concatenation queries.

Amir et al. [2] gave a solution using O(r+/logr) space with query time O(loglogr), and
recently Gawrychowski et al. [15] showed how to solve the problem in O(rlogr) space and
O(1) time.

Our Results. We give the following improved bounds.

» Theorem 3. Given a string R of length r, the substring concatenation problem can be
solved in either

(i) O(rlog®r) space and O(1) time, for any constant € > 0, or

(ii) O(r) space and O(loglogr) time.

Hence, Theorem 3(i) matches the previous O(1) time bound while reducing the space
from O(rlogr) to O(rlog®r) and Theorem 3(ii) achieves linear space while using O(loglogr)
time. Plugging in the two solutions into our solution for dynamic relative compression leads
to the two branches of Theorem 1.

To achieve the bound in (i), the main idea is a new construction that efficiently combines
compact data structure for 1D range reporting [3] with the recent constant time weighted
level ancestor data structure for suffix trees [15]. The bound in (ii) follows as a simple
implication of another recent result for unrooted LCP queries [5] by some of the authors.
Due to lack of space, we refer to the full version of the paper (see [4]) for the details of our
solution.

The substring concatenation problem is a key component in several solutions to the string
indexing for patterns with wildcards problem [5, 7, 25], where the goal is to preprocess a string
T to support pattern matching queries for patterns with wildcards. Plugging in Theorem 3(i)
we immediately obtain the following new bound for the problem.

» Corollary 4. Let T be a string of length t. For any pattern string P of length p with k
wildcards, we can support pattern matching queries on T using O(tlog® t) space and O(p+o*)
time for any constant € > 0.

This improves the running time of fastest linear space solution by a factor loglogt at the
cost of increasing the space slightly by a factor log®t. See [25] for detailed overview of the
known results.
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1.4 Extensions

Finally, we present two extensions of the dynamic relative compression problem. The proofs
of these extensions are also omitted here and can be found in the full version of the paper.

1.4.1 Dynamic Relative Compression with Access and Replace

If we restrict the operations to access and replace we obtain the following improved bound.

» Theorem 5. Let R and S be a reference and source string of lengths r and N, respectively,
and let n be the length of the optimal substring cover of S by R. Then, we can solve the
dynamic relative compression problem supporting access and replace in O(n + r) space and
O(loglog N) expected time.

This version of dynamic relative compression is a key component in the dynamic text and
static pattern matching problem, where the goal is to efficiently maintain a set of occurrences
of a pattern P in a text T that is dynamically updated by changing individual characters.
Let p and ¢t denote the lengths of P and T, respectively. Amir et al. [2] gave a data structure
using O(t + py/log p) space which supports updates in O(loglog p) time. The computational
bottleneck in the update operation is to update a substring cover of size O(p). Plugging in
the bounds from Theorem 5, we immediately obtain the following improved bound, matching
the previous time bound while improving the space to linear.

» Corollary 6. Given a pattern P and text T' of lengths p and t, respectively, we can solve the
dynamic text and static pattern matching problem in O(t + p) space and O(loglogp) expected
time per update.

1.4.2 Dynamic Relative Compression with Split and Concatenate

We also consider maintaining a set of compressed strings under split and concatenate
operations (as in Alstrup et al. [1]). Let R be a reference string and let S = {Sy,..., Sk} be
a set of strings compressed relative to R. In addition to access, replace, insert and delete we
also define the following operations.

concat(¢, 7): Add string S; - S; to S and remove S; and S;.
split(i, j): Remove S; from S and add S;[1,j — 1] and S;[j, |S:|]-

We obtain the following bounds.

» Theorem 7. Let R be a reference string of length r, let S = {S1,..., Sk} be a set of source
strings of total length N, and let n be the total length of the optimal substring covers of the
strings in S. Then, we can solve the dynamic relative compression problem supporting access,
replace, insert, delete, split, and concat,
(i) in space O(n+r) and time O(logn) for access and time O(logn + loglogr) for replace,
insert, delete, split, and concat, or
(ii) in space O(n + rlog®r) and time O(logn) for all operations.

Hence, compared to the bounds in Theorem 1 we only increase the time bounds by an
additional loglogn factor.
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2 Dynamic Relative Compression

In this section we show how Theorems 2 and 3 lead to Theorem 1.

Let C' = ((1,71), - (¢|c|, Jjc|)) be the compressed representation of S. From now on, we
refer to C as the cover of S, and call each element (i, j;) in C a block. Recall that a block
(i1, ji1) refers to a substring R[i;, 5] of R. A cover C is mazimal if concatenating any two
consecutive blocks (i, 71), (4141, Ji+1) in C yields a string that does not occur in R, i.e., the
string RJ[i;, ji)R[é1+1, Ji+1] is not a substring of R. We need the following lemma.

» Lemma 8. If Cy.x is a mazimal cover and C is an arbitrary cover of S, then |Cyax| <

2|0 - 1.

Proof. In each block b of C' there can start at most two blocks in Cy,x, because otherwise
two adjacent blocks in Cy,x would be entirely contained in the block b, contradicting the
maximality of Cy,x. Since the last block of both C' and Cy,x end at the last position of S, a
contradiction of the maximality is already obtained when more than one block of Cy,x start
in the last block of C. Hence, |Cyax| < 2|C| — 1. <

Recall that n is the size of an optimal cover of S with regards to R. The lemma implies that
we can maintain a compression of size at most 2n — 1 by maintaining a maximal cover of
S. The remainder of this section describes our data structure for maintaining and accessing
such a cover.

Initially, we can use the suffix tree of R to construct a maximal cover of S in O(N + r)
time by greedily matching the maximal prefix of the remaining part of S with any suffix of
R. This guarantees that the blocks constitute a maximal cover of S.

2.1 Data Structure

The high level idea for supporting the operations on S is to store the sequence of block
lengths j1 —i1 +1,...,jj¢| — 4| + 1 in a dynamic partial sums data structure. This allows
us, for example, to identify the block that encodes the k' character in S by performing a
search(k) query.

Updates to S are implemented by splitting a block in C'. This may break the maximality
property so we use substring concatenation queries on R to detect if blocks can be merged.
We only need a constant number of substring concatenation queries to restore maximality.
To maintain the correct sequence of block lengths we use update, divide and merge operations
on the dynamic partial sums data structure.

Our data structure consist of the string R, a substring concatenation data structure
of Theorem 3 for R, a maximal cover C for S stored in a doubly linked list, and the
dynamic partial sums data structure of Theorem 2 storing the block lengths of C'. We also
store auxiliary links between a block in the doubly linked list and the corresponding block
length in the partial sums data structure, and a list of alphabet symbols in R with the
location of an occurrence for each symbol. By Lemma 8 and since C' is maximal we have
|C| < 2n — 1= O(n). Hence, the total space for C' and the partial sums data structure is
O(n). The space for R is O(r) and the space for substring concatenation data structure is
either O(r) or O(rlog®r) depending on the choice in Lemma 3. Hence, in total we use either
O(n + 1) or O(n + rlog®r) space.
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2.2 Answering Queries

To answer access(i) queries we first compute search() in the dynamic partial sums structure
to identify the block b; = (4, j;) containing position ¢ in .S. The local index in R[i;, j;] of the
ith character in R is £ =i — sum(l — 1), and thus the answer to the query is the character
R[i; + ¢ —1].

We perform replace and delete by first identifying b; = (i;, ;) and ¢ as above. Then we
partition b; into three new blocks b} = (ij,i;+£—2), b7 = (i;+£—1,5;+£—1), b} = (i;+£, )
where b7 is the single character block for index 4 in S that we must change. In replace
we change b? to an index of an occurrence in R of the new character (which we can find
from the list of alphabet symbols), while we remove b7 in delete. The new blocks and their
neighbors, that is, b;_1, b}, b7, b?, and b;+1 may now be non-maximal. To restore maximality
we perform substring concatenation queries on each consecutive pair of these 5 blocks, and
replace non-maximal blocks with merged maximal blocks. All other blocks are still maximal,
since the strings obtained by concatenating by with by o1, for all I’ <1 —1 and all I’ > [,
was not present in R before the change and is not present afterwards. A similar idea is
used by Amir et al. [2]. We perform update, divide and merge operations to maintain the
corresponding lengths in the dynamic partial sums data structure. The insert operation is
similar, but inserts a new single character block between two parts of b; before restoring
maximality. Observe that using 6 = O(1) bits in update is sufficient to maintain the correct
block lengths.

In total, each operation requires a constant number of substring concatenation queries and
dynamic partial sums operations; the latter having time complexity O(logn/log(w/d)) =
O(logn/loglogn) as w > logn and 6 = O(1). Hence, the total time for each access,
replace, insert, and delete operation is either O(logn/loglog n+loglogr) or O(logn/loglogn)
depending on the substring concatenation data structure used. In summary, this proves
Theorem 1.

3 Dynamic Partial Sums

In this section we prove Theorem 2. We support the operations insert(i, A) and delete(i) on
a sequence of w-bit integer keys by implementing them using update and a divide or merge
operation, respectively. This means that we support inserting or deleting keys with value at
most 2°.

We first solve the problem for small sequences. The general solution uses a standard
reduction, storing Z at the leaves of a B-tree of large outdegree. We use the solution for
small sequences to navigate in the internal nodes of the B-tree.

We need the following recent result due to Patragcu and Thorup [31] on maintaining a
set of integer keys X under insertions and deletions. The queries are as follows, where ¢ is
an integer. The membership query member(q) returns true if ¢ € X, predecessor predy (q)
returns the largest key € X where = < ¢, and successor succx(q) returns the smallest key
x € X where > ¢. The rank rankx (¢) returns the number of keys in X smaller than ¢, and
select(7) returns the i smallest key in X.

» Lemma 9 (Patrascu and Thorup [31]). There is a data structure for maintaining a dynamic
set of wP1
rank and select in constant time per operation.

) w-bit integers that supports insert, delete, membership, predecessor, successor,
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3.1 Dynamic Partial Sums for Small Sequences

Let Z be a sequence of at most B < wP®) integer keys. We will show how to store Z in
linear space such that all dynamic partial sums operations can be performed in constant time.
We let Y be the sequence of prefix sums of Z, defined such that each key Y[i] is the sum of
the first ¢ keys in Z, i.e., Y[i] = Z;‘:l Z[j]. Observe that sum(i) = Y[i] and search(t) is the
index of the successor of ¢ in Y. Our goal is to store and maintain a representation of Y
subject to the dynamic operations update, divide and merge in constant time per operation.

3.1.1 The Scheme by Patrascu and Demaine

We first review the solution to the static partial sums problem by Patragcu and Demaine [30],
slightly simplified due to Lemma 9. Our dynamic solution builds on this.

The entire data structure is rebuilt every B operations as follows. We first partition Y
greedily into runs. Two adjacent elements in Y are in the same run if their difference is at
most B2°, and we call the first element of each run a representative for all elements in the
run. We use R to denote the sequence of representative values in Y and rep(i) to be the
index of the representative for element Y[i] among the elements in R.

We store Y by splitting representatives and other elements into separate data structures:
7T and R store the representatives at the time of the last rebuild, while U/ stores each element
in Y as an offset to its representative value as well as updates since the last rebuild. We
ensure Y[i] = R[rep(4)] + U[i] for any ¢ and can thus reconstruct the values of Y.

The representatives are stored as follows. Z is the sequence of indices in Y of the
representatives and R is the sequence of representative values in Y. Both Z and R are stored
using the data structure of Lemma 9. We can then define rep(i) = rankz(pred;(i)) as the
index of the representative for ¢ among all representatives, and use Rrep(¢)] = selectg (rep(i))
to get the value of the representative for 1.

We store in U the current difference from each element to its representative, U[i| =
Y[i] — Rlrep(¢)] (i.e. updates between rebuilds are applied to &). The idea is to pack U into
a single word of B elements. Observe that update(i, A) adds value A to all elements in Y
with index at least ¢. We can support this operation in constant time by adding to & a word
that encodes A for those elements. Since each difference between adjacent elements in a run
is at most B2 and |Y| = O(B), the maximum value in U after a rebuild is O(B22%). As
B updates of size 2° may be applied before a rebuild, the changed value at each element
due to updates is O(B2°). So each element in U requires O(log B + §) bits (including an
overflow bit per element). Thus, U requires O(B(log B + §)) bits in total and can be packed
in a single word for B = O(min{w/logw,w/d}).

Between rebuilds the stored representatives are potentially outdated because updates may
have changed their values. However, observe that the values of two consecutive representatives
differ by more than B2° at the time of a rebuild, so the gap between two representatives
cannot be closed by B updates of § bits each (before the structure is rebuilt again). Hence,
an answer to search(t) cannot drift much from the values stored by the representatives; it can
only be in a constant number of runs, namely those with a representative value succg (t) and
its two neighboring runs. In a run with representative value v, we find the smallest j (inside
the run) such that U[j] + v —t > 0. The smallest j found in all three runs is the answer
to the search(t) query. Thus, by rebuilding periodically, we only need to check a constant
number of runs when answering a search(t) query.

On this structure, Patragcu and Demaine [30] show that the operations sum, search and
update can be supported in constant time each as follows:
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New index 9 Old index 9
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R {5,17,25,30,45, 55, 60, 70} R {5,17,25,45,55,60,70}
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0]2]
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c[i]iJuf2]2]2]3]afafaJa]af44a]5]6]7 c[1xJJ2T2T2]38 8 3 ]3]3][3][3]3][3]4]5]6][7[7]
a) The initial data structure constructed from Z. b) The result of divide(8, 3) on the structure of a). Representative
value 30 was removed from R. We shifted and updated U, B and
C to remove the old representative and accommodate for a new
element with value 2.

%
3

Index containing the sum of the merged indices.

l

12 38 4 5 6 7T 8 9 10 11 12 13 14 15 16 17 18 19

[o] 5o ]2Jo 3567 [u]2[1s]oJoJoJo]2]
[1JoJo JoJoJtJoJoJoJoJoJoJor[t[t]t]o]
[ATaTxT2 223 3 333333456 7]7]

c) The result of merge(12) on the structure of c).

Figure 1 Tllustrating operations on the data structure with B2? = 4. a) shows the data structure
immediately after a rebuild, b) shows the result of performing divide(8,3) on the structure of a),
and c) shows the result of performing merge(12) on the structure of b).

sum(): return the sum of Rrep(i)] and U[i]. This takes constant time as U[i] is a field in a

word and representatives are stored using Lemma 9.
search(t): let ro = rankg (succr (t)). We must find the smallest j such that U[j]+ R[r]—t > 0

for r € {ro — 1,709,790+ 1}, where j is in run r. We do this for each r using standard word

operations in constant time by adding R[r] —t to all elements in I/, masking elements
not in the run (outside indices selectz(r) to selectz(r + 1) — 1, and counting the number
of negative elements.

update(i, A): we do this in constant time by copying A to all fields j > 7 by a multiplication

and adding the result to U.

To count the number of negative elements or find the least significant bit in a word in constant
time, we use the technique by Fredman and Willard [14].

Notice that rebuilding the data structure every B operations takes O(B) time, resulting in
amortized constant time per operation. We can instead do this incrementally by a standard
approach by Dietz [8], reducing the time per operation to worst case constant. The idea
is to construct the new replacement data structure incrementally while using the old and
complete data structure.

3.1.2 Efficient Support for divide and merge

We now show how to maintain the structure described above while supporting operations
divide(i,t) and merge(i). An example supporting the following explanation is provided in
Figure 1.

Observe that the operations are only local: Splitting Z[i] into two parts or merging
Z[i] and Z[i + 1] does not influence the precomputed values in Y (besides adding/removing
values for the divided/merged elements). We must update Z, R and U to reflect these local
changes accordingly. Because a divide or merge operation may create new representatives
between rebuilds with values that do not fit in ¢/, we change Z, R and U to reflect these new
representatives by rebuilding the data structure locally. This is done as follows.
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Consider the run representatives. Both divide(é,¢) and merge(i) may require us to create
a new run, combine two existing runs or remove a run. In any case, we can find a replacement
representative for each run affected. As the operations are only local, the replacement is
either a divided or merged element, or one of the neighbors of the replaced representative.
Replacing representatives may cause both indices and values for the stored representatives
to change. We use insertions and deletions on R to update representative values.

Since the new operations change the indices of the elements, these changes must also
be reflected in Z. For example, a merge(i) operation decrements the indices of all elements
with index larger than ¢ compared to the indices stored at the time of the last rebuild We
should in principle adjust the O(B) changed indices stored in Z. The cost of adjusting the
indices accordingly when using Lemma 9 to store Z is O(B). Instead, to get our desired
constant time bounds, we represent Z using a resizable data structure with the same number
of elements as Y that supports this kind of update. We must support selectz (i), rankz(q),
and pred;(q) as well as inserting and deleting elements in constant time. Because Z has few
and small elements, we can support the operations in constant time by representing it using
a bitstring B and a structure C which is the prefix sum over B as follows.

Let B be a bitstring of length |Y| < B, where B[i] = 1 iff there is a representative at
index 4. C has |Y| elements, where C[i] is the prefix sum of B including element ¢. Since C
requires O(B log B) bits in total we can pack it in a single word. We answer queries as follows:
rankz(q) equals Clg — 1], we answer selectz(i) by subtracting ¢ from all elements in C and
return one plus the number of elements smaller than 0 (as done in ¢ when answering search),
and we find predz(q) as the index of the least significant bit in B after having masked all
indices larger than ¢q. Updates are performed as follows. Using mask, shift and concatenate
operations, we can ensure that B and C have the same size as Y at all times (we extend
and shrink them when performing divide and merge operations). Inserting or deleting a
representative is to set a bit in B, and to keep C up to date, we employ the same +1 update
operation as used in U.

We finally need to adjust the relative offsets of all elements with a changed representative
in U (since they now belong to a representative with a different value). In particular, if the
representative for U[j] changed value from v to v’, we must subtract v' — v from U[j]. This
can be done for all affected elements belonging to a single representative simultaneously in U
by a single addition with an appropriate bitmask (update a range of U). Note that we know
the range of elements to update from the representative indices. Finally, we may need to
insert or delete an element in I/, which can be done easily by mask, shift and concatenate
operations on the word ¢/. This leads to Theorem 10.

» Theorem 10. There is a linear space data structure for dynamic partial sums supporting
each operation search, sum, update, insert, delete, divide, and merge on a sequence of length
O(min{w/ logw,w/d§}) in worst-case constant time.

3.2 Dynamic Partial Sums for Large Sequences

Willard [37] (and implicitly Dietz [8]) showed that a leaf-oriented B-tree with out-degree B of
height h can be maintained in O(h) worst-case time if: 1) searches, insertions and deletions
take O(1) time per node when no splits or merges occur, and 2) merging or splitting a node
of size B requires O(B) time.

We use this as follows, where Z is our integer sequence of length s. Create a leaf-
oriented B-tree of degree B = O(min{w/logw,w/d}) storing Z in the leaves, with height
h = O(loggn) = O(logn/log(w/J)). Each node v uses Theorem 10 to store the O(B)
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sums of leaves in each of the subtrees of its children. Searching for ¢ in a node corresponds
to finding the successor Y[i] of ¢ among these sums. Dividing or merging elements in Z
corresponds to inserting or deleting a leaf. This concludes the proof of Theorem 2.

4  Conclusion

Our solution to DRC is built on data structures for the partial sums problem and the
substring concatenation problem. Our partial sums-solution is optimal, but in order to
get the desired constant query time for substring concatenation, our data structure uses
O(rlog® r) space. Opposed to this, our linear space solution leads to O(loglogr) query time.
We leave as an open problem if it is possible to get constant time substring concatenation
queries using O(r) space, which will also carry over to a stronger result for the DRC problem,
and improved solutions for the string indexing for patterns with wildcards problem and the
dynamic text and static pattern matching problem.

Currently we maintain a 2-approximation of the optimal cover. It would be useful to
know if a better approximation ratio can be maintained under the same (or better) time and
space bounds that we give.

Acknowledgments. We thank Pawel Gawrychowski for helpful discussions.
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—— Abstract
Let S be a finite set of points in the plane that are in convex position. We present an algorithm
that constructs a plane 3*i,fl“-spanner of S whose vertex degree is at most 3. Let A be the

vertex set of a finite non-uniform rectangular lattice in the plane. We present an algorithm that
constructs a plane 3v/2-spanner for A whose vertex degree is at most 3. For points that are in
the plane and in general position, we show how to compute plane degree-3 spanners with a linear
number of Steiner points.

1998 ACM Subject Classification 1.3.5 Computational Geometry and Object Modeling, F.2.2
Nonnumerical Algorithms and Problems

Keywords and phrases plane spanners, degree-3 spanners, convex position, non-uniform lattice

Digital Object ldentifier 10.4230/LIPIcs.ISAAC.2016.19

1 Introduction

Let S be a finite set of points in the plane. A geometric graph is a graph G = (S, F) with
vertex set S and edge set F consisting of line segments connecting pairs of vertices. The
length (or weight) of any edge (p, ¢) in E is defined to be the Euclidean distance |pg| between
p and g. The length of any path in G is defined to be the sum of the lengths of the edges on
this path. For any two vertices p and ¢ of S, their shortest-path distance in G, denoted by
|pg|c, is @ minimum length of any path in G between p and ¢. For a real number ¢ > 1, the
graph G is a t-spanner of S if for any two points p and ¢ in S, |pg|e < t|pg|. The smallest
value of ¢ for which G is a t-spanner is called the stretch factor of G. A large number of
algorithms have been proposed for constructing ¢-spanners for any given point set; see [18].
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A plane spanner is a spanner whose edges do not cross each other. Chew [7] was the first
to prove that plane spanners exist. Chew proved that the L;-Delaunay triangulation of a
finite point set has stretch factor at most /10 ~ 3.16 (observe that lengths in this graph are
measured in the Euclidean metric). In the journal version [8], Chew proves that the Delaunay
triangulation based on a convex distance function defined by an equilateral triangle is a
2-spanner. Dobkin et al. [11] proved that the Ls-Delaunay triangulation is a t-spanner for

t= ”(1%\/5) ~ 5.08. Keil and Gutwin [16] improved the upper bound on the stretch factor
tot = 34% ~ 2.42. This was subsequently improved by Cui et al. [9] to ¢t = 2.33 for the case
when the point set is in convex position. Currently, the best result is due to Xia [19], who
proved that ¢ is less than 1.998. For points that are in convex position the current best upper
bound on the stretch factor of plane spanners is 1.88 that was obtained by Amani et al. [1].
Regarding lower bounds, by considering the four vertices of a square, it is obvious that a
plane t-spanner with ¢ < /2 does not exist. Mulzer [17] has shown that every plane spanning
graph for the vertices of a regular 21-gon has stretch factor at least 1.41611. Dumitrescu and
Ghosh [13] improved the lower bound to 1.4308 for the vertices of a regular 23-gon.

The degree of a spanner is its maximum vertex degree. Das and Heffernan [10] showed the
existence of spanners of maximum degree 3. Moreover, 3 is the lower bound on the maximum
degree of a t-spanner, for any constant ¢ > 1, because a Hamiltonian path through a set of
points arranged in a grid has unbounded stretch factor; see [18] for more details. Even for
points that are in convex position, 3 is a lower bound on the degree (see Kanj et al. [15]).

The problem of constructing bounded-degree spanners that are plane and have small
stretch factor has received considerable attention (e.g., see [5, 6, 15]). Bonichon et al. [5]
proved the existence of a degree 4 plane spanner with stretch factor 156.82. A simpler
algorithm by Kanj et al. [15] constructs a degree 4 plane spanner with stretch factor 20; for
points that are in convex position, this algorithm gives a plane spanner of degree at most
3 with the same stretch factor. Dumitrescu and Ghosh [12] considered plane spanners for
uniform grids. For the infinite uniform square grid, they proved the existence of a plane
spanner of degree 3 whose stretch factor is at most 2.607; the lower bound is 1 + /2.

In this paper we consider bounded-degree plane spanners. In Section 3 we present an
algorithm that computes a plane % ~ 5.189-spanner of degree 3 for points in convex
position. In Section 4 we consider finite non-uniform rectangular grids; we present an
algorithm that computes a degree 3 plane spanner whose stretch factor is at most 3v/2 ~ 4.25.
In Section 5 we show that any plane ¢-spanner for points in the plane that are in general
position, can be converted to a plane (¢ 4 €)-spanner of degree at most 3 that uses a linear
number of Steiner points, where € > 0 is an arbitrary small constant.

2 Preliminaries

For any two points p and ¢ in the plane let pq denote the line segment between p and g,
¢(p,q) denote the line passing through p and ¢, R(p—¢q) denote the ray emanating from p
and passing through ¢, and let D(p, ¢q) denote the closed disk that has pg as a diameter.
Moreover, let L(p, q) denote the lune of p and ¢, which is the intersection of the two closed
disks of radius |pg| that are centered at p and q.

Let S be a finite and non-empty set of points in the plane. We denote by CH(S) the
boundary of the convex hull of S. The diameter of S is the largest distance among the
distances between all pairs of points of S. Any pair of points whose distance is equal to the
diameter is called a diametral pair. Each point of diametral pair is called a diametral point.
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Algorithm 1 MATCHING(CY, Co)

Input: Linearly separated chains C7 and Cy with the vertices of Cy U C5 in convex position.
Output: A matching between the points of C7 and the points of Cs.

if C; =0 or Cy = () then return ()

(a,b) < a closest pair of vertices between C; and Cs such that a € Cy and b € Cy
C1,CYy <« the two chains obtained by removing a from C

CY, CY + the two chains obtained by removing b from Cs

return {ab} UMATCHING(CY, C%) U MATCHING(CY, C¥)

» Observation 1. Let S be a finite set of at least two points in the plane, and let {p,q} be
any diametral pair of S. Then, the points of S lie in L(p,q).

» Theorem 2 (See Theorem 7.11 in [3]). If C; and Cy are convex polygonal regions with
C1 C Oy, then the length of the boundary of Cy is at most the length of the boundary of Cs.

» Lemma 3 (Amani et al. [1]). Let a, b, and c be three points in the plane, and let f = ZLabc.

|abl+|bc| 1
Then’ lac| < sin(8/2)

» Lemma 4 (Proof in the full version of the paper [4]). Let a and b be two points in the plane.
Let ¢ be a point that is on the boundary or in the interior of L(a,b). Then, Zacb > %.

3 Plane Spanners for Points in Convex Position

In this section we consider degree-3 plane spanners for points that are in convex position.

Let S be a finite set of points in the plane that are in convex position. Consider the two

chains that are obtained from C'H(S) by removing any two edges. Let 7 be the larger stretch

factor of these two chains. In Section 3.1 we present an algorithm that computes a plane

(27 4 1)-spanner of maximum degree 3 for S. Based on that, in Section 3.2 we show how to
3+4m

compute a plane =z -spanner of maximum degree 3 for S. Moreover, we show that if .S is

centrally symmetric, then there exists a plane (7w + 1)-spanner of degree 3 for S.

3.1 Spanner for Convex Double Chains

Let C7 and Cy be two chains of points in the plane that are separated by a straight line. Let
S1 and Sy be the sets of vertices of C; and Cs, respectively, and assume that S; U Ss is in
convex position. Let 7 be a real number. In this section we show that if the stretch factor of
each of Cy and Cs is at most 7, then there exists a plane (27 + 1)-spanner for S; U Sy whose
maximum vertex degree is 3.

In order to build such a spanner, we join C; and C5 by a set of edges that form a matching.

Thus, the spanner consists of C7, Co, and a set E of edges such that each edge has one
endpoint in C; and one endpoint in Cs. The set E is a matching, i.e., no two edges of F are
incident to a same vertex. We show how to compute E recursively. Let (a,b) be the closest
pair of vertices between C7 and Cos; see Figure 1. Add this closest pair (a,b) to E. Then
remove (a,b) from C; and Cs, and recurse on the two pairs of chains obtained on each side
of ¢(a,b). Stop the recursion as soon as one of the chains is empty. Given C; and Cy, the
algorithm MATCHING computes a set F.

» Theorem 5. Let Cy = (S1,E1) and Co = (Sa, Ey) be two linearly separated chains of
points in the plane, each with stretch factor at most T, such that S1 U Sy is in conver
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Figure 1 Illustration of the proof of Theorem 5.

position. Let E be the set of edges returned by algorithm MATCHING(Cq,Cy). Then, the
graph G = (S1U S3, E1 U Es U E) is a plane (27 + 1)-spanner for S1 U Ss in which the degree
of each endpoint of Cy and Cs is at most 2 and every other verter has degree at most 3.

In the rest of this section we prove Theorem 5. The degree and planarity constraints follows
from the algorithm. However, in the full version of the paper [4] we prove these constraints
by induction. Now, we prove that the stretch factor of G is at most 27 + 1. The proof is by
induction on min{|S;|,|S2|}. As for the base cases, if |S1| = 0, then G = C5 is a T-spanner.
If |S2] = 0, then G = C} is a 7-spanner. Assume [S1]| > 1 and |Sz| > 1. Let £ be a line that
separates C7 and Cy. Without loss of generality assume ¢ is horizontal, C; is above ¢, and
(5 is below £. Let (a, ) be the pair of vertices selected by algorithm MATCHING, where (a, b)
is a closest pair of vertices between C7 and C5 such that a € Cy and b € Cs.
Let C7 and C7 be the left and right sub-chains of C, respectively, that are obtained by
removing a; see Figure 1. We obtain C% and C¥ similarly. Let G’ (resp. G”) be the spanner
obtained for the vertices of C] and C} (resp. C{ and CY¥). By the induction hypothesis, G’
(resp. G") is a (27 4 1)-spanner for the vertices of C] U C4 (resp. CY U CY).

We are going to prove that for any two points u, v € S; U Sy we have |uv|g < (27 + 1)|uv].
If both w and v belong to Sy, or both belong to S, then |uv|e < 7|uvl; this is valid because
each of €1 and Cs has stretch factor at most 7. Assume v € S; and v € Sy. If u,v € G’ or
u,v € G” then, by the induction hypothesis, |uv|g < (27 4+ 1)|uv|. Thus, it only remains to
prove |uv|g < (27 + 1)|uv| for the following cases: (a) u = a and v € Cs, (b) u € C; and
v=", (c)ue Cland v e CY, and (d) u € CY and v € C). Because of symmetry we only
prove items (a) and (c). The proofs are given in the following two lemmas.

» Lemma 6. Ifu=a and v € Cy, then |uv|g < (27 + 1)|uv|.

Proof. Note that |av|g < |abl 4+ |bv|c, < |av| + 7|bv|, where the second inequality is valid
since |ab| < |av|, by our choice of (a,b), and since |bv|c, < T|bv|, given that the stretch factor
of Cs is at most 7. It remains to prove that |bv| < 2|av|. By the triangle inequality we have
|bu| < |ab| + |av|. Since |ab| < |av|, we have |bv| < 2|av]. <

» Lemma 7. Ifu € C] and v € CY, then |uv|g < (27 + 1)|uv|.

Proof. Since S is in convex position, the polygon @ formed by u, a, v, and b is convex and
its vertices appear in the order u, a,v,b. Note that

luv|g < |uale, + |abl + |bv|c, < Tlual + |uv| + T]bv| = Juv| + 7(Jual + |bv]),

where the second inequality is valid since |ab| < |uv|, by our choice of (a,b), and since
lualc, < Tlual and |bu|e, < T]bv|, given that the stretch factor of each of Cy and Cj is at
most 7. It remains to prove that |ua| 4 |bv| < 2|uv|. Let ¢ be the intersection point of ab and
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uv; see Figure 1. By the triangle inequality, we have |ua| < |uc| + |ca| and |bv| < |be| 4 |ev].
It follows that |ua| 4 |bv| < |uv| + |ab|. Since |ab| < |uv|, we have |ua| + |bv| < 2|uv|. This
completes the proof. <

3.2 Spanner for Points in Convex Position

In this section we show how to construct plane spanners of degree at most 3 for points that
are in convex position.

» Theorem 8. Let S be a finite set of points in the plane that is in convex position. Then,
there exists a plane spanner for S whose stretch factor is at most %
degree is at most 3.

and whose vertex

Proof. The proof is constructive; we present an algorithm that constructs such a spanner
for S. The algorithm performs as follows. Let (p, ¢) be a diametral pair of S. Consider the
convex hull of S. Let C; and Cy be the two chains obtained from CH(S) by removing p and
g (and their incident edges). Note that C; and Cy are separated by #(p, q). Let G’ be the
graph on S\ {p, ¢} that contains the edges of C1, the edges of Cs, and the edges obtained
by running algorithm MATCHING(CY,C3). By Theorem 5, G’ is plane and the endpoints of
C7 and C3 have degree at most 2. We obtain a desired spanner, G, by connecting p and
g, via their incident edges in CH(S), to G’. In other words, G = (S, E), where E is the
union of the edges of CH(S) and the edges of MATCHING(CY, Cs). A pseudo code for this
construction is given in the full version of the paper [4].

Observe that G is plane. Moreover, all vertices of G have degree at most 3; p and ¢
have degree 2. Now we show that the stretch factor of G is at most % ~ 5.19. Note
that G consists of CH(S) and a matching which is returned by algorithm MATCHING. Since
p and ¢ are diametral points, then by a result of [1], for any point s € S\ {p} we have
Ips|crs) < 1.88|ps|. Since CH(S) C G, we have |ps|g < 1.88|ps|. By symmetry, the same
result holds for ¢ and any point s € S\ {¢}. Since (p,q) is a diametral pair of S, both C}
and Cy are in L(p, ¢). Based on this, in Theorem 11, we will see that both C; and Cy have
stretch factor at most %” Then, by Theorem 5, the stretch factor of G’ is at most %.
Since G’ C G, for any two points r,s € S\ {p, ¢} we have |rs|g < 32 |rs|. Therefore, the

3
stretch factor of G is at most 3"'34”. This completes the proof of the theorem. |

A point set S is said to be centrally symmetric (with respect to the origin), if for every
point p € S, point —p also belongs to S.

» Theorem 9. Let S be a finite centrally symmetric point set in the plane that is in convex
position. Then, there exists a plane spanner for S whose stretch factor is at most m + 1 and
whose vertex degree is at most 3.

Proof. Let GG be the graph obtained by the algorithm presented in the proof of Theorem 8.
Recall that G is plane and its maximum vertex degree is at most 3. It remains to show
that the stretch factor of G is at most 7 + 1. Let (p, q) be the diametral pair of S that is
considered by this algorithm. Since S is centrally symmetric, all points of S are in D(p, q).
Based on this, in Theorem 10, we will see that both C; and C5 have stretch factor at most
5. Then Theorem 5 implies that the stretch factor of G' is at most m + 1. <

3.3 Convex Chains with Diametral Endpoints

In this section we analyze the stretch factor of convex chains of points where their endpoints
are a diametral pair. Let C be a chain of points. For any two points v and v on C' let d¢(u, v)
denote the path between v and v on C, and let |uv|c denote the length of d¢(u,v).
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Figure 2 Proof of Theorem 10: the path d¢c(u,v) is inside the shaded regions.

» Theorem 10. Let C be a convexr chain with endpoints p and q. If C is in D(p,q), then
the stretch factor of C is at most 3.

Proof. Since C is convex, it is contained in a half-disk of D(p,q), i.e., a half-disk with
diameter pg. Let u and v be any two points of C. Let d¢(u,v) be the path between u and v
in C. We show that dc(u,v) is in D(u,v). Then, by Theorem 2 the length of d¢o(u,v) is at
most the length of the half-arc of D(u,v), which is 7 |uv|. Without loss of generality assume
that pq is horizontal, p is to the left of ¢, and C' is above pq. Assume that u appears before
v while traversing C' from p to q. See Figure 2. We consider the following four cases.
u=p and v =¢q. Then éc(p,q) = C is in D(p, q) by the hypothesis.
u = pand v # q. Let v' be the intersection point of R(¢—wv) with the boundary of
D(p, q). See Figure 2(a). Observe that Zpv'v = Zpv'q = 5. Thus, v is on the boundary
of D(p,v). Since two circles can intersect in at most two points, p and v" are the only
intersection points of the boundaries of D(p,q) and D(p,v). Thus, the clockwise arc ;5&
on the boundary of D(p, q) is inside D(p, v). Because of convexity, no point of d¢(p, v) is
to the right of R(p—wv) or R(¢—wv). It follows that do(p,v) is in D(p,v).
u # p and v = ¢q. The proof of this case is similar to the proof of the previous case.
u # p and v # ¢. Let ¢ be the intersection point of R(p—u) and R(g—wv). Because of
convexity, dc(u,v) is in the triangle Aucv. We look at two cases:
c is inside D(p, q). See Figure 2(b). Note that Zucv > T. This implies that the point
¢, and consequently the triangle Aucv, are in D(u,v). Thus, d¢(u,v) is inside D(u,v).
¢ is outside D(p,q). Let u' (resp. v’) be the intersection point of R(p—u) (resp.
R(q—w)) with D(p,q). Note that dc(u,v) is inside the shaded region of Figure 2(c).
Observe that Zuv'v > Zpv'q = T, and Zuu'v > Zpu'q = 5. Thus, both u' and o'
are inside D(u,v). Consequently, the clockwise arc w'v' on the boundary of D(p, q) is
inside D(u,v). Therefore, 0¢c(u,v) is inside D(u, v). <

» Theorem 11 (Proof in the full version of the paper [4]). Let C' be a convex chain with
endpoints p and q. If C is in L(p,q), then the stretch factor of C is at most %”

4 Non-Uniform Rectangular Grid

In this section we build a plane spanner of degree at most three for the point set of the
vertices of a non-uniform rectangular grid. In a finite non-uniform m x k grid, A, the vertices
are arranged on the intersections of m horizontal and k vertical lines. The distances between
the horizontal lines and the distances between the vertical lines are chosen arbitrary. The
total number of vertices of A—the number of points of the underlying point set—is n = m - k.
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Figure 3 The augmented grid.

If m € {1,2} or k € {1,2} then A is a plane spanner whose maximum vertex degree is at
most 3 and whose stretch factor is at most v/2. Assume m > 3 and k > 3. We present an
algorithm that constructs a degree-3 plane spanner, G, for the points of A. Note that A is a
finite grid and has boundary vertices. In order to simplify the analysis and the proofs for
boundary vertices, we augment A in the following way. We add four lines at distance ¢, to the
left, right, above and below A. We choose € to be smaller than the distances among all pairs
of vertical lines, and all pairs of horizontal lines of A. See Figure 3. For simplicity, in the
rest of this section, we refer to the augmented lattice as A, and assume it has m horizontal
and k vertical lines. Based on this assumption, the original lattice has m — 2 horizontal lines
and k — 2 vertical lines.

Let hi, ..., h, be the horizontal lines of A from bottom to top. Similarly, let vy, ..., vk
be the vertical lines of A from left to right. Note that A consists of m — 1 horizontal slabs
(rows) and k — 1 vertical slabs (columns). Each horizontal slab H;, with 1 < i < m, is
bounded by consecutive horizontal lines h; and h;;1. FEach vertical slab V;, with 1 < j <k,
is bounded by consecutive vertical lines v; and v;11. See Figure 3. For each slab we define
the width of that slab as the distance between the two parallel lines on its boundary. Let
pij, with 1 <7 < m and 1 < j <k, be the vertex of A that is the intersection point of h;
and v;. For each H;, 1 <i < m, we define E(H;) = {(pi j, pi+1,5) : 2 < j < k — 1} as the set
of edges of H;. Moreover, we define the set of candidate edges of H; as follows:

CE(H;) - {(Pijspiv1) 1 2
{(pij,pit1,5) : 2

k—1 and j is even} if ¢ is even,
k—1 and j is odd} if ¢ is odd.

Similarly, for each V;, 1 < j < k, we define E(V;) = {(pij,pij+1) : 2 < i < m— 1} as the set
of edges of V;. The set of candidate edges of V; is defined as follows:

CE(V;) = {(pij,pij+1) :2<i<m—1andiis even} if j is even,
! {(Pij,pij+1) :2<i<m—1andiis odd} if j is odd.

See Figure 4(a). Informally speaking, the set of edges of each horizontal slab contains k — 2
vertical edges of A that are on vs, ..., vk_1, and the set of edges of each vertical slab contains
m — 2 horizontal edges of A that are on ho, ..., h,,—1. The boundary edges of A, i.e., the

edges with both their endpoints on the boundary of A, do not belong to any of these sets.
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Figure 4 (a) Candidate edges in each slab are shown in their slab label color. The edges that are
above, below, to the left, and to the right of a candidate edge, are not candidate in any of the slabs:
(b) a horizontal candidate edge, and (c) a vertical candidate edge.

Every second vertical edge in H; belongs to the set of candidate edges of H;. The set of
candidate edges of H;_1 (resp. H;y1) contains every second vertical edge in H;_; (rep. H;y1)
that is not adjacent to any candidate edge in H;. The same observation applies on each V;.
Thus, if e is a candidate edge in some set, then the edges of A that are above, below, to the
left, and to the right of e, are not candidate edges in any set. See Figures 4(b) and 4(c).

Now we describe the algorithm. We know that A is a v/2-spanner of degree 4. The
algorithm consists of two phases. In the first phase it removes some edges from A and
constructs a graph G’ whose largest vertex degree is 3 (G’ may have large stretch factor).
In the second phase the algorithm adds some edges to G’ and constructs a graph G whose
maximum degree is 3 and whose stretch factor is 3v/2. Note that G’ C G C A. Refer to
Figure 5 for an illustration of the two phases.

Phase 1 (Edge Deletion): In this phase, the algorithm iterates over all the slabs, {H7, ...,
H;—1,V1,...,Vk_1}, in a non-increasing order of their widths. Let S be the current slab.
The algorithm considers the candidate edges of S, i.e., all edges of CE(S), from left to right
if S is horizontal, and bottom-up if S is vertical (however, this ordering does not matter).
The algorithm removes a candidate edge if it has at least one endpoint of degree 4. Let G’
be the graph obtained at the end of this phase.

Phase 2 (Edge Insertion): Consider the graph G’ obtained at the end of Phase 1. Let E’
be the empty set. In the second phase, the algorithm iterates over all the slabs, {Hq, ...,
H,—1,V1,...,Vk_1}, in a non-decreasing order of their widths. Let S be the current slab.
The algorithm considers all the edges of S, i.e., all edges of E(S). Let e = (a,b) be the
current edge. The algorithms adds e to E’ if both endpoints of e have degree 2 in G' U E’,
ie., dege(a) + degp (a) = 2 and dege/ (b) + degg/(b) = 2. At the end of this phase, let G
be the graph obtained by taking the union of G’ and E’.

Consider the graph G obtained at the end of Phase 2. We show that G is a plane
3v/2-spanner of maximum degree 3 for A. Since the algorithm considers only the edges of A,
then G is a subgraph of A and hence it is plane. As for the degree constraint, after Phase 1
the maximum degree in G’ is 3. In Phase 2 we add edges between some vertices of degree 2
in G’ (at most one edge per vertex) and hence no vertex of degree 4 can appear. Thus G
has maximum degree 3. It only remains to show that G is a 3v/2-spanner. Before that, we
review some properties of G’ and G.
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Figure 5 The numbers close to the slab labels show the order in which the slabs are considered
in Phase 1. (a) The graph G’ obtained at the end of Phase 1; its four types of faces are shaded
(the blue edges are the candidate edges that have not been removed in Phase 1). (b) The graph
G obtained at the end of Phase 2; its three types of faces are shaded (the orange edges have been
added in Phase 2, and belong to E’).

The candidate edges form stair-cases in A; see Figure 4(a). Moreover, the set of non-
candidate edges (black edges of Figure 4(a)) also form stair-cases. Each internal vertex of A
belongs to a staircase of candidate edges and a stair-case of non-candidate edges. Thus, in
G', every vertex is on a stair-case of non-candidate edges that is connected to the boundary
edges in both directions. Moreover, each of the stair-cases formed by candidate edges is
surrounded by two stair-cases of non-candidate edges. Since G’ contains all boundary edges,
i.e., the edges with both endpoints on the boundary, each boundary vertex has degree at
least 2 and at most 3 in G’. The edge deletion phase ensures that in G’ there is no internal
vertex of degree 4. Further, each internal vertex is incident on two candidate edges. Thus at
the end of Phase 1, each internal vertex looses at most two edges, and hence has degree at
least 2 in G’. Therefore we have the following observation.

» Observation 12. The graph G’ has the following properties. (1) G’ contains all boundary
edges of A, (2) G’ is connected, (3) each vertex of G’ has degree 2 or 3, and (4) each face in
G’ is either (see the shaded regions of Figure 5(a)):

1-cell: consists of one cell of A, or

2-cell: consists of two adjacent cells with the middle edge missing, or

3-cell: consists of three adjacent cells which form an L-shape with the two middle edges

missing (this L-shape might also be rotated), or

stair-case: consists of more than three cells which form a stair-case with more than one

vertex of degree two.

We define {p1,1, Pm,1,P1.ks Pm.k } @ the set of corner vertices of A. We also define the set of
corner edges of A as {(pl,z,pm), (Pz,z,p2,1), (p1,k—1,p2,k—1), (Pz,k-—hpz,k), (pm—1,1,pm—1,2),

(Pm—1,2:Pm,2)s (Pm—1,k—1:Pm,k—1)s (Pm—1,k—1,Pm—1,) }. In Figure 3 the corner edges are in
red. Note that each corner edge is adjacent to another corner edge. A non-corner edge is an

edge of A which is not a corner edge.

» Lemma 13 (Proof in the full version of the paper [4]). All non-corner edges of A that are
incident to a boundary vertex are in G'.
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Figure 6 The edge (a, f) is a candidate edge (a) that is in G, and (b) that is not in G'.

By Lemma 13, any non-corner edge e of A that is not in G’ has both its endpoints in the
interior of A. That is, both endpoints of e have degree four in A. Based on this, and by our
choice of candidate edges, we have the following observation; see Figures 4(b) and 4(c).

» Observation 14. If a non-corner edge e is not in G', then the edges that are above, below,
to the left, and to the right of e are in G', and hence in G.

» Lemma 15. Let (a,b) be a corner edge that is not in G. Then |ablg = 3|ab|.

Proof. Recall that each corner edge is adjacent to another corner edge. Let (b,d) be the
corner edge that is adjacent to (a,b). Let ¢ be the corner vertex that is adjacent to a and d.

C

a
|
e

€

Since (a,c) and (¢, d) are boundary edges, both of them are in G. We are going to show,
by contradiction, that (b,d) is also in G. Assume (b,d) ¢ G. If (b,d) was removed before
(a,b), then at the moment the algorithm considers (a, b), both a and b have degree less than
4. Hence the algorithm would not remove (a, b); this contradicts the fact that (a,b) ¢ G. If
(a, b) was removed before (b, d) by a similar argument we get a contradiction. Thus (b, d) € G.
Note that |ab| = |ac| = |ed| = |bd| = €. Thus the length of the path d = (a,¢,d,b) is 3 times
|abd]. <

At the end of Phase 2, all the stair-cases that have more than one vertex of degree two,
have been broken into 2-cell and 3-cell faces. Thus we have the following observation.

» Observation 16. Fach face in G is either a 1-cell, a 2-cell, or a 3-cell (see the shaded
faces in Figure 5(b)).

» Lemma 17. Let (f,c) be the missing edge of a 2-cell face in G. If (f,c) is a non-corner
edge, then |fc|la < 3|fc|.

Proof. Let F' = (a,b,¢,d, e, f) be the 2-cell face of G with the edge (f, ¢) is missing. Without
loss of generality assume that (f, ¢) is horizontal, f is to the left of ¢, and a, b, ¢, d, e, f in the
clockwise order of the vertices along F'; see Figure 6.

Note that |fc| = |ab|] = |ed], |af]| = |be|, and |fe| = |ed|. Moreover, (a,b), (b,c), (d,e), and
(e, f) are not candidate edges, hence they are in G’ and in G, while (a, f) and (¢, d) are
candidate edges. Since (f,c) is a non-corner edge, in both G’ and G, f is connected to a
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point f’ and c is connected to a point ¢’ where f’ and ¢’ are different from the vertices of F'.

By Observation 14, (f, f’) and (¢, ¢’) are in G’ and in G. Without loss of generality assume
laf| < |fe|]. We are going to prove that the length of the path (f,a,b,c) is at most three

times |fe¢|. In order to prove this, we show that |af| < |fc|. The proof is by contradiction.

Assume |fc| < |af|. For an edge (u,v) € A, let Sy, be the slab containing (u,v) in its
interior; if (u,v) is horizontal then Sy, is vertical, and vice versa. In Phase 1, the slabs
Sre and S,y are considered before Sy, while in Phase 2, both are considered after Sy.. We
consider two cases:
(a, f) € G'. See Figure 6(a). The reason why (a, f) was not removed is that both a and
f had degree less than 4 at the moment the algorithm considered (a, f). At that moment
the edge (f,c) was still in the graph. Thus, in order for f to have degree less than four,
the edge (e, f) should have been removed before considering (a, f), which contradicts
(e, f) being a non-candidate edge.
(a,f) ¢ G'. Thus (a, f) is added in Phase 2, and hence, both a and f have degree two
in G’. See Figure 6(b). Recall that (¢,d) is a candidate edge. Notice that (¢,d) ¢ G’
because at the moment the algorithm considered (¢, d), the vertex ¢ had degree 4, and
hence (¢, d) is removed. Thus (¢, d) is added in Phase 2, implying that both ¢ and d have
degree two in G’. Therefore a, f, ¢, and d have degree two in G’. Since, in Phase 2, Sy,
is considered before both Sy. and S, , the edge (f,c) should have been inserted before
considering (a, f) and (¢, d). This contradicts the fact that (f,c) is not in G.
<

» Lemma 18 (Proof in the full version of the paper [4]). Let (b,e) be a missing edge of a
3-cell face in G. If (b,e) is a non-corner edge, then |be|c < 3|be|.

» Theorem 19. Let A be a finite non-uniform rectangular grid. Then, there exists a plane
spanner for the point set of the vertices of A such that its degree is at most 8 and its stretch
factor is at most 3v/2.

Proof. Assume A has m rows and k columns.

If m € {1,2} or k € {1,2}, then A is a plane spanner whose degree is at most 3 and
whose stretch factor is at most v/2. Assume m > 3 and k > 3. Let A be the augmented
lattice obtained from A as described in the beginning of this section. Let G be the graph
obtained by the 2-phase algorithm described in this section. Then G is plane and its vertex
degree is at most 3. By Lemmas 15, 17, and 18, for any edge (a,b) € A that is not in G,
there exists a path in G whose length is at most 3 times |ab|. Now we are going to show
that the stretch factor of G is at most 3v/2. Let Dw,z and p, . be any two vertices of A.
Consider the vertex p,, . in A. By applying Lemmas 15, 17, and 18, in G there exists a path
between p,, , and p,, ., such that its length is at most 3 times |py, 4Pw -] Similarly, in G there
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exists a path between p, . and p,, . such that its length is at most 3 times |p, .pw,.|. Since
|Dw,zPw,z| + [Py, 2Pw,2| < \/§|pw’wpy,z|, we conclude that in G there exists a path between
Pw,x and p, . that is passing through p,, . and whose length is at most 3v/2 times D,z Py, |-

In order to obtain a spanner for A, we remove from G all the vertices of A that are not
in A, as well as the edges incident to those vertices. Then we add all the missing boundary
edges of A to the resulting graph. Let G be the graph that is obtained. As the boundary
vertices of A have degree at most 3, G has vertex degree at most 3. Since all the boundary
edges of A are in G, the stretch factor of G is not more than the stretch factor of G. This
completes the proof. <

5 Concluding Remarks

In order to obtain plane spanners with small stretch factor, one may think of adding Steiner
points® to the point set and build a spanner on the augmented point set. In the L;-metric, a
plane 1-spanner of degree 4 can be computed by using O(nlogn) Steiner points (see [14]).
Arikati et al. [2] showed how to compute, in L;-metric, a plane (1 + ¢)-spanner with O(n)
Steiner points, for any ¢ > 0. Moreover, for the Euclidean metric, they showed how to
construct a plane (v/2 + €)-spanner that uses O(n) Steiner points and has degree 4.

Let S be a set of n points in the plane that is in general position; no three points are
collinear. Let G be a plane t-spanner of S. We show that, for any € > 0, there exists a plane
(t + €)-spanner G’ for S with O(n) Steiner points whose vertex degree is at most 3. We show
how to construct such a spanner. Without loss of generality we assume that € is smaller than
the closest pair distance in S, otherwise we pick an € smaller than the closest pair distance,
and construct a (t 4 €')-spanner, which is also a (¢ + €)-spanner.

For each point p of the point set S, consider a circle C;, with radius - that is centered at
p. Introduce a Steiner point on each intersection point of C,, with the edges of G that are
incident to p. Also, introduce a Steiner point p’ on C), that is different from these intersection
points. Delete the part of the edges of G inside each circle C), (each edge e of G turns into
an edge ¢’ of G’ with endpoints on C,). Add an edge from p to p’, and add a cycle whose
edges connect consecutive Steiner points on the boundary of C,. This results in a degree-3
geometric plane graph G’. For each vertex of degree k in G, we added k + 1 Steiner points in
G’. Since G is planar, its total vertex degree is at most 6n — 12. Thus, the number of Steiner
points is 7n — 12, in total (by a different construction of G’ this can be reduced to 5n — 12).

A path d,, between two vertices u and v in G can be turned into a path ¢/, in G’ as
follows. For each point p in S corresponding to an internal vertex of d,, incident to two
edges e; and ey of d,,, replace the part of e; and ey inside C, by the shorter of the two paths
along C), connecting the corresponding Steiner points. Also, for each of point p € {u, v}

1 Ssome points in the plane that do not belong to the input point set.
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incident to an edge e of d,, replace the part of e inside C, with edge (p, p’) together with the
shorter of the two paths along C), connecting p’ and the Steiner point corresponding to e.

Note that l“l“;‘l < t. Since the Steiner points are located at distance < from points of 5,
the length of the path along C), replacing each vertex p of d,, is at most . Since d,, has at

most n vertices, the length of ¢/, in G’ is at most |y, | +n - <. Thus Pus] lé"‘;’lre <tHe,

n 7 |uv]

is valid because € is smaller than the closest pair distance in S, and hence smaller than |uv|.
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—— Abstract

The problem MAX W-LIGHT (MAX W-HEAvVY) for an undirected graph is to assign a direction to
each edge so that the number of vertices of outdegree at most W (resp. at least W) is maximized.
It is known that these problems are NP-hard even for fixed W. For example, MAX 0-LIGHT is
equivalent to the problem of finding a maximum independent set.

In this paper, we show that for any fixed constant W, MAX W-HEAVY can be solved in linear
time for hereditary graph classes for which treewidth is bounded by a function of degeneracy.
We show that such graph classes include chordal graphs, circular-arc graphs, d-trapezoid graphs,
chordal bipartite graphs, and graphs of bounded clique-width.

To have a polynomial-time algorithm for MAX W-LIGHT, we need an additional condition of
a polynomial upper bound on the number of potential maximal cliques to apply the metatheorem
by Fomin, Todinca, and Villanger [STAM J. Comput., 44(1):57-87, 2015]. The aforementioned
graph classes, except bounded clique-width graphs, satisfy such a condition. For graphs of
bounded clique-width, we present a dynamic programming approach not using the metatheorem
to show that it is actually polynomial-time solvable for this graph class too.

We also study the parameterized complexity of the problems and show some tractability and
intractability results.
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1 Introduction

Let G = (V, E) be an undirected graph. An orientation of G is a function that maps each
undirected edge {u,v} € E to one of the two possible directed edges (u,v) and (v,u). For

* Partially supported by NETWORKS project and by MEXT/JSPS KAKENHI grant numbers 24106004,
24220003, 25730003, 26540005. The third author was partially supported by FY 2015 Researcher
Exchange Program between JSPS and NSERC.

© Hans L. Bodlaender, Hirotaka Ono, and Yota Otachi;

licensed under Creative Commons License CC-BY
27th International Symposium on Algorithms and Computation (ISAAC 2016).
Editor: Seok-Hee Hong; Article No. 20; pp.20:1-20:12

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://dx.doi.org/10.4230/LIPIcs.ISAAC.2016.20
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

20:2

Degree-Constrained Orientation of Maximum Satisfaction

any orientation A of G, define A(E) = |J.cz{A(e)} and let A(G) denote the directed graph
(V,A(E)). For any vertex u € V, the outdegree of u under A is defined as d (u) = [{(u,v) :
(u,v) € A(E)}, i.e., the number of outgoing edges from u in A(G). For any non-negative
integer W, a vertex u € V is called W-light in A(G) if d} (u) < W, and W-heavy in A(G) if
df(u) > W.

For any fixed integer W > 0, the following optimization problems (introduced in [3], see
also [4]) are defined, where the input is an undirected graph G = (V, E):

MAx W-LiGgHT: Output an orientation A of G

such that [{u € V : df (u) < W}| is maximized.

Max W-HEAvVY: Output an orientation A of G

such that ’{u eV : dX(u) > W}’ is maximized.

Symmetrically, we can consider the following problems:

MIN W-L1GHT: Output an orientation A of G

such that [{u € V : df (u) < W}| is minimized.

Min W-HEAvVY: Output an orientation A of G

such that [{u € V : dj (u) > W}| is minimized.

Observe that MAX W-LIGHT (resp., MAX W-HEAVY) and MIN (W + 1)-HEAVY (resp., MIN
(W —1)-LI1GHT) are supplementary problems in the sense that an exact algorithm for one gives
an exact algorithm for the other, though their approximability properties and fixed-parameter
tractability may differ. Since this paper mainly focuses on the polynomial-time solvability,
we consider only MAX W-LIGHT and MAX W-HEAVY. !

It is shown in [3] that MAax W-Li1GHT is NP-hard for any fixed W > 0, and MAX
W-HEAVY is NP-hard for any fixed W > 3. They also show that for W < 1 MaxX W-HEAVY
can be solved in polynomial time. Recently Khoshkhah [23] has closed the gap by showing
that MAX 2-HEAVY can be solved in polynomial time.

For these problems, the same authors of [3] investigate the approximability [4]. They got
comprehensive results on the approximability of the problems. Due to the work, the general
(in)approximability of the problems is well understood. In this paper, we thus investigate the
problem from another aspect, that is, graph classes. For the two problems MAX W-LIGHT
and MAX W-HEAVY, we take similar but slightly different approaches.

The main tool for MAX W-LIGHT is the metatheorem of Fomin, Todinca, and Villanger [16]
that can be seen as an extension of Courcelle’s theorem [1, 12]. It provides a polynomial-
time algorithm for finding a maximum induced subgraph of bounded treewidth satisfying a
counting monadic second-order logic formula from a given graph with polynomially many
potential maximal cliques. We show that if a hereditary graph class has a polynomial upper
bound on the number of potential maximal cliques and has a function depending only on
degeneracy as an upper bound of treewidth, then the metatheorem of Fomin et al. can be
applied to MAX W-LIGHT.

Similarly, for MAx W-HEAVY, we consider hereditary graph classes with treewidth
bounded by a function of degeneracy. However, we do not require polynomial upper bounds
on the number of potential maximal cliques. We first show that the problem for graphs of
bounded treewidth can be solved in linear time. Next we present a linear-time reduction
from graphs with a function of degeneracy as an upper bound of treewidth to graphs of
bounded treewidth. Combining these results, we obtain a linear-time algorithm for MAX
W-HEAVY on graph classes with the aforementioned property.

! 'We consider parameterized complexity in Section 5 where the equivalence does not hold.
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We then show that our algorithms can be applied to several well-known graph classes. It
is known that chordal graphs, circular-arc graphs, d-trapezoid graphs, and chordal bipartite
graphs have polynomial upper bounds on the number of potential maximal cliques (see
Section 4). We show that these hereditary graph classes have functions of degeneracy as
upper bounds on treewidth, and thus our algorithms can be applied. Additionally, we observe
that graphs of bounded clique-width admit a function of degeneracy as an upper bounded
of treewidth, and thus MAX W-HEAVY can be solved in linear time. To show that MAX
W-LIGHT can be solved in polynomial time for graphs of bounded clique-width, we present
a dynamic programming based algorithm.

We also consider the parameterized complexity of the problems. We show that for any
fixed W, MAX W-LIGHT is W[1l]-complete, while MAX W-HEAVY admits a kernel of O(Wk)
vertices, where the parameter k is the solution size.

1.1 Related work

Graph orientations that optimize certain objective functions involving the resulting directed
graph or that satisfy some special property such as acyclicity [39] or k-edge connectivity [10,
33, 37] have many applications to graph theory, combinatorial optimization, scheduling (load
balancing), resource allocation, and efficient data structures. For example, an orientation
that minimizes the maximum outdegree [5, 9, 40] can be used to support fast vertex
adjacency queries in a sparse graph by storing each edge in exactly one of its two incident
vertices’ adjacency lists while ensuring that all adjacency lists are short [9]. There are many
optimization criteria for graph orientation other than these. See [2] or Chapter 61 in [38] for
more details and additional references.

On the other hand, degree-constrained graph orientations [17, 18, 21, 29] arise when a
degree lower bound W'!(v) and a degree upper bound W"(v) for each vertex v in the graph
are specified in advance or as part of the input, and the outdegree of v in any valid graph
orientation is required to lie in the interval [W!(v),..., W"(v)]. Obviously, a graph does not
always have such an orientation, and in this case, one might want to compute an orientation
that best fits the outdegree constraints according to some well-defined criteria [2, 3]. In case
W(v) = 0and W¥(v) = W for every vertex v in the input graph, where W is a non-negative
integer, and the objective is to maximize (resp., minimize) the number of vertices that
satisfy (resp., violate) the outdegree constraints, then we obtain MAX W-LIGHT (resp., MIN
(W + 1)-HEAVY). Similarly, if W!(v) = W and W*(v) = oo for every vertex v in the input
graph, then we obtain MAX W-HEAVY and MIN (W — 1)-LIGHT.

Another related problem is to find a maximum vertex set that induces a subgraph of
bounded degeneracy. (See the next section for the definition of degeneracy.) This problem
can be seen as a variant of MAX W-LIGHT, where we can use acyclic orientations only.
This problem is studied in the context of parameterized [31] and exact [36] computation.
Concerning graph classes, we can obtain a result similar to the one for MAX W-LIGHT as we
observe in the final section of this paper.

2 Preliminaries

The degree of u in G is dg(u) = |[Ng(u)|. We define §(G) = min{dg(u) : v € V(G)}. The
degeneracy of a graph G, denoted by B) (@), is the maximum of the minimum degrees over all
induced subgraphs of G. Let (v1,...,v,) be an ordering on V(G) such that dg, (v;) = 0(G),
where G; = G[{v; : j > i}]. It is known that such an ordering can be computed in linear
time and that 0(G) = max;<;<, 8(G;) [32]. For any U C V(G), the subgraph induced by
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U is denoted by G[U]. If G[U] is a complete graph, then U is a clique of G. The size of a
maximum clique in G is denoted by w(G). Let wp(G) be the maximum integer k such that
G has a subgraph isomorphic to the complete bipartite graph Kj, ;. From the definition,
w(G) — 1 and wy(G) are lower bounds of §(G). A class C of graphs is hereditary if C is closed
under taking induced subgraphs.

For an integer W > 0, an orientation of a graph is called a W -light orientation if the
maximum outdegree is at most W. If a W-light orientation exists, we say that the graph is
W -light orientable. By replacing “at most” with “at least” in these definitions, we similarly
define W -heavy orientations and W -heavy orientable graphs.

2.1 Minimal triangulations and potential maximal cliques

A tree-decomposition of a graph G = (V, E) is a pair ({X; : i € I},T = (I, F)) such that
each X;, called a bag, is a subset of V, and T is a tree such that

for each v € V, there is ¢ € I with v € X;;

for each {u,v} € E, there is i € I with u,v € Xj;

for 4,7,k € I, if j is on the ¢, k-path in T, then X; N X} C X;.

The width of a tree-decomposition is the size of a maximum bag minus 1. A graph has
treewidth at most t if and only if it has a tree-decomposition of width at most t. We denote
the treewidth of G by tw(G).

A graph is chordal (or triangulated) if it has no induced cycle of length 4 or more. A
triangulation of a graph G = (V, E) is a chordal graph G’ = (V, E’) such that £ C E'. A
triangulation G’ of G is minimal if no proper subgraph of G’ is a triangulation of G. It
is known that the treewidth of G is the minimum integer ¢ such that there is a (minimal)
triangulation H of G with the maximum clique size t + 1. A vertex set P C V(G) is a
potential mazimal clique of G if P is a maximal clique in some minimal triangulation of G.
The set of all potential maximal cliques of G is denoted by IIs. A vertex set S C V(G)
is an a,b-separator for a,b € V(G) if a and b are in different components in G — S. An
a, b-separator is minimal if no proper subset of it is an a, b-separator. A vertex set is a
minimal separator if it is a minimal a, b-separator for some pair a,b. The set of all minimal
separators of G is denoted by Ag. By the following proposition, graphs have a polynomial
number of minimal separators if and only if they have a polynomial number of potential
maximal cliques.

» Proposition 2.1 (Bouchitté and Todinca [8]). For every n-vertex graph G, it holds that
[Acl/n < [lg| < n]Ag|* + nlAc| + 1.

3 Metatheorems

In this section we present metatheorems for MAX W-LIGHT and MAX W-HEAVY. We apply
them to some well-studied graph classes in the next section.

We now introduce the monadic second-order logic (MSO) of graphs. The syntax of MSO
of graphs includes (i) the logical connectives V, A, =, <, =, (ii) variables for vertices, edges,
vertex sets, and edge sets, (iii) the quantifiers V and 3 applicable to these variables, and
(iv) the following binary relations:

u € U for a vertex variable v and a vertex set variable U;

d € D for an edge variable d and an edge set variable D;

inc(d, u) for an edge variable d and a vertex variable u, where the interpretation is that d

is incident with u;

equality of variables.
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In the counting monadic second-order logic (CMSO) of graphs, we have an additional sentence
of checking the cardinality of a set modulo some constant.

» Lemma 3.1. For any fived W, MaX W-HEAVY and MAX W-LIGHT for graphs of bounded
treewidth can be expressed in an optimization version of MSO and thus solved in linear time.

Proof (sketch). Let G = (V, E) be a graph of treewidth at most k. It is known that for such a
graph, an edge orientation can be expressed in MSO by a proper coloring v: V' — {1,...,k+1}
and an edge set F' C E [6].

Let prop-col(Vi, ..., Vi41) be an MSO formula that means Vi, ..., Vi1 give a proper
k + 1 coloring of G. For an edge e € E and a vertex v € V, there is an MSO formula
OUtVly___7Vk+lﬂF(€, v) that means e is an out-going edge from v. Under the orientation repre-
sented by (Vi,...,Vi41) and F', W-heaviness and W-lightness of a vertex can be expressed in
MSO. Let W-heavyy, v, , p(v) and W-lighty, v, p(v) be such formulas. The problems
are equivalent to finding a maximum vertex set X in the following formulas:

IV, .., Vi1, 3F (prop—coI(V17 V) AYv e X (W—heavyvl7.__,Vk+1,F(v)>) ,

Wi, ... Visr, 3F (prop-coI(Vh VAV e X (W-lightvhwva(u))) .

It is known that for a fixed MSO formula on a graph of bounded treewidth, one can find in
linear time a maximum vertex subset satisfying the formula (see [1, 12]). <

» Corollary 3.2. For fited W and k, the property of being W -light orientable can be expressed
in MSO for graphs of treewidth at most k.

3.1 Max W-Light

We can see that the problem of finding a maximum W-light orientable induced subgraph is
polynomially equivalent to MAX W-LIGHT.

» Lemma 3.3. A graph G has a W-light orientable induced subgraph of at least k vertices if
and only if the edges of G can be oriented so that at least k vertices have outdegree at most
W. Furthermore, if a mazimum W -light orientable induced subgraph of G can be found in
O(f(m,n)) time, then MAX W-LIGHT can be solved in O(f(m,n) + m'®) time, where m
and n are the numbers of edges and vertices in G, respectively.

Recently, Fomin, Todinca, and Villanger [16] have presented the following metatheorem.

» Proposition 3.4 (Fomin, Todinca, and Villanger [16]). For any fized t and a CMSO-
expressible property P, the following problem can be solved in polynomial time for any class
of graphs with a polynomial number of potential maximal cliques: Given a graph G, find a
mazimum induced subgraph H of treewidth at most t that has the property P.

This metatheorem is quite powerful and allows us to solve many problems for graphs with
polynomially many potential maximal cliques. However, we cannot apply it to our problem
MAXx W-LIGHT in general because W-light orientable graphs may have large treewidth. For
example, grid graphs are 2-light orientable but have unbounded treewidth.

In the following, we show that with an additional restriction to graph classes, we can
apply the metatheorem of Fomin, Todinca, and Villanger to MAX W-LIGHT.

» Lemma 3.5. Fvery W-light orientable graph has degeneracy at most 2W .
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» Theorem 3.6. For any firted W, MAX W-LIGHT can be solved in polynomial time for
a hereditary graph class C with a polynomial number of potential maximal cliques if the
treewidth of each graph in C is bounded from above by a function of its degeneracy.

Proof. Let f be a function such that tw(G) < f(6(G)) for each G € C. By Lemma 3.5,
a W-light orientable graph in C has treewidth at most f(2W). Since C is hereditary, a
maximum W-light orientable induced subgraph of a graph in C can be found in polynomial
time by Proposition 3.4 and Corollary 3.2. Now, by Lemma 3.3, the theorem follows. |

3.2 Max W-Heavy

Unlike MAX W-LIGHT, the problem MAX W-HEAVY is not equivalent to the problem of
finding a maximum orientable induced subgraph. We here present a way of directly finding
an orientation with as many W-heavy vertices as possible for graphs with treewidth bounded
by a function of degeneracy.

» Proposition 3.7 ([4]). Every graph of minimum degree at least 2W + 1 is W-heavy
orientable and a W -heavy orientation of it can be found in linear time.

» Theorem 3.8. For any fired W, MAX W-HEAVY can be solved in linear time for a
hereditary graph class C if the treewidth of each graph in C is bounded from above by a
function of its degeneracy.

Proof. Let f be a function such that tw(G) < f(6(G)) for each G € C. Let G € C be a
graph with n vertices. Let (vq,vs,...,v,) be an ordering of V(G) such that for each i, the
vertex v; has the minimum degree in G;, where G; = G[{v; : i < j < n}]. Let h be the first
index such that dg, (vn) > 2W + 1. If there is no such index, we set h =n + 1.

Let H = G[{v; : 1 < j < h}]. Since C is hereditary, we have H € C, and thus
tw(H) < f(6(H)) < f(2W). We obtain H’ from H as follows: add a clique C of size 2W +1;
for each vertex v in H, add edges from v to arbitrarily chosen dg(v) — dg(v) vertices in C.
It holds that tw(H') < tw(H) + |C]| < f(2W) +2W + 1.

By Lemma 3.1, an orientation A’ of H with the maximum number of W-heavy vertices
can be found in linear time. Note that all vertices in C' are W-heavy under A’ even in H'[C].
Otherwise, by Proposition 3.7, we can change the directions of edges in H’'[C] so that all
vertices in C' become W-heavy. Since this modification does not decrease the outdegree of
any vertex in V(H), the new orientation has strictly more W-heavy vertices than A’. This
contradicts the optimality of A’.

Let A” be a W-heavy orientation of Gy, = G[{vp, ..., v,}]. By Proposition 3.7, such an
orientation can be found in linear time. We next construct an orientation A of G from A’ and
A" as follows: for each edge in E(H) or E(Gy), we use the direction in A’ or A’ respectively;
for each edge between V(H) and V(Gy), we use the direction from V(H) to V(Gy). All
vertices in V(G},) are W-heavy in G under A. Under A, each vertex in V(H) has at least as
many out-neighbors as under A’. Thus a vertex in V(H) is W-heavy in G under A if it is
W-heavy in H' under A’.

We now show the optimality of A. Suppose to the contrary that there is an orientation
Aopt of G with strictly more W-heavy vertices than A. Let F' and Fopt be the W-heavy
vertices in V(H) under A and AopT, respectively. Since the vertices in V(G},) are W-heavy
under A, we have |F| < |Fopt|. Now let Agpr be an orientation of H' such that the edges in
H are oriented as in AopT, the edges between V(H) and C are oriented from V(H) to C,
and the edges in H[C] are oriented so that all the vertices in C' become W-heavy. Then, at
least |C| + |Fopt| > |C| + |F| vertices are W-heavy in H' under Aypy. This contradicts the
optimality of A’ since at most |C| 4 |F| vertices are W-heavy in H' under A’. <
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4 Graph classes

In this section, we show that Theorems 3.6 and 3.8 can be applied to several important graph
classes. More precisely, we show the following theorems.

» Theorem 4.1. For any fired W, MAX W-LIGHT can be solved in polynomial time for the
classes of chordal graphs, d-trapezoid graphs, circular-arc graphs, chordal bipartite graphs,
and graphs of bounded clique-width.

» Theorem 4.2. For any fixed W, MAX W-HEAVY can be solved in linear time for the
classes of chordal graphs, d-trapezoid graphs, circular-arc graphs, chordal bipartite graphs,
and graphs of bounded clique-width.

To prove Theorems 4.1 and 4.2, we show for each graph class that it satisfies conditions
of Theorems 3.6 and 3.8 in the following subsections. To solve MAX W-LIGHT for graphs
of bounded clique-width, we present a direct solution as we cannot apply the metatheorem.
Note that all graph classes studied in this section are hereditary.

4.1 Chordal graphs, d-trapezoid graphs, and circular-arc graphs

It is well known that a chordal graph of n vertices has at most n maximal cliques (see [22]).
Since a chordal graph is the unique minimal triangulation of itself, the number of potential
maximal cliques is at most n for every n-vertex chordal graph. From the definition of chordal
graphs, the following equality follows.

» Proposition 4.3 (Folklore). For every chordal graph G, tw(G) = §(G) = w(G) — 1.

The co-comparability graph of a partial order (V, <) is a graph with the vertex set V
in which two vertices u and v are adjacent if and only if they are incomparable, that is,
u 4 v and v £ u. A partial order (V, <) is an interval order if each element v € V can
be represented by an interval [l,,7,] such that v < v if and only if r, < I,. A graph is
a d-trapezoid graph if it is the co-comparability graph of a partial order defined as the
intersection of d interval orders [7]. It is known that every d-trapezoid graph of n vertices
has at most (2n — 3)?~! minimal separators [28]. Habib and Mohring showed in the proof of
Theorem 3.4 in [20] that for every d-trapezoid graph G, tw(G) < 4d - wp(G) — 1. This gives
the following fact as a direct corollary.

» Proposition 4.4 ([20]). For every d-trapezoid graph G, tw(G) < 4d - §(G) — 1.

A graph is a circular-arc graph if it is the intersection graph of arcs on a circle. Every
n-vertex circular-arc graph has at most 2n? — 3n minimal separators [26]. A graph is an
interval graph if it is the intersection graph of intervals on a line. From the definition, every
interval graph is a circular-arc graph. Also, every interval graph is a chordal graph [30].

» Lemma 4.5. For every circular-arc graph G, tw(G) < 20(G).

4.2 Chordal bipartite graphs

A bipartite graph is a chordal bipartite graph if it has no induced cycle of length 6 or more.

Every chordal bipartite graph has O(m + n) minimal separators [27]. We can show that
for every chordal bipartite graph G, tw(G) < 26 (G) — 1. The proof is a bit more involved
than the ones in the previous subsection. We use the techniques developed by Kloks and
Kratsch [25] for computing the treewidth of a chordal bipartite graph exactly.

» Theorem 4.6. For every chordal bipartite graph G, tw(G) < 2 - wp(G) — 1.
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4.3 Graphs of bounded clique-width

A k-expression is a rooted binary tree such that

each leaf has label o; for some i € {1,...,k},

each node with one child has a label p; j or n; ; (i, € {1,...,k}, i # j), and

each node with two children has a label U.

Each node in a k-expression represents a vertex-labeled graph as follows:

a o;-node represents a graph with one vertex of label i;

a U-node represents the disjoint union of the labeled graphs represented by its children;

a p; j-node represents the labeled graph obtained from the one represented by its child

by relabeling the label-i vertices with label j;

an 7; j-node represents the labeled graph obtained from the one represented by its child

by adding edges between the label-i vertices and the label-j vertices.

A k-expression represents the graph represented by its root. The clique-width of a graph G,
denoted by cw(G), is the minimum integer k such that there is a k-expression representing a
graph isomorphic to G.

It is known that graphs of bounded treewidth have bounded clique-width [11]. The
converse is not true in general. For example, the complete graph K,, (n > 2) has clique-width
2 and treewidth n — 1. On the other hand, the following bound is known for graphs with no
large complete bipartite subgraphs.

» Proposition 4.7 (Gurski and Wanke [19]). For every graph G of clique-width at most k,
tw(G) <3k - wp(G) — 1.

The proposition above with Theorem 3.8 imply that MAX W-HEAVY can be solved in
linear time for graphs of bounded clique-width. However, we cannot apply Theorem 3.6 since
graphs of bounded clique-width may have a super-polynomial number of potential maximal
cliques. In the rest of this section, we directly show that MAX W-LIGHT is polynomial-time
solvable for graphs of bounded clique-width. A k-expression of a graph is irredundant if for
each edge {u, v}, there is exactly one node 7, ; that adds the edge between u and v. We will
show that:

» Theorem 4.8. Given a graph with an irredundant k-expression, MAX W-LIGHT can be
solved in time O(n?* W+2)+4]0g p).

For a graph of clique-width k, one can compute a (23% — 1)-expression of it in polynomial
time [34] (see also [35]), while exact computation of the clique-width and a corresponding k-
expression is NP-hard [15]. A k-expression of a graph can be transformed into an irredundant
one with O(n) nodes in linear time [13]. Now the following is a corollary to Theorem 4.8.

» Corollary 4.9. For graphs of clique-width at most k, MAX W-LIGHT can be solved in time
O(n2(23k_1)(w+2)+4 logn).

We now prove Theorem 4.8. Let G be an n-vertex graph and T be an irredundant
k-expression of G with O(n) nodes. We denote by r the root of T'. For each node ¢ in T, let
G be the graph represented by t with V; := V(G;). For each i € {1,...,k}, let V;! be the
set of label-i vertices in Gy.

For a node t in T, a k x (W 4 2) integer matrix A = (A;;)ief1,....k}, jefo,...,w+1} 1S an
outdegree signature of Gy if there is an orientation A of G; such that for each i € {1,...,k}
and j € {0,...,W}, A, ; is the number of label-i vertices with outdegree j in G; under A, and
for each i € {1,...,k}, A; w1 is the number of label-i vertices with outdegree at least W+ 1
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in G; under A. The weight w(A) of an outdegree signature Ais 32,ccy 1y seqo. wy Aij-

Note that there are at most n*(W+2) outdegree signatures for each node in 7.

» Observation 4.10. The optimal value of MAX W-LIGHT for G is max w(A), where the
maximum is taken over all outdegree signatures A of G = G.

By Observation 4.10, if we have all possible outdegree signatures for all nodes in 7', then
we can obtain the optimal value of MAX W-LIGHT. We compute the outdegree signatures
by a bottom-up dynamic programming over the k-expression 7. In a standard way, we can
modify the dynamic programming to compute an optimal solution as well.

Computing outdegree signatures for the leaf, U-, and p, ,-nodes is fairly straightforward.
For 7, ;-nodes, we need the following result.

» Proposition 4.11 (Asahiro, Jansson, Miyano, and Ono [2]). Given an undirected n-vertex m-
edge graph G = (V, E) with lower and upper bounds (1(v),u(v)) € {0,...,n—1}x{0,...,n—1}
for each v € V, it can be decided in O(m!'->logn) time whether there is an orientation A
such that 1(v) < df (v) < u(v) for eachv € V.

» Lemma 4.12. For an 1, 4-node, its outdegree signatures can be computed in time
O(n**W+2+31ogn) from the outdegree signatures of its child.

Proof. Let ¢ be an 7, ;-node with the child ¢. By the definition of k-expression, V; = V}}
for all 7. Recall that T is irredundant. Hence there is no edge between VP and V;? in Gy,
while G has all possible edges between V" and V;%.

Let A’ be an orientation of Gy and A’ the corresponding outdegree signature. We say
that A’ can be extended to an outdegree signature A of G if there is an orientation A of Gy
that corresponds to A such that A(e) = A’(e) for every e € E(Gy ).

» Claim 4.13. If A’ can be extended to A, then there is an orientation A of Gy that corresponds
to A such that df,(u) < df,(v) implies d} (u) < df (v) for u,v € V and i € {p,q}.

Let A be a candidate of an outdegree signature of G;. That is, A is a k x (W + 2)
integer matrix A = (Ai;)ic(1,. k}, je(o,...w+1}- For i € {p,q}, let (di1,...,d; ;) be
the nondecreasing sequence such that for each j € {0,...,W 4+ 1}, the value j appears
exactly A; ; times. From A’, we define (d} ,, ..., d;\VZ’I) in the same way. For i € {p, ¢} and
he{l,...,|V{]}, we define the lower bound 1;;, and the upper bound u; j, as follows:

Lin=din—dip,

din —diy i dip <W,
u; p = ’

n—1 if dyp =W + 1.

Now let B = (W,,W,; Eg) be the complete bipartite graph, where W; = {w;, : i €
{p,q}, he{1,...,|V!}} for i € {p,q}.

» Claim 4.14. A’ can be extended to A if and only if there is an orientation Ag of B such
that for each vertex w;p, it holds that 1, < dXB (win) < wp-

For each candidate A, we construct B from A and A’. We also compute the lower and
upper bounds of outdegree as described above. Then we check orientability under these
bounds. By Proposition 4.11, it can be done in time O(|Ep|'-% log |W,, UW,|). We can bound
this by O(n3logn), and thus the lemma holds. <

We have proved that for each node in 7', we can compute its outdegree signatures in
O(n**W+2)+31ogn) time. This completes the proof of Theorem 4.8.

20:9

ISAAC 2016



20:10

Degree-Constrained Orientation of Maximum Satisfaction

5 Parameterized complexity

In this section, we study the parameterized complexity of the problems. See the recent
textbook [14] for standard concepts in the field of parameterized complexity. The parameter
is the number of vertices of outdegree at most (at least) W in MAX W-LIGHT (resp. MAX
W-HEAVY). We call it the solution size.

By using a general theorem in [24], we can easily show the following result.

» Corollary 5.1. For any fized integer W > 0, MAX W-LIGHT is W/[1]-complete when
parameterized by the solution size.

Let (G, k) be an instance of the parameterized version of MAX W-HEAVY, where the
parameter k is the solution size. We show the following theorem.

» Theorem 5.2. MAX W-HEAVY parameterized by the solution size k admits a kernel with
at most (2W + 4)k + W — 2 wvertices.

In the following, we assume that W > 3 since otherwise the problem can be solved in
polynomial time [3, 23]. Let A C V(G) be the set of vertices of degree at least W, and let
B=V(G)\ A. We first bound the number of vertices in A.

» Lemma 5.3. If |A| > k- (W + 1), then (G, k) is a yes-instance.

By the lemma above, we can assume that |A| < k- (W + 1). We now modify the graph:
1. remove all vertices of B from G
2. add an independent set B’ of size [|A| - W/(W —1)] + W — 2;
3. for each v € A, repeat the following process:

a. find min{|Ng(v) N B|, W} vertices in B’ with degree at most W — 2;

b. add the edges between v and the vertices chosen.
We call the resultant graph G’. Because W > 3, it holds that (W + 1)W/(W —1) < W + 3,
and thus |B’| < k(W +3)+W —2. This implies that |[V(G’)| = |A|+|B’'| < k2W +4)+ W —2.

To see that the step 3a is always possible, observe that before an execution of the
step 3a, at most W (]A| — 1) edges between A and B’ are added. On the other hand, if
there are at most W — 1 vertices of degree at most W — 2 in B’ then there are at least
(W = 1)(IB'] = (W = 1)) = (W = )(|A]- W/(W — 1) + W =2 — (W — 1)) = W(|A| = 1) + 1
edges between A and B’.

» Lemma 5.4. (G, k) is a yes-instance if and only if so is (G', k).

6 Concluding remarks

We have presented metatheorems to show linear-time and polynomial-time solvability of
Max W-HEAvY and MAX W-LIGHT, respectively. The metatheorems are applied to several
important classes of graphs. We believe our metatheorems can be applied to many other
graph classes. As the final remark, we present a similar result for the problem of finding a
maximum induced subgraph with bounded degeneracy.

» Theorem 6.1. For any fized W, the problem of finding a maximum set of vertices that
induces a subgraph of degeneracy at most W can be solved in polynomial time for the classes
of chordal graphs, d-trapezoid graphs, circular-arc graphs, and chordal bipartite graphs, and
in linear time for graphs of bounded clique-width.
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We study the online bounded-delay packet scheduling problem (PacketScheduling), where packets of
unit size arrive at a router over time and need to be transmitted over a network link. Each packet
has two attributes: a non-negative weight and a deadline for its transmission. The objective is to
maximize the total weight of the transmitted packets. This problem has been well studied in the
literature, yet its optimal competitive ratio remains unknown: the best upper bound is 1.828 [6],
still quite far from the best lower bound of ¢ ~ 1.618 [10, 2, 4].

In the variant of PacketScheduling with s-bounded instances, each packet can be scheduled in
at most s consecutive slots, starting at its release time. The lower bound of ¢ applies even to
the special case of 2-bounded instances, and a ¢-competitive algorithm for 3-bounded instances
was given in [3]. Improving that result, and addressing a question posed by Goldwasser [8], we
present a ¢-competitive algorithm for 4-bounded instances.

We also study a variant of PacketScheduling where an online algorithm has the additional
power of 1-lookahead, knowing at time ¢ which packets will arrive at time ¢+ 1. For PacketSchedul-
ing with 1-lookahead restricted to 2-bounded instances, we present an online algorithm with com-
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1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems
Keywords and phrases buffer management, online scheduling, online algorithm, lookahead

Digital Object ldentifier 10.4230/LIPIcs.ISAAC.2016.21

* M. Bohm, J. Sgall, and P. Vesely were supported by project 14-10003S of GA CR and by the GAUK
project 548214. M. Chrobak was supported by NSF grants CCF-1217314 and CCF-1536026. L. Jez was
supported by NCN grant DEC-2013/09/B/ST6/01538. F. Li was supported by NSF grant CCF-1216993.

© Martin Béhm, Marek Chrobak, Lukasz Jez, Fei Li, Jif{ Sgall, and Pavel Vesely;
37 licensed under Creative Commons License CC-BY

27th International Symposium on Algorithms and Computation (ISAAC 2016).

Editor: Seok-Hee Hong; Article No. 21; pp.21:1-21:13

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://dx.doi.org/10.4230/LIPIcs.ISAAC.2016.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

21:2

Online Packet Scheduling with Bounded Delay and Lookahead

1 Introduction

Optimizing the flow of packets across an IP network gives rise to a plethora of challenging
algorithmic problems. In fact, even scheduling packet transmissions from a router across
a specific network link can involve non-trivial tradeoffs. Several models for such tradeoffs
have been formulated, depending on the architecture of the router, on characteristics of the
packets, and on the objective function.

In the model that we study in this paper, each packet has two attributes: a non-negative
weight and a deadline for its transmission. The time is assumed to be discrete (slotted), and
only one packet can be sent in each slot. The objective is to maximize the total weight of
the transmitted packets. We focus on the online setting, where at each time step the router
needs to choose a pending packet for transmission, without the knowledge about future
packet arrivals. This problem, which we call online bounded-delay packet scheduling problem
(PacketScheduling), was introduced by Kesselman et al. [11] as a theoretical abstraction that
captures the constraints and objectives of packet scheduling in networks that need to provide
quality of service (QoS) guarantees. The combination of deadlines and weights is used to
model packet priorities. In the literature, the PacketScheduling problem is sometimes referred
to as bounded-delay buffer management in QoS switches. It can also be formulated as the
job-scheduling problem 1|p; = 1,r;| > w;U;, where packets are represented by unit-length
jobs with deadlines, with the objective to maximize the weighted throughput.

A router transmitting packets across a link needs to make scheduling decisions on
the fly, based only on the currently available information. This motivates the study of
online competitive algorithms for PacketScheduling. A simple online greedy algorithm that
always schedules the heaviest pending packet is known to be 2-competitive [10, 11]. In a
sequence of papers [5, 7, 12, 6], this ratio was gradually improved, and the best currently
known ratio is 1.828 [6]. The best lower bound, widely believed to be the optimal ratio, is
¢ = (1++/5)/2 ~ 1.618 [10, 2, 4]. Closing the gap between these two bounds is one of the
most intriguing open problems in online scheduling.

s-Bounded instances. In an attempt to bridge this gap, restricted models have been
studied. In the s-bounded variant of PacketScheduling, each packet must be scheduled within
k consecutive slots, starting at its release time, for some k& < s possibly depending on the
packet. The lower bound of ¢ from [10, 2, 4] holds even in the 2-bounded case. A matching
¢-competitive algorithm was given Kesselman et al. [11] for 2-bounded instances and by
Chin et al. [3] for 3-bounded instances. Both results are based on the algorithm EDF,,, with
a = ¢, which always schedules the earliest-deadline packet whose weight is at least the weight
of the heaviest pending packet divided by « (ties are broken in favor of heavier packets).
EDF, is not ¢-competitive for 4-bounded instances; however, a different choice of « yields a
1.732-competitive algorithm for the 4-bounded case [3].

We present a ¢-competitive online algorithm for PacketScheduling restricted to 4-bounded
instances, matching the lower bound of ¢ (see Section 3). This improves the results from [3]
and answers the question posed by Goldwasser in his SIGACT News survey [8].

Algorithms with 1-lookahead. We investigate a variant of PacketScheduling where an online
algorithm is able to learn at time ¢ which packets will arrive by time ¢ 4+ 1. This property
is known as I1-lookahead. From a practical point of view, 1-lookahead corresponds to the
situation in which a router can see the packets that are just arriving to the buffer and that
will be available for transmission in the next time slot.
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The notion of lookahead is quite natural and it has appeared in the online algorithm
literature for paging [1], scheduling [13] and bin packing [9] since the 1990s. Ours is the first
paper, to our knowledge, that considers lookahead in the context of packet scheduling.

We provide two results about PacketScheduling with 1-lookahead, restricted to 2-bounded
instances. First, in Section 4, we present an online algorithm with competitive ratio of
1(v/13 —1) ~ 1.303. Then, in Section 5, we give a lower bound of £(1++/17) ~ 1.281 on the

competitive ratio of algorithms with 1-lookahead which holds already for the 2-bounded case.

2 Definitions and Notation

Formally, we define the PacketScheduling problem as follows. The instance is a set of packets,
with each packet p specified by a triple (r,,d,, w,), where r, and d, > r, are integers
representing the release time and deadline of p, and w, > 0 is a real number representing
the weight of p. Time is discrete, divided into unit time slots, also called steps. A schedule
assigns time slots to some subset of packets such that (i) any packet p in this subset is

assigned a slot in the interval [r,,d,], and (ii) each slot is assigned to at most one packet.

The objective is to compute a schedule that maximizes the total weight of the scheduled
packets, also called the profit.

In the s-bounded variant of PacketScheduling, we assume that each packet p in the instance
satisfies d,, < r, + s — 1. In other words, this packet must be scheduled within %, consecutive
slots, starting at its release time, for some &, < s.

In the online variant of PacketScheduling, which is the focus of our work, at any time ¢
only the packets released at times up to ¢ are revealed. Thus an online algorithm needs to
decide which packet to schedule at time ¢ (if any) without any knowledge of packets released
after time t.

As is common in the area of online optimization, we measure the performance of an online
algorithm A by its competitive ratio. An algorithm is R-competitive if, for all instances, the
total weight of the optimal schedule (computed offline) is at most R times the weight of the
schedule computed by A.

We say that a packet is pending for an algorithm at time ¢, if r, < ¢ < d, and p is not
scheduled before time t. A (pending) packet p is expiring at time t if d, = ¢, that is, it must
be scheduled now or never. A packet p is tight if r, = d,; thus p is expiring already at its
release time.

In Sections 4 and 5, we investigate the PacketScheduling problem with 1-lookahead. With
1-lookahead, the problem definition changes so that at time ¢, an online algorithm can also see
the packets that will be released at time ¢ + 1, in addition to the pending packets. Naturally,
only a pending packet can be scheduled at time t¢.

Other terminology and assumptions. We will make several assumptions about our problem
that do not affect the generality of our results. First, we can assume that all packets have
different weights. Any instance can be transformed into an instance with distinct weights
through infinitesimal perturbation of the weights, without affecting the competitive ratio.
Second, we assume that at each step there is at least one pending packet. (If not, we can
always release a tight packet of weight 0 at each step.)

We define the earliest-deadline relation on packets, or canonical ordering, denoted <,
where < y means that either d, < d, or d, = d,, and w,; > w, (so the ties are broken
in favor of heavier packets). At any step ¢, the algorithm maintains the earliest-deadline
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relation on the set of its pending packets. Throughout the paper, “earliest-deadline packet”
means the earliest packet in the canonical ordering.

Regarding the adversary (optimal) schedule, we can assume that it satisfies the following
earliest-deadline property: if packets p, p’ are scheduled in steps ¢t and t’, respectively, where
ry <t <t <d, (that is, p and p’ can be swapped in the schedule without violating their
release times and deadlines), then p < p’. This can be rephrased in the following useful
way: at any step, the optimum schedule transmits the earliest-deadline packet among all the
pending packets that it transmits in the future.

3 An Algorithm for 4-bounded Instances

In this section, we present a ¢-competitive algorithm for 4-bounded instances. Ratio ¢ is
of course optimal [10, 2, 4, see also Section 1]. Up until now, the best competitive ratio for
4-bounded instances was v/3 ~ 1.732, achieved by algorithm EDF v3 in [3]. Our algorithm
can be seen as a modification of EDF 4, which under certain conditions schedules a packet
lighter than wp /¢ where h is the heaviest pending packet.

We remark that our algorithm uses memory; in particular, it marks one pending packet
under certain conditions. It is an interesting question whether there is a memoryless ¢-
competitive algorithm for 4-bounded instances.

Our algorithm, which we call ToggleH, maintains one mark that may be assigned to one
of the pending packets. For a given step ¢, we choose the following packets from among all
pending packets:

h = the heaviest packet,

s = the second-heaviest packet,

f = the earliest-deadline packet with w; > wy,/¢, and

e = the earliest-deadline packet with w, > wy,/¢?.

We then proceed as follows:

if (h is not marked) V (ws > wp /@) V (de > t)
schedule f
if there is a marked packet then unmark it
if (d, =t+3) A (df =t+ 2) then mark h
else // (h is marked) A (ws < wp /@) A (de = 1)
schedule e
unmark h

Note that when f # h, then the algorithm will always schedule f. This is because in this case
f is a candidate for s, so the condition wy > wy, /¢ holds. The algorithm never specifically
chooses s for scheduling — it is only used to determine if there is one more relatively heavy
pending packet other than h. (But s may get scheduled if it so happens that s = f or s = e.)
Note also that, if e # f, then e is scheduled only in a very specific scenario, when all of the
following hold: e is expiring, h is marked, and ws < wy /.

We have two types of packets scheduled by Algorithm ToggleH: f-packets, scheduled using
the first case, and e-packets, scheduled using the second case. Similarly, we refer to the steps
as f-steps and e-steps.

Let us give a high-level view of the analysis using charging schemes and an example that
motivates both our algorithm and its analysis. The example consists of four packets j, k, f, h
released in step 1, with deadlines 1,2,3,4 and weights 1 —¢,1 —¢,1, ¢ for a small € > 0,
respectively. The optimum schedules all packets.
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Algorithm EDF, performs only f-steps; in our example it schedules f and h in steps 1
and 2, while j and k are lost. Thus the ratio is larger than ¢. (In fact, after optimizing the
threshold and the weight of h, this is the tight example for EDF 5 on 4-bounded instances.)
ToggleH avoids this example by performing e-step in step 2 and scheduling & which has the
role of e and s in the algorithm.

This example and its variants are also important for our analysis. We analyze the
algorithms by charging schemes, where the weight of each packet scheduled by the adversary
is charged to one or more of the slots of the algorithm’s schedule. If the weight charged to
each slot is at most R times the weight of the packet scheduled by the algorithm in that slot,
the algorithm is R-competitive. In the case of EDF, we charge the weight of each packet j
scheduled by the adversary at time ¢ either fully to the step where EDF schedules j, if it is
before t, or fully to step ¢ otherwise. In our example, the weight charged to step 1is 2 — ¢
while EDF schedules only weight 1, giving the ratio 2. Considering steps 1 and 2 together
leads to a better ratio and after balancing the threshold it gives the tight analysis of EDF /.

Our analysis of ToggleH is driven by the variants of the example above where step 2 is
an f-step. This may happen in several cases. One case is if in step 2 another packet s with
ws > wy /¢ arrives. If s is not scheduled in step 2, then s is pending in step 3, thus ToggleH
schedules a relatively heavy packet in step 3, and we can charge a part of the weight of f,
scheduled in step 3 by the adversary, to step 3. This motivates the definition of regular up
and back charges below and corresponds to Case 5.1 in the analysis. Another case is when
the weight of k is changed to 1/¢ — e. Then ToggleH performs an f-step because k is not
a candidate for e, thus the role of e is taken by the non-expiring packet h. However, then
the weight of the four packets charged to steps 1 and 2 in the way described above is at
most ¢ times the weight of f and h; this corresponds to Case 5.2 of the analysis. Lemma 3.3
gives a subtle argument showing that in the 4-bounded case essentially these two variants
of our example are the only difficult situations. Finally, in the original example, ToggleH
schedules k in step 2 which is an e-step. Then again h is a pending heavy packet and we can
charge some weight of f to step 3. Intuitively it is important that an e-step is performed
only in a very specific situation where it is guaranteed that h can be scheduled in the next
two steps (as it is marked) and that there is no other packet of comparable weight due to the
condition ws < wp/¢. Still, there is a case to be handled: If more packets arrive in step 3, it
is also possible that the adversary schedules h already in step 2 and we need to redistribute
its weight. This case motivates the definition of the special up and back charges below.

» Theorem 3.1. Algorithm ToggleH is ¢-competitive on 4-bounded instances.

Proof. Fix some optimal adversary schedule. Without loss of generality, we can assume that

this schedule satisfies the earliest-deadline property (see Section 2).

Let t be the current step. By h, f, e, and s we denote the packets from the definition of
ToggleH. By j we denote the packet scheduled by the adversary. By A’ and h” we denote the
heaviest pending packets in steps ¢ + 1 and ¢ + 2, respectively. We use the same convention
for packets f, e, s, and j.

Our analysis uses a new charging scheme which we now define. The adversary packet j
scheduled in step ¢ is charged according to the first case below that applies:

1. If t is an e-step and j = h, we charge wy, /¢ to step t and wy, /¢ to step t — 1. We call
these charges a special up charge and a special back charge, respectively. Note that the
total charge is equal to wy, = wj.

2. If j is pending for ToggleH in step ¢, charge w; to step t. We call this charge a full up
charge.
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3. Otherwise j is scheduled before step ¢. We charge wy,/¢? to step ¢ and w; —wy,/$? to the
step where ToggleH scheduled j. We call these charges a reqular up charge and a regular
back charge, respectively. We point out that the regular back charge may be negative,
but this causes no problems in the proof.

We start with an easy observation that we use several times throughout the proof.

» Lemma 3.2. If an f-step t receives a reqular back charge, then the up charge it receives is
less than wy/¢.

Proof. For a regular up charge the lemma is trivial (with a slack of a factor of ¢). For a full
up charge, the existence of a back charge implies that the adversary schedules f after j, thus
the earliest-deadline property of the adversary schedule implies that j < f, as both j and f
are pending for the adversary at t. Thus ToggleH would schedule j if w; > wy,/¢. Finally,
an f-step does not receive a special up charge. |

We examine packets scheduled by ToggleH from left to right, that is in order of time. For
each time step t, if p is the packet scheduled at time ¢, we want to show that the charge to
step ¢ is at most ¢w,. However, as it turns out, this will not always be true. In one case we
will also consider the next step ¢ + 1 and the packet p’ scheduled in step ¢t + 1, and show that
the total charge to steps t and ¢ + 1 is at most ¢(w, + wy ).

Let ¢ be the current step. We consider several cases.

Case 1: tis an e-step. By the definition of ToggleH, w, > wy,/¢? and d. = t; the latter
implies that step ¢ receives no regular back charge. We further note that the heaviest pending
packet A/ in step t + 1 is either released at time ¢t + 1 or it coincides with h, which is still
pending and became unmarked by the algorithm in step ¢; in either case h’ is unmarked at
the beginning of step ¢ 4+ 1, which implies that step t 4+ 1 is an f-step. Thus, step ¢ receives
no special back charge, which, combined with the previous observation, implies it receives no
back charge of any kind.

Now we claim that the up charge is at most wy/¢. For a special or regular up charge this
follows from its definition. For a full up charge, the job j is pending at time ¢ for ToggleH
and j # h (as for j = h the special charges are used). This implies that w; < wp/¢, as
otherwise ws > wy,/¢ and ¢ would be an f-step. Thus the full charge is w; < wp /¢ as well.

Using w. > wy,/¢?, the charge is at most wy, /¢ < ¢w, and we are done.

Case 2: tis an f-step and ¢ does not receive a back charge. Then ¢ can only receive an
up-charge, and this up charge is at most wy, < ¢wy, where the inequality follows from the
definition of f.

Case 3: tis an f-step and t receives a special back charge. From the definition of special
charges, the next step is an e-step, and therefore i’ is marked at its beginning. Since the
only packet that may be marked after an f-step is h, we thus have h = h' = j/, and the
special back charge is wy, /¢?. Since f < h, the adversary cannot schedule f after step t, so
step t cannot receive a regular back charge.

We claim that the up charge to step ¢ is at most wy. Indeed, a regular up charge is at
most wy/¢? < wy, and a special up charge does not happen in an f-step. To show this
bound for a full up charge, assume for contradiction that w; > wy. This implies that j # f
and, since ToggleH scheduled f, we have d; > d¢. In particular j is pending at time ¢ + 1.
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OPT |

Figure 1 An illustration of the situation in Case 5.2. Up charges are denoted by solid arrows
and back charges by dashed arrows.

Thus wy > w; > wy > wy /¢, contradicting the fact that ¢ + 1 is an e-step. Therefore the
full charge is w; < wy, as claimed.
As wy, < gwy, the total charge to ¢ is at most ws + wy/¢* < wp +ws/d = dwy.

Case 4: ¢ is an f-step, t receives a regular back charge and no special back charge, and
f = h. The up charge is at most wy/¢ by Lemma 3.2 and the back charge is at most w,
thus the total charge is at most wy, + wp /¢ = ¢wy, and we are done.

Case 5: ¢ is an f-step, t receives a regular back charge and no special back charge, and
f # h. Let t be the step when the adversary schedules f. We distinguish two sub-cases.

Case 5.1: In step ¢, a packet of weight at least wy, /¢ is pending for the algorithm. Then
the regular back charge to ¢ is at most wy — (wp/¢)/d? = wy — wy/¢>. As the up charge
to ¢ is at most wy,/¢ by Lemma 3.2, the total charge to ¢ is at most wy /¢ + wy — wy, /¢ =
wy +wp/d? < (14 1/p)wy = dwy, and we are done.

Case 5.2: In step t, no packet of weight at least wy, /¢ is pending for the algorithm. In this
case we consider the charges to steps ¢ and ¢ + 1 together. First, we claim the following.

» Lemma 3.3. ToggleH schedules h in step t + 1. Furthermore, step t + 1 receives no special
charge and it receives an up charge of at most wy, /¢>.

Proof. Since f # h, we have f < h and thus, using also the definition of £ and 4-boundedness,
t <dy <dj <t+ 3. The case condition implies that h is not pending at ¢, thus ToggleH
schedules h before ¢. The only possibility is that ToggleH schedules h in step t 4+ 1, t = dy =
t+ 2, and dj, =t + 3; see Figure 1 for an illustration. This also implies that ToggleH marks
h in step t.

We claim that wy < wp/¢. Indeed, otherwise either s’ is pending in step t 4 2, contra-
dicting the condition of Case 5.2, or dgs =t + 1 < dp,, thus s’ is a better candidate for f’
than h, which contradicts the fact that the algorithm scheduled f’ = h.

The claim also implies that b’ = h, as otherwise wg > wy,. Since h = k' is scheduled in
step t 4+ 1, there is no marked packet in step t + 2 and t 4+ 2 is an f-step; thus there is no
special back charge to t 4 1.

We note that step t 4+ 1 is also an f-step, since ToggleH schedules & in step t + 1 and
dp > t+ 1. Since b’ = h is marked when step ¢ + 1 starts and wy < wy /¢, the reason that
step t + 1 is an f-step must be that dor > ¢ + 1.

There is no special up charge to step t+ 1 as it is an f-step. If the up charge to step ¢t + 1
is a regular up charge, by definition it is at most wy//¢? = wy,/$? and the lemma holds.

The only remaining case is that of a full up charge to step ¢t + 1 from a packet j' scheduled
by the adversary in step ¢ + 1 and pending for ToggleH in step ¢ + 1. Since 7' # h, it
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is a candidate for ', and thus wj; < wp/¢ < wys. The earliest-deadline property of the
adversary schedule implies that j* < f; together with dy =t + 2 and w;; < wy this implies
djr =t + 1. Therefore w; < wp/¢?, as otherwise j’ is a candidate for e’, but we have shown
that dos >t + 1. Thus the regular up charge is at most w; < wp,/¢? and the lemma holds
also in the remaining case. <

By Lemma 3.3, step ¢ + 1 receives no special charge and an up charge of at most wy, /$?
and ToggleH schedules h in step ¢ + 1. Step ¢ + 1 thus also receives a regular back charge of
at most wy,. So the total charge to step ¢+ 1 is at most wy, /¢ +wp, < wy /¢4 wyp. Moreover,
using Lemma 3.2, the total charge to step ¢ is at most wy, /¢ + wy. Thus, the total charge to
these two steps is at most (wp/¢ + wy) + (wy/¢ + wp) = ¢(wy + wy), as f and h are the
two packets scheduled by ToggleH.

In each case we have shown that a step or a pair of consecutive steps receive a total
charge of at most ¢ times the weight of packets scheduled in these steps. Thus ToggleH is
¢-competitive for the 4-bounded case. |

4 An Algorithm for 2-Bounded Instances with Lookahead

In this section, we present an algorithm for 2-bounded PacketScheduling with 1-lookahead, as
defined in Section 2.

Consider some online algorithm A. Recall that, for a time step ¢, packets pending for A
are those that are released at or before time ¢ and have neither expired nor been scheduled
by A before time t. Lookahead packets at time ¢ are the packets with release time ¢ + 1.
For A, we define the plan in step ¢ to be the optimal schedule in the time interval [¢, c0)
that consists of pending and lookahead packets at time ¢ and has the earliest-deadline
property. For 2-bounded instances, this plan will only use slots ¢, t + 1 and ¢t + 2. We will
typically denote the packets in the plan scheduled in these slots by p1, pa, ps, respectively.
The earliest-deadline property then implies that if both p; and p; have release time t and
deadline ¢t + 1 then p; is heavier than ps and similarly for ps and ps.

Fix some parameter a > 1. At any time step ¢, our algorithm COMPAREWITHBIAS(«)
proceeds as follows:

let p1,p2, p3 be the plan at time ¢

if 7, =t and wy, < min(wy, , Wy, , 55 (Wp, + W) )
then schedule po

else schedule p;

Note that if the algorithm schedules py then p; must be expiring, for otherwise w,, > wp, (by
canonical ordering). Also, the scheduled packet is at least as heavy as the heaviest expiring
packet g, since clearly w,, > w, and the algorithm schedules p only if wy,, < wy,.

» Theorem 4.1. The algorithm COMPAREWITHBIAS() is R-competitive for packet schedul-
ing on 2-bounded instances for R = %(\/13 - 1)~ 1.303 if a« = i(\/ﬁ—i— 3) ~ 1.651.

Let ALG be the schedule produced by COMPAREWITHBIAS. Let us consider an optimal
schedule OPT (a.k.a. schedule of the adversary) satisfying the canonical ordering, i.e., if a
packet x is scheduled before a packet y in OPT then either y is released after x is scheduled
or ¢ < y. Recall that we are assuming w.l.o.g. that the weights of packets are different.

The analysis of COMPAREWITHBIAS is based on a charging scheme. First we define a
few packets by their schedule times:
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a full back charge a full up charge a close split charge a distant split charge

Figure 2 Non-chaining charges. Note that for split charges f is scheduled in step t + 1 in OPT
which follows from the fact that we do not charge j using a full up charge.

j = packet scheduled in step t in OPT,
f = packet scheduled in step ¢ in ALG,
g = packet scheduled in step ¢t + 1 in ALG.

Informal description of charging. We use three types of charges. The adversary’s packet j
in step ¢ is charged using a full charge either to step ¢ — 1 if ALG schedules j in step t — 1 or
to step t if wy > w; (including the case f = j) and f is not in step ¢+ 1 in OPT; the last
condition assures that step ¢ does not receive two full charges.

The second type are split charges that occur in step t if wy > wj, j is pending in step ¢
in ALG and f is in step ¢t + 1 in OPT, i.e., step ¢ receives a full back charge from f. In this
case, we distribute the charge from j to f and another relatively large packet f’ scheduled in

step t +1 or ¢ + 2 in ALG; we shall prove that one of these steps satisfies 20av; < wy + w}.

We charge to step ¢ + 2 only when it is necessary, which allows us to prove that split-charge
pairs are pairwise disjoint. Also, in this case we analyze the charges to both steps together,
thus it is not necessary to fix a distribution of the weight to the two steps.

The remaining case is when wy < w; and j is not scheduled in ¢ — 1 in ALG. We analyze
these steps in maximal consecutive intervals, called chains and the corresponding charges
are chain charges. Inside each chain we distribute the charge of each packet j scheduled at ¢
in OPT to steps t — 1, t and t + 1, if these steps are also in the chain. The distribution of
weights shall depend on a parameter §. Packets at the beginning and at the end of the chain
are charged in a way that minimizes the charge to steps outside of the chain. In particular,
the step before a chain receives no charge from the chain.

Notations and the charging scheme. A step ¢ for which w; < w; and j is pending in step
t in ALG is called a chaining step. A maximal sequence of successive chaining steps is called
a chain. The chains with a single step are called singleton chains, the chains with at least
two steps are called long chains.

The pair of steps that receive a split charge from the same packet is called a split-charge
pair. The charging scheme does not specify the distribution of the weight to the two steps of
the split-charge pair, as the charges to them are analyzed together.

Let 0 = £(5 — v/13) ~ 0.232. Packet j scheduled in OPT at time ¢ is charged according
to the first rule below that applies. See Figures 2 and 3 for an illustration of different types
of charges.

1. If j is scheduled in step ¢ — 1 in ALG, charge w; to step t — 1. We call this charge a full
back charge.

2. If wy > w; and f is not scheduled in step ¢t + 1 in OPT (in particular, if j = f), charge
w; to step t. We call this charge a full up charge.
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|t |+
ALG ALG
OPT OPT

a chain of length 3 a singleton chain

Figure 3 On the left, a chain of length 3 starting in step ¢ — 1 and ending in step t + 1. The
chain beginning charges are denoted by dotted (blue) lines, the chain end charges are denoted by
gray lines and the forward charge from a chain is depicted by a dashed (red) arrow. Black arrows
denote the chain link charges. On the right, an example of a singleton chain, with the up charge
from a singleton chain denoted with a dashed (green) line and the forward charge from a singleton
chain denoted with a dotted (orange) line.

3. If wy > w; and at least one of the following holds:
2005 < wy + wy,
g does not get a full back charge and 2a(w,, — w,) < wy + w, where p; is the first
packet in the plan at time ¢,

then charge w; to the pair of steps ¢ and ¢ 4+ 1. We call this charge a close split charge.

4. If wy > wj, then charge w; to the pair of steps ¢t and ¢ + 2. We call this charge a distant
split charge.

5. Otherwise step ¢ is a chaining step, as wy < w; and ALG does not schedule f in step t —1
by the previous cases. We distinguish the following subcases.

a. If step t is (the only step of) a singleton chain, then charge min(w;, Rwy) to step ¢
and w; — Rwy to step ¢t + 1 if w; > Rwy. We call these charges an up charge from a
singleton chain and a forward charge from a singleton chain.

b. If step ¢ is the first step of a long chain, charge 26w, to step ¢, and (1 — 26)w; to step
t + 1. We call these charges chain beginning charges.

c. If step ¢ is the last step of a long chain, charge dw; to step t — 1, (R — 1+ 2§)w; to
step t, and (1 —d)w; — (R — 1+ 20)wy to step t + 1. We call these charges chain end
charges; the charge to step t + 1 is called a forward charge from a chain. (Note that
we always have (1 — §)w; > (R — 1+ 20)wy, since w; > wyand 1 —§ =R —1+24.)

d. Otherwise, i.e., step ¢ is inside a long chain, charge dw; to step t — 1, dw; to step ¢,
and (1 —26)w; to step t + 1. We call these charges chain link charges.

The analysis of our charging scheme is omitted due to space limitation.

5 A Lower Bound for 2-bounded Instances with Lookahead

In this section, we prove that there is no online algorithm for PacketScheduling with 1-
lookahead that has competitive ratio smaller than i(l +/17) = 1.281, even for 2-bounded
instances. The idea of our proof is somewhat similar to the proof of the lower bound of ¢ for
PacketScheduling [10, 2, 4].

» Theorem 5.1. Let R = i(l +V/17). For each € > 0, no deterministic online algorithm for
PacketScheduling with 1-lookahead can be (R — €)-competitive, even for 2-bounded instances.

Proof. Fix some online algorithm A and some £ > 0. We will show that, for some sufficiently
large integer n and sufficiently small § > 0, there is a 2-bounded instance of PacketScheduling
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with 1-lookahead, parametrized by n and §, for which the optimal profit is at least (R — )
times the profit of A.
Our instance will consist of phases 0, ..., k, for some k < n. In each phase i < n we will

release three packets whose weights will grow roughly exponentially from one phase to next.

The number k of phases is determined by the adversary based on the behavior of A.

The adversary strategy is as follows. We start with phase 0. Suppose that some phase
i, where 0 < ¢ < n, has been reached. In phase i the adversary releases the following three
packets:

A packet a; with weight w;, release time 2i 4+ 1 and deadline 2¢ + 1, i.e., a tight packet.

A packet b; with weight w;y1, release time 2i + 1 and deadline 2i + 2.

A packet ¢; with weight w;1, release time 2i 4+ 2 and deadline 27 + 3.
(The weights w; will be specified later.) Now, if A schedules an expiring packet in step 2i + 1
(a tight packet a; or ¢;_1, which may be pending from the previous phase), then the game
continues; the adversary will proceed to phase ¢ + 1. Otherwise, the algorithm schedules
packet b;, in which case the adversary lets kK = ¢ and the game ends. Note that in step 2i 4 2
the algorithm may schedule only b; or ¢;, each having weight w;41. Also, importantly, in step

2i¢ + 1 the algorithm cannot yet see whether the packets from phase 7 + 1 will arrive or not.

If phase ¢ = n is reached, then in phase n the adversary releases a single packet a,, with
weight w,, and release time and deadline 2n + 1, i.e., a tight packet.

We calculate the ratio between the weight of packets in an optimal schedule and the
weight of packets sent by the algorithm. Let S = Zf:o w;. There are two cases: either

k <mn,or k=n.

Case 1: k < n. In all steps 2i + 1 for i < k algorithm A scheduled an expiring packet of
weight w; and in step 2k + 1 it scheduled packet by of weight wy41. In an even step 2i + 2 for

1 < k it scheduled a packet of weight w; 1. Note that there is no packet scheduled in step 2k+3.
Overall, A scheduled packets of total weight Si_1 + w41 + Skr1 — wo = 2Sk+1 — W — Wo.

The adversary schedules packets of weight w;41 in steps 2¢ + 1 and 2i 4+ 2 for ¢ < k and
all packets from phase k in steps 2k + 1, 2k + 2 and 2k 4 3. In total, the optimum has a
schedule of weight 251 — 2wy + wy. The ratio is

Ry — 2Sk+1 + wg — 2wy

25k+1 — W — Wy

Case 2: k = n. As before, in all odd steps 2i + 1 for ¢ < n algorithm A scheduled an
expiring packet of weight w; and in all even steps 2i + 2 for ¢ < n it scheduled a packet of
weight w; 1. In the last step 2n 4 1 it scheduled a packet of weight w,, as there is no other
choice. Overall, the total weight of A’s schedule is 25,, — wy.

The adversary schedules packets of weight w; 1 in steps 2i + 1 and 2¢ + 2 for i < n and a
packet of weight w,, in the last step 2n + 1 which adds up to 2S,, — 2wy + w,. The ratio is

5 28, +wn — 2wo
" QSn — Wo '

We start with an intuitive explanation which leads to the optimal setting of weights w;
and the ratio R for the instances of the type described above. We normalize the instances so
that wy = 1. We want to set the weights so that Ry > R—¢ for all k > 0 and ﬁn > R—c. We
first find the weights depending on ¢ such that Ry = R for all £ > 1. Using wy = Sy — Sk_1
for k > 1 and wg = 1, the condition Ry = R for k > 1 is rewritten as

25k+1 + Sk — Sk—1 — 2

R = , 1
2841 — Sk + Sp—1 — 1 1)
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or equivalently as

(2R—2)Sk41 — (R+ 1S+ (R+1)S,—1=—(2—R). (2)
A general solution of this linear recurrence with Sy = wy = 1 and a parameter § is

Sk =(v+1)a" +4(8* — ") =, (3)

where a < [ are the two roots of the characteristic polynomial of the recurrence (2R —
2)2? — (R+ 1)z + (R+1) and v = (2 — R)/(2R — 2). To justify (3), a general solution is
Aa* 4+ BB* — ~ for parameters A and B and a suitable constant v. Considering A = B = 0,
the value v = (2 — R)/(2R — 2) follows. Considering the constraint Sy = 1, we obtain
A+ B =« + 1; our parametrization by ¢ in (3) is equivalent but more convenient for further
analysis.

In our case of R = %(1 ++/17) a calculation gives

a=R+3=13+V17), B=R+1=16+V17) and ~y=R=11+V17). (4)

A calculation shows that for 6 = 0, the solution satisfies Ry = R. We choose a solution with
a sufficiently small § > 0 which guarantees Ry > R — €. Since 1 < a < f, for large n, the
dominating term in S,, is §5™. Thus

N _ n __ n—1 _
lim R, = lim 290+ Sn =Sy o 308" — 0BT 361

R. (5)

The last equality is verified by a direct calculation; actually it is the equation that defines
the optimal R for our construction (if 5 as the root of the characteristic polynomial of the
recurrence is expressed in terms of R).

For a formal proof, we set wyp =1 and for i =1,2,...,
wi = (y+ 1) N a=1) 46 (B-1)—a"(a-1)),

where the parameters «, 8 and ~ are given by (4) and 0 > 0 is sufficiently small. By a
routine calculation we verify (3) and (2). Thus Ry = R for k > 1. For Ry, we first verify
that 6 = 0 would yield w; = o and Ry = R. By continuity of the dependence of w; and
Ry on 6, for a sufficiently small § > 0, we have Ry > R — ¢; fix such a § > 0. Now, for
n — 00, S, = 068" +0(a") = §3"(1 4 0(1)). Thus, the calculation (5) gives lim,_,oo Ry = R.
Consequently, ﬁn > R — ¢ for a sufficiently large n of our choice. This defines the required
instance and completes the proof. |
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—— Abstract

Recent work by Elmasry et al. (STACS 2015) and Asano et al. (ISAAC 2014) reconsidered
classical fundamental graph algorithms focusing on improving the space complexity. Elmasry et

al. gave, among others, an implementation of depth first search (DFS) of a graph on n vertices
and m edges, taking O(mlglgn) time! using O(n) bits of space improving on the time bound of
O(mlgn) due to Asano et al. Subsequently Banerjee et al. (COCOON 2016) gave an O(m + n)
time implementation using O(m+n) bits, for DFS and its classical applications (including testing
for biconnectivity, and finding cut vertices and cut edges). Recently, Kammer et al. (MFCS 2016)
gave an algorithm for testing biconnectivity using O(n + min{m,nlglgn}) bits in linear time.

In this paper, we consider O(n) bits implementations of the classical applications of DFS.
These include the problem of finding cut vertices, and biconnected components, chain decomposi-
tion and st-numbering. Classical algorithms for them typically use DFS and some Q(lgn) bits of
information at each node. Our O(n)-bit implementations for these problems take O(m1g®nlglgn)
time for some small constant ¢ (¢ < 3). Central to our implementation is a succinct representa-
tion of the DFS tree and a space efficient partitioning of the DFS tree into connected subtrees,
which maybe of independent interest for space efficient graph algorithms.

1998 ACM Subject Classification F.1.1 Models of Computation, F.2.2 Nonnumerical Algorithms
and Problems, G.2.2 Graph Theory

Keywords and phrases biconnectivity, st-number, chain decomposition, tree cover, space efficient
algorithms, read-only memory

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2016.22

1 Introduction

Motivated by the rapid growth of huge data sets (“big data”), space efficient algorithms
are becoming increasingly important than ever before. The proliferation of handheld or
embedded devices that are equipped with only a small amount of general-purpose memory
provides another motivation for studying space efficient algorithms. In some of these devices,
writing in the memory is a costly operation in terms of both speed and time than reading.

1 We use lg to denote logarithm to the base 2.
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In such scenarios, algorithms that do not modify the input and use only a limited amount of
work space are very much desired.

The standard model to study space efficient algorithms is the read-only memory model,
and there is a rich history in computational complexity theory of such algorithms which use
as little space as possible. In particular, L (also known as LSPACE or DLOGSPACE) is the
complexity class containing decision problems that can be solved by a deterministic Turing
machine using only logarithmic amount of work space for computation. There are several
important algorithmic results [15, 12] for this class, the most celebrated being Reingold’s
method [30] for checking reachability between two vertices in an undirected graph. Barnes
et al [7] gave a slightly sublinear space (using n/ 20(Vlgn bits) algorithm for directed s-t
connectivity with polynomial running time. Space-efficient algorithms for classical selection
and sorting problems [26, 27], and problems in computational geometry have also been
studied [5, 6]. Recent work has focused on space requirement in special classes of graphs like
planar and H-minor free graphs [9, 2].

For most of these algorithms using small space i.e., sublinear bits, their running time
is often some polynomial of very high degree. Tompa [36] showed that for directed s-t
connectivity, if the number of bits available is o(n) then some natural algorithmic approaches
to the problem require superpolynomial time. Thus it is sensible to focus (as in the case
of some the recent papers like that of [16, 1, 4, 3, 24]) on designing algorithms that use
O(n) bits of workspace. Our main objective here is to reduce the working space of the
classical algorithms to O(n) bits with little or no penalty in running time. In these recent
series of papers [16, 1, 4, 3, 24] space-efficient algorithms for only a few basic algorithmic
graph problems are discussed: DFS, BFS, topological sort, strongly connected components,
sparse spanning biconnected subgraph, among others. We add to this growing body of space-
efficient algorithm design literature by providing such algorithms for a few more classical
algorithmic graph problems, namely biconnectivity, st-numbering and chain decomposition.

1.1 Our results and organization of the paper

Our starting point is an O(m + n) time and O(nlg(m/n)) bits implementation for DFS and
for finding a ‘chain decomposition’ using which we can find cut vertices, bridges, maximal
biconnected components and ear decomposition (see Section 2 for definitions). This improves
an earlier O(m +n) time and O(m + n) bits implementation [3] (see Theorem 4). The space
used by these algorithms, for some ranges of m (say O(n(lglgn)© for some constant ¢), is
even better than that of the recent work by Kammer et al [24], that computes cut vertices
using O(n + min{m, nlglgn}) bits. This implementation appears in Section 3.

Chain decomposition is an important preprocessing routine for an algorithm to find cut
vertices and biconnected components and also to test 3-connectivity [31] among others. In
Section 5, we give an algorithm that takes O(mlg® nlglgn) time using O(n) bits, improving
on previous implementations that took Q(nlgn) bits or O(m + n) bits.

In Section 6, we give improved algorithms for finding cut vertices and biconnected
components by giving a space efficient implementation of Tarjan’s classical lowpoint algorithm.
This takes O(mlgnlglgn) time.

Given a biconnected graph, and two distinguished vertices s and ¢, st-numbering is a
numbering of the vertices of the graph so that s gets the smallest number, ¢ gets the largest
and every other vertex is adjacent both to a lower-numbered and to a higher-numbered
vertex. Finding an st-numbering is an important preprocessing routine for a planarity
testing algorithm. In Section 7, we give an algorithm to determine an st-numbering of a
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biconnected graph that takes O(mlg®nlglgn) time using O(n) bits. This improves the
earlier implementations that take Q2(nlgn) bits.

Techniques. There are several approaches to find cut vertices and biconnected components.

An algorithm due to Tarjan [34] is the standard ‘textbook’ algorithm, and another due to
Schmidt [32] is based on chain decomposition of graphs. Both these approaches compute
DFS and process the DFS tree in specific order maintaining some auxiliary information of
the nodes. To implement these in O(n) bits, our main idea is to process the nodes of the
DFS tree in batches of O(n/lgn) nodes. Towards that, we use tree-cover algorithms (that

are used in succinct representations of trees) that partition a tree into connected subtrees.

This is described in detail in Section 4.

Model of Computation. Like all the recent research that focused on space-efficient graph
algorithms [16, 1, 4, 3, 24], here also we assume that the input graph is given in a read-only
memory (and so cannot be modified). If an algorithm must do some outputting, this is
done on a separate write-only memory. When something is written to this memory, the
information cannot be read or rewritten again. So the input is “read only” and the output
“write only”. In addition to the input and the output media, a limited random-access
workspace is available. The data on this workspace is manipulated at word level as in the
standard word RAM model, where the machine consists of words of size w = Q(lgn) bits;
and any logical, arithmetic, and bitwise operations involving a constant number of words take
a constant amount of time. We count space in terms of the number of bits in the workspace
used by the algorithms. Historically, this model is called the register input model and it
was introduced by Frederickson [20] while studying some problems related to sorting and
selection. We assume that the input graph G = (V, E) is represented using adjacency array,
i.e., given a vertex v and an integer k, we can access the kth neighbor of vertex v in constant
time. This representation was used in [16, 3, 24] recently to design various space efficient
graph algorithms. We use n and m to denote the number of vertices and the number of

is

edges respectively, in the input graph G. Throughout the paper, we assume that the input
graph is a connected graph, and hence m >n — 1.

2 Preliminaries

Rank-Select. Given a bitvector B of length n, the rank and select operations are defined
as follows:

ranky (i, B) = number of occurrences of a € {0,1} in B[1,1], for 1 <14 < n;

select, (i, B) = position in B of the ith occurrence of a € {0, 1}.
The following theorem gives an efficient structure to support these operations.

» Theorem 1 ([11]). Given a bitstring B of length n, one can construct a o(n)-bit auziliary
structure to support rank and select operations in O(1) time. Also, such a structure can be
constructed from the given bitstring in O(n) time.

Space-efficient DFS. Elmasry et al. [16] showed the following tradeoff result for DFS,

» Theorem 2 ([16]). For every function t : N — N such that t(n) can be computed within
the resource bound of this theorem (e.g., in O(n) time using O(n) bits), the vertices of a

graph G can be visited in depth first order in O((m + n)t(n)) time with O(n + nlf(lfl)n) bits.

22:3
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In particular, fixing t(n) = O(lglgn), we obtain a DFS implementation which runs in
O(mlglgn) time using O(n) bits. We build on top of this DFS algorithm to design all of
our space-efficient algorithms.

Graph theoretic terminology. A cut vertex in an undirected graph is a vertex that when
removed (with its incident edges) from a graph creates more components than previously in
the graph. Similarly, a bridge is an edge that when removed (the vertices stay in place) from
a graph creates more components than previously in the graph. A graph is biconnected if it
is connected and contains at least 3 vertices, but no cut vertex. A graph is 2-edge-connected
if it is connected and contains at least 2 vertices, but no bridge. Let G = (V,E) be a
biconnected graph and s #t € V. An ordering s = vy, v, - ,v, =t of the vertices of G is
called an st-ordering, if for all vertices v;,1 < j < n, there exist 1 <7 < j < k < n such that
{vi,v;},{vj,vi} € E. Tt is well-known that G is biconnected if and only if, for every edge
{s,t} € E, it has an st-ordering.

Chain decomposition and its application. Schmidt [31] introduced a decomposition of the
input graph that partitions the edge set of the graph into cycles and paths, called chains,
and used this to design an algorithm to find cut vertices and biconnected components [32]
and also to test 3-connectivity [31] among others. In this section we discuss the details of
the decomposition algorithm and some of the applications for which we give space efficient
implementations in the paper later.

The algorithm first performs a depth first search on G. Let 7 be the root of the DFS tree
T. DFS assigns an index to every vertex v, namely, the time vertex v is discovered for the
first time during DFS — call it the depth-first-index of v (DFI(v)). Imagine that the back
edges are directed away from r and the tree edges are directed towards r. The algorithm
decomposes the graph into a set of paths and cycles called chains as follows. First we mark
all the vertices as unvisited. Then we visit every vertex starting at r in the increasing order
of DFI, and do the following. For every back edge e that originates at v, we traverse a
directed cycle or a path. This begins with v and the back edge e and proceeds along the tree
towards the root and stops at the first visited vertex or the root. During this step, we mark
every encountered vertex as visited. This forms the first chain. Then we proceed with the
next back edge at v, if any, or move towards the next vertex in the increasing DFI order and
continue the process. Let D be the collection of all such cycles and paths. Notice that the
cardinality of this set is exactly the same as the number of back edges in the DFS tree as
each back edge contributes to a cycle or a path. Also, as initially every vertex is unvisited,
the first chain would be a cycle as it would end in the starting vertex. Schmidt proved the
following theorem.

» Theorem 3 ([32]). Let D be a chain decomposition of a connected graph G(V,E). Then G
is 2-edge-connected if and only if the chains in D partition E. Also, G is 2-vertex-connected
if and only if 6(G) > 2 (where 6(G) denotes the minimum degree of G) and Dy is the only
cycle in the set D where Dy is the first chain in the decomposition. An edge e in G is bridge
if and only if e is not contained in any chain in D. A vertex v in G is a cut vertex if and
only if v is the first vertex of a cycle in D\ D;.

Banerjee et al. [3] gave a space-efficient implementation of Theorem 3. En route they also
provided an improved implementation for DFS (over Theorem 2) in sparse graphs (m = O(n)
edges). In particular, they proved the following,
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» Theorem 4 ([3]). A DFS traversal of an undirected or directed graph G can be performed
in O(m + n) time using O(m + n) bits. In the same amount of time and space, given a
connected undirected graph G, we can perform a chain decomposition of G, and using that we
can determine whether G is 2-vertez (and/or edge) connected. If not, in the same amount of
time and space, we can compute all the bridges, cut vertices, and output 2-vertex (and edge)
connected components.

Kammer et al. [24] recently improved the space bound for finding cut vertices, still using
linear time to O(n + min{m,nlglgn}) bits.

3 DFS and applications using O(nlg(m/n)) bits

One can easily implement the tests in Theorem 3 in O(m) time using O(m) words, by storing
the DFIs and the entire chain decomposition, D. It is not too hard to improve the space to
O(n) words, still maintaining the O(m) running time. Theorem 4 shows how to perform the
tests using O(m +n) bits and O(m) time. The central idea there is to maintain the DFS tree
using O(m + n) bits using an unary encoding of the degree sequence of the graph. We first
show how the space for the DFS tree representation can be improved to O(nlgm/n) bits.

» Lemma 5. Given the adjacency array representation of an undirected graph G on n vertices
with m edges, using O(m) time, one can construct an auziliary structure of size O(nlg(m/n))
bits that can store a “pointer” into an arbitrary position within the adjacency array of each
vertex. Also, updating any of these pointers (within the adjacency array) takes O(1) time.

Proof. We first scan the adjacency array of each vertex and construct a bitvector B as
follows: starting with an empty bitvector B, for 1 <1 < n, if d; is the length of the adjacency
array of vertex v; (i.e., its degree), then we append the string 0/'¢%1-11 to B. The length of
Bis > [lgd;], which is bounded by O(nlg(m/n)). We construct auxiliary structures to
support select queries on B in constant time, using Theorem 1. We now construct another
bitvector P of the same size as B, which stores pointers into the adjacency arrays of each
vertex. The pointer into the adjacency array of vertex v; is stored using the [lgd;] bits in
P from position select(i — 1, B) + 1 to position select(i, B), where select(0, B) is defined
to be 0. Now, using select operations on B and using constant time word-level read/write
operations, one can access and/or modify these pointers in constant time. |

» Lemma 6. Given a graph G with n vertices and m edges, in the adjacency array repres-
entation in the read-only memory model, the representation of a DFS tree can be stored using
O(nlg(m/n)) additional bits, which can be constructed on the fly during the DFS algorithm.

Proof. We use the representation of Lemma 5 to store parent pointers into the adjacency
array of each vertex. In particular, whenever the DFS outputs an edge (u,v), where w is the
parent of v, we scan the adjacency array of v to find v and store a pointer to that position
(within the adjacency array of v). The additional time for scanning the adjacency arrays
adds upto O(m) which would be subsumed by the running time of the DFS algorithm. <

We call the representation of the DFS tree of Lemma 6 as the parent pointer representation.
Now given Lemma 5 and 6, we can simulate the DFS algorithm of [3] (Theorem 4) to obtain
an O(nlg(m/n)) bits and O(m +n) time (see [3] for details) DFS implementation. The proof
of Theorem 4 then uses another O(m + n) bits to construct the chain decomposition of G
and perform the tests as mentioned in Theorem 3, and we show here how even the space for
the construction of a chain decomposition and performing the tests can be improved. We
summarize our results in the following theorem below:
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» Theorem 7 (#2). A DFS traversal of an undirected or directed graph G can be performed
in O(m + n) time using O(nlg(m/n)) bits of space. In the same amount of time and space,
given a connected undirected graph G, we can perform a chain decomposition of G, and using
that we can determine whether G is 2-vertex (and/or edge) connected. If not, in the same
amount of time and space, we can compute all the bridges, cut vertices, and output 2-vertex
(and edge) connected components.

The above result for DFS improves the tradeoff result of Theorem 2 for relatively sparse
graphs. Specifically, to achieve O(m + n) time for DFS, the algorithm of Theorem 2 uses
O(nlglgn) bits. This is Q(nlg(m/n)) for all values of m where m = O(nlgn). Hence, for
sparse graphs we obtain a better tradeoff. Also, it improves the space bound of Theorem 4,
from O(m + n) to O(nlg(m/n)), while maintaining the same linear running time. In
addition, it improves the algorithm for finding the cut vertices by Kammer et al. [24] from
O(n + min{m,nlglgn}) to O(nlg(m/n)).

4 Tree Cover and Space Efficient Construction

Central to all of our algorithms is a decomposition of the DFS tree. For this we use the
well-known tree covering technique which was first proposed by Geary et al. [21] in the
context of succinct representation of rooted ordered trees. The high level idea is to decompose
the tree into subtrees called minitrees, and further decompose the mini-trees into yet smaller
subtrees called microtrees. The microtrees are tiny enough to be stored in a compact table.
The root of a minitree can be shared by several other minitrees. To represent the tree,
we only have to represent the connections and links between the subtrees. Later He et
al. [23] extended this approach to produce a representation which supports several additional
operations. Farzan and Munro [18] modified the tree covering algorithm of [21] so that each
minitree has at most one node, other than the root of the minitree, that is connected to the
root of another minitree. This simplifies the representation of the tree, and guarantees that
in each minitree, there exists at most one non-root node which is connected to (the root of)
another minitree. The tree decomposition method of Farzan and Munro [18] is summarized
in the following theorem:

» Theorem 8 ([18]). A rooted ordered tree with n nodes can be decomposed into ©(n/L)
minitrees of size at most 2L which are pairwise disjoint aside from the minitree roots.
Furthermore, aside from edges stemming from the minitree root, there is at most one edge
leaving a node of a minitree to its child in another minitree. The decomposition can be
performed in linear time.

In our algorithms, we apply Theorem 8 with L = n/lgn. For this parameter L, since
the number of minitrees is only O(lgn), we can represent the structure of the minitrees
within the original tree (i.e., how the minitrees are connected with each other) using O(lg? n)
bits. The decomposition algorithm of [18] ensures that each minitree has at most one ‘child’
minitree (other than the minitrees that share its root) in this structure. (We use this property
crucially in our algorithms.) We refer to this as the minitree-structure.

Explicitly storing all the minitrees requires w(n) bits. One way to represent them efficiently
is to store them using any linear-bit encoding of a tree. But this representation doesn’t allow
us to efficiently compute the preorder numbers of the nodes, for example. Instead, we encode

2 For proofs of results marked with (#), please refer to the full version [10].
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the entire tree structure using a linear-bit encoding, and store pointers into this encoding
to represent the minitrees, as described below. We first encode the tree using the balanced
parenthesis (BP) representation [28], summarized in the following theorem.

» Theorem 9 ([28]). Given a rooted ordered tree T on n nodes, it can be represented as a
sequence of balanced parentheses of length 2n. Using an additional o(n) bits, we can support
subtree size and navigational queries on T based on preorder and postorder.

We now represent each minitree by storing pointers to the set of all chunks in the BP
representation that together constitute the minitree. Farzan et al. [19, Lemma 2] show that
each minitree is split into a constant number of consecutive chunks in the BP sequence.
Hence, one can store a representation of the minitrees by storing a bitvector of length n
that marks the starting positions of these chunks in the BP sequence, together with an
O(lg2 n)-bit structure that stores, for each minitree, pointers to all the chunks in BP sequence
indicating the starting positions of the chunks corresponding to the minitrees. The bit vector
has O(Ign) 1’s since there are O(lgn) minitrees, and each minitree is split into a constant
number of chunks. We refer to the representation obtained using this tree covering (TC)
approach as the TC representation of the tree.

The following lemma shows that we can construct the TC representation of the DFS tree
of a given graph, using O(n) additional bits.

» Lemma 10 (#). Given a graph G on n vertices and m edges, if there is an algorithm
that takes t(n,m) time and s(n,m) bits to perform DFS on G, then one can create the TC
representation of the DFES tree in t(n,m) + O(n) time, using s(n,m) + O(n) bits.

We use the following lemma in the description of our algorithms.

» Lemma 11 (M). Let G be a graph, and T be its DFS tree. If there is an algorithm that
takes t(n, m) time and s(n,m) bits to perform DFS on G, then, using s(n,m)+O(n) bits, one
can reconstruct any minitree given by its ranges in the BP sequence of the TC representation
of T, along with the labels of the corresponding nodes in the graph in O(t(n,m)) time.

5 Chain decomposition using O(n) bits

Theorem 7 gives a chain decomposition algorithm that runs in O(m + n) time, using
O(nlg(m/n)) bits. In this section we describe how one can implement Schmidt’s chain
decomposition algorithm described in Section 2 using only O(n) bits using our partition of
the DFS tree of Section 4. The main idea of our implementation is to process all the back
edges out of each minitree, in the preorder of the minitrees. Also, when processing back edges
out of a minitree 7, we process all the back edges that go from 7 to the other minitrees in
their postorder, processing all the edges from 7 to a minitree 7 before processing any other
back edges going out of 7 to a different minitree. This requires us to go through all the edges
out of each minitree at most O(Ign) (number of minitrees) times (although it is subsumed
by the other parts of the computation, and doesn’t affect the overall running time). Thus
the order in which we process the back edges is different from the order in which we process
them in Schmidt’s algorithm, but we argue that this does not affect the correctness of the
algorithm. In particular, we observe that Schmidt’s algorithm correctly produces a chain
decomposition

even if we change the order in which we process vertices to any other order (instead of

preorder), as long as we process a vertex v only after all its ancestors are also processed —

for example, in level order.
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This also implies that as long as we process the back edges coming to a vertex v (from any
of its descendants) only after we process all the back edges going to any of its ancestors from
any of v’s descendants, we can produce a chain decomposition correctly. To process (i.e., to
output the chain containing) a back edge (u,v) between a pair of minitrees 71 and 75, where
u belongs to 71, v belongs to 7o, and 77 is an anscestor of 75 in the minitree-structure, we
first output the edge (u,v), and then traverse the path from v to the root of 72, outputting
all the traversed edges. We then start another DF'S to produce the minitree 7, containing
the parent p of the root of 79, and output the path from p to the root of 7, and continue the
process untill we reach a vertex that has already been output as part of any chain (including
the current chain). We maintain a bitvector of length n to keep track of the vertices that
have been output as part of any chain, to perform this efficiently. A crucial observation that
we use in bounding the runtime is that once we produce a minitree 7, for a particular pair
(11, 72) of minitrees, we don’t need to produce it again, as the root of 7 will be marked after
the first time we output it as part of a chain. Also, once we generate the two minitrees 71
and 79, we go through all the vertices of 7 in preorder, and process all the edges that go
between 71 and 75. For a particular minitree 77, once we process the back edges between
71 and all its descendant minitrees (i.e., descendants of the node corresponding to 77 in the
minitree-structure), we finally process all the back edges that go within the minitree 7.

The time taken for the initial part, where we construct the DFS tree, decompose it into
minitrees, and construct the auxiliary structures, is O(mlglgn), using Theorem 2 with
t(n) = lglgn. The running time of the algorithm is dominated by the cost of processing
the back edges. For each pair of minitrees, we may, in the worst-case, need to generate
O(lgn) minitrees. Since there are O(lg n) pairs of minitrees, and since generating each
minitree requires O(mlglgn) time (using the DFS algorithm), the total running time is
O(mlg® nlglgn). Thus, we obtain the following.

» Theorem 12. Given an undirected graph G on n vertices and m edges, we can output a
chain decomposition of G in O(mlg®nlglgn) time using O(n) bits of space.

6 Finding cut vertices and biconnected components using O(n) bits

A naive algorithm to test for biconnectivity of a graph G = (V, E) is to check if (V' \ {v}, F)
is connected, for each v € V. Using the O(n) bits and O(m + n) time BFS algorithm [3]
for checking connectivity, this gives a simple O(n) bits algorithm running in time O(mn).
Another approach is to use Theorem 12, as in the proof of Theorem 7, to test biconnectivity
and output cut vertices in O(m g2 nlglg n) time using O(n).

Here we show that using O(n) bits we can design an even faster algorithm running in
O(mlgnlglgn) time. If G is not biconnected, then we also show how to find out all the cut-
vertices and biconnected components within the same time and space bounds. We implement
the classical low-point algorithm of Tarjan [34]. Recall that, the algorithm computes for
every vertex v, a value lowpoint[v] which is defined as

lowpoint[v] = min{DFI(v)U{lowpoint|[s]| s is a child of v}U{DFI(w)|(v,w) is a back-edge}}

Tarjan proved that if vertex v is not the root, then v is a cut vertex if and only if v has
a child s such that lowpoint[s] > v. (The root of a DFS tree is a cut vertex if and only if
the root has more than one child.) Since the lowpoint values requires 2(nlgn) bits in the
worst case, this poses the challenge of efficiently testing the condition for biconnectivity when
only O(n) bits. To deal with this, as in the case of the chain decomposition algorithm, we
compute lowpoint values in O(lgn) batches using our tree covering algorithm. Cut vertices
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encountered in the process, if at all, are stored in a separate bitmap. We show that each
batch can be processed in O(mlglgn) time using DFS, resulting in an overall runtime of
O(mlgnlglgn).

6.1 Computing lowpoint, cut vertices and biconnected components

We first obtain a TC representation of the DFS tree using the decomposition algorithm
of Theorem 8 with L = n/lgn. We then process each minitree, in the postorder of the
minitrees in the minitree structure. To process a minitree, we compute the lowpoint values
of each of the nodes in the minitree (except possibly the root). in overall O(m) time. During
the processing of any minitree, if we determine that a vertex is a cut vertex, we store this
information by marking the corresponding node in a seperate bit vector. Each minitree can
be reconstructed in O(mlglgn) time using Lemma 11. The lowpoint value of a node is a
function of the lowpoints of all its children. However the root of a minitree may have children
in other minitress. Hence for the root of the minitree, we store the partial lowpoint value
(till that point) which will be used to update its value when all its subtrees have computed
their lowpoint values (possibly in other minitrees). Computing the lowpoint values in each
of the minitrees is done in a two step process. In the first step, we compute the DFI number
of the deepest back edge node of each node in the minitree. Here the deepest back edge
node of a node v is defined the smallest DF'I value among the vertices w such that (v, w) is
a back edge. Banerjee et al. show in [3] how one can compute the deepest back edge from
any node while discussing a space-efficient implementation for computing a sparse spanning
biconnected subgraph of a given biconnected graph. The corresponding algorithm makes two
passes of DFS and hence takes O(mlglgn) time using O(n) bits. We use that subroutine
here to compute the deepest back edges. As there are only ©(n/lgn) nodes, we have space
to store these values. In the second step, we do another DFS starting at the root of this
minitree and compute the lowpoint values as we will do in a normal DFS (as deepest back
edge values have been stored).

To compute the effect of the roots of the minitrees on the lowpoint computation, we
store various O(lgn) bit information with each of the ©(lgn) minitree roots including their
partial/full lowpoint values, the rank of its first/last child in its subtree. After we process
one minitree, we generate the next minitree, in postorder, and process it in a similar fashion
and continue until we exhaust all the minitrees.

As we can mark all the cut vertices (if any) in a bitvector of length n, reporting them
and computing 2-connected components is a routine task. Clearly we have taken O(n) space
and the total running time is O(mlglgnlgn) as we run the DFS algorithm O(Ilgn) times.
We formalize our theorem below.

» Theorem 13. Given an undirected graph G, in O(mlgnlglgn) time and O(n) bits of
space we can determine whether G is 2-vertex connected. If not, in the same amount of time
and space, we can compute all the cut vertices of the graph and also output all the 2-vertex
connected components.

7 st-numbering

The st-ordering of vertices of an undirected graph is a fundamental tool for many graph
algorithms, e.g. in planarity testing, graph drawing. The first linear-time algorithm forst-
ordering the vertices of a biconnected graph is due to Even and Tarjan [17], and is further
simplified by Ebert [14], Tarjan [35] and Brandes [8]. All these algorithms, however, preprocess
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the graph using depth-first search, essentially to compute lowpoints which in turn determine
an (implicit) open ear decomposition. A second traversal is required to compute the actual
st-ordering. All of these algorithms take O(nlgn) bits of space. We give an O(n) bits
implementation of Tarjan’s [35] algorithm. We first describe the two pass classical algorithm
of Tarjan without worrying about the space requirement. Let us denote by p(v) the parent
of the vertex v in the DFS tree. DFI(v) and lowpoint(v) have the usual meaning as defined
previously. The first pass is a depth first search during which for every vertex v, p(v), DFI(v)
and lowpoint(v) are computed and stored. The second pass constructs a list L, which is
initialized with [s, t], such that if the vertices are numbered in the order in which they occur
in L, then we obtain an st-ordering. In addition, we also have a sign array of n bits, intialized
with sign[s]=-. The second pass is a preorder traversal of the spanning tree starting from
the root s of the DFS tree. It is easy to see that the procedure runs in linear time using
O(nlgn) bits of space. To make it space effcient, we use ideas similar to our biconnectivity
algorithm. At a high level, we generate the lowpoint values of the first n/lgn vertices in
depth first order and process them. Due to space restriction, we cannot store the list L as in
Tarjan’s algorithm; instead we use the BP sequence of the DFS tree and augment it with
some extra information to ‘encode’ the final st-ordering, as described below.

Similar to our algorithms in the last two sections, this algorithm also runs in O(lgn)
phases and in each phase it processes n/lgn vertices. In the first phase, to obtain the
lowpoint values of the first n/lgn vertices in depth first order, we run as in our biconnectivity
algorithm a procedure to store explicitly for these vertices their lowpoint values in an array.
Also during the execution of the biconnectivity algorithm, the BP sequence is generated
and stored in the BP array. We create two more arrays, of size n bits, that have one to one
correspondence with the BP array. First array is for storing the sign for every vertex as
in Tarjan’s algorithm, and call it Sign. To simulate the effect of the list L, we create the
second array, called P, where we store the relative position, i.e., “before” or “after”, of every
vertex with respect to its parent. Namely, if u is the parent of v, and v comes before (after,
respectively) v in the list L in Algorithm 3, then we store P[v] = b (P[v] = a, respectively).
One crucial observation is that, even though the list L is dynamic, the relative position of
the vertex v does not change with respect to the position of u, and is determined at the time
of insertion of v into the list L (new verices may be added between u and v later). In what
follows, we show how to use the BP sequence, and the array P to emulate the effect of list L
and produce the st-ordering.

We first describe how to reconstruct the list L using the BP sequence and the P array.
The main observation we use in the reconstruction L is that a node v appears in L after
all the nodes in its child subtrees whose roots are marked with b in P, and also before all
the nodes in its child subtrees whose roots are marked with a in P. Also, all the nodes in a
subtree appear “together” (consecutively) in the list L. Thus by looking at the P[v] values of
all the children of a node u, and computing their subtree sizes, we can determine the position
in L of v among all the nodes in its subtree. With this approach, we can reconstruct the list
L, and hence output the st-numbers of all the nodes in linear time, if L can be stored in
memory - which requires O(nlgn) bits. Now to perform this step with O(n) bits, we repeat
the whole process of reconstruction lgn times, where in the i-th iteration, we reproduce
sublist L[(i — 1)n/lgn+1,...,in/lgn] — by ignoring any node that falls outside this range —
and reporting all these nodes with st-numbers in the range [(i — 1)n/lgn +1,...,in/lgn].
As each of these reconstruction takes O(mlgnlglgn) time, we obtain the following.

» Theorem 14. Given an undirected biconnected graph G on n vertices and m edges, and
two distinct vertices s and t, we can output an st-numbering of all the vertices of G in
O(mlg®nlglgn) time, using O(n) bits of space.
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7.1 An application of st-numbering

Given vertices aq, - - ,a of a graph G and natural numbers ¢y, -+ , ¢, with ¢; +- -+ ¢x = n,
we want to find a partition of V into sets V1, - -+ , Vi, with a; € V; and |V;| = ¢; for every i such
that every set V; induces a connected graph in GG. This problem is called the k-partitioning
problem. The problem is NP-hard even when k = 2, GG is bipartite and the condition a; € V;
is relaxed [13]. But, Gyori [22] and Lovész [25] proved that such a partition always exists
if the input graph is k-connected. Thus, let G be k-connected. In particular, if k£ = 2, the
k-partitioning problem can be solved in the following manner [33, 29]: Let v, := a; and
Up = ag, compute an vjv,-numbering vy, vs, - ,v, and note that for any vertex v; (in
particular for ¢ = ¢1) the graphs induced by vy, - -+ ,v; and by v;,--- , v, are connected. Thus
applying Theorem 14, we obtain the following:

» Theorem 15. Given an undirected biconnected graph G, two distinct vertices ay,as, and
two natural numbers c1,ca such that ¢; + ca = n, we can obtain a partition (V1,V3) of the
vertex set V of G in O(mlg® nlglgn) time, using O(n) bits of space, such that a; € Vi and
as € Vo, V1| = c1, |Vo| = ¢a, and both Vi and Vi induce connected subgraph on G.

8 Conclusions and Open Problems

We have given O(m1g®n)-time, O(n)-bit algorithms for a number of important applications
of DFS. Obtaining linear time algorithms for them while maintaing O(n) bits of space
usage is an interesting open problem. Note that while there are O(n)-bit, O(m + n)-time
algorithms for BFS, obtaining such an implementation for DFS is open. Another open
problem is whether our O(n)-bit st-numbering algorithm can be used to design a O(m1g®n)
time planarity test using O(n) bits of extra space.
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—— Abstract

We study the max-min fair allocation problem in which a set of m indivisible items are to be

distributed among n agents such that the minimum utility among all agents is maximized. In
the restricted setting, the utility of each item j on agent i is either 0 or some non-negative weight
wj. For this setting, Asadpour et al. [2] showed that a certain configuration-LP can be used to
estimate the optimal value within a factor of 444, for any § > 0, which was recently extended by
Annamalai et al. [1] to give a polynomial-time 13-approximation algorithm for the problem. For
hardness results, Bezdkova and Dani [5] showed that it is NP-hard to approximate the problem
within any ratio smaller than 2.

In this paper we consider the (1, ¢)-restricted max-min fair allocation problem, in which for
some parameter € € (0, 1), each item j is either heavy (w; = 1) or light (w; = €). We show that
the (1, €)-restricted case is also NP-hard to approximate within any ratio smaller than 2. Hence,
this simple special case is still algorithmically interesting.

Using the configuration-LP, we are able to estimate the optimal value of the problem within
a factor of 3 + 4, for any 6 > 0. Extending this idea, we also obtain a quasi-polynomial time
(3 + 4e)-approximation algorithm and a polynomial time 9-approximation algorithm. Moreover,
we show that as € tends to 0, the approximation ratio of our polynomial-time algorithm approaches
34+ 2v2 ~ 5.83.
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Keywords and phrases Max-Min Fair Allocation, Hypergraph Matching
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1 Introduction

We consider the Max-Min Fair Allocation problem. A problem instance is defined by (A, B, w),
where A is a set of n agents, B is a set of m items and the utility of each item j € B perceived
by agent i € A has weight w;;. An allocation of items to agents is o : B — A such that
o(j) =i iff item j is assigned to agent 4. The max-min fair allocation problem aims at finding
an allocation such that the minimum total weight received by an agent min;e4 > jeo—1(i) Wij
is maximized. The problem is also known as the Santa Claus Problem [4]. In the restricted
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version of the problem, it is assumed that each item j has a fixed weight w; such that for
each i € A and j € B, w;; € {0,w,}, i.e., if an agent has non-zero utility for an item j,
the utility is w;. We focus on this paper the restricted version of the problem (restricted
allocation problem) and refer to the problem with general weights the unrestricted allocation
problem. For the restricted allocation problem, let B; = {j € B : w;; > 0} be the set of
items agent ¢ is interested in. For a collection of items S C B, let w(S) = ;g w;-

The problem can be naturally formulated as an integer program, with variable x;; for
each i € A and j € B indicating whether item j is assigned to agent ¢. Its linear program
relaxation Assignment-LP (ALP) is shown as below.

max T
s.t. ZjeBi zijw; > T, Vie A
Dlieawy <1, VjEB
xij > 0, Vie A,j€B.

Let OPT be the maximum value of the restricted allocation problem such that in the
optimal allocation, every agent is assigned a set of items with total weight at least OPT.
Bezdkova and Dani [5] showed that any feasible solution x and T for the ALP can be rounded
into an allocation such that every agent ¢ receives at least T — max;ep, w; total value, which
implies OPT > T — max;cp w;, where T™ is the optimal value of the ALP. However, the
above result does not yield any guarantee on the integrality gap. Actually, it can be easily
shown that the integrality gap of ALP is unbounded since it is possible to have a feasible
solution with 7" > 0 while OPT = 0 (e.g., when |B| < |A]). It was shown in [5] that it is
NP-hard to approximate the problem within any ratio smaller than 2 by a reduction from
3-dimensional matching.

To overcome the limitation of ALP, a stronger linear program called Configuration-LP
(CLP) was proposed by Bansal and Sviridenko [4], in which an O(log’lgo Z_n)—approximation
algorithm was obtained for the restricted allocation problem. For any T > 0, we call an
allocation a T-allocation if it assigns to every agent a set of items with total weight at least T'.

» Definition 1 (Bundles with Sufficient Utility). For all ¢ € A, the collection of bundles with
utility at least T for agent i is C(¢,T) := {S C B; : w(S) > T}.

The CLP is a feasibility LP associated with T indicating whether it is possible to
(fractionally) assign to each agent one unit of bundle with sufficient utility. The LP (CLP(T))
and its dual are shown as follows.

Primal min 0 Dual max Z v — Z zj
s.t. Z zis>1, VieA i€A jeB
SeC(i,T) st oy < Z zj, Yie A SeC(i,T)
> wms<l, VjeB jes ‘
i,S:jeSEC(i,T) ¥y >0, VieA
z;56 >0, Vi€ ASe€C(T). zj 20, VjeB.

Although CLP(T) has an exponential number of variables, it is claimed in [4] that the
separation problem for the dual LP is the minimum knapsack problem: given a candidate
dual solution (y, z), a violated constraint can be identified by finding an agent ¢ and a
configuration S € C(i,T) such that y; > > . ¢2;. Hence, we can solve CLP(T) to any
desired precision. Note that any feasible solution x of CLP(T') induces a feasible solution &
for the ALP by setting &i; = > g.;csec(,r) is < 1 foralli € Aand j € B.
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» Definition 2 (Integrality Gap). Let T* be the maximum value such that CLP(T™) is feasible.
The ratio OT—P*T is known as the integrality gap.

Note that any upper bound c for the integrality gap implies that we can estimate the
optimal value of the problem within a factor of ¢ + ¢, for any § > 0. It is shown in [4] that
the integrality gap of CLP for the unrestricted allocation problem is bounded by O(y/n).
By repeatedly using the Lovasz Local Lemma, Uriel Feige [8] proved that the integrality
gap of CLP for the restricted allocation problem is bounded by a constant. The result was
later turned into a constructive proof by Haeupler [11], who obtained the first constant
approximation algorithm for the restricted allocation problem, although the constant is
unspecified. The integrality gap of CLP was later shown in [2] to be no larger than 4
by a local search technique developed from Haxell [12] for finding perfect matchings in
bipartite hypergraphs. However, the algorithm is not guaranteed to terminate in polynomial
time. It is later shown by Polacek and Svensson [15] that a simple modification of the local
search algorithm can improve the running time from 29 to n?(°8") which implies a
quasi-polynomial (4 + J)-approximation algorithm, for any § > 0. Very recently, Annamalai
et al. [1] further extended the local search technique developed in [2, 15] for the restricted
allocation problem and obtained a polynomial-time 13-approximation algorithm for the
problem.

1.1 The (1, ¢)-Restricted Allocation Problem

We consider in this paper the (1, €)-restricted allocation problem, in which for some € € (0,1),
each item j € B is either heavy (w; = 1) or light (w; = €). As the simplest case of the
allocation problem, the problem is not well understood. The current best approximation
results for the problem are for the restricted allocation problem. Indeed, we believe that a
better understanding of the (1, ¢)-restricted setting will shed light on improving the restricted
(and even the unrestricted) allocation problem.

The (1, €)-restricted setting has been studied under different names. Golovin [10] studied
the “Big Goods/Small Goods” max-min allocation problem, which is exactly the same as
the problem we consider in this paper, in which a small item has weight either 0 or 1 for
each agent; a big item has weight either 0 or x > 1 for each agent. They gave an O(y/n)-
approximation algorithm for this problem and proved that it is NP-hard to approximate the
“Big Goods/Small Goods” max-min allocation problem within any ratio smaller than 2 by
giving a hard instance with z = 2. We show in this paper that the inapproximability result
holds for any fixed x > 2 by generalizing the hardness instance shown in [5]. Later Khot
and Ponnuswami [13] generalized the “Big Goods/Small Goods” setting and considered the
(0,1, U)-max-min allocation problem with sub-additive utility function in which the weight

of an item to an agent is either 0, 1 or U for some U > 1 and obtained an Z-approximation

algorithm with m®MWnO(@) running time, for any a < 5. Note that in their setting an

item can have weight 1 for an agent and U for another. In the seminal paper, Bansal and

Sviridenko [4] obtained an O(log’i gn)—approximation algorithm for the restricted allocation

problem by first reducing the problem to the (1, ¢)-restricted case for an arbitrarily small

€ > 0 while losing a constant factor on the approximation ratio, and then proving an
( log)ﬁ) gn)—approximation algorithm for the (1, €)-restricted case.

The max-min fair allocation problem is closely related to the problem of scheduling

jobs on unrelated machines to minimize makespan, which we call the min-max allocation
problem. The problem has the same input as the max-min fair allocation problem but aims
at finding an allocation that minimizes maxijea )_;c,—1(;) Wij- Lenstra et al. [14] showed a
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2-approximation algorithm for the min-max allocation problem by rounding the ALP for
the problem. Applying the techniques developed for the max-min fair allocation problem,
Svensson [16] gave a 2 + ¢ upper bound for the CLP’s integrality gap of the (1, €)-restricted
min-max allocation problem and then extended it to a 1.9412 upper bound for the general case.
However, their algorithm is not known to converge in polynomial time. Recently Chakrabarty
et al. [7] obtained the first (2 — §)-approximation algorithm for the (1, €)-restricted min-max
allocation problem, for some constant § > 0. They considered the case when € is close to 0
since it is easy to obtain a (2 — €)-approximation algorithm for the (1, €)-restricted min-max
allocation problem.

Since the (1, €)-restriction is considered in the community to be interesting for the min-max
setting, in this paper we consider this restriction for the max-min setting.

1.2 Summary of Our Results

We first show that we can slightly improve the hardness result of Golovin [10] for the (1, €)-

restricted allocation problem. Note that in the unweighted case (e = 1), the problem can be

solved in polynomial time by combining the max-flow computation between A and B, with a

binary search on the optimal value. The above algorithm for the unweighted case actually
1

provides a trivial z-approximation algorithm for the (1,¢)-restricted allocation problem.

Hence, we have a polynomial-time algorithm with ratio % < 2 for the problem when e > 0.5.

» Theorem 3 (Inapproximability). For any € < 0.5, it is NP-hard to approzimate the (1,€)-
restricted allocation problem within any ratio smaller than 2.

The proof is included in our full version. Our reduction shows that it is NP-hard to
estimate the optimal value of the problem within any ratio smaller than 2. The above
hardness result implies that the integrality gap of CLP(T") is at least 2 unless P = NP.
However, we can remove the P # NP assumption by giving a hard instance explicitly (in the
full version).

For the restricted allocation problem, the best hardness result on the approximation ratio
is 2 while the best upper bound for the integrality gap of CLP(T') is 4. It is not known which
bound (or none) is tight. As a step towards closing this gap, we analyze the integrality gap
of CLP(T) for the (1,¢)-restricted case and show that the upper bound of 4 is not tight in
this case (Section 2). Our upper bound implies that in polynomial time we can estimate
OPT for the (1, ¢)-restricted allocation problem within a factor of 3 + 4, for any § > 0.

» Theorem 4 (Integrality Gap). The integrality gap of the configuration-LP of the (1,€)-
restricted allocation problem is at most 3.

We also observe that by picking the “closest addable edge”, the running time of the local
search algorithm can be improved to quasi-polynomial (Section 3). The idea was first used
by Polacek and Svensson [15] to obtain the (4 4 §)-approximation algorithm for the restricted
allocation problem. However, instead of constructing feasible dual solutions for CLP(T'), our
analysis is based on the assumption of T'< OPT and is a direct extension of our proof on
the integrality gap of CLP(T).

» Theorem 5 (Quasi-Polynomial-Time Approximation). There exists a (3 + 4€)-approximation
algorithm for the (1, €)-restricted allocation problem that runs in nO(zlogn) fime.

We further extend the quasi-polynomial approximation algorithm by combining the lazy
update idea of [1] to obtain a polynomial approximation algorithm (Section 4).
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» Theorem 6 (Polynomial-Time Approximation). For any e € (0,1), there exists a polynomial-
time 9-approximation algorithm for the (1,€)-restricted allocation problem. Moreover, the
approzimation ratio approaches 3 + 2v/2 ~ 5.83 as € tends to 0.

Interestingly, while our quasi-polynomial- and polynomial-time algorithms are extended
from the integrality gap analysis by combining ideas on improving the running time of
local search, unlike existing techniques, our algorithms and analysis do not directly use the
feasibility of CLP(T"). To lead to contradictions, existing results [15, 1] tried to construct
feasible dual solutions for CLP(T") with positive objective values (which implies the infeasibility
of CLP(T)). In contrast, our analysis shows that as long as T' < OPT, our algorithms
terminate with the claimed approximation ratios, which simplifies the analysis and is an
advantage in some cases when CLP(7T") cannot be applied, e.g., when the utility function is
sub-additive [13].

1.3 Other Related Work

Unrestricted Allocation Problem. Based on Bansal and Sviridenko’s proof [4] of O(y/n)-
integrality gap for the unrestricted allocation problem, Asadpour and Saberi [3] achieved an
O(y/n)-approximation algorithm. The current best approximation result for the problem is
an O(n®)-approximation algorithm that runs in time n°(), for any § = Q(lolgol%% obtained
by Chakrabarty et al. [6].

Other Utility Functions. The max-min fair allocation problem with different utility func-
tions has also been considered. Golovin [10] gave an (m — n + 1)-approximation algorithm for
the problem when the utility functions of agents are submodular. We note that their result
can also be extended to sub-additive utility functions. Khot and Ponnuswami [13] also con-
sidered the problem with sub-additive utility functions and obtained a (2n — 1)-approximation
algorithm. Later Goemans and Harvey [9] obtained an O(n%"’é)—approximation for submod-
ular max-min allocation problem in n®(5) time using the O(n?)-approximation algorithm by
Chakrabarty et al. [6] as a black box.

2 Integrality Gap for Configuration LP

We show in this section that for the (1, ¢)-restricted allocation problem, the integrality gap
of the CLP is at most 3. Fix T" > 0 be such that CLP(T) is feasible.

We show that whenever CLP(T) is feasible, there exists a Z-allocation (hence OPT > L),
which implies an integrality gap of at most 3. Given any solution z for CLP(T") and the
induced ALP solution &, for all Z;; = 0, we can remove j from B, (pretending that ¢ is not
interested in j). This operation will preserve the feasibility of « while (possibly) decreasing
OPT, which could only enlarge the integrality gap. From now on we assume that a positive
fraction of every item in B; is assigned to agent 7.

Assumption on T:  To achieve a %-allocaution7 we can assume that T < %; otherwise, we can
getaT—12> % allocation by rounding the ALP solution & [5]. We can further assume 7' > 1
since otherwise we can set all weights w; > T to T (which does not change CLP(T’)) and
scale all weights so that the maximum weight is 1. From now on, we assume that T € [1, %)
and CLP(T) is feasible.

Let k = [%] Note that every bundle consisting solely of light items must contain at
least k items to have sufficient utility. For all i € A, let B} = {j € B; : w; = 1} be the set
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of heavy items and Bf = {j € B; : w; = €} be the set of light items. Our algorithm fixes
an integer r = (%1 and tries to assign items such that each agent ¢ receives either a heavy
item j € B} or r light items in Bf. Suppose we are able to find such an allocation, then the

integrality gap is % <3.

2.1 Getting a “Minimal” Solution

Let z* be a solution for CLP(T"). We create another solution = (which might not be feasible)
as follows. Initialize z; 5 =0 for alli € A and S C B;. For all ] g > 0, where S € C(@i,T),
1. if 8" =S5n B} #0, then set z; g = 7 g;

2. otherwise, S contains only light items and set z; g = zi g

Note that for each i € A we have the following properties on x:
1. (heavy/light configurations) if z; ¢ > 0, then (S C B} A|S]| > 1) or (S C Bf A |S| > k).
(covering constraint for agent) > gcp, Ti,s = X gecir) Tis = 1-
3. (packing constraint for item) for all j € B: Zi,S:jeS x5 < Zz’,S:jESEC(i,T) rig <1

g

Now we construct a hypergraph H(A U B, E) as follows: for all z; g > 0,
1. if S C B}, then for each j € S, add {i,j} to E (we call such an edge heavy);
2. otherwise for each S’ C S and |S’| =, add {i} US" to E (we call such an edge light).

A matching M C F is a collection of disjoint edges. Note that any perfect matching of
H that matches all nodes in A provides an allocation that assigns each i € A either a heavy
item or r light items. For all F/ C E, let A(F) = AN (U.cpe) and B(F) = BN (Uyepe)-

2.2 Finding a Perfect Matching

Recall that the existence of a perfect matching in H(AU B, E) such that every agent in A is
matched implies that the integrality gap of CLP(T) is at most 3.

» Theorem 7. The above hypergraph H(A U B, E) has a perfect matching.

Proof. Given a partial matching M C E, we show how to extend its cardinality by one
if [M] <|A|—1. Let iy € A\A(M) be an agent not matched by M. For the initial step,
suppose X contains an arbitrary edge e; with A(e;) = {ip} and Y7 = blocking(e1) = {f €
M : BnNeyN f# 0} be the blocking edges of e;. If blocking(e;) = (), then we can add edge
e1 to the matching. Assume blocking(e) # 0.

For the recursive step, suppose we already have edges X; (where t = | X;|) and Y;, which
together form an alternating tree rooted at ig. We consider adding the (¢ + 1)-st edge to X
as follows. An edge e € E is addable if (1) A(e) € A(X; UY}); (2) B(e) N B(X; UY;) = 0.
If such an edge ey exists and blocking(es11) # 0, let X3y = Xy U{erp1} and Yy =
Y; U blocking(e¢+1). If blocking(e;y1) = (), then we contract X; by swapping out blocking
edges (the details of contraction will be discussed later). The contraction operation guarantees
that every addable edge has at least one blocking edge.

» Claim 8 (Always Addable). There is always an addable edge e; 1.

Proof. Let P = A(X; UY;) be the agents in the tree. Note that |P| = |Y;| 4+ 1 since each
agent ¢ # ig in P has an unique blocking edge that introduces i.

Let X} (Y;}) be the heavy edges and X{ (Y€) be the light edges of X; (V3).

We have | X}| = |Y;!] since heavy edges can only be blocked by heavy edges. We have
| X 5| < |Y¢| since each addable edge has at least one blocking edge.
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Let 2p = > ,cp 2 gcpt Ti,s be the total units of heavy bundles assigned to P by z,
which is a lower bound for the total number of heavy items Bh = U;cp B} agents in P are
interested in since

x}):Z Z 4,8 SZ Z Zl’z’,s: Z Z x5 < |Bp|.

i€P SCB! i€EP SCB} jES jEBL i,5:j€SCB!

Let 25 =) .cp ngB; x;,¢ be the total units of light bundles assigned to P by z. By
construction of x, we have

Z Z ”«“i,szz Z %54‘2 Z Tis =Tp+ap > |P|

i€P SCB; icP SgBil i€P SCB;

Since |Y;!| heavy items are already introduced in the tree, if 21, > |Y;!|, then there must
exist an addable heavy edge for some i € P. If 2}, < |V}, then we have 2% > |P| — 2L >
Y| + 1 > | X5| + 1. Note that every light addable edge has at most r — 1 unblocked items,
the total number of light items in the tree is

B (X UYy)| < (r = DIXF| + Y] < (2r = 1)(ap — 1) < (2r — 1)2%. (1)

For each i € P and S C Bg, if x; s > 0, then by construction we have |S| > k > 3r — 2.
If ¢ has no more addable light edges (has at most » — 1 unintroduced light items in H),
then at least Y g5 (|S| — (r—1))zis > (2r — 1) Y gc g 4,5 units of configurations of light
items appear in the tree. If there is no more addable Iig7ht edges for all i € P, then we have

B (X, UY) > Y S mig=@r—1)> Y wig=(2r - Daj,

JEBE(X,UY;) 4,5:j€SCBS i€P SCB¢

which is a contradiction to (1). <

Contraction: If blocking(e;11) = 0, then we remove the blocking edge f that introduces
A(et41) from the matching and include e; 41 into the matching. Both e;y; and f are removed
from the tree. We also remove all edges added after f since they can possibly be introduced
by A(f). We call this operation a contraction on e; 1. Note that this operation reduces
the size of blocking(e’) by one, for the edge e’ that is blocked by f. If blocking(e’) = 0 after
that, then we further contract e’ recursively. After all contractions, suppose the remaining
addable edges in the tree are e, es, ..., ey (ordered by the time they are added to the tree),
we set t =/, Xy and Yy be the addable and blocking edges, respectively.

Signature: At any moment before including an addable edge (suppose there are ¢ addable
edges in the tree), let s; = |blocking(e;)| for all ¢ € [t]. Let s = (s1,52,...,5t,00) be the
signature of the tree. Then, we have the following.

1. The lexicographical value of s reduces after each iteration. If there is no contraction in
the iteration, then in the signature, the (¢ 4+ 1)-st coordinate decreases from oo to s;41,
while s; remains the same for all i < ¢. Otherwise, let e; be the edge whose number of
blocking edges is reduced by one but remains positive in the contraction phase. Then, we
have s; is reduced by one while s; remains the same for all j < ¢.

2. There are at most 2" different signatures since Zie[t] si <nandt<n.

Since an addable edge can be found in polynomial time and the contraction operation stops

in polynomial time, a perfect matching can be found in n - 2" - poly(n) time. <
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3  Quasi-Polynomial-Time Approximation Algorithm

We show in this section that a simple modification on the algorithm for finding a perfect
matching in Section 2 can dramatically improve the running time from 20" to nOUogn),
Assume that T' < OPT. Note that in this case we can still assume T € [1, %)

Note that combining the polynomial time %—approximation algorithm, the approximation
ratio we obtain in quasi-polynomial time is min{%, 3+ 4e} <4 forall € € (0,1). Moreover,
when € — 0 (in which case the problem is still (2 — ¢)-inapproximable), our approximation
ratio approaches the integrality gap upper bound 3.

Proof of Theorem 5. Let T be a guess of OPT and k = [L]. Since the statement trivially
holds for € > i (% < 3+4¢). We assume that € < i (hence k > 5). We show that if T < OPT,
then we can find in quasi-polynomial time a ﬁ—alloca‘cion; if no such allocation is found
after the time limit, then 7" should be decreased as in binary search. Let r = [ﬁ} It
suffices to show that a feasible allocation that assigns to each agent i either a heavy item in
B} or r light items in Bf can be found in nOUegn) time, for any e < i. We define a heavy
edge {i,j} for each j € B} and a light edge {i} U S for each S C Bf and |S| =r.

As in the proof of Theorem 7, we wish to find a perfect matching for all agents in A.
Suppose in some partial matching, there is an unmatched agent iy and we construct an
alternating tree rooted at ig. For each addable edge e, we denote by d(e) the number of light
edges (including e) in the path from i( to e in an alternating tree rooted at ig. Note that
a path is a sequence of edges alternating between addable edges and blocking edges. The
algorithm we use in this section is the same as previous, except that when there are addable
edges, we always pick the one e such that the distance d(e) is minimized. We show that
in this case there is always an addable edge within distance O(% logn).

Let X; and Y; be the set of addable edges and blocking edges at distance ¢ from iy,
respectively. Note that Y; = ) for all odd 4 since light blocking edge must be introduced due
to light addable edge. Moreover, since on the path from iy to every addable edge e € X;,
the light edge (if any) closest to e must be a blocking edge (of even distance), we know that
Xoad contains only light edges and Xeyen contains only heavy edges. Let V' and Y;¢ be the
set of heavy edges and light edges in Y;, respectively.

Let L = [log, | < n]. It suffices to prove Claim 9 below since it implies that

€ € € € €
Yiop ol > (1+ E)|Y§2L| > (1+ E)L|Y2| >mn,

which is a contradiction and implies that there is always an addable edge within distance
2L + 1. Note the the last inequality also comes from Claim 9 since otherwise |Y5| = 0 and
Y| =0 < {5]Y5| would be a contradiction.

» Claim 9. For alll € [L], when there is no more addable edge within distance 21 + 1, we
have Yy 5| > {51V

Proof. Let P = A(X<o U Y<q) = A(Y<21) U {ip}. Since there is no more addable edges
within distance 2] + 1, we know that every agent ¢ € P does not admit any addable edges.
Hence for each i € P, all heavy items in B} are already included in B*(X1,,) and at most
7 — 1 light items in Bf are not included in B(X<y,; UYSy ). -

Since T < OPT, we know that at least |P| — |BY(X1,,)| = |Y<,| + 1 agents in P are
assigned only light items. Hence, out of at least k light items assignea to each of those agents,

at least k —r + 1 items must be included in B(X<,, UYS,, ,), which means

[BY(XZo111 U Yo 10)[ = (k= + 1)([Yq| + 1)
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Assume [V | < 15V Ey [, we have [YEy, o] < (14 15)|VEy|. Since every addable edge
contains at most r — 1 unblocked items (items not used by M), we have the following upper
bound for the number of light items in the tree:

€ € € € € € €
|B(X o1 U Yo 40)| < (r = D)X o +7[Yo040] < (1+ —)(2r = D[YEy].

- 10
Fore<: Te[l,2),k=[L]andr= fﬁ}, we have k > 3[4] — 2 > 3r — 2. Suppose
k = 3r — 2, then we have
k 3k 4ek
k=3 —2< —+1=k- -1
(3+46—| _3+4e+ (3+4e )
which is a contradiction since ?ﬁ:ie > 1. Hence we have k > 3r — 1, which implies k —7+1 >

(3r—1)—(r—1)=2r > (1+ §5)(2r — 1) since r < 2. Hence we have a contradiction. <

At any moment before adding an addable edge, suppose we have constructed X<, and
Y<2. By the above argument we have 2/ < 2L = O(+logn). Let a; = —|X;|. Let [V;!| = b,
and |Y;f| = b;—; for all even i. Let s = (ag, by, a1,b1, ..., ag;, by, 00) be the signature of the
alternating tree. We show that s is lexicographically decreasing accross all iterations.

No contraction: Suppose we added an addable edge e with blocking(e) # 0, then e will be
included in X<g; or a newly constructed Xy, 41, in both cases the lexicographic value of s
decreases since the last modified coordinate decreases.

Contraction: Suppose the newly added edge has no blocking edge, then in the contraction,
let f € Y, which must be light, be the last blocking edge that is removed. Since by;_;
decreases while a; (for all j < 2i—1) and b; (for all j < 2i—2) do not change, the lexicographic
value of s decreases.

Since L = O(% logn), there are n different signatures. Since an addable edge can
be found in polynomial time and the contraction operation stops in polynomial time, the

O(Llogn)
running time of the algorithm is n - poly(n) - nO(zlogn) — pO(z logn) <

4 Polynomial-Time Approximation Algorithm

We give a polynomial-time approximation algorithm in this section. Based on the previous
analysis, to improve the running time from n{ogn) o)
number of iterations (signatures) by poly(n). On a high level, our algorithm is similar to
that of Annamalai et al. [1]: we apply the idea of lazy update and greedy player such that
after each iteration, either a new layer is constructed or the size of the highest layer changed
is reduced by a constant factor. However, instead of constructing feasible dual solutions, we

ton , we need to bound the total

extend the charging argument used in the previous sections on counting the number of light
items in the tree to prove the exponential growth property of the alternating tree.

In binary search, let T be a guess of OPT. As explained earlier, we can assume T € [1, %)

Let k = (%] Our algorithm aims at assigning to each agent either a heavy item or r light

items, for some fixed r < % when T < OPT. Such an allocation gives a %—approximation. Let

p € (r,k) be an integer parameter. Let 0 < u < 1 be a very small constant, e.g., u = 10710,

As before, for each i € A, we call {i,j} a heavy edge for j € B}, and {i} U S a light edge
if S C Bf. However, in this section, we use two types of light edges: either |S| = p (addable
edges) or |S| = r (blocking edges). Let M be a maximum matching between A and B!. We
can regard M as a partial allocation that assigns maximum number of heavy items. Let ig
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be an unmatched node in M. We can further assume that every heavy item is interesting to
at least 2 agents since otherwise we can assign it to the only agent and remove the item and
the agent from the problem instance. We use “ + ” and “ — ” to denote the inclusion and
exclusion of singletons in a set, respectively.

4.1 Flow Network

Let G(AU B, Ey/) be a directed graph uniquely defined by M as follows. For all i € A
and j € B}, if {i,j} € M then (j,i) € Ey;, otherwise (i,5) € Ey. We can interpret the
digraph as the residual graph of the “interest” network (a digraph with directed edges from
each i to j € B}) with current flow M. The digraph G has the following properties

every i € A has in-degree < 1, every j € B! has out-degree < 1 and in-degree > 1.

all heavy items reachable from i € A with in-degree 0 must have out-degree 1 (otherwise

we can augment the size of M by one).

Given two sets of light edges Y and X (A(Y) and A(X) do not have to be disjoint), let
f(Y, X) denote the maximum number of node-disjoint paths in G(AU B*, Ej;) from A(Y) to
A(X). Let F(Y, X) be those paths. We will later see that each such path alternates between
heavy edges and their blocking edges. Unlike the quasi-polynomial-time algorithm, in our
polynomial-time algorithm, the heavy edges do not appear in the alternating tree. Instead,
they are used in the flow network G(AU B, Ej;) to play a role of connecting existing addable
light edges and blocking light edges.

4.2 Building Phase

» Definition 10 (Layers). For all ¢ > 1, a layer L; is a tuple (X;,Y;), where X; is a set of
addable edges and Y; is a set of blocking edges that block edges in X;.

Initialize { = 0, Lo = (0, {(40,0)}). We call an addable edge e = {i} U P unblocked if it
contains at least r unblocked light items: |P\(U. epiocking(e) B(€')) = 7. Initialize the set
of unblocked addable edges be I = (). Throughout the whole algorithm, we maintain a set
I of unblocked addable edges and layers L;(X;,Y;) for all ¢ <[, where X; contains blocked
addable edges. Initialize X;11 = Y;11 = (). We build a new layer as follows.

» Definition 11 (Addable). Given layers X<;11 and Y<;, an edge e = {i} U P is addable if
‘P‘ =pand P C Bf\Be(XSH_l U YSl) such that f(Y§l7X§l+1 ul+ 6) > f(YSl, X§l+1 U I)

Note that such an edge is connected to a blocking edge in Y<; by a path in G(AU B!, Eyy)
that is disjoint from other paths connecting existing blocking edges and addable edges.

Given an addable edge: if it is unblocked, then include it in I; otherwise include it in X;4.
When there is no more addable edges, let Y;11 = blocking(X;41) = UeeX“rl blocking(e), set
Il =141 and try to contract L;. Note that a blocking edge can block multiple addable edges.

4.3 Collapse Phase

Let W = F(Y<;, I) be constructed as follows. Initialize W = () = F(Y<o, I). Recursively
fori =1,2,...,1, let W = F(Y<;,I) be augmented from W = F(Y<;_1,I). In the final
W, let W; C W be the paths from A(Y;) to A(I) and let I; C I be those reached by W;.
By the above construction, if f € Y<; have no out-flow in F'(Y<;,I), then it will not have
out-flow in F(Y<;,I), for any j > i. Hence we have for all ¢+ = 1,2,...,1, |W;| = |I;| and
(W<l = |I<i| = f(Y<i, I) = f(Y<i,I<;). Note that every path in W; starts with an agent
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u € A(Y;) that is assigned a light edge by M and ends at a agent v € A(I;) with an unblocked
addable edge, which provides a possibility of swapping out a blocking edge in the tree with
an unblocked addable edge (by reassigning all heavy items in the path).

» Definition 12 (Collapsible). We call layer L; collapsible if |I;| > u|Y;].

Intuitively, |I;| > p|Y;| implies that we can swap out a p fraction of blocking edges in Y;
(which is called a collapse). Let L; be the earliest collapsible layer, we collapse it as follows.

Step-(1). For each path P(u,v) in Wy from e; :={u} UR € Y; to ex :={v} UP € I

1. M =M — e + ¢, swap out blocking edge e; with ¢’ := {v} U P’, where |P’| = r and
P’ - P\ Ueeblocking(eQ) Be(e)’

2. reverse all heavy edges in P(u,v): M = MU{{i,j}: (i,5) € P(u,v)N(Ax B)P\{{¢,7'}:
(j',7") € P(u,v) N (B x A)}.

Note that after the above operations, only Y; and M are changed: the size |Y;| is reduced
by a factor of at least p and the number of heavy edges in M is not changed.

Step—(2). Set I = Igt_1. Note that |W§t_1| = f(Ygt—la I) = f(Ygt—hISt—l) still holds.

Step-(3). Set ! =t and repeat the collapse if possible. Remove all unblocked edges in X;
(since |Y;| decreases). For each removed unblocked edge e, include it in I if f(Y<;—1, X<, U
It+e)> f(Yro1, X< UI).

4.4 Invariants and Properties

» Fact 13 (Key Invariant). Since the construction of Ly (until Ly_1 is collapsed),
f(Y<i—1, X<t UI) does not decrease and is always no less than | X<|.

Proof. We prove by induction on ¢t > 1. Consider the base case when t = 1. The state-
ment trivially holds when L; is just constructed and when |X; U I| increases. Suppose in
some iteration |X; U I| decreases, then it must be because Y; is collapsed, in which case
f(Y<i—1, X<t UI) does not change due to the update rule of step-(3).

Now assume the statement is true for ¢t and consider ¢ + 1.

When L,y is built we have f(Y<i, X<py1 UI) > f(Y<to1, X<t UT U Xypq) =
F(Y<io1, X<t UT) 4+ | Xi41] > |X<t41]- Since |X;| does not increase afterwards for all
1 <t+ 1, applying the same argument to L;y1 as above yields the fact. |

» Lemma 14 (Exponential Growth). Let r = max{[£], f?i;%]}, if T < OPT, then for all

i € [I] we have |Y;| > p?|Y<;—1|, which implies | = O(ﬁlog n).

Proof Sketch. suppose |Y;| < p?|Y<;_1|, then by Fact 13 we can show that |X<;| <
f(Y<tm1, X<t UT) < (557 + 200)[Y<i—1] (when p is sufficiently small). Hence at the
moment when there is no more addable edge that can be included into X<, we can show
that the total number of items agents reachable from A(Y<;_1) are interested in are not

enough to achieve T' < OPT. Please refer to our full version for the complete proof. <

Proof of Theorem 6. For any T and k = (%], the algorithm tries to compute an re-
allocation, for integer r as large as possible, by enumerating all possible values of p between r
and k. For any fixed r and p, we try to augment the partial matching M that matches each
agent with either a heavy item or r light items. Hence it suffices to show that the algorithm
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terminates in polynomial time for augmenting the size of M by one. Since each iteration can
be done in polynomial time, it suffices to bound the number of iterations by poly(n). The
approximation ratio will be the maximum of %, over all T' < OPT.

By Lemma 14 and the definition of collapsible, we know that after each iteration, either
(if no collapse) a new layer with |Y;1| > p?|Y<| is constructed, or some |Y;| is reduced
to at most (1 — p)|Y:| while Y; are unchanged, for all ¢ < ¢t. Let s, = Llogﬁ D;‘J and
s = (s1,82,--.,81,00) be the signature, then we have: (1) it is lexicographically decreasing

across all iterations: if there is no collapse, then some layer is newly constructed and hence
s decreases; otherwise let L; be the last layer that is collapsed and |Y;| be the size of Y;
before it is collapse: we know that at the end of the iteration s; is not changed for all

i <t while s; < [log_1_ %J = [log_+_ B;IJ — 1 is decreased by at least one, which
= =

also means s decreases; (2) its coordinates are not decreasing: for all ¢ € [[ — 1] we have
Siy1 = Uog% ‘;;;g‘J > Uog% D;%,{‘” > s;. Since we have | = O(logn) and s; = O(logn)
— —

for all i € [I], the total number of iterations (signatures) is at most 2°01°8™) = poly(n).

Approximation ratio: When £ < 9, then a trivial 9-approximation can be achieved by a
e-allocation (maximum matching). By the proof of Lemma 14, the approximation ratio f is
always at most 9 and tends to 3 + 2v/2 ~ 5.83 as ¢ — 0. <
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—— Abstract

In this paper we study the all-pairs shortest paths problem in (unweighted) unit-disk graphs. The
previous best solution for this problem required O (n2 log n) time, by running the O (nlogn)-time
single-source shortest path algorithm of Cabello and Jej¢i¢ (2015) from every source vertex, where
n is the number of vertices. We not only manage to eliminate the logarithmic factor, but also

obtain the first (slightly) subquadratic algorithm for the problem, running in O (n2 1013; g’i")
time. Our algorithm computes an implicit representation of all the shortest paths, and, in the

same amount of time, can also compute the diameter of the graph.
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1 Introduction

The all-pairs shortest paths (APSP) problem is one of the most known problems in the
field of algorithms: given a graph G = (V, E) with n vertices, where each edge has a real
weight, we are asked to compute the shortest paths between all pairs of vertices. The
classical algorithm of Floyd and Warshall solves the problem in O (n?’) time. The first
improvement for general weighted dense graphs came in 1976 when Fredman [16] obtained an

1/3
algorithm of O (nS (loil%) > time. This advancement sparked a number of algorithms
that save polylogarithmic factors. For more results for APSP in graphs with arbitrary
edge weights see [13, 32, 21, 34, 40, 35, 4, 22, 5, 23]. Recently, Williams [36] in a major
breakthrough provided an algorithm that achieves superpolylogarithmic speedup, requiring

n randomized time, later derandomized by Chan and Williams [10]. For the case of

Q(+/logn
ingveigh)ted undirected graphs, Seidel [30] and Galil and Margalit [18] devised algorithms
that solve the problem in matrix multiplication time. For results on directed and unweighted
graphs and on graphs whose weights are small integers, see [17, 39, 18, 31, 33].

One very important class of graphs arising from computational geometry is unit-disk
graphs. A unit-disk graph is the intersection graph of a set of unit disks, which is defined by
creating a vertex for each unit disk and an edge between any two unit disks that intersect
each other. Equivalently, given a set S of n points in the plane (the disk centers, after
rescaling by a half), the unit-disk graph, UD(G), is defined by setting its vertex set to be S
and creating an edge between any two points of S whose Euclidean distance is at most one.
The edges are unweighted. The unit-disk graph with n vertices may contain ©(n?) edges, as
every unit disk may intersect with every other unit disk. Since we aim for a subquadratic
? Timothy M. Chan .and Dimitrios Skrepetos;
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solution to the all-pairs shortest path problem, we do not construct the set of the edges
explicitly in our algorithms.

Unit-disk graphs are among the most studied families of graphs in geometry, with
motivation from communication networks. Unit-disk graphs are related to planar graphs: by
the circle packing theorem of Koebe—Andreev—Thurston any planar graph can be represented
as a coin disk graph, although the disks may have different radii; on the other hand, planar
graphs do not have large cliques unlike unit-disk graphs. Frederickson [15] gave an O (n2)—
time algorithm for solving the APSP problem in weighted planar graphs. Chan [6] improved

)—time algorithm (and

the bound for unweighted directed planar graphs with an O (nglolgolﬂ
gn

also considered general unweighted undirected sparse graphs). Wulff-Nilsen [37] independently

2 loglogn
logn

developed another O (n )—time algorithm for computing the diameter of unweighted

undirected planar graphs (and also announced similar results for the weighted case).
In this paper, we provide an algorithm for the APSP problem in unit-disk graphs that
requires O (n2, / Iolgol%) time. The previously fastest solution was to run from each vertex

the single-source shortest path algorithm of Cabello and Jej¢i¢ [3], which required O (n2 log n)
total time. (See [29, 19] for other previous results on shortest paths in unit-disk graphs.)
Therefore, we not only shave off the extra logarithmic factor of the previous result, but also
provide the first (slightly) subquadratic solution to the problem. Our algorithm computes an
implicit representation of the shortest paths: we encode the O (n2) shortest path distances
and predecessors using bit-packing techniques (for use of bit-packing techniques in shortest
path algorithms see [5]), so that we are still able to retrieve the shortest path distance of a
pair of vertices in O (1) time and the shortest path 7 itself in time linear in the number of
vertices of . In the same amount of time, we can also compute the diameter of the graph.

In recent years, obtaining polylogarithmic speedup for standard algorithmic problems
have received considerable renewed attention. Such problems include 3SUM [20], Fréchet dis-
tance [1, 26], combinatorial Boolean matrix multiplication [8, 38], Klee’s measure problem [7],
CFL reachability [11], and many more. Our result can be seen as another contribution along
this line of research.

The polylogarithmic improvement that we obtain for APSP in unit-disk graphs goes
beyond standard word RAM tricks. First, in Section 2, we present a new algorithm for
the single-source shortest path problem for unit-disk graphs, running in linear time after
presorting the z- and y-coordinates of the input points. This improves over Cabello and
Jej¢ic’s single-source algorithm [3]. Their algorithm started with the Delaunay triangulation
and performed repeated nearest neighbor queries, which inherently required € (nlogn)
time even excluding preprocessing cost. Our new algorithm is instead based on a simple
grid approach and exploits a linear-time Graham-scan-like procedure [28] for computing
upper envelopes of presorted unit disks. (According to [3], Efrat has also observed an
alternative, grid-based O (nlogn)-time algorithm, but his suggested solution seemed a bit
more complicated and used a semi-dynamic data structure of Efrat et al. [25], which also
inherently required Q (nlogn) time even after presorting.)

Second, in Section 3, we extend the single-source algorithm to the case of multiple

(k =0 ( log)ﬁ)gn>) sources that lie in a cluster, i.e., in a common grid cell. In this case,
we have to construct not just one but k& upper envelopes, one for each source. This leads
to a new kind of data structure problem: preprocess a set of unit disks (a “universe”) so
that given any subset of the universe, we can compute the upper envelope of the subset
in slightly sublinear time. Our ideas can similarly be applied to the following (even more

natural) problem, of independent interest: preprocess a point set (a universe) in 2D so that
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given any subset of the universe, we can compute its convex hull, again in slightly sublinear
time. Note that the input subset and the output can be encoded with linear number of bits,
and thus slightly sublinear number of words. Solving problems for “preprocessed universes” is
a relatively recent research direction (for example, see [9, 14, 12, 2]); our result with slightly
sublinear time provides an unusual addition to this body of work.

Finally, in Section 4, to obtain our subquadratic-time APSP algorithm, we draw inspiration
from previous algorithms for planar graphs [6, 37], which use planar separators to decompose
the graph into regions of polylogarithmic size, and table-lookup techniques to handle each
region. However, this approach does not directly apply to unit-disk graphs, because there
could be large cliques and no small separators. On the other hand, when there are many large
cliques, intuitively we should be able to exploit the multi-source algorithm from Section 3
to handle such clusters more efficiently. The challenge lies in how to carefully combine
these two approaches. For unit-disk graphs, we end up avoiding planar separators and
instead adopting a simpler shifted grid strategy [24]. This strategy is standard for geometric
approximation algorithms, but we use the technique in a new and interesting way to design
an exact algorithm (with an intricate balancing of parameters).

All of our algorithms operate in a standard unit-cost RAM model of computation, where
each word can store either an input point or a (logn)-bit integer. (We do not need to assume
integer input coordinates from a bounded universe: the input coordinate values may be real
numbers if we assume the availability of a few constant-degree algebraic predicates, as in
most real-RAM algorithms in computational geometry. We are not cheating when using
bit-packing and table-lookup tricks if they are done with (log n)-bit words and without exotic
word operations.)

2 Single-source shortest paths in linear time (after presorting)

In this section, we begin with the single-source problem: given a set S of n points, and a
source point s € S, we want to compute the shortest paths from s to all points in .S in the
unit-disk graph UD(G). We assume that the points in .S have been presorted with respect to
both x and y. The approach that we follow is a variant of the classical breadth-first search
(BFS) algorithm.

The first step is to build a grid composed of square cells with side length % A cell ¢ is
a neighbor of a cell c if the minimum distance between ¢ and ¢’ is at most 1. Clearly, the
number of neighbors of a cell is constant. For each point p, as is the case in the classical BFS,
we have a value for its shortest-path distance from s, dist[p], and another for the predecessor,
pred[p], denoting the point before p in that path.

The algorithm iteratively performs the following step n — 1 times. In each step ¢ we
assume that we have already computed the distances and predecessors for all of the points
that are at distance no more than ¢ — 1 from s and that we have a list, called the frontier,
containing all of the points being at distance exactly £ — 1 from s. We find all points whose
shortest-path distance from s is ¢ by finding all points at distance at most 1 from the points
in the frontier, and we filter out the ones whose shortest-path distance from s has been
found in earlier steps. For the remaining points, we update their distances and predecessors
properly. Finally, we replace the frontier with the set of these points. It is easy to establish
the correctness of the algorithm by induction. The concepts of the grid, cells, neighboring
cells, and frontier points are depicted in Figure 1.

We say that a cell is visited at step £ if the algorithm performs an operation to any one
of its points during that step. When the algorithm visits a cell, each point of that cell is

used in operations at most twice. The following lemma is crucial for the rest of the section.

24:3

ISAAC 2016



24:4

All-Pairs Shortest Paths in Unit-Disk Graphs in Slightly Subquadratic Time

38

Sl
V)

s| ™
=

Figure 1 Here we see the grid created for six points depicted as black disks and squares. Each of
the thirty-six squares corresponds to a cell. The neighbors of the cell of the third row and fourth
column, containing the point s, are shaded gray. In the second step of the algorithm, where s is the
source, we see the four points that are at distance one from s, depicted as squares, and the shortest
path tree of s so far, depicted with line segments. Those four points compose the frontier for the
second step.

» Lemma 1. Fach cell ¢ is visited only a constant number of times.

Proof. A cell ¢ is visited either (i) when at least one of its points enters the frontier or
(ii) when at least one of the points of a neighboring cell ¢’ of ¢ enters the frontier.

In case (i), we note that once at least one point of ¢ enters the frontier in a step of the
algorithm, then the rest of the points of ¢ enter the frontier either in this step or in the
next because any two points of ¢ are at distance at most one. Also, a point can be in the
frontier in exactly one step. Therefore, ¢ has points in the frontier in at most two steps of
the algorithm.

In case (ii), ¢ is visited when one of its neighbors, ¢/, has at least one frontier point. Since
the number of the neighbors of ¢ is constant and, by case one, any cell has frontier points
at most twice, we conclude that a cell ¢ is visited by its neighbors in a constant number of
steps of the algorithm. <

To find points that are at distance at most 1 from the points in the frontier, we solve the
following subproblem.

» Subproblem 2. Given a set of n, red points below a horizontal line h and another set of
ny blue points above h, both presorted by x, determine for each blue point whether there is a
red point at distance at most one from it.

» Lemma 3. We can solve Subproblem 2 in O (n, + ny) time.

Proof. We consider the upper enwvelope of the unit disks centered at the red points; it is
composed of the part of the boundary of the union of those unit disks that lies above h.
Notice that the parts of the boundaries of unit disks above h form a pseudoline arrangement.
For each unit disk we can extend that part to a z-monotone curve, a pseudoline, from z = —oco
to = oo such that it intersects only once with the pseudoline of another unit disk. Moreover,
we can make the order of the pseudolines at x = —oo coincide with the order of x-coordinates
of the disk centers. An example of the pseudolines can be see in Figure 2. Then we can
compute the upper envelope of these pseudolines by adapting the standard Graham scan
algorithm [28] for computing upper envelopes of lines (i.e., convex hulls of points in the plane
by duality). Graham scan takes linear, O (n,.), time after presorting. Notice that we do not



T. M. Chan and D. Skrepetos

(a) (b) (c)

Figure 2 In the first subfigure we see the unit disks of three red points, depicted as disks, and a
horizontal line h. In the second subfigure, we see the part of the boundaries of those unit disks lying
above h. In the third subfigure, we see the pseudolines corresponding to each unit disk as defined in
Lemma 3. Notice that the y-order of the pseudolines at © = —oo coincides with the z-order of the
centers of their unit disks.

have to explicitly compute the pseudolines; the notion of the pseudolines is used only for
intuition. The algorithm, assuming that the points are presorted, scans them from left to
right, finds intersections between unit disks, and builds step-by-step the upper envelope.
Finally, to solve Subproblem 2, we want to determine for each blue point whether it is
below the upper envelope of the red disks. This can done by performing a linear scan over
the vertices of the upper envelope and the (presorted) blue points in O (n, + np) time. <

Putting everything together, we obtain the following theorem.

» Theorem 4. Given a unit-disk graph, we can compute the shortest path tree from a given
source in O (n) time, if the input points have been pre-sorted by both x and y.

Proof. In step /¢ of the BFS algorithm, we find the points at distance exactly ¢ from the
source as follows. For each cell ¢ having at least one point in the frontier and each neighbor
¢ of ¢, we use the subroutine from Lemma 3 on the input where the red points are the points
of ¢ that are in the frontier and the blue points are all the points of ¢’.

The cells ¢ and ¢ are either horizontally or vertically separated; without loss of generality,
we can assume the former by rotation. By Lemmas 1 and 3, the total time of the BFS is
O (n).

Note that to identify the predecessors during the BF'S, we need to strengthen Subproblem 2
to report for each blue point a witness red point (if exists) that is at distance at most 1; the
method in Lemma 1 can easily provide such witnesses. Initially assigning points to grid cells
can be done in linear time (without the need for hashing, because of presortedness). |

Applying the above theorem n times immediately yields an O (nz)—time algorithm for
APSP for unit-disk graphs. In the subsequent sections, we aim for a slightly subquadratic
algorithm.

3 Shortest paths for multiple sources in a cluster

In this section, we extend the single-source algorithm of the previous section to compute short-

est paths from k source points s1,...,s, € S to all vertices in S, where k = O ( log’fgogn)
and $1,...,S lie in a common grid cell. The approach is to run BFS from the multiple

sources simultaneously but avoid a factor-k slowdown by using bit-packing tricks — this
approach is inspired by the first APSP algorithm in [6].

First, we extend Lemma 1 to the case of k source points, lying close to each other. We
say that a cell is visited at step £ if at the ¢-th level of the BFS for at least one of the sources,
the algorithm performs an operation to any one of its points.
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» Lemma 5. If the k source points are in the same cell, each cell is visited only a constant
number of times.

Proof. Let dists[p] be the shortest-path distance between a source s and a point p. Observe
that for any two sources s and s’ in a common cell, dists[p] and disty [p] can differ by at most
one by the triangle inequality. Therefore, the first time that any point of a cell enters the
frontier of any source, by the next step of the algorithm that point will enter the frontier of
the rest of the sources. The rest of the proof is as in Lemma 1. <

If we apply the algorithm of Lemma 3 separately for the k sources, then the cost of
this operation alone would be O (nk), which we cannot afford. To overcome the issue, we
introduce an extension of Subproblem 2.

» Subproblem 6. Preprocess a universe R of n, red points below a horizontal line h and
another universe B of ny blue points above h, so that given any subset Q C R of the red
universe, we can determine for each blue point whether there is a red point of Q at distance
at most one from it, in sublinear total time.

As we have seen in the proof of Lemma 3, the key to solving the subproblem lies in the
construction of upper envelopes, so we concentrate on solving the following subproblem.

» Subproblem 7. Preprocess a universe R of n,. red points below a horizontal line h, so that
given any subset Q C R of the red universe, we can compute the upper envelope of the unit
disks centered at Q (specifically the part above h) in sublinear time.

polylogn polylogn
feasible at all is that we can represent (i) the input subset @ as an n,-bit vector, where the

i-th bit denotes whether the i-th red point in z-order is in @, and (ii) the output upper
envelope is another n,-bit vector, where the i-th bit denotes whether the disk defined by

By sublinear we mean O (”7> or O ( Tt 10 ) The reason that sublinear time is

the ¢-th point participates in the upper envelope. We can pack either vector into O (hfgrn)

words.

» Lemma 8. We can solve Subproblem 7 with O (n,logn, + n,29) preprocessing time and

0] (nr 1°§g> query time, for any given g < logn.

Proof. During the preprocessing phase, we divide the z-ordered sequence of red points into
0] ("j) chunks of at most g consecutive points each; the chunks lie in O (%’) disjoint slabs.

The red points of each chunk compose O (29) possible subsets, and we precompute the upper
envelope for each such subset (specifically the part above h) in O (g) time. The computation
of all these envelopes, which we call small upper envelopes, needs O %QQQ = 0(n,29) time.
We store a lookup table containing all the small upper envelopes, each represented as an
ordered array. In Figure 3, we see the chunks and the small upper envelope of each.

To answer a query for a given subset of the red points, we have to merge O (%) small

upper envelopes for the relevant subsets of the O ("j) chunks. Observe that the O (%)

small upper envelopes themselves can be viewed as a pseudoline arrangement (since the
chunks are vertically separated). We can therefore apply Graham scan to compute the upper
Ny

envelope of the O (?> small upper envelopes, using a linear O (%) number of primitive

operations. We need two primitive operations: (i) finding the intersection point between two
small upper envelopes, and (ii) determining whether a given point is above or below a small
upper envelope. Both operations can be done in O (log g) time by binary searching (see [27]
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(a) (b) (c)

h

h

(d) (e) (f)

Figure 3 In the first subfigure we see the chunks of eight red points, drawn as disks, for g = 3,
and a horizontal line h. Notice that the last chunk has only two points. In the next three subfigures,
we see the small upper envelope associated with each chunk. The three small envelopes are seen
together in the fifth subfigure. Finally, in the sixth subfigure we see the upper envelope of the small
upper envelopes, which is the upper envelopes of all red points.

for (i)). Thus, Graham scan takes O (% log g) time. The output is a sequence of O (%)
pieces of small upper envelopes; we can convert each piece into the bit-vector format, in
additional O ( Do

logn

) total time. In Figure 3, we see the upper envelope. |

» Lemma 9. We can solve Subproblem 6 with O (n,logn, + nylogn, + n,29g + npg) pre-

log g
g

processing time and O ((nT + np) ) query time, for any given g < logn.

Proof. We build on the method from Lemma 8. During the preprocessing phase, we also

divide the x-ordered sequence of blue points into O (%) chunks of at most g consecutive blue

points each; the chunks lie in O (%) disjoint slabs (regions each bounded by two vertical

lines). We store the following extra structures:

1. For each small upper envelope e and each slab o that contains at least one vertex of e,
we precompute a g-bit vector where the i-th bit denotes whether the i-th blue point in o
is below e. We store all these vectors in a lookup table. There are O (%29) small upper
envelopes, each with O (g) vertices; the total time is O (n,29g).

2. For each slab o, we precompute the arrangement of the O (g) unit disks centered at the
blue points in o; the arrangement has O (g2) complexity and we can build a point location
structure [28] in O (g?) time. For each face of the arrangement, we record a g-bit vector
where the i-th bit denotes whether the face is inside the disk for the i-th blue point.
There are O (%) slabs; the total time is O (nyg).

Ny

g
envelopes as described in the proof of Lemma 8. We then need to determine for each blue

point whether it is below FE.

To answer a query, we first construct the upper envelope F of the O ( ) small upper

We scan the slabs from left to right. Consider the next slab o. Consider each small upper
envelope e that contributes arcs to I inside 0. We compute a bit vector v, . where the ¢-th
bit denotes whether the i-th blue point in ¢ is below e, as follows:

1. If o contains at least one vertex of e, then v, . has already been precomputed in the
lookup table.
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2. If o contains no vertices of e, then only one disk contributes to e inside o; say the disk is
defined by the red point g. We can determine v, by looking up the face containing ¢ in
the arrangement of the blue disks for o, in O (log g) time by point location.

Finally, we take the bitwise-or of the bit vectors v, . over all small upper envelopes e
that contributes to E inside 0. The total number of bitwise-or operations and point location

queries is O ("TTJ””’), yielding total query time O (% log g). |
» Theorem 10. Given a unit-disk graph, after O (n log n + n20(klog k))—time preprocessing,
we can compute an implicit representation of the shortest path trees for any k < Iog’lgogn

source points lying in a unit-diameter square, in O (n) time.

Proof. For each point p, we maintain k-bit vectors frontier[p] (resp. found[p]), where the
i-th bit denotes whether p is in the frontier of the i-th source (resp. whether p has previously
appeared in the frontier) in each step ¢ of the BFS algorithm.

In step ¢ of the BFS, we proceed as follows. For each cell ¢ having at least one point in
one of the k frontiers and for each neighbor ¢’ of ¢, we use the subroutine from Lemma 9 on
the input where the red universe contains all n, points of ¢ and the blue points are all ny
points of ¢/; for each of the k sources, we query with the red subset containing all points
in its frontier in ¢. The total time for the k queries is O (k(nr + nb)lo%) = O(n, +mnp) by
setting g = klogk.

One technical issue concerns the generation of the bit-vector representation for these
input red subsets (which are ordered by x or y depending on whether ¢ and ¢ are horizontally
or vertically separated). This can be done by taking each chunk of ¢ red points p1,...,pq,
collecting the g k-bit vectors frontier[p1],..., frontier[py|, and performing a transposition
to generate k g-bit vectors, where the j-th bit of the i-th vector is equal to the i-th bit
of frontier[p;]. The transposition involves simply shuffling bits between words and can be
straightforwardly implemented in O (1) time by table lookup if kg < logn. The outputs can
similarly be converted by transposition to obtain vectors out[p] for the blue points p in ¢,
where the i-th bit denotes whether p is at distance at most one from some red point in ¢
with respect to the i-th source.

We can update the k-bit vector found[p] by taking the bitwise-or with out[p]. At the end
of step ¢, we can update the k-bit vector frontier[p] by taking the bitwise-difference between
the new and old found[p] vectors. By Lemmas 5 and 9, the total time of the & simultaneous
BFSs is O (n).

Two remaining technical issues concern the encoding of the shortest path distances and
of the predecessors. To address the former issue, for each point p, we store dists, [p] and work
with the vector containing dists, [p] — dists, [p] over all k sources s;. Recall that these values

are in {—1,0,1} by the triangle inequality, and so the vector can be encoded in O (k) bits;

nk
logn

the total space over all n points is O (n + ) = O(n) words, and it is easy to update the
distances of a point in constant time.

To address the latter issue, we need to strengthen Subproblem 6 so that given any blue
point, we can report a witness red point (if exists) that is at distance at most one in constant
time. Thus we need to perform a few modifications to the proof of Lemma 9. First in the
lookup tables during the preprocessing phase, we record witnesses for the true bits for each
g-bit vector, stored in a (glog g)-bit witness vector. In the query algorithm, consider each
slab . The upper envelope E inside o consists of pieces of small upper envelopes. Divide o
into subslabs by drawing vertical lines at the endpoints of these pieces. If, for each subslab,
we created a pointer from each blue point to the small upper envelope in the subslab, we
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Figure 4 In this figure we see the shifted grid. We assume that the points have already been
shifted. The nine big squares correspond to the supercells. The smaller square within each supercell
corresponds to the region of the supercell that contains points at distance more than one from its
boundary. The boundary points are drawn as green squares and the non-boundary points as black
disks.

would need O(kn) total time. To avoid that, for each subslab, we mark its rightmost blue
point, which can be found by binary search in O(logg) time; the total time for that is
O (%klog g) = O (n, +np). Then we create a pointer from this marked point to the
small upper envelope of its subslab. Finally, for each slab, we create a pointer from each blue
point ¢ to its successor among the marked blue points; these g pointers require O (g log g)
bits, can be created in constant time, and can be stored in a (g log g)-bit pointer vector, so

the total time for this step is O (%k) =0 (1:gbk)' Then, given any blue point ¢ in o, we
can retrieve the pointer vector of o, look up the marked successor of ¢, follow its pointer to
the small upper envelope e in o, and then look up ¢’s witness with respect to v, ¢, all in

constant time. |

4  All-pairs shortest paths in slightly subquadratic time

In this final section, we present our APSP algorithm for unit-disk graphs. Let r,a,b be

parameters to be chosen later. We build a grid composed of square cells with side length r,
1
%
supercells. We say that a point p € S is a boundary point if it is at distance at most one
from the boundary of some supercell. We begin with a standard shifted grid strategy by

Hochbaum and Maass [24]. The supercell and the boundary points are depicted in Figure 4.

where r is a parameter to be specified later (1arger than ) Call these larger grid cells

» Lemma 11. There exists a translation of S such that the number of boundary points is

0] (%) The translation can be found in linear time.

Proof. Shift the points of S by a random vector from {1,...,7}2. The probability that a
point p € S is a boundary point is at most %, so the expected number of boundary points is
at most 2. (It is straightforward to derandomize in linear time.) <

After applying Lemma 11 to build the grid, our algorithm proceeds in four steps:

1. We first compute the shortest paths between the O (%) boundary points and all points
in S. For this step, we can run the single-source algorithm of Section 2 O (%) times,
requiring O (”;) total time.

2. Next, for each supercell 7; that contains more than a points or more than b boundary

points, we compute the shortest paths between all points in S N~; and all points in S.

This time, we use the multi-source algorithm of Section 3. The points in ; can be grouped
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into O (% + 7“2) clusters of size at most k, since the supercell can be decomposed
into O (7“2) cells of diameter one. The number of supercells with more than a points is

O (%) and the number of supercells with more than b boundary points is O (%) Hence,

the total time for this step is O (Zl (w + r2) n) =0((2+(2+2)r?)-n) =
2 2,2 2

O (% +22 4 mr),

a

3. For each supercell ; with at most a points and at most b boundary points, we compute the
shortest paths between all pairs of points in S N~;. For this step, we can run a naive cubic-
time APSP algorithm on SN+y;, after adding an extra weighted edge between each boundary
point  in +; and each point p € S N ~y;, with weight dist,[p], which we have computed in
step 1. (These extra edges take care of the possibility that the shortest paths may not
stay inside 7;.) The total time is O (32, |S N[*) = O (X, |S Nvila?) = O (na?).

4. For each supercell v; with at most a points and at most b boundary points, we compute
the shortest paths between all points p € SN~; and all points g € S — ;. Each such path
must pass through a boundary point in ~;, i.e., we want to find min,, (dist,[p] + dist.[q])
where the minimum is over all boundary points u in ~;.

We describe a table lookup method inspired by the planar-graph APSP algorithm in [6].
For each connected component of the unit-disk graph of S N ~;, pick a representative
boundary point (if one exists) among the points of this component. For each point
p € SN+, let rep(p) be the representative boundary point that lies in p’s connected
component. For each point ¢ € S — +;, define signature[q] to be the vector containing
signature, [q] = dist,[q] — dist,cp()[q] over all boundary points u in ;. Observe that these
values are bounded by O (rz) by the triangle inequality (since the distance between v and
rep(u) is at most O (r?)), and so the vector can be encoded in O (blogr) bits. All these
values have already been computed in step 1, and so the signatures of all points over all
supercells can be generated in O (%) total time. (We can ignore empty signatures, i.e.,

supercells that do not have any boundary points.)
For each p € SN~; and each ¢ € S — ~;,

min (dist, [p] + dist,[q]) = distrepp)la] + min (dist,[p] + signature,|[q]) .
u u:rep(u)=rep(p)

We can precompute the minimum in the right-hand side for each p € S N~; and each
possible signature, and store all these minimums in a lookup table in |S N %|20(blog r)

time, for a total of n29(1°87) time.

The running time of the entire algorithm is

2 2 2,.2 2
0] nlogn+n2o(k1°gk)+n—+n—+nr + T a2 4 p20loen) ) |
r k a b
To balance the third and the fourth term, we set k = r. To balance the third and the
sixth term, we set 7 = v/b. To balance the third and the fifth term, we set a = b3/2. Finally,

elogn
loglogn

get absorbed by the others. We then obtain the desired O <n2, / lolg;ol#) time bound.
It is straightforward to modify the algorithm to retrieve any shortest-path distance in

we set b = for a sufficiently small constant e, so that the second and the eighth terms

constant time, and retrieve any shortest path in time proportional to its size. It is also
straightforward to modify the algorithm to compute the diameter (in step 4, for each p € SN;
and each possible signature, we need to find the point ¢ € S — ~; having this signature
that maximizes dist,ep(p)[q]; all these maximums can be computed in O (n - 2) total time by
scanning the distance values from all boundary points). We conclude:



T. M. Chan and D. Skrepetos

» Theorem 12. Given a unit-disk graph we can compute an implicit representation of the
shortest paths between all pairs, and the diameter of the graph, in O (n21 / lolgol%) time in
the RAM model.

5 Conclusion

It is an intriguing open problem to compute the diameter of a unit-disk graph in truly
subquadratic time, O(n?~¢), for some positive constant . Another related problem is APSP
in weighted unit-disk graphs, where the weight of an edge is defined as the Euclidean distance
between the centers of the unit disks it connects.
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—— Abstract

Let G = (V, E) be a graph modelling a building or road network in which edges have-both travel
times (lengths) and capacities associated with them. An edge’s capacity is the number of people
that can enter that edge in a unit of time. In emergencies, people evacuate towards the exits. If
too many people try to evacuate through the same edge, congestion builds up and slows down
the evacuation.

Graphs with both lengths and capacities are known as Dynamic Flow networks. An evacuation
plan for G consists of a choice of exit locations and a partition of the people at the vertices into
groups, with each group evacuating to the same exit. The evacuation time of a plan is the time it
takes until the last person evacuates. The k-sink evacuation problem is to provide an evacuation
plan with k exit locations that minimizes the evacuation time. It is known that this problem is
NP-Hard for general graphs but no polynomial time algorithm was previously known even for
the case of G a tree. This paper presents an O(nk? log5 n) algorithm for the k-sink evacuation
problem on trees, which can also be applied to a more general class of problems.
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1 Introduction

Dynamic flow networks model movement of items on a graph.

Each vertex v is assigned some initial set of supplies w,. Supplies flow across edges. Each
edge e has a length — the time required to traverse it — and a capacity c., which limits the
rate of the flow of supplies into the edge in one time unit. If all edges have the same capacity
ce = ¢ the network is said to have uniform capacity. As supplies move around the graph,
congestion can occur as supplies back up at a vertex, increasing the time necessary to send a
flow.

Dynamic flow networks were introduced by Ford and Fulkerson in [7] and have since been
extensively used and analyzed. There are essentially two basic types of problems, with many
variants of each. These are the Maz Flow over Time (MFOT) problem of how much flow
can be moved (between specified vertices) in a given time T and the Quickest Flow Problem
(QFP) of how quickly a given W units of flow can be moved. Good surveys of the area and
applications can be found in [19, 1, 6, 17].

* Extended abstract; a full version of this paper containing proofs is at https://arxiv.org/abs/1607.
08041.
T Both authors partially supported by Hong Kong RGC GRF grant 16208415.
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One variant of the QFP that is of interest is the transshipment problem, e.g., [12], in
which the graph has several sources and sinks, with the original supplies being the sources
and each sink having a specified demand. The problem is to find the minimum time required
to satisfy all of the demands. [12] designed the first polynomial time algorithm for that
problem, for the case of integral travel times.

Variants of QFP Dynamic flow problems can also model [10] evacuation problems. In
these, vertex supplies are people in a building(s) and the problem is to find a routing strategy
(evacuation plan) that evacuates all of them to specified sinks (exits) in minimum time.
Solving this using (integral) dynamic flows, would assign each person an evacuation path
with, possibly, two people at the same vertex travelling radically different paths.

A slightly modified version of the problem, the one addressed here, is for the plan to
assign to each vertex v exactly one exit or evacuation edge, i.e., a sign stating “this way
out” All people starting or arriving at v must evacuate through that edge. After traversing
the edge they follow the evacuation edge at the arrival vertex. They continue following the
unique evacuation edges until reaching a sink, where they exit. The simpler optimization
problem is, given the sinks, to determine a plan minimizing the total time needed to evacuate
everyone; we call this the k-sink assignment problem. A more complicated version is, given
k, to find the (vertex) locations of the k sinks/exits and associated evacuation plan that
together minimizes the evacuation time. This is the k-sink location problem, which we also
refer to as ‘the’ k-sink evacuation problem on trees.

Flows with the property that all flows entering a vertex leave along the same edge are
known as confluent!; even in the static case constructing an optimal confluent flow is known
to be very difficult. i.e., if P # NP, then it is even impossible to construct a constant-factor
approximate optimal confluent flow in polynomial time on a general graph [4, 5, 3, 18].

Note that if the capacities are “large enough” then no congestion can occur and every
person follows the shortest path to some exit with the cost of the plan being the length of
the maximum shortest path. This is exactly the k-center problem on graphs which is already
known to be NP-Hard [9]. Unlike k-center, which is polynomial-time solvable for fixed k,
Kamiyama et al. [13] proves by reduction from the Partition problem, that, even for fixed
k =1 finding the min-time evacuation protocol is still NP-Hard for general graphs.

The only known solvable case for general k is for G a path. For paths with uniform
capacities, [11] gives an O(kn) algorithm.?

When G is a tree the 1-sink location problem can be solved [16] in O(nlog®n) time. This
can be reduced [10] down to O(nlogn) for the uniform capacity version, i.e., all the ¢, are
identical. For the assignment problem, [15] gives an O(n?klog?n) algorithm for finding the
minimum time evacuation protocol. i.e., a partitioning of the tree into subtrees that evacuate
to each sink. The best previous known time for solving the k-sink location problem was
O(n(clogn)**1), where c is some constant [14].

1.1  Qur contributions

This paper gives the first polynomial time algorithm for solving the k-sink location problem
on trees. Our result uses the O(nlog®n) algorithm of [15], for calculating the evacuation
time of a tree given the location of a sink, as an oracle.

» Theorem 1. The k-sink location problem for evacuation can be solved in time O(nk> log® n).

! Confluent flows occur naturally in other problems e.g. packet forwarding and railway scheduling [5].
2 This is generalized to the general capacity path to O(knlog?n) in the unpublished [2].
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u =6 v u =6 v =4 w

T=10 7=10 T=25

(a) (b)

Figure 1 In (a), if w, = 20 the last person leaving u arrives at v at time ¢t = 13. In (b) Assume
people at u, v are all evacuating to w and w, = 20 and w, > 0. The first person from u arrives at v
at time ¢ = 11. If w, < 40 all of the people on v enter (v, w) before or at ¢ = 10, so there will be no

congestion when the first people from u arrive at v and they just sail through v without stopping.

The last people from u reach w at time ¢t = 20.; but if w, > 40, some people who started at v will
still be waiting at v when the first people from wu arrive there. In this case, there is congestion and
the people from u will have to wait. After waiting, the last person from u will finally arrive at w at
time 14 4 [ (20 4+ wy)/4].

It is instructive to compare our approach to Frederickson’s [8] O(n) algorithm for solving
the k-center problem on trees, which was built from the following two ingredients.
1. An O(n) time previously known algorithm for checking feasibility, i.e., given o > 0, testing
whether a k-center solution with cost < o exists
2. A clever parametric search method to filter the O(n?) pairwise distances between nodes,
one of which is the optimal cost, via the feasibility test.
Section 3, is devoted to constructing a first polynomial time feasibility test for k-sink
evacuation on trees. It starts with a simple version that makes a polynomial number of
oracle calls and then is extensively refined so as to make only O(klogn) (amortized) calls.
On the other hand, there is no small set of easily defined cost values known to contain the
optimal solution. We sidestep this issue by doing parametric searching within our feasibility
testing algorithm, Section 4, which leads to Theorem 1.
As a side result, a slight modification to our algorithm allows improving, for almost all k,
the best previously known algorithm for the k-sink assignment problem, from O(n2k log? n)
[15] down to O(nk?log*n), as justified in the full paper.

2 Formal definition of the sink evacuation problem

Let G = (V, E) be an undirected graph. Each edge e = (u,v) has a travel time 7.; flow

leaving u at time ¢t = tg arrives at v at time ¢t = ¢y + 7.. Each edge also has a capacity c. > 0.

This restricts at most ¢, units of resource to enter edge e in one unit of time. For our version
of the problem we restrict ¢ to be integral; the capacity can then be visualized as the width
of the edge with only c. people being allowed to travel in parallel along the edge.

Consider w,, people waiting at vertex u at time ¢ = 0 to travel the edge e = (u,v). Only
¢e people enter the edge in one time unit, so the items travel in [w,/c.] packets, each of
size c., except possibly for the last one. The first packet enters e at time ¢ = 0, the second
at time t = 1, etc.. The first packet therefore reaches v at time t = 7, time, the second at

t =7, + 1 and the last one at time ¢ = 7. + [wy/c.] — 1. Figure 1(a) illustrates this process.

In the diagram people get moved along (u,v) in groups of size at most 6. If w, = 20, there
are 4 groups; the first one reaches v at time ¢ = 10, the second at time ¢ = 11, the third at
t = 12 and the last one (with only 2 people) at ¢t = 13.

Now suppose that items are travelling along a path ...u — v — w — ... where e; = (u, v)
and e3 = (v, w). Items arriving at v can’t enter es until the items already there have left. This
waiting causes congestion which is one of the major complications involved in constructing
good evacuation paths. Figure 1(b) illustrates how congestion can build up.

25:3

ISAAC 2016



25:4

Sink Evacuation on Trees with Dynamic Confluent Flows

T, TR

O«—0O

¢ . —=O
(b)

Figure 2 (a) evacuation problem with 4 vertices and sink at w. If w, = 8, wy;, = 4, Wy, = 10,
wyy = 11 and sink at w, the last person arrives w at time 15. In (b) the left figure is a tree with the
k = 3 black vertices as sinks. The right figure provides an evacuation plan. Each non-sink vertex v
has exactly one outgoing edge and, following the directed edges from each such v leads to a sink.

As another example, consider Figure 2(a) with every node evacuating to w. When the
first people from u; arrive at v, some of the original people still remain there, leading to
congestion. Calculation shows that the last people from u; leave v at time 4 so when the
first people from us arrive at v at time 5, no one is waiting at v. But, when the first people
from ug arrive at v some people from uy are waiting there, causing congestion. After that,
people arrive from both us and ug at the same time, with many having to wait. The last
person finally reaches w at time 15, so the evacuation protocol takes time 15.

Given a graph G, distinguish a subset S C V' with |S| = k as sinks (exits). An evacuation
plan provides, for each vertex v € S, the unique edge along which all people starting at or
passing through v evacuate. Furthermore, starting at any v and following the edges will lead
from v to one of the S (if v € S, people at v evacuate immediately through the exit at v).
Figure 2(b) provides an example.

Note that the evacuation plan defines a confluent flow. The evacuation edges form a
directed forest; the sink of each tree in the forest is one of the designated sinks in S.

Given the evacuation plan and the values w, specifying the initial number of people
located at each node, one can calculate, for each vertex, the time (with congestion) it takes
for all of its people to evacuate. The maximum of this over all v is the minimum time
required to evacuate all people to some exit using the rules above. Call this the cost for
S associated with the evacuation plan. The cost for S will be the minimum cost over all
evacuation plans using that set S as sinks.

The k-sink location problem is to find a subset S of size k with minimum cost. Recall
that [15] provides an O(nlog?n) problem for solving this problem if for tree G with k = 1.
We will use this algorithm as an oracle for solving the general k-location problem on trees.

Given the hardness results, there may not exist an efficient algorithm for general graphs,
but our algorithms can serve as fast subroutines for exhaustive search or heuristic methods.
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2.1 General problem formulation

The input to our algorithm(s) will be a tree T, = (Vin, Ein), and a positive integer k. Let
n = |Viy| = |Ew| + 1. Our goal will be to find a subset S C Vi, with cardinality at most k
that can minimize the cost denoted by F(S). This will essentially involve partitioning the
Vi, into < k subtrees that minimizes their individual max costs.

In the main part of the paper, we denote by f(U,s), where s € U, the time taken by all
people from nodes in U to evacuate to s. So given a set of sinks S, and a partition P of Vi,

where |S N P| =1 for all P € P, the total evacuation time is given by maxpep f(P, SN P).
Our solution will actually work for any f(U,v) that is a monotone min-maz cost function.

This is a clean abstraction of evacuation functions that allows us to cleanly formulate and

understand proofs. Formulated this way, our techniques permit solving other related problems.

See the full paper for details.

We also write our proofs in the full paper under such framework. Our algorithms are
designed to make calls directly to an oracle A that, given any U that induces a connected
component of T}, and any v € U, computes a monotone min-max cost function f(U,v). In
general such a polynomial time oracle must exist for the problem to even be in NP. As we
fully account for the time used to call the oracle in any way, there is no material difference
whether the oracle is considered a part of the algorithm or given in the input.

3 Bounded cost k-sink (feasibility test)

To tackle the more complicated general formulation, we first consider a simplification, which

is a decision problem whether all nodes can be evacuated given a time limit 7, with & sinks.

We call the general version of this problem "bounded cost minmax k-sink". We will use an
algorithm solving this problem as a subroutine for solving the full problem; we measure the
time complexity by the number of calls to the oracle A, as follows.

» Theorem 2. If A runs in time t4(n), the bounded cost minmax k-sink problem can be
solved in time O(kmax(ta(n),n)logn).

» Definition 3. A feasible configuration is a set of sinks S C V with a partition P € A(S)
where Fg(P) < T; S is also separately called a feasible sink placement, and P is a partition
witnessing the feasibility of S. An optimal feasible configuration is a feasible sink placement
S* CV with minimum cardinality; we write k* := |S*|.

If k* > k then the algorithm returns ‘No’. Otherwise, it returns a feasible configuration
(Souts Pout) such that |Sous| < k.

» Definition 4. Suppose U induces a subtree of Ti, and S C U. We say U can be served by
S if, for some partition P of U, for each P € P there exists s € S such that f(P,s) < T.

» Definition 5. Let U be the nodes of a connected component of G and v € V' (not necessarily
in U). We say that v supports U if one of the following holds:

If v e U, then f(U,v) <T.

If v ¢ U, let II be the set of nodes on the path from v to U. Then f(U U {v}UIL,v) <T.

If U can be served by S, then any node in U is supported by some s € S. The converse
is not necessarily true.

25:5
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3.1 Greedy construction

Our algorithms greedily build Syyt and Poys on-the-fly, making irrevocable decisions on what
should be in the output. Soy is initialized to be empty. In each step, we add elements to
Sout but never remove them, and once |Sout| > k we immediately terminate with a ‘No’. If,
at termination, |Sout| < k, we output Soyus.

Similarly, Poys is initially empty, and the algorithm performs irrevocable updates to
Pout while running. An update to Pgyyg is a commit. When set Poew C Vi, is committed
it is associated with some some sink in S,y (which might have to be added to Syyut at the
same time). If P,e shares its sink with an existing block P € Pyyut, we merge Py into P.
Another way to view this operation is that either a new sink is added, or unassigned nodes
are assigned to an existing sink.

In essence, we avoid backtracking so that S,y does not lose elements, and blocks added
to Pout can only grow. For this to work, we must require, throughout the algorithm:

(C1) An optimal feasible sink placement S* exists where Sy C S*.
(C2) For any P € Py there exists a unique s € Syy such that |P N Sout| = 1, and
f(Ps)<T.

Additionally, P,y will be a partition of Vi, upon termination with ‘yes. When these
conditions all hold, then |Poyut| < &k and (Sout, Pout) i feasible and output by the algorithm.

3.1.1 A separation argument

As the algorithm progresses, it removes nodes from the remaining graph (the working tree),
simplifying the combinatorial structure. We will need the definitions below:

» Definition 6 (Self sufficiency and T_,(u)). A subtree T" = (V', E’) of T}, is self-sufficient
if V'’ can be served by Sou N V.

Given a tree T = (V, E), consider an internal node v € V' and one of its neighbors v € V.
Removing v from T leaves a forest F_, of disjoint subtrees of 7. Then there is a unique tree
T =(V',E') € F_, such that u € V', denoted by T_,(u) = (V_,(u), E_,(u)). The concept
of self sufficiency is introduced for subtree of this form.

Roughly speaking, if T, (u) is self-sufficient, and w is a sink,

there is no need to add any other sinks to T_,(u), also no node outside T, (u) will be
routed to any sink in 7", (u) other than w. This means all nodes in V_,(u) except u can be
removed from consideration; a more formal statement of this fact is given in the full version.

Throughout the algorithm, we maintain a ‘working’ tree T' = (V, E) as well as a working
set of sinks S = Syu N V. Initially, T = T},. As the algorithm progresses, T' is maintained
to be a subtree of T, by peeling off self-sufficient subtrees, which ensures that solving the
bounded problem on T is equivalent to solving the bounded problem on Tj,.

For this to work, we enforce that sink s is added to Sout and S only when, for some
neighbor u of s, the tree induced by V_;(u) U {s} is self-sufficient with respective to the sink
set S U {s}. This permits removing V_;(u) from T after adding s to Sout and S. So in the
algorithm we can assume that sinks exist only at the leaves of the working tree T.

3.2 Subroutine: Peaking Criterion

We now describe a convenient mechanism that allows us to greedily add sinks.



D. Chen and M. J. Golin

» Definition 7 (Peaking criterion). Given T' = (V, E), the ordered pair of points (u,v) € VxV
satisfies the peaking criterion (abbreviated PC) if and only if u and v are neighbors, V_,,(u)NS
is empty, and finally f(V_,(u),u) < T but f(V_,(u) U{v},v)>T.

» Lemma 8. Let S be a feasible sink placement for T, and let u,v € V' be neighbors. If (u,v)
satisfies the peaking criterion, then S’ := (S\V_,(u)) U {u} is also a feasible sink placement.
In particular, if S is an optimal feasible sink placement, then so is S’.

If (u, v) satisfies the peaking criterion, we can immediately place a sink at v and then commit
V_,(u). The following demonstrates that, whenever S = (), at least 1 sink can be found using
the peaking criterion, unless a single node can s € V support the entire graph.

» Lemma 9. Suppose for some v,u, f(V_,(u)U{v},v) > T, and SNV_,(u) =0. Then
there exists a pair of nodes s,t € V_,(u) U {v} such that (s,t) satisfies the peaking criterion.

» Corollary 10. Given S = 0, either one of the following occurs:
1. For any s € V we have f(V,s) < T, or
2. There exist a pair of nodes u,v € V that satisfies the peaking criterion.

At stages where it is applicable, for each ordered pair (u,v) that satisfies the peaking
criterion we place a sink at u and remove nodes in V_, (u). If instead the first case of the
above corollary occurs, we can add an arbitrary s € V' to S and Syt and terminate.

3.3 Subroutine: Reaching Criterion

Corollary 10 provides two ways to add sinks to Sy,t. The peaking criterion is a way to add
sinks to 7" and remove certain nodes from 7. On the other hand, the reaching criterion
(RC) is a way to remove sinks from 7" and .S, while keeping them in S,,t. Roughly speaking,
the reaching criterion finalizes all nodes that should be assigned to certain sinks, and then
removes all these nodes from consideration. To forumlate RC, we first introduce the hub
tree, which has convenient properties that arise from applying the peaking criterion.

» Definition 11 (Hubs). Let L C V be the leaves of the rooted tree T = (V, E). Let S C L,
be a set of sinks, with no sink in V\L. Let H(S) C V be the set of lowest common ancestors
of all pairs of sinks in 7. The nodes in H(S) are the hubs associated with S.

The hub tree Tysy = (Vi(s), Er(s)) is the subgraph of T" that includes all vertices and
edges along all possible simple paths among nodes H(S) U S.

» Definition 12 (Outstanding branches). Given T' = (V, E) and S, we say that a node w € V
branches out to 7 if 7 is a neighbor of w in T" that does not exist in Vi (g). The subtree
T :=T_,(n) is called an outstanding branch; we say that T" is attached to w.

» Definition 13 (Bulk path). Given two distinct u,v € Vi (s), the bulk path BP(u,v) is the
union of nodes along the unique path II between wu, v (inclusive), along with all the nodes in
all outstanding branches that are attached to any node in II.

Given T and S, we say a node v € Ep(g) can evacuate to s € S if f(BP(v,s),s) < T;
when such s € S exists for v, we say that v can evacuate. Given this we can formulate an

3

» Definition 14 (Reaching criterion). Given T = (V, E) and a set of sinks S, placed at the
leaves of T'. Let T be RC-viable with respect to S and (u,v) € V X V be an ordered pair of
nodes. u,v satisfy the reaching criterion (RC) if and only if they are neighbors in T, and
T_,(u) is self-sufficient while the tree induced by BP(v,u) U V_,(u) is not.

opposite’ to the peaking criterion, which allows us to remove nodes, including sinks, from 7.
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A crucial property arises after an exhaustive application of the peaking criterion.

» Definition 15 (RC-viable). Given T and sinks S, we say that 7" is RC-viable if:
1. all sinks S occur at the leaves of T
2. if T" = (V', E’) is an outstanding branch attached to w € Vi (g), then f(V'U{w}, w) < T

» Lemma 16. Given T = (V, E) and sinks S, where S is a subset of leaves of T. Suppose
no ordered pair (u,v) € V- x V satisfy the peaking criterion. Then T is RC-viable.

Now when 7" is RC-viable w.r.t. S, there is no need to place sinks within outstanding
branches; this is because if an outstanding branch is attached to a node w, then a sink at w
can already serve the entire outstanding branch.

» Theorem 17. Suppose T = (V, E) is RC-viable with respect to S C V. Ifu,v € V satisfies
the reaching criterion, then we can remove T—,(u) from T, and also commit all blocks in the
partitioning of T_,(u) that witnesses the self-sufficiency of T_,(u). By definition, T_,(u)
includes at least one sink from S.

After removing T_, (u) by the reaching criterion, we need to run the peaking criterion
again on 7', in order to preserve RC-viability. Then, we can apply RC again. In this way, we
interleave the invocations of PC and RC to gradually eliminate nodes from the working tree.

3.3.1 Testing for self-sufficiency

In order to make use of the reaching criterion, we require efficient tests for self-sufficiency.
Note that [15] readily gives such test albeit at a higher time complexity. In our algorithm, we
perform self-sufficiency tests on a rooted subtree T" only if it satisfies some special conditions,
allowing us to exploit RC-viability and reuse past computations. By our arrangements, when
such T passes our test we know it demonstrates a stronger form of self-sufficiency.

» Definition 18 (Recursive self-sufficiency). Given a rooted subtree TV = (V' E’) of T,
VNS # 0, we say that T" is recursively self-sufficient if for all u € Viz(gy N'V’, the subtree
of T" rooted at u is self-sufficient.

A bottom-up approach can be used to test for recursive self-sufficiency, which in turn
implies ‘plain’ self-sufficiency.

» Lemma 19. Given a RC-viable rooted subtree T' = (V' E') of T, V' NS # 0, where v is
the root. Suppose there exists a child u of v in Viy(s)y NV such that T_,(u) is recursively
self-sufficient, and there is a sink s € SN V_,(u) such that v can evacuate to s.

Then BP(v,s)UV_,(u) is recursively self-sufficient. If, additionally, for every child u’
of vin Visy NV', T, (u') is recursively self-sufficient, then T' is recursively self-sufficient.

We say that s is a witness to Lemma 19 for T” and v; we store this witness, as well as
the witness for every subtree of T” rooted at some v € V. One can retrieve a partition P’
of T" that witnesses the self-sufficiency of 7", in O(|V’|) time. For this to be useful, note
that only recursive self-sufficiency will be relevant. When a RC-viable tree is self-sufficient
but not recursively self-sufficient, if we process bottom-up, we can always cut off part of the
tree using the reaching criterion, so that the remainder is recursively self-sufficient. This is
demonstrated in the detailed algorithm, in the full paper.
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3.4 Combining the Pieces

The main ingredients of our algorithm are the peaking and reaching criteria along with ideas
to test self-sufficiency. We use the peaking criterion to add sinks to 7', and then the reaching
criterion to remove sinks and nodes from 7', until either T is empty or T' can be served by a
single sink. In the following we describe a full algorithm that makes use of these ideas.

3.4.1 Simpler, iterative approach (‘Tree Climbing’)

Essentially, in this algorithm we iteratively check and apply the PC and RC bottom-up from
the leaves. We do not specify a root here; the root can be arbitrary, and changed whenever
necessary. As we go up from the leaves, for each pair (u, v) that forms an edge of the tree, we
would call the oracle A for f(V_,(u),u), f(V_,(u) U{v},v) or f(BP(v,s),s) for some sink s,
and apply either the peaking criterion or the reaching criterion. By design RC is checked
whenever the tree is RC-viable, and PC is checked whenever the tree is not RC-viable, and
we do not need to test both on the same pair (u,v).

» Lemma 20. The bounded-cost tree-climbing algorithm makes O(n) calls to A.

Proof. We only make O(1) calls to evaluate f(-,-) for each pair (u,v) € V. <

After seeing the iterative approach, it is easier to understand the more advanced algorithm,
which uses divide-and-conquer and binary search to replace the iterative processes.

3.4.2 Peaking criterion by recursion

Macroscopically, we replace plain iteration with a fully recursive process. We do this once in
the beginning, as well as every time we remove a sink. Overall the algorithm makes O(klogn)
‘amortized’ calls to the oracle. Recall that the main purpose of the peaking criterion is to
place sinks and make the tree T" RC-viable.

A localized view

We start with a more intuitive, localized view of the recursion. We evaluate f(,-) on sets of
nodes of the form V_,(u) or V_,(u) U{v}. If f(V_,(u),u) < T then we mark all nodes in
V_,(u); note that if f(V_,(u) U {v},u) > T but all nodes in V_,(u) are marked, then PC
can be invoked and V_,(u) is cut off. Sometimes we also mark the node v, if all but one of
its neighbors (that have not been cut off) are marked.

Over the course of the algorithm, we are given a node v € V' (along with other information
including which other nodes are marked), and for each neighbor u of v we decide whether to
evaluate a, := f(V_,(u)U{v},v). As a basic principle to save costs, we do not wish to call
the oracle if all nodes in V_, (u) U {v} are marked, or if V_,(u) U {v} contains a sink.

When we do get a, < 7, mark all nodes in V_,(u). Moreover, if no more than 1
neighbor of v is unmarked, and by this time v ¢ Sout, we also mark v. This part is the
same in tree-climbing, and maintains an important invariant regarding the set of marked
nodes: if u is marked but a neighbor v is not, then all nodes in V_,(u) are marked, and
FVoulu) U{o},0) < T

On the other hand, if in fact we find that a, > 7T, we would wish to recurse into T_,(u),
because one sink must be placed in it. Now we return to a more global view.
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A global view

To maintain RC-viability we need to apply the oracle on various parts of T'. In the iterative
algorithm, this process is extremely repetitive. Now we wish to segregate different sets of
nodes on the tree, so the oracle is only applied to separate parts.

» Definition 21 (Compartments and Boundaries). Let 7" = (V', E’) be a subtree of T' = (V, E).
The boundary 87" of T is the set of all nodes in T” that is a neighbor of some node in V\V"’.

Now given a set of nodes W of a tree T' = (V, E), the set of compartments Cr(W) is a
set of subtrees of T, where the union of all nodes is V, and for each 77 = (V', E’) € Cp (W),
V' is a maximal set of nodes that induces a subtree T" of T such that 67" C W.

Intuitively, the set of compartments is induced by first removing W, so that T is broken
up into a forest of smaller trees, and for each of the small trees we re-add nodes in W that
were attached to it, where the reattached nodes are called the boundary. As opposed to
partitioning, two compartments may share nodes at their boundaries.

In the algorithm, we generate a sequence of sets Wy C Wy, ..., W; C V in the following
manner: Wy contains the tree median of T, and then to create W; from W,_; we simply add
to W; the tree medians of every compartment in Cr(W;).

For each 4, we only make oracle calls that take the form f(V_,(u), s) or f(V_,(u)U{v},s).
We avoid choices of (u,v) that will cause evaluation on overlapping sets, based on information
gained on processing W;_; in the same way. In this way we only make essentially O(1)
‘amortized’ calls to the oracle for each i. For details see the full paper.

After removing nodes via the reaching criterion, we only need to do this on a subtree of T,
which we can assume takes the same time as on the full tree. One can see that ¢ = O(logn)
thus the peaking criterion takes at most O(klogn) amortized oracle calls.

3.4.3 Reaching criterion by Binary Search

Intuitively, with the reaching criterion we look for an edge (u,v) in Ty (g so that T, (u),

which contains at least one sink, can be removed. Now given adjacent hubs hy; and hs, i.e.

hubs where there are no other hubs along the path from hy to hs, consider any subtree of T'

rooted at hi, in which hsy is a descendent of hy. Then exactly one of the following is true:

(P1) There is an edge (u,v) in the path II(h1, he) between hy and hso, where u is a child of
v # hq, such that T_,(u) is recursively self-sufficient, but the subtree rooted at v is not.

(P2) Let u be the child of hy that is on the path between hy and hy. Then the subtree
rooted at u, i.e. T—p, (u), is recursively self-sufficient.

As hy and hs are adjacent hubs, for any edge (u,v) along the path, where v # hy is the
parent of u, the subtree rooted at v is recursively self sufficient only if the subtree rooted at
u is. Suppose we know that the subtree rooted at hs is recursively self-sufficient.

In the iterative algorithm we move upwards from hs to h; gradually until we find such
an edge, or upon reaching hi; this can be replaced by a binary search. This idea will let us
only use O(k?logn) calls; proper amortization with pruning can reduce this to O(klogn)
oracle calls. See full paper. Theorem 2 follows from the above faster algorithm.

4  Full problem: cost minimization

Given an algorithm for the bounded cost problem, we may perform a binary search over
possible values of 7 for the minimal 7* allowing evacuation with k sinks. To produce a
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strongly polynomial time algorithm, at a higher level, we wish to search among a finite,

discrete set of possible values for 7*. This can be done by a parametric searching technique.

4.1 Iterative approach

We start by modifying the iterative algorithm for bounded cost. In that algorithm, the
specific value of T dictates the contents of T, S, S,y etc., as well as which node pairs satisfy
either of PC and RC, at each step of that depends upon the outcome of a comparison of the
form f(-,-) < T, obtained from calling the oracle.

The idea is to run a parametric search version of the bounded cost algorithm. 7 will no
longer be a constant; we interfere the normal course of the algorithm by changing 7 during
runtime. The decision to interfere is based on a threshold margin (T*, TH] that we maintain,
to keep track of candidate values of 7*. Initially, (7%, 7] = (—o0c. + o], and T = 0.

The following process terminates with some 7 € (7%, TH]; call this the ‘bounded cost
algorithm with interference’. Every time we evaluate a = f(-,-), we set T based on the
following, before making the comparison a < T and proceeding with the relevant if-clause.

1. Ifa<TE set T =TL, so the if-clause always resolves as f(-,-) < T.
2. Ifa>TH set T =TH, so the if-clause always resolves as f(-,-) > 7.
3. If a € (TE, TH], run a separate clean, non-interfered instance of the bounded cost
algorithm with threshold value 7 := a, and observe the output.
Output is ‘No’: set TX := a, and T := a, resolving the if-clause as a = f(-,-) < T = a.
Otherwise, set TH :=a, and T := TT.

» Lemma 22. Let (T-,7T=] be the threshold margin at the end of the bounded cost algorithm
with interference. Then T~ = T*. In particular, we can then run the bounded cost algorithm
(non-interfered) on T := T to retrieve the optimal feasible configuration.

» Theorem 23. Minmaz tree facility location can be solved in O(n?) calls to A.

Proof. We always allow the interfered algorithm to make progress, albeit with changing
values of T, so Lemma 20 still applies; f(-,-) is evaluated at most O(n) times in the interfered
algorithm, thus we also launch a separate instance of the feasibility test O(n) times. <

4.2 Using divide-and-conquer and binary search

The above idea still works for applying RC, that we can use the same ideas of calling the
feasibility test and interfering as we evaluate f(-,-). Thus we only interfere O(klogn) times,
making O(k?log®n) total calls to the oracle.

But it does not work well with the peaking criterion; that the divide-and-conquer algorithm
for the peaking criterion relies very strongly on amortization, and a naive application of
interference will perform O(n) feasibility tests, while we aim for O(klogn).

The basic idea is to filter through values of f(-,-) where we decide to interfere. Intuitively,
the divide and conquer algorithm can be organized in ¢ layers in reference to Wy, ..., W;
where ¢t = O(logn), for each we evaluate f(-,-) on certain pairs of nodes and sets. Each
evaluation of f(-,-) can be identified with an edge of T', thus in each layer we have at most
O(n) evaluations, producing a list of O(n) values.

Thus, at each layer we evaluate f(-,-), and binary search for a pair of values a~,a~ such
that a« < T* < a~, making O(logn) calls to the bounded-cost algorithm, and then set
T = a~ when proceeding to mark nodes and place sinks, before moving to the next layer.
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This gives O(log2 n) calls for a single application of the peaking criterion. As we only
need to apply the peaking criterion O(k) times, the resulting number of calls to the feasibility
test is O(klog®n). As each call takes O(nklog®n) time, Theorem 1 then follows.

5 Conclusion

Given a Dynamic flow network on a tree T}, = (V, E) we derive an algorithm for finding the
locations of k sinks that minimize the maximum time needed to evacuate the entire graph.
Evacuation is modelled using dynamic confluent flows. Only an O(nlog®n) time algorithm
for solving the one-sink (k = 1) case was previously known.

This paper gives the first polynomial time algorithm for solving the arbitrary k-sink
problem, developed in two parts. Section 3 gives an O(nklog®n) algorithm to test the
feasibility of completing evacuation in time 7 with k sinks. Section 4 showed how to modify
this to an O(nk?log® n) algorithm for finding the minimum such 7 that permits evacuation.
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—— Abstract

We study the following problem: with the power of postselection (classically or quantumly), what
is your ability to answer adaptive queries to certain languages? More specifically, for what kind
of computational classes C, we have pc¢ belongs to PostBPP or PostBQP? While a complete
answer to the above question seems impossible given the development of present computational
complexity theory. We study the analogous question in query complexity, which sheds light on
the limitation of relativized methods (the relativization barrier) to the above question.

Informally, we show that, for a partial function f, if there is no efficient! small bounded-error
algorithm for f classically or quantumly, then there is no efficient postselection bounded-error
algorithm to answer adaptive queries to f classically or quantumly. Our results imply a new
proof for the classical oracle separation pNP? ¢ PP, which is arguably more elegant. They also
lead to a new oracle separation PSZKO 04 PPO7 which is close to an oracle separation between
SZK and PP — an open problem in the field of oracle separations.

Our result also implies a hardness amplification construction for polynomial approximation:
given a function f on n bits, we construct an adaptive-version of f, denoted by F', on O(m-n) bits,
such that if f requires large degree to approximate to error 2/3 in a certain one-sided sense, then
F requires large degree to approximate even to error 1/2 — 2™, Our construction achieves the
same amplification in the work of Thaler (ICALP, 2016), by composing a function with O(logn)
deterministic query complexity, which is in sharp contrast to all the previous results where the
composing amplifiers are all hard functions in a certain sense.

1998 ACM Subject Classification F.1.1 Models of Computation
Keywords and phrases approximate degree, postselection, hardness amplification, adaptivity

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2016.26

1 Introduction

1.1 Background

The idea of postselection has been surprisingly fruitful in theoretical computer science and
quantum computing [3, 11, 6]. Philosophically, it addresses the following question: if you
believe in the Many-worlds interpretation? and can condition on a rare event (implemented
by killing yourself after observing the undesired outcomes), then what would you be able
to compute in a reasonable amount of time? The complexity classes PostBPP [12] and
PostBQP [1] are defined to represent the computational problems you can solve with the
ability of postselection in a classical world or a quantum world.

* The full version is available at http://arxiv.org/abs/1606.04016.
1 In the world of query complexity, being efficient means using O(polylog(n)) time.
2 https://en.wikipedia.org/wiki/Many-worlds_interpretation
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However, even with that seemingly omnipotent power of postselection, your computational
power is still bounded. It is known that PostBPP C PH [12], and (surprisingly) PostBQP =
PP [1]. Hence, it seems quite plausible that even with the postselection power, you are still
not able to solve a PSPACE-complete problem, as it is widely believed that PH and PP are
strictly contained in PSPACE.

Another more non-trivial (and perhaps unexpected) weakness of those postselection
computation classes, is their inability to simulate adaptive queries to certain languages.
For example, it is known that PNPIO0e™I3 ig contained in PostBPP [12], and this result
relativizes. But there is an oracle separation between PNPIw(os™)] anq PostBQP [4]. In other
words, there is no relativized PostBQP algorithm that can simulate w(logn) adaptive queries
to a certain language in NP. In contrast, we know that pliNP C PostBPP C PP [12], hence
they are capable of simulating non-adaptive queries to NP.

Then a natural question follows:

» Question 1.1. What is the limit of the abilities of these postselection classes on simulating
adaptive queries to certain languages? More specifically, is there any characterization of the
complexity class C such that F° is contained in PostBPP or PostBQP?

Arguably, a complete answer to this problem seems not possible at the present time: even

determining whether PNP C PP is already extremely hard, as showing PNP C pp probably
requires some new non-relativized techniques, and proving pNP ¢ PP implies PH ¢ PP,

which is a long-standing open problem.

1.2 Relativization and the analogous question in query complexity

So in this paper, inspired by the oracle separation in [4], we study this problem from a
relativization point of view. Relativization, or oracle separations are ultimately about the
query complexity. Given a complexity class C, there is a canonical way to define its analogue
in query complexity: partial functions which are computable by a non-uniform C machine
with polylog(n) queries to the input. For convenience, we will use C% to denote the query
complexity version of C. We adopt the convention that C9 denotes the query analogue of C,
while C¥(f) denotes the C% complexity of the partial function f.

For a partial function f, we use len(f) to denote its input length. We say a family of
partial functions f € C%, if C%(f) = O(polylog(len(f))) for all f € f.

In order to study this question in the query complexity setting, given a partial function
f, we need to define its adaptive version.

» Definition 1.2 (Adaptive Construction). Given a function f : D — {0,1} with D C {0, 1}
and an integer d, we define Aday 4, its depth d adaptive version, as follows:

Adaf,d D XDy 1 xDyg_1— {0, 1}

_JAdagaa(z)  f(w)
Aday.a(w, 2,y) = {Adaf,d—l(y) flw) =

Adajg:= f and 0
1

where Dy_; denotes the domain of Adaf q_;.
The input to Adas 4 can be encoded as a string of length (2¢+1 — 1) - M. Thus, Aday 4 is
a partial function from D" =1 - {0,1}.

3 O(logn) stands for the P algorithm can only make O(logn) queries to the oracle.
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Then, given a family of partial function f, we define Adag := {Adasq | f € f,d € N}.

Notice that when you have the ability to adaptively solve d + 1 queries to f (or with high
probability), then it is easy to solve Adayf 4. Conversely, in order to solve Aday 4, you need
to be able to adaptively answer d 4+ 1 questions to f, as even knowing what is the right it"
question to answer requires you to correctly answer all the previous ¢ — 1 questions.

Now, everything is ready for us to state the analogous question in query complexity.

» Question 1.3. What is the characterization of the partial functions family £ such that
Adag € PostBPP™ (PostBQP™)?

There are at least two reasons to study Question 1.3. First, it is an interesting question
itself in query complexity. Second, an answer to Question 1.3 also completely characterizes
the limitation on the relativized techniques for answering Question 1.1, i.e., the limitation of
relativized methods for simulating adaptive queries to certain complexity classes with the
power of postselection.

This paper provides some interesting results toward resolving Question 1.3.

1.3 Our results

Despite that we are not able to give a complete answer to Question 1.3. We provide some
interesting lower bounds showing that certain functions’ adaptive versions are hard for these
postselection classes.

Formally, we prove the following two theorems.

» Theorem 1.4 (Quantum Case). For a family of partial function f, Adag & PostBQP"(PP)
if £ ¢ SBQPY N coSBQP™.

» Theorem 1.5 (Classical Case). For a family of partial function f, Adas & PostBPP® if
f & SBP™ N coSBP.

Roughly speaking, SBP is a relaxation of BPP, it is the set of languages L such that
there exists a BPP machine M, which accepts x with probability > 2« if € L; and with
probability < « if x & L for a positive real number o. And SBQP is the quantum analogue
of SBP, where you are allowed to use a polynomial time quantum algorithm instead.*

Our theorems show that, for a partial function f, if there is no efficient classical (quantum)
algorithm which accepts all the 1-inputs with a slightly better chance than all the O-inputs,
then there is no efficient PostBPP (PostBQP) algorithm that can answer adaptive queries to
f-

In fact, we prove the following two quantitatively tighter theorems, from which Theorem 1.4
and Theorem 1.5 follows easily.

» Theorem 1.6. Let f be a partial function and T be a mon-negative integer. Suppose
deg, (f) > T ordeg_(f) > T, then we have

PPY(Ada; 4) > min(T/4,2%71).5

» Theorem 1.7. Let f : D — {0,1} with D C {0,1} be a partial function and d be a
non-negative integer. Suppose SBPY(f) > T or coSBP*(f) > T, then we have

PostBPP"(Aday 4) > min(T/5, (2¢ —1)/5).

4 For the formal definitions of SBP, PostBPP, PostBQP, SBQP and their equivalents in query complexity,
see the preliminaries.
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1.4 Applications in oracle separations

Our results have several applications in oracle separations.
A new proof for pNPY ¢ PP%:
We prove that SBQPdt( f) is indeed equivalent to one-sided low-weight approzimate degree,
denoted by (Te?g +(f) (cf. Definition 2.8), which is lower bounded by one-sided approximate
degree deg, (f) (cf. Definition 1.8).
Using the fact that deg, (AND,,) > Q(y/n), Theorem 1.4 implies that Adaanp ¢ PP,
yielding a simpler proof for the classical oracle separation between PP and PP in [4].
Our proof is arguably simpler and more elegant. Also, unlike the seemingly artificial
problem ODD-MAX-BIT® in [4], Adaanp looks like a more natural hard problem in PN
The new oracle separation pSZK? 4 PPY .
Since the Permutation Testing Problem, denoted by PTP,, (see Problem 2.12 for a
formal definition), satisfies deg_ (PTP,) > Q(n'/3) and has a log(n)-time SZK protocol.
Theorem 1.4 implies that Adaptp ¢ PPdt, which in turn shows an oracle separation
between P52 and PP.
It has been an open problem [2] that whether there exists an oracle separation between
SZK and PP, our result is pretty close to an affirmative answer to that.”
Also, note that pSZK C pAMNcoAM _ AM N coAM, so our result improves on the oracle
separation between AM N coAM and PP by Vereschchagin [18].

1.5 Applications in hardness amplification for polynomial approximation

Our construction also leads to a hardness amplification theorem for polynomial approximation.
In order to state our result, we need to introduce the definition of two approximate degrees
first.

» Definition 1.8. The e-approximate degree of a partial function of f : D — {0,1}, denoted
as deg, (f), is the least degree of a real polynomial p such that |p(z) — f(z)| < ¢ when = € D,
and |p(x)] <1+ e when z &€ D.

We say a polynomial p one-sided e-approximates a partial Boolean function f, if p(x) €
[0,¢] when f(x) = 0, and p(x) > 1 when f(z) = 1.8 Then the one-sided e-approximate
degree of a partial function f, denoted by deg (f), is the minimum degree of a polynomial
one-sided e-approximating f.

Now we are in a position to state our amplification theorem.

» Theorem 1.9. Let f be a partial function such that degi/g(f) > T and d be a positive

integer, we have Ei—(;ée(Adaf,d) >T fore=0.5— 92741

That is, given a function with high one-sided approximate degree for an error constant
bounded away from 1, it can be transformed to a function with high approximate degree
even for e doubly exponentially close to 1/2 in d.”

Given a binary input z, it asks whether the rightest 1 in x is in an odd position.

Partially inspired by this work, an oracle separation between SZK and PP (in fact, UPP) has been
constructed in a very recent work of Bouland, Chen, Holden, Thaler and Vasudevan [5], thus resolved
this open problem.

Our definition of one-sided approximation is slightly different from the standard one [15, 8, 16], but
it greatly simplifies several discussions in our paper, and they are clearly equivalent up to a linear
transformation in e.

Which is single exponential in the input length of the amplifier AdaQ, see the discussion below.
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Comparison with previous amplification results

There have been a lot of research interest in hardness amplification for polynomial approxim-
ation, many amplification results are achieved through function composition [9, 15, 17]. We
use f o g to denote the block composition of f and g, i.e. f(g,9,...,9)-

Our result can also be viewed as one of them. Let AdaQ, := Adajq 4, where id is just the
identity function from {0,1} to {0,1}. Then we can see that in fact Aday 4 is equivalent to
AdaQg o f. Let n = 24+1 — 1, which is the input length of AdaQy.

However, all the previous amplification results are achieved by letting the amplifier f to
be a hard function. We list all these results for an easy comparison.

In the work of Bun and Tahler [9], they showed that for a function g such that deg, (g) > T,

&E(ORH 0g) > T for e = 1/2 — 2= This is further improved by Sherstov [15] to

that deg, (OR, o g) = Q(min(n,T)). Here, the amplifier OR,, is a hard function in the

sense that deg, (OR,,) > Q(y/n) [14].

In [17], Thaler showed that for a function g such that deg, (g) > T, (fié/ge(ODD-l\/IAX—BITn

og) > T for e = 1/2 — 272" 10 T this case, the amplifier ODD-MAX-BIT,, is even

harder in the sense that it has a PP query complexity of Q(¢/n) [4].

Moreover, it is easy to see that the randomized query complexity of both OR, and

ODD-MAX-BIT,, is the maximum possible (n).

In contrast, our amplifier AdaQ, is extremely simple — it has a deterministic query
complexity of O(logn)!*

This is a rather surprising feature of our result. That means AdaQ also has an ezxact
degree of O(logn). Intuitively, composing with such a simple and innocent function seems
would not affect the hardness of the resulting function. Our result severely contradicts this
intuition. But from the view point of Theorem 1.4, composing with AdaQ indeed “adaptivize’
the function, makes it hard for PostBQP algorithms, which is in turn closely connected to PP
algorithms and therefore polynomial approximate degree. So this result is arguably natural
under that perspective, which illustrates a recurring theme in TCS: a new perspective can
lead to some unexpected results.

Y

1.6 Paper organization

In Section 2 we introduce some preliminaries, due to the space constraints, some of the
formal definitions of those partial function classes in query complexity can be found in the
full version. We prove Theorem 1.4 and Theorem 1.6 in Section 3, and defer the proof for
Theorem 1.5 and Theorem 1.7 to the full version. Theorem 1.9 is proved in Section 3.4. And
we provide formal proofs for the two oracle separation results in the full version.

2 Preliminaries

2.1 Decision trees and quantum query algorithms

A (randomized) decision tree is the analogue of a deterministic (randomized) algorithm in
the query complexity world, and a quantum query algorithm is the analogue of a quantum
algorithm. See [7] for a nice survey on query complexity.

10This construction is further improved in a very recent work [10] by Bun and Thaler, with a more
sophisticated construction which does not follow the composition paradigm.
11 A simple O(logn)-query algorithm just follows from the definition.
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Let T be a randomized decision tree, we use C(7) to denote the maximum number of
queries incurred by 7 in the worst case!?. Let Q be a quantum query algorithm, we use
C(Q) to denote the number of queries taken by Q.

We assume a randomized decision tree 7 (or a quantum query algorithm Q) outputs a
result in {0,1}, and we use 7 (z) (Q(x)) to denote the (random) output of 7 (Q) given an
input z.

2.2 Complexity classes and their query complexity analogues

We assume familiarity with some standard complexity classes like PP. Due to space con-
straint, we only introduce the most relevant classes AOPPY and PP here, and defer the
formal definitions of the partial function complexity classes SBP?t, SBQP, PostBPP® and
PostBQPY to the full version.

Recall that C9t is the set of the partial function family f with C%(f) = O(polylog(len(f)))
for all f € f, hence we only need to define C4(f) for a partial function f.

PP
We first define PPY(f).

» Definition 2.1. Let f: D — {0,1} with D C {0,1}* be a partial function. Let T be a
randomized decision tree which computes f with a probability better than 1/2. Let a be the
maximum real number such that

for all x € D.
Then we define PPY(T"; f) := C(T)+log,(1/a), and PPY(f) as the minimum of PP (T"; f)
over all 7 computing f with a probability better than 1/2.

AOPP and AOPP®

In this subsection we review the definition of AOPP, and define its analogue in query
complexity. There are several equivalent definitions for AOPP, we choose the most convenient
one here.

» Definition 2.2. AOPP (defined by Vyalyi [19]) is the class of languages L C {0,1}" for
which there exists a BPP machine M and a polynomial p, such that for all inputs x:
(i) z € L = Pr[M (z) accepts] > 1 4 27P(=D,

(i) @ ¢ L = Pr[M (z)accepts] € [1,1 4 2-»(=h-1],

» Definition 2.3. Let f : D — {0,1} with D C {0,1} be a partial function. We say a
randomized decision tree 7 AOPP-computes f if there is a real number a > 0 such that
Pr[T(z) =1] > 1/2 4 2a when f(z) = 1.
Pr[7T(x) =1] € [1/2,1/2+ o] when f(z) = 0.
Fix a 7 AOPP-computing f, let a be the maximum real number satisfying above conditions.
Then we define AOPP*(T; f) = C(T) + log,(1/a) for T AOPP-computing f and AOPP(f)
as the minimum of AOPPdt(T; f) over all T AOPPY_computing f. And we simply let
coAOPPY(f) := AOPP(—f).

12je. the maximum height of a decision tree in the support of T
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Two relativized facts

We also introduce two important relativized results here. In [1], Aaronson showed that
PostBQP is indeed PP in disguise.

» Theorem 2.4 ([1]). PostBQP = PP.

And in [13], Kuperberg showed that SBQP is in fact equal to AOPP.
» Theorem 2.5 ([13]). SBQP = AOPP.

These two theorems relativize, hence we have the following corollaries.
» Corollary 2.6. SBQP = AOPP“.
» Corollary 2.7. PostBQP™ = PP,

2.3 Low-weighted one-sided approximate degree

In this subsection, we introduce a new notion of one-sided approximate degree, which is
closely connected to AOPP(f).

» Definition 2.8. Write a polynomial p(z) := >_1", a; - M;(x) as a sum of monomials, we
define weight(p) := Y ;" | |a;|. The one-sided low-weight e-approximate degree of a partial
function f denoted by deg, (f), is defined by

deg., (f) := minmax{deg(p), log, (weight(p))}.

where p goes over all polynomials which one-sided e-approximates f.!3
——€ ——€ — —1/2 —
We simply let deg_(f) := deg,(—=f). We also define deg,(f) as deg+/ (f). deg_ is
defined similarly.

Clearly d/égi( f) = deg® (f). And the choice of constant 1/2 is arbitrary, as we can reduce
the approximation error by the following lemma.

» Lemma 2.9. For any 0 < e < ey <1, d/e\g:(f) < Fnefl—‘ d/e\gjf(f)

> —T
Ine,

—1
In €]

—T
Ine,

th ——€
Proof. We can just take the [ —‘ power of the polynomial corresponding to deg j (f). =

We show that d/eg +(f) is in fact equivalent to AOPPY(f) up to a constant factor.

» Theorem 2.10. Let f be a partial function, then
deg. (f) < 2- AOPPY(f) and AOPPY(f) < 2-deg, (f) + 2.

The proof is based on a simple transformation between a decision tree and the polynomial
representing it, we defer the details to the full version.
And the following corollary follows from the definitions.

» Corollary 2.11. Let f be a partial function, then

deg_(f) < 2 - coAOPPY(f) and coAOPP*(f) < 2-deg_(f) + 2.

13 Recall that a polynomial p one-sided e-approximates a partial Boolean function f, if p(z) € [0, €] when
f(z) =0, and p(x) > 1 when f(z) =1 as in Definition 1.8.
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2.4 The permutation testing problem
Finally, we introduce the permutation testing problem.

» Problem 2.12 (Permutation Testing Problem or PTP). Given black-box access to a function
f:[n] = [n], and promised that either
(i) f is a permutation (i.e., is one-to-one), or
(ii) f differs from every permutation on at least n/8 coordinates.

The problem is to accept if (i) holds and reject if (ii) holds.

Assume n is a power of 2, we use PTP,, to denote the Permutation Testing Problem
on functions from [n] — [n]. PTP,, can be viewed as a partial function D — {0,1} with
D C {0,1}mlos2m,

3 Proof for the quantum case

In this section we prove Theorem 1.4 and Theorem 1.6.

Let f: D — {0,1} with D C {0,1}* be a partial function, we say a polynomial p on M
variables computes f, if p(x) > 1 whenever f(x) =1, and p(xz) < —1 whenever f(z) = 0.
3.1 Existence of the hard distributions

In this subsection we show that if d/ég L (f) is large, there must exist some input distributions
witness this fact in a certain sense.

» Lemma 3.1. Let f be a partial function and T be a non-negative integer. For convenience,
we say a polynomial p is valid, if it is of degree at most T, and satisfies weight(p) < 27T

——2/3
Ifdeg+/ (f) > T, there exist two distributions Dy and Dy supported on f~1(0) and f~1(1)
respectively, such that

—p(Do) > 2 p(D1),
where p(D) = Epplp(x)], for all valid polynomial p computing f.

In order to establish the above lemma, we need the following simple lemma.

—2/3
» Lemma 3.2. For any valid polynomial p computing f, if deg+/ (f) > T, then there exist
z € f710) and y € f~1(1) such that —p(z) > 2 p(y).

The proof is based on a simple calculation, the details can be found in the full version.
Then we prove Lemma 3.1.

Proof of Lemma 3.1. By Lemma 3.2, we have

min  max —p(zr)—2- >0,
tin - max p(z) =2 p(y)
where p is a valid polynomial which computes f, fO := f~1(0) and f! := f~!(1). By the
minimax theorem, and note that all the valid polynomials form a compact conver set, there
exists a distribution Dy, on fY x f! such that for any valid polynomial p computing f, we
have

B y)~p,, [—p(@) =2 p(y)] > 0.

Then we simply let Dy (D;) be the marginal distribution of D,, on f° (f'), which completes
the proof. <
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And the following corollary follows by the definition of d/e\g_.

—2/3
» Corollary 3.3. Let f be a partial function and T be a non-negative integer, ifdegf/ (f)>T,
then there exist two distributions Dy and Dy supported on f~1(0) and f~1(1) respectively,
such that for all valid polynomial p computing f,

p(D1) > =2 p(Do).

3.2 Proof for Theorem 1.4 and Theorem 1.6

We first show Theorem 1.6 implies Theorem 1.4.

Proof of Theorem 1.4. Suppose f & SBQP, the case that f ¢ coSBQP is similar.
By Corollary 2.6 and Theorem 2.10, there exists a sequence of function {f;}2, C

f such that deg, (f;) > log(len(f;))". Then we consider the partial function sequence

{Aday, rog(en(s.))1 121 € Adar.
By Theorem 1.6, we have

PP (Aday, fog(ien(si))]) > min(log(len(f;))' /4, len(f;)/2).

Note that len(Aday, fiog(ien())]) < 2 - len(f;)?, we can see Adar ¢ PPY due to the above
partial function sequence. <

Now, we are going to prove Theorem 1.6. We begin by introducing some consequences of
a function having low ppdt complexity.

» Lemma 3.4. Let f be a partial function, T be a positive integer. Suppose PPdt(f) <T,
then there exists a degree T-polynomial p computing f and satisfying weight(p) < 227

The proof is based on a direct analysis of the polynomial representing the decision tree
for PPY(f), we defer the details to the full version.
Our proof relies on the following two key lemmas.

» Lemma 3.5. Let f be a partial function with d/eTgi/s(f) > T. Then for each integer d, there
exist two distributions D¢ and D¢ supported on Ada;b(l) and Ada;il(O) respectively, such
that —p(Dy) > 22 -p(D1) for any degree-T polynomial p computing Aday 4 and satisfying
weight(p) < 27

—2/3
» Lemma 3.6. Let f be a partial function with degf/ (f) > T. Then for each integer d, there
exist two distributions D¢ and D§ supported on Ada;b(l) and Ada;;(O) respectively, such
that p(Dy) > —22° -p(Do) for any degree-T polynomial p computing Aday 4 and satisfying
weight(p) < 27

We first show these two lemmas imply Theorem 1.6 in a straightforward way.

Proof of Theorem 1.6. We prove the case when (Te;g+(f) > T first.
Otherwise, suppose PP¥(Ada; 4) < min(7/4,2%"1). By Lemma 3.4, we have a degree-

T/4 polynomial p computing Adayq with weight(p) < min(2T/2,22d). From Lemma 2.9,
— —1/2 —2/3 —2/3
deg, (f) = deg+/ (H<2: deg+/ (f), hence deg+/ (f) > T/2. Then by Lemma 3.5, there

exist two distributions D¢ and D¢ supported on Ada;b(l) and Ada;b(()) respectively, such
that —p(Dg) > 22 -p(Dy) as p is of degree at most 7'/4 and satisfies weight(p) < 27/2.

But this means that —p(Dgp) > 22d, which implies there exists an x such that p(x) < —22d,
therefore weight(p) > 22" contradiction.

The case when d/eg_( f) > T follows exactly in the same way by using Lemma 3.6 instead
of Lemma 3.5. |

26:9
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3.3 Proof for Lemma 3.5

Finally we prove Lemma 3.5. The proof for Lemma 3.6 is completely symmetric using
Corollary 3.3 instead of Lemma 3.1.

Proof of Lemma 3.5. Recall that a polynomial p is valid, if it is of degree at most 7', and
satisfies weight(p) < 27. Let f; := Adas4 and Dy be the domain of f;. We are going to
construct these distributions D¢’s and D¢’s by an elegant induction.

Construction of Dy and D; from Lemma 3.1. By Lemma 3.1 there exist two distributions
Dy and D; supported on f~1(0) and f~1(1) respectively, such that —p(Dg) > 2 - p(D;) for
all valid polynomial p computing f.

The base case: construction of DJ and D?. For the base case d = 0, as fy is just f, we

simply set DY = Dy and DY = D;. Then for all valid polynomial p computing fy, we have
0

—p(D§) > 2-p(DY) = 2% - p(DY).

Construction of DZ and D¢ for d > 0. When d > 0, suppose that we have already
constructed the required distributions Dgfl and Dfd for fy_1. Decompose the input to fy
as (w,z,y) € D X Dg_1 X Dg_1 as in the definition, we claim that

D¢ = (Do, D', D1 and Df = (D, DI, D)
satisfy our conditions.

Analysis of D2 and D¢. Note that D¢ is supported on f;'(i) for i € {0,1} from the
definition. Let p(w, z,y) be a valid polynomial computing f;. We set

p(Dw, Dy, Dy) = ]EMNDw,zNDz,yNDy [p(wa z, y)]

for simplicity, where D,,, D, D, are distributions over D, Dg_1, Dgq_1 respectively.
Then we have to verify that for all valid polynomial p computing fy,

— _ d _ _ d
~p(Dg) = —p(Do, D5, Dy~ ") > 2% - p(Dy, Dy, DY) = 2% - p(D).

We proceed by incrementally changing (Do,Dg_l,Dg_l) into (Dl,Df_l,Df_l), and
establish inequalities along the way.

Step 1: (’DO,’Dg_l,’Dg_l) = (’DO,Df_l,’Dg_l). By the definition, we can see that
for any fixed W € support(Dy) and Y € support(Dg_l)7 the polynomial in x defined
by pr(x) := p(W,z,Y) is a valid polynomial computing f4;_1, hence pr(Dg_l) > 9227t
pL(Df_l). By linearity, we have

_ _ d—1 _ _
_p(D()ng 17D(U)l 1)>22 p(D()v,Df 1aDg 1)'

Step 2: (Do, ’D‘li_l, ’Dg_l) = (Dq, ’Df_l, ’Dg_l). Similarly, for any fixed X € support('fol)
and Y € support(D(‘)l*l)7 by the definition, we can see that the polynomial in w defined

by py(w) := —p(w, X,Y) is a valid polynomial computing f, hence —pp (Do) > 2 - par (D).
Again by linearity, we have

p(Do,D{ D5 > =2 p(D1, DI, DY) > —p(D1, Dy, DEH).
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Step 3: (D1, D¢ L, D¢ 1) = (D1, DY, DY), Finally, for any fixed W € support(D;)

and X € support(D{~'), the polynomial in y defined by pr(y) := p(W, X, y) is a polynomial
computing f4_1, hence —pr(Da~") > 227! -pr(DI1). By linearity, we have

_ _ a—1 _ _
—p(D17Dii 1ng 1) >22 p(Dlan 17Dii 1)'
Putting the above three inequalities together, we have
_ _ d _ _ d
—p(D§) = —p(Po, D5, D5 ") > 2% - p(D1, DY, DY) =22 - p(DY).

This completes the proof. <

3.4 Application in hardness amplification for polynomial approximation

In this subsection, we slightly adapt the above proof in order to show Theorem 1.9.

For a polynomial p on n variables, let [|p||oc := max,ecfo,13» [p(z)|. Lemma 3.5 shows
that, fix a partial function f with d/eTg +(f) > T, then for any polynomial computing Aday 4
with weight(p) < 27, we must have ||p||o > 22" The restriction on weight(p) is essential for
us to establish the connection between AOPPt and d/c:g 4, but it becomes troublesome when
it comes to proving a hardness amplification result.

Luckily, we can get rid of the restriction on weight(p) by making a stronger assumption
that deg, (f) > T. Formally, we have the following analogous lemma for Lemma 3.5.

» Lemma 3.7. Let f be a partial function with degi/s(f) > T. Then for each integer d, there

exist two distributions D¢ and DE supported on Ada;b(l) and Ada;b(()) respectively, such

that for any degree-T polynomial p computing Aday,q, —p(Dg) > 92" -p(D$) and consequently
d

[Pl 400 > 22"

Proof. Using nearly the same proof for Lemma 3.1, we can show that for a partial function
f,if degi/‘?’(f) > T, there exist two distributions Dy and D; supported on f~1(0) and f~1(1)
respectively, such that —p(Dg) > 2 - p(D1) for all degree-T" polynomial p computing f. Then
we can proceed exactly as in the proof for Lemma 3.5 to get the desired distributions. <«

Finally, we are ready to prove Theorem 1.9.

Proof of Theorem 1.9. Let F' := Aday 4. Suppose otherwise El—(\eée(F) < T for e = 0.5 —
2-2°+1_ Then there exists a polynomial p such that ||ples < 1+ €, p(z) < 0.5 —272"+1 when
F(z) =0, and p(z) > 0.5 + 272"+ when F(z) = 1.

Then we define polynomial q(z) := (p(z) — 0.5) - 22°~1. It is easy to see ¢(z) computes F.

Also, we have ||g|lso < (||p]lec + 0.5) - 22"~ < 22° which contradicts Lemma 3.7, and this

completes the proof. <
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