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Preface

This volume contains the proceedings of the 27th International Symposium on Algorithms
and Computation (ISAAC 2016), held in Sydney, Australia, December 12–14, 2016. ISAAC
is an annual international symposium that covers the very wide range of topics in the field of
algorithms and computation. The main purpose of the symposium is to provide a forum for
researchers working in algorithms and theory of computation from all over the world.

In response to our call for papers, we received 155 submissions from 36 countries. Each
submission was reviewed by at least three Program Committee members, possibly with the
assistance of external reviewers. After an extremely rigorous review process and extensive
discussion, the Program Committee selected 62 papers. Two special issues of Algorithmica
and International Journal of Computational Geometry and Applications will publish selected
papers from ISAAC 2016.

The best paper award was given to “Optimal Composition Ordering Problems for Piecewise
Linear Functions” by Yasushi Kawase, Kazuhisa Makino and Kento Seimi. Selected from
submissions authored by students only, the best student paper award was given to “Adaptivity
vs. Postselection, and Hardness Amplification in Polynomial Approximation” by Lijie Chen.

In addition to selected papers, the program also included invited talks by two prominent
invited speakers, Xuemin Lin, University of NSW, Australia, and Kunsoo Park, Seoul
National University, Korea.

We thank all the Program Committee members and external reviewers for their professional
service and volunteering their time to review the submissions under time constraints. We also
thank all authors who submitted papers for consideration, thereby contributing to the high
quality of the conference. We would like also to acknowledge our supporting organizations for
their assistance and support, in particular the University of Sydney and the NSW Department
of Industry, through the NSW Office of Science and Research. Finally, we are deeply indebted
to the Organizing Committee members, Peter Eades and Amyra Meidiana, whose excellent
effort and professional service to the community made the conference an unparalleled success.
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Towards Processing of Big Graphs: from Theory,
Algorithm to System
Xuemin Lin

University of New South Wales, Sydney, Australia
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Abstract
Graphs are very important parts of Big Data and widely used for modelling complex structured
data with a broad spectrum of applications such as bioinformatics, web search, social network,
road network, etc. Over the last decade, tremendous research efforts have been devoted to many
fundamental problems in managing and analysing graph data. In this talk, I will present some
of our recent research efforts in processing big graphs including scalable processing theory and
techniques, distributed computation, and system framework.
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Compressed and Searchable Indexes for Highly
Similar Strings∗

Kunsoo Park

Dept. of Computer Science and Engineering, Seoul National University, Korea
kpark@theory.snu.ac.kr

Abstract
The collection indexing problem is defined as follows: Given a collection of highly similar strings,
build a compressed index for the collection of strings, and when a pattern is given, find all
occurrences of the pattern in the given strings. Since the index is compressed, we also need a
separate operation which retrieves a specified substring of one of the given strings.

Such a collection of highly similar strings can be found in genome sequences of a species
and in documents stored in a version control system. Many indexes for the collection indexing
problem have been developed, most of which use classical compression schemes such as run-length
encoding and Lempel-Ziv compressions to exploit the similarity of the given strings.

We introduce a new index for highly similar strings, called FM index of alignment. We start
by finding common regions and non-common regions of highly similar strings. We need not find
a multiple alignment of non-common regions. Finding common and non-common regions is much
easier and simpler than finding a multiple alignment. Then we make a transformed alignment of
the given strings, where gaps in a non-common region are put together into one gap. We define
a suffix array of alignment on the transformed alignment, and the FM index of alignment is an
FM index of this suffix array of alignment. The FM index of alignment supports the LF mapping
and backward search, the key functionalities of the FM index. The FM index of alignment takes
less space than other indexes and its pattern search is also fast.
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Streaming Verification of Graph Properties∗†

Amirali Abdullah1, Samira Daruki2, Chitradeep Dutta Roy3, and
Suresh Venkatasubramanian4

1 Department of Mathematics, University of Michigan, USA
2 School of Computing, University of Utah, USA
3 School of Computing, University of Utah, USA
4 School of Computing, University of Utah, USA

Abstract
Streaming interactive proofs (SIPs) are a framework for outsourced computation. A computa-
tionally limited streaming client (the verifier) hands over a large data set to an untrusted server
(the prover) in the cloud and the two parties run a protocol to confirm the correctness of result
with high probability. SIPs are particularly interesting for problems that are hard to solve (or
even approximate) well in a streaming setting. The most notable of these problems is finding
maximum matchings, which has received intense interest in recent years but has strong lower
bounds even for constant factor approximations. In this paper, we present efficient streaming
interactive proofs that can verify maximum matchings exactly. Our results cover all flavors of
matchings (bipartite/non-bipartite and weighted). In addition, we also present streaming veri-
fiers for approximate metric TSP. In particular, these are the first efficient results for weighted
matchings and for metric TSP in any streaming verification model.

1998 ACM Subject Classification F.1.2 Modes of Computation, F.2.2 Nonnumerical Algorithms
and Problems

Keywords and phrases streaming interactive proofs, verification, matching, travelling salesman
problem, graph algorithms

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2016.3

1 Introduction

The shift from direct computation to outsourcing in the cloud has led to new ways of thinking
about massive scale computation. In the verification setting, computational effort is split
between a computationally weak client (the verifier) who owns the data and wants to solve a
desired problem, and a more powerful server (the prover) which performs the computations.
Here the client has only limited (streaming) access to the data, as well as a bounded ability
to talk with the server (measured by the amount of communication), but wishes to verify the
correctness of the prover’s answers. This model can be viewed as a streaming modification
of a classic interactive proof system (a streaming IP, or SIP), and has been the subject of
a number of papers [26, 47, 23, 17, 22, 16, 38, 39] that have established sublinear (verifier)
space and communication bounds for classic problems in streaming and data analysis.

In this paper, we present streaming interactive proofs for graph problems that are
traditionally hard for streaming, such as for the maximum matching problem (in bipartite
and general graphs, both weighted and unweighted) as well for approximating the traveling

∗ A full version of the paper is available at http://arxiv.org/abs/1602.08162.
† This research was supported in part by the NSF under grants IIS-1251049, CNS-1302688.
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3:2 Streaming Verification of Graph Properties

Table 1 Our Results. All bounds expressed in bits, upto constant factors. For the matching
results, ρ = min(n,C) where C is the cardinality of the optimal matching (weighted or unweighted).
Note that for the MST, the verification is for a (1 + ε)-approximation. For the TSP, the verification
is for a (3/2 + ε)-approximation. (*) γ′ is a linear function of γ and is strictly more than 1 as long
as γ is a sufficiently large constant.

logn rounds γ = O(1) rounds
Problem Verifier Space Communication Verifier Space Communication

Triangle Counting log2 n log2 n logn n1/γ logn
Matchings (all versions) log2 n (ρ+ logn) logn logn (ρ+ n1/γ′

) logn (*)
Connectivity log2 n n logn logn n logn

Minimum Spanning Tree log2 n n log2 n/ε logn n log2 n/ε

Travelling Salesperson log2 n n log2 n/ε logn n log2 n/ε

salesperson problem. In particular, we present protocols that verify a matching exactly in
a graph using polylogarithmic space and polylogarithmic communication apart from the
matching itself. In all our results, we consider the input in the dynamic streaming model,
where graph edges are presented in arbitrary order in a stream and we allow both deletion
and insertion of edges. All our protocols use either logn rounds of communication or (if the
output size is sufficiently large or we are willing to tolerate superlogarithmic communication)
constant rounds of communication.

To prove the above results, we also need SIPs for sub-problems like connectivity, minimum
spanning tree and triangle counting. While it is possible to derive similar (and in some
cases better) results for these subroutines using known techniques [30], we require explicit
protocols that return structures that can be used in the computation pipeline for the TSP.
Furthermore, our protocols for these problems are much simpler than what can be obtained
by techniques in [30], which require some effort to obtain precise bounds on the size and depth
of the circuits corresponding to more complicated parallel algorithms. We summarize our
results in Table 1. Due to space constraints subproblems like triangle counting, connectivity,
bipartiteness and MST are presented in the full version [1].

Significance of our Results

While the streaming model of computation has been extremely effective for processing
numeric and matrix data, its ability to handle large graphs is limited, even in the so-called
semi-streaming model where the streaming algorithm is permitted to use space quasilinear
in the number of vertices. Recent breakthroughs in graph sketching [43] have led to space-
efficient approximations for many problems in the semi-streaming model but canonical graph
problems like matchings have been shown to be provably hard.

It is known [36] that no better than a 1− 1/e approximation to the maximum cardinality
matching is possible in the streaming model, even with space Õ(n). It was also known that
even allowing limited communication (effectively a single message from the prover) required
a space-communication product of Ω(n2) [16, 22]. Our results show that even allowing a
few more rounds of communication dramatically improves the space-communication tradeoff
for matching, as well as yielding exact verification. We note that streaming algorithms for
matching vary greatly in performance and complexity depending in whether the graph is
weighted or unweighted, bipartite or nonbipartite. In contrast, our results apply to all forms
of matching. Interestingly, the special case of perfect matching, by virtue of being in RNC [37],
admits an efficient SIP via results by Goldwasser, Kalai and Rothblum [30] and Cormode,



A. Abdullah, S. Daruki, C. Dutta Roy, and S. Venkatasubramanian 3:3

Thaler and Yi [23]. Similarly for triangle counting, the best streaming algorithm [5] yields
an additive εn3 error estimate in polylogarithmic space, and again in the annotation model
(effectively a single round of communication) the best result yields a space-communication
tradeoff of n2 log2 n, which is almost exponentially worse than the bound we obtain. We
note that counting triangles is a classic problem in the sublinear algorithms literature, and
identifying optimal space and communication bounds for this problem was posed as an open
problem by Graham Cormode in the Bertinoro sublinear algorithms workshop [21]. Our
bound for verifying a 3/2+ ε approximation for the TSP in dynamic graphs is also interesting:
a trivial 2-approximation in the semi-streaming model follows via the MST, but it is open to
improve this bound (even on a grid) [46].

In general, our results can be viewed as providing further insight into the tradeoff between
space and communication in sublinear algorithms. The annotation model of verification
provides Ω(n2) lower bounds on the space-communication product for the problems we
consider: in that light, the fact that we can obtain polynomially better bounds with only
constant number of rounds demonstrates the power of just a few rounds of interaction. We
note that as of this paper, virtually all of the canonical hard problems for streaming algorithms
(Index [17], Disjointness [9, 10], Boolean Hidden Matching [28, 15, 40]) admit efficient
SIPs. A SIP for Index was presented in [17] and we present SIPs for Disjointness and
Boolean Hidden Matching in the full version [1]. Our model is also different from a
standard multi-pass streaming framework, since communication must remain sublinear in
the input and in fact in all our protocols the verifier still reads the input exactly once.

From a technical perspective, our work continues the sketching paradigm for designing
efficient graph algorithms. All our results proceed by building linear sketches of the input
graph. The key difference is that our sketches are not approximate but algebraic: based on
random evaluation of polynomials over finite fields. Our sketches use higher dimensional
linearization (“tensorization”) of the input, which might itself be of interest. They also
compose: indeed, our solutions are based on building a number of simple primitives that we
combine in different ways.

2 Related Work

Outsourced computation

Work on outsourced computation comes in three other flavors in addition to SIPs: firstly,
there is work on reducing the verifier and prover complexity without necessarily making the
verifier a sublinear algorithm [30, 29, 35], in some cases using cryptographic assumptions
to achieve their bounds. Another approach is the idea of rational proofs [8, 19, 32, 31], in
which the verifier uses a payment function to give the prover incentive to be honest. Moving
to sublinear verifiers, there has been research on designing SIPs where the verifier runs in
sublinear time [33, 45].

Streaming Graph Verification

All prior work on streaming graph verification has been in the annotation model, which in
practice resembles a 1-round SIP (a single message from prover to verifier after the stream
has been read). In recent work, Thaler [47] gives protocols for counting triangles, and
computing maximum cardinality matching with both n logn space and communication cost.
For matching, Chakrabarti et al. [16] show that any annotation protocol with space cost
O(n1−δ) requires communication cost Ω(n1+δ) for any δ > 0. They also show that any
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3:4 Streaming Verification of Graph Properties

annotation protocol for graph connectivity with space cost O(n1−δ) requires communication
cost Ω(n1+δ) for any δ > 0.

It is also proved that every protocol for this problem in the annotation model requires Ω(n2)
product of space and communication. This is optimal upto logarithmic factors. Furthermore,
they conjecture that achieving smooth tradeoffs between space and communication cost is
impossible, i.e. it is not known how to reduce the space usage to o(n logn) without blowing
the communication cost up to Ω(n2) or vice versa [16, 47]. Note that in all our protocols,
the product of space and communication is O(n poly logn).

Streaming Graph Algorithms

In the general dynamic streaming model, poly log 1/ε-pass streaming algorithms [2, 3] give
(1+ε)-approximate answers and require Õ(n) space in one pass. The best results for matching
are [20] (a parametrized algorithm for computing a maximal matching of size k using Õ(nk)
space) and [7, 42] which gives a streaming algorithm for recovering an nε-approximate
maximum matching by maintaining a linear sketch of size Õ(n2−3ε) bits. In the single-pass
insert-only streaming model, Epstein et al. [27] give a constant (4.91) factor approximation for
weighted graphs using O(n logn) space. Crouch and Stubbs [24] give a (4 + ε)-approximation
algorithm which is the best known result for weighted matchings in this model. Triangle
counting in streams has been studied extensively [11, 13, 14, 34, 44]. For dynamic graphs,
the most space-efficient result is the one by [5] that provides the aforementioned additive εn3

bound in polylogarithmic space. The recent breakthrough in sketch-based graph streaming [4]
has yielded Õ(n) semi-streaming algorithms [43] for computing the connectivity, bipartiteness
and minimum spanning trees of dynamic graphs.

3 Preliminaries

We will work in the streaming interactive proof (SIP) model first proposed by Cormode et
al. [23]. In this model, there are two players, the prover P and the verifier V. The input
consists of a stream τ of items from a universe U . Let f be a function mapping τ to any
finite set S. A k-message SIP for f works as follows:
1. V and P read the input stream and perform some computation on it.
2. V and P then exchange k messages, after which V either outputs a value in S ∪ {⊥},

where ⊥ denotes that V is not convinced that the prover followed the prescribed protocol.
V is randomized. There must exist a prover strategy that causes the verifier to output
f(τ) with probability 1− εc for some εc ≤ 1/3. Similarly, for all prover strategies, V must
output a value in {f(τ),⊥} with probability 1− εs for some εs ≤ 1/3. The values εc and
εs are respectively referred to as the completeness and soundness errors of the protocol.
The protocols we design here will have perfect completeness (εc = 0).1 We note that the
annotated stream model of Chakrabarti et al. [16] essentially corresponds to one-message
SIPs.2

1 The constant 1/3 appearing in the completeness and soundness requirements is chosen by convention
[6]. The constant 1/3 can be replaced with any other constant in (0, 1) without affecting the theory in
any way.

2 Technically, the annotated data streaming model allows the annotation to be interleaved with the stream
updates, while the SIP model does not allow the prover and verifier to communicate until after the
stream has passed. However, almost all known annotated data streaming protocols do not utilize the
ability to interleave the annotation with the stream, and hence are actually 1-message SIPs, but without
any interaction from the verifier to prover side.
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Input Model

We will assume the input is presented as stream updates to a vector. In general, each element
of this stream is a tuple (i, δ), where each i lies in a universe U of size u, and δ ∈ {+1,−1}.
The data stream implicitly defines a frequency vector a = (a1, . . . , au), where ai is the sum
of all δ values associated with i in the stream. The stream update (i, δ) is thus the implicit
update a[i]← a[i] + δ. In this paper, the stream consists of edges drawn from U = [n]× [n]
along with weight information as needed. As is standard, we assume that edge weights are
drawn from [nc] for some constant c. We allow edges to be inserted and deleted but the final
edge multiplicity is 0 or 1, and also mandate that the length of the stream is polynomial in n.
Finally, for weighted graphs, we further constrain that the edge weight updates be atomic,
i.e. that an edge along with its full weight be inserted or deleted at each step.

There are three parameters that control the complexity of our protocols: the vector
length u, the length of stream s and the maximum size of a coordinate M = maxiai. In the
protocols discussed in this paper M will always be upper bounded by some polynomial in
u, i.e. logM = O(log u). All algorithms we present use linear sketches, and so the stream
length s only affects verifier running time. In full version of the paper [1] we discuss how to
reduce the verifier update time to polylogarithmic on each step.

Costs

A SIP has two costs: the verifier space, and the total communication, expressed as the
number of bits exchanged between V and P. We will use the notation (A,B) to denote a SIP
with verifier space O(A) and total communication O(B). We will also consider the number of
rounds of communication between V and P. The basic versions of our protocols will require
logn rounds, and we later show how to improve this to a constant number of rounds while
maintaining the same space and similar communication cost otherwise.

4 Overview of our Techniques

For all the problems that we discuss the input is a data stream of edges of a graph where for
an edge e an element in the stream is of the form (i, j,∆). Now all our protocols proceed as
follows. We define a domain U of size u and a frequency vector a ∈ Zu whose entries are
indexed by elements of U . A particular protocol might define a number of such vectors, each
over a different domain. Each stream element will trigger a set of indices from U at which
to update a. For example in case of matching, we derive this constraint universe from the
LP certificate, whereas for counting triangles our universe is derived from all O(n3) possible
three-tuples of the vertices.

The key idea in all our protocols is that since we cannot maintain a explicitly due
to limited space, we instead maintain a linear sketch of a that varies depending on the
problem being solved. This sketch is computed as follows. We will design a polynomial
that acts as a low-degree extension of f over an extension field F and can be written as
p(x1, . . . , xd) =

∑
u∈U a[u]gu(x1, x2, . . . , xd). The crucial property of this polynomial is that

it is linear in the entries of a. This means that polynomial evaluation at any fixed point
r = (r1, r2, . . . , rd) is easy in a stream: when we see an update a[u]← a[u] + ∆, we merely
need to add the expression ∆gu(r) to a running tally. Our sketch will always be a polynomial
evaluation at a random point r. Once the stream has passed, V and the prover P will engage
in a conversation that might involve further sketches as well as further updates to the current
sketch. In our descriptions, we will use the imprecise but convenient shorthand “increment
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3:6 Streaming Verification of Graph Properties

a[u]” to mean “update a linear sketch of some low-degree extension of a function of a”. It
should be clear in each context what the specific function is.

As mentioned earlier, a single stream update of the form (i, j,∆) might trigger updates
in many entries of a, each of which will be indexed by a multidimensional vector. We will
use the wild-card symbol ’∗’ to indicate that all values of that coordinate in the index should
be considered. For example, suppose U ⊆ [n]× [n]× [n]. The instruction “update a[(i, ∗, j)]”
should be read as “update all entries a[t] where t ∈ {(i, s, j) | s ∈ [n], (i, s, j) ∈ U}”. We show
later how to do these updates implicitly, so that verifier time remains suitably bounded.

5 Some Useful Protocols

We will make use of two basic tools in our algorithms: Reed-Solomon fingerprints for testing
vector equality, and the streaming SumCheck protocol of Cormode et al. [23]. We summarize
the main properties of these protocols here: for more details, the reader is referred to the
original papers.

Multi-Set Equality (MSE)

We are given streaming updates to the entries of two vectors a,a′ ∈ Zu and wish to check
a = a′. Reed-Solomon fingerprinting is a standard technique to solve MSE using only
logarithmic space.

I Theorem 1 (MSE, [22]). Suppose we are given stream updates to two vectors a,a′ ∈ Zu
guaranteed to satisfy |ai|, |a′i| ≤M at the end of the data stream. Let t = max(M,u). There
is a streaming algorithm using O(log t) space, satisfying the following properties: (i) If a = a′,
then the streaming algorithm outputs 1 with probability 1. (ii) If a 6= a′, then the streaming
algorithm outputs 0 with probability at least 1− 1/t2.

The SumCheck Protocol

We are given streaming updates to a vector a ∈ Zu and a univariate polynomial h : Z→ Z.
The Sum Check problem (SumCheck) is to verify a claim that

∑
i h(ai) = K.

I Lemma 2 (SumCheck, [23]). There is a SIP to verify that
∑
i∈[u] h(ai) = K for

some claimed K. The total number of rounds is O(log u) and the cost of the protocol
is (log(u) log |F|, deg(h) log(u) log |F|).

Here are the two other protocols that act as building blocks for our graph verification
protocols.

Inverse Protocol (Finv)

Let a ∈ Zu be a (frequency) vector. The inverse frequency function F−1
k for a fixed k is the

number of elements of a that have frequency k: F−1
k (a) = |{i | ai = k}|. Let hk(i) = 1 for

i = k and 0 otherwise. We can then define F−1
k (a) =

∑
i hk(ai). Note that the domain of hk

is [M ] where M = maxi ai. We will refer to the problem of verifying a claimed value of F−1
k

as Finv. By using Lemma 2, there is a simple SIP for Finv. We restate the related results
here [23].

I Lemma 3 (Finv, [23]). Given stream updates to a vector a ∈ Zu such that maxi ai = M

and a fixed integer k there is a SIP to verify the claim F−1
k (a) = K with cost (log2 u,M log2 u)

in log u rounds.
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Remark 1. Note that the same result holds if instead of verifying an inverse query for
a single frequency k, we wish to verify it for a set of frequencies. Let S ⊂ [M ] and let
F−1
S = |{i|ai ∈ S}|. Then using the same idea as above, there is a SIP for verifying a claimed

value of F−1
S with costs given by Lemma 3.

Remark 2. Note that in the protocols presented in this paper later, the input to the Finv
is not the graph edges itself, but instead the Finv is applied to the derived stream updates
triggered by each input stream elements. As stated before, a single stream update of the
form (i, j,∆) might trigger updates in many entries of vector a, which is defined based on
the problem.

Subset Protocol

We now present a new protocol for a variant of the vector equality test described in Theorem 1.
While this problem has been studied in the annotation model, it requires space-communication
product of Ω(u2) communication in that setting.

I Lemma 4 (Subset). Let E ⊂ [u] be a set of elements, and let S ⊂ [u] be another set
owned by P. There is a SIP to verify a claim that S ⊂ E with cost (log2 u, (|S|+ log u) log u)
in log u rounds.

Proof. Consider a vector ā with length u, in which the verifier does the following updates:
for each element in set E, increment the corresponding value in vector ā by +1 and for each
element in set S, decrements the corresponding value in vector ā by −1. Let the vector
a ∈ {0, 1}u be the characteristic vector of E, and let a′ be the characteristic vector of S.
Thus, ā = a − a′. By applying F−1

−1 protocol on ā, verifier can determine if S ⊂ E or not.
Note that in vector ā, M = 1. Then the protocol cost follows by Lemma 3. J

6 SIP for MAX-MATCHING in Bipartite Graphs

We now present a SIP for maximum cardinality matching in bipartite graphs. The prover P
needs to generate two certificates: an actual matching, and a proof that this is optimal. By
König’s theorem [41], a bipartite graph has a maximum matching of size k if and only if it
has a minimum vertex cover of size k. Therefore, P’s proof consists of two parts:
(a) Send the claimed optimal matching M ⊂ E of size k.
(b) Send a vertex cover S ⊂ V of size k.
V has three tasks:
(i) Verify that M is a matching and that M ⊂ E.
(ii) Verify that S covers all edges in E.
(iii) Verify that |M | = |S|.
We describe protocols for first two tasks and the third task is trivially solvable by counting
the length of the streams and can be done in logn space. V will run the three protocols in
parallel.

Verifying a Matching

Verifying that M ⊂ E can be done by running the Subset protocol from Lemma 4 on E
and the claimed matching M . A set of edges M is a matching if each vertex has degree at
most 1 on the subgraph defined by M . Interpreted another way, let τM be the stream of
endpoints of edges in M . Then each item in τM must have frequency 1. This motivates the
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3:8 Streaming Verification of Graph Properties

following protocol, based on Theorem 1. V treats τM as a sequence of updates to a frequency
vector a ∈ Z|V | counting the number of occurrences of each vertex. V then asks P to send a
stream of all the vertices incident on edges of M as updates to a different frequency vector
a′. V then runs the MSE protocol to verify that these are the same.

Verifying that S is a Vertex Cover

The difficulty with verifying a vertex cover is that V no longer has streaming access to E.
However, we can once again reformulate the verification in terms of frequency vectors. S is a
vertex cover if and only if each edge of E is incident to some vertex in S. Let a,a′ ∈ Z(n

2)
be vectors indexed by U = {(i, j), i, j ∈ V, i < j}. On receiving the input stream edge
e = (i, j,∆), i < j, V increments a[(i, j)] by ∆.

For each vertex i ∈ S that P sends, we increment all entries a′[(i, ∗)] and a′[(∗, i)]. Now
it is easy to see that S is a vertex cover if and only there are no entries in a − a′ with value
1 (because these entries correspond to edges that have not been covered by a vertex in S).
This yields the following verification protocol.
1. V processes the input edge stream for the F−1

1 protocol, maintaining updates to a vector
a.

2. P sends over a claimed vertex cover S of size c∗ one vertex at a time. For each vertex
i ∈ S, V decrements all entries a[(i, ∗)] and a[(∗, i)] .

3. V runs Finv to verify that F−1
1 (a) = 0.

The bounds for this protocol follow from Lemmas 3, 4 and Theorem 1.

I Theorem 5. Given an input bipartite graph with n vertices, there exists a streaming
interactive protocol for verifying the maximum-matching with logn rounds of communication,
and cost (log2 n, (c∗ + logn) logn), where c∗ is the size of the optimal matching.

7 SIP for Maximum-Weight-Matching in General Graphs

We now turn to the most general setting: of maximum weight matching in general graphs
and the bipartite case is moved to the full version [1]. This of course subsumes the easier
case of maximum cardinality matching in general graphs, and while there is a slightly simpler
protocol for that problem based on the Tutte-Berge characterization of maximum cardinality
matchings [48, 12], we will not discuss it here.

We will use the odd-set based LP-duality characterization of maximum weight matchings
due to Cunningham and Marsh. Let O(V ) denote the set of all odd-cardinality subsets of V .
Let yi ∈ [nc] define non-negative integral weight on vertex vi, zU ∈ [nc] define a non-negative
integral weight on an odd-cardinality subset U ∈ O(V ), wij ∈ [nc] define the weight of an
edge e = (i, j) and c∗ ∈ [nc+1] be the weight of a maximum weight matching on G. We
define y and z to be dual feasible if yi + yj +

∑
U∈O(V )
i,j∈U

zU ≥ wi,j ,∀i, j.

A collection of sets is said to be laminar, if any two sets in the collection are either disjoint
or nested (one is contained in the other). Note that such a family must have size linear in the
size of the ground set. Standard LP-duality and the Cunningham-Marsh theorem state that:

I Theorem 6 ([25]). For every integral set of edge weights W , and choices of dual feasible
integral vectors y and z, c∗ ≤

∑
v∈V yv +

∑
U∈O(V ) zU

⌊ 1
2 |U |

⌋
. Furthermore, there exist

vectors y and z that are dual feasible such that {U : zU > 0} is laminar and for which the
above upper bound achieves equality.
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LI = 1 LI = 2

` = 1 ` = 2` = 3` = 2` = 1

Figure 1 A Laminar family.

We design a protocol that will verify that each dual edge constraint is satisfied by the
dual variables. The laminar family {U : zU > 0} can be viewed as a collection of nested
subsets (each of which we call a claw) that are disjoint from each other. Within each claw, a
set U can be described by giving each vertex v in order of increasing level `(v): the number
of sets v is contained in (see Figure 1).

The prover will describe a set U and its associated zU by the tuple (LI, `, rU , ∂U), where
1 ≤ LI ≤ n is the index of the claw U is contained in, ` = `(U), rU =

∑
U ′⊇U ′ zU ′ and

∂U = U \ ∪U ′′⊂UU
′′. For an edge e = (i, j) let re =

∑
i,j∈U,U∈O(V ) zU represent the weight

assigned to an edge by weight vector z on the laminar family. Any edge whose endpoints
lie in different claws will have re = 0. For a vertex v, let rv = minv∈U rU . For an edge
e = (v, w) whose endpoints lie in the same claw, it is easy to see that re = min(rv, rw),
or equivalently that re = rarg min(`(v),`(w)). For such an edge, let `e,↓ = min(`(u), `(v)) and
`e,↑ = max(`(u), `(v)). We will use LI(e) ∈ [n] to denote the index of the claw that the
endpoints of e belong to.

The Protocol

V prepares to make updates to a vector a with entries indexed by U = U1 ∪ U2. U1 consists
of all tuples of the form {(i, j, w, y, y′, LI, `, `′, r)} and U2 consists of all tuples of the form
{(i, j, w, y, y′, 0, 0, 0, 0)} where i < j, i, j, LI, `, `′ ∈ [n], y, y′, r, w ∈ [nc] and tuples in U1 must
satisfy 1) w ≤ y + y′ + r and 2) it is not simultaneously true that y + y′ ≥ w and r > 0.
Note that a ∈ Zu where u = O(n4c+5) and all weights are bounded by nc.
1. V prepares to process the stream for an F−1

5 query. When V sees an edge update of form
(e, we,∆), it updates all entries a[(e, we, ∗, ∗, ∗, ∗, ∗, ∗)].

2. P sends a list of vertices (i, yi) in order of increasing i. For each (i, yi), V increments by 1
the count of all entries a[(i, ∗, ∗, yi, ∗, ∗, ∗, ∗, ∗] and a[(∗, i, ∗, ∗, yi, ∗, ∗, ∗, ∗)] with indices
drawn from U1. Note that P only sends vertices with nonzero weight, but since they are
sent in increasing order, V can infer the missing entries and issue updates to a as above.
V also maintains the sum of all yi.

3. P sends the description of the laminar family in the form of tuples (LI, `, rU , ∂U), sorted
in lexicographic order by LI and then by `. V performs the following operations.
a. V increments all entries of the form (i, ∗, ∗, yi, ∗, 0, 0, 0, 0) or (∗, i, ∗, ∗, yi, 0, 0, 0, 0) by 2

to account for edges which are satisfied by only vector y.
b. V maintains the sum ΣR of all rU seen thus far. If the tuple is deepest level for a given

claw (easily verified by retaining a one-tuple lookahead) then V adds rU to a running
sum Σmax.

c. V verifies that the entries appear in sorted order and that rU is monotone increasing.
d. V updates the fingerprint structure from Theorem 1 with each vertex in ∂U .
e. For each v ∈ ∂U , V increments (subject to our two constraints on the universe) all

entries of a indexed by tuples of the form (e, we, ∗, ∗, LI, ∗, `, ∗) and all entries indexed
by tuples of the form (e, we, ∗, ∗, LI, `, ∗, rU ), where e is any edge containing v as an
endpoint.
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f. V ensures all sets presented are odd by verifying that for each LI, all |∂U | except the
last one are even.

4. P sends V all vertices participating in the laminar family in ascending order of vertex
label. V verifies that the fingerprint constructed from this stream matches the fingerprint
constructed earlier, and hence that all the claws are disjoint.

5. V runs a verification protocol for F−1
5 (a) and accepts if F−1

5 (a) = m, returning Σr and
Σmax.

Define cs as the certificate size, which is upper bounded by the matching cardinality.
Then:

I Theorem 7. Given dynamic updates to a weighted graph on n vertices with all weights
bounded polynomially in n, there is a SIP with cost (log2 n, (cs + logn) logn), where cs is
the cardinality of maximum matching, that runs in logn rounds and verifies the size of a
maximum weight matching.

Proof. In parallel, V and P run protocols to verify a claimed matching as well as its optimality.
The correctness and resource bounds for verifying the matching follow from Section 6. We now
turn to verifying the optimality of this matching. The verifier must establish the following
facts:
(i) P provides a valid laminar family of odd sets.
(ii) The lower and upper bounds are equal.
(iii) All dual constraints are satisfied.

Since the verifier fingerprints the vertices in each claw and then asks P to replay all
vertices that participate in the laminar structure, it can verify that no vertex is repeated and
therefore that the family is indeed laminar. Each ∂U in a claw can be written as the difference
of two odd sets, except the deepest one (for which ∂U = U . Therefore, the cardinality of
each ∂U must be even, except for the deepest one. V verifies this claim, establishing that
the laminar family comprises odd sets.

Consider the term
∑
U zUb|U |/2c in the dual cost. Since each U is odd, this can be

rewritten as (1/2)(
∑
u zu|U | −

∑
U zU ). Consider the odd sets U0 ⊃ U1 ⊃ . . . ⊃ Ul in a

single claw. We have rUj =
∑
i≤j zUi , and therefore

∑
j rUj =

∑
j

∑
i≤j zUi . Reordering,

this is equal to
∑
i≤j
∑
j zUi

=
∑
i zUi
|Ui|. Also, rUl

=
∑
i zUi

. Summing over all claws,
Σr =

∑
U zU |U | and Σmax =

∑
U zU . Therefore,

∑
i yi + Σr − Σmax equals the cost of the

dual solution provided by P.
Finally we turn to validating the dual constraints. Consider an edge e = (i, j) whose

dual constraints are satisfied: i.e. P provides yi, yj and zU such that yi + yj + rij ≥ we.
Firstly, consider the case when rij > 0. In this case, the edge belongs to some claw LI.
Let its lower and upper endpoints vertex levels be s, t, corresponding to odd sets US , Ut.
Consider now the entry of a indexed by (e, yi, yj , LI, s, t, rij). This entry is updated when e
is initially encountered and ends up with a net count of 1 at the end of input processing.
It is incremented twice when P sends the (i, yi) and (j, yj). When P sends Us this entry is
incremented because rij = rUs = min(rUS

, rUt) and when P sends Ut this entry is incremented
because Ut has level t, returning a final count of 5. If rij = 0 (for example when the edge
crosses a claw), then the entry indexed by (e, we, yi, yj , 0, 0, 0, 0) is incremented when e is
read. It is not updated when P sends (i, yi) or (j, yj). When P sends the laminar family, V
increments this entry by 2 twice (one for each of i and j) because we know that yi + yj ≥ we.
In this case, the entry indexed by (i, j, we, yi, yj , 0, 0, 0, 0) will be exactly 5. Thus, for each
satisfied edge there is exactly one entry of a that has a count of 5.
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Conversely, suppose e is not satisfied by the dual constraints, for which a necessary
condition is that yi + yj < we. Firstly, note that any entry indexed by (i, j, we, ∗, ∗, 0, 0, 0, 0)
will receive only two increments: one from reading the edge, and another from one of yi and yj
but not both. Secondly, consider any entry with an index of the form (i, j, we, ∗, ∗, LI, ∗, ∗, ∗)
for LI > 0. Each such entry gets a single increment from reading e and two increments when
P sends (i, yi) and (j, yj). However, it will not receive an increment from the second of the
two updates in Step 3(e), because yi + yj + rij < we and so its final count will be at most
4. The complexity of the protocol follows from the complexity for Finv, Subset and the
matching verification described in Section 6. J

8 Streaming Interactive Proofs for Approximate Metric TSP

We can apply our protocols to another interesting graph streaming problem: that of computing
an approximation to the min cost travelling salesman tour. The input here is a weighted
complete graph of distances. We briefly recall the Christofides heuristic: compute a MST T

on the graph and add to T all edges of a min-weight perfect matching on the odd-degree
vertices of T. The classical Christofides result shows that the sum of the costs of this MST
and induced min-weight matching is a 3/2 approximation to the TSP cost. In the SIP setting,
we have protocols for both of these problems. The difficulty however is in the dependency:
the matching is built on the odd-degree vertices of the MST, and this would seem to require
the verifier to maintain much more states as in the streaming setting. We show that this is
not the case, and in fact we can obtain an efficient SIP for verifying a (3/2+ ε)-approximation
to the TSP. To summarize our SIP for verifying an approximate MST, here first we state
two main results which are used as subroutine: Connectivity and Bipartiteness.

For establishing the number of connected components in graph G, we devise SIPs to
verify spanning trees, as well as the disjointness and maximality of any claimed connected
components by prover. We show the results here and move full details of the protocols to
the full version [1].

I Lemma 8. Given an input graph G with n vertices, there exists a SIP protocol for
verifying the number of connected components Gi with (logn) rounds of communication, and
(log2 n, n logn) cost.

By applying the verification protocol for connectivity on both the input graph G and the
bipartite double cover [4] of G we obtain the following results for testing bipartiteness:

I Lemma 9. Given an input graph G with n vertices, there exists a SIP protocol for testing
bipartiteness on G with (logn) rounds of communication, and (log2 n, n logn) cost.

Now for MST protocol, we follow a reduction for stratifying graph edges by weight and
counting the number of connected components at each level introduced in [18] and later
generalized to streaming setting [4]. This finally yields us:

I Theorem 10. Given a weighted graph with n vertices, there is a SIP protocol for
verifying MST within (1 + ε)-approximation with (logn) rounds of communication, and
(log2 n, n log2 n/ε) cost.

We note here that while we could have used known parallel algorithms for connectivity and
MST combined with the protocol of Goldwasser et al. [30] and the technique of Cormode,
Thaler and Yi [23] to obtain similar results, we need an explicit and simpler protocol with
an output that we can fit into the overall TSP protocol.
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What remains is how we verify a min-cost perfect matching on the odd-degree nodes of
the spanning tree. We employ the procedure described in Section 7 for maximum weight
matching along with a standard equivalence to min-cost perfect matching. In addition to
validating all the LP constraints, we also have to make sure that they pertain solely to
vertices in ODD. We do this as above by using the fingerprint for ODD to ensure that we
only count satisfied constraints on edges in ODD. We present the details of TSP in the full
version of the paper [1]. Finally, the approximate TSP cost is the sum of the min-weight
perfect matching on ODD and the MST cost on the graph.

I Theorem 11. Given a weighted complete graph with n vertices, in which the edge weights
satisfy the triangle inequality, there exists a streaming interactive protocol for verifying
optimal TSP cost within ( 3

2 + ε)-approximation with (logn) rounds of communication, and
(log2 n, n log2 n/ε) cost.
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Abstract
Classical clustering problems search for a partition of objects into a fixed number of clusters.
In many scenarios however the number of clusters is not known or necessarily fixed. Further,
clusters are sometimes only considered to be of significance if they have a certain size. We
discuss clustering into sets of minimum cardinality k without a fixed number of sets and present
a general model for these types of problems. This general framework allows the comparison of
different measures to assess the quality of a clustering. We specifically consider nine quality-
measures and classify the complexity of the resulting problems with respect to k. Further, we
derive some polynomial-time solvable cases for k = 2 with connections to matching-type problems
which, among other graph problems, then are used to compute approximations for larger values
of k.
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1 Introduction

Clustering problems arise in different areas in very diverse forms with the only common
objective of finding a partition of a given set of objects into, by some measure, similar parts.
Most models consider variants of the classical k-means or k-median problem in the sense
that k is a fixed given integer which determines the number of clusters one searches for. In
some applications however it is not necessary to compute a partition with exactly k parts,
sometimes it is not even known which number for k would be a reasonable choice. We want
to discuss a clustering model which does not fix the number of clusters but instead requires
that each cluster contains at least k objects. This constraint can be seen as searching for
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a clustering into parts of a specified minimum significance. For general classification or
compression tasks, one might consider small clusters as disposable outliers.

One concrete scenario for this type of partitioning is Load Balanced Facility Loca-
tion [11], a variant of the facility location problem where one is only interested in building
profitable facilities. In this scenario a facility is not measured by the initial cost of building
it but by its profitability once it is opened. Consequently, it is only reasonable to build a
facility if there are enough (but maybe not too many) customers who use it but aside from
this constraint it is possible to build an unrestricted number of facilities. The considered
cardinality-constraint also models the basic principle of “hiding in a crowd” introduced by
the concept of k-anonymity [14] which introduces formal problems such as r-Gather [1] and
k-Member Clustering [4]. A cluster in this scenario is a collection of personal records
which has to have a certain minimum cardinality in order to be considered anonymous.

We want to consider the general task of computing a clustering into sets of minimum
cardinality k ∈ N with the objective to introduce an abstract framework to model such
types of problems. For this purpose, we define the generic problem (‖ · ‖, f)-k-cluster
and specifically discuss nine variants of it, characterised via three different choices for
each f and ‖ · ‖; a detailed description of these variants follows in Section 2. Our main
contributions are the abstract model and the complexity- and approximation-results which
become more apparent due to this model, as they are derived mostly via similarities to other
graph problems. Section 3 compares the nine problem variants with respect to structural
differences. In Section 4 and 5, we classify the complexity for small values of k by identifying
polynomial-time solvable cases with connections to matching-type problems and deriving
(also improving known) NP-hardness results for the remaining cases. Section 6 uses a large
variety of connections to other graph problems, including the results from Section 4, to
develop approximation-algorithms. A more detailed description of the results as well as the
comparison to results from related work follows in the respective sections and is summarised
in the conclusions.

2 General Abstract Model

In the following, we consider the general task of partitioning a set of n given objects into
sets of cardinality at least k. Our model represents the n input-objects as vertices of an
undirected graph G = (V, E). A feasible solution is any partitioning P1, . . . , Ps of V such that
|Pi| ≥ k for all i ∈ {1, . . . , s}, in the following we will refer to such a partition as k-cluster.
Recall that in contrast to the classical clustering problems like s-means or s-median, the
number of clusters s is not necessarily part of the input. Of course, one does not search for
just any k-cluster but for a partitioning which preferably only combines objects which are in
some sense “close”. This similarity can be very hard to capture and the appropriate way to
measure it highly depends on the clustering-task and the structure of the input. We therefore
consider an arbitrary given distance function d : V 2 → R+ which for any two objects u, v ∈ V

represents the distortion which is caused by combining u and v. This general view allows to
simultaneously study many different measures for dissimilarity.

In our model, the distance d is defined via a given edge-weight function wE : E → R+.
For two vertices u, v ∈ V we define d(u, v) := wE({u, v}) if {u, v} ∈ E, and if {u, v} /∈ E, the
distance d(u, v) is defined by the shortest path from u to v in G. We will say that d satisfies
the triangle inequality (and hence is a metric) if d(u, v) ≤ d(u, w) + d(w, v) for all u, v, w ∈ V .
Observe that our definition allows for distances d which do not satisfy this property, a simple
example is the complete graph over V = {u, v, w} with wE({u, v}) = wE({u, w}) = 1 and
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wE({v, w}) = 3. Distances which are defined directly via an edge are the only possible ’non-
metric’ distances. Edges hence do not necessarily imply similarity but can reflect a difference
greater than the shortest path between two objects and make it more unattractive to cluster
them together; very different from the multiedges introduced in the hypergraph-model for
k-anonymous clustering from [17], where hyperedges reflect similar groups.

The overall cost of a partitioning P1, . . . , Ps is always in some sense proportional to the
dissimilarities within each set or cluster Pi. On an abstract level, the global cost induced by
a partitioning P1, . . . , Ps is calculated by first computing the local cost of each cluster and
second by combining all this individual information. In this paper, we discuss three different
measures for the local cost caused by a cluster Pi:
Radius: rad(Pi) := minx∈Pi maxy∈Pi d(x, y).
Diameter: diam(Pi) := maxx∈Pi

maxy∈Pi
d(x, y).

Average Distortion: avg(Pi) := 1
|Pi| ·minx∈Pi

∑
y∈Pi

d(x, y).
The overall cost of a k-cluster P1, . . . , Ps is then given by a certain combination of the
local costs f(P1), . . . , f(Ps) with f ∈ {rad, diam, avg}. In order to model the most common
problem-versions we consider the following three possibilities:
Worst Local Cost: The maximum cost of an individual cluster: max1≤i≤s f(Pi). Because

of its structure with respect to the values f(P1), . . . , f(Ps), denoted by ‖·‖∞ .
Worst Weighted Local Cost: The maximum cost of an individual cluster, weighted by its

size: max1≤i≤s |Pi|f(Pi), denoted by ‖·‖w

∞
.

Accumulated Local Cost: The sum of the distortion for each cluster, denoted by ‖·‖w

1
, with

respect to the cost of the individual clusters computed by:
∑s

i=1 |Pi|f(Pi).
Any combination of f ∈ {rad, diam, avg} with ‖ · ‖∈ {‖ · ‖w

1
, ‖ · ‖w

∞
, ‖ · ‖∞} yields a different

problem. (Structural properties discussed in Section 3 will explain why we do not consider
the unweighted 1-norm.) For a fixed k ∈ N, the general optimisation-problem is given by:

(‖·‖, f)-k-cluster
Input: Graph G = (V, E) with edge-weight function wE : E → R+, k ∈ N.
Output: k-cluster P1, . . . , Ps of V for some s ∈ N, which minimises ‖(f(P1), . . . , f(Ps))‖.

(‖·‖∞ , rad)-k-cluster, for example, searches for a k-cluster which minimises:

max
1≤i≤s

min
x∈Pi

max
y∈Pi

d(x, y).

Some of the variants of (‖·‖, f)-k-cluster are already known under different names. The
variant (‖ · ‖w

1
,diam)-k-cluster is also known as k-member clustering [4] and with

d chosen as the Euclidean distance, (‖ · ‖∞ , rad)-k-cluster is the so-called r-Gather
problem [1] (with r = k). Variant (‖ · ‖w

1
, avg)-k-cluster is Load Balanced Facility

Location [11] with unit demands and without facility costs and, with Euclidean distance,
also models Microaggregation [6].

Choosing between the cluster-measures and norms allows adjustment for specific types of
objects and different forms of output representation. The norm decides if the desired output
has preferably uniformly structured clusters with or without uniform cardinalities (∞-norms)
or builds clusters of object-specific irregular structure (1-norm). For cohesive clustering,
the diameter-measure is more suitable for the choice of f . Average distortion is best used
when the output chooses one representative of each cluster and projects all other objects in
this cluster to it; a scenario which for example occurs for facility-location type problems. If
the output does not project to one representative but considers clusters as circular areas,
the radius measure is the most reasonable choice for f . Optimal k-clusters may differ for
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4:4 Building Clusters with Lower-Bounded Sizes

different choices of ‖·‖ and/or f as we will discuss in the next section. Still, we will see that
there are also very useful similarities.

3 Structural Properties of Optimal Partitions

The diverse behaviour for different choices of f and ‖ · ‖ is nicely displayed in the cluster-
cardinalities of optimal solutions. For the example V := {c, v1, v2, . . . , vn} with wE(c, vi) := 1
for all i, we find that for radius and average distortion, the single cluster V is the optimal
solution with ‖·‖∞ or ‖·‖w

1
. If wE(vi, vj) := D for some large value D, any k-cluster with

more than one set is arbitrarily worse. For the diameter-measure however we know that in
general diam(S) ≤ diam(P ) for all sets S ⊆ P , which immediately yields:

I Proposition 1. For any k ∈ N and any ‖ · ‖∈ {‖ · ‖w

1
, ‖ · ‖w

∞
, ‖ · ‖∞}, optimal solutions

P1, . . . , Ps for (‖·‖, diam)-k-cluster can be assumed to satisfy |Pi| < 2k for all 1 ≤ i ≤ s.

For radius we only have the weaker property that rad(S) ≤ rad(P ) for all sets S ⊆ P such
that the center of P is contained in S. Average distortion lacks such monotone behaviour
entirely. Observe that a large cardinality of a cluster can sort of “smooth over” some larger
distances, for example for three vertices u, v, w with wE(u, v) := 3 and wE(u, w) := 1,
adding w to the cluster {u, v} decreases the average distortion from 3

2 to 4
3 . Examples

like this show that, even with triangle inequality for d, we can not in general restrict the
maximum cluster-cardinality for (‖ ·‖∞ , avg)-k-cluster, which is a bit unsetteling, given
that most applications also like to have some natural upper bound on the cardinality (not
too many customers). In a realistic scenario, we encounter sets of cardinality 2k or larger
in optimal solutions for (‖ · ‖∞ , avg)-k-cluster, if they contain an object (often called
outlier) which has a large distance from all objects. Deleting such outliers before computing
clusters is generally a reasonable pre-processing step, which makes large clusters in (‖·‖∞ ,

avg)-k-cluster unlikely.
In general, we would like the computation of global cost to somehow favour finer partitions

in order to exploit the difference to clustering models which bound the number of sets.
This is the reason why we do not consider the unweighted 1-norm, formally computed
by ‖ (f(P1), . . . , f(Ps)) ‖1 :=

∑s
i=1 f(Pi). For the example V = {v1

i , v2
i : 1 ≤ i ≤ n} with

wE({v1
i , v2

i }) = 1 for i ∈ {1, . . . , n} and wE({vh
i , vk

j }) = n− 1 for i, j ∈ {1, . . . , n} with i 6= j

and h, k ∈ {1, 2}, the best 2-clustering w.r.t. ‖·‖1 with any choice for f is V itself, while the
most reasonable 2-clustering for most applications one can think of for this graph is obviously
{{v1

i , v2
i } : 1 ≤ i ≤ n}. This makes ‖·‖1 very unattractive for our clustering-purposes, observe

that triangle inequality does not improve this behaviour, since the distance d for this example
satisfies it. Triangle inequality however makes a big difference for the worst-case example in
the beginning of the section and allows to conclude:

I Theorem 2. If d satisfies the triangle inequality, the restriction to partitions into sets
of cardinality at most 2k − 1 yields a 2-approximation for (‖ ·‖∞ , rad)-, (‖ ·‖w

1
, rad)- and

(‖·‖w

1
, avg)-k-cluster and is optimal for (‖·‖w

∞
, avg)- and (‖·‖w

∞
, rad)-k-cluster.

As we will look at the cases k = 2 and k = 3 in the next section, we further conclude:

I Corollary 3. If d satisfies the triangle inequality, sets in partitions for (‖ · ‖1, avg)-2-
cluster can be assumed to have cardinality two or three.

Proof. For a cluster S := {x1, x2 . . . , xr} with center x1 and r > 3, a further partitioning
into {x2i, x2i+1} for i ∈ {1, . . . , z − 1} with z = b r

2c and {x1, x2z, xr} does not increase the
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global cost for (‖·‖1, avg)-2-cluster, since:

|S|avg(S)

=
r∑

i=1
d(xi, xr) ≤ (r − 2z)d(x2z, xr) + d(xr, x2z−1) +

z−1∑
i=1

d(x2i, xr) + d(x2i+1, xr)

≤|{x1, x2z, xr}|avg({x1, x2z, xr}) +
z−1∑
i=1

2avg({x2i, x2i+1}) . J

4 Connections to Matching Problems

The graph-representation we chose to define (‖·‖, f)-k-cluster reveals relations to other
well studied graph problems, interestingly in case of k = 2 not to classical clustering but to
matching problems. Some variants can be reduced to finding a minimum weight edge cover,
a problem which can be reduced to finding a minimum weight perfect matching (a simple
reduction is described, e.g., in the first volume of Schrijver’s monograph [[15], Section 19.3]).
As a consequence, a minimum weight edge cover can be found in O(n3) time by the results
of Edmonds and Johnson [8].

I Theorem 4. (‖·‖w

1
, avg)-2-cluster can be solved in O(n3) time.

Proof. (‖·‖w

1
, avg)-2-cluster searches for a 2-cluster P1, . . . , Ps minimising:

s∑
i=1

min{
∑
y∈Pi

d(x, y) : x ∈ Pi}.

In other words, for any graph G = (V, E), the global cost is the weight of the cheapest
edge-set E′ ⊂ V 2 for which the graph G′ := (V, E′) has s connected components P1, . . . , Ps

with at least 2 vertices such that the induced subgraph of each Pi is a star-graph. This
property is equivalent to E′ being a minimum weight edge cover for the complete graph on V

with edge-weights equal to the distance d; observe that the graph (V, E′) is a forest without
isolates and without paths of length three for every minimum weight edge cover E′ which
means that its connected components are star-graphs. J

I Theorem 5. (‖·‖∞ , rad)-2-cluster can be solved in O(n2) time.

Proof. For a graph G = (V, E), first check all vertices in V and find the smallest value c > 0
such that each vertex v has distance at most c from at least one other vertex. This c is
obviously a general lower bound on the global cost, since each vertex needs at least one
partner. For k = 2, this c is also the optimal value since any minimal edge cover for the
graph G′ := (V, E′) with E′ := {(u, v) : 0 < d(u, v) ≤ c} yields a 2-cluster for G with radius
at most c for each cluster. J

With respect to diameter, this edge-cover strategy is not applicable for clusters of cardinality
larger than two. Even for k = 2 there are cases for which clusters of cardinality three are
required in every optimal solution. It seems difficult to define a correct way to compute
the diameter of a cluster by summing up certain edge-weights. We therefore consider the
following matching problem which is more involved but still solvable in O(n3m2 log n) [2]:

Simplex Matching
Input: Hypergraph H = (V, F ) with F ⊆ (V 2 ∪ V 3) and cost-function c : F → R satisfying:
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1. {{u, v}, {v, w}, {u, w}} ⊂ F for all {u, v, w} ∈ F . (subset cond.)
2. c({u, v}) + c({v, w}) + c({u, w}) ≤ 2c({u, v, w}) for all {u, v, w} ∈ F . (simplex cond.)

Output: A perfect matching of H (that is a collection S of hyperedges such that every vertex
in V appears in exactly one hyperedge of S) of minimal cost.

I Corollary 6. (‖·‖w

1
, diam)-2-cluster can be solved in O(n9 log n) time.

Proof. Let G = (V, E) be an input graph for (‖·‖w

1
, diam)-2-cluster. The corresponding

input for Simplex Matching is the hypergraph H = (V, V 2 ∪ V 3) which obviously satisfies
the subset condition. By Proposition 1, there exists an optimal solution for (‖·‖w

1
, diam)-

2-cluster among the perfect matchings for H. According to the original problem, the
cost-function c for any u, v, w ∈ V is defined as: c({u, v}) := 2d(u, v) and c({u, v, w}) :=
3 max{d(u, v), d(v, w), d(u, w)} and hence satisfies the simplex condition. Since this complete
hypergraph has O(n3) hyperedges, the overall running-time is in O(n9 log n). J

Diameter combined with the ∞-norms can be solved using Corollary 6 by fixing some
maximum diameter D and multiplying all hyperedge-costs which exceed D with a large
value C, say C = n max{d(u, v) : u, v ∈ V }. This does not violate the simplex condition
for the cost-function and there exists a solution for (‖·‖∞ , diam)-2-cluster of value D for
the original graph if and only if the hypergraph with adjusted costs has a (‖·‖w

1
,diam)-2-

cluster solution of value less than C. Relating to an easier problem, we can do a little
better. If we remove the hyperedges which exceed D instead of changing their cost, we arrive
at a hypergraph which still satisfies the subset condition (diam({u, v}) ≤ diam({u, v, w}) for
any u, v, w ∈ V ) and we are only interested in any perfect matching, regardless of its weight.
The computation of such a perfect matching is the problem called Simplex Cover [19]1.
The augmenting-path strategy from [16] for 2-gathering2, can be used to solve Simplex
Cover in time O(m2), where m is the number of hyperedges of the input graph.

I Corollary 7. (‖ · ‖∞ , diam)- and (‖ · ‖w

∞
, diam)-2-cluster and if d satisfies the triangle

inequality also (‖·‖w

∞
, avg)-2-cluster can be solved in O(n6 log n) time.

I Remark. We would like to point out that Simplex Matching is also an interesting
way to solve a sort of geometric version of (‖·‖w

1
, avg)-2-cluster, originally introduced as

microaggregation in [6], which considers clustering a set of vectors in Rd and measures
local cost for a cluster {x1, . . . , xt} by

∑t
i=1 ||xi−x||22 where x is the centroid 1

t (x1 + · · ·+xt).
With the hypergraph (V, V 2 ∪ V 3) with V = {v1, . . . , vn} representing {x1, . . . , xn} and
the cost-function c defined by: c({vi, vj , vk}) :=

∑
h∈{i,j,k} ||xh − 1

3 (xi + xj + xk)||22 for all
1 ≤ i < j < k ≤ n and c({vi, vj}) := 1

2 ||xi−xj ||22 for all 1 ≤ i < j ≤ n, the simplex condition
holds, since 2c({vi, vj , vk}) = 4

3 (c({vi, vj}) + c({vj , vk}) + c({vi, vk})). This construction
gives a polynomial-time algorithm to solve 2-microaggregation which improves on the
2-approximation from [7].
As powerful as Simplex Matching may seem, the estimated worst-case running-time is
fairly large. We believe that an augmenting path strategy which is specifically tailored to
the above problems can yield significant improvement. Observe that similar construction
for (‖ ·‖w

1
, rad)-2-cluster does not work, since the cluster-cardinality is not bounded by

three. Also, even if d satisfies the triangle inequality, the corresponding cost-function c

1 This covering problem is equivalent to {K2, K3}-packing an old, well studied generalisation of the
classical matching problem [5].

2 Confusingly, 2-gathering in [16] is not equivalent to the r-gathering problem from [1] with r = 2.
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would not satisfy the simplex condition, since for the small example of three vertices u, v, w

with d(u, v) = d(u, w) = 1 and d(v, w) = 2, the cost with respect to radius would give
1 = c({u, v, w}) < 1

2 (c({u, v}) + c({u, w}) + c({v, w})) = 2. Similar problems arise for the
other so far unresolved variants of (‖·‖, f)-2-cluster.

5 Complexity Results

In [1], the problem r-gather, which is (‖·‖∞ , rad)-k-cluster with r = k with Euclidean
distance, was shown to be NP-complete for k ≥ 7. In [3] this result was strengthened
by a reduction from Exact-t-Cover to k ≥ 3, however for a type of problem where the
cluster-center exists as an input vertex but is assigned to a different cluster (i.e., with the
radius of a cluster Pi calculated by: minx∈V maxy∈Pi

d(x, y)) which is not allowed in our
formal definition. We establish in the following a different reduction from the Exact-t-
Cover problem which shows NP-hardness for all our variants of k-cluster and extends for
all measures f which are strictly monotone with respect to radius, diameter or average
distortion. With Exact-t-Cover we refer to the problem of deciding for a given collection
C = {S1, . . . , Sr} of subsets of a universe X = {x1, . . . , xn} with |Si| = t for all i, if there
exists C ′ ⊂ C such that |C ′| = n/t and

⋃
S∈C′ S = X, which is NP-hard for all t ≥ 3 [9].

I Theorem 8. All variants of (‖ · ‖, f)-k-cluster are NP-hard for k ≥ 3 even with the
restriction to distances d which satisfy the triangle inequality.

Proof (Sketch). We reduce from Exact-t-Cover with t = (k − 1)2. Let S1, . . . , Sr be
subsets of {x1, . . . , xn}, with |Si| = t. The graph G for (‖ · ‖, f)-k-cluster only contains
edges of weight one and vertices u1, . . . , un representing x1, . . . , xn and, for all i ∈ {1, . . . , r},
we have vertices w1

i , . . . , wk−1
i representing an arbitrary fixed partition P i

1, . . . , P i
k−1 of Si

with |Pij
| = k− 1 for all j, and some additional vertices vj for sets which are not in the cover.

Edges connect uj to with wiz if uj ∈ P i
z . Other edges are included depending on f . We want

a solution C ⊂ {S1, . . . , Sr} with |C| = n/t for Exact-t-Cover to translate to the k-sets of
vertices {wz

i , uj : xj ∈ P i
z} for all i with Si ∈ C. Assigning vj to the set {w1

i , . . . , wk−1
i } for i

with Si 6∈ C then partitions the remaining vertices. There is a k-clustering which only uses
these types of clusters for wz

i if and only if S1, . . . , Sr is an exact cover.
For f = diam, we use ` := r− n

t vertices v1, . . . , v` and turn each of the sets {u1, . . . , un}
and w1

i , . . . , wk−1
i for i ∈ {1, . . . , r} into a clique, and connect each vh with h ∈ {1, . . . , `}

to all wz
i (i ∈ {1, . . . , r} and z ∈ {1, . . . , k}). With this, there exists an exact cover for

S1, . . . , Sr if and only if a there exists a k-cluster of maximum diameter one.
For f ∈ {rad, avg}, we use r vertices v1, . . . , vr and edges (vi, wz

i ) for i ∈ {1, . . . , r} and
z ∈ {1, . . . , k − 1} and further include vertices yj

i for i ∈ {1, . . . , n
t } and j ∈ {1, . . . , k − 1}

with edges (yi
1, yi

h) and (yi
1, vj) for each i ∈ {1, . . . , n

t }, h ∈ {2, . . . , k − 1} and j ∈ {1, . . . , r}.
With this construction there exists an exact cover for S1, . . . , Sr if and only if there is a
clustering such that all clusters have cardinality k and radius one.

In particular, there exists an exact cover for S1, . . . , Sr if and only if there exists a
k-cluster with global cost 1, k and 2n + (k − 1)r + n

k−1 for radius with norm ‖ · ‖∞ , ‖ · ‖w

∞

and ‖·‖w

1
, respectively and k−1

k , k − 1 and 2n + 1
k (tr − n) for average distortion with norm

‖·‖∞ , ‖·‖w

∞
and ‖·‖w

1
, respectively. J

The previous section only provided polynomial-time solvability for roughly half of the variants
of (‖·‖, f)-2-cluster. We will now complete the complexity-picture for k = 2.

I Theorem 9. (‖·‖w

1
, rad)-2-cluster is APX-hard, even with the restriction to distances d

which satisfy the triangle inequality.
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Proof (Sketch). We reduce from Vertex Cover restricted to cubic graphs which is APX-
hard by [13]. Let G = (V, E) with V = {v1, . . . , vn} be the input for Vertex Cover, we
define G′ = (V ′, E′) by V ′ := {v1

i , v2
i : 1 ≤ i ≤ n} ∪ {ve : e ∈ E} and E′ = {{v1

i , v2
i } : 1 ≤

i ≤ n} ∪ {{v1
i , ve} : vi ∈ e} with weights wE({v1

i , v2
i }) = 1 and wE({v1

i , ve}) = 2. With these
definitions, G has a vertex cover of cardinality k if and only if there exists a solution for
(‖ ·‖w

1
, rad)-2-cluster with global cost 2n + 2k + 2m. Since m = 3n/2 and k ≥ n/2 for a

cubic graph, this reduction preserves non-approximability. J

The reduction above can not be altered for the cases of (‖ · ‖, f)-2-cluster with some
∞-norm which were not shown to be polynomial-time solvable so far. We therefore consider
a completely different problem for these cases to show:

I Theorem 10. (‖ · ‖w

∞
, avg)-, (‖ · ‖∞ , avg)- and (‖ · ‖w

∞
, rad)-2-cluster are all NP-hard,

for the latter two even with the restriction to distances d which satisfy the triangle inequality.

Proof (Sketch). Reduction from (3, 3)-SAT, i.e., satisfiability with at most three variables
in each clause and where each variable occurs (positively or negatively) in at most three
clauses, which remains NP-hard by [18]. Let v1, . . . , vn be the variables and c1, . . . , cm be
the clauses. We construct G by introducing for each vi the subgraph displayed on the below.

fi tixi

ai bi

aa

b b

b

For each clause cj we introduce a vertex yj connected with edges of weight b to ti if vi is a
literal in cj and to fi if v̄i is a literal in cj . With a = 1

2 , b = 1
3 for (‖·‖∞ , rad)-, a = 2, b = 3

2
for (‖·‖∞ , avg)- and a = 1 , b = 1

2 and also additional edges {yi, yj} for all i 6= j of weight
one for (‖·‖w

∞
, avg)-2-cluster, the clause is satisfiable if and only if the clustering-problem

has a solution of global cost one. J

6 Approximation results

We will only consider the case where d satisfies the triangle inequality in this section.
This restriction is not just reasonable but in some sense necessary to achieve any kind of
approximation. If we reconsider the reduction from Theorem 8 and turn the constructed
graph G into a complete graph with additional edges of a large weight w, the difference in
global cost in case of “yes”- or “no”-instance of Exact-t-Cover increases with w, which
implies:

I Proposition 11. If d violates the triangle inequality, there is no constant-factor approxim-
ation for (‖·‖, f)-k-cluster in time polynomial in |V |, unless P = NP .

A closer look at the metric given by the shortest paths for the original construction from
Theorem 8, reveals that the global cost differs by a factor of two between “yes”- and
“no”-instance for some problem-variants. Explicitly this means:

I Proposition 12. There is no (2 − ε)-approximation in polynomial time for (‖ · ‖, f)-k-
cluster with f ∈ {rad, diam} and ‖·‖∈ {‖·‖∞ , ‖·‖w

∞
} for any ε > 0 unless P = NP , even

if d satisfies triangle inequality.
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Known approximation results for clustering with size constraints include a 9-approximation
from [3] for Load Balanced Facility Location without facility cost, which is related
to (‖ · ‖w

1
, avg)-k-cluster here, but with the additional constraint that at each customer

should be assigned to the nearest open facility. The techniques used for this result highly rely
on the additional constraint, which unfortunately means that they can not be applied here.
Other approximations for this problem instead relax the constraint that each cluster needs
to contain at least k vertices; [11] for example presents a 2k-approximation which constructs
clusters of cardinality at least k/3. We will see that for our problem such an approximation
factor can be achieved without relaxing the cardinality constraints. In general, our results
however do not extend to Load Balanced Facility Location, since the addition of
facility-costs yields a very different type of problem; we especially lose the upper bound of
2k − 1 on the cardinality of clusters in an optimal solution from Theorem 2.

Other known approximation results however also apply here and can even be altered to
yield results for other problem-variants. The problem (‖·‖∞ , rad)-k-cluster is discussed
under the name r-gather in [1], where r takes the role of k. The concept for the 2-
approximation presented there can be altered, even simplified, and also used to compute a
2-approximation for (‖·‖∞ , diam)-k-cluster.

I Theorem 13. (‖·‖∞ , rad)- and (‖·‖∞ , diam)-k-cluster are 2-approximable for all k ≥ 2.

Proof (Sketch). We try all values D that occur as pairwise distances d(u, v) for u, v ∈ V for
the following greedy strategy: Start with V1 := V and iteratively, until Vi = ∅, choose ci ∈ Vi,
build clusters P (ci) := {v ∈ Vi : d(ci, v) ≤ D} and set Vi+1 = Vi\P (ci). This yields a partition
of V into a finite number of clusters P (ci). If some cluster P (ci) has less than k vertices,
consider S(i, j) = {v ∈ P (cj) \ {cj} : d(v, ci) ≤ D} and move min{|S(i, j)|, |P (cj)| − k}
vertices from S(i, j) to P (ci) for each j ∈ {1, . . . , i− 1} until |P (ci)| ≥ k. If this procedure is
successful, we arrive at a k-cluster for V with maximum radius D and maximum diameter
2D. This procedure is successful for D = 2r∗ and D = D∗ if r∗ and D∗ are optimal values
for (‖·‖∞ , rad)- and (‖·‖∞ , diam)-k-cluster respectively. J

I Remark. A greedy procedure for (‖·‖∞ , avg)-k-cluster could build up the sets P (ci) by
successively adding argmin{d(v, ci) : v ∈ Vi \ P (ci)} until avg(P (ci)) exceeds D but moving
vertices from S(i, j) to P (ci) could unfortunately increase the average distortion of P (cj).
In [12] results from [10] for the so-called Proper Constraint Forest Problem are used
to compute an 8(k − 1)-approximation for Microaggregation. We will use a different
result from [10]: a 2-approximation for Lower Capacitated Tree Partitioning with
capacity k which is the problem of computing a spanning forest of minimal cost for which
each connected component has cardinality at least k. A spanning forest is characterised by a
set of edges and its cost is defined as the sum of the weights of these edges.

I Corollary 14. (‖·‖w

1
, avg)-k-cluster is 2k-approximable for all k ≥ 2.

I Remark. For k = 2, Theorem 4 showed that (‖ · ‖w

1
, avg)-k-cluster can be solved in

polynomial time which also translates to Lower Capacitated Tree Partitioning with
capacity k = 2; tree partitioning with capacity two is equivalent to weighted edge-cover.
Essential for the result above is the fact that components of a minimal spanning forest do not
contain paths of length 2k or more. This property implies the existence of a central vertex
which can reach all vertices in its component in at most k steps and allows to bound the
average distortion. This property does not prevent a component from containing arbitrarily
many vertices. An algorithm for (‖·‖w

1
, diam)- or (‖·‖w

1
, rad)-k-cluster requires such an
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upper bound on the cardinality to prove an approximation factor. We therefore consider
Lower Capacitated Path Partitioning, the restriction of Lower Capacitated Tree
Partitioning to paths as connected components. With triangle inequality, [10] provides a
4-approximation for this problem and it is clear that minimal solutions can be assumed to
have connected components with at most 2k − 1 vertices each, which yields:

I Corollary 15. (‖·‖w

1
, diam)-k-cluster is (8k − 7)-approximable for all k ≥ 2.

One advantage of the unified model for (‖·‖, f)-k-cluster is that if d satisfies the triangle
inequality, the different measures relate in the following way:

avg(Pi) ≤ rad(Pi) ≤ diam(Pi) ≤ 2rad(Pi) . (1)

This relation with Corollary 15 immediately yields:

I Proposition 16. (‖·‖w

1
, rad)-k-cluster is (16k − 14)-approximable for all k ≥ 2.

By definition, the two ∞-norms also relate optimal values in the following way for every
choice of f ∈ {rad,diam,avg}, where we denote by opt(G, d, ‖·‖, f, k) the global cost of an
optimal solution for (‖·‖, f)-k-cluster on G with distance d:

opt(G, d, f, ‖· ‖
w

∞
, k) ≥ k · opt(G, d, f, ‖· ‖∞ , k) . (2)

This equation is helpful to derive approximations for the weighted ∞-norm:

I Corollary 17. (‖·‖w

∞
, diam)-k-cluster is 4-approximable and (‖·‖w

∞
, rad)-k-cluster is

8-approximable for all k ≥ 2.

For (‖·‖w

∞
, avg)-k-cluster we do not have a result for (‖·‖∞ , avg)-k-cluster to transfer.

Interestingly, a variant with different norm and measure can be used instead:

I Corollary 18. (‖·‖w

∞
, avg)-k-cluster is (4k − 2)-approximable for all k ≥ 2.

Proof. We first show that opt(G, d, avg, ‖· ‖w

∞
, k) ≥ opt(G, d,diam, ‖· ‖∞ , k). Consider any

set P in an optimal solution for (‖·‖∞ , avg)-k-cluster. Triangle inequality yields:

|P |avg(P ) = min
c∈P

∑
p∈P

d(c, p) ≥ min
c∈P

max
u,v∈P

d(u, c) + d(v, c) ≥ max
u,v∈P

d(u, v) = diam(P ) .

Theorem 13 and Proposition 1 produce a 2-approximation for (‖ · ‖∞ , diam)-k-cluster
for which each set contains at most 2k − 1 vertices. The weighted ∞-norm of the average
distortion of this partition is at most 2(2k − 1)·opt(G, d,diam, ‖· ‖∞ , k), and hence yields a
(4k − 2)-approximation for (‖·‖w

∞
, avg)-k-cluster. J

At last, we want to present an approximation which exploits the unified model in an even more
surprising way. The solutions for k = 2 derived in Section 4 for two different problem-variants
are combined to compute an approximate solution for k = 4. Explicitly, we will combine the
Simplex Matching approach for (‖·‖w

1
, diam)-2-cluster and the Edge Cover approach

for (‖·‖1, avg)-2-cluster.

I Theorem 19. The problem (‖·‖w

1
, diam)-4-cluster can be approximated in polynomial

time within a factor of 35
6 .
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Proof (Sketch). Consider as input any graph G = (V, E) with induced distances d. First,
compute an optimal solution P1, . . . , Ps for (‖·‖w

1
, diam)-2-cluster, for which the optimal

value ‖(diam((P1), . . . ,diam(Ps))‖w

1
is at most D∗ :=opt(G, d,diam, ‖· ‖w

1
, 4), simply because

any 4-cluster is also a 2-cluster. Next, consider the complete graph G′ = (P, P 2) with vertices
P := {p1, . . . , ps} and edge-weights w defined by w(pi, pj) := min{d(u, v) : u ∈ Pi, v ∈ Pj}.
It can be shown that D∗ ≥ 3·opt(G′, w, avg, ‖· ‖w

1
, 2) and use an optimal solution S1, . . . , Sq

for (‖·‖w

1
, avg)-2-cluster on G′, such that |Si| ≤ 3 for all i by Corollary 3. The partition

S = {
⋃

pi∈Sj
Pi : 1 ≤ j ≤ q} is a 4-cluster for G. If Sq = {pi, pj , pk} with center pi for

some i, j, k ∈ {1, . . . , s} with |Pj | = 3, we replace the cluster P = Pi ∪ Pj ∪ Pk in S by
the two clusters P ′ := Pj ∪ {ui} and P ′′ := P \ P ′, where we choose ui ∈ Pi such that
w(pi, pj) = min{d(ui, v) : v ∈ Pj}. These new clusters satisfy:

|P ′|diam(P ′) ≤ 4(diam(Pj) + w(pi, pj)) < 2|Pj |diam(Pj) + 4w(pi, pj) and

|P ′′|diam(P ′′) ≤ 5
2 |Pi|diam(Pi) + 5

2 |Pk|diam(Pk) + 5w(pi, pk)
Consider any set R ∈ S which is not the result of splitting up a cluster. Worst case
is R = Pi ∪ Pj ∪ Pk with pi as center of Sq = {pi, pj , pk}, we know that |R| ≤ 7 and
diam(R) ≤ diam(Pi) + diam(Pj) + diam(Pk) + w(pi, pj) + w(pi, pk), hence:

|R|diam(R) ≤ 7
2 (‖Pi|diam(Pi) + |Pj |diam(Pj) + |Pk|diam(Pk)) + 7(w(pi, pj) + w(pi, pk)) .

Overall, this yields:∑
R∈S

|R|diam(R) ≤ 7
2

r∑
i=1
|Pi|diam(Pi)+6

∑
R⊂Pi∪Pj

w(pi, pj)+7
∑

R=Pi∪Pj∪Pk

w(pi, pj)+w(pi, pk)

≤ 7
2 ‖(diam((P1), . . . ,diam(Ps))‖w

1
+7

q∑
i=1
|Si|avg(Si) ≤ 7

2 D∗ + 7
3 D∗ = 35

6 D∗ . J

I Remark. Equation 1 translates the above result to a 35
3 -approximation for (‖·‖w

1
, rad)-4-

cluster. Since the approximation-ratios from Theorem 19 are significantly better than the
path-partitioning approximation from Corollary 15 (factor 25 and 50 respectively), it would
be interesting to nest this construction further and extend it for larger values of k.

7 Conclusions

We have introduced and discussed the general problem (‖ · ‖, f)-k-cluster in order to
model clustering-tasks which do not fix the number of clusters but require each cluster to
contain at least k objects. The nine chosen problem-variants in this paper generalise many
previous models but, of course, do not capture every possible way to measure the quality of
the clustering. We however tried to cover many previous models while maintaining a clear
framework in which similarities turned out to be quite fruitful.

Our NP-hardness result for k = 3 for all variants of (‖ ·‖, f)-k-cluster generalises all
known complexity-results for these types of problems. Further, we completely characterise
the complexity with respect to k with the following results for (‖·‖, f)-2-cluster:

k = 2 rad diam avg

‖ · ‖∞ in P (Edge Cover) Th.5 in P (Simplex Cover) Cor.7 NP-complete Th.10

‖ · ‖
w

∞ NP-complete Th.10 in P (Simplex Cover) Cor.7 NP-complete Th.10

‖ · ‖
w

1 APX-hard Th. 9 in P (Simplex Matching) Cor.6 in P (Weighted Edge Cover) Th.4
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4:12 Building Clusters with Lower-Bounded Sizes

The restriction to distances d which satisfy the triangle inequality already simplified exact
solvability for the general NP-hard problem (‖ · ‖w

∞
, avg)-2-cluster which turned out to

be solvable with Simplex Cover in this case. We further showed that this restriction is
necessary for approximations in time polynomial in the number of objects and derived a
number of approximation strategies, mostly based on different other graph-problems. Our
approximation-ratios (which are the best and/or only ones known) are:

rad diam avg

‖ · ‖∞ 2 Th.13 2 Th.13 ?

‖ · ‖
w

∞ 8 Cor.17 4 Cor.17 4k − 2 Cor.18

‖ · ‖
w

1 16k − 14 Prop.16 8k − 7 Cor.15 2k Cor. 14

An interesting open question is whether (‖·‖∞ , avg)-k-cluster can be approximated within
some constant ratio or at least within some ratio in O(k). The lack of monotonicity for
average distortion makes this measure the most challenging for approximation.
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Abstract
In a recent article Agrawal et al. (STACS 2016) studied a simultaneous variant of the classic
Feedback Vertex Set problem, called Simultaneous Feedback Vertex Set (Sim-FVS).
In this problem the input is an n-vertex graph G, an integer k and a coloring function col :
E(G)→ 2[α], and the objective is to check whether there exists a vertex subset S of cardinality
at most k in G such that for all i ∈ [α], Gi − S is acyclic. Here, Gi = (V (G), {e ∈ E(G) |
i ∈ col(e)}) and [α] = {1, . . . , α}. In this paper we consider the edge variant of the problem,
namely, Simultaneous Feedback Edge Set (Sim-FES). In this problem, the input is same
as the input of Sim-FVS and the objective is to check whether there is an edge subset S of
cardinality at most k in G such that for all i ∈ [α], Gi − S is acyclic. Unlike the vertex variant
of the problem, when α = 1, the problem is equivalent to finding a maximal spanning forest and
hence it is polynomial time solvable. We show that for α = 3 Sim-FES is NP-hard by giving a
reduction from Vertex Cover on cubic-graphs. The same reduction shows that the problem
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where ω is the exponent in the running time of matrix multiplication. The same algorithm gives
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The question is whether there is a edge subset F of cardinality at least q in G such that for
all i ∈ [α], G[Fi] is acyclic. Here, Fi = {e ∈ F | i ∈ col(e)}. We give an FPT algorithm
for Maximum Simultaneous Acyclic Subgraph running in time O(2ωqαnO(1)). All our
algorithms are based on parameterized version of the Matroid Parity problem.

1998 ACM Subject Classification G.2.2 Graph Algorithms, I.1.2 Analysis of Algorithms

Keywords and phrases parameterized complexity, feedback edge set, α-matroid parity

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2016.5

∗ The research leading to these results has received funding from the European Research Council (ERC)
via grants Rigorous Theory of Preprocessing, reference 267959 and PARAPPROX, reference 306992.

© Akanksha Agrawal, Fahad Panolan, Saket Saurabh, and Meirav Zehavi;
licensed under Creative Commons License CC-BY

27th International Symposium on Algorithms and Computation (ISAAC 2016).
Editor: Seok-Hee Hong; Article No. 5; pp. 5:1–5:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ISAAC.2016.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


5:2 Simultaneous Feedback Edge Set: A Parameterized Perspective

1 Introduction

Deleting at most k vertices or edges from a given graph G, so that the resulting graph
belongs to a particular family of graphs (F), is an important research direction in the
fields of graph algorithms and parameterized complexity. For a family of graphs F , given a
graph G and an integer k, the F-deletion (Edge F-deletion) problem asks whether we
can delete at most k vertices (edges) in G so that the resulting graph belongs to F . The
F-deletion (Edge F-deletion) problems generalize many of the NP-hard problems like
Vertex Cover, Feedback vertex set, Odd cycle transversal, Edge Bipartization,
etc. Inspired by applications, Cai and Ye introduced variants of F-deletion (Edge F-
deletion) problems on edge colored graph [7]. Edge colored graphs are studied in graph
theory with respect to various problems like Monochromatic and Heterochromatic
Subgraphs [15], Alternating paths [6, 8, 20], Homomorphism in edge-colored graphs [3],
Graph Partitioning in 2-edge colored graphs [5] etc. One of the natural generalization
to the classic F-deletion (Edge F-deletion) problems on edge colored graphs is the
following. Given a graph G with a coloring function col : E(G)→ 2[α], and an integer k, we
want to delete a set S of at most k edges/vertices in G so that for each i ∈ [α], Gi−S belongs
to F . Here, Gi is the graph with vertex set V (G) and edge set as {e ∈ E(G) | i ∈ col(e)}.
These problems are also called simultaneous variant of F-deletion (Edge F-deletion).

Cai and Ye studied the Dually Connected Induced subgraph and Dual Separator
on 2-edge colored graphs [7]. Agrawal et al. [1] studied a simultaneous variant of Feedback
Vertex Set problem, called Simultaneous Feedback Vertex Set, in the realm of
parameterized complexity. Here, the input is a graph G, an integer k, and a coloring function
col : E(G)→ 2[α] and the objective is to check whether there is a set S of at most k vertices in
G such that for all i ∈ [α], Gi − S is acyclic. Here, Gi = (V (G), {e ∈ E(G) | i ∈ col(e)}). In
this paper we consider the edge variant of the problem, namely, Simultaneous Feedback
Edge Set, in the realm of parameterized complexity.

In the Parameterized Complexity paradigm the main objective is to design an algorithm
with running time f(µ) · nO(1), where µ is the parameter associated with the input, n is the
size of the input and f(·) is some computable function whose value depends only on µ. A
problem which admits such an algorithm is said to be fixed parameter tractable parameterized
by µ. Typically, for edge/vertex deletion problems one of the natural parameter that is
associated with the input is the size of the solution we are looking for. Another objective in
parameterized complexity is to design polynomial time pre-processing routines that reduces
the size of the input as much as possible. The notion of such a pre-processing routine
is captured by kernelization algorithms. The kernelization algorithm for a parameterized
problem Q takes as input an instance (I, k) of Q, runs in polynomial time and returns an
equivalent instance (I ′, k′) of Q. Moreover, the size of the instance (I ′, k′) returned by the
kernelization algorithm is bounded by g(k), where g(·) is some computable function whose
value depends only on k. If g(·) is polynomial in k, then the problem Q is said to admit a
polynomial kernel. The instance returned by the kernelization is referred to as a kernel or
a reduced instance. We refer the readers to the recent book of Cygan et al. [9] for a more
detailed overview of parameterized complexity and kernelization.

A feedback edge set in a graph G is S ⊆ E(G) such that G− S is a forest. For a graph
G with a coloring function col : E(G) → 2[α], simultaneous feedback edge set is a subset
S ⊆ E(G) such that Gi − S is a forest for all i ∈ [α]. Here, Gi = (V (G), Ei), where
Ei = {e ∈ E(G) | i ∈ col(e)}. Formally, the problem is stated below.
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Simultaneous Feedback Edge Set (Sim-FES) Parameter: k, α
Input: An n-vertex graph G, an integer k and a coloring function col : E(G)→ 2[α]

Question: Is there a simultaneous feedback edge set of cardinality at most k in G

Feedback Vertex Set (FVS) is one of the classic NP-complete [13] problems and has
been extensively studied from all the algorithmic paradigms that are meant for coping with
NP-hardness, such as approximation algorithms, parameterized complexity and moderately
exponential time algorithms. The problem admits a factor 2-approximation algorithm [4],
an exact algorithm with running time O(1.7217nnO(1)) [12], a deterministic parameterized
algorithm running in O(3.619knO(1)) time [16], a randomized algorithm running in O(3knO(1))
time [10], and a kernel with O(k2) vertices [24]. Agrawal et al. [1] studied Simultaneous
Feedback Vertex Set (Sim-FVS) and gave an FPT algorithm running in time 2O(αk)nO(1)

and a kernel of size O(αk3(α+1)). Finally, unlike the FVS problem, Sim-FES is polynomial
time solvable when α = 1, because it is equivalent to finding maximal spanning forest.

Our results and approach. In Section 3 we design an FPT algorithm for Sim-FES by
reducing to α-Matroid Parity on direct sum of elongated co-graphic matroids of Gi,
i ∈ [α] (see Section 2 for definitions related to matroids). This algorithm runs in time
O(2ωkα+α log knO(1)). Unlike the vertex counterpart, we show that for α = 2 (2-edge colored
graphs) Sim-FES is polynomial time solvable. This follows from the polynomial time
algorithm for the Matroid parity problem. In Section 4 we show that for α = 3, Sim-FES
is NP-hard. Towards this, we give a reduction from the Vertex Cover in cubic graphs
which is known to be NP-hard [22]. Furthermore, the same reduction shows that the problem
cannot be solved in 2o(k)nO(1) time unless Exponential Time Hypothesis (ETH) fails [14]. We
complement our FPT algorithms by showing that Sim-FES is W[1]-hard when parameterized
by the solution size k (Section 5). When α = O(|V (G)|), we give a parameter preserving
reduction from the Hitting Set problem, a well known W[2]-hard problem parameterized by
the solution size [9]. However, Sim-FES remains W[1]-hard even when α = O(log(|V (G)|)).
We show this by giving a parameter preserving reduction from Partitioned Hitting Set
problem, a variant of the Hitting set problem, defined in [1]. In [1], Partitioned Hitting
Set was shown to be W[1]-hard parameterized by the solution size. In Section 6 we give a
kernel with O((kα)O(α)) vertices. Towards this we apply some of the standard preprocessing
rules for obtaining kernel for Feedback Vertex Set and use the approach similar to the
one developed for designing kernelization algorithm for Sim-FVS [1]. In Section 7 we give
an FPT algorithm for the problem, when parameterized by the dual parameter. Formally,
this problem is defined as follows.

Maximum Simultaneous Acyclic Subgraph (Max-Sim-Subgraph) Parameter: q
Input: An n-vertex graph G, a positive integer q and a function col : E(G)→ 2[α].
Question: Is there a subset F ⊆ E(G) such that |F | ≥ q and for all i ∈ [α], G[F ∩E(Gi)]
is acyclic?

For solving Max-Sim-Subgraph we reduce it to an equivalent instance of the α-Matroid
Parity problem. As an immediate corollary we get an exact algorithm for Sim-FES running
in time O(2ωnα2

nO(1)).

2 Preliminaries

We denote the set of natural numbers by N. For n ∈ N, by [n] we denote the set {1, . . . , n}.
For a set X, by 2X we denote the set of all subsets of X. We use the term ground set/ universe
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to distinguish a set from its subsets. We will use ω to denote the exponent in the running
time of matrix multiplication, the current best known bound for which is ω < 2.373 [25].

Graphs. We use the term graph to denote undirected graph. For a graph G, by V (G) and
E(G) we denote its vertex set and edge set, respectively. We will be considering finite graphs
possibly having loops and multi-edges. In the following, let G be a graph and let H be a
subgraph of G. By dH(v), we denote the degree of the vertex v in H, i.e, the number of
edges in H which are incident with v. A self-loop at a vertex v contributes 2 to the degree
of v. For any non-empty subset W ⊆ V (G), the subgraphs of G induced by W , V (G) \W
are denoted by G[W ] and G−W respectively. Similarly, for F ⊆ E(G), the subgraph of G
induced by F is denoted by G[F ]; its vertex set is V (G) and its edge set is F . For F ⊆ E(G),
by G− F we denote the graph obtained by deleting the edges in F . We use the convention
that a double edge and a self-loop is a cycle. An α-edge colored graph is a graph G with
a color function col : E(G) → 2[α]. By Gi we will denote the color i (or i-color) graph of
G, where V (Gi) = V (G) and E(Gi) = {e ∈ E(G)|i ∈ col(e)}. For an α-edge colored graph
G, the total degree of a vertex v is

∑α
i=1 dGi

(v). We refer the reader to [11] for details on
standard graph theoretic notations and terminologies.

Matroids and Representable Matroids. A pair M = (E, I), where E is a ground set and
I is a family of subsets (called independent sets) of E, is a matroid if it satisfies the following
conditions: (I1) φ ∈ I. (I2) If A′ ⊆ A and A ∈ I then A′ ∈ I. (I3) If A,B ∈ I and |A| < |B|,
then there is e ∈ (B \A) such that A ∪ {e} ∈ I. We refer the reader to [23] for more details.

Let A be a matrix over an arbitrary field F and let E be the set of columns of A. For A,
we define matroid M = (E, I) as follows. A set X ⊆ E is independent (that is X ∈ I) if the
corresponding columns are linearly independent over F. The matroids that can be defined by
such a construction are called linear matroids, and if a matroid can be defined by a matrix A
over a field F, then we say that the matroid is representable over F. A matroid M = (E, I)
is called representable or linear if it is representable over some field F.

Direct Sum of Matroids. Let M1 = (E1, I1), M2 = (E2, I2), . . . , Mt = (Et, It) be t
matroids with Ei ∩ Ej = ∅ for all 1 ≤ i 6= j ≤ t. The direct sum M1 ⊕ · · · ⊕Mt is a matroid
M = (E, I) with E :=

⋃t
i=1 Ei and X ⊆ E is independent if and only if X ∩ Ei ∈ Ii for

all i ∈ [t]. Let Ai be the representation matrix of Mi = (Ei, Ii) over field F. Then, a
representation matrix of M1 ⊕ · · · ⊕Mt over F can be found in polynomial time [21, 23].

Uniform Matroid. A pair M = (E, I) over an n-element ground set E, is called a uniform
matroid if the family of independent sets is given by I = {A ⊆ E | |A| ≤ k}, where k is some
constant. This matroid is also denoted as Un,k.

I Proposition 2.1 ([9, 23]). Uniform matroid Un,k is representable over any field of size
strictly more than n and such a representation can be found in time polynomial in n.

Graphic and Cographic Matroid. Given a graph G, the graphic matroid M = (E, I) is
defined by taking the edge set E(G) as universe and F ⊆ E(G) is in I if and only if G[F ] is a
forest. Let G be a graph and η be the number of components in G. The co-graphic matroid
M = (E, I) of G is defined by taking the the edge set E(G) as universe and F ⊆ E(G) is in
I if and only if the number of connected components in G− F is η.

I Proposition 2.2 ([23]). Graphic and co-graphic matroids are representable over any field
of size ≥ 2 and such a representation can be found in time polynomial in the size of the graph.
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Elongation of Matroid. Let M = (E, I) be a matroid and k be an integer such that
rank(M) ≤ k ≤ |E|. A k-elongation matroid Mk of M is a matroid with the universe as E
and S ⊆ E is a basis of Mk if and only if, it contains a basis of M and |S| = k. Observe
that the rank of the matroid Mk is k.

I Proposition 2.3 ([18]). Let M be a linear matroid of rank r, over a ground set of size n,
which is representable over a field F. Given a number ` ≥ r, we can compute a representation
of the `-elongation of M , over the field F(X) in O(nr`) field operations over F.

α-Matroid Parity. In our algorithms we use a known algorithm for α-Matroid Parity.
Below we define α-Matroid Parity problem formally and state its algorithmic result.

α-Matroid Parity Parameter: α, q
Input: A representation AM of a linear matroid M = (E, I), a partition P of E into
blocks of size α and a positive integer q.
Question: Does there exist an independent set which is a union of q blocks?

I Proposition 2.4 ([18, 21]). α-Matroid Parity can be solved in O(2ωqα||AM ||O(1)) time.

3 FPT Algorithm for Simultaneous Feedback Edge Set

In this section we design an algorithm for Sim-FES by giving a reduction to α-Matroid
Parity on the direct sum of elongated co-graphic matroids associated with graphs restricted
to different color classes.

We describe our algorithm, Algo-SimFES, for Sim-FES. Let (G, k, col : E(G)→ 2[α]) be
an input instance to Sim-FES. Recall that for i ∈ [α], Gi is the graph with vertex set as V (G)
and edge set as E(Gi) = {e ∈ E(G) | i ∈ col(e)}. Let n = |V (G)|. Note that n = |V (Gi)| for
all i ∈ [α]. Let ηi be the number of connected components in Gi. To make Gi acyclic we
need to delete at least |E(Gi)| − n+ ηi edges from Gi. Therefore, if there is i ∈ [α] such that
|E(Gi)| − n+ ηi > k, then Algo-SimFES returns No. We let ki = |E(Gi)| − n+ ηi. Observe
that for i ∈ [α], 0 ≤ ki ≤ k. We need to delete at least ki edges from E(Gi) to make Gi
acyclic. Therefore, the algorithm Alg-SimFES for each i ∈ [α], guesses k′i, where ki ≤ k′i ≤ k
and computes a solution S of Sim-FES such that |S ∩ E(Gi)| = k′i. Let Mi = (Ei, Ii) be
the k′i-elongation of the co-graphic matroid associated with Gi.

I Proposition 3.1 (∗1). Let G be a graph with η connected components and M be an r-
elongation of the co-graphic matroid associated with G, where r ≥ |E(G)| − |V (G)|+ η. Then
B ⊆ E(G) is a basis of M if and only if the subgraph G−B is acyclic and |B| = r.

By Proposition 3.1, for any basis Fi in Mi, Gi − Fi is acyclic. Therefore, our objective
is to compute F ⊆ E(G) such that |F | = k and the elements of F restricted to the
elements of Mi form a basis for all i ∈ [α]. For this we will construct an instance of
α-Matroid Parity as follows. For each e ∈ E(G) and i ∈ col(e), we use ei to denote
the corresponding element in Mi. For each e ∈ E(G), by Original(e) we denote the set of
elements {ej | j ∈ col(e)}. For each edge e ∈ E(G), we define Fake(e) = {ej | j ∈ [α]−col(e)}.
Finally, for each edge e ∈ E(G), by Copies(e) we denote the set Original(e) ∪ Fake(e). Let
Fake(G) =

⋃
e∈E(G) Fake(e). Furthermore, let τ = |Fake(G)| =

∑
e∈E(G) |Fake(e)| and

1 Proofs of results marked with (∗) can be found in the full version of the paper [2].

ISAAC 2016



5:6 Simultaneous Feedback Edge Set: A Parameterized Perspective

Algorithm 1: Pseudocode of Algo-SimFES
Input: A graph G, k ∈ N and col : E(G)→ 2[α].
Output: Yes if there is a simultaneous feedback edge set of size ≤ k and No

otherwise.
1 Let ηi be the number of connected components in Gi for all i ∈ [α]
2 ki := |E(Gi)| − n+ ηi for all i ∈ [α]
3 if there exists i ∈ [α] such that ki > k then
4 return No
5 for (k′1, . . . , k′α) ∈ ([k] ∪ {0})α such that ki ≤ k′i for all i ∈ [α] do
6 Let Mi be the k′i-elongation of the co-graphic matroid associated with Gi.
7 Let Mα+1 = Uτ,k′ over the gound set Fake(G), where, k′ =

∑
i∈[α](k − k′i).

8 Let M :=
⊕

i∈[α+1] Mi.
9 For each e ∈ E(G), let Copies(e) be the block of elements of M .

10 if there is an independent set of M composed of k blocks then
11 return Yes

12 return No

k′ =
∑
i∈[α](k − k′i). Let Mα+1 = (Eα+1, Iα+1) be a uniform matroid over the ground

set Fake(G). That is, Mα+1 = Uτ,k′ . By Propositions 2.1 to Proposition 2.3 we know
that Mis are representable over Fp(X), where p > max(τ, 2) is a prime number and their
representation can be computed in polynomial time. Let Ai be the linear representation of
Mi for all i ∈ [α + 1]. Notice that Ei ∩ Ej = ∅ for all 1 ≤ i 6= j ≤ α + 1. Let M denote
the direct sum M1 ⊕ · · · ⊕Mα+1 with its representation matrix being AM . Note that the
ground set of M is

⋃
e∈E(G) Copies(e). Now we define an instance of α-Matroid Parity,

which is the linear representation AM of M and the partition of ground set into Copies(e),
e ∈ E(G). Notice that for all e ∈ E(G), |Copies(e)| = α. Also for each i ∈ [α], rank(Mi) = k′i
and rank(Mα+1) = k′ =

∑
i∈[α](k − k′i). This implies that rank(M) = αk.

Now Algo-SimFES outputs Yes if there is a basis (an independent set of cardinality αk)
of M which is a union of k blocks in M and otherwise outputs No. Algo-SimFES uses the
algorithm mentioned in Proposition 2.4 to check whether there is an independent set of M ,
composed of blocks. A pseudocode of Algo-SimFES can be found in Algorithm 1.

I Lemma 3.2. Algo-SimFES is correct.

Proof. Let (G, k, col : E(G)→ 2[α]) be a Yes instance of Sim-FES and let F ⊆ E(G), where
|F | = k be a solution of (G, k, col : E(G)→ 2[α]). Let ki = |E(Gi)| − n+ ηi, where ηi is the
number of connected components in Gi, for all i ∈ [α]. For all i ∈ [α], let k′i = |F ∩ E(Gi)|.
Since F is a solution, ki ≤ k′i for all i ∈ [α]. This implies that Algo-SimFES will not execute
Step 4. Consider the for loop for the choice (k′1, . . . , k′α). We claim that the columns
corresponding to S =

⋃
e∈F Copies(e) form a basis in M and it is union of k blocks. Note

that |S| = αk by construction. For all i ∈ [α], let F i = {ei | e ∈ F, i ∈ col(e)}, which is
subset of ground set of Mi. By Proposition 3.1, for all i ∈ [α], F i is a basis for Mi. This
takes care of all the edges in ∪e∈FOriginal(e). Now let S∗ = S − ∪i∈[α]F

i = ∪e∈FFake(e).
Observe that |S∗| =

∑
i∈[α](k − k′i) = k′. Also, S∗ is a subset of ground set of Uτ,k′ and

thus is a basis since |S∗| = k′. Hence S is a basis of M . Note that S is the union of blocks
corresponding to e ∈ F and hence is union of k blocks. Therefore, Algo-SimFES will output
Yes.
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In the reverse direction suppose Algo-SimFES outputs Yes. This implies that there is a
basis, say S, that is the union of k blocks. By construction S corresponds to union of the
sets Copies(e) for some k edges in G. Let these edges be F = {e1, . . . , ek}. We claim that F
is a solution of (G, k, col : E(G)→ 2[α]). Clearly |F | = k. Since S is a basis of M , for each
i ∈ [α], B(i) = S ∩ {ei | e ∈ E(Gi)} is a basis in Mi. Let F (i) = {e | ei ∈ B(i)} ⊆ F . Since
B(i) is a basis of Mi, by Proposition 3.1, Gi − F (i) is an acyclic graph. J

I Lemma 3.3. Algo-SimFES runs in deterministic time O(2ωkα+α log k|V (G)|O(1)).

Proof. The for loop runs (k+1)α times. The step 10 uses the algorithm mentioned in Propos-
ition 2.4, which takes time O(2ωkα||AM ||O(1)) = O(2ωkα|V (G)|O(1)). All other steps in the al-
gorithm takes polynomial time. Thus, the total running time isO(2ωkα+α log k|V (G)|O(1)). J

Since α-Matroid Parity for α = 2 can be solved in polynomial time [19] algorithm
Algo-SimFES runs in polynomial time for α = 2. This gives us the following theorem.

I Theorem 3.4. Sim-FES is in FPT and when α = 2 Sim-FES is in P.

4 Hardness results for Sim-FES

In this section we show that when α = 3, Sim-FES is NP-Hard. Furthermore, from
our reduction we conclude that it is unlikely that Sim-FES admits a subexponential-time
algorithm. We give a reduction from Vertex Cover (VC) in cubic graphs to the special
case of Sim-FES where α = 3. Let (G, k) be an instance of VC in cubic graphs, which
asks whether the graph G has a vertex cover of size at most k. We assume without loss
of generality that k ≤ |V (G)|. It is known that VC in cubic graphs is NP-hard [22] and
unless the ETH fails, it cannot be solved in time O?(2o(|V (G)|+|E(G)|))2 [17]. Thus, to prove
that when α = 3, it is unlikely that Sim-FES admits a parameterized subexponential time
algorithm (an algorithm of running time O?(2o(k))), it is sufficient to construct (in polynomial
time) an instance of the form (G′, k′ = O(|V (G)| + |E(G)|), col′ : E′ → 2[3]) of Sim-FES
that is equivalent to (G, k). Refer Figure 1 for an illustration of the construction.

To construct (G′, k′, col′ : E(G′)→ 2[3]), we first construct an instance (Ĝ, k̂) of VC in sub-
cubic graphs which is equivalent to (G, k). We set V (Ĝ) = V (G)∪ (

⋃
{v,u}∈E(G){xv,u, xu,v}),

and E(Ĝ) = {{xv,u, xu,v} : {v, u} ∈ E(G)} ∪ (
⋃
{v,u}∈E(G){{v, xv,u}, {u, xu,v}}). That is,

the graph Ĝ is obtained from the graph G by subdividing each edge in E(G) twice.

I Lemma 4.1 (∗). G has a vertex cover of size k if and only if Ĝ has a vertex cover of size
k̂ = k + |E(G)|

Observe that in Ĝ every path between two degree-3 vertices contains an edge of the form
{xv,u, xu,v}. Thus, the following procedure results in a partition (M1,M2,M3) of E(Ĝ) such
that for all i ∈ [3], {v, u} ∈Mi and {v′, u′} ∈Mi \{{v, u}}, it holds that {v, u}∩{v′, u′} = ∅.
Initially, M1 = M2 = M3 = ∅. For each degree-3 vertex v, let {v, x}, {v, y} and {v, z} be
the edges containing v. We insert {v, x} into M1, {v, y} into M2, and {v, z} into M3 (the
choice of which edge is inserted into which set is arbitrary). Finally, we insert each edge of
the form {xv,u, xu,v} into a set Mi that contains neither {v, xv,u} nor {u, xu,v}.

We are now ready to construct the instance (G′, k′, col′ : E(G′) → 2[3]). Let V (G′) =
V (Ĝ) ∪ V ?, where V ? = {v? : v ∈ V (Ĝ)} contains a copy v? of each vertex v in V (Ĝ). The

2 O? notation suppresses polynomial factors in the running-time expression.
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Input (partial) Output (partial)

Figure 1 The construction given in the proof of Theorem 4.3.

set E(G′) and coloring col′ are constructed as follows. For each vertex v ∈ V (Ĝ), add an
edge {v, v?} into E(G′) and its color-set is {1, 2, 3}. For each i ∈ [3] and for each {v, u} ∈Mi,
add the edges {v, u} and {v?, u?} into E(G′) and its color-set is {i}. We set k′ = k̂. Clearly,
the instance (G′, k′, col′ : E(G′)→ 2[3]) can be constructed in polynomial time, and it holds
that k′ = O(|V (G)|+ |E(G)|).

Lemma 4.2 proves that (Ĝ, k̂) is a Yes instance of VC if and only if (G′, k′, col′ : E(G′)→
2[3]) is a Yes instance of Sim-FES. Observe that because of the above mentioned property
of the partition (M1,M2,M3) of E(Ĝ), we ensure that in G′, no vertex participates in
two (or more) monochromatic cycles that have the same color. By construction, each
monochromatic cycle in G′ is of the form v − v? − u? − u− v, where {v, u} ∈ E(Ĝ), and for
each edge {v, u} ∈ E(G′), where either v, u ∈ V (Ĝ) or v, u ∈ V ?, G′ contains exactly one
monochromatic cycle of this form.

I Lemma 4.2 (∗). (Ĝ, k̂) is a Yes instance of VC if and only if (G′, k′, col′ : E(G′)→ 2[3])
is a Yes instance of Sim-FES.

We get the following theorem and its proof follows from Lemma 4.1 and Lemma 4.2.

I Theorem 4.3. Sim-FES where α = 3 is NP-hard. Furthermore, unless the Exponential
Time Hypothesis (ETH) fails, Sim-FES when α = 3 cannot be solved in time O∗(2o(k)).

5 Tight Lower Bounds for Simultaneous Feedback Edge Set

We show that Sim-FES parameterized by k is W [2] hard when α = O(|V (G)|) and W [1]
hard when α = O(log(|V (G)|)). Our reductions follow the approach of Agrawal et al. [1].

W[2] Hardness of Sim-FES when α = O(|V (G)|). We give a reduction from Hit-
ting Set (HS) to Sim-FES where α = O(|V (G)|). Let (U = {u1, u2, . . . , u|U |},F =
{F1, F2, . . . , F|F|}, k) be an instance of HS, where F ⊆ 2U , which asks whether there exists
a subset S ⊆ U of size at most k such that for all F ∈ F , S ∩ F 6= ∅. It is known that HS
parameterized by k is W[2]-hard (see, e.g., [9]). Thus, to prove the result, it is sufficient to
construct (in polynomial time) an instance of the form (G, k, col : E(G)→ 2[α]) of Sim-FES
that is equivalent to (U,F , k), where α = O(|V (G)|). We construct a graph G such that
V (G) = O(|U ||F|) and the number of colors used will be α = |F|. The intuitive idea is to
have one edge per element in the universe which is colored with all the indices of sets in the
family F that contains the element and for each Fi ∈ F creating a unique monochromatic
cycle with color i which passes through all the edges corresponding to the elements it contain.
We explain the reduction formally in the next paragraph.
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Without loss of generality we assume that each set in F contains at least two elements
from U . The instance (G, k, col : E(G)→ 2[α]) is constructed as follows. Initially, V (G) =
E(G) = ∅. For each element ui ∈ U , insert two new vertices into V (G), vi and wi, add
the edge {vi, wi} into E(G) and let {j | Fj ∈ F , ui ∈ Fj} be its color-set. Now, for all
1 ≤ i < j ≤ |U | and for all 1 ≤ t ≤ |F| such that ui, uj ∈ Ft and {ui+1, . . . , uj−1} ∩ Ft = ∅,
perform the following operation: add a new vertex into V (G), si,j,t, add the edges {wi, si,j,t}
and {si,j,t, vj} into E(G) and let their color-set be {t}. Moreover, for each 1 ≤ t ≤ |F|, let ui
and uj be the elements with the largest and smallest index contained in Ft, respectively, and
perform the following operation: add a new vertex into V (G), si,j,t, add the edges {wi, si,j,t}
and {si,j,t, vj} into E(G), and let their color-set be {t}. Observe that |V (G)| = O(|U ||F|)
and that α = |F|. Therefore, α = O(|V (G)|). It remains to show that the instances
(G, k, col) and (U,F , k) are equivalent. By construction, each monochromatic cycle in G

is of the form vi1 − wi1 − si1,i2,t − vi2 − wi2 − si2,i3,t − · · · − vi|Ft| − wi|Ft| − si|Ft|,i1,t − vi1 ,
where {ui1 , ui2 , . . . , ui|Ft|} = Ft ∈ F , and for each set Ft ∈ F , G contains exactly one such
monochromatic cycle.

I Lemma 5.1 (∗). (U,F , k) is a Yes instance of HS if and only if (G, k, col : E(G)→ 2[α])
is a Yes instance of Sim-FES.

I Theorem 5.2. Sim-FES parameterized by k, when α = O(|V (G)|), is W [2]-hard.

W[1] Hardness of Sim-FES when α = O(log |V (G)|). We modify the reduction given
in the proof of Theorem 5.2 to show that when α = O(log |V (G)|), Sim-FES is W[1]-hard
with respect to the parameter k. This result implies that the dependency on α of our
O((2O(α))knO(1))-time algorithm for Sim-FES is optimal in the sense that it is unlikely that
there exists an O((2o(α))knO(1))-time algorithm for this problem.

We give a reduction from a variant of HS, called Partitioned Hitting Set (PHS), to
Sim-FES where α = O(log |V (G)|). The input of PHS consists of a universe U , a collection
F = {F1, F2, . . . , F|F|}, where each Fi is a family of disjoint subsets of U , and a parameter k.
The goal is to decide the existence of a subset S ⊆ U of size at most k such that for all f ∈
(
⋃
F∈F F ), S∩f 6= ∅. It is known that the special case of PHS where |F| = O(log(|U ||(

⋃
F)|))

is W[1]-hard when parameterized by k (see, e.g., [1]). Thus, to prove the theorem, it is
sufficient to construct (in polynomial time) an instance of the form (G, k, col : E(G)→ 2[α])
of Sim-FES that is equivalent to (U,F , k), where α = O(log |V (G)|). The construction of
the graph G is exactly similar to the one in Theorem 5.2. But instead of creating a unique
monochromatic cycle with a color i for each fi ∈

⋃
F , for each Fi ∈ F we create |Fi| vertex

disjoint cycles of same color i. Since for each F ∈ F the sets in F are pairwise disjoint,
guarantees the correctness. Formal description of the reduction is given below.

Without loss of generality we assume that each set in
⋃
F∈F F contains at least two

elements from U . The instance (G, k, col : E(G)→ 2[α]) is constructed as follows. Initially,
V (G) = E(G) = ∅. For each element ui ∈ U , insert two new vertices vi and wi into V (G),
and add the edge {vi, wi} into E(G) with its color-set being {j : Fj ∈ F , ui ∈ (

⋃
Fj)}. Now,

for all 1 ≤ i < j ≤ |U | and for all 1 ≤ t ≤ |F| such that there exists f ∈ Ft satisfying
ui, uj ∈ f and {ui+1, . . . , uj−1} ∩ f = ∅, perform the following operation: add a new vertex
si,j,t into V (G), add the edges {wi, si,j,t} and {si,j,t, vj} into E(G) with both of its color-set
being {t}. Moreover, for each 1 ≤ t ≤ |F| and f ∈ Ft, let ui and uj be the elements
with the largest and smallest index contained in f , respectively, we perform the following
operation: add a new vertex into V (G), si,j,t, add the edges {wi, si,j,t} and {si,j,t, vj} into
E(G), and let their color-set be {t}. Observe that |V (G)| = O(|U ||(

⋃
F)|) and that α = |F|.
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Since |F| = O(log(|U ||(
⋃
F)|)), we have that α = O(log |V (G)|). Since the sets in each

family Fi are disjoint, the construction implies that each monochromatic cycle in G is of
the form vi1 − wi1 − si1,i2,t − vi2 − wi2 − si2,i3,t − · · · − vi|f| − wi|f| − si|f|,i1,t − vi1 , where
{ui1 , ui2 , . . . , ui|Ft|} = f for a set f ∈ Ft ∈ F , and for each set f ∈ Ft ∈ F , G contains a
monochromatic cycle of this form. By using the arguments similar to one in the proof of
Lemma 5.1, we get that the instances (G, k, col : E(G)→ 2[α]) and (U,F , k) are equivalent.
Hence we get the following theorem.

I Theorem 5.3. Sim-FES parameterized by k, when α = O(log |V (G)|) is W [1]-hard.

6 Kernel for Simultaneous Feedback Edge Set

In this section we give a kernel for Sim-FES with O((kα)O(α)) vertices. We start by applying
preprocessing rules similar in spirit to the ones used to obtain a kernel for Feedback Vertex
Set, but it requires subtle differences due to the fact that we handle a problem where edges
rather than vertices are deleted, as well as the fact that the edges are colored (in particular,
each edge in Sim-FES has a color-set, while each vertex in Sim-FVS is uncolored). We
obtain an approximate solution by computing a spanning tree per color. We rely on the
approximate solution to bound the number of vertices whose degree in certain subgraphs of
G is not equal to 2. Then, the number of the remaining vertices is bounded by adapting the
“interception”-based approach of Agrawal et al. [1] to a form relevant to Sim-FES.

Let (G, k, col : E(G)→ 2[α]) be an instance of Sim-FES. For each color i ∈ [α] recall Gi
is the graph consisting of the vertex-set V (G) and the edge-set E(Gi) includes every edge in
E(G) whose color-set contains the color i. It is easy to verify that the following rules are
correct when applied exhaustively in the order in which they are listed. We note that the
resulting instance can contain multiple edges.

Reduction Rule 1: If k < 0, return that (G, k, col : E(G)→ 2[α]) is a No instance.
Reduction Rule 2: If for all i ∈ [α], Gi is acyclic, return that (G, k, col : E(G)→ 2[α]) is
a Yes instance.
Reduction Rule 3: If there is a self-loop at a vertex v ∈ V (G), then remove v from G

and decrement k by 1.
Reduction Rule 4: If there exists an isolated vertex in G, then remove it.
Reduction Rule 5: If there exists i ∈ [α] and an edge whose color-set contains i but
it does not participate in any cycle in Gi, remove i from its color-set. If the color-set
becomes empty, remove the edge.
Reduction Rule 6: If there exists i ∈ [α] and a vertex v of degree exactly two in G,
remove v and connect its two neighbors by an edge whose color-set is the same as the
color-set of the two edges incident to v (we prove in Lemma 6.1 that the color set of two
edges are same).

I Lemma 6.1 (∗). Reduction rule 6 is safe.

We apply Reduction Rule 1 to 6 exhaustively (in that order). The safeness of Reduction
Rules 1 to 5 are easy to see. Lemma 6.1 proves the safeness Reduction Rule 6. After this, we
follow the approach similar to that in [1] to bound the size of the instance. This gives the
following theorem.

I Theorem 6.2 (∗). Sim-FES admits a kernel with (kα)O(α) vertices.
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7 Maximum Simultaneous Acyclic Subgraph

In this section we design an algorithm for Maximum Simultaneous Acyclic Subgraph.
Let (G, q, col : E(G)→ 2[α]) be an input to Max-Sim-Subgraph. A set F ⊆ E(G) such that
for all i ∈ [α], G[Fi] is acyclic is called simultaneous forest. Here, Fi = {e ∈ F | i ∈ col(e)},
denotes the subset of edges of F which has the integer i in its image when the function col is
applied to it. We will solve Max-Sim-Subgraph by reducing to an equivalent instance of
the α-Matroid Parity problem and then using the algorithm for the same.

We start by giving a construction that reduces the Max-Sim-Subgraph to α-Matroid
Parity. Let (G, q, col : E(G)→ 2[α]) be an input to Max-Sim-Subgraph. Given, (G, q, col :
E(G) → 2[α]), for i ∈ [α], recall that by Gi we denote the graph with the vertex set
V (Gi) = V (G) and the edge set E(Gi) = {ei | e ∈ E(G) and i ∈ col(e)}. For each edge
e ∈ E(G), we will have its distinct copy in Gi if i ∈ col(e). Thus, for each edge e ∈ E(G),
by Original(e) we denote the set of edges {ej |j ∈ col(e)}. On the other hand for each edge
e ∈ E(G), by Fake(e) we denote the set of edges {ej |j ∈ [α] − col(e)}. Finally, for each
edge e ∈ E(G), by Copies(e) we denote the set Original(e) ∪ Fake(e). Let Mi = (Ei, Ii)
denote the graphic matroid on Gi. That is, edges of Gi forms the universe Ei and Ii
contains, S ⊆ E(Gi) such that Gi[S] forms a forest. By Proposition 2.2 we know that
graphic matroids are representable over any field and given a graph G one can find the
corresponding representation matrix in time polynomial in |V (G)|. Let Ai denote the linear
representation of Mi. That is, Ai is a matrix over F2, where the set of columns of Ai are
denoted by E(Gi). In particular, Ai has dimension d × |E(Gi)|, where d = rank(Mi). A
set X ⊆ E(Gi) is independent (that is X ∈ Ii) if and only if the corresponding columns
are linearly independent over F2. Let Fake(G) denote the set of edges in

⋃
e∈E(G) Fake(e).

Furthermore, let τ = |Fake(G)| =
∑
e∈E(G) |Fake(e)|. Let Mα+1 be the uniform matroid over

Fake(G) of rank τ . That is, Eα+1 = Fake(G) and Mα+1 = Uτ,τ . Let Iτ denote the identity
matrix of dimension τ × τ . Observe that, Aα+1 = Iτ denotes the linear representation of
Mα+1 over F2. Notice that Ei ∩ Ej = ∅ for all 1 ≤ i 6= j ≤ α+ 1. Let M denote the direct
sum of M1 ⊕ · · · ⊕Mα+1 with its representation matrix being AM .

Now we are ready to define an instance of α-Matroid Parity. The ground set is the
columns of AM , which is indexed by edges in

⋃
e∈E(G) Copies(e). Furthermore, the ground

set is partitioned into Copies(e), e ∈ E(G), which are called blocks. The main technical
lemma of this section on which the whole algorithm is based is the following.

I Lemma 7.1 (∗). Let (G, q, col : E(G) → 2[α]) be an instance of Max-Sim-Subgraph.
Then G has a simultaneous forest of size q if and only if (AM ,

⊎
e∈E(G) Copies(e), q) is a Yes

instance of α-Matroid Parity. Furthermore, given (G, q, col : E(G)→ 2[α]) we can obtain
an instance (AM ,

⊎
e∈E(G) Copies(e), q) in polynomial time.

We will use the polynomial time reduction provided in Lemma 7.1 to get the desired FPT
algorithm for Max-Sim-Subgraph. Towards this will use the following FPT result regarding
α-Matroid Parity for our FPT as well as for an exact exponential time algorithm.

Given an instance (G, q, col : E(G) → 2[α]) of Max-Sim-Subgraph we first apply
Lemma 7.1 and obtain an instance (AM ,

⊎
e∈E(G) Copies(e), q) of α-Matroid Parity and

then apply Proposition 2.4 to obtain the following result.

I Theorem 7.2. Max-Sim-Subgraph can be solved in time O(2ωqα|V (G)|O(1)).

Let (G, q, col : E(G) → 2[α]) be an instance of Max-Sim-Subgraph. Observe that
q is upper bounded by α(|V (G)| − 1). Thus, as a corollary to Theorem 7.2 we get an
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exact algorithm for finding the largest sized simultaneous acyclic subgraph, running in time
O(2ωnα2 |V (G)|O(1)).
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Abstract
In the Directed Feedback Vertex Set (DFVS) problem, we are given a digraph D on
n vertices and a positive integer k and the objective is to check whether there exists a set of
vertices S of size at most k such that F = D−S is a directed acyclic digraph. In a recent paper,
Mnich and van Leeuwen [STACS 2016 ] considered the kernelization complexity of DFVS with
an additional restriction on F , namely that F must be an out-forest (Out-Forest Vertex
Deletion Set), an out-tree (Out-Tree Vertex Deletion Set), or a (directed) pumpkin
(Pumpkin Vertex Deletion Set). Their objective was to shed some light on the kernelization
complexity of the DFVS problem, a well known open problem in the area of Parameterized
Complexity. In this article, we improve the kernel sizes of Out-Forest Vertex Deletion
Set from O(k3) to O(k2) and of Pumpkin Vertex Deletion Set from O(k18) to O(k3). We
also prove that the former kernel size is tight under certain complexity theoretic assumptions.
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1 Introduction

Feedback Set problems form a family of fundamental combinatorial optimization problems.
The input for Directed Feedback Vertex Set (DFVS) (Directed Feedback Edge
Set (DFES)) consists of a directed graph (digraph) D and a positive integer k, and the
question is whether there exists a subset S ⊆ V (D) (S ⊆ E(D)) such that the graph obtained
after deleting the vertices (edges) in S is a directed acyclic graph (DAG). Similarly, the
input for Undirected Feedback Vertex Set (UFVS) (Undirected Feedback Edge
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Set (UFES)) consists of an undirected graph G and a positive integer k, and the question
is whether there exists a subset S ⊆ V (G) (S ⊆ E(G)) such that the graph obtained after
deleting the vertices (edges) in S is a forest.

All of these problems, excluding Undirected Feedback Edge Set, are NP-complete.
Furthermore, Feedback Set problems are among Karp’s 21 NP-complete problems and
have been topic of active research from algorithmic [2, 4, 5, 6, 7, 8, 9, 10, 12, 13, 18, 19, 20,
22, 24, 27, 32] as well as structural points of view [17, 21, 23, 26, 28, 29, 30]. In particular,
such problems constitute one of the most important topics of research in Parameterized
Complexity [6, 8, 9, 10, 12, 13, 22, 20, 24, 27, 32], spearheading development of new techniques.
In this paper we study the parameterized complexity of restrictions of DFVS.

In Parameterized Complexity each problem instance is accompanied by a parameter k.
A central notion in this field is the one of fixed-parameter tractability (FPT). This means,
for a given instance (I, k), solvability in time f(k)|I|O(1) where f is some function of k.
Another central notion is the one of kernelization. A parameterized problem is said to admit
a kernel of size f(k) for some function f of k if there is a polynomial-time algorithm, called
a kernelization algorithm, that translates any input instance to an equivalent instance of the
same problem whose size is bounded by f(k). In case the function f is polynomial in k, the
problem is said to admit a polynomial kernel. For more information on these concepts we
refer the reader to monographs such as [16, 11].

In contrast to UFVS which admits a polynomial kernel, the existence of a polynomial
kernel for DFVS is still an open problem. The lack of progress on this question led to
the consideration of various restrictions on input instances. In particular, we know of
polynomial kernels for DFVS in tournaments as well as various generalizations [1, 3, 15].
However, the existence of a polynomial kernel for DFVS is open even for planar digraphs.
Recently, in a very interesting article, to make progress on this question Mnich and van
Leeuwen [25] considered DFVS with an additional restriction on the output rather than the
input. Essentially, the basic philosophy of their program is the following: What happens to
the kernelization complexity of DFVS when we consider subclasses of DAGs?

Mnich and van Leeuwen [25] inspected this question by considering the classes of out-
forests, out-trees and (directed) pumpkins. An out-tree is a digraph where each vertex has
in-degree at most 1 and the underlying (undirected) graph is a tree. An out-forest is a disjoint
union of out-trees. On the other hand, a digraph is a pumpkin if it consists of a source vertex
s and a sink vertex t, s 6= t, together with a collection of internally vertex-disjoint induced
directed paths from s to t. Here, all vertices except s and t have in-degree 1 and out-degree
1. The examination of the classes of out-forests and out-trees was also motivated by the
corresponding questions of UFVS and Tree Deletion Set in the undirected settings.
Formally, Mnich and van Leeuwen [25] studied the following problems.

Out-Forest Vertex Deletion Set (OFVDS) Parameter: k

Input: A digraph D and a positive integer k.
Question: Is there a set S ⊆ V (D) of size at most k such that F = D\S is an out-forest?

Out-Tree Vertex Deletion Set (OTVDS) and Pumpkin Vertex Deletion Set
(PVDS) are defined in a similar manner, where instead of an out-forest, F should be an
out-tree or a pumpkin, respectively. Mnich and van Leeuwen [25] showed that OFVDS and
OTVDS admit kernels of size O(k3) and PVDS admits a kernel of size O(k18).

Our Results and Methods. The objective of this article is to give improved kernels for
OFVDS and PVDS. In this context, we obtain the following results.
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OFVDS admits an O(k2) kernel and PVDS admits an O(k3) kernel. These results
improve upon the best known upper bounds O(k3) and O(k18), respectively.
For any ε > 0, OFVDS does not admit a kernel for of size O(k2−ε) unless coNP ⊆
NP /poly.

To get the improved kernel for OFVDS we incorporate the Expansion Lemma as well as
a factor 3-approximation algorithm for OFVDS in the kernelization routine given in [25].
The significance of this improvement also lies in the fact that we show that it is essentially
tight. Due to space constraints, the lower bound is omitted from this version of the paper.

The kernelization algorithm for PVDS given in [25] works roughly as follows. It has two
phases: (a) first it gives an O(k5) kernel for a variant of the problem where we know the
source and the sink of the pumpkin obtained after deleting the solution vertices; and (b)
in the second phase, it reduces PVDS to polynomially many instances of a variant of the
problem mentioned in the item (a) and then composes these instances to get a kernel of
size O(k18). In fact given an instance (D, k) of PVDS, the kernelization algorithm of [25]
outputs an equivalent instance (D′, k′) such that k′ = O(k18). We take a completely different
route and use “sun-flower style” reduction rules together with a marking strategy to obtain
an equivalent instance (D′, k′) such that |V (D)|+ |E(D)| = O(k3) and k′ ≤ k. We believe
the method applied in this algorithm could be useful also in other kernelization algorithms.

2 Preliminaries

We denote the set of natural numbers from 1 to n by [n], and we use standard terminology
from the book of Diestel [14] for graph-related terms which are not explicitly defined
here. A digraph D is a pair (V (D), E(D)) such that V (D) is a set of vertices and E(D)
is a set of ordered pairs of vertices. The underlying undirected graph G of D is a pair
(V (G), E(G)) such that V (G) = V (D) and E(G) is a set of unordered pairs of vertices
such that {u, v} ∈ E(G) if and only if either (u, v) ∈ E(D) or (v, u) ∈ E(D). Let D be
a digraph. For any v ∈ V (D), we denote by N−(v) the set of in-neighbors of v, that is,
N−(v) = {(u, v) | (u, v) ∈ E(D)}. Similarly, we denote by N+(v) the set of out-neighbors
of v, that is, N+(v) = {(v, u) | (v, u) ∈ E(D)}. We denote the in-degree of a vertex v by
d−(v) = |N−(v)| and its out-degree by d+(v) = N+(v). We say that P = (u1, . . . , ul) is a
directed path in the digraph D is u1, . . . , ul ∈ V (D) and for all i ∈ [l− 1], (ui, ui+1) ∈ E(D).
A collision is a triplet (u,w, v) of distinct vertices such that (u,w), (v, w) ∈ E(D).

3 Improved Kernel for Out-Forest Vertex Deletion Set

The aim of this section is to present an O(k2) kernel for OFVDS. In Section 3.1 we state
definitions and results relevant to our kernelization algorithm. Next, in Section 3.2, we design
an algorithm for OFVDS that outputs a 3-approximate solution, which will also be used by
our kernelization algorithm. Finally, in Section 3.3, we present our kernelization algorithm.

3.1 Prerequisites
We start by giving the definition of a q-expansion and the statement of the Expansion Lemma.

I Definition 1 (q-Expansion). For a positive integer q, a set of edges M ⊆ E(G) is a q-
expansion of A into B if (i) every vertex in A is incident to exactly q vertices in M , and (ii)
M saturates exactly q|A| vertices in B (i.e., there is a set of q|A| vertices in B which are
incident to edges in M).
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I Lemma 2 (Expansion Lemma [11, 31]). Let q be a positive integer and G be an undirected
bipartite graph with vertex bipartition (A,B) such that |B| ≥ q|A|, and there are no isolated
vertices in B. Then, there exist nonempty vertex sets X ⊆ A and Y ⊆ B such that there exists
a q-expansion of X into Y , and no vertex in Y has a neighbor outside X (i.e., N(Y ) ⊆ X).
Furthermore, the sets X and Y can be found in time polynomial in the size of G.

We will also need to rely on the well-known notion of l-flowers.

I Definition 3 (l-Flower). An undirected graph G contains an l-flower through v if there is
a family of cycles {C1, . . . , Cl} in G such that for all distinct i, j ∈ [l], V (Ci) ∩ V (Cj) = {v}.

I Lemma 4 ([11, 31]). Given an undirected graph G and a vertex v ∈ V (G), there is a
polynomial-time algorithm that either outputs a (k+ 1)-flower through v or, if no such flower
exists, outputs a set Zv ⊆ V (G)\{v} of size at most 2k that intersects every cycle that passes
through v in G.

3.2 Approximation Algorithm for Out-Forest Vertex Deletion Set
This section presents a 3-factor approximation algorithm for OFVDS. Given an instance of
OFVDS, let OPT be the minimum size of a solution. Formally, we solve the following.

3−Approximate Out-Forest Vertex Deletion Set (Approx-OFVDS)
Input: A DAG D.
Output: A subset X ⊆ V (D) such that D \X is an out-forest and |X| ≤ 3 ·OPT .

Given three distinct vertices u1, u2, u3 ∈ V (D), we say (u1, u2, u3) is an obstruction
if u1 and u2 are in-neighbors of u3. Observe that any solution to OFVDS (and hence,
Approx-OFVDS) must intersect any obstruction in at least 1 vertex. Moreover, it must
intersect any cycle in at least 1 vertex. These observations form the basis of this algorithm.

I Lemma 5. Approx-OFVDS can be solved in polynomial time.

Proof. Given a digraph D, the algorithm first constructs (in polynomial time) a family F of
obstructions and induced cycles in D such that the vertex sets of the entities in this family
are pairwise disjoint. To this it, it initializes F = ∅. Then, as long as there exists a vertex
v ∈ V (D) with at least two in-neighbors, u1 and u2, it inserts (v, u1, u2) into F and removes
v, u1 and u2 from F (only for the purpose of the construction of F). Once there is no vertex
v ∈ V (D) such that d−(v) ≥ 2, the digraph is a collection of directed vertex-disjoint cycles
and paths. Each of these cycles is inserted into the family F .

Let us now construct a solution, Sapp, for Approx-OFVDS. For every obstruction in F ,
we let Sapp contain each of the three vertices of this obstruction. From every cycle C in F
we pick an arbitrary vertex and insert it into Sapp. Clearly, |Sapp| ≤ 3|F|. It is now sufficient
to prove is that D \ Sapp is an out-forest. Observe that no vertex v in D \ Sapp has in-degree
at least 2, otherwise the obstruction consisting of v and two of its in-neighbors would have
been inserted into F and hence also into Sapp. Moreover, there is no directed cycle C in
D \ Sapp. Indeed, if the cycle C intersects an obstruction in F , it is clear that it cannot exist
in D \ Sapp, and otherwise it would have been inserted into F and hence one of its vertices
would have been inserted into Sapp. We thus conclude that the theorem is correct. J

3.3 Kernelization algorithm for Out-Forest Vertex Deletion Set
We are are now ready to present our kernelization algorithm. Let (D, k) be an instance of
OFVDS. We note that during the execution of our algorithm, D may become a multigraph.
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Preprocessing. We start by applying the following reduction rules exhaustively, where a
rule is applied only if its condition is true and the conditions of all of the preceding rules are
false. Rule 4 is given in [25], and its correctness is proven in that paper. It will be clear that
the other first five rules can be applied in polynomial time, while for the last rule, we call
the algorithm given by Lemma 4. Moreover, it is straightforward to verify that each of these
rules, except Rule 4, is safe (i.e., the instance it returns is equivalent to the input instance).

I Reduction Rule 1. If there exists a vertex v ∈ V (D) such that d+(v) = 0 and d−(v) ≤ 1,
remove v from D.

I Reduction Rule 2. If there exists a directed path P = (w0, w1, . . . , wl, wl+1) in D such
that l ≥ 2 and for all i ∈ [l], d−(wi) = d+(wi) = 1, remove each vertex in {w1, . . . , wl−1}
from D and add the edge (w0, wl) to D.

I Reduction Rule 3. If there exists an edge (u, v) ∈ E(D) with multiplicity at least 3, remove
all but two copies of it.

I Reduction Rule 4. If there exist collisions (u1, w1, v), . . . , (uk+1, wk+1, v) that pairwise
intersect only at v, remove v from D and decrease k by 1.

I Reduction Rule 5. If there exists a vertex v ∈ V (D) such that d−(v) ≥ k + 2, remove v
from D and decrease k by 1.

I Reduction Rule 6. Let G be the underlying graph of D. If there exists a vertex v ∈ V (G)
such that there is a (k + 1)-flower through v in G, remove v from D and decrease k by 1.

Bounding Out-Degrees. Next, we aim to bound the maximum out-degree of a vertex in
D. To this end, suppose that there exists a vertex v ∈ V (D) with d+(v) ≥ 16k + 1. Let
G be the underlying graph of D. Since Reduction Rule 6 is not applicable, we let Zv be
the set obtained by calling the algorithm given by Lemma 4. Moreover, we let Sapp be a
3-factor approximate solution obtained be calling the algorithm given by Theorem 5. We
can assume that |Sapp| ≤ 3k, since otherwise the input instance is a NO-instance. Denote
Xv = (Sapp ∪ Zv) \ {v}. Since |Zv| ≤ 2k, we have that |Xv| ≤ 5k.

We proceed by examining the set Cv = {C1, C2, . . . , C|Cv|} of the connected components in
G\ (Xv ∪{v}). Since Sapp is an approximate solution, each component Ci ∈ Cv is an out-tree.
Moreover, for any component Ci ∈ Cv, v has at most one neighbor in Ci, since otherwise there
would have been cycle passing through v in G\Zv, contradicting the definition of Zv. For each
component Ci ∈ Cv, let ui be the root of Ci. Let Dv = {Ci | Ci ∈ Cv, (v, ui) ∈ E(D)} and
D̃v = {Ci | Ci ∈ C, (v, u) ∈ E(D), u ∈ Ci, u 6= ui}. Observe that d+(v) ≤ |Dv|+ |D̃v|+ |Xv|.
Moreover, since Reduction Rule 4 is not applicable, |D̃v| ≤ k + 1. Since d+(v) ≥ 16k + 1,
we have that |Dv| ≥ 10k. Without loss of generality, let Dv = {C1, . . . , Cp} where p = |Dv|.
Since Reduction Rule 1 is not applicable, for any component Ci ∈ Dv there exists an edge in
E(G) with one endpoint in Ci and the other in Xv.

We now construct an auxiliary (undirected) bipartite graph H with bipartition (A,B),
where A = Xv and B is a set of new vertices denoted by b1, . . . , bp. For any u ∈ A and
bi ∈ B, (u, bi) ∈ E(H) if and only if there exists an edge in G between u and some vertex
in Ci. Since |B| ≥ 2|A| and there are no isolated vertices in B, we can use the algorithm
given by Lemma 2 to obtain nonempty vertex sets X ′v ⊆ A and Y ′v ⊆ B such that there is a
2-expansion of X ′v into Y ′v and N(Y ′v) ⊆ X ′v. Let D′v = {Ci | bi ∈ Y ′v}.

I Reduction Rule 7. Remove each of the edges in D between v and any vertex in a component
in D′v. For every vertex xi ∈ X ′v, insert two copies of the edge (v, xi) into E(D).
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I Lemma 6. Reduction Rule 7 is safe.

Proof. Let D′ be the graph resulting from the application of the rule. We need to prove
that (D, k) is a YES-instance if and only if (D′, k) is a YES-instance.

Forward Direction. For the forward direction, we first claim that if (D, k) has a solution S
such that v 6∈ S, then it has a solution S′ such that X ′v ⊆ S′. To this end, suppose that (D, k)
has a solution S such that v 6∈ S. Let S′ = (S \

⋃
Ci∈D′

v
V (Ci))∪X ′v. It holds that |S′| ≤ |S|

since for each x ∈ X ′v \ S, at least one vertex from at least one of the two components in
its expansion set must belong to the solution. Suppose for the sake of contradiction that
F = D \ S′ is not an out-forest. First, assume that there exists a vertex in F with in-degree
at least 2. Note that V (D) =

⋃
Ci∈Cv

V (Ci) ∪Xv ∪ {v}. Recall that the neighborhood of
each of the vertices in the connected components that belong to D′v is contained in {v} ∪X ′v.
Moreover, v only has out-neighbors in the components that belong to D′v and each Ci ∈ Cv is
an out-tree. Therefore, since D \S has no vertex of in-degree at least 2, so does D \S′. Now,
assume that there is a cycle C in F . Then, if V (C)∩ (S ∩

⋃
Ci∈D′ V (Ci)) = ∅, then C is also

a cycle in D \ S, which is a contradiction. Thus, V (C) ∩ (S ∩
⋃
Ci∈D′ V (C)i) 6= ∅. However,

any cycle that passes through a component in D′v also passes through v and a vertex in X ′v.
Since X ′v ⊆ S′, no such cycle exists. This finishes the proof of the claim.

Let S be a solution to (D, k). If v ∈ S, then it is clear that D′ \ S is an out-forest.
Otherwise, if v 6∈ S, our claim implies that (D, k) has a solution S′ such that X ′v ⊆ S′. Then,
D′ \ S′ is an out-forest.

Backward Direction. For the backward direction, let us prove the following claim. If (D′, k)
has a solution S such that v 6∈ S, then X ′v ⊆ S. Suppose, by way of contradiction, that the
claim is incorrect. Then, there exists x ∈ X ′v such that x 6∈ S. However, this implies that
D′ \ S is not an out-forest as it contains the double edges (v, xi).

Now, let S be a solution to (D′, k), and denote F = D′ \ S. Suppose v ∈ S. Then,
F = D \ S is an out forest and thus S is solution to (D, k). If v 6∈ S, then by our previous
claim, X ′v ⊆ S. Observe that each vertex ui 6∈ S is a root in F . Moreover, each such vertex
ui and v belong to different out-trees of F . This implies that if we add (to D′) the edges
between v and each vertex ui that have been removed by the application of the rule, F will
remain an out-forest. Thus, S is a solution to (D, k). J

After an exhaustive application of Reduction Rule 7, the out-degree of each vertex in D is
at most 16k. However, since this rule inserts edges into E(G), we need the following lemma.

I Lemma 7 (*1). The total number of applications of the reduction rules is bounded by a
polynomial in the input size.

Correctness. By relying on counting arguments as well as Lemmas 6 and 7, we obtain the
main result of this section.

I Theorem 8 (*). OFVDS admits an O(k2)-kernel.

We also prove that the size of the kernel given in Theorem 8 is tight, that is OFVDS
does not admit an O(k2−ε) size kernel unless coNP ⊆ NP/poly. This result follows from
an easy polynomial time parameter preserving transformation from the Vertex Cover
problem parameterized by the solution size to OFVDS.

1 Due to space constraints, proofs of results marked with (*) were omitted.
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4 Improved Kernel for Pumpkin Vertex Deletion Set

In this section we prove the following theorem.

I Theorem 9. PVDS admits an O(k3)-vertex kernel.

Let (D, k) be an instance of PVDS. We assume that |V (D)| ≥ k3, else we are done. Let
HO = {v ∈ V | d+(v) ≥ k + 2} and HI = {v ∈ V | d−(v) ≥ k + 2}. That is, HO and HI
are vertices of high out-degrees and high in-degrees, respectively. Mnich and Leeuwen [25]
proved that the following reduction rule is safe.

I Reduction Rule 4.1. If |HO| > k + 1 or |HI| > k + 1, return that (D, k) is a NO-instance.

For the sake of clarity, we divide the presentation of the kernelization algorithm into
two subsections. At the end of Section 4.1, we will simplify the instance in a way that will
allow us to assume that if there is a solution S, then both the source and sink of the pumpkin
D \ S belong to HO ∪ HI (Assumption 17). This assumption will be at the heart of the
“marking approach” of Section 4.2, which will handle instances which have been reduced with
respect to the reduction rules in Section 4.1. An intuitive explanation of the necessity of
our marking process is given at the beginning of Section 4.2. Throughout this section, if k
becomes negative, we return that (D, k) is a NO-instance, and if D becomes a pumpkin and
k is positive or zero, we return that (D, k) is a YES-instance.

4.1 Simplification Phase
For any v ∈ V (D), denote by Xv the set of in-neighbors of v, that is, Xv = N−(v) and
by Yv the set of every vertex y ∈ V (D) for which there exists a vertex x ∈ Xv such that
(x, y) ∈ E(D). Note that Xv and Yv may or may not be disjoint sets. We now give a
construction of an auxiliary graph that will be used to prove the safeness of the upcoming
reduction rule. For this, consider a set Y ′v of new vertices such that there is exactly one
vertex y′ ∈ Y ′v for any y ∈ Yv. That is, Y ′v is a set containing a copy for each of the vertex
in Yv. By construction, Xv and Y ′v are disjoint sets. Let H−v be the (undirected) bipartite
graph on the vertex set Xv ∪ Y ′v where for all x ∈ Xv and y′ ∈ Y ′v , {x, y′} ∈ E(H−v ) if and
only if (x, y) ∈ E(D). Let match−(v) be the size of a maximum matching in H−v .

I Reduction Rule 4.2. If there exists a vertex v ∈ V (D) such that match−(v) > 2(k + 1),
remove v from D and decrease k by 1.

I Lemma 10. Reduction Rule 4.2 is safe.

Proof. For the backward direction, trivially if S is a pumpkin deletion set in D \ {v} of
size at most k − 1, then S ∪ {v} is a pumpkin deletion set in D of size at most k. For
the forward direction, it is sufficient to show that if (D, k) is a YES-instance then every
solution S contains v. For a contradiction, assume that there exists a solution S that does
not contain v. Let M be a maximum matching in the graph H−v . Observe that for every
edge {x, y′} ∈M where x ∈ Xv, if x is not the source of the pumpkin D \ S, it holds that
|S ∩ {x, y}| ≥ 1 (otherwise the pumpkin D \ S contains a vertex, which is not its source, and
has at least two out-neighbors). Moreover, for every edge {x, y′} ∈ M where x ∈ Xv, if y
is the source of the pumpkin D \ S, it holds that x ∈ S. We thus deduce that for all but
one of the edges {x, y′} ∈M , we have that |S ∩ {x, y}| ≥ 1. Since M is a matching, for every
vertex u ∈ S, the vertex u can belong to at most one edge in M , and the vertex u′ (if it
belongs to Y ′v) can also belong to at most one edge in M . However, |S| ≤ k, and therefore
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S ∪ {y′ ∈ Y ′v : y ∈ S} can intersect at most 2k edges in M . Since S ∪ {y′ ∈ Y ′v : y ∈ S} must
intersect all but one edge of M and |M | > 2(k + 1), we obtain a contradiction. J

Now, to present the symmetric rule, for any vertex v ∈ V (D), denote by Xv the set of
out-neighbors of v, that is, Xv = N+(v). Let Yv be the set of vertices y ∈ V (D) for which
there exists a vertex x ∈ Xv such that (y, x) ∈ E(D). Let Y ′v be a set containing a copy y′
of each vertex y ∈ Y . Let H+

v be the bipartite graph on the vertex-set Xv ∪ Y ′v which for all
x ∈ Xv and y′ ∈ Y ′v contains the edge {x, y′} if and only if (y, x) ∈ E(D). Let match+(v) be
the size of a maximum matching in H+

v . Then, the following reduction rule is safe.

I Reduction Rule 4.3. If there exists a vertex v ∈ V (D) such that match+(v) > 2(k + 1),
remove v from D and decrement k by 1.

We also need the following rule, proved by Mnich and Leeuwen [25].

I Reduction Rule 4.4. Let P = (w0, · · · , w`) be an induced directed path, that is for all
i ∈ [l − 1] d−(wi) = d+(wi) = 1, with ` > k + 2 in D. Then, delete w1 from D and add the
edge (w0, w2).

Consider some hypothetical solution S (if such a solution exists). Let s and t denote
the source and sink, respectively, of the pumpkin D \ S. Let A (or B) denote the set of
out-neighbors (resp. in-neighbors) of s (resp. t) in the pumpkin. Clearly, |A| = |B|. Let
C = V (D) \ (S ∪A ∪B ∪ {s, t}). Next, we prove a series of useful claims relating to S.

I Lemma 11 (*). (i) Every vertex in {s} ∪A ∪B ∪ C has in-degree (in D) at most k + 1,
and (ii) every vertex in {t} ∪A ∪B ∪ C has out-degree (in D) at most k + 1.

I Lemma 12 (*). For any vertex v ∈ V (D), |N−(v) ∩ C|, |N+(v) ∩ C| ≤ 2(k + 1).

The set of in-neighbors (or out-neighbors) of any vertex v ∈ V (D) is contained in
A ∪B ∪ C ∪ S ∪ {s, t}. Since |A| ≤ d+(s), |B| ≤ d−(t) and |S| ≤ k, Lemma 12 gives us the
following corollary.

I Corollary 13. For any vertex v ∈ V (D), d−(v), d+(v) ≤ 3k + d+(s) + d−(t) + 4.

We further strengthen this corollary to obtain the following result.

I Lemma 14 (*). For any vertex v ∈ V (D), d−(v), d+(v) ≤ min{4k + 2d+(s) + 4, 4k +
2d−(t) + 4}.

Let M = maxv∈V (D){d+(v), d−(v)}. The next corollary (derived from Lemma 14) and
rule will bring us to the main goal of this subsection, summarized in Assumption 17 below.

I Corollary 15 (*). If M > 6k + 6, then s ∈ HO and t ∈ HI.

I Reduction Rule 4.5. If |V (D)| > 2k2M + 4kM + k + 2, return (D, k) is a NO-instance.

I Lemma 16 (*). Reduction Rule 4.5 is safe.

By Rule 4.5, if M ≤ 6k+ 6, we obtain the desired kernel. Thus, by Corollary 15, we have
the following observation.

I Assumption 17. From now on, we can assume that if a solution exists, in the resulting
pumpkin the source belongs to HO and the target belongs to HI.

Next, it will be convenient to assume that HI and HO are disjoint sets. To this end, we
apply the following rule exhaustively, where safeness follows directly from Lemma 11.
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I Reduction Rule 4.6. Remove all vertices in HI ∩HO and decrease k by |HI ∩ HO|.

We will also assume that the following rule has been applied exhaustively. This assumption
will be used at the end of the following subsection (in the proof of Lemma 25).

I Reduction Rule 4.7. If there exists a vertex v 6∈ HI∪HO such that N−(v)∩(V (D)\HI) = ∅
or N+(v) ∩ (V (D) \ HO) = ∅, delete v from D and decrease k by 1.

I Lemma 18 (*). Reduction Rule 4.7 is safe.

4.2 Marking Approach
We are now ready to present our marking approach, handling instances to which Assump-
tion 17 applies and none of the rules in Section 4.1 is applicable. Let P∗ is the set of connected
components in D \ (HO ∪ HI) that are directed paths whose internal vertices have in-degree
1 and out-degree 1 in D, and let V ∗ be the union of the vertex-sets of the paths in P∗. It
turns out that by relying on Lemma 12 and Rule 4.4, one can directly bound the number
of vertices in V (D) \ V ∗ by O(k3), assuming that the input instance is a YES-instance (see
the proof of Lemma 23). However, bounding the size of V ∗ is more tricky, and our marking
process is devoted to this cause. In this process, we will mark O(k3) vertices from V ∗, and
prove that because we are handling instances to which Assumption 17 applies, all of the
vertices that are not marked are essentially irrelevant. We will perform two “rounds” of
marking. Roughly speaking, for each pair of vertices in HO (or HI) the first round aims to
capture enough vertices of paths that describe the relation between the vertices in this pair,
or, more precisely, why one of the vertices of the pair is a “better choice” than the other
when one should decide which vertex (from HO) is the source of the pumpkin. However, this
round is not sufficient, since some vertices in HO (or HI) have conflicts (independent of the
other vertices in HO ∪ HI) relating to the endpoints of the paths in P∗. In the second round
of marking, for each vertex in HO ∪ HI, we mark enough vertices from these problematic
paths.

First Round of Marking. Towards the performance of the first round, we need the following
notations. For each vertex v ∈ V (D) \ (HI ∪ HO), let P̂ (v) denote the connected component
in D \ (HI∪HO) containing v. For each s ∈ HO, let N̂(s) denote the set of each out-neighbor
v ∈ V (D) \ (HI ∪ HO) of s such that P̂ (v) ∈ P∗ and the first vertex of (the directed path)
P̂ (v) is v. Symmetrically, for each t ∈ HI, let N̂(t) denote the set of each in-neighbor
v ∈ V (D) \ (HI∪HO) of t such that P̂ (v) ∈ P∗ and the last vertex of P̂ (v) is v. By Rule 4.6,
HI ∩ HO = ∅, and therefore these notations are well defined (i.e., we have not defined N̂

twice for the same vertex). Given u ∈ (HI ∪ HO), we also denote P̂(u) = {P̂ (v) | v ∈ N̂(u)}.
Observe that the paths in P̂(u) are pairwise vertex-disjoint.

Next, we identify enough vertices from paths that capture the relation between each pair
of vertices in HO (or HI). For each pair (s, s′) ∈ HO× HO, let M̂KP (s, s′) be an arbitrarily
chosen set of minimal size of paths from P̂(s) \ P̂(s′) that together contain at least k + 1
vertices not having s′ as an in-neighbor. In this context, observe that only the last vertex on
a path in P̂(s) \ P̂(s′) can have s′ as an in-neighbor. In this case, the path must contain at
least two vertices (since its first vertex cannot have s′ as an in-neighbor), and while we insert
the entire path into M̂KP (s, s′), its last vertex is not “counted” when we aim to obtain at
least k + 1 vertices not having s′ as an in-neighbor. If there are not enough paths to obtain
at least k + 1 such vertices, let M̂KP (s, s′) = P̂(s) \ P̂(s′). Symmetrically, for each pair
(t, t′) ∈ HI × HI, let M̂KP (t, t′) be an arbitrarily chosen set of minimal size of paths from
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P̂(t) \ P̂(t′) that together contain at least k + 1 vertices not having t′ as an out-neighbor. If
there are not enough paths, let M̂KP (t, t′) = P̂(t) \ P̂(t′).

Finally, given a pair (v, v′) ∈ (HO× HO) ∪ (HI× HI), let M̂K(v, v′) denote the union of
the vertex-sets of the paths in M̂KP (v, v′). We have the following claim.

I Lemma 19 (*). For each pair (v, v′) ∈ (HO× HO) ∪ (HI× HI), |M̂K(v, v′)| ≤ 3(k + 1).

Second Round of Marking. We proceed to the second round of marking. For this purpose,
we need the following notation. For each u ∈ HI ∪ HO, let M̃KP (u) denote the set of each
directed path in P∗ whose first and last vertices are both neighbors of u.

I Reduction Rule 4.8. If there exists u ∈ HI ∪ HO such that |M̃KP (u)| > k + 1, delete u
from D and decrease k by 1.

I Lemma 20 (*). Reduction Rule 4.8 is safe.

For each u ∈ HI∪HO, let M̃K(u) be the union of the vertex-sets of the paths in M̃KP (u).
Since at this point, Rules 4.4 and 4.8 are not applicable, we have the following lemma.

I Lemma 21. For each u ∈ HI ∪ HO, |M̃K(u)| ≤ (k + 1)(k + 2).

The Size of the Kernel. For the sake of abbreviation, we define the following sets.
MKP = (

⋃
(u,u′)∈(HO×HO)∪(HI∪HI) M̂KP (u, u′)) ∪ (

⋃
u∈HO∪HI M̃KP (u)), and

MK = (
⋃

(u,u′)∈(HO×HO)∪(HI∪HI) M̂K(u, u′)) ∪ (
⋃
u∈HO∪HI M̃K(u)).

By Lemmas 19 and 21, and since Rule 4.1 is not applicable, we bound |MK| as follows.

I Lemma 22. |MK| ≤ 2 · (3(k + 1)3 + (k + 1)2(k + 2)) ≤ 8(k + 2)3.

Let V R denote the set of unmarked vertices in V ∗, i.e., V ∗ \MK. We construct the
graph D′ by removing from D all of the vertices in V R, adding a set Nk+2 of k + 2 new
vertices, and for each of the new vertices, adding an edge from each vertex in HO as well as
an edge to each vertex in HI. If V (D′) contains at most 2k + 4 vertices, add to it one-by-one
a vertex-set of a path in P∗ until its size becomes at least 2k + 5 (by Lemma 4.4, the size
will not exceed 3k + 6, and because |V (D)| ≥ k3, we will reach the desired size).

I Lemma 23 (*). If |V (D′)| > 30(k + 2)3, (D′, k) is a NO-instance of PVDS.

Correctness. Finally, Theorem 9 follows from Lemma 23 and the two lemmas below.

I Lemma 24 (*). If (D, k) is a YES-instance then (D′, k) is a YES-instance.

I Lemma 25. If (D′, k) is a YES-instance then (D, k) is a YES-instance.

Proof. Let S be a solution to (D′, k). Let s and t be the source and target, respectively,
of the pumpkin D′ \ S. Because of the set Nk+2 of k + 2 vertices added to D′ at its
construction, and since |S| ≤ k, s ∈ HO and t ∈ HI. Moreover, by the definition of HO and
HI, (HO ∪ HI) \ {s, t} ⊆ S. We can also assume that S does not contain any vertex added to
D′ at its construction since by removing such a vertex from S, we still have a pumpkin. Our
goal will be to show that S is also a solution to (D, k), which will imply that the lemma is
correct. To this end, we will show that D \ S is a pumpkin with source s and sink t.

First, note that we can assume that in D \ S there exists a path from s to t. Indeed, if
this is not true, then D′ \ S consists only of s, t and newly added vertices. That is, V (D′)
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contains at most 2k + 4 vertices, which contradicts its construction. By the definition of P∗,
each path in P∗ has only internal vertices that have in-degree 1 and out-degree 1 in D , and
its endpoints can only be adjacent to vertices in HI ∪ HO and in the path itself. Thus, to
prove the lemma, it is sufficient to show that for each path in P∗ \MKP , its first vertex has
s as an ingoing neighbor, its last vertex has t as an out-neighbor, and if it contains at least
two vertices, its first vertex is not a neighbor of t and its last vertex is not a neighbor of s.

Consider some path P ∈ P∗ \MKP . First suppose, by way of contradiction, that the
first vertex v of P does not have s as an in-neighbor. Because Rule 4.7 is not applicable,
v has at least one in-neighbor s′ ∈ HO. Thus, since v /∈ MK, MK(s′, s) contains at least
k + 1 vertices that are not out-neighbors of s and such that each of them belongs to a path
in P∗ whose first vertex is not an out-neighbor of s. The vertices in MK(s′, s) belong to
D′. Since |S| ≤ k, at least one of these vertices, say some u, should belong to the pumpkin
D′ \ S. However, in D′ \ ((HI ∪ HO) \ {s}), which is a supergraph of D′ \ S, u cannot be
reached from s, which contradicts the fact that D′ \ S is a pumpkin. Symmetrically, it is
shown that the last vertex of P has t as an out-neighbor.

Now assume that P contains at least two vertices. Suppose, by way of contradiction,
that the first vertex of P has t as a neighbor. We have already shown that the last vertex of
P is also a neighbor of t, and therefore P ∈ M̃KP (t). However, M̃KP (t) ⊆ MKP , which
contradicts the fact that P ∈ P∗ \MKP . Symmetrically, it is shown that the last vertex of
P does not have s as a neighbor, concluding the proof of the lemma. J
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Abstract
Motivated by the increasing popularity of electric vehicles (EV) and a lack of charging stations
in the road network, we study the shortest path hitting set (SPHS) problem. Roughly speaking,
given an input graph G, the goal is to compute a small-size subset H of vertices of G such that
by placing charging stations at vertices in H, every shortest path in G becomes EV-feasible, i.e.,
an EV can travel between any two vertices of G through the shortest path with a full charge. In
this paper, we propose a bi-criteria approximation algorithm with running time near-linear in
the size of G that has a logarithmic approximation on |H| and may require the EV to slightly
deviate from the shortest path. We also present a data structure for computing an EV-feasible
path between two query vertices of G.
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1 Introduction

Motivation. Electric vehicles (EVs) are becoming increasingly popular as we transition
from fossil fuels to cleaner energy. One of the main challenges in the popularization of EVs
is the lack of charging facilities in the road network. Ideally, one should be able to reach
a charging station quickly anywhere on the road network, as in the case of gas stations.
However, due to resource constraints and the relatively small fraction of EVs currently on
the road, it is desirable to first build a small number of charging stations to satisfy the most
basic transportation needs of EV owners. One natural such need is that an EV, with an
initial full charge, should be able to travel between any two locations via the shortest path
without draining the battery. In other words, any shortest path in the road network contains
sufficient number of charging stations. We study the problem of placing the minimum number
of charging stations to satisfy the above condition.
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7:2 An Efficient Algorithm for Placing Electric Vehicle Charging Stations

Figure 1 Illustration of the definition of highway dimension: a ball of radius r, and three vertices
that intersect all shortest paths within the ball whose lengths are Ω(r).

Problem statement. The input consists of a graph G = (V,E) of n = |V | vertices and
m = |E| edges, which represents a road network, and a positive length function `(·) on the
edges in E. We assume that an EV can travel a fixed distance r (e.g., 200km) in G with a
full charge. More sophisticated models have been proposed for the battery capacity, which
not only consider the distance but also the topography of the underlying terrain. But we use
this simpler model because the problem is challenging even in this model and furthermore,
on realistic terrains the EV will travel distance in the range [ rc , cr], for some small constant
c ≥ 1, with a full charge. For any two vertices u, v ∈ V , let πG(u, v) denote the shortest
path from u to v in graph G; it is abbreviated π(u, v) when there is no ambiguity. For
convenience, we set µ(u, v) := `(π(u, v)). For a subset X ⊆ V and a vertex v ∈ V , let
µ(v,X) := minx∈X µ(v, x).

Given a set X of vertices, a path P is said to be hit by X if X contains an interior
vertex of P — a vertex of P other than its starting and ending vertices. We say a path P
is r-EV-feasible with respect to X (charging stations) if every contiguous subpath of P of
length more than r is hit by X. An r-shortest-path hitting set (r-SPHS) of G is a subset
H ⊆ V such that for all u, v ∈ V , π(u, v) is r-EV-feasible with respect to H. Similarly, given
δ ∈ (0, 1), a δ-approximate r-SPHS of G is a subset H̃ ⊆ V such that for all u, v ∈ V , there
exists an r-EV-feasible path P (with respect to H̃) between u, v with `(P ) ≤ (1 + δ)µ(u, v).
The goal of the shortest-path hitting-set (SPHS) problem is to compute a minimum-size
r-SPHS of G. In the rest of the paper, for simplicity, we may leave out parameter r and just
write SPHS and EV-feasible.

The problem of computing minimum number of charging stations reduces to an instance
of the classical hitting-set problem, and is NP-complete by a simple reduction from the
vertex-cover problem. Since we are not aware of a proof of the NP-completeness in the
literature, we describe the details of the reduction in Section 2. We propose an efficient
approximation algorithm for the SPHS problem that exploits the structure of road networks.

Related work. In the last few years, there has been extensive work on a variety of optim-
ization problems on road networks, which are modeled as “sparse” graphs with additional
structural properties. In particular, Abraham et al. [3, 1, 2] introduced the notion of highway
dimension to give provable guarantees of efficiency for many popular shortest-path heuristics,
such as reach, contraction hierarchies, and transit node; see also [6]. Roughly speaking, the
graph G has highway dimension h if, for any x > 0 and any vertex v ∈ V , there exist h
vertices that intersect all shortest paths of length at least x that are within O(x) distance of
v. See Figure 1 for illustration and Section 2 for the definition. Abraham et al. argued that
real-world road networks have small highway dimension.

Storandt and Funke [21] formulated the problem of placing minimum number of charging
stations such that there exists some EV-feasible path between any two vertices. They gave a
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polynomial-time algorithm that achieves O(logn) approximation. However, the EV-feasible
path computed by their algorithm can be much longer than the shortest path. This drawback
was addressed by Funke et al. [13]. They require the shortest path between any two vertices
to be EV-feasible. They modeled the problem as a hitting-set problem (defined in Section 2),
and obtained an O(logn) approximation using a greedy algorithm. Constructing the hitting
set instance requires computing as many as O(n2) shortest paths, and can take O(n3) time in
the worst case, which is formidable when the road network is large. Funke et al. [13] applied
a number of techniques to speed up the computation, but without provable guarantees of
the running time and approximation.

Several variants of the SPHS problem have been studied. For example, the road network
may be small so that one can always drive from one location to another without recharging.
In these cases, the charging stations are placed to satisfy other constraints. For example,
Xiong et al. [26] take EV drivers’ behavior into consideration and compute a set of charging
stations in Singapore that optimizes the equilibrium utility of a congestion game. There are
other optimization criteria considered in the literature, such as charging demand coverage
[11] and EV access cost [22].

Another set of literature study the EV routing problem. Baum et al. [7] gave an algorithm
that plans routes minimizing overall trip time, including time for necessary rechargings on
the way. Their model allows the charging time to be a function of the remaining battery
level. Goodrich and Pszona [14] formulated a bi-criteria path optimization problem, where
two objectives (e.g., travel time and energy cost) are optimized, and their algorithm outputs
a path that optimizes one objective before reaching some vertex and switches to the other
objective afterwards. See also [8, 19] for work on computing energy-efficient paths.

As discussed above, the SPHS problem is an instance of the hitting-set problem, one of
the twenty-one problems in Karp’s original list of NP-complete problems [17]. The natural
greedy algorithm that chooses the element that hits the most remaining sets gives an O(logn)
approximation [9], which is optimal up to o(1) factor unless P=NP [10]. For geometric
instances, however, where the input consists of points and shapes (e.g., disks, rectangles),
better approximation guarantees can be obtained. For example, a PTAS exists when the
shapes are half-spaces in R3 [18] and O(log log opt) approximation can be obtained when the
shapes are axis-parallel rectangles [5]. Recently, Agarwal and Pan [4] gave near-linear-time
approximation algorithms for computing hitting set and set cover of many geometric instances.
The hitting-set problem has also been used to compute a subset of vertices that intersect
every path [12] or every shortest path [23] that contains at least k vertices.

Our result. We present a bi-criteria approximation algorithm for the SPHS problem by
allowing an EV to slightly deviate from the shortest path. Our result is summarized as
follows.

I Theorem 1. Let G = (V,E), ` : V → R+ be a weighted graph of constant highway dimen-
sion h, with |V | = n and |E| = O(|V |). Let r > 0 and δ ∈ [ 10α

r , 2
15 ] be two parameters where

α = maxe∈E `(e), and let κ be the size of a smallest r-SPHS of G. A δ-approximate r-SPHS
H̃ ⊆ V of size O(κ log κ) can be computed in randomized expected time O(cδn log2 n log κ),
where cδ = h− log2 δ.

In this paper, we assume 10α/r ≤ δ ≤ 2/15, where the constants 10 and 2/15 are chosen
for convenience of the analysis. Since G represents a road network, the length of a road edge
in E is much smaller than the range of an average EV. Hence, 10α/r � 1 and δ can be set
to a small constant under the assumption. We also assume |E| = O(|V |) since G represents
a road network and the average degree of a vertex is usually small.
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At a high level, we improve the running time from O(n3) to near linear by relaxing
the shortest-path requirement slightly. The algorithm works in two stages. The first stage
computes a small set C of “center” vertices such that there exists a path between any pair
of vertices in G that is not much longer than the shortest path and can be decomposed
into shortest paths between center vertices, called critical paths. Furthermore, C is a δ-
approximate r-SPHS, but the size of C may be much larger than κ. The second stage chooses
a smaller δ-approximate r-SPHS. In particular, it computes a small-size hitting set for the
critical paths. With the assumption that G has constant highway dimension, we show that
the number of center vertices is small, and the optimal hitting set for the critical paths has
similar size as the optimal SPHS. The algorithm uses the framework in [4], together with the
dynamic trees [20] data structure, to efficiently compute a hitting set for critical paths.

Finally, we describe a data structure for the feasible path queries that, given two query
vertices u, v, computes in O(κ log2 κ) time the sequence of charging stations on an r-EV-
feasible path P between u, v with `(P ) ≤ (1 + δ)µ(u, v). The actual path in G can be
recovered by performing shortest-path queries in G between adjacent charging stations. Since
the highway dimension of G is bounded, each shortest-path query can be answered quickly [3].

2 Preliminaries

In this section, we define several concepts that are used by our algorithm, including the
highway dimension and doubling dimension of a graph, and the hitting set and ε-net of a
range space. We also describe a proof of the NP-completeness of the SPHS problem.

Given x > 0 and a vertex u ∈ V , let B(u, x) = {v ∈ V | µ(u, v) ≤ x} be the ball of radius
x centered at u under the shortest path metric on G.

I Definition 2. The highway dimension of a graph G = (V,E) is the smallest integer h that
satisfies the following condition: for all x > 0 and u ∈ V , there exists a set S ⊆ B(u, 6x) of
at most h vertices that contains a vertex from every shortest path inside B(u, 6x) of length
more than x.1

A metric space has doubling dimension d if any ball of radius x is contained in the union
of at most 2d balls of radius x/2. We will always use d to denote the doubling dimension of
the shortest path metric of G and h to denote the highway dimension of G. Lemma 3 relates
these two quantities.

I Lemma 3 ([2]). d ≤ log2(h+ 1).

Let Σ = (X,R) be a finite range space where X is a finite set of elements and R is a family
of subsets of X called ranges. A subset H ⊆ X is called a hitting set of Σ if H intersects
every range in R. Given a parameter ε ∈ (0, 1] and a weight function w(·) on elements of X,
an ε-net for Σ is a subset N ⊆ X that intersects every ε-heavy range, i.e., every range that
has weight at least εw(X).

The VC-dimension [24] of a range space Σ = (X,R) is the largest positive integer b
satisfying the following condition: there exists a subset Y ⊆ X with |Y | = b such that
|{S ∩ Y | S ∈ R}| = 2b. The following ε-net theorem was proved in [16] (see also [15]).

1 We remark that the original paper [3] that introduces highway dimension uses a constant 4 as the
multiplier of the radius of the ball, but leaves open the possibility of larger constants (with adjusted
constants in other bounds). We use a larger constant 6 for convenience of our analysis.
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I Lemma 4 ([16]). Given a range space (X,R) of VC-dimension β and parameters ε, φ ∈
(0, 1), a set of O(βε (log 1

ε + log 1
φ ) independent random samples of X is an ε-net of (X,R)

with probability at least 1− φ.

In this paper, we will be interested in range spaces ΣG = (V,R) where each range in R

corresponds to the vertices on a shortest path in G. Abraham et al. [1] showed that the
VC-dimension of ΣG is two when R contains all shortest paths in G. By the definition of
VC-dimension, it is easy to check that the VC-dimension of ΣG is no more than two when R

contains a subset of all shortest paths in G. It is summarized in the following lemma.

I Lemma 5 ([1]). The VC-dimension of ΣG is at most two.

The decision version of the SPHS problem is as follows: given a graph G, a parameter
r > 0 and an integer k, determine whether there exists an r-SPHS of G of size at most k.

I Theorem 6. The SPHS problem is NP-complete.

Proof. We reduce the vertex-cover problem to the SPHS problem. Recall that given a graph
G1 = (V1, E1), a subset A ⊆ V1 is a vertex cover if {u, v} ∩ A 6= ∅ for all (u, v) ∈ E1. We
construct another undirected graph G2 = (V2, E2), where V2 = V1 ∪{ue, ve | e = (u, v) ∈ E1}
and E2 = E1 ∪ {(u, ue), (v, ve) | e = (u, v) ∈ E1}, and `(e) = 1 ∀e ∈ E2. We claim that a
vertex cover in G1 corresponds to a 2-SPHS of G2. Suppose S1 ⊆ V1 is a vertex cover for G1.
Then S1 must be a 2-SPHS of G2 because every shortest path of length more than 2 in G2
must contain at least one edge from E1 in its interior. On the other hand, suppose S2 ⊆ V2
is a 2-SPHS of G2. Then every edge e = (u, v) ∈ E1 is covered by S2 because u, v are the
only interior vertices of the shortest path from ue to ve, and one of them must be in S2. The
claim is proved.

Finally, the SPHS problem is in NP because one can verify whether a given set of vertices
hits every shortest path of a graph of length more than r in polynomial time. J

3 The algorithm

In this section, we describe a bi-criteria approximation algorithm for the SPHS problem,
whose worst-case running time is near-linear in the size of the input graph.

Let δ ∈ [10α/r, 2/15] be a parameter. We assume that the highway dimension h and the
doubling dimension d are constants. We first give a high level overview of the algorithm,
which consists of three main steps.
(i) Compute a set C ⊆ V of “center” vertices of size O(κ/δd), such that every vertex of V

is within distance O(δr) from some center in C.
(ii) Construct a set of shortest paths, called critical paths, between center vertices of length

roughly r/2, such that between every pair of vertices in V , an approximately shortest
path can be constructed by concatenating critical paths.

(iii) Compute hitting set H̃ for critical paths, and return H̃.
Next, we describe the details of each step in the following subsections.

3.1 Computing centers
We compute the set C of center vertices using a greedy algorithm, which was originally
proposed for the k-center problem (i.e., find k vertices so that the distance to the farthest
vertex from them is as small as possible). Initially, add an arbitrary vertex c1 to C; in the

ISAAC 2016
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i-th iteration, add to C the vertex ci that is farthest from C. The algorithm terminates
when µ(v, C) ≤ δr/8 for all v ∈ V .

For i ≥ 1, let Ci be the set of chosen vertices after i iterations.

I Lemma 7. During the entire algorithm, for any pair ci 6= cj ∈ C, µ(ci, cj) ≥ δr/8.

Proof. Suppose there exist two centers ci, cj ∈ C with i < j such that µ(ci, cj) < δr/8. Then
µ(cj , Cj−1) < δr/8, which means the algorithm terminates before adding cj to C. J

The next lemma upper bounds the number of center vertices added to C.

I Lemma 8. |C| = O(κ/δd).

Proof. Let H∗ denote the optimal r-SPHS of size κ. Then by the definition of r-SPHS,
µ(v,H∗) ≤ r for all v ∈ V because otherwise a shortest path with v as an endpoint is not
r-EV feasible. By the same analysis of the greedy algorithm for the k-center problem [25], we
can claim that for all v ∈ V , µ(v, Cκ) ≤ 2r. In other words, V ⊆

⋃
c∈Cκ B(c, 2r). Recall that

the doubling dimension of the shortest path metric of G is d. By definition, a radius-2r ball
can be covered by O(δ−d) balls of radius δr/16. Thus, V can be covered by x = O(κδ−d) balls
of radius δr/16. Again by the property of the k-center greedy algorithm, adding x centers
greedily to C can guarantee that every vertex of V is within distance 2× (δr/16) = δr/8 of
some center in C. J

The greedy algorithm can be implemented efficiently, as follows. Let D denote the
diameter of G; then D ≤ αn < nδr. We maintain the distance from each vertex of V to C
in a priority queue; initially, the distance is ∞ as C = ∅. Suppose the shortest path distance
from ci to C is xi when ci is added to C. To find ci+1, we compute the shortest path tree
rooted at ci that contains vertices of V whose distances to ci are less than xi, and updates
the priority queue if the distance from some vertex v to C is decreased because of ci. We
then choose the first vertex of the priority queue (farthest from C) to be ci+1.

I Lemma 9. The greedy algorithm for computing the set C of centers takes O(n log2 n +
m logn) time.

Proof. To analyze the running time, we divide the above implementation into O(log D
δr )

phases. In phase j, the farthest distance from a vertex to C lies in (D2j ,
D

2j−1 ]. If a vertex v is
traversed when computing the shortest path tree rooted at a center c, then µ(v, c) ≤ D/2j−1.
On the other hand, any two centers chosen in phase j have distance more than D

2j . So there
can be at most 2d = O(1) centers that traverse v when computing shortest path tree in
phase j. Similarly, each edge is also traversed O(1) times in phase j. It takes O(logn) time
to traverse a vertex and O(1) time to traverse an edge in Dijkstra’s algorithm and O(logn)
time to update the priority queue. Therefore, the running time is O((m+ n logn) log D

δr ) =
O(n log2 n+m logn). J

We remark that the set C is a δ-approximate r-SPHS. However, the size of C, O(κ/δd),
can be very large when δ is small. Our algorithm computes a solution of size O(κ log κ).

3.2 Computing critical paths
For each vertex c ∈ C, we construct a shortest path tree Tc, called a center tree, rooted at
c with radius r/2, i.e., Tc contains all vertices of V that are no more than r/2 away from
c. For every c′ ∈ C with µ(c, c′) ∈ [(1− δ) r2 − α,

r
2 ], we add the shortest path π(c, c′) as a

critical path.
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I Lemma 10. The number of critical paths is O( κ
δ2d ), and they can be computed in O( 1

δd
(m+

n logn)) time.

Proof. Consider any center c ∈ C. We bound the number of critical paths that has c as
one endpoint. By construction, if there is a critical path between c and some c′ ∈ C, then
µ(c, c′) ≤ r/2, i.e., c′ ∈ B = B(c, r/2). By definition of doubling dimension, B can be covered
by O(1/δd) smaller balls of radius δr/16. By Lemma 7, there can be at most one center
inside each smaller ball, so, there are O(1/δd) centers in B. The bound on the number
of critical paths follows. Similarly, a vertex v ∈ V or an edge e ∈ E is traversed during
the construction of O(1/δd) center trees. Summing over all center trees, the total time is
O( 1

δd
(m+ n logn)). J

3.3 Computing approximate hitting set
We compute an approximate hitting set of the critical paths using an algorithm framework
by Agarwal and Pan [4]: Let R denote the set of ranges induced by the critical paths, i.e.,
each range in R corresponds to the set of interior vertices of a critical path. Let C = (V,R)
be the resulting range space. By Lemma 5, C has VC-dimension 2. Let λ denote the size of
the optimal hitting set of C. We guess an integer λ̃ via binary search such that λ ≤ λ̃ < 2λ.

At a high level, the algorithm works in three stages: the preprocessing stage removes
some vertices and ranges such that no remaining range contains too many vertices; the
weight-assignment stage assigns a non-negative weight to each vertex so that every range
in R is (1/2λ̃e)-heavy; and the net-construction stage computes an (1/2λ̃e)-net of C. Since
every range in R is (1/2λ̃e)-heavy, the third stage computes a hitting set of C.

Preprocessing stage. In this stage, we compute a 1
λ̃
-net H0 of (V,R) with uniform weights

on V , and include H0 in the final hitting set. We then (conceptually) remove H0 and
all ranges in R hit by H0 from consideration. By definition of ε-net, no remaining range
in R contains more than n/λ̃ vertices. This property ensures that the weight-assignment
stage has small running time. A simple ε-net construction algorithm is described in the
net-construction stage. To remove ranges of R hit by H0, we traverse all the center trees and
mark every critial path hit by H0, which takes O(

∑
c∈C |Tc|) = O(n/δd) time.

Weight-assignment stage. Recall that given a weight function w : V → R≥0, a range
R ∈ R is called ε-heavy if w(R) ≥ εw(V ); otherwise, R is ε-light. The algorithm assigns the
weights in O(log(n/λ̃)) rounds. Initially, the w(v) = 1 for all v ∈ V .

In each round, the algorithm processes every range R ∈ R one by one. If R is 1
2λ̃ -light, it

doubles the weights of all vertices in R, the so-called weight-doubling step, repeatedly until R
becomes 1

2λ̃ -heavy. Once R becomes 1
2λ̃ -heavy, it is not processed again in the current round,

even though it may become 1
2λ̃ -light again later in the current round while w(V ) increases.

If 2λ̃ weight-doubling steps have been performed in the current round, the algorithm aborts
the current round and moves to the next round. On the other hand, if all ranges have been
processed with less than 2λ̃ weight-doubling steps, the algorithm terminates.

The argument in [4] shows that if λ̃ ≥ λ, the algorithm always terminates with all ranges
being ε-heavy with ε = 1

2λ̃e . If the algorithm terminates and some ranges are still ε-light, we
double the value of λ̃ and repeat the algorithm. The data structure described below will
be used to compute the current weight of a range and to double it efficiently, the only two
nontrivial steps in this stage.
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Net-construction stage. The algorithm returns a ε-net, for ε = 1
2λ̃e , of C as a hitting set of

C. By Lemma 4, a natural algorithm for computing an ε-net of (V,R) is to draw O( 1
ε log 1

ε )
random samples from V , with respect to the final weights on the vertices in V . We then
verify whether the set of samples is an ε-net of C: traverse all the center trees and check
whether each ε-heavy critical path is hit. This takes O(

∑
c∈C |Tc|) = O(n/δd) time. If the

samples do not form an ε-net, we repeat the above steps. In expectation, O(1) repetitions
are required. Therefore, an ε-net of the range space C of size O( 1

ε log 1
ε ) can be computed in

O( n
δd

+ 1
ε log 1

ε ) expected time.

Data structure. We maintain all the center trees and the weights of vertices in these trees
using the dynamic trees data structure [20]. The data structure was proposed to maintain
a forest of rooted trees where each tree vertex has an arbitrary number of unordered child
vertices and the vertices have weights. The main operations supported include:

root(v): Return the root of the tree containing vertex v.
link(v, u): Make vertex v a new child of vertex u by adding edge (v, u). This assumes
v, u are in different trees and v is the root of its tree.
cut(v): Delete the edge between vertex v and its parent.
path-aggregate(v): Return an aggregate, such as max/min/sum, of the weights of vertices
on the path from v to root(v).
update(v, x): Add x to the weight of each vertex on the path from v to root(v).

Each of the above operation takes O(log
∑
c∈C |Tc|) = O(logn) time [20]. In our case,

the structure of the center trees remain the same, so we do not use the link, cut operations.
We retrieve the weight of a critical path using the path-aggregate operation, which is the

sum of weights of the vertices along a path from some center vertex c to root(c). We double
the weight of an individual vertex v by running update(v, w(v)) and update(parent(v),−w(v)).
Note that a vertex v can appear in as many as O(1/δd) center trees. Thus, when we update
the weight of a vertex v, we make the update for all copies of v in O(1/δd) center trees.

The results of computing an approximate hitting set of C is summarized as follows.

I Lemma 11. A hitting set of C of size O(λ log λ) can be computed in O(( 1
δd
n log2 n +

λ log λ) log λ) expected time, where λ is the size of the optiml hitting set of C.

Proof. The size of the hitting set is equal to the size of the 1
2λ̃e -net computed in the net-

construction stage of the algorithm, which is O(λ̃ log λ̃) = O(λ log λ). The preprocessing and
the net-construction stages both involve computing an ε-net, and take time O(n/δd+λ log λ).
In each round of the weight-assignment stage, retrieving the weights of the ranges in R

takes O( κ
δd

logn) = ( n
δd

logn) time. There are at most 2λ̃ weight-doubling steps, and each
weight-doubling step updates the weights of no more than n/λ̃ vertices. Therefore, the
weight-doubling steps take O( n

δd
logn) time in each round. With O(logn) rounds in the

weight-assignment stage and O(log λ) itertions of guessing λ̃, the total running time of the
algorithm is O(( 1

δd
n log2 n+ λ log λ) log λ). J

4 Analysis

We now analyze the performance of our algorithm.

I Lemma 12. λ = O(hκ).
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Figure 2 Construction of EV-feasible path P̃ (dashed curve) between w0 and w4. The solid curve
denotes the shortest path.

Proof. Let H∗ denote the optimal r-SPHS of G. By definition, H∗ must hit all shortest
paths that are longer than r. On the other hand, the critical paths constructed by our
algorithm have lengths no more than r/2. Let P be a critical path between a pair of vertices
u, v. Then there is a vertex w ∈ H∗ with µ(u,w) ≤ r. So P ⊆ B(w, 3r/2). In other words,
each critical path is contained in the ball of radius 3r/2 centered at some vertex in H∗.
By definition of highway dimension, for any w ∈ H∗, there exists a subset S of at most h
vertices in B(w, 3r/2) that intersect every shortest path of length more than r/4 contained
in B(w, 3r/2). Let S denote the union of such subsets S in the balls centered at vertices in
H∗. With δ < 2/15 and α ≤ δr/10, the interior of each critical path has length more than
r/4. Therefore, S hits all the critical paths, and |S| = O(hκ). J

Let H̃ denote the hitting set computed by our algorithm. Lemmas 11 and 12 immediately
imply the following corollary:

I Corollary 13. |H̃| = O(hκ log(hκ)).

We show that H̃ satisfies the following property.

I Lemma 14. H̃ is a δ-approximate r-SPHS of G.

Proof. If µ(u, v) ≤ r, π(u, v), the shortest path between u, v, is automatically EV-feasible.
We therefore focus on the case µ(u, v) > r. We construct another path P̃ between u, v from
π(u, v) as follows. For convenience, denote w0 = u and wt = v. We find vertices w1, · · · , wt−1
along π(u, v) from u to v such that µ(wi, wi+1) ∈ [( 1

2 −
δ
4 )r−α, ( 1

2 −
δ
4 )r], for i = 1, · · · , t− 1.

Let ci ∈ C denote the nearest center to wi. We set P̃ as the concatenation of the shortest
paths π(w0, c0), π(c0, c1), · · · , π(ct−1, ct), π(ct, wt). See Figure 2. Then

`(P̃ ) = µ(w0, c0) + µ(ct, wt) +
t−1∑
i=1

µ(ci, ci+1)

≤ δ

4r +
t−1∑
i=1

(µ(ci, wi) + µ(wi, wi+1) + µ(wi+1, ci+1))

≤ δ

4r +
t−1∑
i=1

(1 + 3δ
4 )µ(wi, wi+1) (δ ≤ 2/15) ≤ (1 + δ)µ(u, v).

Next, we show that path P̃ is EV-feasible with respect to H̃. By triangle inequality, it
is easy to check that µ(ci, ci+1) ∈ [( 1

2 −
δ
2 )r − α, 1

2r]; thus π(ci, ci+1) is a critical path and
contains a vertex of H̃ in its interior. P̃ is EV-feasible since every subpath of P̃ of length
larger than r contains a vertex of H̃. J

Putting Lemmas 9, 10, 11, and 12 together, the expected running time of our algorithm
is O( 1

δd
(m+ n log2 n log κ) +m logn) = O( 1

δd
n log2 n log κ) with the assumption m = O(n).

This bound along with Corollary 13 and Lemma 14 proves Theorem 1.

ISAAC 2016
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5 Feasible path query

Given a δ-approximate r-SPHS H, we consider the task of computing the shortest r-EV-
feasible path between any two vertices u, v ∈ V with respect to H. By definition of
approximate SPHS, the length of this path is at most (1 + δ)µ(u, v). A shortest feasible path
can be compactly represented by the sequence of charging stations in H it passes through;
the distance between any two consecutive stations is at most r. We can recover the whole
feasible path by retrieving the shortest paths between consecutive stations in G.

We first show that the δ-approximate r-SPHS H̃ output by our algorithm can be postpro-
cessed and replaced with a smaller δ-approximate r-SPHS Ĥ such that |Ĥ ∩B(v, r)| is small
for any v ∈ V .2 This property of Ĥ ensures small feasible path query time with respect to a
set of charging stations Ĥ.

Postprocessing step. We show that H̃ can be replaced by another approximate r-SPHS Ĥ
such that |Ĥ| ≤ |H̃| and for any u ∈ Ĥ, |B(u, r) ∩ Ĥ| = O(1), where the constant depends
on the highway dimension of G. The algorithm works as follows.

The algorithm maintains an r-SPHS H. Initially, H = H̃. For each vertex v ∈ V , it also
maintains the set Hv = {u ∈ H | µ(u, v) ≤ r}, i.e., B(v, r) ∩H, and the value |Hv|. We fix a
constant c and call a vertex v ∈ V heavy if |Hv| > ch ln h. At each step, the algorithm checks
whether there is a heavy vertex in V . If there is no heavy vertex, it returns the current set
H as Ĥ. Otherwise, let v be a heavy vertex. Let Σv = (V,Rv) be a range space where Rv
corresponds to critical paths intersecting B(v, r). Since each critical path has length no more
than r/2, all the critical paths in Rv lie inside B(v, 3r/2). By definition of highway dimension,
there exists a hitting set of size h for Σv. We can use the same hitting-set algorithm [4]
to compute a hitting set Xv of Σv of size at most ch ln h in O( 1

δd
n log2 n) expected time.

It then replaces H with (H \Hv) ∪Xv. Finally, we compute B(u, r) for each u ∈ Xv and
update the sets Hw for all w in these balls.

Since v is heavy, each step of the algorithm except the last one reduces the size of H by
at least one, so it terminates within |H̃| rounds. Ĥ is a δ-approximate r-SPHS since it hits
every critical path. Hence, we obtain the following.

I Lemma 15. A δ-approximate r-SPHS Ĥ ⊆ V of size O(κ log κ) can be computed in
O( 1

δd
κn log2 n log κ) time so that |B(v, r) ∩ Ĥ| = O(1) for all v ∈ V .

Feasible path query. A shortest r-EV-feasible path must pass through a sequence of charging
stations, and any two consecutive charging stations on the path must be at most r apart.
Define the graph N = (Ĥ, Ê) where Ê = {(u, v) | µ(u, v) ≤ r}. For each edge (u, v) ∈ Ê,
define `(u, v) = µ(u, v). By Lemma 15, |Ê| = O(|Ĥ|) = O(κ log κ). By constructing B(u, r)
for all u ∈ Ĥ, we can construct the edges in Ê and their lengths.

As for computing a shortest feasible path between any pair of vertices of G, we maintain,
for each v ∈ V , Ĥv = B(v, r) ∩ Ĥ along with their distances from v. Given s, t ∈ V , we
augment N by adding edges from s to Ĥs and t to Ĥt, and compute a shortest path from s to
t in N using the Dijkstra’s algorithm. Putting everything together, we obtain the following.

I Theorem 16. Let G = (V,E), ` : V → R+ be a weighted graph of constant highway
dimension h, with |V | = n and |E| = O(|V |). Let r > 0 and δ ∈ [ 10α

r , 2
15 ] be two para-

2 We conjecture that H̃ already satisfies |B(u, r) ∩ H̃| = O(log κ) for all u ∈ V , and no postprocessing is
needed, but so far we have run into technical difficulties in proving this conjecture.
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meters where α = maxe∈E `(e), and let κ be the size of a smallest r-SPHS of G. In time
O( 1

δd
κn log2 n log κ), a δ-approximate r-SPHS Ĥ can be computed and G can be processed

into a data structure of size O(κ log κ) such that for any two vertices s, t ∈ V , a compact
representation of a shortest r-EV-feasible path from s to t, using Ĥ, can be computed in
O(κ log2 κ) time.

6 Conclusion

In this paper, we presented a bi-criteria approximation algorithm for the r-SPHS problem
whose running time is near-linear in n. The algorithm assumes the input graph has constant
highway dimension, a concept introduced to give rigorous proofs of efficiency for many
popular heuristic shortest path algorithms [3]. Our algorithm is the first for such problems
with provable guarantees on the approximation and running time. We also give an algorithm
for computing the shortest EV-feasible paths given the set of charging stations computed by
the first algorithm.

It is also interesting to know whether it is possible to improve the size of the ε-net
for the range space of shortest paths from O( 1

ε log 1
ε ) to O( 1

ε ). If so, it will improve the
approximation ratio of our algorithm from O(log κ) to O(1).

Additionally, no efficient algorithm is known for the maximum coverage version of the
SPHS problem. Given a collection P of input paths in a graph G (may or may not be
shortest) and an integer k, the goal is to compute a subset of k vertices such that the number
of EV-feasible paths in P (with respect to the subset) is maximized . This problem is not
submodular because it can take more than one vertex to make one long path in P EV-feasible.

Finally, we have shown that the SPHS problem is NP-complete for general graphs, but
we do not known whether it is NP-complete for graphs of constant highway dimension. A
proof of NP-completeness may require more insights into the structure of such graphs.

Acknowledgements. We thank Dan Halperin and Eli Packer for introducing the problem
to us and for helpful discussions.
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Abstract
We present algorithms and techniques for several problems related to finding multiple simple
shortest paths and cycles in a graph. Our main result is a new algorithm for finding k simple
shortest paths for all pairs of vertices in a weighted directed graph G = (V,E). For k = 2 our
algorithm runs in O(mn+ n2 logn) time where m and n are the number of edges and vertices in
G. For k = 3 our algorithm runs in O(mn2 + n3 logn) time, which is almost a factor of n faster
than the best previous algorithm.

Our approach is based on forming suitable path extensions to find simple shortest paths; this
method is different from the ‘detour finding’ technique used in most of the prior work on simple
shortest paths, replacement paths, and distance sensitivity oracles.

We present new algorithms for generating simple cycles and simple paths in G in non-
decreasing order of their weight. The algorithm for generating simple paths is much faster,
and uses another variant of path extensions.
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1 Introduction

We present new algorithms and fundamentally new techniques for several problems related
to finding multiple simple shortest paths and cycles in a graph.

Computing shortest paths in a weighted directed graph is a very well-studied problem.
Let G = (V,E) be a directed graph with non-negative edge weights, with |V | = n, |E| = m.
A shortest path for a single pair of vertices in G, or for a single source, can be computed
in Õ(m) time using Dijkstra’s algorithm, and the all pairs shortest paths (APSP) can be
computed in Õ(mn) time [4], where Õ hides polylog(n) factors.

A related problem is one of computing a sequence of k shortest paths, for k > 1. If the
paths need not be simple, the problem of generating k shortest paths is well understood,
and the most efficient algorithm is due to Eppstein [8], which has the following bounds –
O(m+ n logn+ k) for a single pair of vertices and O(m+ n logn+ kn) for single source.

In the k simple shortest paths (k-SiSP) problem, given a pair of vertices s, t, the output
is a sequence of k simple paths from s to t, where the i-th path in the collection is a shortest
simple path in the graph that is not identical to any of the i− 1 paths preceding it in the
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output. (Note that these k simple shortest paths need not have the same weight.) It is noted
in [8] that the k-SiSP problem is more common than the version where a path can contain
cycles.

In this paper we consider the problem of generating multiple simple shortest paths (SiSP)
and cycles (SiSC) in a weighted directed graph under the following set-ups: the k simple
shortest paths for all pairs of vertices (k-APSiSP), k simple shortest paths in the overall
graph (k-All-SiSP), and the corresponding problem of finding simple shortest cycles in the
overall graph (k-All-SiSC). We obtain significantly faster algorithms for k-APSiSP for small
values of k, and fast algorithms, that also appear to be the first nontrivial algorithms, for
the remaining two problems for all k ≥ 1. Implicit in our method for k-All-SiSC are new
algorithms for finding k simple shortest cycles through a specified vertex (k-SiSC) and
through every vertex (k-ANSiSC) in weighted directed graphs.

The techniques we use in our algorithms are of special interest: We use two path extension
techniques, a new method for k-APSiSP, and another for k-All-SiSP that is related to a
method used in [5] for fully dynamic APSP, but which is still new for the context in which
we use it.

1.1 Related Work
For the case when the k shortest paths need not be simple, the all-pairs version (k-APSP)
was considered in the classical papers of Lawler [15, 16] and Minieka [17]. The most efficient
current algorithm for k-APSP runs the k-SSSP algorithm in [8] on each of the n vertices
in turn, leading to a bound of O(mn + n2 logn + kn2). It was noted in Minieka [17] that
the all-pairs version of k shortest paths becomes significantly harder when simple paths are
required, i.e., that the problem we study here, k-APSiSP, appears to be significantly harder
than k-APSP.

Even for a single source-sink pair, the problem of generating k simple shortest paths
(k-SiSP) is considerably more challenging than the unrestricted version considered in [8].
Yen’s algorithm [24] finds the k simple shortest paths for a specific pair of vertices in
O(k · (mn+n2 logn)). This time bound was improved slightly [9], using Pettie’s faster APSP
algorithm [18], to O(k(mn+ n2 log logn)). On the other hand, it is shown in [23] that if the
second simple shortest path for a single source-sink pair (i.e., k = 2 in k-SiSP) can be found
in O(n3−δ) time for some δ > 0, then APSP can also be computed in O(n3−α) time for some
α > 0; the latter is a major open problem. Thus, for dense graphs, where m = Θ(n2), we
cannot expect to improve the Õ(mn) bound, even for 2-SiSP, unless we solve a major and
long-standing open problem for APSP.

The k-SiSP problem is much simpler in the undirected case and is known to be solvable
in O(k(m+ n logn)) time [14]. For unweighted directed graphs, Roditty and Zwick [19] gave
an Õ(km

√
n) randomized algorithm for directed k-SiSP. They also showed that k-SiSP can

be solved with O(k) executions of an algorithm for the 2-SiSP problem.
A problem related to 2-SiSP is the replacement paths problem. In the s-t version of

this problem, we need to output a shortest path from s to t when an edge on the shortest
path p is removed; the output is a collection of |p| paths, each a shortest path from s to
t when an edge on p is removed. Clearly, given a solution to the s-t replacement paths
problem, the second shortest path from s to t can be computed as the path of minimum
weight in this solution. This is essentially the method used in all prior algorithms for 2-SiSP
(and with modifications, for k-SiSP), and thus the current fastest algorithms for 2-SiSP and
replacement paths have the same time bound. For the all-pairs case that is of interest to
us, the output for the replacement paths problem would be O(n3) paths, where each path
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is shortest for a specific vertex pair, when a specific edge in its shortest path is removed.
In view of the large space needed for this output, in the all-pairs version of replacement
paths, the problem of interest is distance sensitivity oracles (DSO). Here, the output is a
compact representation from which any specific replacement path can be found with O(1)
time. The first such oracle was developed in Demetrescu et al. [7], and it has size O(n2 logn).
The current best construction time for an oracle of this size is O(mn logn+ n2 log2 n) time
for a randomized algorithm, and a log factor slower for a deterministic algorithm, given in
Bernstein and Karger [3]. Given such an oracle, the output to 2-APSiSP can be computed
with O(n) queries for each source-sink pair, i.e., with O(n3) queries to the DSO.

To the best of our knowledge, for k > 1 the problem of generating k simple shortest
cycles in the overall graph in non-decreasing order of their weights (k-All-SiSC) has not been
studied before, and neither has k-SiSC (k Simple Shortest Cycles through a given node) or
k-ANSiSC (k All Nodes Simple Shortest Cycles); for k = 1, 1-All-SiSC asks for a minimum
weight cycle and 1-ANSiSC is the ANSC problem [25], both of which can be found in Õ(mn)
time, and 1-SiSC can be solved in Õ(m+ n) time. On the other hand, enumerating simple
(or elementary) cycles in no particular order – which is thus a special case of k-All-SiSC – has
been studied extensively [21, 22, 20, 11]. The first polynomial time algorithm was given by
Tarjan [20], and ran in O(kmn) time for k cycles. This result was improved to O(k ·m+ n)
by Johnson [11]. We do not expect to match this linear time result for k-All-SiSC since it
includes the minimum weight cycle problem for k = 1.

In this paper, we concentrate on results for truly sparse graphs with arbitrary non-negative
edge weights. Hence we do not consider results for small integers weights or for dense graphs;
several subcubic results for such inputs are known using fast matrix multiplication.

1.2 Our Contributions

We present several algorithmic results on finding k simple paths and cycles in a directed
graph with non-negative edge weights.1 A summary of our results is given in Table 1.

Computing k simple shortest paths for all pairs (k-APSiSP) in G. We present a new
approach to the k-APSiSP problem, which computes the sets P ∗k (x, y) as defined below. Our
method introduces the key notion of a ‘nearly k SiSP set’, Qk(x, y), defined as follows.

I Definition 1.1. Let G = (V,E) be a directed graph with nonnegative edge weights. For
k ≥ 2, and a vertex pair x, y, let k∗ = min{r, k}, where r is the number of simple paths from
x to y in G. Then,
(i) P ∗k (x, y) is the set of k∗ simple shortest paths from x to y in G
(ii) Qk(x, y) is the set of k nearly simple shortest paths from x to y, defined as follows. If

k∗ = k and the k − 1 simple shortest paths from x to y share the same first edge (x, a)
then Qk(x, y) contains these k−1 simple shortest paths, together with the simple shortest
path from x to y that does not start with edge (x, a), if such a path exists. Otherwise
(i.e, if either the former or latter condition does not hold), Qk(x, y) = P ∗k (x, y).

1 Except for k-All-SiSP (see Section 3.1), we can also handle negative edge-weights as long as there are
no negative-weight cycles, by applying Johnson’s transformation [12] to obtain an equivalent input
with nonnegative edge weights. If the resulting edge-weights include weight 0, we will use the pair
(wt(p), len(p)) as the weight for path p, where len(p) is the number of edges in it; this causes the weight
of a proper subpath of p to be smaller than the weight of p.

ISAAC 2016
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Our algorithm for k-APSiSP first constructs Qk(x, y) for all pairs of vertices x, y, and
then uses these sets in an efficient algorithm, Compute-APSiSP, to compute the P ∗k (x, y)
for all x, y. The latter algorithm runs in time O(k ·n2 +n2 logn) for any k, while our method
for constructing the Qk(x, y) depends on k. For k = 2 we present an O(mn+ n2 logn) time
method to compute the Q2(x, y) sets; this gives a 2-APSiSP algorithm that matches Yen’s
bound of O(mn + n2 logn) for 2-SiSP for a single pair of vertices. It is also faster (by a
polylogarithmic factor) than the best algorithm for DSO (distance sensitivity oracles) for the
all-pairs replacement paths problem [3]. In fact, we also show that the Q2(x, y) sets can be
computed in O(n2) time using a DSO, and hence 2-APSiSP can be computed in O(n2 logn)
time plus the time to construct the DSO.

For k ≥ 3 our algorithm to compute the Qk sets makes calls to an algorithm for (k − 1)-
APSiSP, so we combine the two components together in a single recursive method, APSiSP,
that takes as input G and k, and outputs the P ∗k sets for all vertex pairs. The time bound
for APSiSP increases with k: it is faster than Yen’s method for k = 3 by a factor of n (and
hence is faster than the current fastest method by almost a factor of n), it matches Yen for
k = 4, and its performance degrades for larger k.

If a faster algorithm can be designed to compute the Qk sets, then we can run Compute-
APSiSP on its output and hence compute k-APSiSP in additional O(k · n2 + n2 logn) time.
Thus, a major open problem left by our results is the design of a faster algorithm to compute
the Qk sets for larger values of k.

New Approach: Computing simple shortest paths without finding detours. Our method
for computing k-APSiSP (using the Qk(x, y) sets) extends an existing simple path in the data
structure to create a new simple path by adding a single incoming edge. This approach differs
from all previous approaches to finding k simple paths and replacement paths. All known
previous algorithms for 2-SiSP compute replacement paths for every edge on the shortest
path (by computing suitable ‘detours’). In fact, Hershberger et al. [10] present a lower bound
for k-SiSP, exclusively for the class of algorithms that use detours, by pointing out that all
known algorithms for k-SiSP compute replacement paths, and all known replacement path
algorithms use detours. In contrast, our method may enumerate and inspect paths that are
not detours, including paths with cycles (e.g., Step 17 in algorithm Compute-APSiSP in
Section 2.1). Thus our method is fundamentally new.

Generating k simple shortest cycles and paths (k-All-SiSC, k-SiSC, k-ANSiSC) and k-
All-SiSP. We consider the problem of generating the k simple shortest cycles in the graph
G in nonincreasing order of their weight (k-All-SiSC). In Section 3 we present an algorithm
for k-All-SiSC that runs in Õ(k ·mn) time by generating each successive simple shortest
cycle in G in Õ(mn) time. The same algorithm can be used to enumerate all simple cycles
in G in nondecreasing order of their weights. Recall that the related problem of simply
enumerating simple cycles in a graph in no particular order was a very well-studied classical
problem [21, 22, 20, 11] until an algorithm that generates successive cycles in linear time was
obtained [11]. Our algorithm does not match the linear time bound per successive cycle, but
it is to be noted that 1-All-SiSC (i.e., the problem of generating a minimum weight cycle) is
a very fundamental and well-studied problem for which the current best bound is Õ(mn).

Our algorithm for k-All-SiSC creates a auxiliary graph on which suitable SiSP computation
can be performed to generate the desired output. We give fast algorithms for k-SiSC and
k-ANSiSC using the same auxiliary graph.

Complementing our result for k-All-SiSC, we present in Section 3.1 an algorithm for
k-All-SiSP that generates each successive simple path in Õ(k) time if k < n, and in Õ(n)
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time if k > n, after an initial start-up cost of O(m) to find the first path. This time bound
is considerably faster than that for k-All-SiSC. Our method, All-SiSP, is again one of
extending existing paths by an edge (as is Compute-APSiSP); it is, however, a different
path extension method.

Path Extensions. We use two different path extension methods, one for k-APSiSP and the
other for k-All-SiSP. Path extensions have been used before in the hidden paths algorithm
for APSP [13] and more recently, for fully dynamic APSP [5]. These two path extension
methods differ from each other, as noted in [6]. Our path extension method for k-All-SiSP is
inspired by a method in [5] to compute ‘locally shortest paths’ for fully dynamic APSP. Our
path extension method for k-APSiSP appears to be new.

Here are the main theorems we establish for our algorithmic results. In all cases, the
input is a directed graph G = (V,E) with nonnegative edge weights, and |V | = n, |E| = m.

I Theorem 1.2. Given an integer k > 1, and the nearly simple shortest paths sets Qk(x, y)
(Definition 1.1) for all x, y ∈ V , Algorithm Compute-APSiSP (Section 2.1) produces the k
simple shortest paths for every pair of vertices in O(k · n2 + n2 logn) time.

I Theorem 1.3.
(i) Algorithm 2-APSiSP (Section 2.2.1) correctly computes 2-APSiSP in O(mn+ n2 logn)

time.
(ii) For k > 2, Algorithm APSiSP (Section 2.2.2) correctly computes k-APSiSP in

T (m,n, k) time, where T (m,n, k) ≤ n · T (m,n, k − 1) +O(mn+ n2 · (k + logn)).
(iii) T (m,n, 3), the time bound for algorithm APSiSP for k = 3, is O(m · n2 + n3 · logn).

I Theorem 1.4 (k-All-SiSC)). After an initial start-up cost of O(mn+n2 logn) time, we can
compute each successive simple shortest cycle in O(mn+ n2 log logn) time. This computes
k-All-SiSC (Section 3).

I Theorem 1.5 ((k-All-SiSP)). After an initial start-up cost of O(m) time to generate the
first path, Algorithm All-SiSP (Section 3.1) computes each succeeding simple shortest path
with the following bounds:
(i) amortized O(k + logn) time if k = O(n) and O(n+ log k) time if k = Ω(n);
(ii) worst-case O(k · logn) time if k = O(n), and O(n · log k) time if k = Ω(n).

Space Bounds. Our k-APSiSP algorithm uses O(k2 · n2) space, which is a factor of k
larger than the bound on the size of the output. In contrast, the earlier path extension
algorithms for APSP [13] and for fully dynamic APSP [5] use Ω(mn) space in the worst case.
All of our other algorithms use space O(kn2) or better.

Only proof sketches are given here; the full proofs of most results as well as details of the
algorithms for simple cycles are in the arXiv paper [1]. Table 1 lists our main results.

2 The k-APSiSP Algorithm

In this section, we present our algorithm to compute k-APSiSP on a directed graph G = (V,E)
with nonnegative edge-weight function wt. The algorithm has two main steps. In the first
step it computes the nearly k-SiSP sets Qk(x, y) for all pairs x, y. In the second step it
computes the exact k-SiSP sets P ∗k (x, y) for all x, y using the Qk(x, y) sets. This second step
is the same for any value of k, and we describe this step first in Section 2.1. We then present
efficient algorithms to compute the Qk sets for k = 2 and k > 2 in Section 2.2.
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Table 1 Our results for directed graphs. All algorithms are deterministic. (DSO stands for
Distance Sensitivity Oracles).

Problem Known Results New Results

2-APSiSP (Sec. 2.2.1) O(n3 + mn log2 n) O(mn + n2 log n)O(mn + n2 log n)O(mn + n2 log n)
(using DSO [3])

3-APSiSP (Sec. 2.2.2) Õ(mn3) [24] O(mn2 + n3 log n)O(mn2 + n3 log n)O(mn2 + n3 log n)
k-SiSC (Sec. 2.3) – O(k · (mn + n2 log log n))O(k · (mn + n2 log log n))O(k · (mn + n2 log log n))
k-ANSiSC (Sec. 2.3) – O(mn + n2 log n)O(mn + n2 log n)O(mn + n2 log n) if k = 2k = 2k = 2

and O(k · (mn2 + n3 log log n))O(k · (mn2 + n3 log log n))O(k · (mn2 + n3 log log n)) if k > 2k > 2k > 2
k-All-SiSC (Sec. 3) – Õ(kmn)Õ(kmn)Õ(kmn)
k-All-SiSP (Sec. 3.1) – Õ(k)Õ(k)Õ(k) if k < nk < nk < n and Õ(n)Õ(n)Õ(n) if k ≥ nk ≥ nk ≥ n per path

amortized, after a startup cost of O(m)O(m)O(m)

In all of our algorithms we will maintain the paths in each P ∗k (x, y) and Qk(x, y) set in
an array in nondecreasing order of edge-weights.

2.1 The Compute-APSiSP Procedure
In this section we present an algorithm, Compute-APSiSP, to compute k-APSiSP. This
algorithm takes as input, the graph G, together with the nearly k-SiSP sets Qk(x, y), for
each pair of distinct vertices x, y, and outputs the k∗ simple shortest paths from x to y in the
set P ∗k (x, y) for each pair of vertices x, y ∈ V (note that k∗, which is defined in Definition 1.1,
can be different for different vertex pairs x, y). As noted above, the construction of the
Qk(x, y) sets will be described in the next section.

The right (left) subpath of a path π is defined as the path obtained by removing the first
(last) edge on π. If π is a single edge (x, y) then this path is the vertex y (x).

I Lemma 2.1. Suppose there are k simple shortest paths from x to y, all having the same
first edge (x, a). Then ∀i, 1 ≤ i ≤ k, the right subpath of the i-th simple shortest path from x

to y has weight equal to the weight of the i-th simple shortest path from a to y.

Proof. The result is trivial for k = 1. If it holds for k − 1 and not k, then the k-th lightest
path p from a to y must contain x, and then we would have a shorter path from x to y that
avoids edge (x, a). J

Algorithm Compute-APSiSP computes the P ∗k (x, y) sets by extending an existing path
by an edge. In particular, if the k-SiSPs from x to y all use the same first edge (x, a), then it
computes the k-th SiSP by extending the k-th SiSP from a to y (otherwise, the sets P ∗k (x, y)
are trivially computed from the sets Qk(x, y)). The algorithm first initializes the P ∗k (x, y)
sets with the corresponding Qk(x, y) sets in Step 4. In Step 5, it checks whether the shortest
k − 1 paths in P ∗k (x, y) have the same first edge and if so, by definition of Qk(x, y), this
P ∗k (x, y) may not have been correctly initialized, and may need to update its k-th shortest
path to obtain the correct output. In this case, the common first edge (x, a) is added to the
set Extensions(a, y) in Step 7. We explain this step below.

We define the k-Left Extended Simple Path (k-LESiP) πxa,y from x to y as the path
πxa,y = (x, a) ◦ πa,y, where the path πa,y is the k-th shortest path in Qk(a, y), and ◦ denotes
the concatenation operation. In our algorithm we will construct k-LESiPs for those pairs x, y
for which the k − 1 simple shortest paths all start with the edge (x, a). The algorithm also
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maintains a set Extensions(a, y) for each pair of distinct vertices a, y; this set contains those
edges (x, a) incoming to a which are the first edge on all k− 1 SiSPs from x to y. In addition
to adding the common first edge (x, a) in the (k − 1) SiSPs in P ∗k (x, y) to Extensions(a, y)
in Step 7, the algorithm creates the k-LESiP with start edge (x, a) and end vertex y using
the k-th shortest path in the set P ∗k (a, y), and adds it to heap H in Steps 8-10. Let U denote
the set of P ∗k (x, y) sets which may need to be updated; these are the sets for which the if
condition in Step 5 holds.

In the main while loop in Steps 12-17, a min-weight path is extracted in each iteration.
We establish below that this min-weight path is added to the corresponding P ∗k in Step 14
or 15 only if it is the k-th SiSP; in this case, its left extensions are created and added to the
heap H in Step 17, and we note that some of these paths could be cyclic.

I Lemma 2.2. Let G = (V,E) be a directed graph with nonnegative edge weight function wt,
and ∀x, y ∈ V , let the set Qk(x, y) contain the nearly k-SiSPs from x to y. Then, algorithm
Compute-APSiSP correctly computes the sets P ∗k (x, y) ∀x, y ∈ V .

Proof. We first show that every path in P ∗k (x, y) is simple. The initialization in Step 4 adds
only simple paths. After that, P ∗k (x, y) is updated only if it is in U . Assume so, and let
(x, a) ∈ Extensions(a, y). As the algorithm only extends along the edges in the Extensions
sets, every path from x to y in H has (x, a) as first edge. Now if a cyclic path (say πxa,y)
is added to P ∗k (x, y) from H, then it contains a subpath πxa′,y, but this implies that either
πxa′,y, or a path from x to y with smaller weight but not using (x, a) as the first edge, is
present in Qk(x, y). This means that the check in Step 15 will be false, and πxa,y will not be
added to P ∗k (x, y).

To show that P ∗k (x, y) contains the k shortest simple paths from x to y at termination,
we observe that it was initialized with Qk(x, y), so we only need to ensure that the path
of largest weight in P ∗k (x, y) is indeed πkxy, the k∗-th shortest simple path from x to y. We
argue this by showing that πay, the path obtained from πkxy by removing its first edge (x, a),
must be in P ∗k (a, y) and must have been extended to x and added to H. J

It is straightforward to see that Algorithm Compute-APSiSP runs in O(kn2 + n2 logn)
time and uses O(kn2) space.

2.2 Computing the Qk Sets
2.2.1 Computing Qk for k = 2
We now give an O(mn+ n2 logn) time algorithm to compute Q2(x, y) for all pairs x, y. This
method uses the procedure fast-exclude from Demetrescu et al. [7], which we now briefly
describe (full details of this algorithm can be found in [7]).

Given a rooted tree T , edges (u1, v1) and (u2, v2) on T are independent[7] if the subtree
of T rooted at v1 and the subtree of T rooted at v2 are disjoint. Given the weighted
directed graph G = (V,E), the SSSP tree Ts rooted at a source vertex s ∈ V , and a set
S of independent edges in Ts, algorithm fast-exclude in [7] computes, for each edge
e ∈ S, a shortest path from s to every other vertex in G− {e}. This algorithm runs in time
O(m+ n logn).

We will compute the second path in each Q2(x, y) set, for a given x ∈ V , by running
fast-exclude with x as source, and with the set of outgoing edges from x in the shortest
path tree rooted at x, Tx, as the set S. Clearly, this set S is independent, and hence
algorithm fast-exclude will produce its specified output. Now consider any vertex y 6= x,
and let (x, a) be the first edge on the shortest path from x to y in Tx. By its specification,
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Algorithm 1 Compute-APSiSP(G = (V,E), wt, k, {Qk(x, y),∀x, y})
1: Initialize:
2: H ← φ {H is a priority queue.}
3: for all x, y ∈ V, x 6= y do
4: P ∗k (x, y)← Qk(x, y)
5: if the k − 1 shortest paths in P ∗k (x, y) have the same first edge then
6: Let (x, a) be the common first edge in the (k − 1) shortest paths in P ∗k (x, y)
7: Add (x, a) to the set Extensions(a, y)
8: if |Qk(a, y)| = k then
9: π ← the path of largest weight in Qk(a, y)

10: π′ ← (x, a) ◦ π; add π′ to H with weight wt(x, a) + wt(π)
11: Main Loop:
12: while H 6= φ do
13: π ← Extract-min(H); let π = (xa, y) and π′ a path of largest weight in P ∗k (x, y)
14: if |P ∗k (x, y)| = k − 1 then add π to P ∗k (x, y) and set update flag
15: else if wt(π) < wt(π′) then replace π′ with π in P ∗k (x, y) and set update flag
16: if update flag is set then
17: for all (x′, x) ∈ Extensions(x, y) do add (x′, x) ◦ π to H with weight wt(x′, x) +

wt(π)

Algorithm 2 2-APSiSP(G = (V,E);wt)
1: for each x ∈ V do
2: Compute a shortest path in each Q2(x, y), y ∈ V − {x} (Dijkstra with source x)
3: Compute the second path in each Q2(x, y), y ∈ V − {x}, using fast-exclude with

source x and S = {(x, a) ∈ Tx}
4: Compute-APSiSP(G, wt, 2, {Q2(x, y),∀x, y})

fast-exclude will compute a shortest path from x to y that avoids edge (x, a) in its output,
which is the second path needed for Q2(x, y). This holds for every vertex y ∈ V − {x}. Thus
we have:

I Lemma 2.3. The Q2(x, y) sets for pairs x, y can be computed in O(mn+ n2 logn) time.

This leads to the following algorithm for 2-APSiSP. Its time bound in Theorem 1.3, part (i)
follows from Lemma 2.3 and the time bound for Compute-APSiSP given in Section 2.1.

The space bound is O(n2) since the Q2 sets contain O(n2) paths and the call to Compute-
APSiSP takes O(n2) space. In the full paper [1] we give a simple alternate algorithm that
computes the Q2 sets in Õ(mn) time if a DSO is available. It is not clear if we can efficiently
compute 2-APSiSP directly from a DSO in Õ(mn) time, without using the Q2 sets and
Compute-APSiSP.

2.2.2 Computing Qk for k ≥ 3
Our algorithm will use the following types of sets. For each vertex x ∈ V , let Ix be the set of
incoming edges to x. Also, for a vertex x ∈ V , and vertices a, y ∈ V − {x}, let P ∗xk (a, y) be
the set of k simple shortest paths from a to y in G− Ix, the graph obtained after removing
the incoming edges to x. Recall that we maintain all P ∗ and Q sets as sorted arrays.

Algorithm APSiSP(G, k) first computes the sets P ∗xk−1(a, y), for all vertices a, y ∈ V .
Then it computes each Qk(x, y) as the set of all paths in the set P ∗k−1(x, y), together with a
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Algorithm 3 APSiSP(G = (V,E), wt, k)
1: if k = 2 then
2: compute Q2 sets using algorithm in Section 2.2.1
3: else
4: for each x ∈ V do
5: Ix ← set of incoming edges to x
6: Call APSiSP(G− Ix, wt, k − 1) to compute P ∗xk−1(u, v) ∀u, v ∈ V
7: for each y ∈ V − {x} do
8: Qk(x, y)← P ∗xk−1(x, y)
9: for all (x, a) ∈ E do counta ← number of paths in Qk(x, y) with (x, a) as the

first edge
10: Qk(x, y) ← Qk(x, y) ∪ { a shortest path in

⋃
{(x,a) outgoing from x}(x, a) ◦

P ∗xk−1(a, y)[counta + 1]}
11: Compute-APSiSP(G,wt, k, {Qk(x, y) ∀x, y ∈ V })

shortest path in
⋃
{(x,a) outgoing from x}{(x, a) ◦ p | p ∈ P ∗xk−1(a, y)} (which is not present

in P ∗k−1(x, y)).
To compute the P ∗xk−1 sets, APSiSP(G,wt, k) recursively calls APSiSP(G− Ix, wt, k− 1)

n times, for each vertex x ∈ V . Once we have computed the P ∗xk−1 sets, the Qk(x, y) sets
are readily computed as described in steps 8 - 10. After the computation of Qk(x, y) sets,
APSiSP(G,wt, k) calls Compute-APSiSP(G,wt, k, {Qk(x, y) ∀x, y ∈ V }) to compute the
P ∗k sets. This establishes part (ii) of Theorem 1.3.

Proof of Theorem 1.3, part (iii). The for loop starting in Step 4 is executed n times, and
for k = 3 the cost of each iteration is dominated by the call to Algorithm 2-APSiSP in
Step 6, which takes O(mn+ n2 logn) time. This contributes O(mn2 + n3 logn) to the total
running time. The inner for loop starting in Step 7 is executed n times per iteration of the
outer for loop, and the cost of each iteration is O(k + dx). Summing over all x ∈ V , this
contributes O(kn2 + mn) to the total running time. Step 11 runs in O(n2 logn) time as
shown in Section 2.1. Thus, the total running time is O(mn2 + n3 logn). J

The space bound for APSiSP is O(k2 · n2), as the P ∗k−1 and Qk sets contain O(kn2)
paths, and each recursive call to APSiSP(G− Ix, wt, k − 1) needs to maintain the P ∗r−1 and
Qr sets at each level of recursion. The call to Compute-APSiSP takes O(kn2) space as
noted earlier.

The performance of Algorithm APSiSP degrades by a factor of n with each increase in
k. Thus, it matches Yen’s algorithm (applied to all-pairs) for k = 4, and for larger values of
k its performance is worse than Yen.

2.3 Generating k Simple Shortest Cycles
k-SiSC. This is the problem of generating the k simple shortest cycles through a specific
vertex z in G. We can reduce this problem to k-SiSP by forming G′z, where we replace
vertex z by vertices zi and zo in G′z, we place a directed edge of weight 0 from zi to zo,
and we replace each incoming edge to (outgoing edge from) z with an incoming edge to zi
(outgoing edge from zo) in G′z. Then the k-th simple shortest path from zo to zi in G′z can
been seen to correspond to the k-th simple shortest cycle through z in G. This gives an
O(k · (mn+ n2 log logn)) time algorithm for computing k-SiSC using [9]. We also observe
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that we can solve k-SiSP from s to t in G if we have an algorithm for k-SiSC: create G′ by
adding a new vertex x∗ and zero weight edges (x∗, s), (t, x∗), and then call k-SiSC for vertex
x∗. Thus k-SiSP and k-SiSC are equivalent in complexity in weighted directed graphs.

k-ANSiSC. This is the problem of generating k simple shortest cycles that pass through
a given vertex x, for every vertex x ∈ V . For k = 1 this problem can be solved in
O(mn+ n2 log logn) time by computing APSP [25]. For k = 2, we can reduce this problem
to k-APSiSP by forming the graph G′ where for each vertex x, we replace vertex x in G
by vertices xi and xo in G′, we place a directed edge of weight 0 from xi to xo, and we
replace each edge (u, x) in G by an edge (uo, xi) in G′ (and hence we also replace each
edge (x, v) in G by an edge (xo, vi) in G′). For k > 2, k-ANSiSC can be computed in
O(k · n · (mn+ n2 log logn)) time by computing k-SiSC for each vertex.

3 Enumerating Simple Shortest Cycles and Paths

In this section, we first give a method to generate each successive simple shortest cycle in
G = (V,E) (k-All-SiSC) and then in Section 3.1 we give a faster method to generate simple
paths in nondecreasing order of weight (k-All-SiSP).

Enumerating Simple Shortest Cycles (k-All-SiSC). Our algorithm for k-All-SiSC creates
an auxiliary graph G′ = (V ′, E′) as in the construction for k-ANSiSC in Section 2.3. Our
algorithm also maintains a set C of candidate simple shortest cycles. Initially, our algorithm
computes a shortest cycle for each vertex j ∈ V by running Dijkstra’s algorithm with source
vertex jo on the subgraph G′j of G′ induced on V ′j = {xi, xo | x ≥ j}, to find a shortest path
p from jo to ji . We store these shortest cycles in C.

For each k ≥ 1, we generate the k-th simple shortest cycle in G by choosing a minimum
weight cycle in C. Let this cycle corresponds to some vertex r and is the kr-th SiSP from
vertex ro to vertex ri in G′r. We then replace this cycle in C by computing the (kr + 1)-th
SiSP from vertex ro to ri in G′r.

The initialization takes O(mn + n2 logn) time for the n calls to Dijkstra’s algorithm.
Thereafter, we generate each new cycle in O(mn + n2 log logn) time using the k-SiSP
algorithm [9], by maintaining the relevant information from the computation of earlier cycles.

3.1 Generating Simple Shortest Paths (k-All-SiSP)
Our algorithm for k-All-SiSP is inspired by the method in [5] for fully dynamic APSP. With
each path π we will associate two sets of paths L(π) and R(π) as described below. Similar
sets are used in [5] for ‘locally shortest paths’ but here they have a different use.

Let P be a collection of simple paths. For a simple path πxy from x to y in P, its left
extension set L(πxy) is the set of simple paths π′ ∈ P such that π′ = (x′, x) ◦ πxy, for some
x′ ∈ V . Similarly, the right extension set R(πxy) is the set of simple paths π′′ = πxy ◦ (y, y′)
such that π′′ ∈ P. For a trivial path π = 〈v〉, L(π) is the set of incoming edges to v, and
R(π) is the set of outgoing edges from v.

Algorithm All-SiSP initializes a priority queue H with the edges in G, and it initializes
the extension sets for the vertices in G. In each iteration of the main loop, the algorithm
extracts the minimum weight path π in H as the next simple path in the output sequence.
It then generates suitable extensions of π to be added to H as follows. Let the first edge
on π be (x, a) and the last edge (b, y). Then, All-SiSP left extends π along those edges
(x′, x) such that there is a path πx′b in L(l(π)); it also requires that x′ 6= y, since extending
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Algorithm 4 All-SiSP(G = (V,E);wt)
1: Initialization:
2: H ← φ {H is a priority queue.}
3: for all (x, y) ∈ E do
4: Add (x, y) to priority queue H with wt(x, y) as key; add (x, y) to L(〈y〉) and R(〈x〉)
5: Main loop:
6: while H 6= φ do
7: π ← Extract-min(H); add π to the output sequence of simple paths
8: Let πxb = `(π) and πay = r(π) (so (x, a) and (b, y) are the first and last edges on π)
9: for all πx′b ∈ L(πxb) with x′ 6= y do
10: Form πx′y ← (x′, x) ◦ π and add πx′y to H with wt(πx′y) as key
11: Add πx′y to L(πxy) and to R(πx′b)
12: for all πay′ ∈ R(πay) with y′ 6= x do perform steps complementary to Steps 10-11

to x′ would create a cycle in the path. It forms similar extensions to the right in the for loop
starting at Step 12.

To establish Theorem 1.5, we first need to show that every path added to H is simple.
All edges added in Step 4 are clearly simple paths. Consider a path σ added to H in Step 10.
We show that both `(σ) and r(σ) must already be in H, and hence must be simple paths.
So, the only way that σ could contain a cycle is if its first and last vertices are the same. But
this is explicitly forbidden in the condition in Step 9. A similar argument applies to Step 12.

To show that no simple path in G is omitted in the sequence of simple shortest paths
generated, we observe that if π is a simple path of smallest weight not generated by Algorithm
All-SiSP, then `(π) and r(π) must have been generated. We can then show that π will be
added to H in the iteration of Step 6 when the heavier of `(π) and r(π) is extracted.

The amortized bound in Theorem 1.5 is obtained by implementing H as a Fibonacci
heap and the worst-case bound is obtained by using a binary heap.

4 Discussion

Our k-All-SiSP algorithm is nearly optimal if the paths need to be output. It is also not
difficult to see that our bounds for 2-APSiSP and k-All-SiSC (for constant k) are the best
possible to within a polylog factor for sparse graphs unless the long-standing Õ(mn) bounds
for APSP and minimum weight cycles are improved. In recent work [2] we give several
fine-grained reductions that demonstrate that the minimum weight cycle problem holds a
central position for a class of problems that currently have Õ(mn) time bound on sparse
graphs, both directed and undirected.

For undirected graphs, our k-All-SiSP result gives an algorithm with the same bound.
Also, our k-APSiSP algorithm works for undirected graphs, and this gives a faster algorithm
for k = 2 and matches the previous best bound (using [14]) for k = 3. However, our
algorithms for the three variants of finding simple shortest cycles do not work for undirected
graphs. This is addressed in our recent work in [2].

The main open question for k-APSiSP is to come up with faster algorithms to compute
the Qk(x, y) sets for larger values of k. This is the key to a faster k-APSiSP algorithm using
our approach, for k > 2.
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1 Introduction

Given a set S of n points in the plane and an integer k, we are interested in finding k
edge-disjoint non-crossing spanning trees H1, H2, . . . ,Hk on S such that the length BE(H1 ∪
H2 ∪ · · · ∪Hk) of the bottleneck edge (the longest edge which is used) is as short as possible.
Each tree Hi is referred to as a layer of G. We require each layer to be non-crossing, but
edges from different layers are allowed to cross each other. For k = 1, the minimum spanning
tree MST(S) solves the problem: its longest edge BE(MST(S)) is a lower bound on the
bottleneck edge of any spanning subgraph, and it is non-crossing. For larger k, we take
BE(MST(S)) as the yardstick and measure the solution quality in terms of BE(MST(S))
and k.

The particular variation that we consider comes motivated from the field of sensor
networks. Imagine one wants to construct a network so that afterwards communication
between sensors is possible. One of the most important requirements for such a network
is that we can send messages through it easily. Ideally, we want a method that – given
the source, destination, information on the current position (and possibly O(1) additional
information) – computes the next node to visit in order to reach our destination.

One of the most famous such methods is called face routing [7], which guarantees the
delivery under the above constraints provided that the underlying graph is plane. Indeed,
when considering local routing algorithms in the literature that are guaranteed to succeed,
most route deterministically on a plane spanning subgraph of the underlying graph where
the plane subgraph can be computed locally. Even though there exist routing strategies for
non-plane graphs, in most cases they route through a plane subgraph (for example, Bose
et al. [2] showed how to locally identify the edges of the Gabriel graph from the unit disk
graph). Extending these algorithms for non-plane graphs is a long-standing open problem.

It seems counter-intuitive that having additional edges cannot help in the delivery of
messages. In this paper, we provide a different way to avoid this obstacle. Rather than
limiting considerations to one plane graph, we aim to construct several disjoint plane spanning
graphs. If we split all the messages among the different layers (and route through each layer
with routing strategies that work on plane graphs) we can potentially spread the load among
a larger number of edges. Another important feature to consider when creating networks is
energy consumption. The required energy for sending a message increases with the distance
between the two points (usually with the third or fourth power) [4]. Since we want to avoid
high energy consumption at one particular node, it is desirable to apply the bottleneck
criterion and to minimize the longest edge [6].

Previous Work. This problem falls into the family of graph packing problems, where we
are given a graph G = (V,E) and a family F of subgraphs of G. The aim is to pack
pairwise disjoint subgraphs H1 = (V,E1), H2 = (V,E2), . . . into G. A related problem is
the decomposition of G. In this case, we also look for disjoint subgraphs but require that
∪iEi = E. For example, there are known characterizations of when we can decompose
the complete graph of n points into paths [9] and stars [8]. Dor and Tarsi [3] showed that
to determine whether we can decompose a graph G into subgraphs isomorphic to a given
graph H is NP-complete. Aichholzer et al. [1] showed that any set of n points contains
Ω(
√
n) disjoint plane spanning trees. This bound has been improved to bn/3c by Garcia [5].
In our case, the graph G consists of the complete graph on S, and F consists of all plane

spanning trees of G. We are interested in minimizing a geometric constraint (Euclidean
length of the longest edge among the selected graphs of F). To the best of our knowledge,
this is the first packing problem of such type.
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Results. We give two different approaches to solve the problem. In Section 2 we give a
construction for k = 2 trees. This construction is centralized in a classical model that assumes
that the position of all points are known and computed in a single place. Our construction
guarantees that all edges (except possibly one) have length at most 2BE(MST(S)). The
remaining edge has length at most 3BE(MST(S)). We complement this construction with a
matching worst-case lower bound.

Following the spirit of sensor networks, in Section 3 we use a different approach to
construct k disjoint plane graphs (not necessarily trees). The construction works for any
k ≤ n/12 in an almost local fashion. The only global information that is needed is β:
BE(MST(S)) or some upper bound. Each point of S can compute its adjacencies by only
looking at nearby points: those at distance O(kβ).

A simple adversary argument shows that it is impossible to construct spanning networks
locally without knowing BE(MST(S)) (or an upper bound). The lower bound of Section 2
shows that a neighborhood of radius Ω(kBE(MST(S))) may be needed for the network, so
we conclude that our construction is asymptotically optimal in terms of the neighborhood.

For simplicity, throughout the paper we make the usual general position assumption that
no three points are colinear. Without this assumption, it might be impossible to obtain more
than a single plane layer (for example, when all points lie on a line).

2 Centralized Construction

In this section we look for a centralized algorithm to construct two layers. We start with
some properties on the minimum spanning tree of a set of points.

I Lemma 1. Let S be a set of points in the plane and let uv and vw be two edges of MST(S).
Then the triangle uvw does not contain any other point of S.

Proof. Observe that, as v is adjacent to both u and w in MST(S), uw is the longest edge of
the triangle uvw (otherwise one could locally shorten MST(S)).

Suppose for the sake of contradiction that there is a point p ∈ S in the interior of uvw.
We split uvw into two sub-triangles by the line ` through v perpendicular to the supporting
line of u and w. Let ∆u be the sub-triangle that has u as a vertex, and assume w.l.o.g. that
p lies in ∆u. Note that the edge uv is the hypotenuse of the right-angled triangle ∆u and
hence max{|pu|, |pv|} < |uv|.

Consider the paths in MST(S) from p to u and v, respectively. Since MST(S) is a tree,
one of the two paths must use the edge uv (as otherwise there would be a cycle). Suppose
first that this edge is used in the path to u. By removing the edge uv and adding the edge
pu to MST(S) we would obtain a connected (not necessarily plane) tree whose overall weight
is smaller, a contradiction. If the edge used is in the path to v, the addition of edge pv yields
a similar contradiction. J

I Lemma 2. Let S be a set of points in the plane. Let v ∈ S be a point of degree k ≥ 3 in
MST(S), with {v0, . . . , vk−1} being the neighbors of v in MST(S) in counterclockwise order
around v. Then for every triple (vi−1, vi, vi+1) (indices modulo k), the neighbors of vi in
MST(S) are inside the wedge Wi that is bounded by the rays vvi−1 and vvi+1 and contains
the edge vvi.

Proof. Let u ∈ S\{v} be a neighbor of vi in MST(S), and assume for the sake of contradiction
that u is not in Wi. Then the edge viu intersects the boundary of Wi and hence one of the
rays starting at v and going through vi−1 and vi+1, respectively. Assume without loss of
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generality that viu intersects the ray from v through vi+1. As MST(S) is plane, the edge viu

does not intersect the edge vvi+1. Hence, the triangle (v, vi, u) contains the point vi+1 in its
interior. As the path vviu is a subgraph of MST(S), this contradicts Lemma 1. J

We denote by MST2(S) the square of MST(S), the graph connecting all pairs of points
of S that are at distance at most 2 in MST(S). We call the edges of MST(S) short edges
and all remaining edges of MST2(S) long edges. For every long edge uw, the points u and w
have a unique common neighbor v in MST(S), which we call the witness of uw. We define
the wedge of uw to be the area that is bounded by the rays vu and vw and contains the
segment uw. Next we state a simple fact on crossings of the edges in MST2(S).

I Lemma 3. Let S be a set of points in the plane. Two edges e and f of MST2(S) cross if
and only if one of the following two conditions is fulfilled:
1. At least one of {e, f} is a long edge with witness v and wedge W , and the other edge has

v as an endpoint and lies inside W .
2. Both of {e, f} are long edges with the same witness v, and their wedges are intersecting

but none is contained in the other.

Proof. Clearly, if both e and f are short edges, i.e., edges of MST(S), then they do not
cross. Let f = uw be a long edge with witness v and wedge W . Every edge e = vz of
MST2(S), z ∈ S \ {u, v, w} that lies inside W either crosses f or has z inside the triangle
∆ = (u, v, w). The latter is a contradiction to Lemma 1. Obviously, f is neither crossed by
any edge incident to u or w, nor crossed by any edge incident to v but not lying inside W .

It remains to prove that every long edge e = xz of MST2(S), x, z ∈ S \ {u, v, w} that
crosses f fulfills Condition 2. Note that for e to cross f , either e has an endpoint inside ∆
or e is also crossing one edge out of {uv, vw} ∈ MST(S). The former is a contradiction to
Lemma 1. If e is a short edge (i.e., an edge of MST(S)), then the latter is a contradiction to
the planarity of MST(S). Hence, e is a long edge (with wedge W ′) and is also crossing one
edge g out of {uv, vw} ∈ MST(S). This also implies that the wedges W and W ′ intersect
in their interiors but none of W , W ′ is contained in the other. Finally, if e has witness
y 6= v, then either g has an end point in the triangle xyz or g crosses one edge out of
{xy, yz} ∈ MST(S). Again, the former is a contradiction to Lemma 1 and the latter is a
contradiction to the planarity of MST(S). Hence the witness of e must be v. J

With the above observations we can proceed to show a construction that almost works
for two layers. To this end we consider the minimum spanning tree MST(S) to be rooted
at a leaf r. For any v ∈ S, we define its level `(v) as its distance to r in MST(S). That is,
`(v) = 0 if and only if v = r. Likewise, `(v) = 1 if and only if v is adjacent to r etc.

For any v ∈ S \ {r}, we define its parent p(v) as the first vertex traversed in the
unique shortest path from v to r in MST(S). Similarly, we define its grandparent g(v) as
g(v) = p(p(v)) if `(v) ≥ 2 and as g(v) = r otherwise (i.e., g(v) = p(v) = r if `(v) = 1). Each
vertex q for which v = p(q) is called a child of v.

I Construction 4. Let S be a set of points in the plane and let MST(S) be rooted at one of
its leaves, r ∈ S. We construct two graphs R = G(S,ER) and B = G(S,EB) as follows: For
any vertex vo ∈ S whose level is odd, we add the edge vop(vo) to ER and the edge vog(vo)
to EB . For any vertex ve ∈ S \ {r} whose level is even, we add the edge veg(ve) to ER and
the edge vep(ve) to EB .

For simplicity we say that the edges of R = G(S,ER) are colored red and the edges of
B = G(S,EB) are colored blue. An edge in both graphs is called red-blue.
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I Theorem 5. Let MST(S) be rooted at r. The two graphs R = G(S,ER) and B = G(S,EB)
from Construction 4 fulfill the following properties:
1. Both R and B are plane spanning trees.
2. max{BE(R),BE(B)} ≤ 2BE(MST(S)).
3. ER ∩ EB = {rs}, with r = p(s), i.e., |ER ∩ EB | = 1.

Proof. Recall from Construction 4 that r is a leaf of MST(S). Hence r has a unique neighbor
s in MST(S) and we have r = p(s) = g(s) and `(s) = 1. Let So⊂S\{s} be all vo∈S whose
level `(vo) is odd. Likewise, let Se⊂S\{r} be all ve∈S whose level `(ve) is even. By the
construction, the set of red edges is ER =

⋃
vo∈So

{vop(vo)} ∪
⋃

ve∈Se
{veg(ve)} ∪ {rs} and

the set of blue edges is EB =
⋃

vo∈So
{vog(vo)} ∪

⋃
ve∈Se

{vep(ve)} ∪ {rs}. Thus, the edge
rs is the single shared edge between the sets ER and EB , as stated in Property 3.

As ER and EB are subsets of the edge set of MST2(S), the vertices of every edge in ER

and EB have link distance at most 2 in MST(S), and the bound on max{BE(R),BE(B)}
stated in Property 2 follows.

Further, both R and B are spanning trees, i.e., connected and cycle free graphs, as
each vertex except r is connected either to its parent or grandparent in MST(S). To prove
Property 1, it remains to show that both trees are plane.

Assume for the sake of contradiction that an edge f is crossed by an edge e of the same
color. Recall that all edges of ER and EB are edges of MST2(S) whose endpoints have different
levels. By Lemma 3, at least one of {e, f} has to be a long edge. Without loss of generality
let f = uw be a long edge and let v be the witness of f with `(u) = `(v) − 1 = `(w) − 2.
First note that v cannot be an endpoint of e due to its level. That is, uv is not crossing f
(common endpoint) and all other edges incident to v in ER and EB are either blue if f is
red, or red if f is blue. Further, v cannot be the witness of e due to its level. All edges ER

and EB with witness v have u as one of its endpoints (as for all other edges with witness v
in MST2(S), both endpoints have the same level). With u as a shared vertex, the edges e
and f cannot cross. As e is neither incident to v nor has v as a witness, e crossing f is a
contradiction to Lemma 3. This proves Property 1 and concludes the proof. J

The properties of our construction imply a first result stated in the following corollary.

I Corollary 6. For any set S of n points in the plane, there exist two plane spanning trees
R = G(S,ER) and B = G(S,EB) such that |ER ∩ EB | = 1 and max{BE(R),BE(B)} ≤
2BE(MST(S)).

Construction 4 is almost valid in the sense that only one edge was shared between both
trees. In the following we enhance this construction so as to avoid the shared edge.

Let N− ⊂ (S \ {r}) be the set of neighbors v− ∈ N− of s in MST(S) such that the
ordered triangle rsv− is oriented clockwise. Let N+ ⊂ (S \ {r}) be the set of neighbors
v+ ∈ N+ of s in MST(S) such that the ordered triangle rsv+ is oriented counter-clockwise.
Let T− be the subtree of MST(S) that is connected to s via the vertices in N− and let
T+ be the subtree of MST(S) that is connected to s via the vertices in N+. Let S− ⊂ S

consist of r and the set of vertices from T− and let S+ ⊂ S consist of r and the set of
vertices from T+. Observe that S− ∩ S+ = {r, s}. Let E−R ⊂ ER (E−B ⊂ EB) be the
subset of edges that have at least one endpoint in S− \ {r, s} and let E+

R ⊂ ER (E+
B ⊂ EB)

be the subset of edges that have at least one endpoint in S+ \ {r, s}. Note that by this
definition ER = E−R ∪ E

+
R ∪ {rs} and EB = E−B ∪ E

+
B ∪ {rs}. With this we define the

subgraphs R− = G(S−, E−R ), R+ = G(S+, E+
R ), B− = G(S−, E−B ), and B+ = G(S+, E+

B).
The following property follows from Lemma 3.
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I Lemma 7. For any set S of n points in the plane, let R = G(S,ER) and B = G(S,EB)
be the graphs from Construction 4. Then no edge in E−R crosses an edge in E+

B and no edge
in E+

R crosses any edge in E−B .

Proof. Consider any edge e ∈ E−R that is not incident to r. By Lemma 3, such an edge e
can be crossed only by an edge incident to at least one vertex of S− \ {r, s}. Hence, e does
not cross any edge of E+

B .
Assume for the sake of contradiction that there exists an edge f ∈ E+

B that crosses an
edge e ∈ E−R that is incident to r. By construction, e = rz is a long edge of MST2(S) with
witness s and wedge W . By Lemma 3, f has to be incident to s, since s cannot be the
witness of any blue edges by construction. If f is a short edge, then f is not in W by our
definition of S− and S+, which is a contradiction to Lemma 3. Hence, let f = sc be a long
edge of MST2(S) with witness b. Following Lemma 3, the witness b must be s, which is in
contradiction to the fact that s cannot be a witness of any blue edge. This concludes the
proof that no edge in E−R is crossed by an edge in E+

B . Symmetric arguments prove that no
edge in E+

R is crossed by an edge in E−B . J

With this observation we can now prove that the two spanning trees from Construction 4
actually exist in 4 different color combination variants.

I Lemma 8. Let S be a set of n points in the plane. Let R = G(S,ER) and B = G(S,EB)
be the graphs from Construction 4 and let R− = G(S−, E−R ), R+ = G(S+, E+

R ), B− =
G(S−, E−B ), and B+ = G(S+, E+

B) be subgraphs as defined above. Then R and B can be
recolored to be (1) R = G(S,ER) and B = G(S,EB) (the “original coloring”), (2) R =
G(S,EB) and B = G(S,ER) (the “inverted coloring”), (3) R = G(S,E−B ∪E

+
R ∪ {rs}) and

B = G(S,E−R∪E
+
B∪{rs}) (the “− side inverted coloring”), and (4) R = G(S,E−R∪E

+
B∪{rs})

and B = G(S,E−B ∪ E
+
R ∪ {rs}) (the “+ side inverted coloring”), such that the properties

from Theorem 5 hold for all versions.

Proof. The statement is trivially true for recolorings (1) and (2). It is easy to observe that
this really is corresponding to a simple recoloring. Hence, Properties 2 and 3 of Theorem 5
are also obviously true. By Lemma 7, both R and B are plane for the recolorings (3) and (4)
and thus fulfill Property 1 of Theorem 5 as well. J

With these tools we now show how to construct two disjoint spanning trees. For technical
reasons we use two different constructions based on the existence of a vertex in the minimum
spanning tree where no two consecutive adjacent edges span an angle larger than π.

I Theorem 9. Consider a set S of n points in the plane for which the minimum spanning
tree MST(S) has a vertex v where between any two consecutive adjacent edges the angle is
smaller than π. Then there exist two plane spanning trees R = G(S,ER) and B = G(S,EB)
such that ER ∩ EB = ∅ and max{BE(R),BE(B)} ≤ 2BE(MST(S)).

Proof (sketch). When removing v from the tree, we obtain up to five connected compon-
ents (assuming general position). For each of these, we individually re-add v and apply
Construction 4 with v as the root using one of the variants of Lemma 8. This leaves some
components of the tree disconnected, but this is resolved by adding additional edges from v

to its neighbors and between adjacent neighbors of v. Full details of the construction and a
proof can be found in the full version of this paper. J

The remaining case considers that for every vertex in MST(S) there exist two consecutive
adjacent edges that span an angle larger than π. In such an MST(S), every vertex has degree
at most three, since the angle between adjacent edges is at least π/3.
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(b)

v2

v3
v1

v0

(a)

v2

v3
v1

v0

Figure 1 Illustration of one of the cases for the proof of Theorem 10. Grey subtrees indicate
potential continuations of the MST and dashed edges indicate edges from MST2(S). In (b) colored
arrows indicate how the subtrees connect to P . Note that half of these arrows are from Construction 4.

I Theorem 10. Consider a set S of n ≥ 4 points in the plane for which every vertex in
the minimum spanning tree MST(S) has two consecutive adjacent edges spanning an angle
larger than π. Then there exist two plane spanning trees R = G(S,ER) and B = G(S,EB)
such that ER ∩ EB = ∅ and max{BE(R),BE(B)} ≤ 3BE(MST(S)) (where at most one edge
of ER ∪ EB is larger than 2BE(MST(S))).

Proof (sketch). This case is dealt with using similar ideas as for Theorem 9. The main
difference is that we now use a cluster P = {v0, v1, v2, v3} of 4 points that are connected
in MST(S) to serve as roots for up to three subtrees. The exact choice of P depends on
the exact embedding of the tree, which leads to several potential embeddings of P and the
subtrees of MST(S) attached to P . For this proof sketch we focus on one specific case shown
in Figure 1, where v3 is a leaf and v2, v1, v0 form a path that, starting from v3, takes a left
and right turn. For ease of description we root the entire MST at v3, creating parent and
child relations between nodes. The subtrees we consider are T0, T1, T2 defined as follows:

T0, consisting of v1, v0, and the subtrees rooted at the children of v0, rooted at v1.
T1, consisting of v1, v0 and the subtrees rooted at children of v1, rooted at v0.
T2, consisting of v2, v1 and the subtrees rooted at children of v2, rooted at v1.

Each of these trees is colored using one of the variants of Lemma 8, but we remove all
edges going to the roots of the respective subtrees, leaving its children disconnected from P .
We then re-attach them as follows. The roots of disconnected subtrees of T0 are connected
to v1, those from T1 are attached to v0 and those from T2 to v1. By construction, the red
and blue trees then form spanning trees with a maximum edge length of 3BE(MST(S)) as
all edges except v0v3 are part of MST2(S), and v0v3 is part of MST3(S). For planarity,
non-crossing of edges that are not v0v3 follows relatively easily from Lemma 3 and Theorem 5.
To see that v0v3 cannot be crossed, one can observe that by Lemma 1 the convex hull of P
must be empty and from Lemma 2 and 3 it follows that no edge can cross the convex hull
through v3v1 to v1 or v2. Full details of the construction and correctness arguments can be
found in the full version of this paper. J

I Corollary 11. For any set S of n ≥ 4 points in the plane, there exist two plane spanning
trees R = G(S,ER) and B = G(S,EB) such that ER ∩ EB = ∅ and max{BE(R),BE(B)} ≤
3BE(MST(S)).

We now show that the above construction is worst-case optimal.

I Theorem 12. For any n > 3 and k > 1 there exists a set of n points such that for any k
disjoint spanning trees, at least one has a bottleneck edge larger than (k + 1)BE(MST(S)).

Proof. A counterexample simply consists of n points equally distributed on a line segment.
(The points can be slightly perturbed to obtain general position.) In this problem instance
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v0

vbn
3 c

vb 2n
3 c cc

(a) (b)

v0

vb 2n
3 c

vbn
3 c

Figure 2 Extracting one layer: (a) The three sectors defined by v0, vb n
3 c, and vb 2n

3 c. (b)
Connecting the points to the representative of their sector. The red edges connect the representatives.

there are kn−(k(k+1)/2) edges whose distance is strictly less than (k+1)BE(MST(S)) = k+1.
However, we need kn− k edges for k disjoint trees and thus it is impossible to construct that
many trees with sufficiently short edges. J

3 Distributed Approach

The previous construction relies heavily on the minimum spanning tree of S. It is well known
that this tree cannot be constructed locally, thus we are implicitly assuming that the network
is constructed by a single processor that knows the location of all other vertices. In ad-hoc
networks, it is often desirable that each vertex can compute its adjacencies using only local
information.

In the following, we provide an alternative construction. Although the length of the edges
is increased by a constant factor, it has the benefit that it can be constructed locally and
that it can be extended to compute k layers. The only global property that is needed is a
value β that should be at least BE(MST(S)). We also note that these plane disjoint graphs
are not necessarily trees, as large cycles cannot be detected locally.

Before we describe our approach, we report the result of García [5] that states that every
point set of at least 3k points contains k layers. Since the details of this construction are
important for our construction and the manuscript is not yet available, we add a proof sketch.

I Theorem 13 ([5]). Every point set that consists of at least 3k points contains k layers.

Proof. First, recall that for every set of n points, there is a center point c such that every
line through c splits the point set into two parts that each contain at least n/3 points. For
ease of explanation, we assume that every line through c contains at most one point. Number
the points v0, v1, . . . , vn−1 in clockwise circular order around c. We split the plane into three
angular regions by the three rays originating from c and passing through v0, vbn

3 c, and vb 2n
3 c

,
see Figure 2. Since every line through the center contains at least n/3 points on each side,
the three angular regions are convex. We declare v0 to be the representative of the angular
region between the rays through v0 and vbn

3 c and connect the vertices v1, ..., vbn
3 c in this

region to v0. Similarly, we assign vbn
3 c to be the representative of angle between the rays

center through vbn
3 c and vb 2n

3 c
and connect vertices vbn

3 c+1, ..., vb 2n
3 c

to vbn
3 c. Finally, we

connect vertices vb 2n
3 c+1, ..., vn−1 to vb 2n

3 c
. This results in a non-crossing spanning tree.

For the second tree, we use v1, vbn
3 c+1, and vb 2n

3 c+1, and so on. J

While this construction provides a simple method of constructing the k layers, it does
not give any guarantee on the length of the longest edge in this construction. To give such a
guarantee, we combine it with a bucketing approach: we partition the point set using a grid
(whose size will depend on k and β), solve the problem in each box with sufficiently many
points independently, and then combine the subproblems to obtain a global solution (see
Figure 3).
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(a) (b)

Figure 3 The distributed approach: a grid is placed over the point set and different representatives
construct different graphs ((a) and (b)). The red and black edges form the tree in each dense cell,
blue edges connect the dense cells, and orange edges connect the vertices in sparse cells.

We place a grid with cells of height and width 6kβ and classify the points according to
which grid cell contains them (if a point lies exactly on the separating lines, pick an arbitrary
adjacent cell). We say that a grid cell is a dense box if it contains at least 3k points of S.
Similarly, it is a sparse box if it contains points of S but is not dense. We observe that dense
and sparse boxes satisfy the following properties.

I Lemma 14. Given two non-adjacent boxes B and B′, the points in B and B′ cannot be
connected by edges of length at most β using only points from sparse boxes.

Proof. Suppose the contrary and let B and B′ be two dense boxes s.t. there is a path that
uses edges of length at most β between a point in B to a point in B′ visiting only points
in sparse boxes. This path crosses the sides of a certain number of boxes in a given order;
let σ be the sequence of these sides, with adjacent duplicates removed. Observe first that
horizontal and vertical sides alternate in σ, as otherwise the path would have to use at least
6k− 1 points to traverse a sparse box, but there are only at most 3k− 1. Since B and B′ are
non-adjacent, w.l.o.g., there is a vertical side s that has two adjacent horizontal sides in σ
with different y-coordinates. Hence, between the two horizontal sides, the corresponding part
of the path has length at least 6kβ, and may use only the points in the two boxes adjacent
to s. But since any sparse box contains at most 3k − 1 points and the distance between two
consecutive points along the path is at most β, that part of the path can have length at most
(6k − 1)β, a contradiction. J

I Corollary 15. Dense boxes are connected by the 8-neighbor topology.

I Lemma 16. Any set S of at least 4 · (3k − 1) + 1 points with β ≥ BE(MST(S)) contains
at least one dense box.

Proof. Assume S consists of only sparse boxes. This implies that the points are distributed
over at least five boxes, and thus, there is a pair of boxes that is non-adjacent. Using
Lemma 14, this means that these boxes cannot be connected using edges of length at most
BE(MST(S)), a contradiction. J

I Lemma 17. In any set S of at least 4 · (3k − 1) + 1 points with β ≥ BE(MST(S)), all
sparse boxes are adjacent to a dense box.

Proof. This follows from Lemma 14, since any sparse box that is not adjacent to a dense box
cannot be connected to any dense box using edges of length at most β ≥ BE(MST(S)). J
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Figure 4 The Voronoi cells of the centers of the dense boxes.

Next, we assign all points to dense boxes. In order to do this, let cB be the center of a
dense box B. Note that cB is not necessarily the center point of the points in this box. We
consider the Voronoi diagram of the centers of all dense boxes and assign a point p to B if p
lies in the Voronoi cell of cB. Let SB be the set of points of S that are associated with a
dense box B. We note that each dense box B gets assigned at least all points in its own box,
since in the case of adjacent dense boxes, the boundary of the Voronoi cell coincides with the
shared boundary of these boxes (see Figure 4).

Furthermore, we can compute the points assigned to each box locally. By Lemma 17
all sparse boxes are adjacent to a dense box, and hence for any point p in a sparse box B
its distance to its nearest center is at most 3`/

√
2, where ` = 6kβ. It follows that only the

centers of cells of neighbors and neighbors of neighbors need to be considered.

I Lemma 18. For any two dense boxes B and B′, we have that the convex hulls of SB and
SB′ are disjoint.

Proof. We observe that the convex hull of SB is contained in the Voronoi cell of cB . Hence,
since the Voronoi cells of different dense boxes are disjoint, the convex hulls of the points
assigned to them are also disjoint. J

For each dense box B, we apply Theorem 13 on the points inside the dense box to compute
k disjoint layers of SB. Next, we connect all sparse points in SB to the representative of
the sector that contains them in each layer. Since all points in the same sector connect to
the same representative and the sectors of the same layer do not overlap, we obtain a plane
graph for each layer within the convex hull of each SB .

Hence, we obtain k pairwise disjoint layers such that in each layer the points associated to
each dense box are connected. Moreover, since the created edges stay within the convex hull
of each subproblem and by Lemma 18 those hulls are disjoint, each layer is plane. Thus, to
assure that each layer is connected, we must connect the construction between dense boxes.

We connect adjacent dense boxes in a tree-like manner using the following rules:
Always connect a dense box to the dense box below it.
Always connect a dense box to the dense box to the left of it.
If neither the box below nor the one to the left of it is dense, connect the box to the
dense box diagonally below and to the left of it.
If neither the box above nor the one to the left of it is dense, connect the box to the
dense box diagonally above and to the left of it.

To connect two dense boxes, we find and connect two representatives p and q (one from
each dense box) such that p lies in the sector of q and q lies in the sector of p; see Figure 5 (a).

I Lemma 19. For any layer and any two adjacent dense boxes B and B′, there are two
representatives p and q in B and B′, respectively, s.t. p lies in the sector of q and q lies in
the sector of p.
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p

q
c c′

`2

`1

`3
r′1`′1

W1

W2

W3 W ′
1

(a) (b)

Figure 5 Connecting two dense boxes by means of p and q. The half-circles in (a) indicate which
sector each representative covers. The red edges connect the dense boxes internally and the blue
edge connects the two dense cells. (b) illustrates the sectors involved in connecting two neighboring
dense boxes.

Proof. Consider two boxes B and B′ with center points (of their respective point sets) c
and c′. Now let W1 and W ′1 with representatives r1 and r′1 denote the sectors containing c′
and c, respectively; see Figure 5. The other sectors W2 and W3 of B with representatives r2
and r3 are ordered clockwise. We use `i to denote the ray from c containing ri. If r1 ∈W ′1
and r′1 ∈W1 we are done. So assume that r′1 6∈W1, the case when r1 6∈W ′1 (or when both
r1 6∈W ′1 and r′1 6∈W1) is symmetric. It follows that r′1 is in sector W2 if the line segment c′r′1
intersects `2 or sector W3 if the segment intersects `2 and `3. Assume that r′1 is in sector W2
(again the argument is symmetric when r′1 is in sector W3). Now r2 can be positioned on `2
between c and the intersection point with c′r′1 or behind this intersection point when viewed
from c. In the former case r′1 is in W2 and r2 is in W ′1 and we are done. In the latter case
the segments cr2 and c′r′1 cross. Since c, r2 ∈ B and c′, r′1 ∈ B′ this crossing would imply
that B and B′ are not disjoint, a contradiction. J

Now that we have completed the description of the construction, we show that each layer
of the resulting graph is plane and connected, and that the length of the longest edge is
bounded.

I Lemma 20. Each layer is plane.

Proof. Since dense boxes are internally plane and the addition of edges to the sparse points
do not violate planarity, it suffices to show that the edges between dense boxes cannot cross
any previously inserted edges and that these edges cannot intersect other edges used to
connect dense boxes.

We first show that the edge used to connect boxes B and B′ is contained in the union of
the Voronoi cells of these two boxes. If B and B′ are horizontally or vertically adjacent, the
connecting edge stays in the union of the two dense boxes, which is contained in their Voronoi
cells. If B and B′ are diagonally adjacent, we connect them only if their shared horizontal
and vertical neighbors are not dense. This implies that at least the two triangles defined
by the sides of B and B′ that are adjacent to their contact point are part of the union of
the Voronoi cells of these boxes. Hence, the edge used to connect B and B′ cannot intersect
the Voronoi cell of any other box. Since all points of a dense box in a sector connect to the
same representative and these edges lie entirely inside the sector, the edge connecting two
adjacent boxes can intersect only at one of the two representatives, but does not cross them.
Therefore, an edge connecting two adjacent dense boxes by connecting the corresponding
representatives cannot cross any previously inserted edge.

Next, we show that edges connecting two dense boxes cannot cross. Since any edge
connecting two dense boxes stays within the union of the Voronoi cells of B and B′, the
only way for two edges to intersect is if they connect to the same box B and intersect in
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the Voronoi cell of B. If the connecting edges lie in the same sector of B, they connect to
the same representative and thus they cannot cross. If they lie in different sectors of B, the
edges lie entirely inside their respective sectors. Since these sectors are disjoint, this implies
that the edges cannot intersect. J

I Lemma 21. Each layer is connected.

Proof. Since the sectors of the representatives of the dense boxes cover the plane, each point
in a sparse box is connected to a representative of the dense box it is assigned to. Hence,
showing that the dense boxes are connected, completes the proof.

By Corollary 15, the dense boxes are connected using the 8-neighbor topology. This
implies that there is a path between any pair of dense boxes where every step is one to a
horizontally, vertically, or diagonally adjacent box. Since we always connect horizontally
or vertically adjacent boxes and we connect diagonally adjacent boxes when they share no
horizontal and vertical dense neighbor, the layer is connected after adding edges as described
in the proof of Lemma 19. J

I Lemma 22. The distance between a representative in a dense box B and any point
connecting to it is at most 12

√
2kβ.

Proof. Since the representatives of B are connected only to points from dense and sparse
boxes adjacent B, the distance between a representative and a point connected to it is at
most the length of the diagonal of the 2× 2 grid with B as one of its boxes. Since a box has
width 6kβ, this diagonal has length 2

√
2 · 6kβ = 12

√
2kβ. J

I Theorem 23. For all point sets with at least 4(3k − 1) + 1 points, we can extract k plane
layers with the longest edge having length at most 12

√
2kBE(MST(S)).
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Abstract
Given n line segments in the plane, do they form the edge set of a weakly simple polygon; that is,
can the segment endpoints be perturbed by at most ε, for any ε > 0, to obtain a simple polygon?
While the analogous question for simple polygons can easily be answered in O(n logn) time, we
show that it is NP-complete for weakly simple polygons. We give O(n)-time algorithms in two
special cases: when all segments are collinear, or the segment endpoints are in general position.
These results extend to the variant in which the segments are directed, and the counterclockwise
traversal of a polygon should follow the orientation.

We study related problems for the case that the union of the n input segments is connected.
(i) If each segment can be subdivided into several segments, find the minimum number of subdi-
vision points to form a weakly simple polygon. (ii) If new line segments can be added, find the
minimum total length of new segments that creates a weakly simple polygon. We give worst-case
upper and lower bounds for both problems.
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1 Introduction

In the design and analysis of geometric algorithms, the input is often assumed to be in general
position. This is justified from the theoretical point of view: degenerate cases can typically be
handled without increasing the computational complexity, or symbolic perturbation schemes
can reduce any input to one in general position [4]. In this paper, we present a geometric
problem about simple polygons in the plane, which has a straightforward solution if the
input is in general position, but is NP-complete otherwise.

Suppose we are given n line segments in the plane. It is easy to decide in O(n logn)
time whether they form a simple polygon by detecting intersections in a line sweep: if the
segments are disjoint apart from common endpoints, then they form a plane graph, and a
simple traversal can determine whether the graph is a cycle. If the input segments overlap,
more than two segments have a common endpoint, or some segment endpoints lie in the
interior of another segment, then they definitely do not form a simple polygon, but they
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might still be perturbed into a simple polygon (i.e., they form a weakly simple polygon). We
study the decision problem for weakly simple polygons in this paper.

Organization and Results. We start with necessary definitions, and formulate the problem
of reconstructing a weakly simple polygons from a set of edges (Section 2). We present
polynomial-time algorithms when the given segments form a geometric graph or are collinear
(Sections 3). The problem in general, however, is strongly NP-hard by a reduction from
Planar-Monotone-3SAT (Section 4). Nevertheless, every set of noncrossing line segments
in the plane can be turned into the edge set of a weakly simple polygon by (i) subdividing the
edges into several edges, or (ii) inserting new edges. In Sections 5 we show that if G = (V,E)
is Eulerian, the edges can be subdivided O(n) times to obtain a weakly simple Euler tour.
We also show that inserting new edges of total length at most 3‖E‖ is always sufficient
and sometimes necessary to create a weakly simple Euler tour. We conclude with future
directions (Section 6). Omitted proofs are available in the full paper [2].

Related Work. Reconstruction of simple polygons from partial information (such as vertices,
visibility graphs, visibility angles, cross sections) has been studied for decades [3, 6, 11, 12,
16]. For example, an orthogonal simple polygon can be uniquely reconstruction from its
vertices [16], but if the edges have 3 or more directions, the problem becomes NP-hard [12].
For a simple polygon, the set of all edges (studied in this paper) gives complete information:
the cyclic order of the edges is easy to recover. In contrast, a set of edges may correspond
to exponentially many weakly simple polygons, and the reconstruction problem becomes
nontrivial. The problems considered in Section 5 are closely related to geometric graph
augmentation and subgraph problems: (i) Can a given plane straight-line graph be augmented
with new edges into a simple polygon, a Hamiltonian plane graph, or a 2-connected plane
graph [14, 17, 18, 19]? (ii) Does a given a geometric graph contain certain noncrossing
subgraphs (e.g., spanning trees or perfect matchings) [15]?

2 Preliminaries

A polygon P = (p0, . . . , pn−1) is a cyclic sequence of points in the plane (vertices), where
every two consecutive vertices are connected by a line segment (edge). The cycle of edges
can be parameterized by a piecewise linear curve γ : S1 → R2. Polygon P is simple if γ is
a Jordan curve (i.e., γ is injective); equivalently, if (p0, . . . , pn−1) is the plane embedding
of a Hamiltonian cycle. Polygon P is weakly simple if, for every ε > 0, the vertices pi can
be perturbed to points p′i, ‖pip

′
i‖ < ε, such that P ′ = (p′0, . . . , p′n−1) is a simple polygon.

The function ‖.‖ denotes the Euclidean length of a line segment. Equivalently, a polygon
given by γ is weakly simple if it can be perturbed to a Jordan curve γ′ : S1 → R2 such that
the Fréchet distance of the two curves is bounded by ε (i.e., distF (γ, γ′) < ε) [7]. We can
test whether a polygon P = (p0, . . . , pn−1), is simple or weakly simple, respectively, in O(n)
time [8] and O(n logn) time [1].

We define the WeaklySimplePolygonReconstruction (WSPR) problem as the
following decision problem: Given a multiset E of line segments in R2, does there exist a
weakly simple polygon P whose edge multiset is E? For a multiset E of directed segments,
we also define Directed-WSPR that asks whether there exists a weakly simple polygon
P = (p0, . . . , pn−1) such that {pipi+1 mod n : 0 ≤ i ≤ n− 1} = E. In both undirected and
directed variants, we represent the input segments as a straight-line multigraph G = (V,E),
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(a) (b) (c) (d) (e)

Figure 1 (a) A multi-set of line segments. Circles indicate common segment endpoints. (b) A
weakly simple Euler tour. (c) An Eulerian graph that has no weakly simple Euler tour. An edge
subdivision (d) or the insertion of two edges (e), yields a weakly simple Euler tour.

where V is the set of all segment endpoints. Note that G may have overlapping edges, and
an edge may pass through vertices, so it need not be a geometric graph.

Two Necessary Conditions. Two line segments cross if they share exactly one interior
point. If the multiset of segments E forms a weakly simple polygon, then no two segment
cross. This condition can be easily tested in O(|E| log |E|) time by a line sweep.

If there is a weakly simple polygon P = (p0, . . . , pn−1) with edge set E, then P is an
Euler tour of the graph G = (V,E). (However, an Euler tour need not be weakly simple; see
Fig. 1(b)). A graph is Eulerian if and only if it is connected and every vertex has even degree.
A simple (undirected) plane graph G is Eulerian if and only if its dual graph is bipartite.
This result extends to plane multigraphs when an edge of multiplicity k is embedded as k
interior-disjoint Jordan arcs, that enclose k − 1 faces. A directed graph is Eulerian if and
only if all vertices are part of the same strongly connected component and if, for each vertex,
the in-degree equals the out-degree.

3 Special Cases

We show that both WSPR and Directed-WSPR admit polynomial-time algorithms in the
special cases that (i) G = (V,E) is a simple geometric graph, that is, no two edges overlap,
and no vertex lies in the interior of an edge, and (ii) all edges in G = (V,E) are collinear.
We assume that G satisfies both necessary conditions.

3.1 Geometric Graphs
Note that in an Eulerian geometric graph the boundary of each face is a weakly simple
circuit, where repeated vertices are possible, but there are no repeated edges. The following
is a modified version of Hierholzer’s algorithm [13]. It computes a weakly simple Euler tour
P in the Eulerian graph G, or reports that no such tour exists.

Algorithm A (G)

1. 2-color the faces of G white and gray so that the outer face is white; and create a list L
of circuits on the boundaries of the gray faces.

2. If G is directed and the edges around a gray face do not form a directed circuit or if there
exist both clockwise (cw) and counterclockwise (ccw) circuits in L, report that G has no
weakly simple Euler tour.

3. Choose an arbitrary circuit in L, remove it from L and call it P .
4. While there is a circuit in L, do:

4.1 Find two consecutive edges, (u, v) and (v, w), along a white face such that (u, v) ∈ P
and (v, w) ∈ C for some C ∈ L.
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v v
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u

w
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(a) (b)

Figure 2 (a) Merging two cycles. The vertices circled by the dotted ellipse correspond to the
same vertex v. (b) If v has two consecutive incoming edges (a, v) and (c, v), G does not admit a
weakly simple Euler tour.

4.2 Remove C from the list L, and merge C and P by traversing C starting with the edge
(v, w) followed by the traversal of P that ends with the edge (u, v); see Figure 2(a).

5. Return P .

I Theorem 1. A simple geometric graph G = (V,E) admits a weakly simple Euler tour
if and only if G is Eulerian and, if G is directed, the circular order of edges around each
vertex alternates between incoming and outgoing. A weakly simple Euler tour, if exists, can
be computed in O(|E|) time.

Proof. If G = (V,E) is undirected, the algorithm construct an Euler tour P [13]; and the
tour is weakly simple by construction. In the remainder of the proof, we consider a directed
Eulerian geometric graph G. First, we show that if G satisfies the conditions of Theorem 1,
then Algorithm A returns a weakly simple Euler tour. If the circular order of edges around
each vertex alternates between incoming and outgoing, then all edges on the boundary
of a face of G have the same orientation (ccw or cw), and adjacent faces have opposite
orientations. Without loss of generality, the edges on the boundaries of white (resp., gray)
faces are oriented ccw (resp., cw). Hnece, the condition in step 2 of the algorithm is satisfied.

We show that the Euler tour P constructed by Algorithm A is weakly simple, that is,
it can be perturbed into a simple polygon. Initially, each circuit C = (p0, . . . , pk−1) in L is
the boundary of a gray face, and hence it is a simple polygon. Let C ′ = (p′0, . . . , p′k−1) be
perturbation obtained by moving each point pi to the interior of the face along an angle
bisector of ∠pi−1pipi+1. Initially P is a weakly simple polygon (one of the circuits). It is
enough to show that Step 4.2 maintains a weakly simple polygon, that is, when we merge P
and a circuit C, their Jordan curve perturbations P ′ and C ′ can also be combined. Edges
(u, v) and (v, w) are adjacent to a common white face f0; they correspond to an edge (pu, pv)
in P ′ and (qv, qw) in C ′, where both pv and qv lie in the ε-neighborhood of v in two different
gray faces adjacent to f0. We can modify P ′ and C ′ in the ε-neighborhood of v, by removing
a short Jordan arc from each and reconnecting them across the white face f0 into a single
Jordan curve. By induction, we can obtain a Jordan curve within ε Frèchet distance from
the output polygon P . Hence, the algorithm returns a weakly simple Euler tour P .

Now, we show that if G has a vertex v with two consecutive incoming (resp., outgoing)
edges (a, v) and (c, v), then G does not admit a weakly simple Euler tour. Suppose, for
contradiction, that there exists a weakly simple Euler tour P . Since both (a, v) and (c, v) are
directed into v, the tour P contains edge-disjoint paths (a, v, b) and (c, v, d). Since P is weakly
simple, the circular order of these four edges incident to v must be as shown in Figure 2(b).
The polygon must contain edge-disjoint paths π1 = (v, b, . . . , c, v) and π2 = (d, . . . , a). The
perturbation of π1 is π′1 = (v′, b′, . . . , c′, v′′) where v′ 6= v′′. Note that a and d are on opposite
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p0

pn{1
q

Figure 3 Every collinear Eulerian tour can be transformed in a y-monotonic simple polygon.

sides of the cycle π′ ∪ v′v′′. The perturbation of π2, path π′2, can intersect neither π′1 nor
v′v′′, because (a, v) and (c, v) are adjacent to the same face. Hence P is not weakly simple.

Finally, Algorithm A runs in O(|E|) time. Step 1 and 2 can be done by traversing the
dual graph of G. Step 4 executes O(|E|) merges, each of which takes constant time. J

I Corollary 2. A geometric multigraph G = (V,E) admits a weakly simple Euler tour if and
only if G is Eulerian. A weakly simple Euler tour, if exists, can be computed in O(|E|) time.

Proof. Replace every edge e of multiplicity k by k edge-disjoint paths of length two whose
interior points are close to the midpoint of e. We obtain a simple Eulerian geometric graph
with |V |+ 2|E| vertices. Theorem 1 completes the proof. J

I Remark. In the case that G = (V,E) is a directed multigraph, replace every directed edge
(u, v) of multiplicity k by edge-disjoint paths (u,wi, v), with new (subdivision) vertices wi,
i = 1, . . . k, and denote by G′ the resulting simple directed graph. The alternating direction
condition of Theorem 1 requires that the multiplicity of (u, v) and (v, u) differ by at most
one. If their multiplicities differ by exactly one, then there is a unique way to interleave
the replacement paths between u and v. In fact, if any edge of G has odd multiplicity, the
alternating direction condition determines the cyclic order of all paths (u,wi, v), and we
can apply Theorem 1 for G′. If, however, all edges of G have even multiplicity, then there
are two possibilities for the cyclic orders, both of which yield weakly simple Euler tours by
Theorem 1.

3.2 Collinear Line Segments
I Theorem 3. If all edges of a graph G = (V,E) are collinear, then every Euler tour of G
is a weakly simple polygon.

Proof. Without loss of generality, assume that all vertices are on the x-axis. Let ε > 0 be
given. Let P = (p0, . . . , pn−1) be an Euler tour of G, and let p0 be a leftmost vertex. For each
vertex pi, i ∈ {0, . . . , n− 1}, create a point p′i with x(p′i) = x(pi) and y(p′i) = iε/(2n). The
polygonal path (p′0, . . . , p′n−1) is strictly y-monotonic and therefore does not cross itself. The
edge (p′n−1, p

′
0) can be realized as a one-bend polyline (p′n−1, q, p

′
0) with q = (−ε/2, ε/2), which

is outside of the axis-aligned bounding box of all other edges. Therefore P ′ = (p′0, . . . , p′n−1),
illustrated in Figure 3, is a simple polygon where distF (P, P ′) < ε. J

4 NP-Completeness

In this section we analyze the general case of WSPR. First we discuss the undirected case
and then the direct version.

I Lemma 4. Both WSPR and Directed-WSCR are in NP.
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(a)
(b)

(c)

vi−1
li,a li,b vi

li,a lj,a lk,a

Figure 4 (a) Variable gadget, (b) clause gadget and (c) the reduction from Planar-Monotone-
3SAT to undirected WSPR.

Proof. Given a polygon P = (p0, . . . , pn−1) and a (directed) straight-line multigraph G =
(V,E), we can check whether P is a (directed) Euler tour in G in O(|E|) time, and whether
P is weakly simple in O(n logn) time [1]. J

We prove that both directed and undirected WSPC are strongly NP-hard in the general
case by a reduction from Planar-Monotone-3SAT, which is strongly NP-hard [5]. An
instance of Planar-Monotone-3SAT consists of a plane bipartite graph GB whose partite
sets are variables nodes and clauses nodes. The variable nodes are on the x-axis, the clause
nodes are above or below the x-axis; each clause is adjacent to three variables. A clause is
positive if it lies above the x-axis, and negative otherwise. Planar-Monotone-3SAT asks
if there is a binary assignment from {true,false} to the set of variables such that every
positive clause is adjacent to at least one true variable and every negative clause is adjacent
to at least one false variable.

I Lemma 5. Undirected WSPR is NP-hard.

Proof. Given an instance of Planar-Monotone-3SAT, we build an instance of undirected
WSPR as shown in Figure 4(c). We split the construction into two basic gadgets. A variable
and a clause gadget are shown in Figure 4(a) and (b), respectively. The figure shows collinear
edges distorted and colored for clarity. All vertices shown as small black disks are on the
x-axis and vertices circled with a dotted ellipse represent the same graph vertex.

First, place vertices v0, . . . , vn equally spaced on the variable line from left to right. The
variable gadget corresponding to the ith variable consists of two collinear paths between vi−1
and vi, which are called red and black paths; see Figure 4. The red path is a single edge vi−1vi;
and the black path is made of p+ 1 edges where p is the degree of the i-th variable in the
bipartite graph GB . We assign a vertex in the interior of this path to each edge connected to
the variable, naming the vertex li,a for the edge connecting the i-th variable to the a-th clause.
We call such vertices literal vertices. The clause gadget is composed of 9 edges arranged in a
cycle as shown in Figure 4(b). The three labeled vertices correspond to the literal vertices
in the clause gadgets. The planar embedding of the Planar-Monotone-3SAT instance
grantees that we can embed the graph of the directed WSPR instance.

Assume that the Planar-Monotone-3SAT instance have a satisfying assignment. We
build a weakly simple Euler tour P as follows. Each individual gadget defines a cycle. As
in Algorithm A, we will merge the cycles into the polygon P . Every cycle will be traversed
clockwise, however, cycles defined by variable gadgets are collinear and there is no clear
definition of winding direction for them. We perturb the red edges based on the truth values
of the variables. For each variable assigned true (resp., false), we perturb the red edge to
pass below (resp., above) the x-axis. All variable cycles can be safely merged into a single
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Figure 5 Simple polygon that certifies that an Euler tour of P is weakly simple.

circuit. We merge each clause to the variable cycle through a literal vertex of a true variable
if the clause is positive or through a literal vertex of a false variable otherwise.

To show that P is weakly simple, we build a simple polygon P ′ within ε Fréchet distance
from P as follows (see Figure 5). For each vi create two vertices v+

i and v−i located ε/2 above
and below vi respectively. If the solution assigns the i-th variable true, move vertices li,a up
by ε/2, replace vertices vi−1 and vi by v+

i−1 and v+
i in the black edges (of the corresponding

gadget) and by v−i−1 and v−i in the red edges. Connect vertices v+
0 and v−0 with an edge.

Do the same for v+
n and v−n . If the variable is assigned false, do analogous replacements

symmetrically about the x-axis. For each clause gadget, choose a literal li,a with a true
value, split li,a into two vertices, l′i,a and l′′i,a, with the same y-coordinate and ε distance
apart, such that they each are incident to one edge of the variable gadget and one edge of
the clause gadget. For the other two literals, split li,a into two vertices, l+i,a and l−i,a, with the
same x-coordinate and ε

2 distance apart, such that the one closer to the x-axis is incident to
two edges of the variable gadget, and the other to two edges of the clause gadget. The result
is a simple polygon and therefore undirected WSPR have a positive solution.

Now assume that the graph produced by the reduction admits a weakly simple Euler tour
P . Then, there exist a simple polygon P ′ within an arbitrarily small Fréchet distance from
P . Such a polygon determines a vertical order between the paths of each variable gadget.
Since every literal vertex has degree 4, there are only two possible ways to match its incident
edges in a noncrossing manner: matching two horizontal edges and two clause edges, or a
horizontal with a clause edge. In both cases, the two horizontal black edges incident to a
literal vertex are placed above or below the red path. Therefore, all edges of the black path
of a variable gadget are on the same side of its red path. For each variable, assign true if the
black path of its gadget is above the red path and false otherwise. Since each clause gadget
needs to be connected to some edge in a variable gadget, if the clause is positive/negative,
one of its corresponding variables were assigned true/false. Hence, the assignment satisfies
all clauses and the Planar-Monotone-3SAT instance have a positive solution. J

I Lemma 6. Directed-WSPR is NP-hard.

As a consequence of Lemmas 4, 5, and 6, we have the following result.

I Theorem 7. Both WSPR and Directed-WSPR are NP-complete.

I Remark. Our reduction can be modified by perturbing the points in our variable gadgets
so that: (i) points belonging to the same gadget are collinear; (ii) no three points, each
belonging to a different gadget are collinear; and (iii) no edge crossing is introduced. By
reducing from Planar-Monotone-(2,3)-SAT-3 [10], in which clauses may have two or
three literals and each variable can appear only in up to three clauses, we can show that
WSPR remain NP-hard even if the number of mutually collinear points is constant.
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5 Related problems

Since WSPR is NP-complete in the general case, we study related problems in which a weakly
simple polygon is always achievable by allowing edge subdivision and insertion of new edges.

5.1 Edge subdivision
Given a noncrossing graph G = (V,E) where every vertex has even degree and the point set⋃
E is connected, we define the problem WSPR∗ as finding a sequence of edge subdivision

operations that produces a graph G∗ = (V,E∗) that admits a weakly simple Euler tour. The
subdivision of an edge uv at a vertex w ∈ relint(uv) replaces uv by two edges uw and wv.

It is easy to see that WSPR∗ is always feasible with O(n2) subdivisions where n = |V |.
Indeed, subdivide every edge uv recursively at each vertex that lies in the interior of uv. We
obtain a connected geometric multigraph with even degrees, which admits a weakly simple
Euler tour by Corollary 2. The main result of this section is the following.

I Theorem 8. Every noncrossing graph G = (V,E) such that every v ∈ V has even degree
and

⋃
E is connected, can be transformed into a graph G∗ = (V,E∗) using O(|E|) edge

subdivisions, and this bound cannot be improved.

Before the proof, we introduce some notation (from [1, 7, 9]). Let G = (V,E) be a
noncrossing graph. The transitive closure of the overlap relation is an equivalence relation on
E. The union of all edges in an equivalence class is called a bar, it is a line segment. A vertex
v ∈ b is called b-odd if v is incident to an odd number of edges contained in b, or b-even
otherwise. A vertex can be b-odd and b′-even for different bars b and b′ (see Figure 6(b)).

Our algorithm will compute simple paths formed by subdivided edges. Let b be a
horizontal bar with vertices p1, p2 ∈ b, x(p1) ≤ x(p2). Let q1q2 ∈ E be an edge that contains
p1 and its right endpoint has minimum x-coordinate. A subdivided paths, denoted by p̂1p2, is
a path between p1 and p2, defined recursively (see Fig. 6(d)): (i) if x(p1) = x(p2), p̂1p2 = ∅;
(ii) if p2 ∈ q1q2, then subdivide q1q2 into three edges e1 = q1p1, e2 = p1p2, and e3 = p2q2
and put p̂1p2 = (e2); (iii) if p2 6∈ q1q2, then subdivide q1q2 into two edges e1 = q1p1 and
e2 = p1q2, and put p̂1p2 = (e2) ⊕ q̂2p2, where ⊕ denotes concatenation. Consequently, if
the segment p1p2 contains k vertices, a path p̂1p2 can be constructed using at most k edge
subdivisions. An example is shown in Figure 6(c).

Proof of Theorem 8. The proof of the upper bound is constructive. The algorithm sub-
divides edges within each bar independently. Let b be a bar containing m vertices. We apply
O(m) edge subdivisions and partition the edges in b into subsets: Subsets M+ and M−
will consists of subdivision paths between the intersection points of b with other bars lying
above and below b, respectively; all remaining edges will be partitioned into tours (each of
which is a weakly simple polygon by Theorem 3). The algorithm is divided into three phases:
Phase 1 creates M+ and M−; phase 2 forms circuits; and phase 3 establishes common
vertices between the subdivision paths and circuits. Refer to Figure 6.

Phase 1. Compute a list B+ (resp., B−) of points p in the interior of b such that p is b′-odd
for some bar b′ that is above or collinear to b (resp., below b). A point can appear more
than once in each list if it is odd in multiple bars b′. Sort the lists by x(p), ties are broken
by clockwise (resp., counterclockwise) order of the corresponding bars b′. If the left (resp.,
right) endpoint of b is b-odd, add it to the beginning (resp., end) of the list B+. If any of
the lists have odd cardinality, append the right endpoint of b at the end of the list. Create a
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p1 p2

(c)
(a) (b)

(d)

M+

M−
(e)

O+

O−
Dui (f)

Figure 6 (a) A bar b and its adjacent bars. (b) Each bar b′ is shown with its b′-odd and
b′-even vertices shown in red and green respectively. (c) The subdivided path p̂ip2 is shown in blue.
Examples of (d) M+ and M−; (e) O+ and O−. (f) Connecting a component of B′ to a path in O+

with two polygonal paths shown in magenta.

perfect matching of consecutive endpoints in each list. Construct edge disjoint subdivided
paths between each pair of matched points, and letM+ andM− denote the set of edges in
such paths for B+ and B−, respectively (see Figure 6(d)).

Phase 2. Let B be the set of (subdivided) edges that lie on b and are not inM+ ∪M−.
The union of edges in B may be a disconnected point set (e.g., as shown in Figure 6(d)).
Let the line segment r1r2 be one of the connected components of

⋃
B. Construct two edge

disjoint subdivided paths r̂1r2
+ and r̂1r2

− from the edges in B. For every path p̂1p2 inM+

(resp.,M−) that overlaps with r1r2, identify an edge of r̂1r2
+ (resp., r̂1r2

−) that contains a
vertex of p̂1p2 and subdivide it at such vertex (see Figure 6(e)). Let O+ (resp., O−) be the
set of edges in r̂1r2

+ (resp., r̂1r2
−) for all components r1r2 of the union of edges in B.

Phase 3. Let B′ be the set of edges in B \ (O+ ∪ O−). For every component C of the
subgraph induced by B′, let p0 be the leftmost vertex of C, identify the edge in O+ that
contains p0 and subdivide it at p0. This concludes the construction of G∗.

Correctness. Now we prove that G∗ admits a weakly simple Euler tour. Notice that G∗
is connected since the subdivisions in phase 2 connects every component ofM+ orM− to
every overlapping component of O+ or O−, and phase 3 connects every component of B′ to
some component in O+. Since edge subdivisions do not change the parity of degrees, every
vertex in G∗ has even degree, hence G∗ is Eulerian. We construct an Eulerian geometric
graph G′ such that every Euler tour in G′ is within ε/2 Fréchet distance from an Euler
tour in G∗. Theorem 1 will then imply that there exists a simple polygon within ε Fréchet
distance from an Euler tour in G∗.

We recall some notation introduced in [7]. For every vertex v ∈ V , let Dv be a disk
centered at v of radius ε

4 . For a bar b between u0 and uk, let Db be the ε2 neighborhood
of b setminus Du0 ∪Duk

. Assume that ε ∈ (0, 1
4 ) is so small that the disks Dv are pairwise

disjoint; a disk Dv intersects Db only if v ∈ b, and the neighborhoods Db are pairwise disjoint.
For each bar b with vertices u0, . . . , uk, we perturb the edges of E∗ contained in b into

noncrossing simple polygons and polygonal chains. Embed each subdivided path in M+

(resp.,M−) ûiuj in the upper (resp., lower) boundary of the region Db such that ui is on
the boundary of Dui

and uj is on the boundary of Duj
. Subdivide Db with `+ 1 horizontal
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(a) (b) (c) (d)

(e)

(f) (g)

Figure 7 Lower bound constructions.

lines where ` is the number of components of the subgraph induced by B′. Embed all edges
in O+ (resp., O−) in the first (resp., `+ 1-th) such line.

Recall that every vertex of G has even degree. If b contains a b-odd vertex p, there
must exist a bar b′ such that p is b′-odd. BecauseM+ andM− matches such points, the
subgraph induced by B contain only even degree vertices. By construction the edges in
O+ ∪O− form nonoverlapping disjoint circuits. Hence, the subgraph induced by B′ contains
only even degree vertices. Consequently, each of its components is Eulerian and forms a
weakly simple polygons that we denote by γ1(b), . . . , γ`(b), sorted by the x-coordinates of
their left endpoints. Perturb γ1(b), . . . , γ`(b) into simple polygons that lie in the interior
of Db, separated by one of the `+ 1 lines, in this linear order (ties are broken arbitrarily).
For i = 0, . . . , k, consider all polygons γj(b) whose leftmost vertex is ui. Connect the left
endpoints of each such γj(b) to the copy of ui in O+ by two polygonal paths within Dui

(these paths connect different copies of vertex ui ∈ V ∗, see Figure 6(f)). Similarly, for each
subdivision performed in phase 2 at ui of an edge in O+ (resp., O−) in a path r̂1r2, connect
the copy of ui in this path to a copy inM+ (resp., O−) by two polygonal paths within the
disk Dui

. Connect the endpoints of the overlapping paths in O+ and O− (forming a cycle
of each), and if the right endpoint of b is not b-odd and was added to B+, B−, connect the
copies of uk inM+ andM−. For each matching in B+ and B− involving a point ui that is
a b′-odd endpoint of a bar b′, connect the paths inM+ orM− that correspond to a match
in b to the path inM+ of b′ that contains p. Finally, for each point ui that is the endpoint
of a bar b′ and is b′-even, connect the corresponding copies of ui, making the graph induced
by all edges containing a point on b connected. This concludes the construction of G′.

Theorem 1 completes the proof: An Euler tour P̂ of G′ can be perturbed into a simple
polygon P such that distF (P, P̂ ) < ε

2 . The tour P̂ maps to an Euler tour P ∗ of G∗ by
identifying the vertices that lie in the same disk Dv, v ∈ V ∗; and distF (P̂ , P ∗) < ε

2 .
Our lower bound construction is shown in Figure 7(a). It consists of a graph G = (V,E)

containing a long edge eR (shown in red) and a path of (|E|+ 5)/7 non-overlapping collinear
edges that connects the endpoints of eR. Each vertex in the interior of eR is also incident to
two small cycles above and below eR respectively. Although the graph is Eulerian, it does
not admit a weakly simple Euler tour. Each vertex p in the interior of the red edge eR is
incident to two small triangles. Suppose that eR is not subdivided at p. Then p has degree 6.
In any perturbation of a weakly simple Euler tour, vertex p is split into 3 copies, each of
degree 2, and each lying above or below eR. Suppose only one copy of p lies below eR. Then
it is incident to two edges of a small triangle below eR, which is then disconnected from
the rest of the graph, a contradiction. Consequently, eR must be subdivided at all interior
vertices. Figure 7(b) shows that O(|E|) subdivisions of eR suffice in this case. J
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5.2 Edge insertion
We define the problem WSPR+ as finding a set of edges E+ such that G+ = (V,E ∪ E+)
admits a weakly simple Euler tour. Denote by ‖E‖ and ‖E+‖, respectively, the sum of the
lengths of all edges in E and E+. If the point set

⋃
E is disconnected, then there is no upper

bound on ‖E+‖. Otherwise, we can establish worst-case upper and lower bounds for ‖E+‖
in terms of ‖E‖.

I Theorem 9. Let G = (V,E) be a noncrossing multigraph such that
⋃
E is a connected point

set. Then there exists a set of line segments E+ such that ‖E+‖ ≤ 3‖E‖ and G+ = (V,E∪E+)
admits a weakly simple Euler tour.

Proof. We construct E+ as follows. Partition E into bars (equivalence classes of the transitive
closure of the overlap relation on E). Denote by b the union of edges in a bar. W.l.o.g., we
may assume that b is horizontal. Denote by u0, . . . , uk ∈ V the vertices of V along b sorted
by x-coordinates (where b = u0uk). For i = 1, . . . , k, add an edge ui−1ui to E+ if the edges
of E in the bar cover the line segment ui−1ui an odd number of times. The old and new
edges in the bar b jointly form a graph of even degree that we denote by G(b). By Theorem 3,
every component of G(b) admits a weakly simple Euler tour. Finally, add two more copies of
edge ui−1ui to E+ for all i = 1, . . . k. After repeating the above steps for every bar, we have
‖E+‖ ≤ 3‖E‖ and G+ = (V,E ∪ E+) is Eulerian.

We omit the proof of correctness (which is provided in the full paper [2]), that shows that
G+ admits a weakly simple Euler tour, since it is similar to the proof of Theorem 8. J

Lower bound constructions. All our lower bound constructions are graphs G = (V,E) in
which an edge connects two points on the boundary of the convex hull of V , denoted ch(V ).

I Theorem 10. Let G be a family of noncrossing multigraphs. For G = (V,E) ∈ G, let E+

be an edge set of minimum length ‖E+‖ such that G+ = (V,E ∪E+) admits a weakly simple
Euler tour; and let λ(G) = supG∈G ‖E+‖/‖E‖. Then:
1. λ(G1) ≥ 1, where G1 = {Eulerian noncrossing multigraphs}.
2. λ(G2) ≥ 6

5 , where G2 = {connected noncrossing multigraphs}.
3. λ(G3) ≥ 3, where G3 = {noncrossing multigraphs G = (V,E) such that

⋃
E is connected}.

Proof.
(1) Refer to Figs. 7(a)–(c). Let n ∈ N and δ ∈ (0, 1

3 ). Place vertices vi = (i, 0), for
i = 0, . . . , n, on the x-axis. A red edge of length n connects v0 and vn. A black edge of
length 1/n connects vi−1 and vi for 1 ≤ i ≤ n. A small cycle of length δ < 1

3 is placed on
each vi, 1 ≤ i ∈ n − 1, on each side of the x-axis. The total length of the construction is
‖E‖ = 2n+ 2(n− 1)δ.

Let G+ = (V,E ∪ E+) be a multigraph in which P is a weakly simple Euler tour; and
let P ′ be an ε-perturbation into a simple polygon, for some 0 < ε < δ. We define a pair of
vertical lines `−i : x = i+ δ and `+

i : x = (i+ 1) − δ, for 0 ≤ i ≤ n− 1. The portion of P ′
between any two of these lines consists of disjoint paths whose endpoints are on the lines.
By Morse theory, P ′ contains an even number of paths between any two of these lines; and
the length of such a path is at least the distance between the parallel lines. The input edges
already contain two line segments between any two of these lines: a red and a black segment.

We claim that G+ contains at least 4 paths between `−i and `+
i for all but at most one

index 0 ≤ i ≤ n− 1. Indeed, suppose that there are two such paths between `−i and `+
i and

between `−j and `+
j (0 ≤ i < j ≤ n − 1). We may assume w.l.o.g. that the black edge is

above the red edge between `−i and `+
i . Then the black edge must be above the red edge
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between `−j and `+
j , as well. Consequently, P ′ cannot reach the small cycles at vi+1, . . . , vj .

This confirms the claim. It follows that ‖E ∪ E+‖ ≥ (4n − 2)(1 − 2δ). This lower bound
tends to 2‖E‖ as n→∞ and δn→ 0.

Due to space restrictions, we omit the proofs for cases 2 and 3. J

6 Conclusions

We have shown that WSPR is NP-complete. It follows that the decision version of the
problems in Section 5 are also NP-complete: It is NP-complete to find up to k subdivision
points to form a weakly simple polygon, or to find an edge set with length up to k that
produce a weakly simple polygon. We have shown that Θ(|E|) subdivision points are always
sufficient and sometimes necessary when the input is Eulerian; and new edges of length
Θ(‖E‖) are always sufficient and sometimes necessary when

⋃
E is connected. However, the

best constant coefficients are not known in most cases. We conjecture that every noncrossing
Eulerian graph G = (V,E) can be augmented into a graph G+ = (V,E ∪ E+) that admits a
weakly simple Euler tour such that ‖E+‖ ≤ ‖E‖.

If the segments in E do not form a weakly simple polygon, we can subdivide segments or
insert new segments to create a weakly simple polygon. On the other end of the spectrum, a
set of n line segment may form an exponential number of weakly simple polygons, even if
all segments are collinear. It is an open problem to count exactly how many weakly simple
polygons can be obtained from the same set of line segments. Finally, we mention an open
problem about reconstructing simple polygons from a subset of its edges. It is NP-complete
to decide whether a geometric graph G = (V,E) can be augmented into a simple polygon
P = (V,E ∪E+) [17]. However, it is not known whether the problem remains NP-hard when
G is a perfect matching.

Acknowledgements. We thank Adrian Dumitrescu for bringing this problem to our atten-
tion.
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Abstract
We investigate the problem of computing a minimum-volume container for the non-overlapping
packing of a given set of three-dimensional convex objects. Already the simplest versions of
the problem are NP-hard so that we cannot expect to find exact polynomial time algorithms.
We give constant ratio approximation algorithms for packing axis-parallel (rectangular) cuboids
under translation into an axis-parallel (rectangular) cuboid as container, for packing cuboids
under rigid motions into an axis-parallel cuboid or into an arbitrary convex container, and for
packing convex polyhedra under rigid motions into an axis-parallel cuboid or arbitrary convex
container. This work gives the first approximability results for the computation of minimum
volume containers for the objects described.
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1 Introduction

The problem of efficiently packing objects without overlap arises in a large variety of contexts.
Apart from the obvious ones, where concrete objects need to be packed for transportation or
storage, there are more abstract ones, for example cutting stock or scheduling. Given a set of
objects that have to be cut out from the same material the objective is to minimize the waste,
i.e., place the pieces to be cut out as close as possible. In the case of scheduling, a list of
jobs is given. Each job needs a certain amount of given resources and the aim is to minimize
under certain constraints this need of resources such as time, space, or number of machines.
Altogether, this situation can be described as a problem of packing high-dimensional cuboids
into a strip with bounded side lengths. So, both problems can be viewed as a given list of
objects for which a container of minimum size is wanted.

In this work, we consider the more general and abstract problem of packing three-
dimensional convex polyhedra into a minimum volume container. All variants of this problem
are NP-hard and we will develop constant factor approximation algorithms for some of them.
The worst case constant factors are still very high, but probably they will be much lower for
realistic inputs. The major aim of this paper, however, is to show the existence of constant
factors at all, i.e., that the problems belong to the complexity class APX.
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Related Work

So far, there are only few results about finding containers of minimum volume. Related
problems include strip packing and bin packing. In two-dimensional strip packing the width
of a strip is given and the objects should be packed in order to minimize the length of the
strip used. In three dimensions, the rectangular cross section of the strip is fixed. Bin-packing
is the problem where the complete container is fixed and the objective is to minimize the
number of containers to pack all objects. For both problems usually only translations are
allowed to pack the objects.

For two-dimensional bin packing there exists an algorithm with an asymptotic approx-
imation ratio of 1.405 [3] and Bansal et al. proved that there cannot be an APTAS unless
P = NP [2]. For two-dimensional strip packing there exists an AFPTAS [7]. In three
dimensions there are algorithms with an asymptotic approximation ratio of 4.89 for bin
packing [9] and an asymptotic approximation ratio of 3

2 + ε for strip packing [6]. The best
known worst case (non-asymptotic) approximation ratio for three-dimensional strip packing
is 29

4 [5].
For two dimensions, von Niederhäusern [11] gave algorithms for packing rectangles or

convex polygons in a minimum-area rectangular container with approximation ratios 3 and 5
respectively. A recent result shows that packing convex polygons under translation into a
minimum-area rectangular or convex container can be approximated with ratios 17.45 and
27 respectively [1].

PARTITION can be reduced to one-dimensional bin packing and one-dimensional bin
packing is a special case of higher dimensional bin or strip packing. If one-dimensional bin
packing could be approximated with a ratio smaller than 3

2 , we could solve PARTITION.
Therefore, none of the mentioned problems can be approximated better than with ratio 3

2
unless P = NP. PARTITION can also be reduced to our problem showing NP-hardness.

Our Results

In this work we give the first approximation results for packing three-dimensional convex
objects in a minimum-volume container. For packing axis-parallel rectangular cuboids under
translation into an axis-parallel rectangular cuboid as a container, we achieve a 7.25 + ε

approximation. If we allow the cuboids to be packed under rigid motions (translation and
rotation) then we achieve an approximation ratio of 17.737 for an axis-parallel cuboid as
container and an approximation ratio of 29.135 for an arbitrary convex container. For
packing convex polyhedra under rigid motions we achieve an approximation ratio of 277.59
for computing an axis-parallel cuboid as container and 511.37 for a convex container.

2 Preliminaries and Reduction to Strip Packing

For most algorithms considered here, the input is a set of rectangular boxes B = {b1, b2, . . . bn}.
We denote a box bi in axis-parallel orientation by a tuple of its height, width and depth
(hi, wi, di). We denote by hmax = max {hi | bi ∈ B}, wmax = max {wi | bi ∈ B} and dmax =
max {di | bi ∈ B}.

For points P and Q we denote by PQ the line segment between P and Q of length |PQ|.
−−→
PQ denotes the vector from P to Q. When we write "axis-parallel container" we mean
"axis-parallel rectangular cuboid as a container". We use the term box as a synonym for
rectangular cuboid.
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Packing under translation means that a separate translation is applied to each object
moving it inside the container. The translated objects are not allowed to overlap. Packing
under rigid motion means that a (separate) rotation may be applied to each object before it
is translated into the container.

I Definition 1 (strip packing). An instance for the strip packing problem consists of an axis
parallel strip and a set of axis parallel boxes, i.e. in two dimensions the width and in three
dimensions the width and the depth are fixed and the objective is to pack the boxes under
translation such that the height is minimized.

I Definition 2 (orthogonal minimal container packing – OMCOP). An instance of this
problem is a set of convex polyhedra. The aim is to pack these polyhedra non-overlapping
such that the minimal axis-parallel container has minimal volume. Variants include the kind
of motions allowed or that more specialized objects are to be packed.

This work only considers algorithms in two or three dimensions. For ease of notation we
always assume the lower left (front) corner of the container to lie in the origin. Vopt denotes
the minimal possible volume for a container.

The following algorithm was given by von Niederhäusern [11]. It will be used later as a
subroutine. For an example see Figure 1.

Algorithm 1:
Input: A list S of rectangles ri, denoted by their width wi and height hi, a width for

the strip w
1. Order the rectangles in S by decreasing width, such that if i < j then wi ≥ wj .
2. Split S in sublists Sj =

{
ri ∈ S | w

2j−1 ≥ wi > w
2j

}
for j ≥ 1.

3. Start with packing the rectangles in S1 on top of each other in the strip [0, w]× [0,∞).
4. Split the remaining strip in two substrips with width w

2 and pack the rectangles in S2
one after another into these substrips. Each rectangle ri is packed in the substrip with
current minimal height.

5. Again split the substrips into two and pack S3. Iterate that process until everything is
packed.

I Remark. Note that the strip is half filled with rectangles up to the lower boundary of the
highest rectangle that touches the upper end of the packing. Otherwise,this rectangle could
have been placed lower. That means that the strip is half filled with rectangles except for a
part with area at most w · hmax.
I Remark. Steps 1 and 2 can be done in O (n logn) time where n is the size of S. Steps 4
and 5 are presented in a simplified way in order to convey the idea of the algorithm in a more
understandable manner. In reality it may happen that sublists Sj are empty and therefore
splitting all substrips until they have the suitable width takes too much time. Hence, we split
off a new substrip of suitable width from an existing one only when needed. To maintain all
substrips with their currently occupied height, a heap-like data structure is used. Then, we
can perform steps 3 to 5 in O (n logn) time.

In this section we consider the version of OMCOP where the given objects are axis-
parallel boxes that are to be packed under translation. The idea behind the reduction of
OMCOP to strip packing is to test different base areas for the strip and to return the result
with minimal volume. Assuming that the lower left corner of the base area is located at
the origin, we test each point in a set S as a possible upper right corner for the base area.
Testing means that we call a strip packing algorithm with the given boxes and the base area

ISAAC 2016
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half
filled

Figure 1 Result of Algorithm 1.

implied by the point of S. S will be determined by a parameter ε: the smaller ε, the more
elements S contains, the better the approximation ratio gets.

Note that for the width Wopt of an optimal container, the following inequalities hold:
1. Wopt ≤WΣ, where WΣ denotes the sum of all widths of the boxes to be packed. It is an

upper bound because the width of an optimal container has to be the sum of the widths
of some of the objects. Otherwise they can be pushed together reducing the width of the
container and thereby its volume.

2. Wopt ≥ wmax, where wmax denotes the width of the widest box. Since this box needs to
be packed, this is a lower bound for the width of the container.

The analogous bounds for the depth of an optimal container hold for the same reasons. In
the following Hopt, Wopt, Dopt, and Vopt denote the height, width, depth, and volume of the
same optimal container. Let ε′ = ε

2(ε+α) for a constant α defined later.
The set S is obtained by dividing the intervals of possible width and depth logarithmically:

S ={WΣ (1− ε′)i | i ∈ N,WΣ (1− ε′)i > wmax} ∪ {wmax}×

{DΣ (1− ε′)j | j ∈ N, DΣ (1− ε′)j > dmax} ∪ {dmax}.

For an example for S see Figure 2.

I Theorem 3. If we use an α-approximation algorithm of runtime T (n) to pack n boxes under
translation into the strips and the set S defined above, we obtain an (α+ ε)-approximation
algorithm for the OMCOP variant where n axis aligned boxes are to be packed under
translation. Its runtime is O

(
T (n) log2 n

ε2

)
.

Proof. There exist a, b ∈ N with WΣ (1− ε′)a+1
< Wopt ≤ WΣ (1− ε′)a and

DΣ (1− ε′)b+1
< Dopt ≤ DΣ (1− ε′)b. Eventually the boxes will be packed in a strip with

base area W × D with W = WΣ (1− ε′)a and D = WΣ (1− ε′)b. Since W ≥ Wopt and
D ≥ Dopt, the minimal height for a strip packing with base area W ×D is at most Hopt.
Therefore, we obtain a packing with height H ≤ αHopt. The associated container has volume
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dmax

D∑

wmax W∑

Figure 2 Example for Set S with ε = 3
4 and α = 1.5.

V with

V = HWD

≤ (αHopt)
(
WΣ (1− ε′)a

) (
DΣ (1− ε′)b

)
≤ (αHopt)

(
Wopt

1− ε′

)(
Dopt

1− ε′

)
≤ α

(1− ε′)2Vopt

≤ α

1− 2ε′Vopt = (α+ ε)Vopt , since ε′ = ε

2 (ε+ α) .

The size of S is

|S| =
(⌈

log 1
1−ε′

WΣ

⌉
−
⌊
log 1

1−ε′
wmax

⌋
+ 1
)(⌈

log 1
1−ε′

DΣ

⌉
−
⌊
log 1

1−ε′
dmax

⌋
+ 1
)

= O
(

log2 n

(− log (1− ε′))2

)
, since WΣ

wmax
≤ n, where n is the number of boxes

= O
(

log2 n

ε2

)
,

since − log (1− x) ≥ x for x ∈ [0, 1] and ε′ ≥ cε for some constant c > 0.

Therefore we get the desired running time. J

If we use the algorithm given by Diedrich et al. [5] to pack the boxes into the strips, we
obtain the following corollary.

I Corollary 4. There exists a (7.25 + ε)-approximation algorithm for packing axis-parallel
boxes under translation into a minimum volume axis-parallel box with running time polynomial
in both the input size and 1

ε .

3 Algorithms for Variants of OMCOP

In this section, we will give algorithms for variants of OMCOP. The basic idea is to get rid
of the third dimension by dividing the set of objects into sets of objects with similar height

ISAAC 2016
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dmax

(a) Cut strip (b) Pieces obtained from one strip
stacked on top of each other

Figure 3

and then packing those using an algorithm for two-dimensional boxes. These containers then
get cut into pieces with equal base area and the pieces will be stacked on top of each other.

3.1 Packing Cuboids under Translation
Even though this algorithm gets outperformed by the construction in the previous section,
we state it here as base for the algorithms for the other variants. Let α ∈ (0, 1) and c > 1 be
two parameters that we will choose later.

Algorithm 2:
Input: A set of axis parallel boxes B = {b1, . . . , bn}

1. Partition B into subsets of boxes that have almost the same height:
Bj =

{
bi ∈ B | hmax · αj < hi ≤ hmax · αj−1}.

2. Pack the boxes of every Bj into a strip with width wmax and height hmax · αj−1

considering the depth of the boxes instead of the height, i.e., the strip grows into the
depth. This is done by applying Algorithm 1 to pack the lower facets of the boxes
(rectangles) into the lower facet of the strip (2d-strip).

3. Divide the strips into pieces with depth (c− 1) · dmax, ignoring the last part of the
strip of depth dmax. (Parts of boxes contained in this part of the strip will be covered
in step 5 anyway.)

4. Assign each box to the piece its front lies in.
5. Extend each piece to depth c · dmax such that every assigned box lies entirely in the

piece.
6. Stack the pieces on top of each other.

For an illustration of steps 3 to 6 see Figure 3. The first step can be done in O(n) time.
The second step needs time O(n logn) (see Remarks on Algorithm 1). The rest can be done
in linear time. Therefore, Algorithm 2 runs in O(n logn) time. We obtain

I Theorem 5. For suitable values of c and α Algorithm 2 computes a
(

3
3√2−1≈11.542

)
-

approximation for the variant of three-dimensional OMCOP where n axis parallel cuboids
are packed under translation in O(n logn) time.

Proof. Let Dj denote the depth of the strip obtained in step 2 for the boxes in Bj . Then we
get by step 3

⌈
Dj−dmax
(c−1)dmax

⌉
pieces. After step 5 each piece has volume c · dmaxwmaxhmaxα

j−1.
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Consider the total volume Vj of the pieces obtained for the subset Bj :

Vj = c · dmax

⌈
Dj − dmax

(c− 1) dmax

⌉
wmaxhmaxα

j−1

<
c

c− 1 (Dj − dmax)wmaxhmaxα
j−1 + c · dmaxwmaxhmaxα

j−1.

We know from the two-dimensional packing algorithm that the base area of the strip is half
filled with boxes except for the last part of depth at most dmax (see Remarks on Algorithm 1),
so (Dj − dmax)wmax ≤ 2

∑
b∈Bj

AB (b) where AB (b) denotes the base area of box b. We also
know that for every bi ∈ Bj the inequality hmaxα

j−1 < hi

α holds. Therefore, we get for the
total volume of the packing V that

V ≤
∑
j

(
c

c− 1 (Dj − dmax)wmaxhmaxα
j−1 + c · dmaxwmaxhmaxα

j−1
)

≤
∑
j

 2c
α (c− 1)

∑
b∈Bj

V (b) + c · wmax · dmax · hmaxα
j−1


≤ 2c
α (c− 1)

∑
b∈B

V (b)︸ ︷︷ ︸
≤Vopt

+c · wmax · dmax · hmax︸ ︷︷ ︸
≤Vopt

·
∞∑
l=0

αl (1)

≤
(

2c
α (c− 1) + c

1− α

)
Vopt. (2)

The factor before Vopt in term (2) is minimized if the partial derivatives with respect to c
and α are 0. Solving the resulting system of equations we get c = 3

√
2 + 1 ≈ 2.2599 and

α = 1
3
(
2− 3
√

4 + 3
√

2
)
≈ 0.5575. This gives an approximation ratio of 3

3√2−1 ≈ 11.542. J

3.2 Packing Cuboids under Rigid Motions
3.2.1 Cuboid as Container
Now we consider the variant of OMCOP where the objects to be packed are boxes and
rigid motions are allowed. Let Vopt denote the volume of an optimal container for the given
setting. We basically use the algorithm stated above but with an extra preprocessing step,
namely rotating every box bi ∈ B such that it becomes axis parallel and hi ≥ wi ≥ di. This
can be done in O(n) time. To prove the performance bound of this algorithm we need the
following lemma.

I Lemma 6. If every bi = (hi, wi, di) ∈ B is oriented such that hi ≥ wi ≥ di, then
hmax · wmax · dmax ≤

√
6 · Vopt.

Proof. Since an optimal container has to contain the box determining hmax, it contains a
line segment of length hmax. The projection of that line segment on at least one of the axes
has to have length at least 1√

3hmax. W.l.o.g. let this axis be the x-axis. Therefore, the
optimal container has an extent of at least 1√

3hmax in x-direction.
Since every box is at least as high as wide, a box with width wmax contains a disk D with

diameter wmax and so the optimal container does. Observe that D contains a diametric line
segment l which is parallel to the y-z-plane. Consequently, the projection of l and therefore
the one of the whole box on the y-axis or on the z-axis has a length of at least 1√

2wmax.
W.l.o.g. let this be the y-axis.

ISAAC 2016
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A box with depth dmax contains a sphere with diameter dmax. The projection of this
sphere on any axis has length at least dmax.

Summarizing, each optimal box has volume at least 1√
6hmax · wmax · dmax J

Observe that every argument leading to inequality (1) still holds for this variant of the
algorithm. Using Lemma 6 to estimate hmax · wmax · dmax we get an approximation factor of

2c
α(c−1) + c·

√
6

1−α . Minimizing this expression as before yields the following theorem.

I Theorem 7. The given algorithm computes a 17.738-approximation for the variant of
three-dimensional OMCOP where n axis parallel cuboids are packed under rigid motions in
O(n logn) time.

3.2.2 Convex Container
If we allow a convex container instead of an orthogonal container, we can use the same
algorithm but adapt the analysis. The arguments leading to inequality (1) still hold since
they only use the total volume of the boxes as estimate for the volume of an optimal container.
To estimate hmax ·wmax · dmax, we use the following lemma. Note that Vopt here denotes the
volume of a minimal convex container instead of an axis parallel container.

I Lemma 8. If every bi = (hi, wi, di) ∈ B is oriented such that hi ≥ wi ≥ di, then
hmax · wmax · dmax ≤ 6 · Vopt.

Proof. Consider the line segment, disk and sphere from the proof of Lemma 6. The line
segment has length hmax. The disk with diameter wmax contains a line segment of length
wmax that is perpendicular to the first line segment. The sphere with diameter dmax contains
a line segment of length dmax that is perpendicular to the first two line segments. It is well
known (see, e.g., Lemma 6 from [8]) that the convex hull of these three line segments has a
volume of at least 1

6hmaxwmaxdmax. J

This leads with inequality (1) to the approximation ratio 2c
α(c−1) + c·6

1−α . Minimizing this
term as before yields the following theorem.

I Theorem 9. Using the algorithm described in section 3.2 we get a 29.135-approximation
for packing n axis parallel boxes under rigid motions into a smallest-volume convex container
in time O(n logn).

3.3 Packing Convex Polyhedra under Rigid Motions
3.3.1 Cuboid as Container
We use the algorithm from the previous sections to pack convex polyhedra under rigid
motions into an axis-parallel box of minimal volume. To do so, we add another preprocessing
step where we compute a bounding box for every polyhedron according to the following
lemma. We then pack these boxes with the algorithm discussed in the previous section.

I Lemma 10. For every m-vertex convex polyhedron K in Rd, there is a box B that contains
K with V (B) ≤ d!V (K) that can be computed in O(d2m2) time, or O(m logm) time if d = 3.

Proof by induction on the dimension d. In one dimension, the Lemma holds obviously.
In higher dimensions d, let P,Q be two points of K with maximum distance and |PQ| = l.

Let πP be the hyperplane normal to PQ in the point P . Let K ′ be the orthogonal projection
of K onto πP . By the inductive hypothesis there is a (d−1)-dimensional box B′ containing K ′
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T

L

R

B

F

D

D′

T ′

R′L′

F ′

Figure 4 Box with a point of the enclosed polyhedron in every facet and the projection of the
box on a plane perpendicular to TB. By construction, the images of T and B under the projection
are the same.

for which V ′(B′) ≤ (d−1)!V ′(K ′) where V ′ denotes the (d−1)-dimensional volume. Then K
is contained in the box B with base B′ and height l and V (B) = lV ′(B′) ≤ l(d−1)!V ′(K ′). It
is well known (see e.g. [8]) that for any convex body K, its projection K ′ on some hyperplane
πP , and a line segment l perpendicular to πP , it holds: V (K) ≥ 1

d · l · V
′ (K ′). Hence, we

get for the volume of B: V (B) ≤ d!V (K). B can be computed by testing every pair of
vertices to find P and Q that have maximal distance. This takes O(dm2) time. Then K gets
projected on a hyperplane perpendicular to PQ. This is possible in O(dm) time. Then we
proceed recursively with the projection of K. In total we need O(d2m2). The asymptotically
fastest algorithm for dimension three however has runtime O(m logm), see [10]. J

The construction in the proof of Lemma 10 is the same as in Lemma 7 from [8]. We get a
total running time of O (m logm) for computing the bounding boxes of three-dimensional
polyhedra with m vertices in total.

For the analysis of the algorithm presented in this section we need several notations
and lemmata that follow. Consider the box b = (h,w, d) obtained from the polyhedron p
by Lemma 10 after the algorithm rotated it in axis-parallel position such that h ≥ w ≥ d.
Notice that in every facet of b lies at least one point of p. We call the top and bottom one T
and B, which are unique by construction. In the left and right facet of b, we choose such a
point from each and call them L and R. By construction, the distance from them to the
front facet has to be the same. We do the same for the front and rear facet and call them F

and D respectively. We know from the construction that |TB| = h and TB is parallel to
the longest edge of b. If we project the polyhedron onto a plane perpendicular to TB, we
call the images of T , L, R, F and D under the projection T ′, L′, R′, F ′ and D′, respectively.
See Figure 4 for illustration. Due to the construction of b, |L′R′| = w holds.

I Lemma 11. Let b = (h,w, d) with h ≥ w ≥ d be the enclosing box obtained for polyhedron
p by the algorithm from Lemma 10. Then, parallel to any given plane, p contains a line
segment of length at least w · 1√

5 .

Proof. Consider the points T , B, L and R as described above. The distance between line
segment TB and L or the distance between line segment TB and R is at least w

2 . Let w.l.o.g.
L be the point with larger distance to TB. Consider the triangle 4(T,B,L) with edges and
angles labeled according to Figure 5a. Notice that α ≤ 90° and β ≤ 90°. Let at be the height
of the triangle on edge t, ab on edge b, and al on edge l.
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T B

L

tb

l
α

β

γ

at
ab

al

(a) Labelled triangle 4(T,B,L)
T B

al

(b) Possible triangles 4(T,B,L)

Figure 5

Due to the construction of 4(T,B,L), we know that al ≥ w
2 . We will later show that

ab ≥ w√
5 and at ≥ w√

5 . If we choose a plane parallel to the given one, such that the intersection
between the plane and 4(T,B,L) contains T , B or L but is not only one point, then we
know that the intersection is at least a line segment with length at least min (at, ab, al) ≥ w√

5
which completes the proof. It remains to show that at, ab ≥ w√

5 .
We only show that ab ≥ w√

5 since the proof for at is analogous. Figure 5b depicts possible
triangles with given distance |TB| and height al. ab is the distance between B and the line
defined by T and L. Since β ≤ 90° this distance is minimal for β = 90°.

Let A be the area of 4(T,B,L) with β = 90°.

It holds

al · |TB|
2 =A = ab · |TL|

2 .

Hence

al · h = ab ·
√
h2 + a2

l ,

since |TB| = h and using Pythagoras’ theorem for replacing |TL|. That gives

ab = al · h√
h2 + a2

l

= 1√
1
a2

l

+ 1
h2

≥ 1√
4
w2 + 1

w2

= w√
5

J

I Lemma 12. Let b = (h,w, d) with h ≥ w ≥ d be the enclosing box obtained for a convex
polyhedron p by the algorithm from Lemma 10. Then the projection of p onto any arbitrary
line g has length at least 1

8
√

3d.

This Lemma is shown by an elaborate construction, where we find four line segments inside
p such that the projection of at least one of them onto g has length at least 1

8
√

3d. See
Appendix A for the complete proof.

Summarized, the algorithm for packing convex polyhedra works as follows: First, we
compute a bounding box for every polyhedron with the algorithm from Lemma 10, then we
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rotate each box bi together with its contained polyhedron pi in an axis-prallel orientation
such that hi ≥ wi ≥ di. Finally, we run Algorithm 2 with the rotated boxes.

Now consider the polyhedra p1, p2, p3 that determine hmax, wmax and dmax in the place-
ment of the enclosing boxes the described algorithm computes. p1 contains a line segment of
length hmax and so its projection to at least one of the axes is at least 1√

3hmax. W.l.o.g. let
this axis be the x-axis. Furthermore, by Lemma 11 the projection of p2 onto the y-z-plane
contains a line of length at least 1√

5wmax. Therefore, the projection of p2 onto the y-axis or
the one onto the z-axis has length at least 1√

2 ·
1√
5wmax = 1√

10wmax. The projection of p3

to the remaining axis has length at least 1
8
√

3dmax by Lemma 12. An axis parallel box with
minimal volume containing p1, p2, p3 has at least the described side lengths and so we get
the following lemma:

I Lemma 13. For packing convex polyhedra under rigid motions into a minimum-volume
axis parallel container, the following inequality holds: hmax · wmax · dmax ≤ 24

√
10Vopt.

From Lemma 10 we know that the volume of the smallest enclosing box for a polyhedron is
at most 6 times the volume of the polyhedron. With the previous lemma and this knowledge
we derive the following approximation ratio from inequality (1):

12c
α (c− 1) + c · 24

√
10

1− α . (3)

The running time of this algorithm is determined by the computation of the bounding boxes
and the packing of these boxes: O (m logm+ n logn) = O (m logm) where m is the total
number of vertices of the polyhedra. Hence, by minimizing term (3) as before we get the
following theorem.

I Theorem 14. The given algorithm computes an orthogonal container with volume at
most 277.59 times the volume of an orthogonal minimal container for the variant of three-
dimensional OMCOP where a set of convex polyhedra having m vertices in total are to be
packed under rigid motions. The runtime of the algorithm is O (m logm).

3.3.2 Convex Container
Next, we show that the algorithm from the previous section is not only a constant factor
approximation for the smallest axis parallel cuboid under rigid motions but even for the
smallest convex container. Of course, the approximation factor is higher and, first, we get
the following lemma instead of Lemma 13:

I Lemma 15. For packing convex polyhedra under rigid motions into a minimum-volume
convex container, the following inequality holds: hmax · wmax · dmax ≤ 48

√
15Vopt.

Proof. As before let p1, p2, p3 be the polytopes that determine hmax, wmax and dmax. p1
contains a line segment of length hmax. By Lemma 11, p2 contains a line segment of length
wmax√

5 that is perpendicular to the first line segment. By Lemma 12, p3 contains a line
segment with length dmax

8
√

3 that is perpendicular to the first two lines. Since any convex body
containing three pairwise perpendicular line segments of length a, b, c has volume at least
1
6abc (cf. Lemma 6 in [8]), we get a lower bound on the volume of the convex hull which is
also a lower bound for the volume of an optimal container. J

As before we use Lemma 10 and the previous lemma to estimate inequality (1) and obtain
the following approximation ratio: 12c

α(c−1) + c·48
√

15
1−α . Minimizing this term as before yields

the following result.
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I Theorem 16. The algorithm given in Section 3.3 computes a convex container with volume
at most 511.37 times the volume of a minimal convex container for packing a set of convex
polyhedra having m vertices in total under rigid motions in time O (m logm).
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A Proof of Lemma 12

We construct four line segments inside of p such that the projection of at least one of them
onto the line has the desired length.

Consider the projection of p onto a plane perpendicular to TB as described above
(Figure 4). Then 4(L′, R′, F ′) or 4(L′, R′, D′) has an area A ≥ dw

4 . The perimeter of the
projection of the box, namely 2(w + d), gives an upper bound for the perimeter u of the
triangles. It is well known (see, e.g.,[4]) that the radius of the incircle of a triangle with area
A and perimeter u is r = 2A

u . Hence, we know that the projection of p contains a circle with
radius r where

r = 2A
u
≥ dw

4(d+ w) ≥
1
8d , since d ≤ w. (4)

See Figure 6a for an example.



H. Alt and N. Scharf 11:13

L′

F ′

R′

D′

(a) Circle in the projection of p that has radius at least
1
8d

T ′

W ′

V ′U ′

(b) Construction of U ′, V ′ and
W ′

Figure 6

Now we can find points U ′, V ′, W ′ in the projection, such that U ′, V ′, W ′ lie on the
circle with radius r and |T ′V ′| = k ≥ r, |U ′W ′| = l = 2r and T ′V ′ ⊥ U ′W ′. To obtain V ′,
we shoot a ray from T ′ through the center of the circle until we hit the circle and call this
point V ′. U ′W ′ is the diameter of the circle perpendicular to T ′V ′. See Figure 6b for an
example.

Let U , V , W be preimages of U ′, V ′, W ′ under the projection. Hence, they lie inside p.
The line segments whose projections on the given line g we consider are BT , BV , V T and
WU .

The length of the projection of a line segment onto g is the scalar product of the vector
between the endpoints of the line segment and a unit vector with same direction as g. To
simplify the computation of the scalar product, we define the coordinate system as follows:
B is equal to the origin. T lies on the z-axis. The y-coordinate of V is 0. Then U and W
have the same x-coordinate. Now we have

−→
BT =

 0
0
h

 −−→
BV =

 k

0
hV

 −→
V T =

 −k
0

h− hV

 −−→
WU =

 0
l

hWU

 ,

for values k, l with properties described above, and hV , hWU where 0 ≤ hV ≤ h and

|hWU | ≤ h. Let −→g =

 x

y

z

 be the direction of g in the defined coordinate system, with

|−→g | = 1. We now look at the lengths of the projections of the line segments onto the given
line and distinguish four cases.

Case 1: |x| ≥ 1√
3
. Then, using inequality (4), if sgn(z) = sgn(x)

|
−−→
BV · −→g | ≥ k|x| ≥ r|x| ≥ 1√

3 · 8
d

or, if sgn(z) 6= sgn(x)

|
−→
V T · −→g | ≥ k|x| ≥ 1√

3 · 8
d.
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Case 2: |z| · h ≥ 1√
3·8

d. Note, that this inequality is satisfied if |z| ≥ 1√
3 . Then

|
−→
BT · −→g | = h · |z| ≥ 1√

3 · 8
d.

Case 3: |y| ≥ 1√
3
and sgn(y) = sgn(hW U z). Then

|
−−→
WU · −→g | ≥ l|y| ≥ 1√

3 · 8
d.

Case 4: |y| ≥ 1√
3
and sgn(y) 6= sgn(hW U z) and |z| · h < 1√

3·8
d. Note: |hWUz| ≤

h|z| < 1√
3·8d and l|y| = 2r|y| ≥ 2√

3·8d, hence

|
−−→
WU · −→g | = l|y| − |hWUz| ≥

1√
3 · 8

d.

Since |−→g | = 1, |x| ≥ 1√
3 or |y| ≥ 1√

3 or |z| ≥ 1√
3 holds. Hence, at least one of the 4 cases

occurs because h ≥ d .
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1 Introduction

Understanding the computational limitations of algorithmic problems often leads to algorithms
that are efficient for inputs that are seen in practice. This paper, which stemmed from
an industrial-acdemic connection [31], is a prime example of such a case. We focus on an
aspect of Cyber-security which is a critical modern challenge. Network intrusion detection
systems (NIDS) perform protocol analysis, content searching and content matching, in order
to detect harmful software. Such malware may appear non-contiguously, scattered across
several packets, which necessitates matching gapped patterns.

A gapped pattern P is one of the form P1 {α, β} P2, where each subpattern P1, P2 is
a string over alphabet Σ, and {α, β} matches any substring of length at least α and at
most β, which are called the gap bounds. Gapped patterns may contain more that one
gap, however, those considered in NIDS systems typically have at most one gap, and are a
serious bottleneck in such applications [31]. Analyzing the set of gapped patterns considered
by the SNORT software rules shows that 77% of the patterns have at most one gap, and
more than 44% of the patterns containing gaps have only one gap. Therefore, an efficient
solution for this case is of special interest. Though the gapped pattern matching problem
arose over 20 years ago in computational biology applications [28, 19] and has been revisited
many times in the intervening years (e.g. [27, 10, 25, 9, 16, 29, 32]), in this paper we study
what is apparently a mild generalization of the problem that has nonetheless resisted many
researcher’s attempts at finding a definitive efficient solution.

The set of d patterns to be detected, called a dictionary, could be quite large. While
dictionary matching is well studied (see, e.g. [2, 4, 12, 5, 15]), NIDS applications motivate
the dictionary matching with one gap problem, defined formally as follows.

I Definition 1. The Dictionary Matching with One Gap Problem (DMOG), is:
Input: A text T of length |T | over alphabet Σ, and a dictionary D of d gapped patterns

P1, . . . , Pd over alphabet Σ where each pattern has at most one gap.
Output: All locations in T where a pattern Pi ∈ D, 1 ≤ i ≤ d, ends.

In the offline DMOG problem T and D are presented all at once. We study the more
practical online DMOG problem. The dictionary D can be preprocessed in advance, resulting
in a data structure. Given this data structure the text T is presented one character at a time,
and when a character arrives the subset of patterns with a match ending at this character
should be reported before the next character arrives. Three cost measures are of interest: a
preprocessing time, a time per character, and a time per match reported. Online DMOG is
a serious bottleneck for NIDS, though it has received much attention from both the industry
and the academic community.

1.1 Previous Work

Finding efficient solutions for DMOG has proven to be a difficult algorithmic challenge as,
unfortunately, little progress has been obtained on this problem even though many researchers
in the pattern matching community and the industry have tackled it. Table 1 describes a
summary and comparison of previous work. It illustrates that previous formalizations of
the problem, either do not enable detection of all intrusions or are incapable of detecting
them in an online setting, and therefore, are inadequate for NIDS applications. Table 1
also demonstrates that our upper bounds are essentially optimal (assuming some popular
conjectures, as described in Section 2).
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Table 1 Comparison of previous work and some new results. The parameters: lsc is the longest
suffix chain of subpatterns in D, socc is the number of subpatterns occurrences in T , op is the
number of pattern occurrences in T , α∗ and β∗ are the minimum left and maximum right gap
borders in the non-uniformly bounded case, δ(GD) is the degeneracy of the graph GD representing
dictionary D.

Preprocessing Total Query Time Algorithm Remark
Time Type

[24] none Õ(|T |+ |D|) online reports only
first occurrence

[32] O(|D|) Õ(|T |+ d) online reports only
first occurrence

[18] O(|D|) O(|T | · lsc+ socc) online reports one occurrence
per pattern and location

[7] Õ(|D|) Õ(|T |(β − α) + op) offline DMOG
[20] O(|D|) Õ(|T |(β∗ − α∗) + op) offline DMOG

This
paper O(|D|) Õ(|T | · δ(GD) · lsc+ op) online DMOG

This O(|D|) Ω(|T | · δ(GD)1−o(1) + op) online DMOG
paper O(|D|) Ω(|T | · (β − α)1−o(1) + op) or offline

1.2 New Results
The DMOG problem has several natural parameters, e.g., |D|, d, and the magnitude of the
gap. We establish almost sharp upper and lower bounds for the cases of unbounded gaps
(α = 0, β =∞), uniformly bounded gaps where all patterns have the same bounds, α and β,
on their gap, and the most general non-uniform gaps version, where each pattern Pi ∈ D has
its own gap bounds, αi and βi. We show that the complexity of DMOG actually depends on a
“hidden” parameter that is a function of the structure of the gapped patterns. The dictionary
D can be represented as a graph GD, which is a multi-graph in the non-uniformly bounded
gaps case, where vertices correspond to first or second subpatterns and edges correspond to
patterns1. We use the notion of graph degeneracy δ(GD) which is defined as follow. The
degeneracy of an undirected graph G = (V,E) is δ(G) = maxU⊆V minu∈U dGU (u), where
dGU is the degree of u in the subgraph of G induced by U . In words, the degeneracy of G is
the largest minimum degree of any subgraph of G. A non-multi graph G with m edges has
δ(G) = O(

√
m), and a clique has δ(G) = Θ(

√
m). The degeneracy of a multi-graph can be

much higher.

Vertex-triangle queries. A key component in understanding both the upper and lower
bounds for DMOG is the vertex-triangles problem, where the goal is to preprocess a graph
so that given a query vertex u we may list all triangles that contain u. The vertex-triangles
problem, besides being a natural graph problem, is of particular interest here since, as will
be demonstrated in Section 2, it is reducible to DMOG. Our reduction demonstrates that
the complexity of the DMOG problem already emerges when all patterns are of the form of
two characters separated by an unbounded gap. This simplified online DMOG problem is

1 While it may be more natural to consider a directed or bipartite graph, the notion of degeneracy ignores
directions, and so let GD here be an undirected graph for sake of explaining the notion.
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equivalent to the following Induced Subgraph (ISG) problem. Preprocess a directed graph
G = (V,E) such that given a query sequence of vertices online (these vertices need not
be all of V ), after vertex vi arrives, all edges (vj , vi) ∈ E with j < i are reported. Notice
that answering consecutive queries is done independently. Thus, characters and gapped
patterns in DMOG correspond to vertices and edges in ISG, respectively. We show that
vertex-triangles queries are reducible to ISG.

This reduction serves two purposes. First, in Section 2 we prove a conditional lower bound
(CLB) for DMOG based on the 3SUM conjecture by combining a reduction from triangle
enumeration to the vertex-triangles problem with our new reduction from the vertex-triangles
problem to DMOG. Our lower bound states that any online DMOG algorithm with low
preprocessing and reporting costs must spend Ω(δ(GD)1−o(1)) per character, assuming the
3SUM conjecture. Interestingly, the path for proving this CLB deviates from the common
conceptual paradigms for proving lower bounds conditioned on the 3SUM conjecture, and
is of independent interest. In particular, the common paradigm considers set-disjointness
or set-intersection type problems, which correspond to edge triangle queries, while here we
consider vertex-triangle queries. Moreover, our CLB holds for the offline case as well, and can
be rephrased in terms of other parameters. For example, in the DMOG problem with uniform
gaps {α, β}, we prove that the per character cost of scanning T must be Ω((β − α)1−o(1)).
This gives some indication that some recent algorithms for the offline version of DMOG
problem are essentially optimal ([7, 20]).

Second, in Section 3 we provide optimal solutions (under the 3SUM conjecture), up to
subpolynomial factors, for ISG and, therefore, also for vertex-triangles queries, with O(|E|)
preprocessing time and O(δ(G) + op) time per each vertex, where op is the size of the output
due to the vertex arrival. The connection between ISG and DMOG led us to extend the
techniques used to solve ISG, combine them with additional ideas and techniques, thereby
introduce several new online DMOG algorithms whose dependence on δ(G) is linear. Thus,
graph degeneracy seems to capture the intrinsic complexity of the problem. On the other
hand, the statement of our general algorithmic results is actually a bit more complicated
as it depends on other parameters of the input, namely lsc, the length of the longest suffix
chain in the dictionary, i.e., the longest sequence of dictionary subpatterns such that each is
a proper suffix of the next. While the parameter lsc could theoretically be as large as d, in
practice it is very small [31]. Nevertheless, we also present algorithms that in the most dense
cases reduce the dependence on lsc.

Lower bounds leading to practical upper bounds. After trying to tackle the DMOG
problem from the upper bound perspective, we suspected that a lower bound could be proven,
and indeed were successful in showing a connection to the 3SUM conjecture. The CLB proof
provides insight for the inherent difficulty in solving DMOG, but is also unfortunate news
for those attempting to find efficient upper bounds. Fortunately, a careful examination of
the reduction from 3SUM to DMOG reveals that the CLB from the 3SUM conjecture can be
phrased in terms of δ(GD), which turns out to be a small constant in the input instances
considered by NIDS (according to an analysis of the graph created using SNORT rules) [31].
This lead to designing algorithms whose runtime can be expressed in terms of δ(GD), and can
therefore be helpful in practical settings. The following table summarizes our upper-bounds
for DMOG.

The design of our algorithms stem from a solution for ISG using O(m) preprocessing time
and O(δ(G) + op) query time. This solution for ISG is extended to solutions for the various
DMOG versions. However, since subpatterns can be suffixes of each other, up to lsc vertices
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Table 2 A summary of upper bounds for DMOG described in this paper. Unbounded, uniform
and non-uniform refer to the type of gap bounds under consideration. M is the maximal length of a
subpattern in the dictionary D.

Gaps Preprocessing Query Time Space
Type Time per Text Character

unbounded O(|D|) O(δ(GD) · lsc+ op) O(|D|)
uniform O(|D|) O(δ(GD) · lsc+ op) O(|D|+ lsc(β − α+M) + α)

non-uniform O(|D|) Õ(δ(GD) · lsc+ op) Õ(|D|+ lsc(β∗ − α∗ +M) + α∗)
uniform O(|D|) O(lsc+

√
lsc · d+ op) O(|D|+ lsc(β − α+M) + α)

non-uniform O(|D| Õ(
√
lsc · d(β∗ − α∗ +M) + op) Õ(|D|+ d(β∗ − α∗)

+d(β∗ − α∗)) +
√
lsc · d(β∗ − α∗ +M) + α∗)

can arrive simultaneously in GD, the time of our algorithms have a multiplicative factor of
lsc. We emphasize that we are not the first to introduce the lsc factor even in solutions
for simplified relaxations of the DMOG problem [18]. Also, since subpatterns may be long,
we must accommodate a delay in the time a vertex corresponding to a second subpattern
is treated as if it has arrived, thus inducing a minor additive space usage. Finally, in [6]
we obtain more efficient bounds that depend linearly on

√
lsc · d when δ(DG) ≥

√
d
lsc , by

first considering special types of graph orientations, called threshold orientations, and then
carefully applying data-structure techniques. Notice that while in the uniformly bounded
case we have δ(GD) = O(

√
d), in the non-uniform case δ(GD) could be much higher and so

these new algorithms become a vast improvement.

Paper Contributions. The main contributions of this paper are:
Obtaining algorithms for DMOG that are asymptotically fast for practical inputs.
Proving matching conditional lower bounds (up to sub-polynomial factors) from the
3SUM conjecture, which in particular deviate from the common paradigm of such proofs.
Formalizing the ISG problem. This problem serves in this paper for supplying a deeper
understanding of the DMOG problem, but is also of independent interest.

Paper Organization. Section 2 describes our conditional lower bounds. In Section 3 we
introduce a solution for ISG, which is then extended to simplified versions of the uniformly
and non-uniformly bounded DMOG problems in Sections 3.1 and 3.2. In Section 4.1, the
ISG algorithms are extended to solutions for the various DMOG versions. More details and
results appear in [6].

2 3SUM: Conditional Lower Bounds

In this section we prove that conditioned on the 3SUM conjecture we can prove lower bounds
for the vertex-triangles problem, the ISG problem, and the (offline) unbounded DMOG
problem. Since the other two versions of DMOG (uniformly and non-uniformly bounded)
can solve the unbounded DMOG version, the lower bounds hold for these problems as well.

Background. Polynomial (unconditional) lower bounds for data structure problems are
considered beyond the reach of current techniques. Thus, it has recently become popular to
prove CLBs based on the conjectured hardness of some problem. One of the most popular
conjectures for CLBs is that the 3SUM problem (given n integers determine if any three
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12:6 Mind the Gap: Online Dictionary Matching with One Gap

sum to zero) cannot be solved in truly subquadratic time, where truly subquadratic time is
O(n2−Ω(1)) time. This conjecture holds even if the algorithm is allowed to use randomization
(see e.g. [30, 1, 23, 17]). In this section we show that the infamous 3SUM problem can
be reduced to DMOG, which sheds some light on the difficulty of the DMOG problem.
Interestingly, our reduction does not follow the common paradigm for proving CLBs based
on the 3SUM conjecture, providing a new approach for reductions from 3SUM. This approach
is of independent interest, and is described next.

Triangles. Pǎtraşcu [30] showed that 3SUM can be reduced to enumerating triangles in
a tripartite graph. Kopelowitz, Pettie, and Porat [23] provided more efficient reductions,
thereby showing that many known triangle enumeration algorithms ([21, 13, 11, 22]) are
essentially and conditionally optimal, up to subpolynomial factors. Hence, the offline version
of triangle enumeration is well understood. The following two indexing versions of the triangle
enumeration problem are a natural extension of the offline problem. In the edge-triangles
problem the goal is to preprocess a graph so that given a query edge e all triangles containing
e are listed. The vertex-triangles problem is defined above. Clearly, both these versions solve
the triangle enumeration problem, which immediately gives lower bounds conditioned on the
3SUM conjecture.

The edge-triangles problem on a tripartite graph corresponds to preprocessing a family
F of sets over a universe U in order to support set intersection queries in which given two
sets S, S′ ∈ F the goal is to enumerate the elements in S ∩ S′ (see [23]). Indeed, the task of
preprocessing F to support set-intersection enumeration queries, and hence edge-triangles, is
well studied [14, 22]. Furthermore, the set intersection problem has been used extensively as
a tool for proving that many algorithmic problems are as hard as solving 3SUM [30, 1, 23].
However, the vertex-triangles problem has yet to be considered directly2.

The Lower Bounds. We use the vertex-triangles problem in order to show that the ISG
problem is hard, and thus the simplest DMOG version of (offline) unbounded setting is
3SUM-hard. Our proof begins from the conditional lower bounds for triangle enumeration
introduced in [23]. The most significant conditional lower bounds that we prove are stated by
the following theorems. Due to space limitations the proofs of these theorems, together with
some more conditional lower bounds, are given in Appendix A. To understand the statements
of the following theorems, when the total query time of an algorithm can be formulated as
O(tq + op · tr) time, we say that tq is the query time and tr is the reporting time.

I Theorem 2. Assume 3SUM requires Ω(n2−o(1)) expected time. For any algorithm that
solves the ISG problem on a graph G with m edges, if the amortized expected preprocessing
time is O(m · δ(G)1−Ω(1)) and the amortized expected reporting time is sub-polynomial, then
the amortized expected query time must be Ω((δ(G))1−o(1)).

I Theorem 3. Assume 3SUM requires Ω(n2−o(1)) expected time. For any algorithm that
solves the DMOG problem on a dictionary D with d patterns, if the amortized expected
preprocessing time is O(|D| · δ(GD)1−Ω(1)) and the amortized expected reporting time is
sub-polynomial, then the amortized expected query time must be Ω((δ(GD))1−o(1)).

2 The closely related problem of deciding whether a given vertex is contained by any triangle (a decision
version) has been addressed [8].
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3 The Induced Subgraph Problem

An Upper Bound via Graph Orientations. In graph orientations the goal is to orient the
graph edges while providing some guarantee on the out-degrees of the vertices. Formally,
an orientation of an undirected graph G = (V,E) is called a c-orientation if every vertex
has out-degree at most c ≥ 1. The notion of graph degeneracy is closely related to graph
orientations [3]. Chiba and Nishizeki [13] linear time greedy algorithm assigns a δ(G)-
orientation of G. We preprocess G using this algorithm, thereby obtaining a c-orientation
with c = δ(G), and use it for solving ISG problem as follows. First, we view an orientation as
assigning “responsibility” for all data transfers occurring on an edge to one of its endpoints,
depending on the direction of the edge in the orientation (regardless of the actual direction
of the edge in the input graph G). We exploit this distinction by using the notation of an
edge e = (u, v) as oriented from u to v, while e could be directed either from u to v or from
v to u. We say that u is responsible for e, and that e is assigned to u. Furthermore, u is a
responsible-neighbor of v and v is an assigned-neighbor of u.

The Bipartite Graph. We begin by converting G = (V,E) to a bipartite graph by creating
two copies of V called L (the left vertices) and R (the right vertices). For every edge
(u, v) ∈ E we add an edge in the bipartite graph from uL ∈ L to vR ∈ R, where uL is a
copy of u and vR is a copy of v. All edges are originally directed from L to R (before the
orientation). Furthermore, each vertex in V that arrives during query time is replaced by its
two copies, first the copy from R and then the copy from L. This ordering guarantees that a
self loop in G is not mistakenly reported the first time its single vertex arrives. Notice that
the degeneracy of G is unchanged, up to constant factors, due to this reduction. From here
onwards we assume that G is already in this bipartite representation.

The unbounded case discussion and the omitted proofs appear in [6].

3.1 Uniformly Bounded Edge Occurrences
In this case, the ISG problem is restricted with two positive integer parameters α and β so
an edge (vj , vi) can only be reported if α < i − j ≤ β + 1 (recall that i and j are arrival
times of vi and vj , respectively). The interval between β time units ago and α time units
ago is called the active window. It is maintained via a list Lβ of the last β vertices. In
addition, each vertex v ∈ R maintains a reporting list Lv, which is a linked list containing the
responsible-neighbors of v which have appeared during the active window, without repetition.
Furthermore, each vertex u ∈ L has an ordered list of time stamps τu of the times u arrived
in the current active window.

At query time i, Lβ is updated by removing vi−β−1 and inserting vi, which is the vertex
arriving at time i. If vi−β−1 ∈ L then the time stamp of i− β − 1 is removed from τvi−β−1 .
In case τvi−β−1 becomes empty then we remove vi−β−1 from all of the reporting lists of its
assigned-neighbors.

When a vertex vi arrives, the data structures of the vertices are updated accordingly, as
follows. If vi ∈ R,
1. The elements of the reporting list Lvi are scanned and their edges (u, vi) are reported

according to τu.
2. The edges for which vi is their responsible-neighbour are scanned, and those for which

the assigned-neighbour u is marked as arrived are reported.
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If vi−α−1 ∈ L,
1. vi−α−1 is marked as arrived.
2. If τvi−α−1 was empty before the current arrival, then vi−α−1 is added to the reporting

lists of its assigned neighbours.
3. i− α− 1 is added to τvi−α−1 .

I Theorem 4. The Induced Subgraph problem with uniformly bounded edge occurrences on
a graph G with m edges and n vertices can be solved with O(m + n) preprocessing time,
O(δ(G)+op) time per query vertex, where op is the number of edges reported at vertex arrival,
and O(m+ β) space.

3.2 Non-Uniformly Bounded Edge Occurrences
In non-uniformly bounded edge occurrences each edge e = (vj , vi) has its own boundaries
[αe, βe] and can only be reported if αe < i − j < βe + 1. Notice that in this case the
input is a multi-graph. The active window for this ISG version is the time window between
β∗ = maxe∈E{βe} and α∗ = mine∈E{αe} time units ago.

Similar to Section 3.1, a dynamic list Lβ∗ of the last β∗ vertices that have appeared is
maintained. However, this approach of a general active window introduces a new challenge.
If τu includes all the appearances of u within the active window, as was done in Section 3.1,
when a vertex vi ∈ R arrives, the information in Lvi cannot be automatically reported, as
some of the appearances of nodes u ∈ Lvi are not within the gaps of edge (u, vi), thus only
part of their τu list needs to be reported. A naive filtering considers for each u ∈ Lvi a
scan of τu and reports only time stamps j where i − βe < j < i − αe, which sums up to
β∗ − α∗ time per query vertex. To avoid an overhead in query time, our filtering mechanism
checks all appearances of all responsible-neighbours of vi in a batched query, where each
responsible-neighbour appearance is filtered according to the edge’s gaps. This is achieved by
maintaining for each vertex v ∈ R a fully dynamic data structure Sv for supporting 4-sided
2-dimensional orthogonal range reporting queries instead of Lv. Given an [x0, y0]× [x1, y1]-
range, it returns the points of Sv that have (x, y) coordinates in the given range. For each
responsible-neighbor vi ∈ L of v that arrived in the active window, where e = (vi, v), the
point (i+ αe + 1, i+ βe + 1) is inserted into Sv, yielding the occurrences in Sv are from the
“point of view” of v.

To implement Sv, we use Mortensen’s data structure [26] that supports the set of |Sv|
points from R2 with O(|Sv| log7/8+ε |Sv|) words of space, insertion and deletion time of
O(log7/8+ε |Sv|) and O( log |Sv|

log log |Sv| + op) time for range reporting queries on Sv, where op is
the size of the output.

When a vertex vi arrives at query time i, in addition to adding it to Lβ∗ , the following
happens. If vi ∈ R,
1. A range query of [0, i]× [i,∞] is performed over Svi . The edges representing the range

output are reported.
2. The edges for which vi is their responsible-neighbour are scanned, and those for which

the assigned-neighbour u is marked as arrived are reported according to a search in their
time stamp.

If vi−α∗−1 ∈ L,
1. vi−α∗−1 is marked as arrived.
2. For each assigned-neighbour v, such that e = (vi−α∗−1, v), (i− α∗ + αe, i− α∗ + βe) is

inserted to Sv.
3. i− α∗ − 1 is added to τvi−α∗−1 .
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I Theorem 5. The Induced Subgraph problem with non-uniformly bounded edge occurrences
on a graph G with m edges and n vertices can be solved with O(m+ n) preprocessing time,
Õ(δ(G) + op) time per query vertex, where op is the number of edges reported due to the
vertex arriving, and Õ(m+ δ(G)(β∗ − α∗) + α∗) space.

4 Solving DMOG

4.1 DMOG via Graph Orientations
When extending ISG to online DMOG, the longer subpatterns introduce new challenges
that need to be addressed. It is helpful to still consider the bipartite graph presentation
of the DMOG instance, where vertices correspond to subpatterns and edges correspond to
patterns. The algorithms from Section 3 are used as basic building blocks in our algorithms
for DMOG by treating a subpattern arriving as the vertex arriving in the appropriate graph,
while addressing the difficulties that arise from subpatterns being arbitrarily long strings.

First, a mechanism for determining when a subpattern arrives is needed. One way of
doing this is by using the the Aho-Corasick (AC) Automaton [2], using a standard binary
encoding technique so that each character costs O(log |Σ|) worst-case time. For simplicity we
assume that |Σ| is constant. However, while in the ISG problem each character corresponds
to the arrival of at most one subpattern, in the DMOG with unbounded gaps each arriving
character may correspond to several subpatterns which all arrive at once, since a subpattern
could be a proper suffix of another subpattern. We, therefore, phrase the complexities of our
algorithms in terms of lsc, which is the maximum number of vertices in the bipartite graph
that arrive due to a character arrival. This induces a multiplicative overhead of at most lsc
in the query time per text character relative to the time used by the ISG algorithms.

Finally, there is an issue arising from subpatterns no longer being of length one, which
for simplicity we first discuss this in the unbounded case. When u ∈ L arrives and it has an
assigned vertex v ∈ R where mv is the length of the subpattern associated with v, then we
do not want to report the edge (u, v) until at least mv − 1 time units have passed, since the
appearance of the subpattern of v should not overlap with the appearance of the subpattern
of u. Similarly, in the bounded case, we must delay the removal of u from Lv by at least
mv − 1 time units. Notice that if we remove u from Lv after a delay of mv − 1, then we may
be forced to remove a large number of such vertices at a given time. We, therefore, delay
the removal of u by M − 1 time units, where M is the length of the longest subpattern that
corresponds to a vertex in R. This solves the issue of synchronization, however, some of the
reporting lists now have elements that should not be reported. Nevertheless, we can spend
time in a reporting list that corresponds to the size of the output using standard list and
pointer techniques.

Combining these ideas with the algorithms in Section 3 gives Theorems 6, 7 and 8.

I Theorem 6. The DMOG problem with one gap and unbounded gap borders can be solved
with O(|D|) preprocessing time, O(δ(GD) · lsc+ op) time per text character, where op is the
number of patterns that are reported due to the character arriving, and O(|D|) space.

I Theorem 7. The DMOG problem with uniformly bounded gap borders can be solved such
that dictionary patterns are reported online in: O(|D|) preprocessing time, O(δ(GD) · lsc+op)
time per text character, where op is the number of patterns that are reported due to the
character arriving, and O(|D|+ lsc · (β − α+M) + α) space.

I Theorem 8. The DMOG problem with non-uniformly bounded gap borders can be solved
such that dictionary patterns are reported online in: O(|D|) preprocessing time, Õ(δ(GD) ·
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lsc+ op) time per text character, where op is the number of patterns that are reported due to
the character arriving, and Õ(|D|+ lsc · δ(GD)(β∗ − α∗ +M) + α∗) space.
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A Full Details for Section 2

I Theorem 9 ([23]3). Assume 3SUM requires Ω(n2−o(1)) expected time. Then for any
constant 0 < x < 1/2, any algorithm for enumerating all triangles in a graph G with m edges,
Θ(m1−x) vertices, and d̂ = δ(G) = Θ(mx), where d̂ is the average degree of a vertex in G,
must spend Ω(m · δ(G)1−o(1)) expected time.

I Theorem 10. Assume 3SUM requires Ω(n2−o(1)) expected time. For any algorithm that
solves the vertex-triangles problem on a graph G with m edges, if the amortized expected
preprocessing time is O(m · δ(G)1−Ω(1)) and the amortized expected reporting time is sub-
polynomial, then the amortized expected query time must be at least Ω((d̂ · δ(G))1−o(1)), where
d̂ is the degree of the queried vertex.

Proof. We reduce the triangle enumeration problem considered in Theorem 9 to the vertex-
triangles problem. We preprocess G and then answer vertex-triangles queries on each of the
m1−x vertices thereby enumerating all of the triangles in G. If we assume a sub-polynomial
reporting time, then by Theorem 9 either the preprocessing takes Ω(m · δ(G)1−o(1)) time
or each query must cost at least Ω(m·δ(G)1−o(1)

m1−x ) = Ω((mxδ(G))1−o(1)) = Ω((d̂ · δ(G))1−o(1))
time. J

We are now ready to prove Theorems 2 and 3.

Proof of Theorem 2 and Theorem 3. We reduce the vertex-triangles problem considered
in Theorem 10 to ISG as follows. We preprocess the graph G for ISG queries. Now, to

3 The actual statement in [23] refers to the arboricity of G instead of the degeneracy of G. However, both
terms are the same, up to a factor of 2.
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answer a vertex-triangle query on some vertex u, we input all of the neighbors of u into
the ISG algorithm. Thus, there is a one-to-one correspondence between the edges reported
by the ISG algorithm and the triangles in the output of the vertex-triangles query. Since
each vertex-triangle query must cost Ω(d̂ · δ(G)1−o(1)) amortized expected time then the
amortized expected time spent for each of the d̂ neighbors of u must be at least Ω(δ(G)1−o(1))
amortized expected time. Since ISG is a special case of DMOG, and given Theorem 2, the
proof of Theorem 3 follows directly. J

I Theorem 11. Assume 3SUM requires Ω(n2−o(1)) expected time. For any algorithm that
solves the uniformly bounded DMOG problem on a dictionary D with d patterns, if the
amortized expected preprocessing time is O(|D| · δ(GD)1−Ω(1)) and the amortized expected
reporting time is sub-polynomial, then the amortized expected time spent on each text character
must be at least Ω((β − α)1−o(1)).

Proof. The proof is similar to the proofs of Theorems 2 and 3. First, we convert the
input graph G of the vertex-triangles problem to a tripartite graph GT by creating three
copies of the vertices V1, V2, V3 and for each edge (u, v) in G we add 6 edges to GT between
all possible copies of u and v. We also add a dummy vertex to GT with degree 0. Each
triangle in G corresponds to a constant number of triangles in GT . Let α be any positive
integer and let β = α + 2d̂. We use ISG to solve vertex-triangles queries in Theorem 2,
but we only ask queries on the neighbors of vertices in V1 in a specially tailored way as
follows. We first list the neighbors of u from V2, followed by α copies of the dummy vertex,
and then list the neighbors from V3. From the construction of the tripartite graph and
the input to the ISG algorithm, two vertices of an edge that is part of the output of the
ISG algorithm must be separated in the input list by at least α vertices, and by at most
the length of the list which is β. Thus, the time spent on each vertex must be at least
Ω(δ(G)1−o(1)) = Ω((mx)1−o(1)) = Ω((β − α)1−o(1)) amortized expected time. Since ISG is a
special case of DMOG, the theorem follows directly. J
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Abstract
We study the version of the C-Planarity problem in which edges connecting the same pair of
clusters must be grouped into pipes, which generalizes the Strip Planarity problem. We give
algorithms to decide several families of instances for the two variants in which the order of the
pipes around each cluster is given as part of the input or can be chosen by the algorithm.
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1 Introduction

Visualizing clustered graphs is a challenging task with several applications in the analysis of
networks that exhibit a hierarchical structure. The most established criterion for a readable
visualization of these graphs has been formalized in the notion of c-planarity, introduced by
Feng, Cohen, and Eades [12] in 1995. Given a clustered graph C(G, T ) (c-graph), that is, a
graph G equipped with a recursive clustering T of its vertices, problem C-Planarity asks
whether there exist a planar drawing of G and a representation of each cluster as a topological
disk enclosing all and only its vertices, such that no “unnecessary” crossings occur between
disks and edges, or between disks. Ever since its introduction, this problem has been attracting
a great deal of research. However, the question about its computational complexity withstood
the attack of several powerful algorithmic tools, as the Hanani-Tutte theorem [13, 15], the
SPQR-tree machinery [9], and the Simultaneous PQ-ordering framework [5].

The clustering of a c-graph C(G, T ) is described by a rooted tree T whose leaves are
the vertices of G and whose each internal node µ, except for the root, represents a cluster
containing all and only the leaves of the subtree of T rooted at µ. A c-graph is flat if T
has height 2. The clusters-adjacency graph GA of a flat c-graph is the graph obtained by
contracting each cluster into a single vertex and by removing multi-edges and loops.

Cortese et al. [10] introduced a variant of C-Planarity for flat c-graphs, which we call
C-Planarity with Embedded Pipes, whose input is a flat c-graph together with a planar
drawing of its clusters-adjacency graph, where vertices are represented by disks and edges by
pipes. The goal is to produce a c-planar drawing in which each vertex lies inside the disk
representing the cluster it belongs to and each inter-cluster edge lies inside the corresponding
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pipe. In [10] this problem is solved when the underlying graph is a cycle. Chang, Erickson,
and Xu [8] observed that in this case the problem is equivalent to determining whether a
closed walk of length n in a simple plane graph is weakly simple, and improved the time
complexity to O(n logn). For the special case in which the clusters-adjacency graph is a
path, known by the name of Strip Planarity, there exist polynomial-time algorithms
when the underlying graph has a fixed planar embedding [2] and when it is a tree [13].

We remark that polynomial-time algorithms for the C-Planarity problem are known
under strong limitations on the number or on the arrangement of the components in the
clusters. A component of a cluster is a maximal connected subgraph induced by its vertices.
In particular, C-Planarity can be decided in linear time when each cluster contains one
connected component [9, 12] (the c-graph is c-connected). However, even when each cluster
contains at most two connected components, polynomial-time algorithms are known only
when further restrictions are imposed on the c-graph [5, 14]. The results we show in this
paper are also based on imposing constraints on the number of certain types of components.

A component is multi-edge if it is incident to at least two inter-cluster edges, otherwise
it is single-edge. Also, it is passing if it is adjacent to vertices belonging to at least two
other clusters in T , otherwise it is originating. For Strip Planarity the originating
components can be further distinguished into source and sink components, based on whether
the inter-cluster edges incident to them only belong to the lower or to the upper strip.

Our contributions. We give polynomial-time algorithms for instances of Strip Planarity
with a unique source component (Section 3) and for instances of C-Planarity with Embed-
ded Pipes with certain combinations of originating and passing multi-edge components in
the clusters (Section 4). Finally, in Section 5 we introduce a generalization of C-Planarity
with Embedded Pipes, which we call C-Planarity with Pipes, in which the inter-cluster
edges are still required to be grouped into pipes, but the order of the pipes around each disk
is not prescribed by the input. By introducing a new characterization of C-Planarity, we
give an FPT algorithm for C-Planarity with Pipes that runs in g(K, c) · O(n2) time,
with g(K, c) ∈ O(Kc(K−2)), where K is the maximum number of multi-edge components
in a cluster and c is the number of clusters with at least two multi-edge components. We
remark that our results imply polynomial-time algorithms for all the three problems in the
case in which each cluster contains at most two components.

Due to space limitations, complete proofs are deferred to the full version of the paper [1].

2 Preliminaries

For the standard definitions on planar graphs, planar drawings, planar embeddings, and
connectivity we point the reader to [11]. We call rotation scheme the clockwise circular
ordering of the edges around each vertex in a planar embedding, and refer to the containment
relationships between vertices and cycles in the embedding as relative positions. Also, if
block of a 1-connected graph consists of a single edge, we call it trivial, otherwise non-trivial.

PQ-trees. A PQ-tree [7] T is an unrooted tree, whose leaves are the elements of a set A and
whose internal nodes are either P-nodes or Q-nodes, that can be used to represent all and
only the circular orderings O(T ) on A satisfying a given set of consecutivity constraints on
subsets of A. The orderings in O(T ) are all and only the circular orderings on the leaves of
T obtained by arbitrarily ordering the neighbours of each P-node and by arbitrarily selecting
for each Q-node a given circular ordering on its neighbours or its reverse ordering.
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Connectivity. A k-cut of a graph is a set of at most k vertices whose removal disconnects
the graph. A graph with no 1-cut is biconnected. The maximal biconnected components of a
graph are its blocks. Without loss of generality, we will assume that the clusters-adjacency
graph of C(G, T ) is connected and that for every component c of every cluster µ ∈ T :
(i) there exists at least an inter-cluster edge incident to c,
(ii) every block of c that is a leaf in the block-cut-vertex tree of c contains at least a vertex

v such that v is not a cut-vertex of c and it is incident to at least an inter-cluster edge,
and

(iii) if there exists exactly one vertex in c that is incident to inter-cluster edges, then c

consists of a single vertex.

Simultaneous Embedding with Fixed Edges. Given planar graphs G1 = (V,E1) and
G2 = (V,E2), problem SEFE asks whether there exist planar drawings Γ1 of G1 and Γ2 of
G2 such that (i) any vertex v ∈ V is mapped to the same point in Γ1 and Γ2 and (ii) any
edge e ∈ E1 ∩E2 is mapped to the same curve in Γ1 and Γ2. Graphs G∩ = (V,E1 ∩E2) and
G∪ = (V,E1 ∪ E2) are the common and the union graph, respectively. See [4] for a survey.

We state here a theorem on SEFE that will be fundamental for our results. Even though
this theorem has never been explicitly stated in the literature, it can be easily deduced from
known results [6]. We discuss this in the full version of the paper [1].

I Theorem 1. Let G1 = (V,E1) and G2 = (V,E2) be two planar graphs whose common
graph G∩ = (V,E1 ∩ E2) is a forest and whose cut-vertices are incident to at most two
non-trivial blocks. It can be tested in O(|V |2) time whether 〈G1, G2〉 admits a SEFE.

3 Single-source Strip Planarity

In this section we prove a result of the same flavour as that by Bertolazzi et al. [3] for the
upward planarity testing of single-source digraphs. Namely, we show that instances of Strip
Planarity with a unique source component can be tested efficiently. The Strip Planarity
problem takes in input a planar graph G = (V,E) and a mapping γ : V → {1, . . . , k} of each
vertex to one of k unbounded horizontal strips such that, for any edge (u, v) ∈ E, it holds
|γ(u)− γ(v)| ≤ 1. The goal is to find a planar drawing of G in which vertices lie inside the
corresponding strips and edges cross the boundary of any strip at most once. This problem
is equivalent to C-Planarity with Embedded Pipes when GA is a path [2].

We start with an auxiliary lemma. An instance 〈G, γ〉 of Strip Planarity on k > 1
strips is spined if there exists a path (v1, . . . , vk) in G such that γ(vi) = i, vertex vk is the
unique vertex in the k-th strip, and each vertex vi with i 6= 1 induces a component in the i-th
strip. Path (v1, . . . , vk) is the spine path of 〈G, γ〉 and (vi, vi+1) is the i-th edge of this path.

I Lemma 2. Any positive spined instance 〈G, γ〉 of Strip Planarity admits a strip-planar
drawing in which the intersection point between the first edge of the spine path of 〈G, γ〉 and
the horizontal line separating the first and the second strip is the left-most intersection point
between any inter-strip edge and such a line.

I Lemma 3. Let 〈G = (V,E), γ〉 be a spined instance of Strip Planarity on k > 1 strips
with a unique source component c. It is possible to construct in linear time an equivalent
spined instance 〈G′ = (V ′, E′), γ′〉 on k − 1 strips with a unique source component c′.

Proof Sketch. First note that the source component c lies in the first strip. We construct
an auxiliary planar graph Gc as follows. Initialize Gc = c and add a dummy vertex v to it.

ISAAC 2016
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For each inter-strip edge e incident to a vertex u in c, add to Gc a dummy vertex ve and
edges (v, ve) and (ve, u). If Gc has cut-vertices, then let Bc be the block of Gc that contains
v. Then, construct a PQ-tree Tc representing all possible orders of the edges around v in a
planar embedding of Bc. This can be done by applying the planarity testing algorithm by
Booth and Lueker [7], in such a way that v is the last vertex of the st-numbering of Bc. Note
that the leaves of PQ-tree Tc are in one-to-one correspondence with the vertices ve in Bc.
We construct a representative graph GTc

from Tc, as described in [12], composed of (i) wheel
graphs (that is, graphs consisting of a cycle, called rim, and of a central vertex connected to
every vertex of the rim), of (ii) edges connecting vertices of different rims not creating any
simple cycle that contains vertices belonging to more than one wheel, and of (iii) vertices of
degree 1, which are in one-to-one correspondence with the leaves of Tc (an hence with the
dummy vertices ve in Bc), each connected to a vertex of some rim. As proved in [12], in any
planar embedding of GTc in which all the degree-1 vertices are incident to the same face, the
order in which such vertices appear in a Eulerian tour of such a face is in O(Tc).

Construct 〈G′, γ′〉 as follows. For i = 2, . . . , k and for each vertex v with γ(v) = i, add v
to V ′ and set γ′(v) = i − 1, that is, assign all the vertices of the i-th strip of 〈G, γ〉, with
i ≥ 2, to the (i− 1)-th strip of 〈G′, γ′〉. Further, add to E′ all edges in E ∩ (V ′ × V ′). Also,
add all vertices and edges of GTc to V ′ and to E′, respectively, and set γ′(u) = 1 for each
vertex u of GTc

. Finally, for each inter-strip edge e = (x, y) in E with γ(x) = 1 and γ(y) = 2,
add to E′ an intra-strip edge between y and the degree-1 vertex of GTc corresponding to ve.

Instance 〈G′, γ′〉 can be constructed in linear time [7, 12] and its size is linear in the
one of 〈G, γ〉. Further, 〈G′, γ′〉 has a unique source component, which contains GTc

as a
subgraph, and is spined. We now show the equivalence between the two instances.

Suppose that 〈G, γ〉 admits a strip-planar drawing Γ. Note that all the vertices of c
incident to inter-strip edges lie on the outer face of c in Γ. To construct a strip-planar
drawing Γ′ of 〈G′, γ′〉, subdivide each inter-strip edge incident to c with a dummy vertex ve
lying in the interior of the first strip of Γ. By the construction of Tc and of GTc

, each vertex
ve corresponds to exactly one degree-1 vertex of GTc . Let c+ be the subgraph of G induced
by the vertices in c and by all the vertices ve. Since the order in which the vertices ve appear
in a Eulerian tour of the outer face of c+ in Γ is in O(Tc), we can replace the drawing of c+

in Γ with a drawing of GTc
in which each degree-1 vertex is mapped to its corresponding

vertex ve. To obtain Γ′, we merge the first two strips of Γ into the first strip of Γ′.
Suppose that 〈G′, γ′〉 admits a strip-planar drawing Γ′, we show how to construct a strip-

planar drawing Γ of 〈G, γ〉. First, by Lemma 2, we can assume that in Γ′ the intersection
point between the first edge of the spine path of 〈G′, γ′〉 and the line separating the first
and the second strip in Γ′ is the left-most intersection point between any edge (x, y) with
γ(x) = 1 and γ(y) = 2 and such a line. Further, we can assume the following.

I Claim 4. For every wheel W in GTc , the rim of W contains in its interior its central
vertex and no other vertex in Γ′.

Initialize Γ as the drawing in Γ′ of the subinstance of 〈G′, γ′〉 induced by the vertices not
in GTc , where the i-th strip in Γ′ is mapped to the (i + 1)-th strip in Γ. First, draw GTc

in the first strip of Γ as it is drawn in Γ′. Then, draw each inter-strip edge (x, y) with y in
GTc

, which corresponds to an intra-strip edge incident to GTc
in Γ′, as a curve composed

of six parts. The first part coincides with the drawing of (x, y) in Γ′; the second is a curve
arbitrarily close to the drawing in Γ′ of a path in GTc

from y to the first vertex v1 of the spine
path of 〈G′, γ′〉; the third is a curve arbitrarily close to the drawing in Γ′ of the first edge of
the spine path of 〈G′, γ′〉 till a point p in the interior of the first strip of Γ′ and arbitrarily
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close to the boundary of the second strip; the fourth is a horizontal segment connecting p to
a point q lying to the left of Γ′; the fifth is a vertical segment connecting q to a point r in
the interior of the first strip of Γ; and the sixth is a curve connecting r to y. By Claim 4, the
degree-1 vertices of GTc lie on its outer face in Γ′ (and hence in Γ). Thus, the inter-strip
edges incident to GTc

can be drawn without crossings, as they preserve the same containment
relationship between vertices and cycles in Γ as the corresponding intra-strip edges in Γ′.

Let H be the graph obtained from Bc by subdividing each edge e incident to v with a
dummy vertex ve and by removing v. Replace the drawing of GTc in Γ with a planar drawing
of H such that the vertices ve appear in a Eulerian tour of its outer face in the same clockwise
order as the corresponding degree-1 vertices appear in a Eulerian tour of the outer face of
GTc in Γ. Recall that these vertices are on the outer face of GTc in Γ, by Claim 4. Such a
drawing of H exists since this order is in O(Tc) [12]. To complete Γ, for each cut-vertex z of
Gc separating Bc from a subgraph Gz of Gc, draw graph Gz arbitrarily close to z. Note that
no vertex of Gz, except possibly for z, is incident to an inter-strip edge. J

Let 〈G, γ〉 be an instance of Strip Planarity on k > 1 strips satisfying the properties of
Lemma 3. By applying this lemma k − 1 times, we obtain an instance of Strip Planarity
on k = 1 strips, that is, an instance whose strip-planarity coincides with the planarity of its
underlying graph, which can be tested in linear time [7]. Hence, we get the following.

I Lemma 5. Let 〈G = (V,E), γ〉 be a spined instance of Strip Planarity on k > 1 strips
with a unique source component c. It is possible to decide in O(k × n) time whether 〈G, γ〉
admits a strip-planar drawing.

Given an instance of Strip Planarity, one can create O(n) spined instances by attaching
the spine path to each of the O(n) vertices in the first strip. The next theorem follows.

I Theorem 6. Let 〈G, γ〉 be an instance of Strip Planarity on k strips such that there
exists a unique source component c. It is possible to decide in O(n3) time whether 〈G, γ〉
admits a strip-planar drawing.

4 C-Planarity with Embedded Pipes

In this section we show that the C-Planarity with Embedded Pipes problem is solvable
in quadratic time for a notable family of instances.

Let c be an originating component belonging to a cluster µ ∈ T and let ν 6= µ ∈ T be the
cluster to which the vertices of c are adjacent to. We say that c is originating from µ to ν.

I Lemma 7. Let 〈C(G, T ),ΓA〉 be an instance of C-Planarity with Embedded Pipes
and let S be the maximum number of originating multi-edge components in a cluster that are
incident to the same pipe. It is possible to construct in linear time an equivalent instance
〈G1, G2〉 of SEFE such that (i) G∩ is a spanning forest, (ii) each cut-vertex of G2 = (V,E2)
is incident to at most one non-trivial block, and (iii) each cut-vertex of G1 = (V,E1) is
incident to at most S non-trivial blocks.

Proof. We show how to construct 〈G1, G2〉 starting from 〈C(G, T ),ΓA〉. The frame gadget H
is an embedded planar graph defined as follows. Refer to Fig. 1.a. For each intersection point
between a disk representing a cluster µ ∈ T and a segment delimiting a pipe representing
an edge of GA incident to µ in the drawing ΓA of GA, we add a vertex at this point. This
results in a planar drawing of a graph; we set H to be this graph. We call disk cycle of µ the
cycle in H obtained from the disk of µ in ΓA. Similarly, we call pipe cycle of an edge (µ, ν)
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µ

ν

vout vout

(a) (b) (c)

Figure 1 (a) Drawing ΓA of the clusters-adjacency graph GA, with vertices at the intersections
of disks and pipes. The disk cycle for cluster µ and the pipe cycle for edge (µ, ν) of GA are orange
and gray tiled regions, respectively. (b) Frame gadget H. (c) Partial instance 〈G1, G2〉 of SEFE
constructed from ΓA; graphs G1, G2, and G∩ are subdivisions of triconnected planar graphs.

of GA the cycle in H obtained from the pipe representing edge (µ, ν) in ΓA. Note that, for
clusters incident to exactly one pipe, this operation introduced two copies of the same edge;
subdivide with a dummy vertex the copy that is not incident to the interior of this pipe.
Then, add a vertex vout in the outer face of H, connected to all the vertices incident to this
face, and triangulate all the faces of H not corresponding to the interior of any cluster cycle
or of any pipe cycle, hence obtaining a triconnected embedded planar graph. See Fig. 1.b.

Initialize G∩ = H. For each edge e ∈ E(H) separating a pipe from a disk, remove e
from G1 (not from G2); this implies that disk cycles and pipe cycles only belong to G2.
Further, for each two edges e′ and e′′ corresponding to the two segments (uµ,ν , uν,µ) and
(vµ,ν , vν,µ) delimiting a pipe representing an edge (µ, ν) of GA, subdivide e′ with four dummy
vertices a′µ,ν , b′µ,ν , b′ν,µ, a′ν,µ, and e′′ with four dummy vertices a′′µ,ν , b′′µ,ν , b′′ν,µ, a′′ν,µ, and add
edges (a′µ,ν , a′′µ,ν) and (a′ν,µ, a′′ν,µ) to G1 and edges (b′µ,ν , b′′µ,ν) and (b′ν,µ, b′′ν,µ) to G2.

For each cluster µ ∈ T , augment 〈G1, G2〉 as follows; see Fig. 2.a. Subdivide an edge of
G∩ that corresponds to a portion of the boundary of the disk representing µ in ΓA with a
dummy vertex γµ, and add to G∩ a star Cµ, whose central vertex is adjacent to γµ, with
a leaf z(ci) for each multi-edge component ci of µ. Also, add to G∩ each component ci of
µ. Finally, for each edge (µ, ν) of GA, subdivide (vµ,ν , a′µ,ν) with a dummy vertex αµ,ν and
(a′′µ,ν , b′′µ,ν) with a dummy vertex βµ,ν . Add to G∩ a star Aµ,ν (Bµ,ν), whose central vertex is
adjacent to αµ,ν (is identified with βµ,ν), with a leaf aµ(e) (a leaf bµ(e)) for each inter-cluster
edge e incident to a component of µ and to a component in ν. To complete 〈G1, G2〉, add the
following edges only belonging to G1 and to G2. For each inter-cluster edge e = (x, y) with
x ∈ µ and y ∈ ν, add to G1 edges (x, aµ(e)), (y, aν(e)), and (bµ(e), bν(e)), and add to G2
edges (aµ(e), bµ(e)) and (aν(e), bν(e)). Also, for each vertex x of a component ci of a cluster
µ such that x is incident to at least an inter-cluster edge, add to G2 an edge (x, z(ci)).

Clearly, 〈G1, G2〉 can be constructed in linear time. We now prove that G1 and G2 satisfy
the properties of the lemma. We note that G1 and G2 are connected, since each vertex
of a component ci is connected to the frame gadget by means of paths in G1 and in G2
passing through stars Aµ,ν and Cµ, respectively. Also, for each cluster µ ∈ T , graph G2
contains cut-vertices γµ, the center of star Cµ, and vertices z(ci), for each component ci of µ.
However, vertex γµ is incident to exactly one non-trivial block, that is, the one containing all
the vertices and edges of the frame gadget; the center of Cµ is incident only to non-trivial
blocks; and vertices z(ci), for each component ci of µ, are incident to at most one non-trivial
block, that is, the one containing all the vertices and edges in ci. Also, for each cluster µ ∈ T ,
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bµ(e)
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Figure 2 (a) Augmentation of instance 〈G1, G2〉 focused on cluster µ ∈ T . (b) Replacing an edge
e = (u, v) to make G∩ acyclic.

all the passing components in µ belong to the biconnected component of G1 containing all
the vertices and edges of the frame gadget, while each multi-edge component originating
from µ to a cluster ν determines a non-trivial block incident to αµ,ν , and each single-edge
originating component from µ to a cluster ν determines a trivial block incident to αµ,ν . Since
the number of multi-edge components originating from any cluster to any other cluster is at
most S, graph G1 satisfies the required properties. The following claim implies that G∩ can
be transformed into a spanning forest without altering the properties of 〈G1, G2〉.

I Claim 8. Each cycle of G∩ can be removed without altering the properties of 〈G1, G2〉 by
replacing one of its edges with the gadget in Fig. 2.b.

We now prove the equivalence. Suppose that 〈G1, G2〉 admits a SEFE 〈Γ1,Γ2〉. We show
how to construct a c-planar drawing with embedded pipes Γ of 〈C(G, T ),ΓA〉. Without loss
of generality, assume that vertex vout is embedded on the outer face of 〈Γ1,Γ2〉. Note that
the paths in G∩ corresponding to the segments delimiting the pipes representing an edge of
GA incident to a cluster µ ∈ T appear in 〈Γ1,Γ2〉 in the same clockwise circular order as the
corresponding pipes appear around the disk representing µ in ΓA. This is due to the fact
that the frame gadget is a triconnected planar graph whose unique planar embedding is the
one obtained from ΓA. Note that in 〈Γ1,Γ2〉 all the vertices in V appear either in the interior
or on the boundary of disk cycles or of pipe cycles. This is due to the fact that removing
all the vertices on the boundary of such cycles leaves a connected subgraph of G∪ and that
there exists a unique face of H to which all the vertices belonging to such cycles are incident.

The proof is based on the fact that any SEFE of 〈G1, G2〉 has the following properties.
1. For each cluster µ ∈ T , the central vertex of star Cµ lies in the interior of the disk cycle

of µ, and hence all the vertices and edges of the components ci of µ lie in the interior of
such a cycle, since G2 is connected.

2. For each two clusters µ, ν ∈ T , the vertices of the components of µ and of the those of ν
lie in the interior of different cycles of G1, since all the components of each cluster µ are
connected by paths in G1 to the leaves of a star Aµ,ξ, where ξ is a cluster adjacent to µ.
Also, all the leaves of these stars lie in the interior of a cycle of G1 delimited by edges of
G∩ and by edges (a′µ,ξi

, a′′µ,ξi
), for all the clusters ξi adjacent to µ.
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3. For each inter-cluster edge e connecting a vertex v of a component ci of µ to a cluster ν,
edge (v, aµ(e)) in G1 crosses edge (uµ,ν , vµ,ν). This is due to the previous two points and
the fact that the leaves of Aµ,ν lie outside the disk cycle of µ. We can assume that each
of these edges crosses edge (uµ,ν , vµ,ν) exactly once, as otherwise we could redraw them
to fulfill this requirement.

4. For two adjacent clusters µ, ν ∈ T , the order in which the edges in G1 incident to the
leaves of Aµ,ν cross (uµ,ν , vµ,ν) from uµ,ν to vµ,ν is the reverse of the order in which the
edges in G1 incident to the leaves of Aν,µ cross (uν,µ, vν,µ) from uν,µ to vν,µ, where the
identification between an edge incident to a leaf aµ(e) of Aµ,ν and an edge incident to a
leaf aν(e) of Aν,µ is based on the inter-cluster edge e they correspond to. In fact, the order
in which the edges in G1 incident to the leaves of Aµ,ν cross (uµ,ν , vµ,ν) is transmitted to
the leaves of Bµ,ν via edges in G2, then it is transmitted to the leaves of Bν,µ via edges
in G1, and finally to the leaves of Aν,µ via edges in G2. Note that all the leaves of these
stars lie in the interior of the pipe cycle corresponding to edge (µ, ν) of GA.

We describe how to obtain a c-planar drawing with embedded pipes Γ of 〈C(G, T ),ΓA〉
from 〈Γ1,Γ2〉. For each µ ∈ T , draw region R(µ) as the simple closed region whose boundary
coincides with the drawing in Γ2 of the disk cycle of µ. Each component ci of a cluster µ has
the same drawing in Γ as ci in 〈Γ1,Γ2〉. For each inter-cluster edge e = (x, y) with x ∈ µ
and y ∈ ν, the portion of e in the interior of R(µ) (of R(ν)) coincides with the drawing
of edge (x, aµ(e)) (of edge (y, aν(e))) between x (between y) and the intersection point of
this edge with edge (uµ,ν , vµ,ν) (with edge (uν,µ, vν,µ)). To complete the drawing of all the
inter-cluster edges between µ and ν in the interior of the pipe representing edge (µ, ν) of GA,
connect the intersection points between the corresponding edges in G1 and edges (uµ,ν , vµ,ν)
and (uν,µ, vν,µ) by means of a set of non-intersecting curves. This is possible since the order
in which the edges in G1 incident to the leaves of Aµ,ν cross (uµ,ν , vµ,ν) from uµ,ν to vµ,ν
is the reverse of the order in which the edges in G1 incident to the leaves of Aν,µ cross
(uν,µ, vν,µ) from uν,µ to vν,µ. This implies that Γ is a c-planar drawing of C(G, T ). The
fact that Γ can be continuously deformed into a c-planar drawing with embedded pipes
of 〈C(G, T ),ΓA〉 is due to the fact that the paths in G∩ corresponding to the segments
delimiting the pipes incident to each cluster µ ∈ T appear in 〈Γ1,Γ2〉 in the same clockwise
order as the corresponding pipes appear around the disk representing µ in ΓA.

For the other direction, the goal is to construct a SEFE 〈Γ1,Γ2〉 of 〈G1, G2〉 that satisfies all
the properties describe above starting from a c-planar drawing with pipes Γ of 〈C(G, T ),ΓA〉.
For each cluster µ ∈ T , draw the disk cycle of µ as the boundary of the disk of µ in ΓA.
Also, for each edge (µ, ν) of GA, draw the corresponding pipe cycle as the boundary of the
pipe of edge (µ, ν) in ΓA. For each cluster µ ∈ T , each component ci of µ has the same
drawing in 〈Γ1,Γ2〉 as ci in Γ. For each edge (µ, ν) of GA, the stars Aµ,ν , Bµ,ν , Aν,µ, and
Bν,µ are drawn in 〈Γ1,Γ2〉 so that the order of their leaves is the same or the reverse of the
order in which the inter-cluster edges between µ and ν traverse the boundary of the disk
of µ in Γ. Note that this order is the reverse of the order in which these edges traverse the
boundary of the disk of ν in Γ. This allows to draw all the edges in G1 and in G2 that are
incident to such leaves without introducing crossings between edges of the same graph. The
drawing of star Cµ, for each cluster µ ∈ T , and of the edges in G2 incident to its leaves can
be easily obtained to respect the circular order of the inter-cluster edges incident to each of
the components of µ. This concludes the proof of the lemma. J

By Lemma 7 and Theorem 1 we have the following main result.
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e2
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Figure 3 (a) A c-planar drawing with pipes Γ′, with regions R′ (blue) and R′′ delimited by B(µ)
and B(ν), and by e1 and e2 (dashed), where region R′ does not contain any vertex of G \ (µ∪ ν). (b)
A c-planar drawing with pipes Γ∗ corresponding to Γ′ in which inter-cluster edges are inside pipes.

I Theorem 9. C-Planarity with Embedded Pipes can be solved in O(n2) time for
instances 〈C(G, T ),ΓA〉 such that for each cluster µ ∈ T and for each edge (µ, ν) in GA
either (CASE 1) cluster µ contains at most one originating multi-edge component from µ to
ν or (CASE 2) cluster µ contains at most two multi-edge originating components from µ to ν
and does not contain any passing component that is incident to ν.

5 C-Planarity with Pipes

In this section we introduce and study problem C-Planarity with Pipes. A c-planar
drawing Γ of a flat c-graph C(G, T ) is a c-planar drawing with pipes if, for any two clusters
µ, ν ∈ T that are adjacent in GA and for any two inter-cluster edges e1 and e2 that are
incident to both µ and ν, one of the two regions delimited by B(µ), by B(ν), by e1, and by
e2 does not contain any vertex of G \ (µ ∪ ν); see Fig. 3.

Problem C-Planarity with Pipes asks for the existence of a c-planar drawing with pipes
of a given flat c-graph. We first prove that this problem is a generalization of C-Planarity
with Embedded Pipes.

I Lemma 10. C-Planarity with Embedded Pipes reduces in linear time to C-Planarity
with Pipes. The reduction does not increase the number of multi-edge components in
any cluster.

We now present an FPT algorithm for C-Planarity with Pipes with two parameters,
namely the maximum number K of multi-edge components in a cluster and the number c of
clusters with at least two multi-edge components. Our result builds on a characterization of
C-Planarity of flat c-graphs in terms of a new constrained embedding problem.

5.1 A Characterization of Flat C-Planarity
We start with some definitions. Let C(G, T ) be a flat c-graph. A components tree Xµ of a
cluster µ ∈ T is a rooted tree in which every internal vertex is a multi-edge component c
of µ and in which every leaf xµ(e) corresponds to an inter-cluster edge e incident to one of
such components. A neighbor-clusters tree Yµ of µ is a rooted tree in which there exists an
internal vertex ν for each cluster ν adjacent to µ, plus a set of additional internal vertices,
and every leaf yµ(e) corresponds to an inter-cluster edge e incident to µ. Let Γ be a c-planar
drawing of C(G, T ), let Xµ be a components tree of µ rooted at a multi-edge component ρµ,
and let Yµ be a neighbor-clusters tree of µ rooted at a cluster ξµ, such that there exists an
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Figure 4 (a) A c-planar drawing Γ focused on cluster µ. Edges incident to µ are solid. Component
c is nested into component ρµ. Trees (b) Xµ and (c) Yµ such that Γ is consistent with Xµ and Yµ.
(d) A c-planar drawing that is not a c-planar drawing with pipes, even if the inter-cluster edges
incident to the same cluster are consecutive (see the annuli around clusters), due to the presence of
trivial block (µ, ν).

inter-cluster edge eµ incident to both ρµ and ξµ. Let Oµ be the clockwise linear order in
which the edges incident to µ traverse B(µ) in Γ, starting from and ending at eµ. Drawing Γ
is consistent with Xµ if, for each vertex c ∈ Xµ, the leaves of the subtree of Xµ rooted at
c are consecutive in the restriction of Oµ to the inter-cluster edges incident to multi-edge
components of µ. Also, Γ is consistent with Yµ if, for each vertex ν ∈ Yµ, the leaves of the
subtree of Yµ rooted at ν are consecutive in Oµ. Let X and Y be two sets containing a
components tree Xµ and a neighbor-clusters tree Yµ, respectively, for each µ ∈ T . Drawing
Γ is consistent with 〈X ,Y〉 if, for each µ ∈ T , it is consistent with both Xµ and Yµ.

Given a flat c-graph C(G, T ), together with two sets X and Y of components trees
and of neighbor-clusters trees, respectively, for all the clusters in T , problem Inclusion-
Constrained C-Planarity asks whether a c-planar drawing of C(G, T ) exists that is
consistent with 〈X ,Y〉.

I Theorem 11. A flat c-graph C(G, T ) is c-planar if and only if there exist two sets X and
Y of components trees and of neighbor-clusters trees, respectively, for all the clusters in T ,
such that 〈C(G, T ),X ,Y〉 is a positive instance of Inclusion-Constrained C-Planarity.

Proof Sketch. The “only if part” trivially follows from the definition of
Inclusion-Constrained C-Planarity. For the “if part”, let Γ be any c-planar drawing of
C(G, T ) and let µ be a cluster in T . Suppose that µ contains at least a multi-edge component
ρµ, as otherwise Xµ is the empty tree and Γ is consistent with it. Let eµ be any inter-cluster
edge incident to ρµ and to a cluster ξµ. Let Oµ be the clockwise linear order of the edges
incident to µ starting from eµ and ending at eµ. Since Γ is c-planar, no two pairs of edges
incident to two different components of µ (two different clusters adjacent to µ) alternate
in Oµ. Hence, order Oµ defines a hierarchical inclusion of the components of µ and of the
clusters adjacent to µ with respect to ρµ and to ξµ, respectively, which can be described by
means of two trees Xµ and Yµ; see Fig. 4.a–4.c. Clearly, Γ is consistent with such trees. J

In the following theorem, whose proof is deferred to the full version of the paper [1], we
show that the Inclusion-Constrained C-Planarity problem can be solved efficiently.

I Theorem 12. Inclusion-Constrained C-Planarity can be solved in quadratic time.

In the following we prove that, for each cluster µ of a c-graph C(G, T ), there exists a
neighbor-clusters tree Yµ such that every c-planar drawing with pipes of C(G, T ) is consistent
with Yµ. Hence, an FPT algorithm for C-Planarity with Pipes can be based on generating,
for each cluster, all the possible components trees and its unique neighbor-clusters tree, and
on testing these instances of Inclusion-Constrained C-Planarity by Theorem 12.
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5.2 Neighbor-clusters Trees in C-Planar Drawings with Pipes
In the following theorem we give a characterization of the c-graphs that are positive instances
of C-Planarity with Pipes based on the possible orders of inter-cluster edges around each
cluster in any c-planar drawing. We first consider only c-graphs whose clusters-adjacency
graph GA has no trivial blocks; however, we prove later that this is not a restriction.

I Theorem 13. Let C(G, T ) be a flat c-graph such that GA has no trivial block. Then,
C(G, T ) is a positive instance of C-Planarity with Pipes if and only if C(G, T ) admits
a c-planar drawing Γ in which, for each cluster µ ∈ T , the inter-cluster edges between µ and
any cluster ν adjacent to µ in GA are consecutive in the order in which the inter-cluster
edges incident to µ cross B(µ) in Γ.

Proof Sketch. The “only if part” descends from the definition of a c-planar drawing with
pipes. We prove the “if part”; see Fig. 4.d. Let Γ be a c-planar drawing of C(G, T ) satisfying
the conditions of the theorem and consider two clusters µ, ν ∈ T with two inter-cluster
edges e1 and e2 incident to µ and ν. If both the regions delimited by e1, e2, B(µ), and B(ν)
contain vertices in G \ (µ ∪ ν), then all the clusters in one of the regions are only connected
to µ and all the clusters in the other region are only connected to ν, due to the conditions of
the lemma. Hence, (µ, ν) is a trivial block of GA, a contradiction. J

We exploit Theorem 13 to construct a neighbor-clusters tree Y ◦µ of each cluster µ ∈ T such
that any c-planar drawing with pipes of C(G, T ) is consistent with Y ◦µ . Tree Y ◦µ is rooted at
a vertex ωµ. There exists a child ν of ωµ for each cluster ν adjacent to µ, having a leaf yµ(e)
for each inter-cluster edge e incident to µ and to ν. We call Y ◦µ the pipe-neighbor-clusters tree
of µ. Theorem 13 and the construction of Y ◦µ , for each cluster µ ∈ T , imply the following.

I Corollary 14. Let C(G, T ) be a c-graph whose clusters-adjacency graph has no trivial
blocks. Then, C(G, T ) admits a c-planar drawing with pipes if and only if C(G, T ) admits a
c-planar drawing Γ in which, for each µ ∈ T , drawing Γ is consistent with Y ◦µ .

By Corollary 14 we can reduce C-Planarity with Pipes for a c-graph whose clusters-
adjacency graph GA has no trivial blocks to Inclusion-Constrained C-Planarity, where
the role played by the neighbor-clusters trees is taken by the pipe-neighbor-clusters trees. In
the full paper [1] we explain how to overcome the requirement that GA has no trivial block.

I Lemma 15. Let C(G, T ) be an instance of C-Planarity with Pipes in which GA
contains trivial blocks. It is possible to construct in linear time an equivalent instance
C∗(G∗, T ∗) of C-Planarity with Pipes in which G∗A has no trivial block. Further,
K∗ = K and c∗ = c, where K (K∗) is the maximum number of multi-edge components in
a cluster of C(G, T ) (of C∗(G∗, T ∗)) and c (c∗) is the number of clusters of C(G, T ) (of
C∗(G∗, T ∗)) with at least two multi-edge components.

5.3 An FPT Algorithm for C-Planarity with Pipes
In the following we prove the main result of the section.

I Theorem 16. C-Planarity with Pipes can be tested in O(Kc(K−2)) ·O(n2) time, where
K is the maximum number of multi-edge components in a cluster and c is the number of
clusters with at least two multi-edge components.

Proof Sketch. Let C(G, T ) be a c-graph, which can be assumed to have no trivial block by
Lemma 15. Construct the set Y containing the unique pipe-neighbor-clusters tree Y ◦µ of each
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cluster µ ∈ T . Then, construct all the possible sets X of components trees, over all clusters
in T . For each pair 〈X ,Y〉, apply Theorem 12 to test whether 〈C(G, T ),X ,Y〉 is a positive
instance of Inclusion-Constrained C-Planarity. By Theorem 13 and Corollary 14,
c-graph C(G, T ) is a positive instance if and only if at least one of such tests succeeds. J

We observe two notable corollaries of Theorem 16 (for the second, see Lemma 10).

I Corollary 17. Strip Planarity can be tested in O(Ks(K−2)) ·O(n2) time, where K is
the maximum number of multi-edge components in a strip and s is the number of strips
containing at least two multi-edge components.

I Corollary 18. C-Planarity with Embedded Pipes can be tested in Kc(K−2) ·O(n2)
time, where K is the maximum number of multi-edge components in a cluster and c is the
number of clusters with at least two multi-edge components.

6 Conclusions and Open Problems

In this paper we studied the problem of constructing c-planar drawings with pipes of flat
c-graphs. We presented algorithms to test the existence of such drawings when the number
of certain components is small, in different scenarios, namely when the clusters-adjacency
graph is a path (Strip Planarity), when it has a fixed embedding (C-Planarity with
Embedded Pipes), and when it has no restrictions (C-Planarity with Pipes).

Several questions are left open. We find particularly interesting to determine whether
there exist combinatorial properties of the nesting of the components allowing us to reduce
the number of possible components trees, analogous to the ones we could prove for the
pipe-neighbor-clusters trees. We remark that the introduction of the components trees makes
the running time of our FPT algorithms independent of the size of each component.
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Abstract
In this paper, we investigate the L1 geodesic farthest neighbors in a simple polygon P , and
address several fundamental problems related to farthest neighbors. Given a subset S ⊆ P , an
L1 geodesic farthest neighbor of p ∈ P from S is one that maximizes the length of L1 shortest
path from p in P . Our list of problems include: computing the diameter, radius, center, farthest-
neighbor Voronoi diagram, and two-center of S under the L1 geodesic distance. We show that
all these problems can be solved in linear or near-linear time based on our new observations on
farthest neighbors and extreme points. Among them, the key observation shows that there are at
most four extreme points of any compact subset S ⊆ P with respect to the L1 geodesic distance
after removing redundancy.
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Keywords and phrases simple polygon, L1 geodesic distance, farthest neighbor, farthest-neighbor
Voronoi diagram, k-center
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1 Introduction

The geometry of points in a simple polygon P has been one of the most attractive research
subjects in computational geometry since the 1980s. As a metric space, P is often associated
with a distance function d induced by shortest paths that stay inside P . Indeed, there
are several ways to define a shortest path between two points in P , depending on which
underlying metric is adopted to determine the length of a segment in P . Most common
are the Euclidean and the L1 metrics that define the Euclidean and the L1 shortest paths,
respectively, in P . The length of a shortest path between two points p, q ∈ P is called the
(Euclidean or L1) geodesic distance d(p, q).

In this paper, we are interested in fundamental problems related to geodesic farthest
neighbors in P . Given a set S of points in P , a farthest neighbor of p ∈ P from S is one
that maximizes the geodesic distance d(p, q) from p to every q ∈ S. Specifically, our list of
problems include those of computing the following:

The farthest-neighbor Voronoi diagram of S.
The diameter of S: diam(S) := maxq∈S maxq′∈S d(q, q′).
The radius of S: rad(S) := minp∈P maxq∈S d(p, q).
A center of S: a point c ∈ P such that maxq∈S d(c, q) = rad(S).
A two-center of S: a pair of points c1, c2 ∈ P that minimizes maxq∈S min{d(c1, q), d(c2, q)}.
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In the Euclidean case, where d denotes the Euclidean geodesic distance, these problems
have been intensively studied. Aronov et al. [2] presented an O((n+m) log(n+m))-time
algorithm that computes the farthest-neighbor Voronoi diagram of S if S consists of m points
and P is an n-gon. Very recently, Oh et al. [11] showed that the diagram can be computed
faster in O(n log logn+m log(n+m)) time, or in O(n log logn) time when S is the set of
vertices of P . Note that computing the diameter, radius, and center of S is reduced from the
farthest-neighbor Voronoi diagram in linear time. On the other hand, in a special case where
S = P , it is known that we can compute them in linear O(n) time [9, 1]. The problem of
computing a two-center of S under the Euclidean geodesic distance was recently addressed
by Oh et al. [12] and Oh et al. [10], resulting in two algorithms that run in O(n2 log2 n) time
when S = P and in O(m2(m+ n) log3(m+ n)) time when S is a set of m points in P .

The problems in the L1 geodesic distance have attained less interest compared to those
in the Euclidean case. This is probably because most of results for the Euclidean counterpart
automatically hold for the L1 geodesic distance. Note that the Euclidean shortest paths in
P are also L1 shortest paths, and the algorithm of Aronov et al. [2] can be implemented
for computing the L1 geodesic farthest-neighbor Voronoi diagram. However, it is not clear
whether the approach by Oh et al. [11] can be extended to compute the L1 diagram. Bae et
al. [3] exhibited some geometric observations on the L1 geodesic distance that are different
from the Euclidean one, and exploited them to devise linear-time algorithms that compute
the diameter, radius, and center of a simple polygon P , i.e., the special case where S = P .
Prior to this work, no algorithm for the two-center of S in the L1 geodesic distance was
known in the literature.

In this paper, we reveal that farthest neighbors in the L1 geodesic distance behave quite
different from – indeed much nicer than – gthose in the Euclidean geodesic distance. Based
on our new observations, we show that all the problems listed above in the L1 geodesic
distance can be computed in linear or near-linear time:

O(n+m logn) time when S is a set of m points in P , or
O(n) time when either S = P or S equals the set of vertices of P .

It is worth noting that our algorithms runs in time linear to each of n and m, while the
O(m logn) term was unavoidable for evaluation of the geodesic distance d(p, q). Note that,
in particular, our algorithms for the farthest-neighbor Voronoi diagram and the two-center
are faster than the currently best algorithms for those in the Euclidean case: roughly by a
factor log logn for the farthest-neighbor Voronoi diagram [11], and by a factor of n or of
m2 for the two-center problem [12, 10]. All these algorithmic results are based on a key
observation that for any compact subset S ⊆ P of P , there are at most four extreme points
of S in general. Note that in the Euclidean case, there can be linearly many extreme points.

This phenomenon can be understood as an extension of the relation between the L1
plane and the Euclidean plane. In the plane associated with the L1 metric, there are at
most four extreme points of S in the four directions corresponding to the four segments of
the L1 metric balls, while in the plane associated with the Euclidean metric, every point
of S lying on the boundary of its convex hull is considered to be extreme. An immediate
implication is that the farthest-neighbor Voronoi diagram in the L1 metric consists of at
most four nonempty regions and thus has O(1) complexity, while this is not the case for the
Euclidean metric. Similarly, an L1 (or rectilinear) two-center of m points in the plane can
be computed in O(m) time [5], while the best known algorithm that computes a Euclidean
two-center in the plane runs in O(m log2 m(log logm)2) deterministic time [4]. Our results
thus provide a series of analogies on farthest neighbors in the L1 plane into those in the
metric space (P, d), where P is a simple polygon and d is the L1 geodesic distance in P .
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2 Preliminaries

For any subset A ⊂ R2, we denote by ∂A and intA the boundary and the interior of A,
respectively. For p, q ∈ R2, denote by pq the line segment with endpoints p and q. For any
path π in R2, let |π| be the length of π under the L1 metric, or simply the L1 length. Note
that |pq| equals the L1 distance between p and q.

The following is a basic observation on the L1 length of paths in R2. A path is called
monotone if any vertical or horizontal line intersects it in at most one connected component.

I Lemma 1. For any path π between p, q ∈ R2, |π| = |pq| if and only if π is monotone.

Let P be a simple polygon with n vertices. We regard P as a compact set in R2, so its
boundary ∂P is contained in P . An L1 shortest path between p and q is a path joining p
and q that lies in P and minimizes its L1 length. The L1 geodesic distance d(p, q) is the L1
length of an L1 shortest path between p and q. For any p, q ∈ P , let Π(p, q) be the set of all
L1 shortest paths from p to q.

Analogously, a path lying in P minimizing its Euclidean length is called the Euclidean
shortest path. It is well known that there is always a unique Euclidean shortest path between
any two points in a simple polygon [7]. We let π2(p, q) be the unique Euclidean shortest
path from p ∈ P to q ∈ P . The following states a crucial relation between Euclidean and L1
shortest paths in a simple polygon.

I Lemma 2 (Hershberger and Snoeyink [8]). For any two points p, q ∈ P , the Euclidean
shortest path π2(p, q) is also an L1 shortest path between p and q. That is, π2(p, q) ∈ Π(p, q).

Lemma 2 enables us to exploit several structures for Euclidean shortest paths such as Guibas
et al. [7] and Guibas and Hershberger [6].

Another important concept regarding the shortest paths in P is the relative convexity. A
subset A ⊂ P is called relative convex if π2(p, q) ⊂ A for any p, q ∈ A. For any subset A ⊂ P ,
the relative convex hull rconv(A) of A is the smallest relative convex set including A. If A is
the set of m points in P , then its relative convex hull forms a weakly simple polygon in P
with O(m+ n) vertices. Touissant [13] presented an O((n+m) log(n+m))-time algorithm
that computes rconv(A), and Guibas and Hershberger [6] improved it to O(n+m log(n+m)).

Throughout the paper, unless otherwise stated, a shortest path and the geodesic distance
always refer to an L1 shortest path and the L1 geodesic distance d.

3 Properties of L1 Shortest Paths

In this section, we observe several useful properties of L1 shortest paths in P .
We define a chord of P to be a maximal segment contained in P . For any z ∈ P , let h−z

and h+
z be the left and right endpoints, respectively, of the horizontal chord through z, while

v−z and v+
z denote the lower and upper endpoints, respectively, of the vertical chord through

z. Note that the horizontal or vertical chord may intersect the boundary ∂P of P in several
connected components by definition. We also consider the four segments zh−z , zh+

z , zv−z and
zv+
z , called the leftward, rightward, downward, and upward half-chords from z, respectively.
Let z ∈ P be fixed and p ∈ P be any point. We say that π ∈ Π(p, z) chooses a half-chord

from z if π intersects it at a point other than z. Then, Lemma 1 implies that every π ∈ Π(p, z)
chooses at most one half-chord from z or none of the four. We then observe the following.

I Lemma 3. For any p, z ∈ P , there are no two shortest paths π, π′ ∈ Π(p, z) such that π
chooses a half-chord from z and π′ chooses its opposite half-chord from z.
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Figure 1 Partition around z.

This implies that any p ∈ P avoids at least two half-chords that are not opposite by
shortest paths to z. We thus consider the four regions of P according to the pair of excluded
half-chords. More precisely, for any σ1, σ2 ∈ {+,−}, let Pσ1σ2

z ⊂ P be the set of points
p ∈ P such that no shortest path π ∈ Π(p, z) chooses zhσ1

z or zvσ2
z , where + = − and − = +.

Lemma 3 guarantees that P = P−−z ∪ P−+
z ∪ P+−

z ∪ P++
z for any z ∈ P , while these four

regions are not disjoint. Also, note that P−−z ∩ P++
z = {z} and P−+

z ∩ P+−
z = {z}.

In order to gain a comprehensive understanding on the four regions Pσ1σ2
z , we consider

the following eight subsets of P around z: Define Hσ1
z := Pσ1−

z ∩Pσ1+
z , V σ2

z := P−σ2
z ∩P+σ2

z ,
and Iσ1σ2

z := Pσ1σ2
z \ (Hσ1

z ∪ V σ2
z ). Observe that H−z , for example, is the set of points p ∈ P

such that no shortest path in Π(p, z) chooses the downward, upward, or rightward half-chord
from z, and I−−z is the set of points p ∈ P that admit two shortest paths π, π′ ∈ Π(p, z)
such that π chooses the leftward half-chord and π′ chooses the downward half-chord from z.
See Figure 1 for an illustration. Note that these eight subsets Hσ1

z , V σ2
z , and Iσ1σ2

z form a
partition of P around z. In most cases where the horizontal and vertical chords through z
intersects ∂P only at their endpoints, we have Hσ1

z = zhσ1
z and V σ2

z = zvσ2
z . However, this

is not always the case.
To be more precise, consider the complement Cz := P \ (h−z h+

z ∪ v−z v+
z ), which in general

consists of several connected components. Such a component C ⊆ Cz is said to be adjacent
to a half-chord from z if its boundary ∂C intersects the half-chord at a point other than z.
Note that any component of Cz is adjacent to at least one and at most two half-chords from
z. The following describes how H−z , H+

z , V −z , and V +
z are formed.

I Lemma 4. Let z ∈ P and σ1, σ2 ∈ {+,−}. Then, Hσ1
z is equal to the union of zhσ1

z and
the components of Cz that are adjacent to zhσ1

z but to none of the others. Analogously, V σ2
z

is equal to the union of zvσ2
z and the components of Cz that are adjacent to zvσ2

z only.

Thus, any component C of Cz that is adjacent to exactly one half-chord is included into
the corresponding subset Hσ1

z or V σ2
z for some σ1, σ2 ∈ {+,−}. On the other hand, if a

component C of Cz is adjacent to two half-chords from z, then the boundary of C must
contain z. Thus, there are at most four such components of Cz, and each of them forms Iσ1σ2

z

for some σ1, σ2 ∈ {+,−}. Lemma 4 and the above discussion imply the following corollary.

I Corollary 5. Suppose that Hσ1
z \ zh

σ1
z 6= ∅ for σ1 ∈ {+,−}. Then, either z ∈ {v−z , v+

z }
or there exists a vertex u of P lying on zh−z such that for all p ∈ Hσ1

z \ zh
σ1
z any shortest

path π ∈ Π(p, z) passes through u. An analogous claim also holds for the set V σ2
z with

σ2 ∈ {+,−}.

We then prove the following properties of L1 shortest paths in terms of the partition
around a point z ∈ P .
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I Lemma 6. Let p, q, z ∈ P . If p, q ∈ A, then every π ∈ Π(p, q) is contained in A, where A is
equal to one of the following sets: Hσ1

z , V σ2
z , Iσ1σ2

z , Iσ1σ2
z ∪∂Iσ1σ2

z , Iσ1σ2
z ∪Hσ1

z , Iσ1σ2
z ∪V σ2

z ,
and Pσ1σ2

z for any σ1, σ2 ∈ {+,−}.

I Lemma 7. Let p, q, z ∈ P be any three points. Then, d(p, q) = d(p, z) + d(z, q) if and only
if p ∈ Pσ1σ2

z and q ∈ Pσ1 σ2
z for some σ1, σ2 ∈ {+,−}.

4 L1 Geodesic Farthest Neighbors and Extreme Points

Let S ⊆ P be a nonempty, compact subset of P . We are interested in farthest neighbors
of each p ∈ P from S. For each p ∈ P , let ΦS(p) := maxq∈S d(p, q). This is well defined
since S is a compact set. We call such a q ∈ S with d(p, q) = ΦS(p) an L1 geodesic farthest
neighbor of p from S, or shortly a farthest neighbor of p when there is no confusion. There
can be several farthest neighbors of p ∈ P from S. We denote by FS(p) the set of all farthest
neighbors of p from S. In order pick a representative among them, we impose a total order
≺ on S, such as the lexicographical order. We then define fS(p) ∈ FS(p) to be the least with
respect to the order ≺ among the farthest neighbors of p in FS(p). We call q ∈ S an (L1
geodesic) extreme point of S if q = fS(p) for some p ∈ P .

There are two fundamental quantities defined by farthest neighbors in P : the (L1 geodesic)
diameter diam(S) := maxq∈S ΦS(q) and the (L1 geodesic) radius rad(S) := minp∈P ΦS(p) of
S. The diameter and radius of S are well defined since P and S are compact sets. A pair of
points q, q′ ∈ S is called diametral if d(q, q′) = diam(S), while a point c ∈ P is called an (L1
geodesic) center of S if ΦS(c) = rad(S). Let cen(S) be the set of all centers c ∈ P of S.

In this section, we fully reveal the behavior of the L1 farthest neighbors and extreme
points of any compact set S in P , and finally prove the following theorem.

I Theorem 8. In a simple polygon P , there are at most four extreme points of any compact
subset S ⊆ P with respect to the L1 geodesic distance.

In order to prove Theorem 8, we consider farthest neighbors constrained in regions. For
σ1, σ2 ∈ {+,−}, define fσ1σ2

S (p) to be the farthest neighbor of p from S ∩ Pσ1σ2
p that is

the least with respect to ≺. In the case where S ∩ Pσ1σ2
p = ∅, fσ1σ2

S (p) is undefined. Then
observe that fS(p) is the farthest one that is the least with respect to ≺ among the four
candidates f++

S (p), f−+
S (p), f−−S (p), and f+−

S (p).
We first gather some useful properties of farthest neighbors.

I Lemma 9. Given any p ∈ P , suppose that fσ1σ2
S (p) ∈ FS(p) for σ1, σ2 ∈ {+,−}. Then,

fσ1σ2
S (p) ∈ FS(p′) for any p′ ∈ Pσ1 σ2

p , and fS(p′) = fσ1σ2
S (p) for any p′ ∈ Iσ1 σ2

p . Moreover,
if fS(p) = fσ1σ2

S (p), then fS(p′) = fσ1σ2
S (p) for any p′ ∈ Pσ1 σ2

p .

I Lemma 10. For any p ∈ P , let z ∈ π be a point on a shortest path π ∈ Π(p, fS(p)) Then,
for any σ1, σ2 ∈ {+,−} with p ∈ Pσ1σ2

z and fS(p) ∈ Pσ1 σ2
z , it holds that fS(p) = fσ1 σ2

S (z).

Note that such σ1, σ2 ∈ {+,−} with p ∈ Pσ1σ2
z and fS(p) ∈ Pσ1 σ2

z in Lemma 10 always
exist by Lemma 7 since z is a point on a shortest path from p to fS(p), so d(p, fS(p)) =
d(p, z) + d(z, fS(p)).

4.1 Proof of Theorem 8
Now, we give a proof of Theorem 8. The case where S consists of at most one point is trivial,
so we assume that S consists of more than one point. For a center c ∈ cen(S) of S, we
consider the set FS(c) of its farthest neighbors. Since c is a center and S consists of at least
two points, we have |FS(c)| ≥ 2 and d(c, χ) = ΦS(c) = rad(S) for any χ ∈ FS(c).
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Figure 2 (a) The path π̂ through c ∈ cen(S) partitions P into P+ and P−. (b) Illustration to
Claims 13 and 14. Shaded region represents rconv(S ∪ {p1, p2}). (c) Illustration to Claim 15.

I Lemma 11. For any c ∈ cen(S), there exist χ1, χ2 ∈ FS(c) satisfying the following:
(i) d(χ1, χ2) = d(χ1, c) + d(c, χ2), and (ii) fS(χ1) = χ2 and fS(χ2) = χ1.

From now on, we fix any two farthest neighbors χ1, χ2 ∈ FS(c) of c with the property of
Lemma 11. Note that χ1 and χ2 are extreme points of S. Since d(χ1, χ2) = d(χ1, c)+d(c, χ2),
we have χ1 ∈ Pσ1σ2

c and χ2 ∈ Pσ1 σ2
c for some σ1, σ2 ∈ {+,−} by Lemma 7. Without loss of

generality, we assume that σ1 = σ2 = −, so χ1 ∈ P−−c and χ2 ∈ P++
c .

Let π := π2(χ1, c)∪π2(c, χ2) be a path from χ1 to χ2. Since d(χ1, χ2) = d(χ1, c)+d(c, χ2),
π is a shortest path from χ1 to χ2, that is, π ∈ Π(χ1, χ2). Then, by Lemma 10, we have
χ1 = f−−S (c) and χ2 = f++

S (c), as c ∈ π. This further implies that fS(p) = χ2 for any
p ∈ I−−c , and fS(p) = χ1 for any p ∈ I++

c by Lemma 9 since χ1, χ2 ∈ FS(c).
We will need the following lemma, which rephrases the Ordering Lemma by Aronov et

al. [2]. Note that every extreme point of S appears on the boundary of the relative convex
hull rconv(S) of S.

I Lemma 12 (Aronov et al. [2]). Suppose that there are three distinct extreme points χ1, χ2, χ3
of S in the counter-clockwise order along ∂rconv(S). Let pi ∈ ∂P be a point on the boundary
of P such that fS(pi) = χi for each i ∈ {1, 2, 3}. Then, p1, p2, p3 appear in this order along
∂P in the counter-clockwise direction.

Consider the extension of the last segment of π2(c, χi) for each i ∈ {1, 2} until it hits the
first boundary point χ̂i ∈ ∂P . Let π̂ be the shortest path from χ̂1 to χ̂2 obtained by these
extensions from π; that is, π̂ = π2(χ̂1, c)∪ π2(c, χ̂2). Note that fS(χ̂1) = χ2 and fS(χ̂2) = χ1
by Lemma 9. The path π̂ partitions P into two parts P− and P+, where ∂P− consists of π̂
and the chain along ∂P from χ̂1 to χ̂2 in the counter-clockwise direction, and ∂P+ consists
of π̂ and the chain along ∂P from χ̂2 to χ̂1 in the counter-clockwise direction. See Figure 2(a)
for an illustration. In the following, we show that there are at most one more extreme point
of S, other than χ1 and χ2, in each of P− and P+. Recall that an extreme point of S is
q ∈ S such that q = fS(p) for some p ∈ P .

Suppose to the contrary that there are two extreme points q1, q2 of S such that q1, q2 ∈ P+

and the four points χ1, χ2, q1, q2 are all distinct. Then there exist two boundary points
p1, p2 ∈ ∂P such that fS(p1) = q1 and fS(p2) = q2. Such boundary points p1, p2 are
guaranteed to exist by Lemma 9. Our proof will be done by a contradiction based on the
following four claims.

I Claim 13. Both p1 and p2 lie in I+−
c .

In the following, we assume that the four points χ2, q1, q2, χ1 appear in this order along
∂rconv(S) in the counter-clockwise direction. Then, Lemma 12 implies the following.
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I Claim 14. The four points p1, p2, q1, q2 appear in this order along ∂rconv(S ∪ {p1, p2}).

See Figure 2(b) for an illustration to the above two claims. Note that Claim 13 implies
that p1, p2 ∈ P− as I+−

c ⊂ P−, so any shortest path from pi to qi crosses π̂. On the other
hand, Claim 14 implies that π2(p1, q1) and π2(p2, q2) cross each other.

Let β := ∂I+−
c \ ∂P . Note that β is a subset of the union of the rightward half-chord ch+

c

and the downward half-chord cv−c from c. By Claim 13, the paths π2(p1, q1) and π2(p2, q2)
must cross over β as p1, p2 ∈ I+−

c and q1, q2 ∈ P+. For each i ∈ {1, 2}, let ci be the first
intersection point of π2(pi, qi) ∩ β when walking from pi to qi along π2(pi, qi). We then
observe the following.

I Claim 15. For i ∈ {1, 2}, we have pi ∈ P+−
ci and qi ∈ P−+

ci

See Figure 2(c) for an illustration to Claim 15. Our last claim to prove Theorem 8 is the
following.

I Claim 16. There exists c′ ∈ P such that p1, p2 ∈ P+−
c′ and q1, q2 ∈ P−+

c′ .

Now, we are ready to achieve the final contradiction. Let c′ ∈ P be such a point described
in Claim 16. Then, we have d(pi, qi) = d(pi, c′) + d(c′, qi) for i ∈ {1, 2} by Lemma 7. Since
fS(pi) = qi and qi ∈ P−+

c′ , we have f−+
S (c′) = qi for each i ∈ {1, 2} by Lemma 10. This leads

to a contradiction since f−+
S (c′) is uniquely determined by definition.

Consequently, there are no two disticnt extreme points q1, q2 ∈ S of S such that q1, q2 ∈
P+, implying that there is at most one extreme point of S in P+ or P−. This completes the
proof of Theorem 8. J

5 L1 Geodesic Center

In this section, we investigate the set cen(S) of L1 geodesic centers of S in P . Recall that
an L1 geodesic center c of S minimizes ΦS(c′) over all c′ ∈ P , so ΦS(c) = rad(S). Another
remarkable consequence from the discussions in the previous section is the following.

I Lemma 17. For any nonempty compact subset S ⊆ P , there is a diametral pair (χ1, χ2)
of S such that fS(χ1) = χ2 and fS(χ2) = χ1.

The above lemma and its proof indeed show the following.

I Corollary 18. For any nonempty compact subset S ⊆ P , it holds that rad(S) = diam(S)/2.

Bae et al. [3] considered a special case where S = P , and proved that diam(P ) = 2rad(P )
by using a Helly-type theorem: any family of L1 geodesic balls has Helly number at most
two. It is worth noting that we generalize it to any compact subset S of P with a relatively
direct argument in terms of extreme points of S.

For p ∈ P and r ∈ R, let Bp(r) := {x ∈ P | d(x, p) ≤ r} be the L1 geodesic ball at p with
radius r. Bae et al. [3] also exhibited several basic properties of the L1 geodesic balls; among
them is that Bp(r) is relative convex for any p ∈ P and r ∈ R.

We fully characterize the set cen(S) of all centers of S by using those known results.

I Lemma 19. For any nonempty compact subset S ⊆ P , cen(S) is equal to the intersection
of at most four geodesic balls

⋂
χ∈X Bχ(rad(S)), where X is the set of extreme points of S.
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In the following, we assume that S consists of at least two points. Then, the set X
of extreme points of S consists of at least two and at most four points. Let (χ1, χ2) be a
diametral pair such that fS(χ1) = χ2 and fS(χ2) = χ1. Such a diametral pair exists by
Lemma 17. Since fS(χ1) = χ2 and fS(χ2) = χ1, both χ1 and χ2 are extreme points of S,
that is, χ1, χ2 ∈ X. By Corollary 18, we know that diam(S) = 2rad(S). Thus, Bχ1(rad(S))
and Bχ2(rad(S)) intersect only in their boundaries. Let B := Bχ1(rad(S)) ∩ Bχ2(rad(S)).
Since any L1 geodesic ball is relative convex, as shown in [3], we observe that B ∩ ∂P is
either ∅, a single point, or two points. Again by the relative convexity, B already forms a
line segment of slope 1 or −1, since the boundary of any L1 geodesic ball in the interior of P
consists of line segments of slope 1 or −1. By Lemma 19, it holds that cen(S) ⊆ B. This
implies the the following.

I Corollary 20. The set cen(S) of centers of any nonempty compact subset S ⊆ P forms a
line segment of slope 1 or −1, unless it is a point.

Let c1, c2 ∈ P be the endpoints of the segment cen(S). By Lemma 19, we know that
cen(S) = B ∩

⋃
χ∈X\{χ1,χ2} Bχ(rad(S)). Thus, if |X| ≥ 3, then a third extreme χ3 ∈ X with

χ3 6= χ1, χ2 determines an endpoint c1 or c2 of cen(S) as the intersection B ∩ ∂Bχ3(rad(S)).
More precisely, we observe the following.

I Corollary 21. Suppose that X = {χ1, χ2, . . . , χk} with 3 ≤ k ≤ 4, and (χ1, χ2) is a
diametral pair of S with fS(χ1) = χ2 and fS(χ2) = χ1. Then, for each 3 ≤ i ≤ k,
∂Bχ1(rad(S)) ∩ ∂Bχ2(rad(S)) ∩ ∂Bχi(rad(S)) determines an endpoint of cen(S).

6 L1 Geodesic Farthest-Neighbor Voronoi Diagram

We then turn our attention to the L1 geodesic farthest-neighbor Voronoi diagram. Given a
set S of sites in P , its L1 geodesic farthest-neighbor Voronoi diagram FVD(S) is a partition
of P into regions according to the farthest-neighbor relation between P and S. A common
degenerate case of Voronoi diagrams occurs when a point p ∈ P has four or more equidistant
sites in S. There are two popular approaches in the literature to resolve such a degenerate
case: assume a general position or impose a total order ≺ on S. We take the latter as done
so far to give a precise definition of FVD(S).

The L1 geodesic farthest-neighbor Voronoi region FR(q, S) for each q ∈ S is defined to be

FR(q, S) := {p ∈ P | fS(p) = q}.

Then, the L1 geodesic farthest-neighbor Voronoi diagram FVD(S) is defined to be

FVD(S) :=
⋃
q∈S

∂FR(q, S) \ ∂P,

the union of the boundaries of each farthest-neighbor Voronoi region, except ∂P .
By definition, the Voronoi region FR(q, S) for q ∈ S is nonempty if and only if q is an

extreme point of S. By Theorem 8, this implies that FVD(S) coincides with the diagram
of at most four points in S. This enables us to define the Voronoi diagram FVD(S) for any
nonempty compact subset S ⊆ P , even if S consists of an infinite number of points.

Let X ⊆ S be the set of extreme points of S. Lemma 17 guarantees the existence of a
diametral pair (χ1, χ2) of S with fS(χ1) = χ2 and fS(χ2) = χ1, so χ1, χ2 ∈ X. We first
observe the following property of such a diametral pair.
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V +
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Figure 3 (a) The partition around the center cen(S). Points in S are depicted as dots. (b)
Illustration to FVD(S). Shaded regions depict FR(χ3, S) and FR(χ4, S), respectively. In this
example, S has four extreme points χ1, χ2, χ3, χ4 and we assume that χ3 ≺ χ1 ≺ χ4 ≺ χ2.

I Lemma 22. Let (χ1, χ2) be any diametral pair of S with fS(χ1) = χ2 and fS(χ2) = χ1.
Then, there exist σ1, σ2 ∈ {+,−} such that χ1 = fσ1σ2

S (c) and χ2 = fσ1 σ2
S (c) for all

c ∈ cen(S). Moreover, if cen(S) forms a line segment of positive length, then σ1 = σ2 when
cen(S) is of slope −1, or σ1 = σ2, otherwise.

Note that if there are two distinct such pairs (χ1, χ2) and (χ′1, χ′2), then Lemma 22 implies
that the four points χ1, χ2, χ

′
1, χ
′
2 must be all distinct. Since |X| ≤ 4 by Theorem 8, this

implies that there are at most two such pairs.
We then observe the following.

I Lemma 23. Suppose that cen(S) forms a line segment of slope (σ1) for σ ∈ {+,−} or a
point. Let c− and c+ be the left and right endpoints of cen(S). Then, the following hold:

I−σc ⊆ FR(f+σ
S (c), S) and I+σ

c ⊆ FR(f−σS (c), S) for any c ∈ cen(S).
I−σc− ⊆ FR(f+σ

S (c−), S) and I+σ
c+ ⊆ FR(f−σS (c+), S).

H−c− \{c
−} ⊆ FR(f+σ2

S (c−), S) and V σc− \{c
−} ⊆ FR(fσ1σ

S (c−), S) where σ1, σ2 ∈ {+,−}.
H+
c+ \ {c+} ⊆ FR(f−σ

′
2

S (c+), S) and V σc+ \ {c+} ⊆ FR(fσ
′
1σ

S (c+), S) where σ′1, σ′2 ∈ {+,−}.

Lemma 23 fully describes the farthest-neighbor Voronoi diagram FVD(S), according to the
shape of cen(S). Assume without loss of generality that cen(S) forms a line segment of slope
−1 or a point. Let I−−cen(S) :=

⋃
c∈cen(S) I

−−
c and I++

cen(S) :=
⋃
c∈cen(S) I

++
c . Then, observe

that the eight subsets I−−cen(S), V
−
c+ , I+−

c+ , H+
c+ , I++

cen(S), V
+
c− , I

−+
c− , and H−c− form a partition

of P around cen(S). See Figure 3 for an illustration. Lemma 23 describes to which Voronoi
region each of these eight subsets of P belongs. Note that each of the four subsets I−−cen(S),
I+−
c+ , I++

cen(S), and I
−+
c− may be empty, when c− or c+ lies on ∂P . If cen(S) = {c} consists of a

single point, then we have c+ = c− = c, I−−cen(S) = I−−c , and I++
cen(S) = I++

c . Otherwise, cen(S)
forms a line segment of positive length. Then, since cen(S) is of slope −1, by Lemma 22,
we have χ1, χ2 ∈ X such that χ1 = f−−S (c) and χ2 = f++

S (c) for any c ∈ cen(S). Lemma 23
tells us that I++

cen(S) ⊆ FR(χ1, S) and I−−cen(S) ⊆ FR(χ2, S). On the other hand, if Iσ′σ′
cσ′
6= ∅

for any σ′ ∈ {+,−}, then the endpoint cσ′ is not a boundary point in ∂P . In particular, if
fσ
′σ′

S (cσ′) /∈ {χ1, χ2}, then we have a third extreme point χ3 = fσ
′σ′

S (cσ′) as described in
Corollary 21.

Since the boundaries of any two of the eight subsets around cen(S) always intersect in a
subset of a half-chord from c− or from c+, we conclude the following.
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I Theorem 24. For any compact subset S ⊆ P with |S| ≥ 2, its L1 geodesic farthest-neighbor
Voronoi diagram FVD(S) consists of cen(S) and a subset of the following four segments: two
segments that are subsets of half-chords from each endpoint of cen(S).

7 Algorithms

Now, we are ready to describe our algorithms that compute the extreme points X of S, the
diameter, radius, center of S and the farthest-neighbor Voronoi diagram FVD(S). We keep
the generality by setting S to be any nonempty compact subset of P , while an operation that
computes fS(p) for any p ∈ P is supposed to be processed in at most T time as a black box.

We first describe how to compute the set X of extreme points of S. Pick any q0 ∈ S.
Let qi := fS(qi−1) for i ≥ 0, and compute qi until we have qk+1 = qk−1 for some k ≥ 2. By
Theorem 8, this ends up with k ≤ 4. If k = 4, then let χi := qi for each i ∈ {1, 2, 3, 4}, and we
are done as X = {χ1, χ2, χ3, χ4} by Theorem 8. Otherwise, we let χ1 := qk−1 and χ2 := qk.
Note that fS(χ1) = χ2 and fS(χ2) = χ1. Let r := d(χ1, χ2)/2. Then, we compute Bχ1(r)
and Bχ2(r), and their intersection Bχ1(r) ∩ Bχ2(r). Since r = d(χ1, χ2)/2, Bχ1(r) ∩ Bχ2(r)
forms a line segment z−z+ of slope 1 or −1, where z− is to the left of z+, possibly being
a point z− = z+. Without loss of generality, assume that z−z+ is of slope −1. For each
σ ∈ {+,−}, let pσ ∈ P be any point in Iσσzσ if Iσσzσ is nonempty, or let pσ := zσ, otherwise, if
Iσσzσ = ∅. Let χ3 := fS(p−) and χ4 := fS(p+). Then, we have X = {χ1, χ2, χ3, χ4}.

I Lemma 25. Let S ⊆ P be a given compact subset, and suppose that fS(p) for any p ∈ P
can be computed in T time. The above algorithm correctly computes the set X of extreme
points of S in O(n+ T ) time.

The diameter, radius, center, and farthest-neighbor Voronoi diagram of S can be computed
in the same time bound.

I Lemma 26. Let S ⊆ P be a given compact subset, and suppose that the set of extreme
points of S is known. Then, the following can be computed in O(n) time: diam(S), rad(S),
cen(S), and FVD(S).

Proof. Let X be the set of extreme points of S. Note that diam(S) = maxχ,χ′∈X d(χ, χ′).
Thus, diam(S) and a diametral pair can be computed in additional O(n) time [7], as
|X| ≤ 4 by Theorem 8. By Corollary 18, we have rad(S) = diam(S)/2. The set cen(S)
can be computed by intersecting at most four geodesic balls Bχ(rad(S)) for χ ∈ X by
Lemma 19. This can be done in additional O(n) time by computing the shortest path
maps [7]. After computing cen(S), the farthest-neighbor Voronoi diagram FVD(S) can be
found by considering the eight subsets around cen(S) by Lemma 23. As FVD(S) consists of
at most five segments, it can be found in additional O(n) time. J

Now, we describe the subprocedure that computes fS(p) for any p ∈ P . Here, we assume
that S is a finite set of m points.

I Lemma 27. Let S be a set of m points in P . Then, fS(p) for any p ∈ P can be computed
in O(n + m logn) time. If the order of S ∩ ∂rconv(S) along ∂rconv(S) is provided, then
O(n+m) time is sufficient.

Proof. As a preprocessing, we build in O(n) time the data structure of Guibas and Her-
shberger [6] that evaluates d(p, q) for any p, q ∈ P in O(logn) time. Given any p ∈ P , we
compute d(p, q) for all q ∈ S, and gather the set FS(p) of farthest neighbors of p in O(m logn)
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time. And pick the least element in FS(p) with respect to the total order ≺, and report it as
fS(p). This takes O(n+m logn) time.

If the order of S∩∂rconv(S) along ∂rconv(S) is known, then we can apply the fast matrix
search technique of Hershberger and Suri [9]. This takes O(n+m) time. J

Another interesting case is when S = P . Since rconv(P ) = P , in this case, we know the
order of points P ∩ ∂rconv(P ) = ∂P . Moreover, since fP (p) is always a vertex of P , we have
the following corollary.

I Corollary 28. For any p ∈ P , fP (p) can be computed in O(n) time.

Combining all these results, we obtain the following theorems.

I Theorem 29. Let P be a simple n-gon and S be a set of m points in P . Then, the set
of L1 geodesic extreme points of S, diam(S), rad(S), cen(S), and FVD(S) can be computed
in O(n + m logn) time. If the order of S ∩ ∂rconv(S) along ∂rconv(S) is provided, then
O(n+m) time is sufficient.

I Theorem 30. Let P be a simple n-gon. Then, the set of L1 geodesic extreme points of P ,
diam(P ), rad(P ), cen(P ), and FVD(P ) can be computed in O(n) time.

8 L1 Geodesic Two-Center

In this section, we address the two-center problem for any compact subset S ⊆ P under the
L1 geodesic distance. The L1 geodesic two-center problem asks a pair of points c1, c2 ∈ P that
minimize maxq∈S min{d(q, c1), d(q, c2)}. Such a pair (c1, c2) is called an L1 geodesic two-
center of S in P , or shortly a two-center of S. Let rad2(S) := maxq∈S min{d(q, c1), d(q, c2)}
be the optimal objective value for the problem, called the two-radius or 2-radius of S.
A two-center (c1, c2) induces a bipartition (S1, S2) of S such that S1 = S ∩ Bc1(rad2(S))
and S2 = S \ S1. Conversely, a bipartition (S1, S2) of S is called optimal if rad2(S) =
max{rad(S1), rad(S2)}. Note that in general we have max{rad(S1), rad(S2)} ≥ rad2(S) if
S1 ∪ S2 = S. Given an optimal bipartition (S1, S2) of S, observe that any c1 ∈ cen(S1) and
c2 ∈ cen(S2) form a two-center (c1, c2) of S. Thus, the two-center problem is equivalent to
finding an optimal bipartition of S.

Another closely related problem is the minmax-diameter bipartition problem that asks
a bipartition (S1, S2) of S such that max{diam(S1),diam(S2)} is minimized. Thus, this
problem is to compute the 2-diameter diam2(S) of S defined to be the minimum value of
max{diam(S1),diam(S2)} over all possible bipartitions (S1, S2) of S. In the L1 geodesic
case, the two-center problem is equivalent to the minmax-diameter bipartition problem.

I Lemma 31. For any compact subset S ⊆ P , it holds that rad2(S) = diam2(S)/2.

Thus, if (S1, S2) is the optimal solution to the minmax-diameter bipartition problem, then it
is an optimal bipartition for the two-center problem.

In the following, we let X be the set of extreme points of S.

I Lemma 32. There exists an optimal bipartition (S1, S2) of S such that for each χ ∈ X,
χ ∈ S1 if and only if fS(χ) ∈ S2.

The following is our key lemma.

I Lemma 33. There exists an optimal bipartition (S∗1 , S∗2 ) of S such that

S∗1 = S ∩
⋃

χ∈X∩S∗2

FR(χ, S) and S∗2 = S ∩
⋃

χ∈X∩S∗1

FR(χ, S).
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Our algorithm that computes a two-center of S is described as follows: First, compute
the set X of extreme points of S, and the farthest-neighbor Voronoi diagram FVD(S).
For each bipartition (X1, X2) of X that satisfies the property of Lemma 32, let S1 :=
S∩

⋃
χ∈X2

FR(χ, S) and S2 := S∩
⋃
χ∈X1

FR(χ, S). Then, compute diam(S1) and diam(S2),
and keep the minimum of max{diam(S1),diam(S2)} for all such bipartitions of X.

Let (S∗1 , S∗2 ) be the bipartition of S with a minimum value of max{diam(S∗1 ),diam(S∗2 )}.
Then, (S∗1 , S∗2) is an optimal bipartition and diam2(S) = max{diam(S∗1),diam(S∗2)} by
Lemmas 31 and 33. A two-center (c1, c2) of S can be found by choosing any c1 ∈ cen(S∗1)
and any c2 ∈ cen(S∗2 ).

The above algorithm works properly when S is a finite set of points in P .

I Theorem 34. Let S be a set of m points in a simple n-gon P . Then, an L1 geodesic
two-center of S can be computed in O(n+m logn) time.

Another interesting special case is when S = P .

I Theorem 35. An L1 geodesic two-center of a simple n-gon can be computed in O(n) time.
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Abstract
In this paper we consider two metric covering/clustering problems – Minimum Cost Covering
Problem (MCC) and k-clustering. In the MCC problem, we are given two point sets X (clients)
and Y (servers), and a metric on X ∪ Y . We would like to cover the clients by balls centered at
the servers. The objective function to minimize is the sum of the α-th power of the radii of the
balls. Here α ≥ 1 is a parameter of the problem (but not of a problem instance). MCC is closely
related to the k-clustering problem. The main difference between k-clustering and MCC is that
in k-clustering one needs to select k balls to cover the clients.

For any ε > 0, we describe quasi-polynomial time (1 + ε) approximation algorithms for both
of the problems. However, in case of k-clustering the algorithm uses (1 + ε)k balls. Prior to
our work, a 3α and a cα approximation were achieved by polynomial-time algorithms for MCC
and k-clustering, respectively, where c > 1 is an absolute constant. These two problems are thus
interesting examples of metric covering/clustering problems that admit (1 + ε)-approximation
(using (1 + ε)k balls in case of k-clustering), if one is willing to settle for quasi-polynomial time.
In contrast, for the variant of MCC where α is part of the input, we show under standard
assumptions that no polynomial time algorithm can achieve an approximation factor better than
O(log |X|) for α ≥ log |X|.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases Approximation Algorithms, Clustering, Covering, Probabilistic Parti-
tions

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2016.15

1 Introduction

We consider two metric covering/clustering problems. In the first problem, we are given two
point sets X (clients) and Y (servers), and a metric d on X ∪ Y . For z ∈ X ∪ Y and r ≥ 0,
the ball B(z, r) centered at z and having radius r ≥ 0 is the set {y ∈ X ∪ Y |d(z, y) ≤ r}. A
cover for a subset P ⊆ X is a set of balls, each centered at a point of Y , whose union contains
P . The cost of a set B = {B1, . . . , Bk} of balls, denoted by cost(B), is

∑k
i=1 r(Bi)

α, where
r(Bi) is the radius of Bi, and α ≥ 1 is a parameter of the problem (but not of a problem
instance). The goal is to compute a minimum cost cover for the clients X. We refer to this
problem as the Minimum Cost Covering Problem (MCC).

In the second problem, we are given a set X of n points, a metric d on X, and a positive
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integer k. Unlike in the case of MCC, here each ball is centered at a point in X.1 The cost
cost(B) of a set B of balls is defined exactly in the same way as in the case of MCC. The
goal is to find a set B of k balls whose union contains all the points in X and cost(B) is
minimized. We refer to this problem as k-clustering.

Inspired by applications in wireless networks, MCC has been well studied [22]. One can
consider the points in Y as the potential locations of mobile towers and the points in X

as the locations of customers. A tower can be configured in a way so that it can serve the
customers lying within a certain distance. But the service cost increases with the distance
served. The goal is to serve all the customers minimizing the total cost. For modelling the
energy needed for wireless transmission, it is common to consider the value of α to be at
least 1.

For the MCC problem with α = 1, a primal-dual algorithm of Charikar and Panigrahy
[10] leads to an approximation guarantee of 3; their result generalizes to α ≥ 1, with an
approximation guarantee of 3α. The problem is known to be NP-hard for α > 1, even when
X and Y are points in the Euclidean plane [2]. The case α = 1 has received particular
attention. The first PTAS for the Euclidean plane was designed by Lev-Tov and Peleg
[22]. Later, Gibson et. al [17] have designed a polynomial time exact algorithm for this
problem when X and Y are points in the plane, and the underlying distance function d is
either the l1 or l∞ metric. For the l2 metric they also get an exact algorithm if one assumes
two candidate solutions can be compared efficiently; without this assumption, they get a
(1 + ε) approximation. Their algorithm is based on a separator theorem that, for any optimal
solution, proves the existence of a balanced separator that intersects with at most 12 balls in
the solution. In a different work they have also extended the exact algorithm to arbitrary
metric spaces [16]. The running time is quasi-polynomial if the aspect ratio of the metric
(ratio of maximum to minimum interpoint distance) is bounded by a polynomial in the
number of points. When the aspect ratio is not polynomially bounded, they obtain a (1 + ε)
approximation in quasi-polynomial time. Their algorithms are based on a partitioning of the
metric space that intersects a small number of balls in the optimal cover.

When α > 1, the structure that holds for α = 1 breaks down. It is no longer the case,
even in the Euclidean plane, that there is a good separator (or partition) that intersects
a small number of balls in an optimal solution. In the case α = 2 and the Euclidean
plane, the objective function models the total area of the served region, which arises in
many practical applications. Hence this particular version has been studied in a series of
works. Chuzhoy developed an unpublished 9-factor approximation algorithm for this version.
Freund and Rawitz [15] present this algorithm and give a primal fitting interpretation of the
approximation factor. Bilo et. al [9] have extended the techniques of Lev-Tov and Peleg [22]
to get a PTAS that works for any α ≥ 1 and for any fixed dimensional Euclidean space. The
PTAS is based on a sophisticated use of the shifting strategy which is a popular technique in
computational geometry for solving problems in Rd [13, 19]. For general metrics, however,
the best known approximation guarantee for α > 1 remains the already mentioned 3α [10].

The k-clustering problem has applications in many fields including Data Mining, Machine
Learning and Image Processing. Over the years it has been studied extensively from both
theoretical and practical perspectives [9, 10, 12, 16, 17, 23]. The problem can be seen as a
variant of MCC where Y = X and at most k balls can be chosen to cover the points in X.
As one might think, the constraint on the number of balls that can be used in k-clustering

1 Our results do generalize to the problem where we distinguish between clients and servers as in the
MCC.
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makes it relatively harder than MCC. Thus all the hardness results for MCC also hold for
k-clustering. For α = 1, Charikar and Panigrahy [10] present a polynomial time algorithm
with an approximation guarantee of about 3.504. Gibson et. al [16, 17] obtain the same results
for k-clustering with α = 1 as the ones described for MCC, both in Rd and arbitrary metrics.
Recently, Salavatipour and Behsaz [8] have obtained a polynomial time exact algorithm for
α = 1 and metrics of unweighted graphs, if we assume that no singleton clusters are allowed.
However, in case of α > 1 the best known approximation factor (in polynomial time) for
general metrics is cα, for some absolute constant c > 1; this follows from the analysis of
Charikar and Panigrahy [10], who explicitly study only the case α = 1. In fact, no better
polynomial time approximation is known even for the Euclidean plane. We note that though
the polynomial time algorithm in [9] yields a (1 + ε) approximation for k-clustering in any
fixed dimensional Euclidean space and for α ≥ 1, it can use (1 + ε)k balls.

In addition to k-clustering many other clustering problems (k-means, k-center, k-median
etc.) have been well studied [5, 11, 24, 18].

In this paper we address the following interesting question. Can the techniques employed
by [9] for fixed dimensional Euclidean spaces be generalized to give (1 + ε) approximation
for MCC and k-clustering in any metric space? Our motivation for studying the problems
in a metric context is partly that it includes two geometric contexts: (a) high dimensional
Euclidean spaces; and (b) shortest path distance metric in the presence of polyhedral obstacles
in R2 or R3.

1.1 Our Results and Techniques
In this paper we consider the metric MCC and k-clustering with α ≥ 1. For any ε > 0, we
design a (1 + ε)-factor approximation algorithm for MCC that runs in quasi-polynomial time,
that is, in 2(logmn/ε)c time, where c > 0 is a constant, m = |Y |, and n = |X|. We also have
designed a similar algorithm for k-clustering that uses at most (1 + ε)k balls and yields a
solution whose cost is at most (1 + ε) times the cost of an optimal k-clustering solution. The
time complexity of the latter algorithm is also quasi-polynomial. As already noted, somewhat
stronger guarantees are already known for the case α = 1 of these problems [16], but the
structural properties that hold for α = 1 make it rather special.

The results in this paper should be compared with the polynomial time algorithms [10]
that guarantee 3α approximation for MCC and cα approximation for k-clustering. The MCC
and k-clustering are thus interesting examples of metric covering/clustering problems that
admit (1 + ε)-approximation (using (1 + ε)k balls in case of k-clustering), if one is willing to
settle for quasi-polynomial time. From this perspective, our results are surprising, as most of
the problems in general metrics are APX-hard. The MCC and k-clustering are also examples
where the techniques used in fixed dimensional Euclidean spaces generalize nicely to metric
spaces. This is in contrast to the facility location problem [3].

The algorithms that we have designed for both of the problems use similar techniques
that exploit the following key property of optimal covers: there are only a “small” number
of balls whose radius is “large”. We can therefore afford to guess these balls by an explicit
enumeration. However, there can be a “large” number of balls with “small” radius. To help
‘find’ these, we partition the metric space into blocks (or subsets) with at most half the
original diameter, and recurse on each block. We have to pay a price for this recursion in the
approximation guarantee. This price depends on the number of blocks in the partition that
a small radius ball can intersect. (This is not an issue in the case α = 1, where each ball
that is not guessed intersects precisely one of the blocks [16].)

We are led to the following problem: is there a way to probabilistically partition a metric
space into blocks of at most half the diameter, so that for any ball with “small” radius, the
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expected number of blocks that intersect the ball can be nicely bounded? The celebrated
partitioning algorithms of Bartal [6] and Fakcharoenphol, Rao, and Talwar [14] guarantee
that the probability that such a ball is intersected by two or more blocks is nicely bounded.
However, their bounds on the probability that a small ball is intersected do not directly
imply a good bound on the expected number of blocks intersected by a small ball. Indeed, if
one employs the partitioning algorithm of [14], the expected number of blocks intersected
by a small ball can be quite “large” . Fortunately, the desired bound on the expectation
can be shown to hold for the algorithm of Bartal [6], even though he did not study the
expectation itself. We use a similar partitioning scheme and derive the expectation bound in
Section 2, using an analysis that closely tracks previous work [1, 7, 20]. While the bound
on the expectation is easily derived from previous work, our work is the first to study and
fruitfully apply this bound.

The algorithms for MCC and k-clustering, which use the partitioning scheme of Section 2,
are described in Section 3 and 4, respectively. In Section 5, we consider the approximability
of a variant of the MCC where we allow α to be part of the input. For α ≥ log |X|, we show,
under standard complexity theoretic assumptions, that no polynomial (or quasi-polynomial)
time algorithm for MCC can achieve an approximation factor better than O(log |X|). This
partly explains the dependence on α of the running time of our algorithms.

2 The Partitioning Scheme

Let Z be a point set with an associated metric d, let P ⊆ Z be a point set with at least
2 points, and n ≥ |P | be a parameter. For Q ⊆ Z, denote the maximum interpoint
distance (or diameter) of Q by diam(Q). Consider any partition of P into subsets (or blocks)
{P1, P2, . . . , Pt}, where 2 ≤ t ≤ |P |. Abusing notation, we will also view {P1, P2, . . . , Pt}
as a sequence of blocks. We say that Pi non-terminally (resp. terminally) intersects a ball
B if Pi intersects B and it is not (resp. it is) the last set in the sequence P1, P2, . . . , Pt
that intersects B. We would like to find a partition {P1, P2, . . . , Pt} of P that ensures the
following properties:
1. For each 1 ≤ i ≤ t, diam(Pi) ≤ diam(P )/2.
2. For any ball B (centered at some point in Z) of radius r ≤ diam(P )

16 logn , the expected size
of the set {i|Pi ∩ B 6= ∅} is at most 1 + c r

diam(P ) logn, where c > 0 is a constant. In
other words, the expected number of blocks in the partition that intersect B is at most
1 + c r

diam(P ) logn.
3. For any ball B (centered at some point in Z) of radius r ≤ diam(P )

16 logn , the expected number
of blocks in the partition that non-terminally intersect B is at most c r

diam(P ) logn, where
c > 0 is a constant.

We note that the second property follows from the third, as the number of blocks that
intersect ball B is at most one more than the number of blocks that non-terminally intersect
B. We design a probabilistic partitioning algorithm that finds a partition with the desired
properties. We refer the reader to the full version of the paper for the algorithm and its
analysis [4]. We conclude by summarizing the result.

I Theorem 1. Let Z be a point set with an associated metric d, let P ⊆ Z be a point set
with at least 2 points, and n ≥ |P | be a parameter. There is a polynomial-time probabilistic
algorithm RAND-PARTITION(P ) that partitions P into blocks {P1, P2, . . . , Pt} and has the
following guarantees:
1. For each 1 ≤ i ≤ t, diam(Pi) ≤ diam(P )/2.
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2. There is a constant c > 0 so that for any ball B (centered at some point in Z) of radius
r ≤ diam(P )

16 logn , the expected size of the set {i|Pi ∩B 6= ∅} is at most 1 + c r
diam(P ) logn and

the expected number of blocks that non-terminally intersect B is at most c r
diam(P ) logn.

3 Algorithm for MCC

We now describe our (1 + ε)-factor approximation algorithm for the MCC problem. Recall
that we are given a set X of clients, a set Y of servers, and a metric d on X ∪ Y . We wish to
compute a cover for X with minimum cost. Let m = |Y | and n = |X|.

For P ⊆ X, let opt(P ) denote some optimal cover for P . Denote by cost(B) the cost of a
ball B (the α-th power of B’s radius) and by cost(B) the cost

∑
B∈B cost(B) of a set B of

balls.
To compute a cover for P , our algorithm first guesses the set Q ⊆ opt(P ) consisting of

all the large balls in opt(P ). As we note in the structure lemma below, we may assume that
the number of large balls in opt(P ) is small. We then use the algorithm of Theorem 1 to
partition P into {P1, P2, . . . , Pt}. For each 1 ≤ i ≤ t, we recursively compute a cover for the
set P ′i ⊆ Pi of points not covered by Q.

To obtain an approximation guarantee for this algorithm, we use the guarantees of
Theorem 1. With this overview, we proceed to the structure lemma and a complete description
of the algorithm.

3.1 A Structure Lemma
It is not hard to show that for any γ ≥ 1 and P ⊆ X such that diam(P ) is at least a constant
factor of diam(X ∪ Y ), opt(P ) contains at most (c/γ)α balls of radius at least diam(P )/γ.
Here c is some absolute constant. The following structural lemma extends this fact.

I Lemma 2. Let P ⊆ X, 0 < λ < 1 and γ ≥ 1, and suppose that opt(P ) does not contain
any ball of radius greater than or equal to 2α ·diam(P )/λ. Then the number of balls in opt(P )
of radius greater than or equal to diam(P )/γ is at most c(λ, γ) := (9αγ/λ)α.

Proof. Suppose that opt(P ) does not contain any ball of radius greater than or equal
to 2α · diam(P )/λ. Note that each ball in opt(P ) intersects P and has radius at most
2α · diam(P )/λ. Thus the point set {z ∈ X ∪ Y | z ∈ B for some B ∈ opt(P )} has diameter
at most diam(P ) + 8α · diam(P )/λ ≤ 9α · diam(P )/λ. It follows that there is a ball centered
at a point in Y , with radius at most 9α · diam(P )/λ that contains P .

Let t denote the number of balls in opt(P ) of radius greater than or equal to diam(P )/γ.
By optimality of opt(P ), we have t · (diam(P )/γ)α ≤ (9α ·diam(P )/λ)α. Thus t ≤ (9αγ/λ)α.

J

3.2 The Algorithm
We may assume that the minimum distance between two points in X is 1. Let L =
1 + log(diam(X)). As we want a (1 + ε)-approximation, we fix a parameter λ = ε/2L. Let
γ = c logn

λ , where c is the constant in Theorem 1. Denote D to be the set of balls such that
each ball is centered at a point of y ∈ Y and has radius r = d(x, y) for some x ∈ X. We note
that for any P ⊆ X, any ball in opt(P ) must belong to this set. Note that |D| ≤ mn. Recall
that c(λ, γ) = (9αγ/λ)α.

With this terminology, the procedure POINT-COVER(P ) described as Algorithm 1
returns a cover of P ⊆ X. If |P | is smaller than some constant, then the procedure returns an
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Algorithm 1 POINT-COVER(P )
Require: A subset P ⊆ X.
Ensure: A cover of the points in P .

1: if |P | is smaller than some constant κ then
2: return a minimum solution by checking all covers with at most κ balls.
3: sol ← the best cover with one ball
4: cost ← cost(sol)
5: Let {P1, . . . , Pτ} be the set of nonempty subsets returned by RAND-PARTITION(P )
6: Let B be the set of balls in D having radius greater than diam(P )

γ

7: for each Q ⊆ B of size at most c(λ, γ) do
8: for i = 1 to τ do
9: Let P ′i = {p ∈ Pi | p 6∈

⋃
B∈QB}

10: Q′ ← Q∪
⋃τ

i=1 POINT-COVER(P ′i )
11: if cost(Q′) < cost then
12: cost ← cost(Q′)
13: sol ← Q′
14: return sol

optimal solution by searching all covers with a constant number of balls. In the general case,
one candidate solution is the best single ball solution. For the other candidate solutions, the
procedure first computes a partition {P1, . . . , Pτ} of P , using the RAND-PARTITION(P )
procedure. Here RAND-PARTITION(P ) is called with Z = X ∪Y and n = |X| ≥ |P |. Then
it iterates over all possible subsets of D of size at most c(λ, γ) containing balls of radius
greater than diam(P )/γ. For each such subset Q and 1 ≤ i ≤ τ , it computes the set P ′i ⊆ Pi
of points not covered by Q. It then makes recursive calls and generates the candidate solution
Q∪

⋃τ
i=1 POINT-COVER(P ′i ). Note that all the candidate solutions are actually valid covers

for P . Among these candidate solutions the algorithm returns the best solution.
Our overall algorithm for MCC calls the procedure POINT-COVER(X) to get a cover

of X.

3.3 Approximation Guarantee
For P ⊆ X, let level(P ) denote the smallest non-negative integer i such that diam(P ) < 2i.
As the minimum interpoint distance in X is 1, level(P ) = 0 if and only if |P | ≤ 1. Note that
level(X) ≤ L.

The following lemma bounds the quality of the approximation of our algorithm.

I Lemma 3. POINT-COVER(P ) returns a solution whose expected cost is at most (1 +
λ)lcost(opt(P )), where l = level(P ).

Proof. We prove this lemma using induction on l. If l = 0, then |P | ≤ 1 and POINT-
COVER(P ) returns an optimal solution, whose cost is cost(opt(P )). Thus assume that l ≥ 1
and the statement is true for subsets having level at most l − 1. Let P ⊆ X be a point
set with level(P ) = l. If |P | is smaller than the constant threshold κ, POINT-COVER(P )
returns an optimal solution. So we may assume that |P | is larger than this threshold. We
have two cases.

Case 1: There is some ball in opt(P ) whose radius is at least 2α ·diam(P )/λ. Let B denote
such a ball and r(B) ≥ 2α ·diam(P )/λ be its radius. Since (1+λ/2α)r(B) ≥ r(B)+diam(P ),
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the concentric ball of radius (1 + λ/2α)r(B) contains P . It follows that there is a cover for
P that consists of a single ball and has cost at most

(1 + λ/2α)αr(B)α ≤ (1 + λ)cost(opt(P )) ≤ (1 + λ)lcost(opt(P )).

Case 2: There is no ball in opt(P ) whose radius is at least 2α ·diam(P )/λ. Let Q0 ⊆ opt(P )
contain those balls of radius at least diam(P )/γ. It follows from Lemma 2 that |Q0| ≤ c(λ, γ).
Thus the algorithm considers a Q with Q = Q0. Fix this iteration. Also fix the partition
{P1, . . . , Pτ} of P computed by RAND-PARTITION(P ). RAND-PARTITION ensures that
diam(Pi) ≤ diam(P )/2 for 1 ≤ i ≤ τ . Thus diam(P ′i ) ≤ diam(P )/2 and the level of each P ′i
is at most l − 1. Hence by induction the expected value of cost(POINT-COVER(P ′i )) is at
most (1 + λ)l−1cost(opt(P ′i )).

Let S ′ = opt(P ) \ Q0. We argue below that the expected value of
τ∑
i=1

cost(opt(P ′i )) is at

most (1 + λ)cost(S ′). Assuming this, we have

E[cost(Q0 ∪
τ⋃

i=1
POINT-COVER(P ′i ))] ≤ cost(Q0) + (1 + λ)l−1E[

τ∑
i=1

cost(opt(P ′i ))]

≤ cost(Q0) + (1 + λ)lcost(S ′)
≤ (1 + λ)lcost(opt(P )).

Thus POINT-COVER(P ) returns a solution whose expected cost is at most (1+λ)lcost(opt(P )),
as desired.

We now argue that the expected value of
∑τ
i=1 cost(opt(P ′i )) is at most (1 + λ)cost(S ′).

Let Bi consist of those balls in S ′ that intersect Pi. For B ∈ S ′, let µ(B) denote the number
of blocks in the partition {P1, . . . , Pτ} that B intersects. Because Bi is a cover for P ′i , we
have cost(opt(P ′i )) ≤ cost(Bi). Thus

τ∑
i=1

cost(opt(P ′i )) ≤
τ∑
i=1

cost(Bi) =
∑

B∈S′

µ(B)cost(B).

By definition of Q0, any ball B ∈ S ′ = opt(P )\Q0 has radius at most diam(P )
γ = λ·diam(P )

c logn ,
where c is the constant in Theorem 1. We may assume that c ≥ 16 and hence λ·diam(P )

c logn ≤
diam(P )
16 logn . Theorem 1 now implies that

E[µ(B)] ≤ 1 + c · r(B) logn
diam(P ) ≤ 1 + c logn

diam(P ) ·
λ · diam(P )
c logn = 1 + λ.

Thus the expected value of
∑τ
i=1 cost(opt(P ′i )) is at most∑

B∈S′

E[µ(B)]cost(B) ≤ (1 + λ)
∑
B∈S′

cost(B) = (1 + λ)cost(S ′),

as claimed. J

We conclude that the expected cost of the cover returned by POINT-COVER(X) is at
most (1 + λ)Lcost(opt(X)) ≤ (1 + ε)cost(opt(X)), since λ = ε/2L.

Now consider the time complexity of the algorithm. POINT-COVER(P ) makes (mn)O(c(λ,γ))

direct recursive calls on subsets of diameter at most diam(P )/2. Thus the overall time com-
plexity of POINT-COVER(X) can be bounded by (mn)O(c(λ,γ)L). Plugging in λ = ε/2L,
γ = c logn/λ, and c(λ, γ) = (9αγ/λ)α, we conclude
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I Theorem 4. There is an algorithm for MCC that runs in time (mn)O(αL
2logn
ε2 )αL and

returns a cover whose expected cost is at most (1 + ε) times the optimal. Here L is 1 plus the
logarithm of the aspect ratio of X, that is, the ratio of the maximum and minimum interpoint
distances in the client set X.

Using relatively standard techniques, which we omit here, we can pre-process the input
to ensure that the ratio of the maximum and minimum interpoint distances in X is upper
bounded by a polynomial in mn

ε . However, this affects the optimal solution by a factor of
at most (1 + ε). After this pre-processing, we have L = O(log mn

ε ). Using the algorithm
in Theorem 4 after the pre-processing, we obtain a (1 + ε) approximation with the quasi-
polynomial running time O(2logO(1) mn). Here the O(1) hides a constant that depends on α
and ε.

4 Algorithm for k-clustering

Recall that in k-clustering we are given a set X of points, a metric d on X, and a positive
integer k. Let |X| = n. For P ⊆ X and integer κ ≥ 0, let opt(P, κ) denote an optimal
solution of κ-clustering for P (using balls whose center can be any point in X). We reuse the
notions of level(P ), cost(B) and cost(B) from Section 3, for a point set P , a ball B, and a
set B of balls, respectively. Denote D to be the set of balls such that each ball is centered at
a point of y ∈ X and has radius r = d(x, y) for some x ∈ X. We note that for any P ⊆ X,
any ball in opt(P, κ) must belong to this set. Note that |D| ≤ n2.

To start with we prove a structure lemma for k-clustering.

I Lemma 5. Let P ⊆ X, κ be a positive integer, and γ ≥ 1. Then the number of balls in
opt(P, κ) of radius greater than or equal to diam(P )/γ is at most c(γ) := γα.

Proof. Note that any ball centered at a point in P and having radius diam(P ) contains all
the points of P . Now by definition of diam(P ) and D, there is a point x ∈ P such that the
ball B(x, diam(P )) ∈ D. Hence opt(P, κ) ≤ diam(P )α.

Let t denote the number of balls in opt(P, κ) of radius greater than or equal to diam(P )/γ.
By optimality of opt(P, κ), we have t · (diam(P )/γ)α ≤ diam(P )α. Thus t ≤ γα. J

Like in the case of MCC, we assume that the minimum distance between two points in
X is 1. Let L = 1 + log(diam(X)). We fix a parameter λ = ε/6L. Let γ = c logn

λ , where c is
the constant in Theorem 1.

We design a procedure CLUSTERING(P, κ) (see Algorithm 2) that given a subset P
of X and an integer κ, returns a set of at most (1 + 3λ)lκ balls whose union contains P ,
where l = level(P ). We overview this procedure, focussing on the differences from the
procedure POINT-COVER() used to solve the MCC problem. In CLUSTERING(P, κ),
RAND-PARTITION(P ) is called with Z = X and n = |X| ≥ |P |. We require two properties
of the partition {P1, . . . , Pτ} of P computed by RAND-PARTITION(P ). Let Q0 be the
set containing the large balls of opt(P, κ), that is, those with radius at least diam(P )/γ.
Let S ′ = opt(P, κ) \ Q0 denote the set of small balls, and let S ′i ⊆ S ′ consist of those
balls that contain at least one point in Pi that is not covered by Q0. We would like (a)∑τ
i=1 cost(S ′i) ≤ (1 + 3λ)cost(S ′), and (b)

∑τ
i=1 |S ′i| ≤ (1 + 3λ)|S ′|. Theorem 1 ensures

that each of (a) and (b) holds in expectation. However, we would like both (a) and (b) to
hold simultaneously, not just in expectation. For this reason, we try Θ(logn) independent
random partitions in Line 6, ensuring that with high probability, properties (a) and (b) hold
for at least one of them.
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Algorithm 2 CLUSTERING(P, κ)
Require: A subset P ⊆ X, an integer κ.
Ensure: A set of balls whose union contains the points in P .

1: if |P | is smaller than some constant β then
2: return a minimum solution by checking all solutions with at most min{κ, β} balls.
3: sol ← the best solution with one ball
4: cost ← cost(sol)
5: l← level(P )
6: for all 2 log3/2 n iterations do
7: Let {P1, . . . , Pτ} be the set of nonempty subsets returned by RAND-PARTITION(P )
8: Let B be the set of balls in D having radius greater than diam(P )

γ

9: for each Q ⊆ B of size at most c(γ) do
10: for i = 1 to τ do
11: Let P ′i = {p ∈ Pi | p 6∈

⋃
B∈QB}

12: for each 1 ≤ i ≤ τ and 0 ≤ κ1 ≤ (1+3λ)κ do
13: cluster(P ′i , κ1)← CLUSTERING(P ′i , κ1)
14: for i = 0 to τ − 1 do
15: Ri ←

⋃τ
j=i+1 P

′
j

16: for κ1 = 0 to (1+3λ)κ do
17: cluster(Rτ−1, κ1) ← cluster(P ′τ , κ1)
18: for all i = τ − 2 to 0 and 0 ≤ κ1 ≤ (1+3λ)κ do
19: κ′min ← arg minκ′:0≤κ′≤κ1 cost(cluster(P ′i+1, κ

′) ∪ cluster(Ri+1, κ1 − κ′))
20: cluster(Ri, κ1)← cluster(P ′i+1, κ

′
min) ∪ cluster(Ri+1, κ1 − κ′min)

21: Q′ ← Q ∪ cluster(R0, (1 + 3λ) · (κ− |Q|))
22: if |Q′| ≤ (1+3λ)lκ and cost(Q′) < cost then
23: cost ← cost(Q′)
24: sol ← Q′
25: return sol

Now let us fix one of these Θ(logn) trials where we got a partition {P1, . . . , Pτ} satisfying
properties (a) and (b), and also fix an iteration in Line 9 where we have Q = Q0. Let
P ′i ⊆ Pi be the points not covered by Q0. For each 1 ≤ i ≤ τ and 0 ≤ κ1 ≤ (1 + 3λ)κ, we set
cluster(P ′i , κ1) to be the cover obtained by recursively invoking CLUSTERING(P ′i , κ1) (as
in Line 13).

Let us call a tuple (κ1, κ2, . . . , κτ ) of integers valid if 0 ≤ κi ≤ (1 + 3λ)(κ − |Q0|) and∑τ
i=1 κi ≤ (1 + 3λ)(κ− |Q0|). We would like to minimize

∑τ
i=1 cost(cluster(P ′i , κi)) over all

valid tuples (κ1, κ2, . . . , κτ ). As there are too many valid tuples to allow explicit enumeration,
we solve this optimization problem in Lines 14–21 via a dynamic programming approach.

This completes our overview. Our overall algorithm for k-clustering calls the procedure
CLUSTERING(X, k). Next we give the approximation bound on the cost of the solution
returned by CLUSTERING(P, κ).

I Lemma 6. For any P ⊆ X and an integer κ ≥ 1, CLUSTERING(P, κ) returns a solution
consisting of at most (1 + 3λ)lκ balls and with probability at least 1− |P |−1

n2 , the cost of the
solution is at most (1 + 3λ)lcost(opt(P, κ)), where l = level(P ).

We refer the reader to the full version of the paper [4] for the proof of Lemma 6. Overall,
it is similar to the proof of Lemma 3, and the key differences have already been anticipated
in our overview.
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Since λ = ε/6L, (1 + 3λ)L ≤ 1 + ε. Thus we conclude that with probability at least 1− 1
n ,

CLUSTERING(X, k) returns a solution with at most (1 + ε)k balls whose cost is at most
(1 + ε)cost(opt(X, k)).

Now consider the time complexity of the algorithm. CLUSTERING(P, κ) makes nO(c(γ))

direct recursive calls on subsets of diameter at most diam(P )/2. Thus the overall time
complexity of CLUSTERING(X, k) can be bounded by nO(c(γ)L). Plugging in λ = ε/6L,
γ = c logn/λ, and c(γ) = γα, we conclude

I Theorem 7. There is a randomized algorithm for k-clustering that runs in time nO((Llogn
ε )αL)

and with probability at least 1− 1
n returns a solution with at most (1 + ε)k balls whose cost is

at most (1 + ε) times the optimal. Here L is 1 plus the logarithm of the aspect ratio of X,
that is, the ratio of the maximum and minimum interpoint distances in the set X.

5 Inapproximability Result

In this section we present an inapproximability result which complements the result in Section
3. In particular here we consider the case when α is not a constant. The heart of this result
is a reduction from the dominating set problem. Given a graph G = (V,E), a dominating
set for G is a subset V ′ of V such that for any vertex v ∈ V \ V ′, v is connected to at least
one vertex of V ′ by an edge in E. The dominating set problem is defined as follows.

Dominating Set Problem (DSP)
INSTANCE: Graph G = (V,E), positive integer k ≤ |V |.
QUESTION: Is there a dominating set for G of size at most k?

The following inapproximability result is proved by Kann [21].

I Theorem 8. There is a constant c > 0 such that there is no polynomial-time c log |V |-factor
approximation algorithm for DSP assuming P 6= NP.

The following theorem shows an inapproximability bound for MCC when α ≥ log |X|.

I Theorem 9. For α ≥ log |X|, no polynomial time algorithm for MCC can achieve an
approximation factor better than c log |X| assuming P 6= NP.

Proof. To prove this theorem we show a reduction from DSP. Given an instance (G =
(V,E), k) of DSP we construct an instance of MCC. The instance of MCC consists of
two sets of points X (clients) and Y (servers), and a metric d defined on X ∪ Y . Let
V = {v1, v2, . . . , vn}, where n = |V |. For each vi ∈ V , Y contains a point yi and X contains
a point xi. For any point p ∈ X ∪ Y , d(p, p) = 0. For i, j ∈ [n], d(xi, yj) is 1 if i = j or
the edge (vi, vj) ∈ E, and d(xi, yj) is 3 otherwise. For i, j ∈ [n] such that i 6= j, we set
d(xi, xj) = d(yi, yj) = 2.

Consider two nonadjacent vertices vi and vj . For any xt ∈ X such that t 6= i, j,
d(xi, xt) + d(xt, yj) ≥ 3. Similarly, for any yt ∈ Y such that t 6= i, j, d(xi, yt) + d(yt, yj) ≥ 3.
Thus d defines a metric. Next we will prove that G has a dominating set of size at most k iff
the cost of covering the points in X using the balls around the points in Y is at most k.

Suppose G has a dominating set J of size at most k. For each vertex vj ∈ J , build a
radius 1 ball around yj . We return this set of balls B as the solution of MCC. Now consider
any point xi ∈ X. If vi ∈ J , then xi is covered by the ball around yi. Otherwise, there must
be a vertex vj ∈ J such that (vi, vj) ∈ E. Then d(xi, yj) is 1 and xi is covered by the ball
around yj . Hence B is a valid solution of MCC with cost at most k.
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Now suppose there is a solution B of MCC with cost at most k. If k > |X|, then V is a
dominating set for G of size |X| < k. If k ≤ |X|, our claim is that the radius of each ball in
B is 1. Suppose one of the balls B has a radius more than 1. Then the way the instance of
MCC is created the radius should be at least 3. Hence k ≥ 3α ≥ 3log |X| > |X|, which is a
contradiction. Now consider the set of vertices J corresponding to the centers of balls in B.
It is not hard to see that J is a dominating set for G of size at most k.

Let OPT be the cost of any optimal solution of MCC for the instance (X,Y, d). Then by
the properties of this reduction the size of any minimum dominating set for G is OPT. Thus if
there is an approximation algorithm for MCC that gives a solution with cost (c log |X|)·OPT,
then using the reduction we can produce a dominating set of size (c log |V |)·OPT. Then from
Theorem 8 it follows that P = NP. This completes the proof of our theorem. J

6 Conclusions

One generalization of the MCC problem that has been studied [10, 9] includes fixed costs for
opening the servers. As input, we are given two point sets X (clients) and Y (servers), a
metric on Z = X ∪ Y , and a facility cost fy ≥ 0 for each server y ∈ Y . The goal is to find a
subset Y ′ ⊆ Y , and a set of balls {By |y ∈ Y ′ and By is centered at y} that covers X, so as
to minimize

∑
y∈Y ′(fy + r(By)α). It is not hard to see that our approach generalizes in a

straightforward way to give a (1 + ε) approximation to this problem using quasi-polynomial
running time. To keep the exposition clear, we have focussed on the MCC rather than this
generalization.

The main open problem that emerges from our work is whether there one can obtain a
(1 + ε)-approximation for the k-clustering problem in quasi-polynomial time.
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Abstract
This paper considers steganography – the concept of hiding the presence of secret messages in
legal communications – in the computational setting and its relation to cryptography. Very re-
cently the first (non-polynomial time) steganographic protocol has been shown which, for any
communication channel, is provably secure, reliable, and has nearly optimal bandwidth. The
security is unconditional, i.e. it does not rely on any unproven complexity-theoretic assumption.
This disproves the claim that the existence of one-way functions and access to a communication
channel oracle are both necessary and sufficient conditions for the existence of secure steganogra-
phy in the sense that secure and reliable steganography exists independently of the existence of
one-way functions. In this paper, we prove that this equivalence also does not hold in the more
realistic setting, where the stegosystem is polynomial time bounded. We prove this by construct-
ing (a) a channel for which secure steganography exists if and only if one-way functions exist
and (b) another channel such that secure steganography implies that no one-way functions exist.
We therefore show that security-preserving reductions between cryptography and steganography
need to be treated very carefully.
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1 Introduction

Digital steganography has recently received substantial interest in modern computer science
since it allows secret communication without revealing its presence. Currently, using freely
available steganographic software, one party is able to spread secret messages over widely
accessible services, such as photo-sharing websites, camouflaging the presence of the messages
in legal communications. Although the uploads and views by other users can be recorded
and analyzed it is fairly difficult to distinguish the altered documents containing a secret
message from those of millions of the other ordinary documents. For more details on applied
steganography see the textbook [16] or the current survey [38] and the literature therein.
For applications of steganography in other areas, like covert computation, broadcasting, or
anonymous communication see e.g. [6, 7, 14, 18, 24, 35].

A common computational model for secret-key steganography, also used in this paper,
was introduced by Hopper, Langford, and von Ahn [21, 22, 23]. Independently, Katzenbeisser
and Petitcolas [25] provided a similar formulation. In this setting, a stegosystem is defined as
a pair of probabilistic algorithms, called encoder and decoder, which share a secret-key. The
aim of the encoder (often called Alice or the steganographer) is to hide a secret message in a
document and to send it to the decoder (Bob) via a public channel C, which is completely
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monitored by an adversary (Warden or steganalyst). The channel is modeled by a cover-
document sampler that can be queried adaptively, in a black-box manner and the adversary’s
task is to distinguish those from altered ones called stego-documents.

To hide a secret message m, the encoder can take sample cover-documents, based on past
communication, and manipulate them to embed m. The decoder, receiving stego-documents,
should be able to decode the hidden message correctly. The stegosystem is called reliable if
the decoder succeeds with high probability. The adversary is a probabilistic algorithm with
access to additional knowledge about the channel. A stegosystem is secure if no adversary
of polynomial time complexity is able to distinguish with significant probability between
cover- and stego-documents generated by the stegosystem’s encoder. This implies in general
that the distributions of cover-documents and stego-documents have to be fairly close in
a complexity-theoretic sense. The insecurity of a stegosystem is the advantage of the best
adversary to distinguish between cover- and stego-documents. Thus, a stegosystem is secure
if its insecurity is sufficiently small, i.e. negligible in the security parameter κ defining the
length of the shared secret-key.

The security and reliability are necessary attributes of any reasonable stegosystem.
Additionally, the system should be efficient in terms of the transmission rate (payload), i.e.
the number of bits transmitted per single stego-document should be as high as possible.
The stegosystems used in practice (not necessary provable secure in the computational
model) typically achieve a rate of

√
n [26], where n := n(κ) denotes the length of a single

document that is polynomial in κ. A longstanding conjecture, the Square Root Law of
Steganographic Capacity [15, 27] says that a rate of the form (1− ε)

√
n is always achievable

in the information-theoretic setting.
Importantly, in the definition of the computational model Hopper, Langford and von Ahn

[21, 22, 23] do not bound the running time of the stegosystem, while the time complexity of
the adversary is required to be bounded by a polynomial. For this setting we have shown very
recently the strongest possible result; namely, that there exists a universal stegosystem which
for any channel is secure, reliable and achieves almost optimal rate. Recall, that a system is
called universal1 if the encoding method does not rely on knowledge of the distribution for
the channel C except that its min-entropy is sufficiently large.

I Theorem 1 ([4], Informal). There exists a universal (non-polynomial time) stegosystem S
that is unconditionally secure and reliable. Moreover S is rate-efficient.

This disproves the widely circulated result claimed in [21, 23] that the existence of
one-way functions and access to a communication channel oracle are both necessary and
sufficient conditions for the existence of secure steganography (see e.g. the textbook [16] for a
discussion). In fact, secure and reliable (non-polynomial) steganography exists independently
of the existence of one-way functions.

In this paper we investigate a more reasonable setting in which the stegosystem’s running
time is bounded by a polynomial and study provably secure steganography and its relation
to cryptography. We prove that, despite strong connections, polynomial time steganography
is not cryptography. More precisely we show that, similarly as in the case of non-polynomial
time steganography, the equivalence between the existence of one-way functions and the
existence of secure, reliable, and rate-efficient (polynomial time) steganography does not hold.

1 In the literature universal stegosystems are also called ”black-box”.



S. Berndt and M. Liśkiewicz 16:3

1.1 Previous Works
As we discuss in [4], a commonly heard argument for the premise that steganography
is cryptography goes as follows: Let m and m′ be two different secret messages and s

and s′ be stego-documents which embed m, resp. m′. If the distributions of s and s′ are
indistinguishable from the distribution of the cover-documents, then by the triangle-inequality,
the distributions of s and s′ are also indistinguishable. Hence, a secure stegosystem is also a
secure cryptosystem.

While the argument concerning the triangle-inequality is true, the argument ignores the
channel oracle. If the channel documents are e.g. natural digital pictures, the cryptosystem
simulating the stegosystem needs access to samples of those documents. But an efficient
sampler for this channel seems highly unlikely. Thus, this reasoning is wrong and in fact we
show in [4] that (non-polynomial time) steganography exists independently of the existence
of one-way functions. Below we discuss known results in this direction.

In contrast to the non-polynomial case, universal steganography is very limited when
requiring polynomial running time. In [10], Dedić et al. proved that for every stegosystem S
with security parameter κ (describing the length of the secret key) which hides λ := λ(κ)
bits, takes q := q(κ) samples per stego-document and runs in time p := p(κ) there exists a
channel C(κ) of min-entropy pol(κ) such that

InSec(κ) + UnRel(κ) ≥ 1
2 −

e · q
2λ −Ψ(p, κ)− o(1). (1)

Here, InSec(κ) denotes the insecurity (against polynomial time bounded wardens) and
UnRel(κ) the unreliability of S on C(κ), and Ψ describes a term caused by the insecurity of
the pseudorandom function used in the construction of C(κ). From this result we get that
if restricted to polynomial time steganography, Theorem 1 does not hold unless one-way
functions do not exist:

I Theorem 2 ([10], Informal statement). Assuming one-way functions exist there exists no
secure and reliable universal polynomial time stegosystem of rate ω(log κ).

Interestingly, the logarithmic bound on the bandwidth above is sharp. Due to Hopper et
al. [23] and Dedić et al. [10] we know that the existence of one-way functions implies the
existence of a secure and reliable universal (polynomial time) stegosystem of rate O(log κ).

Theorem 2 shows a very important property, interesting in itself: when requiring polyno-
mial time, the applicability of universal steganography is very limited. Due to this reason it
makes sense to consider the security of a stegosystem S only for a specific channel or for
channels of a specific family, and do not to require its security for all possible channels. This
is also a common approach in practical steganography where a system has to satisfy security
properties for a specific channel, like e.g. natural images in JPEG-format, but its security
for texts, audio signals, TCP/IP transmission packages, etc. is irrelevant. For this setting
the relationship between steganography and cryptography remains unsolved. Particularly, it
is not known whether for any channel C(κ) there exists a secure, reliable, and rate-efficient
(polynomial time) stegosystem for C(κ). The question remains open both for unconditional
security and under some unproven assumptions like the existence of one-way functions.

Note that the lower bound (1) above does not allow to answer this question. To prove
their result, Dedić et al. [10] show that for every (polynomial time) stegosystem S there
exists a channel C(κ) that satisfies inequality (1). However, every channel C(κ) of [10] has a
secure, reliable and rate-efficient (polynomial time) stegosystem (for a proof see e.g. [31]).
Also the following lower bound provided by Hopper et al. [23] does not suffice to solve this
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problem. They show that for any function q(κ) bounded by a polynomial in κ there exists a
channel C(κ) such that for every (polynomial time) stegosystem S of query complexity q(κ)
which hides λ(κ) bits per document it is true

InSec(κ) + UnRel(κ) ≥ 1− q/2λ − 2−κ. (2)

In case λ(κ) ∈ ω(log κ) the right-hand side of the inequality (2) is big, meaning that S is
insecure or unreliable, but again in in this situation one can construct a (polynomial time)
stegosystem S ′ of query complexity q(κ) + 1 that is secure, reliable and rate-efficient on C(κ).

Hence both of these lower bounds prove that every stegosystem that hides ω(log κ) bits is
insecure or unreliable on some channel from a channel family F . On the other hand, for all of
those channels, one can construct a secure and reliable stegosystem. Hence, the insecurity or
unreliability of the stegosystem on those channels comes from the fact that the stegosystem
must work for all channels in F and not necessarily from the complexity of a single channel.

1.2 Our Contributions
We prove that polynomial time bounded, provably secure, reliable, and rate-efficient stega-
nography is independent of cryptographic assumptions, such as the existence of one-way
functions. This is a consequence of the following results.

I Theorem 3 (Informal). Assuming one-way functions exist there exists a channel C(κ) such
that for C(κ) no secure and reliable polynomial time stegosystem of rate ω(log κ) is possible.

The logarithmic bound on the bandwidth above is sharp unless one-way functions do not
exist. One can conclude even more, namely that if Theorem 3 holds for rate O(log κ), no
one-way functions exists. More formally, we have the following:

I Corollary 4. If proposition (a) is true:
(a) Assuming one-way functions exist there exists a channel C(κ) such that for C(κ) no

secure and reliable polynomial time stegosystem of rate O(log κ) is possible;
then one-way functions do not exist.

To see this, again from [23] and [10] we know that: (b) If one-way functions exist then
for every channel C(κ) there exists secure and reliable polynomial time stegosystem of rate
O(log κ). Thus, proving the proposition (a) in Corollary 4 would be possible only if one-way
functions do not exist – only in this case both of the proposition (a) and (b) are true. Clearly,
current research is far from proving anything like proposition (a).

Theorem 3 is the main technical achievement of this paper. We complement our result
by showing a channel for which the existence of one-way functions implies the existence of
a secure, reliable, and rate-efficient polynomial time stegosystem. Constructions of similar
channels are known in the steganography community however, for the sake of correctness
and completeness we formulate and prove a suitable result in our paper:

I Theorem 5 (Informal). There exists a channel C(κ) such that if one-way functions exist
then secure, reliable, and rate-efficient polynomial time stegosystem for C(κ) exists.

The proofs of the theorems are constructive. Interestingly, the channel C(κ) satisfying
Theorem 3 is specified by a cryptographic signature scheme protocol that is widely used in
practice. While C(κ) per se is artificial, its close relative, the channel of cryptographic signed
emails on the internet, is widely used. In this work we prove also that there exist more such
hard channels satisfying the conditions of Theorem 3. In fact we show that any channel
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which can express the signature scheme belongs to this family. Our construction is inspired
by the technique used in the work of De et al. [9] which apply this method to show that it is
not possible to uniformly generate satisfying assignments to a 3-CNF formula if one is given
polynomial many samples of satisfying assignments. The channels satisfying the conditions
of Theorem 5 are channels that can be sampled by an algorithm in polynomial time.

1.3 Relevant Work
The running time of universal steganography was improved by Kiayias et al. in [28] by using
t-wise independent family of functions instead of a pseudorandom function to choose the
corresponding documents from the channel. They also showed that a key length of (1+o(1))n
is sufficient to achieve information-theoretic security of 2−n/logO(1)(n) for message length n.

Van Le and Kurosawa [29] used arithmetic coding techniques to improve upon the rates
of the universal systems proposed in [23] and [10]. In order to achieve this they assume that
the system has access to additional knowledge on the channel. Their work thus does not fit
into the model introduced by Hopper et al. [23].

Von Ahn and Hopper [36] gave the first complexity-theoretic definitions of public-key
steganography, where the running time of the stegosystem is polynomial time bounded.
Their work was extended by Backes and Cachin [2], who introduced stronger security
definitions and presented a universal non-rate-efficient stegosystem for one of their definitions.
Hopper [20] then proceeded by proving that every so-called efficiently sampleable channel
has a non-rate-efficient stegosystem that achieves the strongest security definition.

Universal stegosystems have also been studied in the information-theoretic setting, where
the information-theoretic distance between the distribution of the channel documents and
the distribution of the stego-documents must be bounded. The first information-theoretic
definitions of steganography were given by Cachin [5]. Wang and Moulin [37] presented
a whole framework to study the optimal embedding rate of information-theoretic perfect
stegosystems. For more information on this see e.g. [8, 15, 33].

The paper is organized as follows: The next section contains the basic definitions regarding
stegosystems, their security and the cryptographic primitives we make use of. The proof
of Theorem 3 and its extension can be found in Section 3, while Theorem 5 is proved in
Section 4. Finally, we conclude our paper and discuss the future work in Section 5.

2 Preliminaries and Definitions

We say that an algorithm A has oracle access to a probability distribution D (denoted as
AD), if A can sample an element d according to D in unit time. The elements are sampled
independently. If D is parameterized by ρ1, ρ2, . . . , ρk, we write AD(ρ1,...,ρk) to describe the
situation, where all of the parameters are fixed. If D is allowed to choose the parameter ρi
itself, this is denoted by a dot, as in AD(ρ1,...,ρi−1,·,ρi+1,...,ρk). More generally, we also use
dots in the parameters of an algorithm to indicate that this parameter may be chosen freely.

If one tries to hide the transfer of a secret message via unsuspicious communication, one
first needs to define a model for this type of communication. This is done via the notion of a
channel C on an alphabet Σ.

I Definition 6. A channel C on the alphabet Σ is a function taking an n ∈ N and a history
h ∈ (Σn)∗ to a probability distribution on Σn, denoted by Ch,n.

Note that we do not require the distributions Ch,1, Ch,2, . . . to be polynomial time con-
structible, as the typical channels in use may be of high complexity, e.g., pictures or poems.
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As usual, a communication channel has a certain capacity, that is bounded by the
entropy of the channel. The min-entropy H(D) of a probability distribution D is defined as
H(D) := mind∈supp(D){− logD(d)}. The min-entropy H(Cn) of a channel C with respect to
n ∈ N is then defined as H(Cn) = minh{H(Ch,n)}. The number of bits embeddable into a
single document is bounded by H(Cn) (see e.g. [22] for a proof).

To give a sound formal treatment, we parameterize the behaviour of all parties by the
security parameter κ – the length of the secret key k. We therefore say that a function
f : N→ [0, 1] is negligible, if for every c and all sufficiently large n, it holds that f(n) < n−c.

Informally, a stegoencoder SE has access to samples of C and embeds a message m into a
sequence of documents d1, . . . , d`, thereby producing a sequence d∗1, . . . , d∗` . The goal of SE
is that no efficient algorithm can distinguish the distributions of d1, . . . , d` and d∗1, . . . , d∗` .

I Definition 7. A stegosystem S for the polynomial time constructible message space
{Mκ}κ∈N with document length n : N → N and output length ` : N → N is a pair of
probabilistic, polynomial time Turing machines (PPTMs) [SE, SD] with the following
functionality upon security parameter κ:

The encoding algorithm SE takes as input a key k ∈ {0, 1}κ, a messagem ∈Mκ, a history
h and a state information s ∈ {0, 1}∗ and produces a document d and state information
s′ ∈ {0, 1}∗ by having access to Ch,n. By SEC(k,m, h), we denote the outcome of:

Steganographic Encoding SEC(k,m, h)

1. s := λ; // initialize the first state as the empty string
2. for i = 1, . . . , `:
3. (di, s) ← SECh,n(κ)(k,m, h, s);
4. h := hdi; // concatenate h with the new document
5. return d1, . . . , d`

Note that SE is only allowed to get samples for the i+ 1-th document, after it produced
the i-th document. For the sake of simplicity, we sometimes write SEC(k,m, h)i to denote
the i-th document di.
The decoding algorithm SD takes as input a key k ∈ {0, 1}κ and a sequence of documents
d1, . . . , d` and outputs a message m′.

The sampling complexity q(κ) of SE is the number of calls of SE to its sampling oracle. The
transmission rate b(κ) is defined as b(κ) := log | supp(Mκ)|/`(κ) ≤ n(κ).

The key k ∈ {0, 1}κ is shared by SE and SD before the embedding process. Clearly, SD
should be able to reconstruct the original message with high probability. We say that S is
ρ-reliable, if the maximum probability of an error (i.e. SD(k, SEC(k,m, h)) 6= m) is bounded
by 1− ρ(κ) for every message m and every history h. If S is ρ-reliable for a negligible ρ, we
call S reliable. In addition to this, SE wants to embed as much information as possible into a
document in order to reduce the overhead of the transmission. We say that S is rate-efficient,
if there is constant α > 0 such that b(κ) ≥ H(Cn(κ))α for all κ (we thus embed nα bits per
document with entropy n).

2.1 Security of a Stegosystem
A warden W is a PPTM that should decide whether the communication parties use steganog-
raphy or not. In order to do so, W chooses a history and a message and presents this to a
challenge oracle CH which, on key k, message m and history h outputs a sequence of `(κ)
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documents d1, . . . , d`. This sequence is either the output of the stegosystem SEC(k,m, h) for
a uniformly chosen key k or the `-fold output C`(m,h) of the channel with the distribution
C`(m,h) ∼ (Ch,n(κ), Chd1,n(κ), . . . , Chd1d2···d`−1,n(κ)).

The goal of W is now to reconstruct whether the challenge oracle is SEC(k, ·, ·) (it
outputs 0 or »Stego«) or C`(·, ·) (it outputs 1 or »not Stego«). More precisely, we consider
the following experiment for an chosen hiddentext attack (cha):

Steganographic Security chaκ(W,S, C)

1. k ← {0, 1}κ;
2. b← {0, 1};
3. if b = 0 then CH := SEC(k, ·, ·) else CH := C`(·, ·);
4. b′ ←W C·,n(κ),CH(·,·)(1κ); // W chooses h and m for CH
5. if b = b′ then return 1 else return 0

Note that the warden has several liberties: It may choose the history for the channel oracle
(the stegosystem can only work with its given history), the history submitted to the challenge
oracle and the message submitted to the challenging oracle.

As W is able to chose the message (or the hiddentext), we say that the chosen hiddentext
attack (cha) advantage Advcha

W,S,C(κ) of W on the stegosystem S on channel C is given as

Advcha
W,S,C(κ) = 2 ·

∣∣Pr[chaκ(W,S, C) = 1]− 1/2
∣∣,

where the probabilities are taken over the random choice of k and the randomness of CH,W
and the channel. The random hiddentext attack (rha) advantage Advrha

W,S,C(κ) of a warden
W is defined similarly with the difference that the messages given to the challenge oracle CH
are chosen randomly instead of adversarially. This is a much weaker security requirement
than cha-security. Finally, for x ∈ {cha,rha}, the x-insecurity InSecx

S,C(q, t, κ) of a
stegosystem S on the channel C is defined as

InSecx
S,C(q, t, κ) = max

W
{Advx

W,S,C(κ)}.

The maximum is taken over all wardens W that make an expected number of q(κ) queries
and run in expected time t(κ). We say that S is x-ε-secure, if InSecx

S,C(q, t, κ) ≤ ε(κ) for all
polynomials q and t and x-secure if it is x-negl-secure for a negligible function negl.

2.2 Cryptographic Primitives
We recall briefly the definitions of the following three cryptographic primitives and the known
relationships between them. For exact definitions see e.g. the literature quoted below.

One-Way Function. A polynomial time computable function F : {0, 1}∗ → {0, 1}∗ is called
a one-way function, if every algorithm (inverter) upon input F (x) fails to produce an element
x′ such that F (x′) = F (x).

Signature Scheme. A signature scheme SIG consists of a probabilistic key-generation
algorithm G, that produces a secret key and a public key, a probabilistic signing algorithm
S, that takes the secret key, a message and produces a signature for the message and a
deterministic verifying algorithm V , that takes the public key and tests whether a message-
signature pair is valid. An attacker either gets random valid message-signature pairs (random-
message attack (RMA)) or can produce valid signatures for chosen messages (chosen-message
attack (CMA)). Its goal is to produce a fresh message-signature pair.
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Symmetric Encryption Scheme. A symmetric encryption scheme SES consists of an
encryption algorithm ENC, which takes a secret key and a plain text and produces a
cyphertext. This cyphertext can be decoded by the decryption algorithm DEC with the
help of the same secret key. An attacker is given access to an oracle, which either encrypts
a message chosen by the attacker (the real message) or gives a totally random cyphertext
(the random message). The goal of the attacker is to distinguish those cases. We denote
the advantage of an attacker A to distinguish real messages from random ones (ror) on a
symmetric encryption scheme SES with key length κ by Advror

SES,A(κ). Also, the probability
that the decrypted message does not equal the original message must be negligible.

There is a deep connection between those primitives, as all of them are equivalent to each
other. The groundbreaking works [3, 13, 17, 19, 32] imply the following:

I Theorem 8 (informal). One-Way functions exists ⇔ RMA-secure signature schemes exists
⇔ CMA-secure signature schemes exists ⇔ secure symmetric encryption schemes exist

In Section 3, we construct an RMA-forger on a special signature scheme ŜIG, that is
“complete” for all signature schemes, i.e., if ŜIG is insecure, every signature scheme is insecure.
The construction of such a complete signature scheme relies on the following theorem of
Levin which states the existence of a complete one-way function F̂ :

I Theorem 9 (Levin [30]). The function F̂ is a one-way function iff one-way functions exist.

Combining Theorem 8 and Theorem 9, we get the following corollary needed to construct
the “complete” signature scheme ŜIG:

I Corollary 10. The signature scheme ŜIG is RMA-secure iff one-way functions exist.

3 A Channel C such that Efficient Steganography on C Does Imply
the Non-existence of One-way Functions

The main result of this section, Corollary 14, says that for the widely used channel specified
by a signature scheme protocol, secure and efficient steganography implies that one-way
functions do not exist. Then we show that our construction can be generalized for more
channels. We will only work with rha-secure stegosystems in this section, as impossibility
results upon this weaker notion imply the same results for cha-secure stegosystems.

Our first technical goal is to formalize the following intuition: A secure and reliable
stegosystem for a channel C must (a) have negligible probability of producing documents
outside of supp(Ch,n) and (b) be able to generate new documents out of the sampled documents.
These properties have been formulated first in [10] for universal stegosystems.

We start with showing that the probability that the output of a secure stegosystem is
not in the support of the channel is small (under the assumption that Warden can efficiently
test whether a document belongs to the support of the channel). Before, let us introduce an
auxiliary notion of a membership-testable channel with confidence parameter ν: We say that C
is membership-testable with confidence parameter ν if there exists a probabilistic polynomial
time algorithm, call it Test, which takes a polynomial number ~x = x1, x2, . . . , xq of documents
such that Cx1x2...xi−1(xi) > 0 for every i ≥ 1 and a document x and it either returns 1 or
0 such that the probability Pr~x←supp(C∅,n)[Test(~x, x) = 1] is ≥ 1− ν, if x ∈ supp(C~x,n) and
≤ ν otherwise.

I Lemma 11. Let S = [SE, SD] be a stegosystem for the message space {Mn}n∈N with
document length n and output length ` for the channel C such that S is rha-ε-secure.
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Furthermore, let C be membership-testable with parameter ν. Then for all κ ∈ N, m ∈
supp(Mκ), histories h, and all i = 1, . . . , `(κ), it holds for di = SEC(k,m, h)i that
Prk←{0,1}κ [di 6∈ supp(Chd1d2...di−1,n(κ))] ≤ ε(κ) + 2ν.

Next, we will prove that, as long as the support of Ch,n is large enough, a reliable
stegosystem needs to produce non-seen examples of supp(Ch,n). Intuitively, we need to
embed | supp(Mn)| ≈ 2n messages (hereby creating at least 2n different documents) while
we only have access to pol(n) example documents. Note that for a rate-efficient polynomial
time stegosystem, the term log | supp(Mκ)|

`(κ) = b(κ) is of the form κα for a α > 0 and thus the

term q(κ)`(κ)

| supp(Mκ)| = q(κ)`(κ)

2b(κ)·`(κ) =
(
q(κ)
2b(κ)

)`(κ)
≈
(

pol(κ)
2κα

)`(κ)
is negligible.

I Lemma 12. Let S = [SE, SD] be a ρ-reliable stegosystem for the message space {Mn}n∈N
with sample complexity c and output length ` for the channel C. Then for every κ, the
probability that the encoder SE produces a cover-document, which was not provided by the
channel oracle, is at least 1− ρ(κ)− q(κ)`(κ)

| supp(Mκ)| .

The proofs of the lemmas above are similar to those presented in [10], thus we skip them.
We will now combine the two lemmas in order to construct an attacker to a signature

scheme. For a signature scheme SIG = [G,S, V ], define the channel CSIG with probability
distributions Ch,n as follows: If h is the empty history ∅, the probability distribution C∅,n is
the uniform distribution on all public keys generated by G(1n). If (pk, sk) ∈ supp(G(1n)),
the probability distribution Cpk,n is then created by the following experiment:

Distribution of Cpk,n

1. m←Msig
n ; σ ← S(sk,m); return (m,σ)

Furthermore, for every i ≥ 1 and every series of valid (with respect to (pk, sk)) message-
signature pairs (m1, σ1), (m2, σ2) . . . the distribution Cpk(m1,σ1)(m2,σ2)...(mi,σi),n is also equal
to Cpk,n. Note that CSIG is membership-testable with confidence parameter 0 due to the
public key. A similar technique was used by Dwork et al. [12] and later by Ullman [34] in
the context of differential privacy [11]. They prove that a certain class of databases exists
such that any algorithm for a given set of counting queries is either not differentially private
or inaccurate.

I Theorem 13. Let SIG = [G,S, V ] be a signature scheme. If there exists a polynomial
time stegosystem S = [SE, SD] for CSIG for the message space {Mn}n∈N with rate b, output
length ` and sampling complexity q such that S is rha-ε-secure and ρ-reliable on CSIG, then
there exists an efficient forger on SIG with advantage at least 1− ε(κ)− ρ(κ)− q(κ)`(κ)

| supp(Mκ)|
for every κ.

Combining Theorem 13 and Corollary 10 with ŜIG, we obtain the following result that
directly implies Theorem 3.

I Corollary 14. The existence of a secure, reliable and rate-efficient polynomial time stego-
system on the channel CŜIG implies that one-way functions do not exist.

In the rest of this section we show that the proof of Theorem 13 can be generalized
to more channels if they can express the signature scheme. Examples for such channels
include satisfying assignments of 3-CNF formulas or satisfying assignments of monotone
2-CNF formulas. Our construction is inspired by the work of De et al. [9] who used a similar
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technique to show that it is not possible to uniformly generate satisfying assignments to a
3-CNF formula if one is given polynomial many samples of satisfying assignments.

Let SIG = [G,S, V ] be a signature scheme and in(κ) be an upper bound on the size of
every message-signature pair constructed by the signing algorithm S on security parameter κ.
Let B be a function class of Boolean functions such that there is a polynomial time
invertible Levin reduction [A,B,C] from circuit-sat (see e.g. [1] for a formal definition)
to B. Such a reduction transforms a circuit C into a function f := A(C) and a satisfying
assignment β of C into a value x := B(C, β) with f(x) = 1. Furthermore, every x′ with
f(x′) = 1 can be transformed into a satisfying assignment β′ := C(f, x′) of C. Moreover
let γ : A(circuit-sat)→ {0, 1}∗ be a polynomial time encoding of the functions generated
by the reduction such that red(κ) is an upper bound on |γ(A(C))|, if C has in(κ) input
gates. Furthermore, let C be a channel with probability distributions Ch,κ defined as follows.
For the empty history ∅, the distribution C∅,κ is the uniform distribution on γ(A({C |
C has in(κ) input gates})) ⊆ {0, 1}red(κ). For every history h0 = γ(A(C)) the probability
distribution Ch0,κ is the uniform distribution on documents x ∈ {0, 1}in(κ) with A(C)(x) = 1.
Furthermore, for every i ≥ 1 and every series of documents x1, x2, . . . ∈ {0, 1}in(κ) with
A(C)(xj) = 1 for every j, the probability distribution Ch0x1x2...xi,κ is also the uniform
distribution on the documents x ∈ {0, 1}in(κ) with A(C)(x) = 1. Moreover, assume C is
membership-testable with confidence parameter ν.

I Theorem 15. Let SIG be a signature scheme and let C be a channel as defined above.
Assume S is a polynomial time stegosystem for the message space {Mn}n∈N with transmission
rate b, output length ` and sampling complexity q for C such that S is rha-ε-secure and
ρ-reliable on C. Then for every κ, there is a polynomial forger for SIG(κ) with advantage at
least 1− ε(κ)− 2ν − ρ(κ)− q(κ)`(κ)

| supp(Mκ)| .

4 A Channel C such that Efficient Steganography on C Does Imply
the Existence of One-way Functions

We will now show a channel C such that secure and reliable steganography on it implies the
existence of one-way functions (this will follow from the theorem below and Theorem 8).
The channel is assumed to be efficiently sampleable, i.e. such for which a polynomial time
algorithm simulating sampling from C exists. Then a straightforward argument implies the
following equivalences between steganography and cryptography.

I Theorem 16. Let C be a channel with Ch,n = Ch′,n := Cn for all histories h, h′ and assume
C is efficiently sampleable. If there exists a secure, reliable, and rate-efficient (polynomial
time) stegosystem S = [SE, SD] for the channel C with message space {Mn}n∈N, then
there exists a secure symmetric encryption scheme SES for the plaintexts {Mplain

n }n∈N with
Mplain

n =Mn and cyphertexts {Mcypher
n }n∈N withMcypher

κ = C`(κ)
n(κ).

I Theorem 17. Let SES be a secure symmetric encryption scheme on plaintexts {Mplain
n }n∈N

and cyphertexts {Mcypher
n }n∈N. Let C be a channel with the documents supp(Mcypher

n ) and
Ch,n =Mcypher

n for every h. There exists a secure, reliable, and rate-efficient (polynomial
time) stegosystem S for C with message space {Mn}n∈N withMn =Mplain

n .

Thus, reasonable steganography on e.g. the channel Cn that is the uniform distribution
on {0, 1}n, is equivalent to the existence of one-way functions. This proves Theorem 5.
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5 Conclusions and Further Work

We have proved that steganography and cryptography are somehow orthogonal to each
other. To show this statement, we constructed a specific channel based upon secure signature
schemes and proved that every rate-efficient stegosystem on this channels breaks the security
of the signature scheme. By using a universal one-way function due to Levin, we were then
able to show that the existence of such a rate-efficient stegosystem implies that one-way
functions do not exist. This is a generalization of the result of Dedić et al. [10], who only
proved the existence of a family of channels F such that the existence of a rate-efficient
stegosystem that works for every channel in F implies the non-existence of one-way functions.
We thus proved that there is a channel C1 such that rate-efficient steganography on C1 implies
the non-existence of one-way functions. On the other hand, we also gave a simple channel C2
and proved that rate-efficient steganography on C2 implies the existence of one-way functions.

The existence of those channels thus implies that statements of the form “Steganography
is Cryptography” or “Steganography implies Cryptography” are wrong in this universality.
Furthermore, it proves that the communication channel is a fundamental object in steganog-
raphy and can not be ignored. In order to explore the fascinating connection between
steganography and cryptography, it would be interesting to broaden our understanding of the
influence of the communication channels. The work of Liśkiewicz et al. [31] already showed
that knowledge or ignorance about some aspect of the channels has a significant impact on
the steganographic setting.
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Abstract
Guarding a polygon with few guards is an old and well-studied problem in computational geo-
metry. Here we consider the following variant: We assume that the polygon is orthogonal and
thin in some sense, and we consider a point p to guard a point q if and only if the minimum
axis-aligned rectangle spanned by p and q is inside the polygon.

A simple proof shows that this problem is NP-hard on orthogonal polygons with holes, even if
the polygon is thin. If there are no holes, then a thin polygon becomes a tree polygon in the sense
that the so-called dual graph of the polygon is a tree. It was known that finding the minimum
set of r-guards is polynomial for tree polygons (and in fact for all orthogonal polygons), but the
run-time was Õ(n17). We show here that with a different approach one can find the minimum set
of r-guards can be found in tree polygons in linear time, answering a question posed by Biedl et
al. (SoCG 2011). Furthermore, the approach is much more general, allowing to specify subsets
of points to guard and guards to use, and it generalizes to polygons with h holes or thickness K,
becoming fixed-parameter tractable in h+K.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases Art Gallery Problem, Orthogonal Polygons, r-Guarding, Treewidth,
Fixed-parameter Tractable

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2016.17

1 Introduction

The art gallery problem is one of the oldest problems studied in computational geometry.
In the standard art gallery, introduced by Klee in 1973 [21], the objective is to observe a
simple polygon P in the plane with the minimum number of point guards, where a point
p ∈ P is seen by a guard if the line segment connecting p to the guard lies entirely inside the
polygon. Chvátal [4] proved that bn/3c point guards are always sufficient and sometimes
necessary to guard a simple polygon with n vertices. The art gallery problem is known to be
NP-hard on arbitrary polygons [18] and orthogonal polygons [24]. Even severely restricting
the shape of the polygon does not help: the problem remains NP-hard for simple monotone
polygons [17] and for orthogonal tree polygons (defined precisely below) if guards must be at
vertices [26]. Further, the art gallery problem is APX-hard on simple polygons [9], but some
approximation algorithms have been developed [12, 17]. A number of other types of guards
have been studied, especially for orthogonal polygons. See for example guarding with sliding
cameras [15, 8], guarding with rectangles [10] or with orthogonally convex polygons [20]. Also,
different types of visibility have been studied, especially for orthogonal polygons: guards
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could be only seeing along horizontal or vertical lines inside P , or along an orthogonal
staircase path inside P [20], or use r-visibility (defined below).

Definitions and Model. Let P be an orthogonal polygon with n vertices. The pixelation
of P (also called dent diagram [6] and related to a rectangleomino [1]) is the partition of
P obtained by extending a horizontal and a vertical ray inward at every reflex vertex, and
expand it until it hits the boundary. Let Ψ be the resulting set of rectangles that we call
pixels (also called basic regions [27]). See Figure 1 for an example. Note that |Ψ| could be
quadratic in general. We will sometimes interpret the pixelation as a planar graph, with one
vertex at every corner of a pixel and an edge for each side of a pixel. Define the dual graph
D of a polygon P to be the weak dual graph of the pixelation of P , i.e., D has a vertex for
every pixel and two pixels are adjacent in D if and only if they have a common side.

An orthogonal polygon P is called a thin polygon if any pixel-corner lies on the boundary
of P . It is called a tree polygon if its dual graph is a tree. One can easily see that a tree
polygon is the same as a thin polygon that has no holes (see also Lemma 9). For most of
this paper, polygons are assumed to be thin polygons.

We say that point g r-guards a point p if the minimum axis-aligned rectangle R(g, p)
containing g and p is a subset of P . The (standard) rGuarding problem hence consists of
finding a minimum set S of points such that any point in P is r-guarded by a point in S.
However, our results work for a broader problem as follows. Let U ⊆ P be the region that
we wish to guard. In particular, we could choose to guard only the vertices of P , or only
the boundary, or only those parts of the art gallery that truly need to be watched. Let Γ
be the set of guards that are allowed to be used (in particular, we could choose to use only
vertices as guards). In the standard problem, Γ is the set of all points in P . Biedl et al. [1]
introduced pixel-guards, where one guard consists of all the points that belong to one pixel
(see Figure 1). Our approach allows pixel-guards, so Γ ⊂ P ∪Ψ. Now the (U,Γ, P )-rGuarding
problem consists of finding a minimum set S of guards in Γ such that all of U is r-guarded
by some guard in S (or to report that no such set exists).

Restricting the region that needs to be guarded exacerbates some degeneracy-issues for
r-guarding. Previous papers were silent about what happens if rectangle R(g, p) (in the
definition of r-guarding) is a line segment. For example, in Figure 1, does g guard u4? Does
u1 guard u4? This issue can be avoided by assuming that only the interior of pixels must be
guarded (as seems to have been done by Keil and Worman [27], e.g. their Lemma 1 is false
for point u4 located in the pixel ψ10 in Figure 1, because u4 sees q ∈ P but not all points in
ψ10 do). When the entire polygon needs to be guarded, then this is a reasonable restriction
since the guards that see the interior also see the boundary in the limit. But if only a subset
of P must be guarded, then we must clarify how degeneracies are to be handled. We say
that an axis-aligned rectangle R is degenerate if it has area 0 (i.e., is a line segment) and
there exists no rectangle R′ with positive area and R ⊂ R′ ⊆ P . In Figure 1, R(g, u4) is
degenerate while R(u1, u4) is not. Our approach is broad enough that it can handle both
allowing and disallowing the use of degenerate rectangles when defining r-guarding.

Related Results. The problem of guarding orthogonal polygons using r-guards was in-
troduced by Keil [16] in 1986. He gave an O(n2)-time exact algorithm for the rGuarding
problem for horizontally convex orthogonal polygons. The complexity of rGuarding in simple
orthogonal polygons was a long-standing open problem until 2007 when Worman and Keil [27]
gave a polynomial-time algorithm for it. However, the algorithm by Worman and Keil is
quite slow: it runs in Õ(n17)-time, where n denotes the number of the vertices of P and Õ
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Figure 1 A tree polygon with pixels {ψ1, . . . , ψ13} and maximal axis-aligned rectangles
{ρ1, . . . , ρ8}; rectangle ρ5 is degenerate. Pixel-guard ψ5 guards u3 via its top-right corner.

hides a poly-logarithmic factor. As such, Lingas et al. [19] gave a linear-time 3-approximation
algorithm for rGuarding in simple polygons. Faster exact algorithms are known for a number
of special cases of orthogonal polygons [16, 6, 22]. All these algorithms require the polygon
to be simple. We are not aware of any results concerning the rGuarding problem for polygons
with holes, or if only the vertices or only the boundary need to be guarded or used as guards.

The first results on guarding thin polygons were (to our knowledge) in [1]; they studied
guarding pixelations and asked whether this can be done more easily if the dual graph
is a tree. However, no better results than applying [27] were found. Later, Tomas [26]
showed that indeed guarding tree polygons1 is NP-hard in the traditional guarding-model
(i.e. g guards p if the line segment gp is in P ), and if all guards must be at vertices. The
complexity of guarding thin polygons in the r-guarding model remained open. Paper [1] was
also (apparently) the first paper to consider pixel-guards in place of point-guards.

Our Results. In this paper, we resolve the complexity of the rGuarding problem on thin
polygons. We show with a simple reduction from Vertex Cover in planar graphs that this
problem is NP-hard on polygons with holes, even if the polygon is thin. As our main result,
we show that the rGuarding problem is linear-time solvable on thin polygons without holes.

Comparing our results to the one by Worman and Keil [27], their algorithm works for
a broader class of polygons (they do not require thinness), but is slower. Moreover, their
approach crucially needs that the polygon is simple, that the entire polygon needs to be
guarded, and that any point in the polygon can guard. In contrast to this, our approach
generalizes easily to a number of other scenarios. First of all, it is not crucial that the polygon
is simple; we can deal with any constant number h of holes. Secondly, we can choose what
has to be guarded and what to guard with; we can hence also solve all art gallery variants
where only the vertices or only the boundary need to be guarded, or where only guards at
the vertices or the boundary are allowed to be used. Finally, the restriction on thinness can
be relaxed. We use thinness only to bound the treewidth of the dual graph of the polygon,
and as long as the treewidth is bounded the approach works. In particular, if the polygon is
K-thin in some sense, and has at most h holes, then for constants h and K our algorithm is
still linear, and the rGuarding problem hence is fixed-parameter tractable in h+K.

1 Tomas constructs only simple polygons and hence used the term “thin polygon” for tree polygons.
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Figure 2 Converting an orthogonal drawing without bends into a polygon for rGuarding. Re is
hatched, Rv is gray, and sv is dotted.

2 NP-hardness

In this section, we prove that rGuarding is NP-hard in polygons with holes. The reduction
is from Vertex Cover in planar graphs with maximum degree 3; it is well-known that this
is NP-hard [11]. So let G = (V,E) be a planar graph with maximum degree 3. Let Gs be
the graph obtained from G by subdividing every edge twice. It is folklore (see e.g. [23]) that
G has a vertex cover of size k if and only if Gs has a vertex cover of size |E|+ k. G has a
planar orthogonal drawing with at most one bend per edge (see e.g. [14]). By placing one
subdivision vertex of each edge at such a bend (if any) and placing the other subdivision
vertex arbitrarily, we hence obtain a drawing Γ of Gs where every vertex is a point, every edge
is a horizontal or vertical line segment, and edges are disjoint except at common endpoints.

We construct a polygon P as a “thickened” version of Γ. After possible scaling, we may
assume that Γ resides in an integer grid with consecutive grid-lines at least 2n units apart,
where n = |V |. Replace each horizontal edge e by a rectangle Re of unit height, spanning
between the points corresponding to the ends of e. Similarly replace each vertical edge by a
rectangle of unit width. These rectangles will get moved later, but never so far that they
would overlap edge-rectangles from other rows or columns.

We replace vertex-points by small gadgets as illustrated in Figure 2. Thus, let v be a
vertex of degree 3 in Gs; up to rotation it has incident edges e1, e2, e3 on the left, right and
top in Γ. Replace v by two adjacent pixels, one above the other; we denote the resulting
gadget by Rv. Then, attach Re3 at the top of the upper pixel, Re1 at the left side of the
upper pixel and Re2 at the right side of the lower pixel. Let sv be the side common to the
two pixels of Rv. Rectangles Re1 and Re2 are not quite horizontally aligned, resulting in one
of them being offset from the grid-line. However, in total over all vertices in the row, there
are at most n offsets, and so edge-rectangles remain disjoint. For any vertex of degree 2,
omit the third rectangle and also any pixel that is not needed.

I Observation 1. For any vertex v, any point in sv guards the rectangles Re of any incident
edge e = (v, w), as well as the pixel of w where Re attaches. Moreover, for any edge e = (v, w),
if any point in Re is r-guarded from a point q, then q belongs to Re, Rv or Rw.

Using this observation, the reduction is immediate. Namely, let C be a vertex cover of
Gs of size k. For any v ∈ C, place a guard anywhere along sv. Since C was a vertex cover,
this r-guards Re for all edges, and also Rw for all w 6∈ C since each pixel of Rw is attached
to some Re. Vice versa, if we have a set S of r-guards, then we can create a set C as follows:
For any vertex v, if Rv contains a guard in S, then add v to C. For any edge e = (v, w), if
Re contains a guard in S that is in neither Rv nor Rw, then arbitrarily add one of v, w to C.
Clearly |C| ≤ |S|, and since any rectangle Re was guarded, any edge in E is covered by C.
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Inspection of Figure 2 shows that the constructed polygon is thin. Observe that it has
holes, namely, one per face of G. Since rGuarding is clearly in NP, we can conclude:

I Theorem 2. The rGuarding problem is NP-complete on thin polygons.

3 Polygons Whose Dual Has Bounded Treewidth

We now show how to solve the rGuarding problem in a tree polygon in linear time. In fact,
we show something stronger, and prove that the rGuarding problem can be solved in linear
time in any polygon for which the dual graph D has bounded treewidth, and under any
restriction on the set U to be guarded and the set Γ that may serve as guards.

The approach is to construct an auxiliary graph H, and argue that solving the rGuarding
problem reduces to a graph problem in H. Then we argue that the treewidth of H satisfies
tw(H) ∈ O(tw(D)) and that the graph problem is linear-time solvable in bounded treewidth
graphs. This auxiliary graph is different from the so-called region-visibility-graph used by
Worman and Keil [27] in that it encodes who can guard what, rather than who can be
guarded by a common guard.

3.1 Simplifying U and Γ
We first show that we can simplify the points to guard and the point-guards to use such that
only a constant number of each occur at each pixel.

I Lemma 3. Let U ⊆ P be any (possibly infinite) set of points in P . Then there exists a
finite set of points U ′ ⊆ U such that U ′ is r-guarded by a set S if and only if U is. Moreover,
for any pixel ψ, at most 4 points in U ′ belong to ψ.

Proof. We construct the set U ′ as follows.
For every pixel ψ, if the interior of ψ intersects U , then add one point from this intersection
into U ′.
For every pixel-side e, if neither incident pixel has a point of U in its interior, but the
open set e intersects U , then add one point from this intersection to U ′,
For every pixel-corner c, if c ∈ U , and if none of the incident pixels or pixel-sides has
added a point to U ′, then add c to U ′.

Correctness can be shown easily (see the full version [2]), by arguing that any two points in
the strict interior of one pixel ψ are guarded by the same set of guards, and similarly for
points in the relative interior of a side of a pixel. J

I Lemma 4. Let Γ ⊆ P be any (possibly infinite) set of points in P . Then there exists a
finite set of points Γ′ ⊆ Γ such that for any pixel ψ, at most 4 points in Γ′ belong to ψ.
Moreover, if some set S ⊆ Γ r-guards a set U ⊆ P , then there exists a set S′ ⊆ Γ′ with
|S′| ≤ |S| that also r-guards U .

Proof. We construct the set Γ′ follows:
For every pixel-corner c, if c ∈ Γ then add c to Γ′.
For every pixel-side e, if neither endpoint of e is in Γ, but some interior point of e is in Γ,
then add one such point to Γ′.
Finally, for every pixel ψ, if no corner is in Γ and no side has a point in Γ, but the interior
of ψ contains points in Γ, then add one such point to Γ’.

Correctness can be shown easily (see the full version [2]). J
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Figure 3 The graph H corresponding to Figure 1 for the chosen U and Γ. The thick red path
corresponds to the pixel-guard ψ5 seeing the point u3 since both intersect rectangle ρ3. Rectangle
ρ5 and its incident edges are included in H only if we allow degenerate rectangles.

3.2 Maximal Rectangles and an Auxiliary Graph
Assume we are given a polygon P , a region U ⊆ P to be guarded, and a set Γ of guards
allowed to be used. In what follows, we treat any element γ ∈ Γ as a set, so either γ = ψ is a
pixel-guard or γ = {p} is a point-guard.

As a first step, apply Lemmas 3 and 4 to reduce U and the point-guards in Γ so that they
are finite sets, each pixel contains at most 4 points of U , and at most 4 point-guards of Γ.

Let R be the set of maximal axis-aligned rectangles in P , i.e., ρ ∈ R if and only if ρ ⊆ P
and there is no axis-aligned rectangle ρ′ with ρ ⊂ ρ′ ⊆ P . In this definition of R, we use
the one that was meant for r-guarding, i.e., we include degenerate rectangles in R if and
only if a degenerate rectangle R(g, p) is sufficient for g to r-guard p. Now define graph H
as follows. The vertices of H are U ∪ R ∪ Γ, i.e., we have one vertex for every point that
needs guarding, one for every maximal rectangle in P , and one for every potential guard.
We define edges of H via containment as follows (see also Figure 3).
(i) There is an edge from a point u ∈ U to a rectangle ρ ∈ R if and only if u ∈ ρ.
(ii) There is an edge from a potential guard γ ∈ Γ to a rectangle ρ ∈ R if and only if their

intersection is non-empty.

I Lemma 5. A point u ∈ U is r-guarded by γ ∈ Γ if and only if there exists a path of length
2 from u to γ in H.

Proof. If u is r-guarded by γ, then there exists some g ∈ γ such that the axis-aligned
rectangle R spanned by p and g is inside P . Expand R until it is maximal to obtain ρ ∈ R.
More precisely, if R is non-degenerate, then use as ρ some maximal rectangle that has
non-zero area and contains R. If R is degenerate, then obviously degenerate rectangles were
allowed for r-guarding, and so expanding R into a maximal line segment within P gives an
element ρ of R. Either way u ∈ R ⊆ ρ and g ∈ R ⊆ ρ and we have a path u− ρ− g in H.

Vice versa, if there exists such a path, then it must have the form u − ρ − γ for some
maximal rectangle ρ by construction of H. By definition of the edges, u ∈ ρ and some point
g ∈ γ satisfies g ∈ ρ, which means that the axis-aligned rectangle spanned by u and g is
inside ρ ⊆ P and so g (and with it γ) guards u. J

So, the rGuarding problem reduces to finding the minimum subset S ⊆ Γ such that all
u ∈ U have a path of length 2 to some γ ∈ S, or reporting that no such S exists. We call
this the restricted distance-2-dominating set since this is the distance-2-dominating set [25]
with restrictions on who can be chosen and who must be dominated. Therefore, we have:
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Figure 4 The tree decomposition T H = (I,X H) of graph H corresponding to a sub-polygon of
the one in Figure 1. We label the bags with the edges of the tree they correspond to.

I Lemma 6. The (U,Γ, P )-rGuarding problem has a solution of size k if and only if the
restricted distance-2-dominating set in H has a solution of size k.

3.3 Constructing a Tree Decomposition
Recall graph D, the weak dual graph of the pixelation of polygon P . Assume now that the
dual graph D has small treewidth, defined as follows. A tree decomposition of a graph D
consists of a tree I and an assignment X : I → 2V (D) of bags to the nodes of I such that
(a) for any vertex v of D, the bags containing v form a connected subtree of I and (b) for
any edge (v, w) of D, some bag contains both v and w. The width of such a decomposition
is maxX∈X |X| − 1, and the treewidth tw(D) of D is the minimum width over all tree
decompositions of D.

Fix a tree decomposition T = (I,X ) of D that has width tw(D). We now construct a
tree decomposition of H from T while increasing the bag-size by a constant factor. Any bag
X ∈ X consists of vertices of D, i.e., pixels of P . To obtain T ′ = (I,X ′), modify any bag
X ∈ X to get X ′ as follows: For any pixel ψ ∈ X, add to X ′

any point of U that is in ψ,
any guard of Γ that intersects ψ, and
any rectangle in R that intersects ψ.

Finally we may (optionally) delete all pixels from all bags, since these are not vertices of
H. We call the final construction T H = (I,XH). See also Figure 4.

I Lemma 7. For any polygon, T H = (I,XH) is a tree decomposition of H. If P is thin,
then the tree decomposition has width O(tw(D)).

Proof. First we argue that for any vertex of H the bags containing it are connected. Crucial
for this is that for any pixel ψ, the bags that used to contain ψ in T are a connected subtree
since T was a tree decomposition. First consider a point p. (We use p for both the point
and for the vertex in H representing it.) Vertex p was added to all bags that contained a
pixel ψ with p ∈ ψ. There may be multiple such pixels (if p is on the side or the corner of a
pixel), but the union of them is a connected subgraph of D. For any connected subgraph,
the bags containing vertices of it form a connected subtree. So the bags to which p has been
added form a connected subtree of the tree I of the tree decomposition as required.

The connectivity-argument is identical for a point-guard, and similar for pixel-guards
and rectangles. Namely, consider a vertex of H representing a pixel-guard γ. This guard
was added to all the bags that contained a pixel ψ that intersects γ. Again there may be
many such pixels (up to 9), but they are connected via ψ and so the bags to which γ is
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added are connected. Finally, consider a rectangle ρ ∈ R which was added to all bags of
pixels intersecting ρ. The pixels that ρ intersects form a connected subset of P (because they
are connected along ρ), and hence correspond to a connected subgraph of D. So the bags
containing ρ form a connected subtree. Now we must verify that for any edge of H, both
endpoints appear in a bag. Let (u, ρ) be an edge from some point u to some rectangle ρ. Let
ψ be a pixel containing u. Then ρ ∩ ψ ⊇ {u} is non-empty and so ρ was added to any bag
containing ψ. We also added u to any bag containing ψ, so u and ρ appear in one bag. Now
consider some edge (γ, ρ) from a guard γ to some rectangle ρ. This edge exists because some
point g ∈ γ belongs to ρ. Again fix some pixel ψ that contains g and observe that any bag
that contained ψ has both g and ρ added to it.

It remains to discuss the width of the tree decomposition. Consider a bag X of T and
one pixel ψ in X. Since we reduced U and Γ with Lemma 3 and 4, pixel ψ intersects at most
4 points in U and at most 4 point-guards. It also intersects at most 9 pixel-guards. Finally,
one can show that in a thin polygon ψ intersects at most 6 maximal rectangles. (A more
general statement will be proved in Lemma 14.) Thus when creating bag X ′ from bag X we
add O(1) new items per pixel and hence |X ′| ∈ O(|X|) and T H has width O(tw(D)). J

3.4 Solving 2-dominating Set
To solve the restricted distance-2-dominating set problem on H, we first show that the
problem can be expressed as a monadic second-order logic formula [5]. In particular, a set S
is a feasible solution for this problem if and only if

S ⊆ Γ ∧ ∀u ∈ U ∃ρ ∈ R ∃γ ∈ S : adj(u, ρ) ∧ adj(ρ, γ)

where adj is a logic formula to encode that its two parameters are adjacent in H. Since H
has bounded treewidth, we can find the smallest set S that satisfies this or report that no
such S exists in linear time using Courcelle’s theorem [5]. Here “linear” refers to the number
of bags and hides a term that only depends on the treewidth. One can show that a thin
polygon has O(n) pixels (we will show something more general in Lemma 13). Therefore
graph D has O(n) vertices and hence a tree decomposition with O(n) bags. In consequence
the run-time is hence O(f(tw(D))n) for some computable function f .

3.5 Run-time considerations
We briefly discuss here how to do all other steps in linear time, under some reasonable
assumptions. The first step is to find the pixels. To do so, we need to compute the
vertical decomposition (i.e., the partition obtained by extending only vertical rays from
reflex vertices), which can be done in O(n) time [3]. Likewise, compute the horizontal
decomposition. Since (in a thin polygon) none of the rays intersect, we can obtain the pixels
(and with it, the pixelation-graph and D) in linear time. Since D is planar, we can compute
an O(1)-approximation of its treewidth in linear time [13], and hence can find T with width
O(tw(D)). Next we need to simplify U and Γ. The run-time to do so depends on the exact
form of the original U and Γ, but as long as those have a simple enough form that we can
answer queries such as “does the interior of pixel ψ intersect U” in constant time, the overall
time is O(1) per pixel and hence overall linear.

Next we need to find the rectangles R. In a thin polygon, all maximal rectangles are either
a “slice” defined by the vertical or horizontal decomposition, or are a maximal line segment
composed of pixel sides. All such slices and maximal line segments can be found from the
pixelation in linear time, and there are O(n) of them. This may yield some rectangles that
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are not maximal, but we can retain those without harm since even then any pixel intersects
O(1) rectangles. Constructing H from these three sets, and building T H given T , can also
clearly be done in linear time. Putting everything together, we hence have:

I Theorem 8. Let P be a thin polygon for which the dual graph has treewidth k. Then
for any set U ⊆ P and Γ ⊆ P ∪ Ψ, we can solve the (U,Γ, P )-rGuarding problem in time
O(f(k)n) time for some computable function f .

4 Generalizations

In this section, we give some applications and generalizations of Theorem 8.

4.1 Thin Polygons with Few Holes
We claimed earlier that a simple thin polygon is a tree polygon, and give here a formal proof
because it will be useful later.

I Lemma 9. Let P be a thin polygon. If P has no holes, then the dual graph D of the
pixelation of P is a tree.

Proof. Assume for contradiction that D contains a cycle. By tracing along the midpoints of
the pixels-sides corresponding to this cycle, we can create a simple closed curve C that is
inside P , yet has pixel-corners both inside and outside C. In a thin polygon, all pixel-corners
are on the boundary of P , so the boundary of P has points both inside and outside a simple
closed curve that is strictly within P . This is possible only if P has holes. J

Since every tree has treewidth 1, we hence have:

I Corollary 10. Let P be a thin polygon that has no holes. Then for any sets U ⊆ P and
Γ ⊆ P ∪Ψ, we can solve the (U,Γ, P )-rGuarding problem in O(n) time.

Inspecting the proof of Lemma 9, we see that in fact every cycle of D gives rise to a hole
that is inside the curve defined by the cycle. If D has f inner faces, then each face defines a
cycle in D, and the insides of these cycles are disjoint. Therefore, D has at least f holes.
Turning things around, if the polygon has h holes, then D has at most h inner faces. In
consequence, D is a so-called h-outerplanar graph (i.e., if we remove all vertices from the
outer-face and repeat h times, then all vertices have been removed). It is well-known that
h-outerplanar graphs have treewidth O(h) (see e.g. [7]).

I Corollary 11. Let P be a thin polygon with h holes. Then for any sets U ⊆ P and
Γ ⊆ P ∪Ψ, we can solve the (U,Γ, P )-rGuarding problem in time O(f(h)n) time for some
computable function f .

4.2 Polygons That are not Thin
The construction of the tree decomposition of H in Section 3.3 works even if P is not thin.
However, the bound on the resulting treewidth, and the claim on the linear run-time both
used that the polygon is thin. We can generalize these results to polygons that are somewhat
thicker. More precisely, we say that a polygon is K-thin (for some integer K ≥ 1) if the
dual graph D of P contains no induced (K + 1)× (K + 1)-grid. A thin polygon is a 1-thin
polygon in this terminology, because a pixel-corner is in the interior if and only if the four
pixels around it form a 4-cycle, hence a 2× 2-grid, in D. Notice that K-thin is equivalent
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to saying that the pixelation-graph has no induced (K + 2)× (K + 2)-grid. We need some
observations:

I Lemma 12. Let P be a K-thin polygon. Then, for any pixel-corner p, there exists a point
on the boundary of P that is in the first quadrant relative to p and has distance at most
2K + 1 from p, where distance is measured by the length of the path in the pixelation-graph.

Proof. Consider any path in the pixelation graph that starts at p and goes upward or
rightward for at most K + 1 edges each. If some such path reaches a point on the boundary
after at most 2K + 1 edges, then we are done. Else the union of these paths forms a
(K + 2)× (K + 2)-grid in the pixelation-graph, and P is not K-thin. J

I Lemma 13. The pixelation of a K-thin polygon with n vertices has O(K2n) pixels.

Proof. There are O(n) boundary vertices: one for each vertex of P , and one whenever a ray
hits the boundary (of which there are at most n− 4 since there are n/2− 2 reflex vertices
and each emits two rays). Each vertex on the boundary has O(K2) pixel-corners within
distance 2K + 1. By the previous lemma all pixel-corners must be within such distance, so
there are O(K2n) pixel-corners, and hence O(K2n) pixels. J

Since a K-thin polygon contains no (K + 2) × (K + 2)-grid in the pixelation, one can
also show the following (details are in the full version [2]):

I Lemma 14. Any pixel ψ in a K-thin polygon P is intersected by O(K2) maximal axis-
aligned rectangles inside P .

I Theorem 15. Let P be a K-thin simple polygon. Then for any set U ⊆ P and Γ ⊆ P ∪Ψ,
the (U,Γ, P )-rGuarding problem can be solved in O(f(K3)K2n) time for some computable
function f(.).

Proof. The pixelation of P has O(k2n) vertices by Lemma 13, and can be constructed in
O(k2n) time by constructing the vertical decomposition and then ray-shooting along the
horizontal rays emitted from reflex vertices. For any pixel-corner p, there exists a point on
the boundary of P that and has distance at most 2K+1 from p. It follows that the pixelation
graph is (2K + 1)-outerplanar, and hence it (and also its dual graph D) have treewidth O(k).
Find a tree decomposition of D with treewidth O(k) and O(k2n) bags; this can be done in
linear time since D is planar [13]. Replace each pixel in each bag of T by points, guards
and rectangles as explained in Section 3.3. Since each pixel belongs to O(k2) rectangles, the
resulting tree decomposition has width O(k3). Now solve the restricted 2-dominating set
problem using Courcelle’s theorem. The run-time is as desired since we have O(k2n) bags
and treewidth O(k3). J

4.3 K-Thin Polygons with Few Holes
Both of the above generalizations can be combined, creating an algorithm that is fixed-
parameter tractable in both the thinness and the number of holes.

I Lemma 16. Let P be a polygon that is K-thin and that has h holes. Then the dual graph
of P has treewidth O(K(h+ 1)).

Proof. Let D′ be the (full) dual graph of the pixelation graph, i.e., it is graph D plus a
vertex for each hole and for the outerface, connected to all incident pixels. We claim that all
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vertices in D′ have distance O(K(h+ 1)) from the outerface-vertex. This implies that D′

(and hence also D) is O(K(h+ 1))-outerplanar and so has treewidth O(K(h+ 1)).
To prove the distances, we first connect holes as follows. If H is a hole, then let c be a

corner of H that maximizes the sum of the coordinates (breaking ties arbitrarily). Let ψ
be a pixel incident to c and let c′ be some other corner of ψ. By Lemma 12, there exists a
pixel-corner p on the boundary of P within distance 2K+ 1 from c′. Moreover, the path from
c′ to p goes only up and right. Thus p is incident to the outer-face or to a hole H ′, where
H ′ 6= H by choice of c. Following this path, we can hence find a path in D of length O(K)
from the vertex representing H to the vertex representing H ′ or the outer-face. Combining
all these paths, we can reach the outer-face from any hole in a path of length O(K(h+ 1)).

Now for any other vertex in D (hence pixel ψ), let c be one pixel-corner, and find a path
in the pixelation of length at most 2K + 1 from c to some point on the boundary. Following
this path, we can find a path of length O(K) in D from ψ to some hole or the outer-face,
and hence reach the outer-face along a path of length O(K(h+ 1)). The result follows. J

The following summarizes this approach, and includes all previous results.

I Theorem 17. Let P be a polygon that is K-thin and has h holes. Then for any set U ⊆ P
and Γ ⊆ P∪Ψ, the (U,Γ, P )-rGuarding problem can be solved in O(f((K(h+1))3)(K(h+1))2n)
time for some computable function f(.). In particular, the rGuarding problem is fixed-
parameter tractable in K + h.

5 Conclusion

In this paper, we studied the problem of guarding a thin polygon under the model that a
guard can only see a point if the entire axis-aligned rectangle spanned by them is inside
the polygon. We showed that this problem is NP-hard, even in thin polygons, if there are
holes. If there are few holes or, more generally, the dual graph of the polygon has bounded
treewidth, then we solved the problem in linear time. Our approach is quite flexible in that
we can specify which points must be guarded and which points/pixels are allowed to be used
as guards. In fact, with minor modifications even more flexibility is possible. We could allow
any guard that consists of a connected union of pixels (as long as any pixel is intersected by
O(1) guards). We could even consider other guarding models by replacing the rectangles
in R by arbitrary connected unions of pixels and pixel-sides (again as long as any pixel is
intersected by O(1) such shapes). For all these, the (naturally defined) auxiliary graph H
has treewidth O(tw(D)) in thin polygons, and we can hence solve r-guarding by solving the
restricted distance-2-dominating set.

Our results mean that the complexity of r-guarding is nearly resolved, with the exception
of polygons that have O(1) holes but are not K-thin for a constant number K. For such
polygons, is the problem still NP-hard? Also, for polygons that have a large number of holes,
is the problem APX-hard, or can we develop a PTAS?

Acknowledgments. The authors would like to thank Justin Iwerks and Joe Mitchell; the
discussions with them made us consider thin polygons in the first place.
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Abstract
Given a static reference string R and a source string S, a relative compression of S with respect to
R is an encoding of S as a sequence of references to substrings of R. Relative compression schemes
are a classic model of compression and have recently proved very successful for compressing
highly-repetitive massive data sets such as genomes and web-data. We initiate the study of
relative compression in a dynamic setting where the compressed source string S is subject to edit
operations. The goal is to maintain the compressed representation compactly, while supporting
edits and allowing efficient random access to the (uncompressed) source string. We present new
data structures that achieve optimal time for updates and queries while using space linear in
the size of the optimal relative compression, for nearly all combinations of parameters. We
also present solutions for restricted and extended sets of updates. To achieve these results, we
revisit the dynamic partial sums problem and the substring concatenation problem. We present
new optimal or near optimal bounds for these problems. Plugging in our new results we also
immediately obtain new bounds for the string indexing for patterns with wildcards problem and
the dynamic text and static pattern matching problem.
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1 Introduction

Given a static reference string R and a source string S, a relative compression of S with
respect to R is an encoding of S as a sequence of references to substrings of R. Relative
compression (or external macro compression) is a classic model of compression defined by
Storer and Szymanski [34, 35] in 1978 and has since been used in a wide range of compression
scenarios [26, 27, 23, 24, 6, 9, 19]. To compress massive highly-repetitive data sets, such as
biological sequences and web collections, relative compression has been shown to be very
practical [23, 24, 19].

Relative compression is often applied to compress multiple similar source strings. In such
settings relative compression is superior to compressing the source strings individually. For
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instance, human genomes are 99% similar and hence relative compression might be used to
compress a large collection of sequenced genomes using, e.g., the human reference genome as
the static reference string. We focus on the case of compressing a single source string, but
our results trivially generalize to compressing multiple source strings.

In this paper we initiate the study of relative compression in a dynamic setting, where
the compressed source string S is subject to edit operations (insertions, deletions, and
replacements of single characters). The goal is to maintain the compressed representation
compactly, while supporting edits and allowing efficient random access to the (uncompressed)
source string. Efficient data structures supporting these operations allow us to avoid costly
recompression of massive data sets after updates.

We provide the first non-trivial bounds for this problem. We present new data structures
that achieve optimal time for updates and queries while using space linear in the size of the
optimal relative compression, for nearly all combinations of parameters. We also present
solutions for restricted and extended sets of updates.

To achieve these results, we revisit the dynamic partial sums problem and the substring
concatenation problem. We present new optimal or near optimal bounds for both of these
problems (see detailed discussion below). Furthermore, plugging in our new results immedi-
ately leads to new bounds for the string indexing for patterns with wildcards problem [25, 5]
and the the dynamic text and static pattern matching problem [2].

1.1 Dynamic Relative Compression
Given a reference string R and a source string S, a relative compression of S with respect
to R is a sequence C = (i1, j1), ..., (i|C|, j|C|) such that S = R[i1, j1] · · ·R[i|C|, j|C|]. We
call C a substring cover for S. The substring cover is optimal if |C| is minimum over all
relative compressions of S with respect to R. The dynamic relative compression problem is
to maintain a relative compression of S under the following operations. Let i be a position
in S and α be a character.

access(i): return the character S[i],
replace(i, α): change S[i] to character α,
insert(i, α): insert character α before position i in S,
delete(i): delete the character at position i in S.

Note that operations insert and delete change the length of S by a single character. In all
bounds below, the access(i) operation extends to decompressing an arbitrary substring of
length ` using only O(`) additional time.

Our Results. Throughout the paper, let r be the length of the reference string R, N be the
length of the (uncompressed) string S, and n be the size of an optimal relative compression
of S with regards to R. All of the bounds mentioned below and presented in this paper
hold for a standard unit-cost RAM with w-bit words with standard arithmetic and logical
operations on a word. This means that the algorithms can be implemented directly in
standard imperative programming languages such as C [22] or C++ [36]. An index into R or
S can be stored in a single word and hence w ≥ log(n+ r).

I Theorem 1. Let R and S be a reference and source string of lengths r and N , respectively,
and let n be the length of the optimal substring cover of S by R. Then, we can solve the
dynamic relative compression problem supporting access, replace, insert, and delete
(i) in O(n+ r) space and O

(
logn

log logn + log log r
)
time per operation, or

(ii) in O(n+ r logε r) space and O
(

logn
log logn

)
time per operation, for any constant ε > 0.
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These are the first non-trivial bounds for the problem. Together, the bounds are optimal for
most natural parameter combinations. In particular, any data structure for a string of length
N supporting access, insert, and delete must use Ω(logN/ log logN) time in the worst-case
regardless of the space [13] (this is called the list representation problem). Since n ≤ N ,
we can view O(logn/ log logn) as a compressed version of the optimal time bound that is
always O(logN/ log logN) and better when S is compressible. Hence, Theorem 1(i) provides
a linear-space solution that achieves the compressed time bound except for an O(log log r)
additive term. Note that whenever n ≥ (log r)logε log r, for any ε > 0, the logn/ log logn term
dominates the query time and we match the compressed time bound. Hence, Theorem 1(i)
is only suboptimal in the special case when n is almost exponentially smaller than r. In this
case, we can use Theorem 1(ii) which always provides a solution achieving the compressed
time bound at the cost of increasing the space to O(n+ r logε r).

We note that dynamic compression under different models of compression has been
studied extensively [17, 11, 10, 33, 16, 12, 21, 28]. However, all of these results require
space dependent on the size of the original string and hence cannot take full advantage of
highly-repetitive data.

1.2 Dynamic Partial Sums
The partial sums problem is to maintain an array Z[1..s] under the following operations.

sum(i): return
∑i
j=1 Z[j],

update(i,∆): set Z[i] = Z[i] + ∆,
search(t): return 1 ≤ i ≤ s such that sum(i − 1) < t ≤ sum(i). To ensure well-defined
answers, we require that Z[i] ≥ 0 for all i.

The partial sums problem is a classic and well-studied problem, see e.g., [8, 32, 20, 13, 18, 30].
In our context, we consider the problem in the word RAM model, where each array entry
stores a w-bit integer and the element of the array can be changed by δ-bit integers, i.e.,
the argument ∆ can be stored in δ bits. In this setting, Pătraşcu and Demaine [30] gave
a linear-space data structure with Θ(log s/ log(w/δ)) time per operation. They also gave a
matching lower bound.

We consider the following generalization supporting dynamic changes to the array. The
dynamic partial sums problems is to additionally support the following operations.

insert(i,∆): insert a new entry in Z with value ∆ before Z[i],
delete(i): delete the entry Z[i] of value at most ∆.
merge(i): replace entry Z[i] and Z[i+ 1] with a new entry with value Z[i] + Z[i+ 1].
divide(i, t): , where 0 ≤ t ≤ Z[i]. Replace entry Z[i] by two new consecutive entries with
value t and Z[i]− t, respectively.

Hon et al. [18] and Navarro and Sadakane [29] presented optimal solutions for this problem
in the case where the entries in Z are at most polylogarithmic in s (they did not explicitly
consider the merge and divide operation).

Our Results. We show the following improved result.

I Theorem 2. Given an array of length s storing w-bit integers and fixed parameter δ, such
that ∆ < 2δ, we can solve the dynamic partial sums problem supporting sum, update, search,
insert, delete, merge, and divide in linear space and O(log s/ log(w/δ)) time per operation.
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Note that this bound simultaneously matches the optimal time bound for the standard partial
sums problem and supports storing arbitrary w-bit values in the entries of the array, i.e., the
values we can handle in optimal time are exponentially larger than in the previous results.

To achieve our bounds we extend the static solution by Pătraşcu and Demaine [30]. Their
solution is based on storing a sampled subset of representative elements of the array and
difference encode the remaining elements. They pack multiple difference encoded elements in
words and then apply word-level parallelism to speedup the operations. To support insert and
delete the main challenge is to maintain the representative elements that now dynamically
move within the array. We show how to efficiently do this by combining a new representation
of representative elements with a recent result by Pătraşcu and Thorup [31]. Along the way
we also slightly simplify the original construction by Pătraşcu and Demaine [30].

1.3 Substring Concatenation
Let R be a string of length r. A substring concatenation query on R takes two pairs of indices
(i, j) and (i′, j′) and returns the start position in R of an occurrence of R[i, j]R[i′, j′], or NO
if the string is not a substring of R. The substring concatenation problem is to preprocess R
into a data structure that supports substring concatenation queries.

Amir et al. [2] gave a solution using O(r
√

log r) space with query time O(log log r), and
recently Gawrychowski et al. [15] showed how to solve the problem in O(r log r) space and
O(1) time.

Our Results. We give the following improved bounds.

I Theorem 3. Given a string R of length r, the substring concatenation problem can be
solved in either
(i) O(r logε r) space and O(1) time, for any constant ε > 0, or
(ii) O(r) space and O(log log r) time.

Hence, Theorem 3(i) matches the previous O(1) time bound while reducing the space
from O(r log r) to O(r logε r) and Theorem 3(ii) achieves linear space while using O(log log r)
time. Plugging in the two solutions into our solution for dynamic relative compression leads
to the two branches of Theorem 1.

To achieve the bound in (i), the main idea is a new construction that efficiently combines
compact data structure for 1D range reporting [3] with the recent constant time weighted
level ancestor data structure for suffix trees [15]. The bound in (ii) follows as a simple
implication of another recent result for unrooted LCP queries [5] by some of the authors.
Due to lack of space, we refer to the full version of the paper (see [4]) for the details of our
solution.

The substring concatenation problem is a key component in several solutions to the string
indexing for patterns with wildcards problem [5, 7, 25], where the goal is to preprocess a string
T to support pattern matching queries for patterns with wildcards. Plugging in Theorem 3(i)
we immediately obtain the following new bound for the problem.

I Corollary 4. Let T be a string of length t. For any pattern string P of length p with k
wildcards, we can support pattern matching queries on T using O(t logε t) space and O(p+σk)
time for any constant ε > 0.

This improves the running time of fastest linear space solution by a factor log log t at the
cost of increasing the space slightly by a factor logε t. See [25] for detailed overview of the
known results.



P. Bille, P. H. Cording, I. L. Gørtz, F. R. Skjoldjensen, H.W. Vildhøj, and S. Vind 18:5

1.4 Extensions

Finally, we present two extensions of the dynamic relative compression problem. The proofs
of these extensions are also omitted here and can be found in the full version of the paper.

1.4.1 Dynamic Relative Compression with Access and Replace

If we restrict the operations to access and replace we obtain the following improved bound.

I Theorem 5. Let R and S be a reference and source string of lengths r and N , respectively,
and let n be the length of the optimal substring cover of S by R. Then, we can solve the
dynamic relative compression problem supporting access and replace in O(n+ r) space and
O(log logN) expected time.

This version of dynamic relative compression is a key component in the dynamic text and
static pattern matching problem, where the goal is to efficiently maintain a set of occurrences
of a pattern P in a text T that is dynamically updated by changing individual characters.
Let p and t denote the lengths of P and T , respectively. Amir et al. [2] gave a data structure
using O(t+ p

√
log p) space which supports updates in O(log log p) time. The computational

bottleneck in the update operation is to update a substring cover of size O(p). Plugging in
the bounds from Theorem 5, we immediately obtain the following improved bound, matching
the previous time bound while improving the space to linear.

I Corollary 6. Given a pattern P and text T of lengths p and t, respectively, we can solve the
dynamic text and static pattern matching problem in O(t+ p) space and O(log log p) expected
time per update.

1.4.2 Dynamic Relative Compression with Split and Concatenate

We also consider maintaining a set of compressed strings under split and concatenate
operations (as in Alstrup et al. [1]). Let R be a reference string and let S = {S1, . . . , Sk} be
a set of strings compressed relative to R. In addition to access, replace, insert and delete we
also define the following operations.

concat(i, j): Add string Si · Sj to S and remove Si and Sj .
split(i, j): Remove Si from S and add Si[1, j − 1] and Si[j, |Si|].

We obtain the following bounds.

I Theorem 7. Let R be a reference string of length r, let S = {S1, . . . , Sk} be a set of source
strings of total length N , and let n be the total length of the optimal substring covers of the
strings in S. Then, we can solve the dynamic relative compression problem supporting access,
replace, insert, delete, split, and concat,
(i) in space O(n+ r) and time O(logn) for access and time O(logn+ log log r) for replace,

insert, delete, split, and concat, or
(ii) in space O(n+ r logε r) and time O(logn) for all operations.

Hence, compared to the bounds in Theorem 1 we only increase the time bounds by an
additional log logn factor.
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2 Dynamic Relative Compression

In this section we show how Theorems 2 and 3 lead to Theorem 1.
Let C = ((i1, j1), ..., (i|C|, j|C|)) be the compressed representation of S. From now on, we

refer to C as the cover of S, and call each element (il, jl) in C a block. Recall that a block
(il, jl) refers to a substring R[il, jl] of R. A cover C is maximal if concatenating any two
consecutive blocks (il, jl), (il+1, jl+1) in C yields a string that does not occur in R, i.e., the
string R[il, jl]R[il+1, jl+1] is not a substring of R. We need the following lemma.

I Lemma 8. If Cmax is a maximal cover and C is an arbitrary cover of S, then |Cmax| ≤
2|C| − 1.

Proof. In each block b of C there can start at most two blocks in Cmax, because otherwise
two adjacent blocks in Cmax would be entirely contained in the block b, contradicting the
maximality of Cmax. Since the last block of both C and Cmax end at the last position of S, a
contradiction of the maximality is already obtained when more than one block of Cmax start
in the last block of C. Hence, |Cmax| ≤ 2|C| − 1. J

Recall that n is the size of an optimal cover of S with regards to R. The lemma implies that
we can maintain a compression of size at most 2n− 1 by maintaining a maximal cover of
S. The remainder of this section describes our data structure for maintaining and accessing
such a cover.

Initially, we can use the suffix tree of R to construct a maximal cover of S in O(N + r)
time by greedily matching the maximal prefix of the remaining part of S with any suffix of
R. This guarantees that the blocks constitute a maximal cover of S.

2.1 Data Structure

The high level idea for supporting the operations on S is to store the sequence of block
lengths j1 − i1 + 1, . . . , j|C| − i|C| + 1 in a dynamic partial sums data structure. This allows
us, for example, to identify the block that encodes the kth character in S by performing a
search(k) query.

Updates to S are implemented by splitting a block in C. This may break the maximality
property so we use substring concatenation queries on R to detect if blocks can be merged.
We only need a constant number of substring concatenation queries to restore maximality.
To maintain the correct sequence of block lengths we use update, divide and merge operations
on the dynamic partial sums data structure.

Our data structure consist of the string R, a substring concatenation data structure
of Theorem 3 for R, a maximal cover C for S stored in a doubly linked list, and the
dynamic partial sums data structure of Theorem 2 storing the block lengths of C. We also
store auxiliary links between a block in the doubly linked list and the corresponding block
length in the partial sums data structure, and a list of alphabet symbols in R with the
location of an occurrence for each symbol. By Lemma 8 and since C is maximal we have
|C| ≤ 2n− 1 = O(n). Hence, the total space for C and the partial sums data structure is
O(n). The space for R is O(r) and the space for substring concatenation data structure is
either O(r) or O(r logε r) depending on the choice in Lemma 3. Hence, in total we use either
O(n+ r) or O(n+ r logε r) space.
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2.2 Answering Queries

To answer access(i) queries we first compute search(i) in the dynamic partial sums structure
to identify the block bl = (il, jl) containing position i in S. The local index in R[il, jl] of the
ith character in R is ` = i− sum(l − 1), and thus the answer to the query is the character
R[il + `− 1].

We perform replace and delete by first identifying bl = (il, jl) and ` as above. Then we
partition bl into three new blocks b1

l = (il, il+`−2), b2
l = (il+`−1, il+`−1), b3

l = (il+`, jl)
where b2

l is the single character block for index i in S that we must change. In replace
we change b2

l to an index of an occurrence in R of the new character (which we can find
from the list of alphabet symbols), while we remove b2

l in delete. The new blocks and their
neighbors, that is, bl−1, b1

l , b2
l , b3

l , and bl+1 may now be non-maximal. To restore maximality
we perform substring concatenation queries on each consecutive pair of these 5 blocks, and
replace non-maximal blocks with merged maximal blocks. All other blocks are still maximal,
since the strings obtained by concatenating bl′ with bl′+1, for all l′ < l − 1 and all l′ > l,
was not present in R before the change and is not present afterwards. A similar idea is
used by Amir et al. [2]. We perform update, divide and merge operations to maintain the
corresponding lengths in the dynamic partial sums data structure. The insert operation is
similar, but inserts a new single character block between two parts of bl before restoring
maximality. Observe that using δ = O(1) bits in update is sufficient to maintain the correct
block lengths.

In total, each operation requires a constant number of substring concatenation queries and
dynamic partial sums operations; the latter having time complexity O(logn/ log(w/δ)) =
O(logn/ log logn) as w ≥ logn and δ = O(1). Hence, the total time for each access,
replace, insert, and delete operation is either O(logn/ log logn+log log r) or O(logn/ log logn)
depending on the substring concatenation data structure used. In summary, this proves
Theorem 1.

3 Dynamic Partial Sums

In this section we prove Theorem 2. We support the operations insert(i,∆) and delete(i) on
a sequence of w-bit integer keys by implementing them using update and a divide or merge
operation, respectively. This means that we support inserting or deleting keys with value at
most 2δ.

We first solve the problem for small sequences. The general solution uses a standard
reduction, storing Z at the leaves of a B-tree of large outdegree. We use the solution for
small sequences to navigate in the internal nodes of the B-tree.

We need the following recent result due to Pătraşcu and Thorup [31] on maintaining a
set of integer keys X under insertions and deletions. The queries are as follows, where q is
an integer. The membership query member(q) returns true if q ∈ X, predecessor predX(q)
returns the largest key x ∈ X where x < q, and successor succX(q) returns the smallest key
x ∈ X where x ≥ q. The rank rankX(q) returns the number of keys in X smaller than q, and
select(i) returns the ith smallest key in X.

I Lemma 9 (Pătraşcu and Thorup [31]). There is a data structure for maintaining a dynamic
set of wO(1) w-bit integers that supports insert, delete, membership, predecessor, successor,
rank and select in constant time per operation.
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3.1 Dynamic Partial Sums for Small Sequences
Let Z be a sequence of at most B ≤ wO(1) integer keys. We will show how to store Z in
linear space such that all dynamic partial sums operations can be performed in constant time.
We let Y be the sequence of prefix sums of Z, defined such that each key Y [i] is the sum of
the first i keys in Z, i.e., Y [i] =

∑i
j=1 Z[j]. Observe that sum(i) = Y [i] and search(t) is the

index of the successor of t in Y . Our goal is to store and maintain a representation of Y
subject to the dynamic operations update, divide and merge in constant time per operation.

3.1.1 The Scheme by Pătraşcu and Demaine
We first review the solution to the static partial sums problem by Pătraşcu and Demaine [30],
slightly simplified due to Lemma 9. Our dynamic solution builds on this.

The entire data structure is rebuilt every B operations as follows. We first partition Y
greedily into runs. Two adjacent elements in Y are in the same run if their difference is at
most B2δ, and we call the first element of each run a representative for all elements in the
run. We use R to denote the sequence of representative values in Y and rep(i) to be the
index of the representative for element Y [i] among the elements in R.

We store Y by splitting representatives and other elements into separate data structures:
I and R store the representatives at the time of the last rebuild, while U stores each element
in Y as an offset to its representative value as well as updates since the last rebuild. We
ensure Y [i] = R[rep(i)] + U [i] for any i and can thus reconstruct the values of Y .

The representatives are stored as follows. I is the sequence of indices in Y of the
representatives and R is the sequence of representative values in Y . Both I and R are stored
using the data structure of Lemma 9. We can then define rep(i) = rankI(predI(i)) as the
index of the representative for i among all representatives, and use R[rep(i)] = selectR(rep(i))
to get the value of the representative for i.

We store in U the current difference from each element to its representative, U [i] =
Y [i]−R[rep(i)] (i.e. updates between rebuilds are applied to U). The idea is to pack U into
a single word of B elements. Observe that update(i,∆) adds value ∆ to all elements in Y
with index at least i. We can support this operation in constant time by adding to U a word
that encodes ∆ for those elements. Since each difference between adjacent elements in a run
is at most B2δ and |Y | = O(B), the maximum value in U after a rebuild is O(B22δ). As
B updates of size 2δ may be applied before a rebuild, the changed value at each element
due to updates is O(B2δ). So each element in U requires O(logB + δ) bits (including an
overflow bit per element). Thus, U requires O(B(logB + δ)) bits in total and can be packed
in a single word for B = O(min{w/ logw,w/δ}).

Between rebuilds the stored representatives are potentially outdated because updates may
have changed their values. However, observe that the values of two consecutive representatives
differ by more than B2δ at the time of a rebuild, so the gap between two representatives
cannot be closed by B updates of δ bits each (before the structure is rebuilt again). Hence,
an answer to search(t) cannot drift much from the values stored by the representatives; it can
only be in a constant number of runs, namely those with a representative value succR(t) and
its two neighboring runs. In a run with representative value v, we find the smallest j (inside
the run) such that U [j] + v − t > 0. The smallest j found in all three runs is the answer
to the search(t) query. Thus, by rebuilding periodically, we only need to check a constant
number of runs when answering a search(t) query.

On this structure, Pătraşcu and Demaine [30] show that the operations sum, search and
update can be supported in constant time each as follows:
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Z 5 1 4 7 1 1 6 5 1 1 2 2 1 3 5 10 5 10 2

Y 5 6 10 17 18 19 25 30 31 32 34 36 37 40 45 55 60 70 72

R {5, 17, 25, 30, 45, 55, 60, 70}

U 0 1 5 0 1 2 0 0 1 2 4 6 7 10 0 0 0 0 2

B 1 0 0 1 0 0 1 1 0 0 0 0 0 0 1 1 1 1 0

C 1 1 1 2 2 2 3 4 4 4 4 4 4 4 5 6 7 8 8

a) The initial data structure constructed from Z.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Z 5 1 4 7 1 1 6 3 2 1 1 2 2 1 3 5 10 5 10 2

Y 5 6 10 17 18 19 25 28 30 31 32 34 36 37 40 45 55 60 70 72

R {5, 17, 25, 45, 55, 60, 70}

U 0 1 5 0 1 2 0 3 5 6 7 9 11 12 15 0 0 0 0 2

B 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0

C 1 1 1 2 2 2 3 3 3 3 3 3 3 3 3 4 5 6 7 7

New index 9 Old index 9

b) The result of divide(8, 3) on the structure of a). Representative
value 30 was removed from R. We shifted and updated U , B and
C to remove the old representative and accommodate for a new
element with value 2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Z 5 1 4 7 1 1 6 3 2 1 1 4 1 3 5 10 5 10 2

Y 5 6 10 17 18 19 25 28 30 31 32 36 37 40 45 55 60 70 72

R {5, 17, 25, 45, 55, 60, 70}

U 0 1 5 0 1 2 0 3 5 6 7 11 12 15 0 0 0 0 2

B 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0

C 1 1 1 2 2 2 3 3 3 3 3 3 3 3 4 5 6 7 7

Index containing the sum of the merged indices.

c) The result of merge(12) on the structure of c).

Figure 1 Illustrating operations on the data structure with B2δ = 4. a) shows the data structure
immediately after a rebuild, b) shows the result of performing divide(8, 3) on the structure of a),
and c) shows the result of performing merge(12) on the structure of b).

sum(i): return the sum of R[rep(i)] and U [i]. This takes constant time as U [i] is a field in a
word and representatives are stored using Lemma 9.

search(t): let r0 = rankR(succR(t)). We must find the smallest j such that U [j]+R[r]−t > 0
for r ∈ {r0− 1, r0, r0 + 1}, where j is in run r. We do this for each r using standard word
operations in constant time by adding R[r]− t to all elements in U , masking elements
not in the run (outside indices selectI(r) to selectI(r + 1)− 1, and counting the number
of negative elements.

update(i,∆): we do this in constant time by copying ∆ to all fields j ≥ i by a multiplication
and adding the result to U .

To count the number of negative elements or find the least significant bit in a word in constant
time, we use the technique by Fredman and Willard [14].

Notice that rebuilding the data structure every B operations takes O(B) time, resulting in
amortized constant time per operation. We can instead do this incrementally by a standard
approach by Dietz [8], reducing the time per operation to worst case constant. The idea
is to construct the new replacement data structure incrementally while using the old and
complete data structure.

3.1.2 Efficient Support for divide and merge
We now show how to maintain the structure described above while supporting operations
divide(i, t) and merge(i). An example supporting the following explanation is provided in
Figure 1.

Observe that the operations are only local: Splitting Z[i] into two parts or merging
Z[i] and Z[i+ 1] does not influence the precomputed values in Y (besides adding/removing
values for the divided/merged elements). We must update I, R and U to reflect these local
changes accordingly. Because a divide or merge operation may create new representatives
between rebuilds with values that do not fit in U , we change I, R and U to reflect these new
representatives by rebuilding the data structure locally. This is done as follows.
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Consider the run representatives. Both divide(i, t) and merge(i) may require us to create
a new run, combine two existing runs or remove a run. In any case, we can find a replacement
representative for each run affected. As the operations are only local, the replacement is
either a divided or merged element, or one of the neighbors of the replaced representative.
Replacing representatives may cause both indices and values for the stored representatives
to change. We use insertions and deletions on R to update representative values.

Since the new operations change the indices of the elements, these changes must also
be reflected in I. For example, a merge(i) operation decrements the indices of all elements
with index larger than i compared to the indices stored at the time of the last rebuild We
should in principle adjust the O(B) changed indices stored in I. The cost of adjusting the
indices accordingly when using Lemma 9 to store I is O(B). Instead, to get our desired
constant time bounds, we represent I using a resizable data structure with the same number
of elements as Y that supports this kind of update. We must support selectI(i), rankI(q),
and predI(q) as well as inserting and deleting elements in constant time. Because I has few
and small elements, we can support the operations in constant time by representing it using
a bitstring B and a structure C which is the prefix sum over B as follows.

Let B be a bitstring of length |Y | ≤ B, where B[i] = 1 iff there is a representative at
index i. C has |Y | elements, where C[i] is the prefix sum of B including element i. Since C
requires O(B logB) bits in total we can pack it in a single word. We answer queries as follows:
rankI(q) equals C[q − 1], we answer selectI(i) by subtracting i from all elements in C and
return one plus the number of elements smaller than 0 (as done in U when answering search),
and we find predI(q) as the index of the least significant bit in B after having masked all
indices larger than q. Updates are performed as follows. Using mask, shift and concatenate
operations, we can ensure that B and C have the same size as Y at all times (we extend
and shrink them when performing divide and merge operations). Inserting or deleting a
representative is to set a bit in B, and to keep C up to date, we employ the same ±1 update
operation as used in U .

We finally need to adjust the relative offsets of all elements with a changed representative
in U (since they now belong to a representative with a different value). In particular, if the
representative for U [j] changed value from v to v′, we must subtract v′ − v from U [j]. This
can be done for all affected elements belonging to a single representative simultaneously in U
by a single addition with an appropriate bitmask (update a range of U). Note that we know
the range of elements to update from the representative indices. Finally, we may need to
insert or delete an element in U , which can be done easily by mask, shift and concatenate
operations on the word U . This leads to Theorem 10.

I Theorem 10. There is a linear space data structure for dynamic partial sums supporting
each operation search, sum, update, insert, delete, divide, and merge on a sequence of length
O(min{w/ logw,w/δ}) in worst-case constant time.

3.2 Dynamic Partial Sums for Large Sequences
Willard [37] (and implicitly Dietz [8]) showed that a leaf-oriented B-tree with out-degree B of
height h can be maintained in O(h) worst-case time if: 1) searches, insertions and deletions
take O(1) time per node when no splits or merges occur, and 2) merging or splitting a node
of size B requires O(B) time.

We use this as follows, where Z is our integer sequence of length s. Create a leaf-
oriented B-tree of degree B = Θ(min{w/ logw,w/δ}) storing Z in the leaves, with height
h = O(logB n) = O(logn/ log(w/δ)). Each node v uses Theorem 10 to store the O(B)
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sums of leaves in each of the subtrees of its children. Searching for t in a node corresponds
to finding the successor Y [i] of t among these sums. Dividing or merging elements in Z

corresponds to inserting or deleting a leaf. This concludes the proof of Theorem 2.

4 Conclusion

Our solution to DRC is built on data structures for the partial sums problem and the
substring concatenation problem. Our partial sums-solution is optimal, but in order to
get the desired constant query time for substring concatenation, our data structure uses
O(r logε r) space. Opposed to this, our linear space solution leads to O(log log r) query time.
We leave as an open problem if it is possible to get constant time substring concatenation
queries using O(r) space, which will also carry over to a stronger result for the DRC problem,
and improved solutions for the string indexing for patterns with wildcards problem and the
dynamic text and static pattern matching problem.

Currently we maintain a 2-approximation of the optimal cover. It would be useful to
know if a better approximation ratio can be maintained under the same (or better) time and
space bounds that we give.

Acknowledgments. We thank Pawel Gawrychowski for helpful discussions.
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Abstract
Let S be a finite set of points in the plane that are in convex position. We present an algorithm
that constructs a plane 3+4π

3 -spanner of S whose vertex degree is at most 3. Let Λ be the
vertex set of a finite non-uniform rectangular lattice in the plane. We present an algorithm that
constructs a plane 3

√
2-spanner for Λ whose vertex degree is at most 3. For points that are in

the plane and in general position, we show how to compute plane degree-3 spanners with a linear
number of Steiner points.
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1 Introduction

Let S be a finite set of points in the plane. A geometric graph is a graph G = (S,E) with
vertex set S and edge set E consisting of line segments connecting pairs of vertices. The
length (or weight) of any edge (p, q) in E is defined to be the Euclidean distance |pq| between
p and q. The length of any path in G is defined to be the sum of the lengths of the edges on
this path. For any two vertices p and q of S, their shortest-path distance in G, denoted by
|pq|G, is a minimum length of any path in G between p and q. For a real number t > 1, the
graph G is a t-spanner of S if for any two points p and q in S, |pq|G ≤ t|pq|. The smallest
value of t for which G is a t-spanner is called the stretch factor of G. A large number of
algorithms have been proposed for constructing t-spanners for any given point set; see [18].
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A plane spanner is a spanner whose edges do not cross each other. Chew [7] was the first
to prove that plane spanners exist. Chew proved that the L1-Delaunay triangulation of a
finite point set has stretch factor at most

√
10 ≈ 3.16 (observe that lengths in this graph are

measured in the Euclidean metric). In the journal version [8], Chew proves that the Delaunay
triangulation based on a convex distance function defined by an equilateral triangle is a
2-spanner. Dobkin et al. [11] proved that the L2-Delaunay triangulation is a t-spanner for
t = π(1+

√
5)

2 ≈ 5.08. Keil and Gutwin [16] improved the upper bound on the stretch factor
to t = 4π

3
√

3 ≈ 2.42. This was subsequently improved by Cui et al. [9] to t = 2.33 for the case
when the point set is in convex position. Currently, the best result is due to Xia [19], who
proved that t is less than 1.998. For points that are in convex position the current best upper
bound on the stretch factor of plane spanners is 1.88 that was obtained by Amani et al. [1].
Regarding lower bounds, by considering the four vertices of a square, it is obvious that a
plane t-spanner with t <

√
2 does not exist. Mulzer [17] has shown that every plane spanning

graph for the vertices of a regular 21-gon has stretch factor at least 1.41611. Dumitrescu and
Ghosh [13] improved the lower bound to 1.4308 for the vertices of a regular 23-gon.

The degree of a spanner is its maximum vertex degree. Das and Heffernan [10] showed the
existence of spanners of maximum degree 3. Moreover, 3 is the lower bound on the maximum
degree of a t-spanner, for any constant t > 1, because a Hamiltonian path through a set of
points arranged in a grid has unbounded stretch factor; see [18] for more details. Even for
points that are in convex position, 3 is a lower bound on the degree (see Kanj et al. [15]).

The problem of constructing bounded-degree spanners that are plane and have small
stretch factor has received considerable attention (e.g., see [5, 6, 15]). Bonichon et al. [5]
proved the existence of a degree 4 plane spanner with stretch factor 156.82. A simpler
algorithm by Kanj et al. [15] constructs a degree 4 plane spanner with stretch factor 20; for
points that are in convex position, this algorithm gives a plane spanner of degree at most
3 with the same stretch factor. Dumitrescu and Ghosh [12] considered plane spanners for
uniform grids. For the infinite uniform square grid, they proved the existence of a plane
spanner of degree 3 whose stretch factor is at most 2.607; the lower bound is 1 +

√
2.

In this paper we consider bounded-degree plane spanners. In Section 3 we present an
algorithm that computes a plane 3+4π

3 ≈ 5.189-spanner of degree 3 for points in convex
position. In Section 4 we consider finite non-uniform rectangular grids; we present an
algorithm that computes a degree 3 plane spanner whose stretch factor is at most 3

√
2 ≈ 4.25.

In Section 5 we show that any plane t-spanner for points in the plane that are in general
position, can be converted to a plane (t+ ε)-spanner of degree at most 3 that uses a linear
number of Steiner points, where ε > 0 is an arbitrary small constant.

2 Preliminaries

For any two points p and q in the plane let pq denote the line segment between p and q,
`(p, q) denote the line passing through p and q, R(p→q) denote the ray emanating from p

and passing through q, and let D(p, q) denote the closed disk that has pq as a diameter.
Moreover, let L(p, q) denote the lune of p and q, which is the intersection of the two closed
disks of radius |pq| that are centered at p and q.

Let S be a finite and non-empty set of points in the plane. We denote by CH(S) the
boundary of the convex hull of S. The diameter of S is the largest distance among the
distances between all pairs of points of S. Any pair of points whose distance is equal to the
diameter is called a diametral pair. Each point of diametral pair is called a diametral point.
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Algorithm 1 Matching(C1, C2)
Input: Linearly separated chains C1 and C2 with the vertices of C1 ∪C2 in convex position.
Output: A matching between the points of C1 and the points of C2.

1: if C1 = ∅ or C2 = ∅ then return ∅
2: (a, b)← a closest pair of vertices between C1 and C2 such that a ∈ C1 and b ∈ C2
3: C ′1, C

′′
1 ← the two chains obtained by removing a from C1

4: C ′2, C
′′
2 ← the two chains obtained by removing b from C2

5: return {ab} ∪Matching(C ′1, C ′2) ∪Matching(C ′′1 , C ′′2 )

I Observation 1. Let S be a finite set of at least two points in the plane, and let {p, q} be
any diametral pair of S. Then, the points of S lie in L(p, q).

I Theorem 2 (See Theorem 7.11 in [3]). If C1 and C2 are convex polygonal regions with
C1 ⊆ C2, then the length of the boundary of C1 is at most the length of the boundary of C2.

I Lemma 3 (Amani et al. [1]). Let a, b, and c be three points in the plane, and let β = ∠abc.
Then, |ab|+|bc||ac| 6 1

sin(β/2) .

I Lemma 4 (Proof in the full version of the paper [4]). Let a and b be two points in the plane.
Let c be a point that is on the boundary or in the interior of L(a, b). Then, ∠acb > π

3 .

3 Plane Spanners for Points in Convex Position

In this section we consider degree-3 plane spanners for points that are in convex position.
Let S be a finite set of points in the plane that are in convex position. Consider the two
chains that are obtained from CH(S) by removing any two edges. Let τ be the larger stretch
factor of these two chains. In Section 3.1 we present an algorithm that computes a plane
(2τ + 1)-spanner of maximum degree 3 for S. Based on that, in Section 3.2 we show how to
compute a plane 3+4π

3 -spanner of maximum degree 3 for S. Moreover, we show that if S is
centrally symmetric, then there exists a plane (π + 1)-spanner of degree 3 for S.

3.1 Spanner for Convex Double Chains
Let C1 and C2 be two chains of points in the plane that are separated by a straight line. Let
S1 and S2 be the sets of vertices of C1 and C2, respectively, and assume that S1 ∪ S2 is in
convex position. Let τ be a real number. In this section we show that if the stretch factor of
each of C1 and C2 is at most τ , then there exists a plane (2τ + 1)-spanner for S1 ∪ S2 whose
maximum vertex degree is 3.

In order to build such a spanner, we join C1 and C2 by a set of edges that form a matching.
Thus, the spanner consists of C1, C2, and a set E of edges such that each edge has one
endpoint in C1 and one endpoint in C2. The set E is a matching, i.e., no two edges of E are
incident to a same vertex. We show how to compute E recursively. Let (a, b) be the closest
pair of vertices between C1 and C2; see Figure 1. Add this closest pair (a, b) to E. Then
remove (a, b) from C1 and C2, and recurse on the two pairs of chains obtained on each side
of `(a, b). Stop the recursion as soon as one of the chains is empty. Given C1 and C2, the
algorithm Matching computes a set E.

I Theorem 5. Let C1 = (S1, E1) and C2 = (S2, E2) be two linearly separated chains of
points in the plane, each with stretch factor at most τ , such that S1 ∪ S2 is in convex
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Figure 1 Illustration of the proof of Theorem 5.

position. Let E be the set of edges returned by algorithm Matching(C1, C2). Then, the
graph G = (S1 ∪ S2, E1 ∪E2 ∪E) is a plane (2τ + 1)-spanner for S1 ∪ S2 in which the degree
of each endpoint of C1 and C2 is at most 2 and every other vertex has degree at most 3.

In the rest of this section we prove Theorem 5. The degree and planarity constraints follows
from the algorithm. However, in the full version of the paper [4] we prove these constraints
by induction. Now, we prove that the stretch factor of G is at most 2τ + 1. The proof is by
induction on min{|S1|, |S2|}. As for the base cases, if |S1| = 0, then G = C2 is a τ -spanner.
If |S2| = 0, then G = C1 is a τ -spanner. Assume |S1| > 1 and |S2| > 1. Let ` be a line that
separates C1 and C2. Without loss of generality assume ` is horizontal, C1 is above `, and
C2 is below `. Let (a, b) be the pair of vertices selected by algorithm Matching, where (a, b)
is a closest pair of vertices between C1 and C2 such that a ∈ C1 and b ∈ C2.
Let C ′1 and C ′′1 be the left and right sub-chains of C1, respectively, that are obtained by
removing a; see Figure 1. We obtain C ′2 and C ′′2 similarly. Let G′ (resp. G′′) be the spanner
obtained for the vertices of C ′1 and C ′2 (resp. C ′′1 and C ′′2 ). By the induction hypothesis, G′
(resp. G′′) is a (2τ + 1)-spanner for the vertices of C ′1 ∪ C ′2 (resp. C ′′1 ∪ C ′′2 ).

We are going to prove that for any two points u, v ∈ S1 ∪S2 we have |uv|G 6 (2τ + 1)|uv|.
If both u and v belong to S1, or both belong to S2, then |uv|G 6 τ |uv|; this is valid because
each of C1 and C2 has stretch factor at most τ . Assume u ∈ S1 and v ∈ S2. If u, v ∈ G′ or
u, v ∈ G′′ then, by the induction hypothesis, |uv|G 6 (2τ + 1)|uv|. Thus, it only remains to
prove |uv|G 6 (2τ + 1)|uv| for the following cases: (a) u = a and v ∈ C2, (b) u ∈ C1 and
v = b, (c) u ∈ C ′1 and v ∈ C ′′2 , and (d) u ∈ C ′′1 and v ∈ C ′2. Because of symmetry we only
prove items (a) and (c). The proofs are given in the following two lemmas.

I Lemma 6. If u = a and v ∈ C2, then |uv|G 6 (2τ + 1)|uv|.

Proof. Note that |av|G 6 |ab|+ |bv|C2 6 |av|+ τ |bv|, where the second inequality is valid
since |ab| 6 |av|, by our choice of (a, b), and since |bv|C2 6 τ |bv|, given that the stretch factor
of C2 is at most τ . It remains to prove that |bv| 6 2|av|. By the triangle inequality we have
|bv| 6 |ab|+ |av|. Since |ab| 6 |av|, we have |bv| 6 2|av|. J

I Lemma 7. If u ∈ C ′1 and v ∈ C ′′2 , then |uv|G 6 (2τ + 1)|uv|.

Proof. Since S is in convex position, the polygon Q formed by u, a, v, and b is convex and
its vertices appear in the order u, a, v, b. Note that

|uv|G 6 |ua|C1 + |ab|+ |bv|C2 6 τ |ua|+ |uv|+ τ |bv| = |uv|+ τ(|ua|+ |bv|),

where the second inequality is valid since |ab| 6 |uv|, by our choice of (a, b), and since
|ua|C1 6 τ |ua| and |bv|C2 6 τ |bv|, given that the stretch factor of each of C1 and C2 is at
most τ . It remains to prove that |ua|+ |bv| 6 2|uv|. Let c be the intersection point of ab and
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uv; see Figure 1. By the triangle inequality, we have |ua| 6 |uc|+ |ca| and |bv| 6 |bc|+ |cv|.
It follows that |ua|+ |bv| 6 |uv|+ |ab|. Since |ab| 6 |uv|, we have |ua|+ |bv| 6 2|uv|. This
completes the proof. J

3.2 Spanner for Points in Convex Position
In this section we show how to construct plane spanners of degree at most 3 for points that
are in convex position.

I Theorem 8. Let S be a finite set of points in the plane that is in convex position. Then,
there exists a plane spanner for S whose stretch factor is at most 3+4π

3 and whose vertex
degree is at most 3.

Proof. The proof is constructive; we present an algorithm that constructs such a spanner
for S. The algorithm performs as follows. Let (p, q) be a diametral pair of S. Consider the
convex hull of S. Let C1 and C2 be the two chains obtained from CH(S) by removing p and
q (and their incident edges). Note that C1 and C2 are separated by `(p, q). Let G′ be the
graph on S \ {p, q} that contains the edges of C1, the edges of C2, and the edges obtained
by running algorithm Matching(C1, C2). By Theorem 5, G′ is plane and the endpoints of
C1 and C2 have degree at most 2. We obtain a desired spanner, G, by connecting p and
q, via their incident edges in CH(S), to G′. In other words, G = (S,E), where E is the
union of the edges of CH(S) and the edges of Matching(C1, C2). A pseudo code for this
construction is given in the full version of the paper [4].

Observe that G is plane. Moreover, all vertices of G have degree at most 3; p and q

have degree 2. Now we show that the stretch factor of G is at most 3+4π
3 ≈ 5.19. Note

that G consists of CH(S) and a matching which is returned by algorithm Matching. Since
p and q are diametral points, then by a result of [1], for any point s ∈ S \ {p} we have
|ps|CH(S) 6 1.88|ps|. Since CH(S) ⊆ G, we have |ps|G 6 1.88|ps|. By symmetry, the same
result holds for q and any point s ∈ S \ {q}. Since (p, q) is a diametral pair of S, both C1
and C2 are in L(p, q). Based on this, in Theorem 11, we will see that both C1 and C2 have
stretch factor at most 2π

3 . Then, by Theorem 5, the stretch factor of G′ is at most 3+4π
3 .

Since G′ ⊂ G, for any two points r, s ∈ S \ {p, q} we have |rs|G 6 3+4π
3 |rs|. Therefore, the

stretch factor of G is at most 3+4π
3 . This completes the proof of the theorem. J

A point set S is said to be centrally symmetric (with respect to the origin), if for every
point p ∈ S, point −p also belongs to S.

I Theorem 9. Let S be a finite centrally symmetric point set in the plane that is in convex
position. Then, there exists a plane spanner for S whose stretch factor is at most π + 1 and
whose vertex degree is at most 3.

Proof. Let G be the graph obtained by the algorithm presented in the proof of Theorem 8.
Recall that G is plane and its maximum vertex degree is at most 3. It remains to show
that the stretch factor of G is at most π + 1. Let (p, q) be the diametral pair of S that is
considered by this algorithm. Since S is centrally symmetric, all points of S are in D(p, q).
Based on this, in Theorem 10, we will see that both C1 and C2 have stretch factor at most
π
2 . Then Theorem 5 implies that the stretch factor of G is at most π + 1. J

3.3 Convex Chains with Diametral Endpoints
In this section we analyze the stretch factor of convex chains of points where their endpoints
are a diametral pair. Let C be a chain of points. For any two points u and v on C let δC(u, v)
denote the path between u and v on C, and let |uv|C denote the length of δC(u, v).
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Figure 2 Proof of Theorem 10: the path δC(u, v) is inside the shaded regions.

I Theorem 10. Let C be a convex chain with endpoints p and q. If C is in D(p, q), then
the stretch factor of C is at most π

2 .

Proof. Since C is convex, it is contained in a half-disk of D(p, q), i.e., a half-disk with
diameter pq. Let u and v be any two points of C. Let δC(u, v) be the path between u and v
in C. We show that δC(u, v) is in D(u, v). Then, by Theorem 2 the length of δC(u, v) is at
most the length of the half-arc of D(u, v), which is π

2 |uv|. Without loss of generality assume
that pq is horizontal, p is to the left of q, and C is above pq. Assume that u appears before
v while traversing C from p to q. See Figure 2. We consider the following four cases.

u = p and v = q. Then δC(p, q) = C is in D(p, q) by the hypothesis.
u = p and v 6= q. Let v′ be the intersection point of R(q→v) with the boundary of
D(p, q). See Figure 2(a). Observe that ∠pv′v = ∠pv′q = π

2 . Thus, v
′ is on the boundary

of D(p, v). Since two circles can intersect in at most two points, p and v′ are the only
intersection points of the boundaries of D(p, q) and D(p, v). Thus, the clockwise arc p̂v′
on the boundary of D(p, q) is inside D(p, v). Because of convexity, no point of δC(p, v) is
to the right of R(p→v) or R(q→v). It follows that δC(p, v) is in D(p, v).
u 6= p and v = q. The proof of this case is similar to the proof of the previous case.
u 6= p and v 6= q. Let c be the intersection point of R(p→u) and R(q→v). Because of
convexity, δC(u, v) is in the triangle 4ucv. We look at two cases:
c is inside D(p, q). See Figure 2(b). Note that ∠ucv > π

2 . This implies that the point
c, and consequently the triangle 4ucv, are in D(u, v). Thus, δC(u, v) is inside D(u, v).
c is outside D(p, q). Let u′ (resp. v′) be the intersection point of R(p→u) (resp.
R(q→v)) with D(p, q). Note that δC(u, v) is inside the shaded region of Figure 2(c).
Observe that ∠uv′v > ∠pv′q = π

2 , and ∠uu′v > ∠pu′q = π
2 . Thus, both u′ and v′

are inside D(u, v). Consequently, the clockwise arc ũ′v′ on the boundary of D(p, q) is
inside D(u, v). Therefore, δC(u, v) is inside D(u, v). J

I Theorem 11 (Proof in the full version of the paper [4]). Let C be a convex chain with
endpoints p and q. If C is in L(p, q), then the stretch factor of C is at most 2π

3 .

4 Non-Uniform Rectangular Grid

In this section we build a plane spanner of degree at most three for the point set of the
vertices of a non-uniform rectangular grid. In a finite non-uniform m× k grid, Λ, the vertices
are arranged on the intersections of m horizontal and k vertical lines. The distances between
the horizontal lines and the distances between the vertical lines are chosen arbitrary. The
total number of vertices of Λ—the number of points of the underlying point set—is n = m · k.
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Figure 3 The augmented grid.

If m ∈ {1, 2} or k ∈ {1, 2} then Λ is a plane spanner whose maximum vertex degree is at
most 3 and whose stretch factor is at most

√
2. Assume m > 3 and k > 3. We present an

algorithm that constructs a degree-3 plane spanner, G, for the points of Λ. Note that Λ is a
finite grid and has boundary vertices. In order to simplify the analysis and the proofs for
boundary vertices, we augment Λ in the following way. We add four lines at distance ε, to the
left, right, above and below Λ. We choose ε to be smaller than the distances among all pairs
of vertical lines, and all pairs of horizontal lines of Λ. See Figure 3. For simplicity, in the
rest of this section, we refer to the augmented lattice as Λ, and assume it has m horizontal
and k vertical lines. Based on this assumption, the original lattice has m− 2 horizontal lines
and k − 2 vertical lines.

Let h1, . . . , hm be the horizontal lines of Λ from bottom to top. Similarly, let v1, . . . , vk
be the vertical lines of Λ from left to right. Note that Λ consists of m− 1 horizontal slabs
(rows) and k − 1 vertical slabs (columns). Each horizontal slab Hi, with 1 6 i < m, is
bounded by consecutive horizontal lines hi and hi+1. Each vertical slab Vj , with 1 6 j < k,
is bounded by consecutive vertical lines vj and vj+1. See Figure 3. For each slab we define
the width of that slab as the distance between the two parallel lines on its boundary. Let
pi,j , with 1 6 i 6 m and 1 6 j 6 k, be the vertex of Λ that is the intersection point of hi
and vj . For each Hi, 1 6 i < m, we define E(Hi) = {(pi,j , pi+1,j) : 2 6 j 6 k − 1} as the set
of edges of Hi. Moreover, we define the set of candidate edges of Hi as follows:

CE(Hi) =
{
{(pi,j , pi+1,j) : 2 6 j 6 k − 1 and j is even} if i is even,
{(pi,j , pi+1,j) : 2 6 j 6 k − 1 and j is odd} if i is odd.

Similarly, for each Vj , 1 6 j < k, we define E(Vj) = {(pi,j , pi,j+1) : 2 6 i 6 m− 1} as the set
of edges of Vj . The set of candidate edges of Vj is defined as follows:

CE(Vj) =
{
{(pi,j , pi,j+1) : 2 6 i 6 m− 1 and i is even} if j is even,
{(pi,j , pi,j+1) : 2 6 i 6 m− 1 and i is odd} if j is odd.

See Figure 4(a). Informally speaking, the set of edges of each horizontal slab contains k − 2
vertical edges of Λ that are on v2, . . . , vk−1, and the set of edges of each vertical slab contains
m − 2 horizontal edges of Λ that are on h2, . . . , hm−1. The boundary edges of Λ, i.e., the
edges with both their endpoints on the boundary of Λ, do not belong to any of these sets.
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Figure 4 (a) Candidate edges in each slab are shown in their slab label color. The edges that are
above, below, to the left, and to the right of a candidate edge, are not candidate in any of the slabs:
(b) a horizontal candidate edge, and (c) a vertical candidate edge.

Every second vertical edge in Hi belongs to the set of candidate edges of Hi. The set of
candidate edges of Hi−1 (resp. Hi+1) contains every second vertical edge in Hi−1 (rep. Hi+1)
that is not adjacent to any candidate edge in Hi. The same observation applies on each Vi.
Thus, if e is a candidate edge in some set, then the edges of Λ that are above, below, to the
left, and to the right of e, are not candidate edges in any set. See Figures 4(b) and 4(c).

Now we describe the algorithm. We know that Λ is a
√

2-spanner of degree 4. The
algorithm consists of two phases. In the first phase it removes some edges from Λ and
constructs a graph G′ whose largest vertex degree is 3 (G′ may have large stretch factor).
In the second phase the algorithm adds some edges to G′ and constructs a graph G whose
maximum degree is 3 and whose stretch factor is 3

√
2. Note that G′ ⊆ G ⊂ Λ. Refer to

Figure 5 for an illustration of the two phases.

Phase 1 (Edge Deletion): In this phase, the algorithm iterates over all the slabs, {H1, . . . ,

Hm−1, V1, . . . , Vk−1}, in a non-increasing order of their widths. Let S be the current slab.
The algorithm considers the candidate edges of S, i.e., all edges of CE(S), from left to right
if S is horizontal, and bottom-up if S is vertical (however, this ordering does not matter).
The algorithm removes a candidate edge if it has at least one endpoint of degree 4. Let G′
be the graph obtained at the end of this phase.

Phase 2 (Edge Insertion): Consider the graph G′ obtained at the end of Phase 1. Let E′
be the empty set. In the second phase, the algorithm iterates over all the slabs, {H1, . . . ,

Hm−1, V1, . . . , Vk−1}, in a non-decreasing order of their widths. Let S be the current slab.
The algorithm considers all the edges of S, i.e., all edges of E(S). Let e = (a, b) be the
current edge. The algorithms adds e to E′ if both endpoints of e have degree 2 in G′ ∪ E′,
i.e., degG′(a) + degE′(a) = 2 and degG′(b) + degE′(b) = 2. At the end of this phase, let G
be the graph obtained by taking the union of G′ and E′.

Consider the graph G obtained at the end of Phase 2. We show that G is a plane
3
√

2-spanner of maximum degree 3 for Λ. Since the algorithm considers only the edges of Λ,
then G is a subgraph of Λ and hence it is plane. As for the degree constraint, after Phase 1
the maximum degree in G′ is 3. In Phase 2 we add edges between some vertices of degree 2
in G′ (at most one edge per vertex) and hence no vertex of degree 4 can appear. Thus G
has maximum degree 3. It only remains to show that G is a 3

√
2-spanner. Before that, we

review some properties of G′ and G.
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Figure 5 The numbers close to the slab labels show the order in which the slabs are considered
in Phase 1. (a) The graph G′ obtained at the end of Phase 1; its four types of faces are shaded
(the blue edges are the candidate edges that have not been removed in Phase 1). (b) The graph
G obtained at the end of Phase 2; its three types of faces are shaded (the orange edges have been
added in Phase 2, and belong to E′).

The candidate edges form stair-cases in Λ; see Figure 4(a). Moreover, the set of non-
candidate edges (black edges of Figure 4(a)) also form stair-cases. Each internal vertex of Λ
belongs to a staircase of candidate edges and a stair-case of non-candidate edges. Thus, in
G′, every vertex is on a stair-case of non-candidate edges that is connected to the boundary
edges in both directions. Moreover, each of the stair-cases formed by candidate edges is
surrounded by two stair-cases of non-candidate edges. Since G′ contains all boundary edges,
i.e., the edges with both endpoints on the boundary, each boundary vertex has degree at
least 2 and at most 3 in G′. The edge deletion phase ensures that in G′ there is no internal
vertex of degree 4. Further, each internal vertex is incident on two candidate edges. Thus at
the end of Phase 1, each internal vertex looses at most two edges, and hence has degree at
least 2 in G′. Therefore we have the following observation.

I Observation 12. The graph G′ has the following properties. (1) G′ contains all boundary
edges of Λ, (2) G′ is connected, (3) each vertex of G′ has degree 2 or 3, and (4) each face in
G′ is either (see the shaded regions of Figure 5(a)):

1-cell: consists of one cell of Λ, or
2-cell: consists of two adjacent cells with the middle edge missing, or
3-cell: consists of three adjacent cells which form an L-shape with the two middle edges
missing (this L-shape might also be rotated), or
stair-case: consists of more than three cells which form a stair-case with more than one
vertex of degree two.

We define {p1,1, pm,1, p1,k, pm,k} as the set of corner vertices of Λ. We also define the set of
corner edges of Λ as {(p1,2, p2,2), (p2,2, p2,1), (p1,k−1, p2,k−1), (p2,k−1, p2,k), (pm−1,1, pm−1,2),
(pm−1,2, pm,2), (pm−1,k−1, pm,k−1), (pm−1,k−1, pm−1,k)}. In Figure 3 the corner edges are in
red. Note that each corner edge is adjacent to another corner edge. A non-corner edge is an
edge of Λ which is not a corner edge.

I Lemma 13 (Proof in the full version of the paper [4]). All non-corner edges of Λ that are
incident to a boundary vertex are in G′.
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Figure 6 The edge (a, f) is a candidate edge (a) that is in G′, and (b) that is not in G′.

By Lemma 13, any non-corner edge e of Λ that is not in G′ has both its endpoints in the
interior of Λ. That is, both endpoints of e have degree four in Λ. Based on this, and by our
choice of candidate edges, we have the following observation; see Figures 4(b) and 4(c).

I Observation 14. If a non-corner edge e is not in G′, then the edges that are above, below,
to the left, and to the right of e are in G′, and hence in G.

I Lemma 15. Let (a, b) be a corner edge that is not in G. Then |ab|G = 3|ab|.

Proof. Recall that each corner edge is adjacent to another corner edge. Let (b, d) be the
corner edge that is adjacent to (a, b). Let c be the corner vertex that is adjacent to a and d.

d

a

b

c

ε

ε

Since (a, c) and (c, d) are boundary edges, both of them are in G. We are going to show,
by contradiction, that (b, d) is also in G. Assume (b, d) /∈ G. If (b, d) was removed before
(a, b), then at the moment the algorithm considers (a, b), both a and b have degree less than
4. Hence the algorithm would not remove (a, b); this contradicts the fact that (a, b) /∈ G. If
(a, b) was removed before (b, d) by a similar argument we get a contradiction. Thus (b, d) ∈ G.
Note that |ab| = |ac| = |cd| = |bd| = ε. Thus the length of the path δ = (a, c, d, b) is 3 times
|ab|. J

At the end of Phase 2, all the stair-cases that have more than one vertex of degree two,
have been broken into 2-cell and 3-cell faces. Thus we have the following observation.

I Observation 16. Each face in G is either a 1-cell, a 2-cell, or a 3-cell (see the shaded
faces in Figure 5(b)).

I Lemma 17. Let (f, c) be the missing edge of a 2-cell face in G. If (f, c) is a non-corner
edge, then |fc|G 6 3|fc|.

Proof. Let F = (a, b, c, d, e, f) be the 2-cell face of G with the edge (f, c) is missing. Without
loss of generality assume that (f, c) is horizontal, f is to the left of c, and a, b, c, d, e, f in the
clockwise order of the vertices along F ; see Figure 6.

Note that |fc| = |ab| = |ed|, |af | = |bc|, and |fe| = |cd|. Moreover, (a, b), (b, c), (d, e), and
(e, f) are not candidate edges, hence they are in G′ and in G, while (a, f) and (c, d) are
candidate edges. Since (f, c) is a non-corner edge, in both G′ and G, f is connected to a
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point f ′ and c is connected to a point c′ where f ′ and c′ are different from the vertices of F .
By Observation 14, (f, f ′) and (c, c′) are in G′ and in G. Without loss of generality assume
|af | 6 |fe|. We are going to prove that the length of the path (f, a, b, c) is at most three
times |fc|. In order to prove this, we show that |af | 6 |fc|. The proof is by contradiction.
Assume |fc| < |af |. For an edge (u, v) ∈ Λ, let Suv be the slab containing (u, v) in its
interior; if (u, v) is horizontal then Suv is vertical, and vice versa. In Phase 1, the slabs
Sfe and Saf are considered before Sfc, while in Phase 2, both are considered after Sfc. We
consider two cases:

(a, f) ∈ G′. See Figure 6(a). The reason why (a, f) was not removed is that both a and
f had degree less than 4 at the moment the algorithm considered (a, f). At that moment
the edge (f, c) was still in the graph. Thus, in order for f to have degree less than four,
the edge (e, f) should have been removed before considering (a, f), which contradicts
(e, f) being a non-candidate edge.
(a, f) /∈ G′. Thus (a, f) is added in Phase 2, and hence, both a and f have degree two
in G′. See Figure 6(b). Recall that (c, d) is a candidate edge. Notice that (c, d) /∈ G′
because at the moment the algorithm considered (c, d), the vertex c had degree 4, and
hence (c, d) is removed. Thus (c, d) is added in Phase 2, implying that both c and d have
degree two in G′. Therefore a, f, c, and d have degree two in G′. Since, in Phase 2, Sfc
is considered before both Sfe and Saf , the edge (f, c) should have been inserted before
considering (a, f) and (c, d). This contradicts the fact that (f, c) is not in G.

J

I Lemma 18 (Proof in the full version of the paper [4]). Let (b, e) be a missing edge of a
3-cell face in G. If (b, e) is a non-corner edge, then |be|G 6 3|be|.

I Theorem 19. Let Λ be a finite non-uniform rectangular grid. Then, there exists a plane
spanner for the point set of the vertices of Λ such that its degree is at most 3 and its stretch
factor is at most 3

√
2.

Proof. Assume Λ has m rows and k columns.

pw,x

py,z

pw,z

If m ∈ {1, 2} or k ∈ {1, 2}, then Λ is a plane spanner whose degree is at most 3 and
whose stretch factor is at most

√
2. Assume m > 3 and k > 3. Let Λ be the augmented

lattice obtained from Λ as described in the beginning of this section. Let G be the graph
obtained by the 2-phase algorithm described in this section. Then G is plane and its vertex
degree is at most 3. By Lemmas 15, 17, and 18, for any edge (a, b) ∈ Λ that is not in G,
there exists a path in G whose length is at most 3 times |ab|. Now we are going to show
that the stretch factor of G is at most 3

√
2. Let pw,x and py,z be any two vertices of Λ.

Consider the vertex pw,z in Λ. By applying Lemmas 15, 17, and 18, in G there exists a path
between pw,x and pw,z such that its length is at most 3 times |pw,xpw,z|. Similarly, in G there
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19:12 Towards Plane Spanners of Degree 3

exists a path between py,z and pw,z such that its length is at most 3 times |py,zpw,z|. Since
|pw,xpw,z| + |py,zpw,z| 6

√
2|pw,xpy,z|, we conclude that in G there exists a path between

pw,x and py,z that is passing through pw,z and whose length is at most 3
√

2 times |pw,xpy,z|.
In order to obtain a spanner for Λ, we remove from G all the vertices of Λ that are not

in Λ, as well as the edges incident to those vertices. Then we add all the missing boundary
edges of Λ to the resulting graph. Let G be the graph that is obtained. As the boundary
vertices of Λ have degree at most 3, G has vertex degree at most 3. Since all the boundary
edges of Λ are in G, the stretch factor of G is not more than the stretch factor of G. This
completes the proof. J

5 Concluding Remarks

In order to obtain plane spanners with small stretch factor, one may think of adding Steiner
points1 to the point set and build a spanner on the augmented point set. In the L1-metric, a
plane 1-spanner of degree 4 can be computed by using O(n logn) Steiner points (see [14]).
Arikati et al. [2] showed how to compute, in L1-metric, a plane (1 + ε)-spanner with O(n)
Steiner points, for any ε > 0. Moreover, for the Euclidean metric, they showed how to
construct a plane (

√
2 + ε)-spanner that uses O(n) Steiner points and has degree 4.

Let S be a set of n points in the plane that is in general position; no three points are
collinear. Let G be a plane t-spanner of S. We show that, for any ε > 0, there exists a plane
(t+ ε)-spanner G′ for S with O(n) Steiner points whose vertex degree is at most 3. We show
how to construct such a spanner. Without loss of generality we assume that ε is smaller than
the closest pair distance in S, otherwise we pick an ε′ smaller than the closest pair distance,
and construct a (t+ ε′)-spanner, which is also a (t+ ε)-spanner.

p

p′

Cp

For each point p of the point set S, consider a circle Cp with radius ε
πn that is centered at

p. Introduce a Steiner point on each intersection point of Cp with the edges of G that are
incident to p. Also, introduce a Steiner point p′ on Cp that is different from these intersection
points. Delete the part of the edges of G inside each circle Cp (each edge e of G turns into
an edge e′ of G′ with endpoints on Cp). Add an edge from p to p′, and add a cycle whose
edges connect consecutive Steiner points on the boundary of Cp. This results in a degree-3
geometric plane graph G′. For each vertex of degree k in G, we added k+ 1 Steiner points in
G′. Since G is planar, its total vertex degree is at most 6n− 12. Thus, the number of Steiner
points is 7n− 12, in total (by a different construction of G′ this can be reduced to 5n− 12).

A path δuv between two vertices u and v in G can be turned into a path δ′uv in G′ as
follows. For each point p in S corresponding to an internal vertex of δuv incident to two
edges e1 and e2 of δuv, replace the part of e1 and e2 inside Cp by the shorter of the two paths
along Cp connecting the corresponding Steiner points. Also, for each of point p ∈ {u, v}

1 Ssome points in the plane that do not belong to the input point set.
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incident to an edge e of δuv replace the part of e inside Cp with edge (p, p′) together with the
shorter of the two paths along Cp connecting p′ and the Steiner point corresponding to e.

Note that |δuv|
|uv| 6 t. Since the Steiner points are located at distance ε

πn from points of S,
the length of the path along Cp replacing each vertex p of δuv is at most ε

n . Since δuv has at
most n vertices, the length of δ′uv in G′ is at most |δuv|+ n · εn . Thus,

|δ′
uv|
|uv| 6

|δuv|+ε
|uv| 6 t+ ε,

is valid because ε is smaller than the closest pair distance in S, and hence smaller than |uv|.
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Abstract
The problem Max W -Light (Max W -Heavy) for an undirected graph is to assign a direction to
each edge so that the number of vertices of outdegree at most W (resp. at least W ) is maximized.
It is known that these problems are NP-hard even for fixed W . For example, Max 0-Light is
equivalent to the problem of finding a maximum independent set.

In this paper, we show that for any fixed constant W , Max W -Heavy can be solved in linear
time for hereditary graph classes for which treewidth is bounded by a function of degeneracy.
We show that such graph classes include chordal graphs, circular-arc graphs, d-trapezoid graphs,
chordal bipartite graphs, and graphs of bounded clique-width.

To have a polynomial-time algorithm for Max W -Light, we need an additional condition of
a polynomial upper bound on the number of potential maximal cliques to apply the metatheorem
by Fomin, Todinca, and Villanger [SIAM J. Comput., 44(1):57–87, 2015]. The aforementioned
graph classes, except bounded clique-width graphs, satisfy such a condition. For graphs of
bounded clique-width, we present a dynamic programming approach not using the metatheorem
to show that it is actually polynomial-time solvable for this graph class too.

We also study the parameterized complexity of the problems and show some tractability and
intractability results.
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1 Introduction

Let G = (V, E) be an undirected graph. An orientation of G is a function that maps each
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any orientation � of G, define �(E) =
t

eœE{�(e)} and let �(G) denote the directed graph
(V, �(E)). For any vertex u œ V , the outdegree of u under � is defined as d+

�(u) = |{(u, v) :
(u, v) œ �(E)}|, i.e., the number of outgoing edges from u in �(G). For any non-negative
integer W , a vertex u œ V is called W -light in �(G) if d+

� (u) Æ W , and W -heavy in �(G) if
d+

�(u) Ø W .
For any fixed integer W Ø 0, the following optimization problems (introduced in [3], see

also [4]) are defined, where the input is an undirected graph G = (V, E):
Max W -Light: Output an orientation � of G
such that

--{u œ V : d+
�(u) Æ W}

-- is maximized.
Max W -Heavy: Output an orientation � of G
such that

--{u œ V : d+
�(u) Ø W}

-- is maximized.
Symmetrically, we can consider the following problems:

Min W -Light: Output an orientation � of G
such that

--{u œ V : d+
�(u) Æ W}

-- is minimized.
Min W -Heavy: Output an orientation � of G
such that

--{u œ V : d+
�(u) Ø W}

-- is minimized.
Observe that Max W -Light (resp., Max W -Heavy) and Min (W + 1)-Heavy (resp., Min
(W ≠1)-Light) are supplementary problems in the sense that an exact algorithm for one gives
an exact algorithm for the other, though their approximability properties and fixed-parameter
tractability may di�er. Since this paper mainly focuses on the polynomial-time solvability,
we consider only Max W -Light and Max W -Heavy. 1

It is shown in [3] that Max W -Light is NP-hard for any fixed W Ø 0, and Max
W -Heavy is NP-hard for any fixed W Ø 3. They also show that for W Æ 1 Max W -Heavy
can be solved in polynomial time. Recently Khoshkhah [23] has closed the gap by showing
that Max 2-Heavy can be solved in polynomial time.

For these problems, the same authors of [3] investigate the approximability [4]. They got
comprehensive results on the approximability of the problems. Due to the work, the general
(in)approximability of the problems is well understood. In this paper, we thus investigate the
problem from another aspect, that is, graph classes. For the two problems Max W -Light
and Max W -Heavy, we take similar but slightly di�erent approaches.

The main tool for Max W -Light is the metatheorem of Fomin, Todinca, and Villanger [16]
that can be seen as an extension of Courcelle’s theorem [1, 12]. It provides a polynomial-
time algorithm for finding a maximum induced subgraph of bounded treewidth satisfying a
counting monadic second-order logic formula from a given graph with polynomially many
potential maximal cliques. We show that if a hereditary graph class has a polynomial upper
bound on the number of potential maximal cliques and has a function depending only on
degeneracy as an upper bound of treewidth, then the metatheorem of Fomin et al. can be
applied to Max W -Light.

Similarly, for Max W -Heavy, we consider hereditary graph classes with treewidth
bounded by a function of degeneracy. However, we do not require polynomial upper bounds
on the number of potential maximal cliques. We first show that the problem for graphs of
bounded treewidth can be solved in linear time. Next we present a linear-time reduction
from graphs with a function of degeneracy as an upper bound of treewidth to graphs of
bounded treewidth. Combining these results, we obtain a linear-time algorithm for Max
W -Heavy on graph classes with the aforementioned property.

1 We consider parameterized complexity in Section 5 where the equivalence does not hold.
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We then show that our algorithms can be applied to several well-known graph classes. It
is known that chordal graphs, circular-arc graphs, d-trapezoid graphs, and chordal bipartite
graphs have polynomial upper bounds on the number of potential maximal cliques (see
Section 4). We show that these hereditary graph classes have functions of degeneracy as
upper bounds on treewidth, and thus our algorithms can be applied. Additionally, we observe
that graphs of bounded clique-width admit a function of degeneracy as an upper bounded
of treewidth, and thus Max W -Heavy can be solved in linear time. To show that Max
W -Light can be solved in polynomial time for graphs of bounded clique-width, we present
a dynamic programming based algorithm.

We also consider the parameterized complexity of the problems. We show that for any
fixed W , Max W -Light is W[1]-complete, while Max W -Heavy admits a kernel of O(Wk)
vertices, where the parameter k is the solution size.

1.1 Related work
Graph orientations that optimize certain objective functions involving the resulting directed
graph or that satisfy some special property such as acyclicity [39] or k-edge connectivity [10,
33, 37] have many applications to graph theory, combinatorial optimization, scheduling (load
balancing), resource allocation, and e�cient data structures. For example, an orientation
that minimizes the maximum outdegree [5, 9, 40] can be used to support fast vertex
adjacency queries in a sparse graph by storing each edge in exactly one of its two incident
vertices’ adjacency lists while ensuring that all adjacency lists are short [9]. There are many
optimization criteria for graph orientation other than these. See [2] or Chapter 61 in [38] for
more details and additional references.

On the other hand, degree-constrained graph orientations [17, 18, 21, 29] arise when a
degree lower bound W l(v) and a degree upper bound W u(v) for each vertex v in the graph
are specified in advance or as part of the input, and the outdegree of v in any valid graph
orientation is required to lie in the interval [W l(v), . . . , W u(v)]. Obviously, a graph does not
always have such an orientation, and in this case, one might want to compute an orientation
that best fits the outdegree constraints according to some well-defined criteria [2, 3]. In case
W l(v) = 0 and W u(v) = W for every vertex v in the input graph, where W is a non-negative
integer, and the objective is to maximize (resp., minimize) the number of vertices that
satisfy (resp., violate) the outdegree constraints, then we obtain Max W -Light (resp., Min
(W + 1)-Heavy). Similarly, if W l(v) = W and W u(v) = Œ for every vertex v in the input
graph, then we obtain Max W -Heavy and Min (W ≠ 1)-Light.

Another related problem is to find a maximum vertex set that induces a subgraph of
bounded degeneracy. (See the next section for the definition of degeneracy.) This problem
can be seen as a variant of Max W -Light, where we can use acyclic orientations only.
This problem is studied in the context of parameterized [31] and exact [36] computation.
Concerning graph classes, we can obtain a result similar to the one for Max W -Light as we
observe in the final section of this paper.

2 Preliminaries

The degree of u in G is dG(u) = |NG(u)|. We define ”(G) = min{dG(u) : u œ V (G)}. The
degeneracy of a graph G, denoted by ”̂(G), is the maximum of the minimum degrees over all
induced subgraphs of G. Let (v1, . . . , vn) be an ordering on V (G) such that dGi(vi) = ”(Gi),
where Gi = G[{vj : j Ø i}]. It is known that such an ordering can be computed in linear
time and that ”̂(G) = max1ÆiÆn ”(Gi) [32]. For any U ™ V (G), the subgraph induced by
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U is denoted by G[U ]. If G[U ] is a complete graph, then U is a clique of G. The size of a
maximum clique in G is denoted by Ê(G). Let Êb(G) be the maximum integer k such that
G has a subgraph isomorphic to the complete bipartite graph Kk,k. From the definition,
Ê(G) ≠ 1 and Êb(G) are lower bounds of ”̂(G). A class C of graphs is hereditary if C is closed
under taking induced subgraphs.

For an integer W Ø 0, an orientation of a graph is called a W -light orientation if the
maximum outdegree is at most W . If a W -light orientation exists, we say that the graph is
W -light orientable. By replacing “at most” with “at least” in these definitions, we similarly
define W -heavy orientations and W -heavy orientable graphs.

2.1 Minimal triangulations and potential maximal cliques
A tree-decomposition of a graph G = (V, E) is a pair ({Xi : i œ I}, T = (I, F )) such that
each Xi, called a bag, is a subset of V , and T is a tree such that

for each v œ V , there is i œ I with v œ Xi;
for each {u, v} œ E, there is i œ I with u, v œ Xi;
for i, j, k œ I, if j is on the i, k-path in T , then Xi fl Xk ™ Xj .

The width of a tree-decomposition is the size of a maximum bag minus 1. A graph has
treewidth at most t if and only if it has a tree-decomposition of width at most t. We denote
the treewidth of G by tw(G).

A graph is chordal (or triangulated) if it has no induced cycle of length 4 or more. A
triangulation of a graph G = (V, E) is a chordal graph GÕ = (V, EÕ) such that E ™ EÕ. A
triangulation GÕ of G is minimal if no proper subgraph of GÕ is a triangulation of G. It
is known that the treewidth of G is the minimum integer t such that there is a (minimal)
triangulation H of G with the maximum clique size t + 1. A vertex set P ™ V (G) is a
potential maximal clique of G if P is a maximal clique in some minimal triangulation of G.
The set of all potential maximal cliques of G is denoted by  G. A vertex set S ™ V (G)
is an a, b-separator for a, b œ V (G) if a and b are in di�erent components in G ≠ S. An
a, b-separator is minimal if no proper subset of it is an a, b-separator. A vertex set is a
minimal separator if it is a minimal a, b-separator for some pair a, b. The set of all minimal
separators of G is denoted by ∆G. By the following proposition, graphs have a polynomial
number of minimal separators if and only if they have a polynomial number of potential
maximal cliques.

I Proposition 2.1 (Bouchitté and Todinca [8]). For every n-vertex graph G, it holds that
|∆G|/n Æ | G| Æ n|∆G|2 + n|∆G| + 1.

3 Metatheorems

In this section we present metatheorems for Max W -Light and Max W -Heavy. We apply
them to some well-studied graph classes in the next section.

We now introduce the monadic second-order logic (MSO) of graphs. The syntax of MSO
of graphs includes (i) the logical connectives ‚, ·, ¬, …, ∆, (ii) variables for vertices, edges,
vertex sets, and edge sets, (iii) the quantifiers ’ and ÷ applicable to these variables, and
(iv) the following binary relations:

u œ U for a vertex variable u and a vertex set variable U ;
d œ D for an edge variable d and an edge set variable D;
inc(d, u) for an edge variable d and a vertex variable u, where the interpretation is that d
is incident with u;
equality of variables.
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In the counting monadic second-order logic (CMSO) of graphs, we have an additional sentence
of checking the cardinality of a set modulo some constant.

I Lemma 3.1. For any fixed W , Max W -Heavy and Max W -Light for graphs of bounded
treewidth can be expressed in an optimization version of MSO and thus solved in linear time.

Proof (sketch). Let G = (V, E) be a graph of treewidth at most k. It is known that for such a
graph, an edge orientation can be expressed in MSO by a proper coloring “ : V æ {1, . . . , k+1}
and an edge set F ™ E [6].

Let prop-col(V1, . . . , Vk+1) be an MSO formula that means V1, . . . , Vk+1 give a proper
k + 1 coloring of G. For an edge e œ E and a vertex v œ V , there is an MSO formula
outV1,...,Vk+1,F (e, v) that means e is an out-going edge from v. Under the orientation repre-
sented by (V1, . . . , Vk+1) and F , W -heaviness and W -lightness of a vertex can be expressed in
MSO. Let W -heavyV1,...,Vk+1,F (v) and W -lightV1,...,Vk+1,F (v) be such formulas. The problems
are equivalent to finding a maximum vertex set X in the following formulas:

÷V1, . . . , Vk+1, ÷F
1

prop-col(V1, . . . , Vk) · ’v œ X
1

W -heavyV1,...,Vk+1,F (v)
22

,

÷V1, . . . , Vk+1, ÷F
1

prop-col(V1, . . . , Vk) · ’v œ X
1

W -lightV1,...,Vk+1,F (v)
22

.

It is known that for a fixed MSO formula on a graph of bounded treewidth, one can find in
linear time a maximum vertex subset satisfying the formula (see [1, 12]). J

I Corollary 3.2. For fixed W and k, the property of being W -light orientable can be expressed
in MSO for graphs of treewidth at most k.

3.1 Max W -Light
We can see that the problem of finding a maximum W -light orientable induced subgraph is
polynomially equivalent to Max W -Light.

I Lemma 3.3. A graph G has a W -light orientable induced subgraph of at least k vertices if
and only if the edges of G can be oriented so that at least k vertices have outdegree at most
W . Furthermore, if a maximum W -light orientable induced subgraph of G can be found in
O(f(m, n)) time, then Max W -Light can be solved in O(f(m, n) + m1.5) time, where m
and n are the numbers of edges and vertices in G, respectively.

Recently, Fomin, Todinca, and Villanger [16] have presented the following metatheorem.

I Proposition 3.4 (Fomin, Todinca, and Villanger [16]). For any fixed t and a CMSO-
expressible property P, the following problem can be solved in polynomial time for any class
of graphs with a polynomial number of potential maximal cliques: Given a graph G, find a
maximum induced subgraph H of treewidth at most t that has the property P.

This metatheorem is quite powerful and allows us to solve many problems for graphs with
polynomially many potential maximal cliques. However, we cannot apply it to our problem
Max W -Light in general because W -light orientable graphs may have large treewidth. For
example, grid graphs are 2-light orientable but have unbounded treewidth.

In the following, we show that with an additional restriction to graph classes, we can
apply the metatheorem of Fomin, Todinca, and Villanger to Max W -Light.

I Lemma 3.5. Every W -light orientable graph has degeneracy at most 2W .
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I Theorem 3.6. For any fixed W , Max W -Light can be solved in polynomial time for
a hereditary graph class C with a polynomial number of potential maximal cliques if the
treewidth of each graph in C is bounded from above by a function of its degeneracy.
Proof. Let f be a function such that tw(G) Æ f(”̂(G)) for each G œ C. By Lemma 3.5,
a W -light orientable graph in C has treewidth at most f(2W ). Since C is hereditary, a
maximum W -light orientable induced subgraph of a graph in C can be found in polynomial
time by Proposition 3.4 and Corollary 3.2. Now, by Lemma 3.3, the theorem follows. J

3.2 Max W -Heavy
Unlike Max W -Light, the problem Max W -Heavy is not equivalent to the problem of
finding a maximum orientable induced subgraph. We here present a way of directly finding
an orientation with as many W -heavy vertices as possible for graphs with treewidth bounded
by a function of degeneracy.
I Proposition 3.7 ([4]). Every graph of minimum degree at least 2W + 1 is W -heavy
orientable and a W -heavy orientation of it can be found in linear time.
I Theorem 3.8. For any fixed W , Max W -Heavy can be solved in linear time for a
hereditary graph class C if the treewidth of each graph in C is bounded from above by a
function of its degeneracy.
Proof. Let f be a function such that tw(G) Æ f(”̂(G)) for each G œ C. Let G œ C be a
graph with n vertices. Let (v1, v2, . . . , vn) be an ordering of V (G) such that for each i, the
vertex vi has the minimum degree in Gi, where Gi = G[{vj : i Æ j Æ n}]. Let h be the first
index such that dGh(vh) Ø 2W + 1. If there is no such index, we set h = n + 1.

Let H = G[{vj : 1 Æ j < h}]. Since C is hereditary, we have H œ C, and thus
tw(H) Æ f(”̂(H)) Æ f(2W ). We obtain H Õ from H as follows: add a clique C of size 2W + 1;
for each vertex v in H, add edges from v to arbitrarily chosen dG(v) ≠ dH(v) vertices in C.
It holds that tw(H Õ) Æ tw(H) + |C| Æ f(2W ) + 2W + 1.

By Lemma 3.1, an orientation �Õ of H Õ with the maximum number of W -heavy vertices
can be found in linear time. Note that all vertices in C are W -heavy under �Õ even in H Õ[C].
Otherwise, by Proposition 3.7, we can change the directions of edges in H Õ[C] so that all
vertices in C become W -heavy. Since this modification does not decrease the outdegree of
any vertex in V (H), the new orientation has strictly more W -heavy vertices than �Õ. This
contradicts the optimality of �Õ.

Let �ÕÕ be a W -heavy orientation of Gh = G[{vh, . . . , vn}]. By Proposition 3.7, such an
orientation can be found in linear time. We next construct an orientation � of G from �Õ and
�ÕÕ as follows: for each edge in E(H) or E(Gh), we use the direction in �Õ or �ÕÕ, respectively;
for each edge between V (H) and V (Gh), we use the direction from V (H) to V (Gh). All
vertices in V (Gh) are W -heavy in G under �. Under �, each vertex in V (H) has at least as
many out-neighbors as under �Õ. Thus a vertex in V (H) is W -heavy in G under � if it is
W -heavy in H Õ under �Õ.

We now show the optimality of �. Suppose to the contrary that there is an orientation
�OPT of G with strictly more W -heavy vertices than �. Let F and FOPT be the W -heavy
vertices in V (H) under � and �OPT, respectively. Since the vertices in V (Gh) are W -heavy
under �, we have |F | < |FOPT|. Now let �Õ

OPT be an orientation of H Õ such that the edges in
H are oriented as in �OPT, the edges between V (H) and C are oriented from V (H) to C,
and the edges in H[C] are oriented so that all the vertices in C become W -heavy. Then, at
least |C| + |FOPT| > |C| + |F | vertices are W -heavy in H Õ under �Õ

OPT. This contradicts the
optimality of �Õ since at most |C| + |F | vertices are W -heavy in H Õ under �Õ. J
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4 Graph classes

In this section, we show that Theorems 3.6 and 3.8 can be applied to several important graph
classes. More precisely, we show the following theorems.

I Theorem 4.1. For any fixed W , Max W -Light can be solved in polynomial time for the
classes of chordal graphs, d-trapezoid graphs, circular-arc graphs, chordal bipartite graphs,
and graphs of bounded clique-width.

I Theorem 4.2. For any fixed W , Max W -Heavy can be solved in linear time for the
classes of chordal graphs, d-trapezoid graphs, circular-arc graphs, chordal bipartite graphs,
and graphs of bounded clique-width.

To prove Theorems 4.1 and 4.2, we show for each graph class that it satisfies conditions
of Theorems 3.6 and 3.8 in the following subsections. To solve Max W -Light for graphs
of bounded clique-width, we present a direct solution as we cannot apply the metatheorem.
Note that all graph classes studied in this section are hereditary.

4.1 Chordal graphs, d-trapezoid graphs, and circular-arc graphs
It is well known that a chordal graph of n vertices has at most n maximal cliques (see [22]).
Since a chordal graph is the unique minimal triangulation of itself, the number of potential
maximal cliques is at most n for every n-vertex chordal graph. From the definition of chordal
graphs, the following equality follows.

I Proposition 4.3 (Folklore). For every chordal graph G, tw(G) = ”̂(G) = Ê(G) ≠ 1.

The co-comparability graph of a partial order (V, ª) is a graph with the vertex set V
in which two vertices u and v are adjacent if and only if they are incomparable, that is,
u ”ª v and v ”ª u. A partial order (V, ª) is an interval order if each element v œ V can
be represented by an interval [lv, rv] such that u ª v if and only if ru < lv. A graph is
a d-trapezoid graph if it is the co-comparability graph of a partial order defined as the
intersection of d interval orders [7]. It is known that every d-trapezoid graph of n vertices
has at most (2n ≠ 3)d≠1 minimal separators [28]. Habib and Möhring showed in the proof of
Theorem 3.4 in [20] that for every d-trapezoid graph G, tw(G) Æ 4d · Êb(G) ≠ 1. This gives
the following fact as a direct corollary.

I Proposition 4.4 ([20]). For every d-trapezoid graph G, tw(G) Æ 4d · ”̂(G) ≠ 1.

A graph is a circular-arc graph if it is the intersection graph of arcs on a circle. Every
n-vertex circular-arc graph has at most 2n2 ≠ 3n minimal separators [26]. A graph is an
interval graph if it is the intersection graph of intervals on a line. From the definition, every
interval graph is a circular-arc graph. Also, every interval graph is a chordal graph [30].

I Lemma 4.5. For every circular-arc graph G, tw(G) Æ 2”̂(G).

4.2 Chordal bipartite graphs
A bipartite graph is a chordal bipartite graph if it has no induced cycle of length 6 or more.
Every chordal bipartite graph has O(m + n) minimal separators [27]. We can show that
for every chordal bipartite graph G, tw(G) Æ 2”̂(G) ≠ 1. The proof is a bit more involved
than the ones in the previous subsection. We use the techniques developed by Kloks and
Kratsch [25] for computing the treewidth of a chordal bipartite graph exactly.

I Theorem 4.6. For every chordal bipartite graph G, tw(G) Æ 2 · Êb(G) ≠ 1.

ISAAC 2016
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4.3 Graphs of bounded clique-width
A k-expression is a rooted binary tree such that

each leaf has label ¶i for some i œ {1, . . . , k},
each node with one child has a label fli,j or ÷i,j (i, j œ {1, . . . , k}, i ”= j), and
each node with two children has a label fi.

Each node in a k-expression represents a vertex-labeled graph as follows:
a ¶i-node represents a graph with one vertex of label i;
a fi-node represents the disjoint union of the labeled graphs represented by its children;
a fli,j-node represents the labeled graph obtained from the one represented by its child
by relabeling the label-i vertices with label j;
an ÷i,j-node represents the labeled graph obtained from the one represented by its child
by adding edges between the label-i vertices and the label-j vertices.

A k-expression represents the graph represented by its root. The clique-width of a graph G,
denoted by cw(G), is the minimum integer k such that there is a k-expression representing a
graph isomorphic to G.

It is known that graphs of bounded treewidth have bounded clique-width [11]. The
converse is not true in general. For example, the complete graph Kn (n Ø 2) has clique-width
2 and treewidth n ≠ 1. On the other hand, the following bound is known for graphs with no
large complete bipartite subgraphs.

I Proposition 4.7 (Gurski and Wanke [19]). For every graph G of clique-width at most k,
tw(G) Æ 3k · Êb(G) ≠ 1.

The proposition above with Theorem 3.8 imply that Max W -Heavy can be solved in
linear time for graphs of bounded clique-width. However, we cannot apply Theorem 3.6 since
graphs of bounded clique-width may have a super-polynomial number of potential maximal
cliques. In the rest of this section, we directly show that Max W -Light is polynomial-time
solvable for graphs of bounded clique-width. A k-expression of a graph is irredundant if for
each edge {u, v}, there is exactly one node ÷i,j that adds the edge between u and v. We will
show that:

I Theorem 4.8. Given a graph with an irredundant k-expression, Max W -Light can be
solved in time O(n2k(W +2)+4 log n).

For a graph of clique-width k, one can compute a (23k ≠ 1)-expression of it in polynomial
time [34] (see also [35]), while exact computation of the clique-width and a corresponding k-
expression is NP-hard [15]. A k-expression of a graph can be transformed into an irredundant
one with O(n) nodes in linear time [13]. Now the following is a corollary to Theorem 4.8.

I Corollary 4.9. For graphs of clique-width at most k, Max W -Light can be solved in time
O(n2(23k≠1)(W +2)+4 log n).

We now prove Theorem 4.8. Let G be an n-vertex graph and T be an irredundant
k-expression of G with O(n) nodes. We denote by r the root of T . For each node t in T , let
Gt be the graph represented by t with Vt := V (Gt). For each i œ {1, . . . , k}, let V i

t be the
set of label-i vertices in Gt.

For a node t in T , a k ◊ (W + 2) integer matrix A = (Ai,j)iœ{1,...,k}, jœ{0,...,W +1} is an
outdegree signature of Gt if there is an orientation � of Gt such that for each i œ {1, . . . , k}
and j œ {0, . . . , W}, Ai,j is the number of label-i vertices with outdegree j in Gt under �, and
for each i œ {1, . . . , k}, Ai,W +1 is the number of label-i vertices with outdegree at least W + 1
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in Gt under �. The weight w(A) of an outdegree signature A is
q

iœ{1,...,k}, jœ{0,...,W } Ai,j .
Note that there are at most nk(W +2) outdegree signatures for each node in T .

I Observation 4.10. The optimal value of Max W -Light for G is maxA w(A), where the
maximum is taken over all outdegree signatures A of Gr = G.

By Observation 4.10, if we have all possible outdegree signatures for all nodes in T , then
we can obtain the optimal value of Max W -Light. We compute the outdegree signatures
by a bottom-up dynamic programming over the k-expression T . In a standard way, we can
modify the dynamic programming to compute an optimal solution as well.

Computing outdegree signatures for the leaf, fi-, and flp,q-nodes is fairly straightforward.
For ÷p,q-nodes, we need the following result.

I Proposition 4.11 (Asahiro, Jansson, Miyano, and Ono [2]). Given an undirected n-vertex m-
edge graph G = (V, E) with lower and upper bounds (l(v), u(v)) œ {0, . . . , n≠1}◊{0, . . . , n≠1}
for each v œ V , it can be decided in O(m1.5 log n) time whether there is an orientation �
such that l(v) Æ d+

�(v) Æ u(v) for each v œ V .

I Lemma 4.12. For an ÷p,q-node, its outdegree signatures can be computed in time
O(n2k(W +2)+3 log n) from the outdegree signatures of its child.

Proof. Let t be an ÷p,q-node with the child tÕ. By the definition of k-expression, V i
t = V i

tÕ

for all i. Recall that T is irredundant. Hence there is no edge between V p
t and V q

t in GtÕ ,
while Gt has all possible edges between V p

t and V q
t .

Let �Õ be an orientation of GtÕ and AÕ the corresponding outdegree signature. We say
that AÕ can be extended to an outdegree signature A of Gt if there is an orientation � of Gt

that corresponds to A such that �(e) = �Õ(e) for every e œ E(GtÕ).

I Claim 4.13. If AÕ can be extended to A, then there is an orientation � of Gt that corresponds
to A such that d+

�Õ(u) < d+
�Õ(v) implies d+

�(u) Æ d+
�(v) for u, v œ V i

t and i œ {p, q}.

Let A be a candidate of an outdegree signature of Gt. That is, A is a k ◊ (W + 2)
integer matrix A = (Ai,j)iœ{1,...,k}, jœ{0,...,W +1}. For i œ {p, q}, let (di,1, . . . , di,|V i

t |) be
the nondecreasing sequence such that for each j œ {0, . . . , W + 1}, the value j appears
exactly Ai,j times. From AÕ, we define (dÕ

i,1, . . . , dÕ
i,|V i

t |) in the same way. For i œ {p, q} and
h œ {1, . . . , |V i

t |}, we define the lower bound li,h and the upper bound ui,h as follows:

li,h = di,h ≠ dÕ
i,h,

ui,h =
I

di,h ≠ dÕ
i,h if di,h Æ W,

n ≠ 1 if di,h = W + 1.

Now let B = (Wp, Wq; EB) be the complete bipartite graph, where Wi = {wi,h : i œ
{p, q}, h œ {1, . . . , |V t

i |}} for i œ {p, q}.

I Claim 4.14. AÕ can be extended to A if and only if there is an orientation �B of B such
that for each vertex wi,h, it holds that li,h Æ d+

�B
(wi,h) Æ ui,h.

For each candidate A, we construct B from A and AÕ. We also compute the lower and
upper bounds of outdegree as described above. Then we check orientability under these
bounds. By Proposition 4.11, it can be done in time O(|EB |1.5 log |Wp fi Wq|). We can bound
this by O(n3 log n), and thus the lemma holds. J

We have proved that for each node in T , we can compute its outdegree signatures in
O(n2k(W +2)+3 log n) time. This completes the proof of Theorem 4.8.
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5 Parameterized complexity

In this section, we study the parameterized complexity of the problems. See the recent
textbook [14] for standard concepts in the field of parameterized complexity. The parameter
is the number of vertices of outdegree at most (at least) W in Max W -Light (resp. Max
W -Heavy). We call it the solution size.

By using a general theorem in [24], we can easily show the following result.

I Corollary 5.1. For any fixed integer W Ø 0, Max W -Light is W[1]-complete when
parameterized by the solution size.

Let (G, k) be an instance of the parameterized version of Max W -Heavy, where the
parameter k is the solution size. We show the following theorem.

I Theorem 5.2. Max W -Heavy parameterized by the solution size k admits a kernel with
at most (2W + 4)k + W ≠ 2 vertices.

In the following, we assume that W Ø 3 since otherwise the problem can be solved in
polynomial time [3, 23]. Let A ™ V (G) be the set of vertices of degree at least W , and let
B = V (G) \ A. We first bound the number of vertices in A.

I Lemma 5.3. If |A| Ø k · (W + 1), then (G, k) is a yes-instance.

By the lemma above, we can assume that |A| < k · (W + 1). We now modify the graph:
1. remove all vertices of B from G;
2. add an independent set BÕ of size Á|A| · W/(W ≠ 1)Ë + W ≠ 2;
3. for each v œ A, repeat the following process:

a. find min{|NG(v) fl B|, W} vertices in BÕ with degree at most W ≠ 2;
b. add the edges between v and the vertices chosen.

We call the resultant graph GÕ. Because W Ø 3, it holds that (W + 1)W/(W ≠ 1) Æ W + 3,
and thus |BÕ| Æ k(W +3)+W ≠2. This implies that |V (GÕ)| = |A|+|BÕ| Æ k(2W +4)+W ≠2.

To see that the step 3a is always possible, observe that before an execution of the
step 3a, at most W (|A| ≠ 1) edges between A and BÕ are added. On the other hand, if
there are at most W ≠ 1 vertices of degree at most W ≠ 2 in BÕ, then there are at least
(W ≠ 1)(|BÕ| ≠ (W ≠ 1)) Ø (W ≠ 1)(|A| · W/(W ≠ 1) + W ≠ 2 ≠ (W ≠ 1)) = W (|A| ≠ 1) + 1
edges between A and BÕ.

I Lemma 5.4. (G, k) is a yes-instance if and only if so is (GÕ, k).

6 Concluding remarks

We have presented metatheorems to show linear-time and polynomial-time solvability of
Max W -Heavy and Max W -Light, respectively. The metatheorems are applied to several
important classes of graphs. We believe our metatheorems can be applied to many other
graph classes. As the final remark, we present a similar result for the problem of finding a
maximum induced subgraph with bounded degeneracy.

I Theorem 6.1. For any fixed W , the problem of finding a maximum set of vertices that
induces a subgraph of degeneracy at most W can be solved in polynomial time for the classes
of chordal graphs, d-trapezoid graphs, circular-arc graphs, and chordal bipartite graphs, and
in linear time for graphs of bounded clique-width.
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Abstract
We study the online bounded-delay packet scheduling problem (PacketScheduling), where packets of
unit size arrive at a router over time and need to be transmitted over a network link. Each packet
has two attributes: a non-negative weight and a deadline for its transmission. The objective is to
maximize the total weight of the transmitted packets. This problem has been well studied in the
literature, yet its optimal competitive ratio remains unknown: the best upper bound is 1.828 [6],
still quite far from the best lower bound of φ ≈ 1.618 [10, 2, 4].

In the variant of PacketScheduling with s-bounded instances, each packet can be scheduled in
at most s consecutive slots, starting at its release time. The lower bound of φ applies even to
the special case of 2-bounded instances, and a φ-competitive algorithm for 3-bounded instances
was given in [3]. Improving that result, and addressing a question posed by Goldwasser [8], we
present a φ-competitive algorithm for 4-bounded instances.

We also study a variant of PacketScheduling where an online algorithm has the additional
power of 1-lookahead, knowing at time t which packets will arrive at time t+1. For PacketSchedul-
ing with 1-lookahead restricted to 2-bounded instances, we present an online algorithm with com-
petitive ratio 1
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13−1) ≈ 1.303 and we prove a nearly tight lower bound of 1
4 (1+

√
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21:2 Online Packet Scheduling with Bounded Delay and Lookahead

1 Introduction

Optimizing the flow of packets across an IP network gives rise to a plethora of challenging
algorithmic problems. In fact, even scheduling packet transmissions from a router across
a specific network link can involve non-trivial tradeoffs. Several models for such tradeoffs
have been formulated, depending on the architecture of the router, on characteristics of the
packets, and on the objective function.

In the model that we study in this paper, each packet has two attributes: a non-negative
weight and a deadline for its transmission. The time is assumed to be discrete (slotted), and
only one packet can be sent in each slot. The objective is to maximize the total weight of
the transmitted packets. We focus on the online setting, where at each time step the router
needs to choose a pending packet for transmission, without the knowledge about future
packet arrivals. This problem, which we call online bounded-delay packet scheduling problem
(PacketScheduling), was introduced by Kesselman et al. [11] as a theoretical abstraction that
captures the constraints and objectives of packet scheduling in networks that need to provide
quality of service (QoS) guarantees. The combination of deadlines and weights is used to
model packet priorities. In the literature, the PacketScheduling problem is sometimes referred
to as bounded-delay buffer management in QoS switches. It can also be formulated as the
job-scheduling problem 1|pj = 1, rj |

∑
wjUj , where packets are represented by unit-length

jobs with deadlines, with the objective to maximize the weighted throughput.
A router transmitting packets across a link needs to make scheduling decisions on

the fly, based only on the currently available information. This motivates the study of
online competitive algorithms for PacketScheduling. A simple online greedy algorithm that
always schedules the heaviest pending packet is known to be 2-competitive [10, 11]. In a
sequence of papers [5, 7, 12, 6], this ratio was gradually improved, and the best currently
known ratio is 1.828 [6]. The best lower bound, widely believed to be the optimal ratio, is
φ = (1 +

√
5)/2 ≈ 1.618 [10, 2, 4]. Closing the gap between these two bounds is one of the

most intriguing open problems in online scheduling.

s-Bounded instances. In an attempt to bridge this gap, restricted models have been
studied. In the s-bounded variant of PacketScheduling, each packet must be scheduled within
k consecutive slots, starting at its release time, for some k ≤ s possibly depending on the
packet. The lower bound of φ from [10, 2, 4] holds even in the 2-bounded case. A matching
φ-competitive algorithm was given Kesselman et al. [11] for 2-bounded instances and by
Chin et al. [3] for 3-bounded instances. Both results are based on the algorithm EDFα, with
α = φ, which always schedules the earliest-deadline packet whose weight is at least the weight
of the heaviest pending packet divided by α (ties are broken in favor of heavier packets).
EDFφ is not φ-competitive for 4-bounded instances; however, a different choice of α yields a
1.732-competitive algorithm for the 4-bounded case [3].

We present a φ-competitive online algorithm for PacketScheduling restricted to 4-bounded
instances, matching the lower bound of φ (see Section 3). This improves the results from [3]
and answers the question posed by Goldwasser in his SIGACT News survey [8].

Algorithms with 1-lookahead. We investigate a variant of PacketScheduling where an online
algorithm is able to learn at time t which packets will arrive by time t+ 1. This property
is known as 1-lookahead. From a practical point of view, 1-lookahead corresponds to the
situation in which a router can see the packets that are just arriving to the buffer and that
will be available for transmission in the next time slot.
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The notion of lookahead is quite natural and it has appeared in the online algorithm
literature for paging [1], scheduling [13] and bin packing [9] since the 1990s. Ours is the first
paper, to our knowledge, that considers lookahead in the context of packet scheduling.

We provide two results about PacketScheduling with 1-lookahead, restricted to 2-bounded
instances. First, in Section 4, we present an online algorithm with competitive ratio of
1
2 (
√

13− 1) ≈ 1.303. Then, in Section 5, we give a lower bound of 1
4 (1 +

√
17) ≈ 1.281 on the

competitive ratio of algorithms with 1-lookahead which holds already for the 2-bounded case.

2 Definitions and Notation

Formally, we define the PacketScheduling problem as follows. The instance is a set of packets,
with each packet p specified by a triple (rp, dp, wp), where rp and dp ≥ rp are integers
representing the release time and deadline of p, and wp ≥ 0 is a real number representing
the weight of p. Time is discrete, divided into unit time slots, also called steps. A schedule
assigns time slots to some subset of packets such that (i) any packet p in this subset is
assigned a slot in the interval [rp, dp], and (ii) each slot is assigned to at most one packet.
The objective is to compute a schedule that maximizes the total weight of the scheduled
packets, also called the profit.

In the s-bounded variant of PacketScheduling, we assume that each packet p in the instance
satisfies dp ≤ rp + s− 1. In other words, this packet must be scheduled within kp consecutive
slots, starting at its release time, for some kp ≤ s.

In the online variant of PacketScheduling, which is the focus of our work, at any time t
only the packets released at times up to t are revealed. Thus an online algorithm needs to
decide which packet to schedule at time t (if any) without any knowledge of packets released
after time t.

As is common in the area of online optimization, we measure the performance of an online
algorithm A by its competitive ratio. An algorithm is R-competitive if, for all instances, the
total weight of the optimal schedule (computed offline) is at most R times the weight of the
schedule computed by A.

We say that a packet is pending for an algorithm at time t, if rp ≤ t ≤ dp and p is not
scheduled before time t. A (pending) packet p is expiring at time t if dp = t, that is, it must
be scheduled now or never. A packet p is tight if rp = dp; thus p is expiring already at its
release time.

In Sections 4 and 5, we investigate the PacketScheduling problem with 1-lookahead. With
1-lookahead, the problem definition changes so that at time t, an online algorithm can also see
the packets that will be released at time t+ 1, in addition to the pending packets. Naturally,
only a pending packet can be scheduled at time t.

Other terminology and assumptions. We will make several assumptions about our problem
that do not affect the generality of our results. First, we can assume that all packets have
different weights. Any instance can be transformed into an instance with distinct weights
through infinitesimal perturbation of the weights, without affecting the competitive ratio.
Second, we assume that at each step there is at least one pending packet. (If not, we can
always release a tight packet of weight 0 at each step.)

We define the earliest-deadline relation on packets, or canonical ordering, denoted ≺,
where x ≺ y means that either dx < dy or dx = dy and wx > wy (so the ties are broken
in favor of heavier packets). At any step t, the algorithm maintains the earliest-deadline
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relation on the set of its pending packets. Throughout the paper, “earliest-deadline packet”
means the earliest packet in the canonical ordering.

Regarding the adversary (optimal) schedule, we can assume that it satisfies the following
earliest-deadline property: if packets p, p′ are scheduled in steps t and t′, respectively, where
rp′ ≤ t < t′ ≤ dp (that is, p and p′ can be swapped in the schedule without violating their
release times and deadlines), then p ≺ p′. This can be rephrased in the following useful
way: at any step, the optimum schedule transmits the earliest-deadline packet among all the
pending packets that it transmits in the future.

3 An Algorithm for 4-bounded Instances

In this section, we present a φ-competitive algorithm for 4-bounded instances. Ratio φ is
of course optimal [10, 2, 4, see also Section 1]. Up until now, the best competitive ratio for
4-bounded instances was

√
3 ≈ 1.732, achieved by algorithm EDF√3 in [3]. Our algorithm

can be seen as a modification of EDFφ, which under certain conditions schedules a packet
lighter than wh/φ where h is the heaviest pending packet.

We remark that our algorithm uses memory; in particular, it marks one pending packet
under certain conditions. It is an interesting question whether there is a memoryless φ-
competitive algorithm for 4-bounded instances.

Our algorithm, which we call ToggleH, maintains one mark that may be assigned to one
of the pending packets. For a given step t, we choose the following packets from among all
pending packets:

h = the heaviest packet,
s = the second-heaviest packet,
f = the earliest-deadline packet with wf ≥ wh/φ, and
e = the earliest-deadline packet with we ≥ wh/φ2.

We then proceed as follows:

if (h is not marked) ∨ (ws ≥ wh/φ) ∨ (de > t)
schedule f
if there is a marked packet then unmark it
if (dh = t+ 3) ∧ (df = t+ 2) then mark h

else // (h is marked) ∧ (ws < wh/φ) ∧ (de = t)
schedule e
unmark h

Note that when f 6= h, then the algorithm will always schedule f . This is because in this case
f is a candidate for s, so the condition ws ≥ wh/φ holds. The algorithm never specifically
chooses s for scheduling – it is only used to determine if there is one more relatively heavy
pending packet other than h. (But s may get scheduled if it so happens that s = f or s = e.)
Note also that, if e 6= f , then e is scheduled only in a very specific scenario, when all of the
following hold: e is expiring, h is marked, and ws < wh/φ.

We have two types of packets scheduled by Algorithm ToggleH: f-packets, scheduled using
the first case, and e-packets, scheduled using the second case. Similarly, we refer to the steps
as f -steps and e-steps.

Let us give a high-level view of the analysis using charging schemes and an example that
motivates both our algorithm and its analysis. The example consists of four packets j, k, f, h
released in step 1, with deadlines 1, 2, 3, 4 and weights 1 − ε, 1 − ε, 1, φ for a small ε > 0,
respectively. The optimum schedules all packets.
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Algorithm EDFφ performs only f -steps; in our example it schedules f and h in steps 1
and 2, while j and k are lost. Thus the ratio is larger than φ. (In fact, after optimizing the
threshold and the weight of h, this is the tight example for EDF√3 on 4-bounded instances.)
ToggleH avoids this example by performing e-step in step 2 and scheduling k which has the
role of e and s in the algorithm.

This example and its variants are also important for our analysis. We analyze the
algorithms by charging schemes, where the weight of each packet scheduled by the adversary
is charged to one or more of the slots of the algorithm’s schedule. If the weight charged to
each slot is at most R times the weight of the packet scheduled by the algorithm in that slot,
the algorithm is R-competitive. In the case of EDF, we charge the weight of each packet j
scheduled by the adversary at time t either fully to the step where EDF schedules j, if it is
before t, or fully to step t otherwise. In our example, the weight charged to step 1 is 2− ε
while EDF schedules only weight 1, giving the ratio 2. Considering steps 1 and 2 together
leads to a better ratio and after balancing the threshold it gives the tight analysis of EDF√3.

Our analysis of ToggleH is driven by the variants of the example above where step 2 is
an f -step. This may happen in several cases. One case is if in step 2 another packet s with
ws ≥ wh/φ arrives. If s is not scheduled in step 2, then s is pending in step 3, thus ToggleH
schedules a relatively heavy packet in step 3, and we can charge a part of the weight of f ,
scheduled in step 3 by the adversary, to step 3. This motivates the definition of regular up
and back charges below and corresponds to Case 5.1 in the analysis. Another case is when
the weight of k is changed to 1/φ− ε. Then ToggleH performs an f -step because k is not
a candidate for e, thus the role of e is taken by the non-expiring packet h. However, then
the weight of the four packets charged to steps 1 and 2 in the way described above is at
most φ times the weight of f and h; this corresponds to Case 5.2 of the analysis. Lemma 3.3
gives a subtle argument showing that in the 4-bounded case essentially these two variants
of our example are the only difficult situations. Finally, in the original example, ToggleH
schedules k in step 2 which is an e-step. Then again h is a pending heavy packet and we can
charge some weight of f to step 3. Intuitively it is important that an e-step is performed
only in a very specific situation where it is guaranteed that h can be scheduled in the next
two steps (as it is marked) and that there is no other packet of comparable weight due to the
condition ws < wh/φ. Still, there is a case to be handled: If more packets arrive in step 3, it
is also possible that the adversary schedules h already in step 2 and we need to redistribute
its weight. This case motivates the definition of the special up and back charges below.

I Theorem 3.1. Algorithm ToggleH is φ-competitive on 4-bounded instances.

Proof. Fix some optimal adversary schedule. Without loss of generality, we can assume that
this schedule satisfies the earliest-deadline property (see Section 2).

Let t be the current step. By h, f , e, and s we denote the packets from the definition of
ToggleH. By j we denote the packet scheduled by the adversary. By h′ and h′′ we denote the
heaviest pending packets in steps t+ 1 and t+ 2, respectively. We use the same convention
for packets f , e, s, and j.

Our analysis uses a new charging scheme which we now define. The adversary packet j
scheduled in step t is charged according to the first case below that applies:
1. If t is an e-step and j = h, we charge wh/φ to step t and wh/φ2 to step t− 1. We call

these charges a special up charge and a special back charge, respectively. Note that the
total charge is equal to wh = wj .

2. If j is pending for ToggleH in step t, charge wj to step t. We call this charge a full up
charge.
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21:6 Online Packet Scheduling with Bounded Delay and Lookahead

3. Otherwise j is scheduled before step t. We charge wh/φ2 to step t and wj −wh/φ2 to the
step where ToggleH scheduled j. We call these charges a regular up charge and a regular
back charge, respectively. We point out that the regular back charge may be negative,
but this causes no problems in the proof.

We start with an easy observation that we use several times throughout the proof.

I Lemma 3.2. If an f -step t receives a regular back charge, then the up charge it receives is
less than wh/φ.

Proof. For a regular up charge the lemma is trivial (with a slack of a factor of φ). For a full
up charge, the existence of a back charge implies that the adversary schedules f after j, thus
the earliest-deadline property of the adversary schedule implies that j ≺ f , as both j and f
are pending for the adversary at t. Thus ToggleH would schedule j if wj ≥ wh/φ. Finally,
an f -step does not receive a special up charge. J

We examine packets scheduled by ToggleH from left to right, that is in order of time. For
each time step t, if p is the packet scheduled at time t, we want to show that the charge to
step t is at most φwp. However, as it turns out, this will not always be true. In one case we
will also consider the next step t+ 1 and the packet p′ scheduled in step t+ 1, and show that
the total charge to steps t and t+ 1 is at most φ(wp + wp′).

Let t be the current step. We consider several cases.

Case 1: t is an e-step. By the definition of ToggleH, we ≥ wh/φ
2 and de = t; the latter

implies that step t receives no regular back charge. We further note that the heaviest pending
packet h′ in step t+ 1 is either released at time t+ 1 or it coincides with h, which is still
pending and became unmarked by the algorithm in step t; in either case h′ is unmarked at
the beginning of step t+ 1, which implies that step t+ 1 is an f -step. Thus, step t receives
no special back charge, which, combined with the previous observation, implies it receives no
back charge of any kind.

Now we claim that the up charge is at most wh/φ. For a special or regular up charge this
follows from its definition. For a full up charge, the job j is pending at time t for ToggleH
and j 6= h (as for j = h the special charges are used). This implies that wj < wh/φ, as
otherwise ws ≥ wh/φ and t would be an f -step. Thus the full charge is wj ≤ wh/φ as well.

Using we ≥ wh/φ2, the charge is at most wh/φ ≤ φwe and we are done.

Case 2: t is an f -step and t does not receive a back charge. Then t can only receive an
up-charge, and this up charge is at most wh ≤ φwf , where the inequality follows from the
definition of f .

Case 3: t is an f -step and t receives a special back charge. From the definition of special
charges, the next step is an e-step, and therefore h′ is marked at its beginning. Since the
only packet that may be marked after an f -step is h, we thus have h = h′ = j′, and the
special back charge is wh/φ2. Since f ≺ h, the adversary cannot schedule f after step t, so
step t cannot receive a regular back charge.

We claim that the up charge to step t is at most wf . Indeed, a regular up charge is at
most wh/φ2 ≤ wf , and a special up charge does not happen in an f -step. To show this
bound for a full up charge, assume for contradiction that wj > wf . This implies that j 6= f

and, since ToggleH scheduled f , we have dj > df . In particular j is pending at time t+ 1.
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ALG

t t + 1 t̄ = t + 2

OPT j j′ f

f h

t + 3

h

Figure 1 An illustration of the situation in Case 5.2. Up charges are denoted by solid arrows
and back charges by dashed arrows.

Thus ws′ ≥ wj > wf ≥ wh/φ, contradicting the fact that t+ 1 is an e-step. Therefore the
full charge is wj ≤ wf , as claimed.

As wh ≤ φwf , the total charge to t is at most wf + wh/φ
2 ≤ wf + wf/φ = φwf .

Case 4: t is an f -step, t receives a regular back charge and no special back charge, and
f = h. The up charge is at most wh/φ by Lemma 3.2 and the back charge is at most wh,
thus the total charge is at most wh + wh/φ = φwh, and we are done.

Case 5: t is an f -step, t receives a regular back charge and no special back charge, and
f 6= h. Let t̄ be the step when the adversary schedules f . We distinguish two sub-cases.

Case 5.1: In step t̄, a packet of weight at least wh/φ is pending for the algorithm. Then
the regular back charge to t is at most wf − (wh/φ)/φ2 = wf − wh/φ3. As the up charge
to t is at most wh/φ by Lemma 3.2, the total charge to t is at most wh/φ+ wf − wh/φ3 =
wf + wh/φ

2 ≤ (1 + 1/φ)wf = φwf , and we are done.

Case 5.2: In step t̄, no packet of weight at least wh/φ is pending for the algorithm. In this
case we consider the charges to steps t and t+ 1 together. First, we claim the following.

I Lemma 3.3. ToggleH schedules h in step t+ 1. Furthermore, step t+ 1 receives no special
charge and it receives an up charge of at most wh/φ2.

Proof. Since f 6= h, we have f ≺ h and thus, using also the definition of t̄ and 4-boundedness,
t̄ ≤ df < dh ≤ t + 3. The case condition implies that h is not pending at t̄, thus ToggleH
schedules h before t̄. The only possibility is that ToggleH schedules h in step t+ 1, t̄ = df =
t+ 2, and dh = t+ 3; see Figure 1 for an illustration. This also implies that ToggleH marks
h in step t.

We claim that ws′ < wh/φ. Indeed, otherwise either s′ is pending in step t+ 2, contra-
dicting the condition of Case 5.2, or ds′ = t + 1 < dh, thus s′ is a better candidate for f ′
than h, which contradicts the fact that the algorithm scheduled f ′ = h.

The claim also implies that h′ = h, as otherwise ws′ ≥ wh. Since h = h′ is scheduled in
step t+ 1, there is no marked packet in step t+ 2 and t+ 2 is an f -step; thus there is no
special back charge to t+ 1.

We note that step t + 1 is also an f -step, since ToggleH schedules h in step t + 1 and
dh > t+ 1. Since h′ = h is marked when step t+ 1 starts and ws′ < wh/φ, the reason that
step t+ 1 is an f -step must be that de′ > t+ 1.

There is no special up charge to step t+ 1 as it is an f -step. If the up charge to step t+ 1
is a regular up charge, by definition it is at most wh′/φ2 = wh/φ

2 and the lemma holds.
The only remaining case is that of a full up charge to step t+ 1 from a packet j′ scheduled

by the adversary in step t + 1 and pending for ToggleH in step t + 1. Since j′ 6= h, it
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is a candidate for s′, and thus wj′ < wh/φ ≤ wf . The earliest-deadline property of the
adversary schedule implies that j′ ≺ f ; together with df = t+ 2 and wj′ < wf this implies
dj′ = t+ 1. Therefore wj′ < wh/φ

2, as otherwise j′ is a candidate for e′, but we have shown
that de′ > t+ 1. Thus the regular up charge is at most wj′ < wh/φ

2 and the lemma holds
also in the remaining case. J

By Lemma 3.3, step t+ 1 receives no special charge and an up charge of at most wh/φ2

and ToggleH schedules h in step t+ 1. Step t+ 1 thus also receives a regular back charge of
at most wh. So the total charge to step t+ 1 is at most wh/φ2 +wh ≤ wf/φ+wh. Moreover,
using Lemma 3.2, the total charge to step t is at most wh/φ+ wf . Thus, the total charge to
these two steps is at most (wh/φ+ wf ) + (wf/φ+ wh) = φ(wf + wh), as f and h are the
two packets scheduled by ToggleH.

In each case we have shown that a step or a pair of consecutive steps receive a total
charge of at most φ times the weight of packets scheduled in these steps. Thus ToggleH is
φ-competitive for the 4-bounded case. J

4 An Algorithm for 2-Bounded Instances with Lookahead

In this section, we present an algorithm for 2-bounded PacketScheduling with 1-lookahead, as
defined in Section 2.

Consider some online algorithm A. Recall that, for a time step t, packets pending for A
are those that are released at or before time t and have neither expired nor been scheduled
by A before time t. Lookahead packets at time t are the packets with release time t + 1.
For A, we define the plan in step t to be the optimal schedule in the time interval [t,∞)
that consists of pending and lookahead packets at time t and has the earliest-deadline
property. For 2-bounded instances, this plan will only use slots t, t+ 1 and t+ 2. We will
typically denote the packets in the plan scheduled in these slots by p1, p2, p3, respectively.
The earliest-deadline property then implies that if both p1 and p2 have release time t and
deadline t+ 1 then p1 is heavier than p2 and similarly for p2 and p3.

Fix some parameter α > 1. At any time step t, our algorithm CompareWithBias(α)
proceeds as follows:

let p1, p2, p3 be the plan at time t
if rp2 = t and wp1 < min(wp2 , wp3 ,

1
2α (wp2 + wp3) )

then schedule p2
else schedule p1

Note that if the algorithm schedules p2 then p1 must be expiring, for otherwise wp1 > wp2 (by
canonical ordering). Also, the scheduled packet is at least as heavy as the heaviest expiring
packet q, since clearly wp1 ≥ wq and the algorithm schedules p2 only if wp1 < wp2 .

I Theorem 4.1. The algorithm CompareWithBias(α) is R-competitive for packet schedul-
ing on 2-bounded instances for R = 1

2 (
√

13− 1) ≈ 1.303 if α = 1
4 (
√

13 + 3) ≈ 1.651.

Let ALG be the schedule produced by CompareWithBias. Let us consider an optimal
schedule OPT (a.k.a. schedule of the adversary) satisfying the canonical ordering, i.e., if a
packet x is scheduled before a packet y in OPT then either y is released after x is scheduled
or x ≺ y. Recall that we are assuming w.l.o.g. that the weights of packets are different.

The analysis of CompareWithBias is based on a charging scheme. First we define a
few packets by their schedule times:
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ALG

t− 1 t

OPT j

j

a full back charge

ALG

t

OPT j

f

a full up charge

ALG

t t + 1

OPT j

f g ALG

t t + 1 t + 2

OPT j

f g h

a close split charge a distant split charge

f f

Figure 2 Non-chaining charges. Note that for split charges f is scheduled in step t + 1 in OPT
which follows from the fact that we do not charge j using a full up charge.

j = packet scheduled in step t in OPT,
f = packet scheduled in step t in ALG,
g = packet scheduled in step t+ 1 in ALG.

Informal description of charging. We use three types of charges. The adversary’s packet j
in step t is charged using a full charge either to step t− 1 if ALG schedules j in step t− 1 or
to step t if wf ≥ wj (including the case f = j) and f is not in step t+ 1 in OPT; the last
condition assures that step t does not receive two full charges.

The second type are split charges that occur in step t if wf > wj , j is pending in step t
in ALG and f is in step t+ 1 in OPT, i.e., step t receives a full back charge from f . In this
case, we distribute the charge from j to f and another relatively large packet f ′ scheduled in
step t+ 1 or t+ 2 in ALG; we shall prove that one of these steps satisfies 2α·wj < wf + w′f .
We charge to step t+ 2 only when it is necessary, which allows us to prove that split-charge
pairs are pairwise disjoint. Also, in this case we analyze the charges to both steps together,
thus it is not necessary to fix a distribution of the weight to the two steps.

The remaining case is when wf < wj and j is not scheduled in t− 1 in ALG. We analyze
these steps in maximal consecutive intervals, called chains and the corresponding charges
are chain charges. Inside each chain we distribute the charge of each packet j scheduled at t
in OPT to steps t− 1, t and t+ 1, if these steps are also in the chain. The distribution of
weights shall depend on a parameter δ. Packets at the beginning and at the end of the chain
are charged in a way that minimizes the charge to steps outside of the chain. In particular,
the step before a chain receives no charge from the chain.

Notations and the charging scheme. A step t for which wf < wj and j is pending in step
t in ALG is called a chaining step. A maximal sequence of successive chaining steps is called
a chain. The chains with a single step are called singleton chains, the chains with at least
two steps are called long chains.

The pair of steps that receive a split charge from the same packet is called a split-charge
pair. The charging scheme does not specify the distribution of the weight to the two steps of
the split-charge pair, as the charges to them are analyzed together.

Let δ = 1
6 (5−

√
13) ≈ 0.232. Packet j scheduled in OPT at time t is charged according

to the first rule below that applies. See Figures 2 and 3 for an illustration of different types
of charges.

1. If j is scheduled in step t− 1 in ALG, charge wj to step t− 1. We call this charge a full
back charge.

2. If wf ≥ wj and f is not scheduled in step t+ 1 in OPT (in particular, if j = f), charge
wj to step t. We call this charge a full up charge.

ISAAC 2016
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ALG

t− 1 t t + 1 t + 2

OPT i j k

e f g h ALG

t t + 1

OPT j

f g

a singleton chaina chain of length 3

Figure 3 On the left, a chain of length 3 starting in step t − 1 and ending in step t + 1. The
chain beginning charges are denoted by dotted (blue) lines, the chain end charges are denoted by
gray lines and the forward charge from a chain is depicted by a dashed (red) arrow. Black arrows
denote the chain link charges. On the right, an example of a singleton chain, with the up charge
from a singleton chain denoted with a dashed (green) line and the forward charge from a singleton
chain denoted with a dotted (orange) line.

3. If wf > wj and at least one of the following holds:
2α·wj < wf + wg,
g does not get a full back charge and 2α·(wp1 − wg) < wf + wg where p1 is the first
packet in the plan at time t,

then charge wj to the pair of steps t and t+ 1. We call this charge a close split charge.
4. If wf > wj , then charge wj to the pair of steps t and t+ 2. We call this charge a distant

split charge.
5. Otherwise step t is a chaining step, as wf < wj and ALG does not schedule f in step t− 1

by the previous cases. We distinguish the following subcases.
a. If step t is (the only step of) a singleton chain, then charge min(wj , R·wf ) to step t

and wj −R·wf to step t+ 1 if wj > R·wf . We call these charges an up charge from a
singleton chain and a forward charge from a singleton chain.

b. If step t is the first step of a long chain, charge 2δ·wj to step t, and (1− 2δ)·wj to step
t+ 1. We call these charges chain beginning charges.

c. If step t is the last step of a long chain, charge δ·wj to step t− 1, (R− 1 + 2δ)·wf to
step t, and (1− δ)·wj − (R− 1 + 2δ)·wf to step t+ 1. We call these charges chain end
charges; the charge to step t+ 1 is called a forward charge from a chain. (Note that
we always have (1− δ)·wj > (R− 1 + 2δ)·wf , since wj > wf and 1− δ = R− 1 + 2δ.)

d. Otherwise, i.e., step t is inside a long chain, charge δ·wj to step t− 1, δ·wj to step t,
and (1− 2δ)·wj to step t+ 1. We call these charges chain link charges.

The analysis of our charging scheme is omitted due to space limitation.

5 A Lower Bound for 2-bounded Instances with Lookahead

In this section, we prove that there is no online algorithm for PacketScheduling with 1-
lookahead that has competitive ratio smaller than 1

4 (1 +
√

17) ≈ 1.281, even for 2-bounded
instances. The idea of our proof is somewhat similar to the proof of the lower bound of φ for
PacketScheduling [10, 2, 4].

I Theorem 5.1. Let R = 1
4 (1 +

√
17). For each ε > 0, no deterministic online algorithm for

PacketScheduling with 1-lookahead can be (R− ε)-competitive, even for 2-bounded instances.

Proof. Fix some online algorithm A and some ε > 0. We will show that, for some sufficiently
large integer n and sufficiently small δ > 0, there is a 2-bounded instance of PacketScheduling
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with 1-lookahead, parametrized by n and δ, for which the optimal profit is at least (R− ε)
times the profit of A.

Our instance will consist of phases 0, . . . , k, for some k ≤ n. In each phase i < n we will
release three packets whose weights will grow roughly exponentially from one phase to next.
The number k of phases is determined by the adversary based on the behavior of A.

The adversary strategy is as follows. We start with phase 0. Suppose that some phase
i, where 0 ≤ i < n, has been reached. In phase i the adversary releases the following three
packets:

A packet ai with weight wi, release time 2i+ 1 and deadline 2i+ 1, i.e., a tight packet.
A packet bi with weight wi+1, release time 2i+ 1 and deadline 2i+ 2.
A packet ci with weight wi+1, release time 2i+ 2 and deadline 2i+ 3.

(The weights wi will be specified later.) Now, if A schedules an expiring packet in step 2i+ 1
(a tight packet ai or ci−1, which may be pending from the previous phase), then the game
continues; the adversary will proceed to phase i + 1. Otherwise, the algorithm schedules
packet bi, in which case the adversary lets k = i and the game ends. Note that in step 2i+ 2
the algorithm may schedule only bi or ci, each having weight wi+1. Also, importantly, in step
2i+ 1 the algorithm cannot yet see whether the packets from phase i+ 1 will arrive or not.

If phase i = n is reached, then in phase n the adversary releases a single packet an with
weight wn and release time and deadline 2n+ 1, i.e., a tight packet.

We calculate the ratio between the weight of packets in an optimal schedule and the
weight of packets sent by the algorithm. Let Sk =

∑k
i=0 wi. There are two cases: either

k < n, or k = n.

Case 1: k < n. In all steps 2i+ 1 for i < k algorithm A scheduled an expiring packet of
weight wi and in step 2k+ 1 it scheduled packet bk of weight wk+1. In an even step 2i+ 2 for
i ≤ k it scheduled a packet of weight wi+1. Note that there is no packet scheduled in step 2k+3.
Overall, A scheduled packets of total weight Sk−1 + wk+1 + Sk+1 − w0 = 2Sk+1 − wk − w0.

The adversary schedules packets of weight wi+1 in steps 2i+ 1 and 2i+ 2 for i < k and
all packets from phase k in steps 2k + 1, 2k + 2 and 2k + 3. In total, the optimum has a
schedule of weight 2Sk+1 − 2w0 + wk. The ratio is

Rk = 2Sk+1 + wk − 2w0

2Sk+1 − wk − w0
.

Case 2: k = n. As before, in all odd steps 2i + 1 for i < n algorithm A scheduled an
expiring packet of weight wi and in all even steps 2i+ 2 for i < n it scheduled a packet of
weight wi+1. In the last step 2n+ 1 it scheduled a packet of weight wn as there is no other
choice. Overall, the total weight of A’s schedule is 2Sn − w0.

The adversary schedules packets of weight wi+1 in steps 2i+ 1 and 2i+ 2 for i < n and a
packet of weight wn in the last step 2n+ 1 which adds up to 2Sn − 2w0 + wn. The ratio is

R̂n = 2Sn + wn − 2w0

2Sn − w0
.

We start with an intuitive explanation which leads to the optimal setting of weights wi
and the ratio R for the instances of the type described above. We normalize the instances so
that w0 = 1. We want to set the weights so that Rk ≥ R−ε for all k ≥ 0 and R̂n ≥ R−ε. We
first find the weights depending on δ such that Rk = R for all k ≥ 1. Using wk = Sk − Sk−1
for k ≥ 1 and w0 = 1, the condition Rk = R for k ≥ 1 is rewritten as

R = 2Sk+1 + Sk − Sk−1 − 2
2Sk+1 − Sk + Sk−1 − 1 , (1)
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or equivalently as

(2R− 2)Sk+1 − (R+ 1)Sk + (R+ 1)Sk−1 = −(2−R) . (2)

A general solution of this linear recurrence with S0 = w0 = 1 and a parameter δ is

Sk = (γ + 1)αk + δ(βk − αk)− γ , (3)

where α < β are the two roots of the characteristic polynomial of the recurrence (2R −
2)x2 − (R + 1)x+ (R + 1) and γ = (2− R)/(2R − 2). To justify (3), a general solution is
Aαk +Bβk − γ for parameters A and B and a suitable constant γ. Considering A = B = 0,
the value γ = (2 − R)/(2R − 2) follows. Considering the constraint S0 = 1, we obtain
A+B = γ + 1; our parametrization by δ in (3) is equivalent but more convenient for further
analysis.

In our case of R = 1
4 (1 +

√
17) a calculation gives

α = R+ 1
2 = 1

4 (3 +
√

17) , β = R+ 1 = 1
4 (5 +

√
17) and γ = R = 1

4 (1 +
√

17) . (4)

A calculation shows that for δ = 0, the solution satisfies R0 = R. We choose a solution with
a sufficiently small δ > 0 which guarantees R0 ≥ R − ε. Since 1 < α < β, for large n, the
dominating term in Sn is δβn. Thus

lim
n→∞

R̂n = lim
n→∞

2Sn + Sn − Sn−1

2Sn
= lim
n→∞

3δβn − δβn−1

2δβn = 3β − 1
2β = R . (5)

The last equality is verified by a direct calculation; actually it is the equation that defines
the optimal R for our construction (if β as the root of the characteristic polynomial of the
recurrence is expressed in terms of R).

For a formal proof, we set w0 = 1 and for i = 1, 2, . . .,

wi = (γ + 1)αk−1(α− 1) + δ(βk−1(β − 1)− αk−1(α− 1)) ,

where the parameters α, β and γ are given by (4) and δ > 0 is sufficiently small. By a
routine calculation we verify (3) and (2). Thus Rk = R for k ≥ 1. For R0, we first verify
that δ = 0 would yield w1 = α and R0 = R. By continuity of the dependence of w1 and
R0 on δ, for a sufficiently small δ > 0, we have R0 ≥ R − ε; fix such a δ > 0. Now, for
n→∞, Sn = δβn +O(αn) = δβn(1 + o(1)). Thus, the calculation (5) gives limn→∞ R̂n = R.
Consequently, R̂n ≥ R− ε for a sufficiently large n of our choice. This defines the required
instance and completes the proof. J
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Abstract
Recent work by Elmasry et al. (STACS 2015) and Asano et al. (ISAAC 2014) reconsidered
classical fundamental graph algorithms focusing on improving the space complexity. Elmasry et
al. gave, among others, an implementation of depth first search (DFS) of a graph on n vertices
and m edges, taking O(m lg lgn) time1 using O(n) bits of space improving on the time bound of
O(m lgn) due to Asano et al. Subsequently Banerjee et al. (COCOON 2016) gave an O(m+ n)
time implementation using O(m+n) bits, for DFS and its classical applications (including testing
for biconnectivity, and finding cut vertices and cut edges). Recently, Kammer et al. (MFCS 2016)
gave an algorithm for testing biconnectivity using O(n+ min{m,n lg lgn}) bits in linear time.

In this paper, we consider O(n) bits implementations of the classical applications of DFS.
These include the problem of finding cut vertices, and biconnected components, chain decomposi-
tion and st-numbering. Classical algorithms for them typically use DFS and some Ω(lgn) bits of
information at each node. OurO(n)-bit implementations for these problems takeO(m lgc n lg lgn)
time for some small constant c (c ≤ 3). Central to our implementation is a succinct representa-
tion of the DFS tree and a space efficient partitioning of the DFS tree into connected subtrees,
which maybe of independent interest for space efficient graph algorithms.

1998 ACM Subject Classification F.1.1 Models of Computation, F.2.2 Nonnumerical Algorithms
and Problems, G.2.2 Graph Theory

Keywords and phrases biconnectivity, st-number, chain decomposition, tree cover, space efficient
algorithms, read-only memory
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1 Introduction

Motivated by the rapid growth of huge data sets (“big data”), space efficient algorithms
are becoming increasingly important than ever before. The proliferation of handheld or
embedded devices that are equipped with only a small amount of general-purpose memory
provides another motivation for studying space efficient algorithms. In some of these devices,
writing in the memory is a costly operation in terms of both speed and time than reading.

1 We use lg to denote logarithm to the base 2.
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In such scenarios, algorithms that do not modify the input and use only a limited amount of
work space are very much desired.

The standard model to study space efficient algorithms is the read-only memory model,
and there is a rich history in computational complexity theory of such algorithms which use
as little space as possible. In particular, L (also known as LSPACE or DLOGSPACE) is the
complexity class containing decision problems that can be solved by a deterministic Turing
machine using only logarithmic amount of work space for computation. There are several
important algorithmic results [15, 12] for this class, the most celebrated being Reingold’s
method [30] for checking reachability between two vertices in an undirected graph. Barnes
et al [7] gave a slightly sublinear space (using n/2Θ(

√
lg n bits) algorithm for directed s-t

connectivity with polynomial running time. Space-efficient algorithms for classical selection
and sorting problems [26, 27], and problems in computational geometry have also been
studied [5, 6]. Recent work has focused on space requirement in special classes of graphs like
planar and H-minor free graphs [9, 2].

For most of these algorithms using small space i.e., sublinear bits, their running time
is often some polynomial of very high degree. Tompa [36] showed that for directed s-t
connectivity, if the number of bits available is o(n) then some natural algorithmic approaches
to the problem require superpolynomial time. Thus it is sensible to focus (as in the case
of some the recent papers like that of [16, 1, 4, 3, 24]) on designing algorithms that use
O(n) bits of workspace. Our main objective here is to reduce the working space of the
classical algorithms to O(n) bits with little or no penalty in running time. In these recent
series of papers [16, 1, 4, 3, 24] space-efficient algorithms for only a few basic algorithmic
graph problems are discussed: DFS, BFS, topological sort, strongly connected components,
sparse spanning biconnected subgraph, among others. We add to this growing body of space-
efficient algorithm design literature by providing such algorithms for a few more classical
algorithmic graph problems, namely biconnectivity, st-numbering and chain decomposition.

1.1 Our results and organization of the paper

Our starting point is an O(m+ n) time and O(n lg(m/n)) bits implementation for DFS and
for finding a ‘chain decomposition’ using which we can find cut vertices, bridges, maximal
biconnected components and ear decomposition (see Section 2 for definitions). This improves
an earlier O(m+ n) time and O(m+ n) bits implementation [3] (see Theorem 4). The space
used by these algorithms, for some ranges of m (say Θ(n(lg lgn)c for some constant c), is
even better than that of the recent work by Kammer et al [24], that computes cut vertices
using O(n+ min{m,n lg lgn}) bits. This implementation appears in Section 3.

Chain decomposition is an important preprocessing routine for an algorithm to find cut
vertices and biconnected components and also to test 3-connectivity [31] among others. In
Section 5, we give an algorithm that takes O(m lg3 n lg lgn) time using O(n) bits, improving
on previous implementations that took Ω(n lgn) bits or Θ(m+ n) bits.

In Section 6, we give improved algorithms for finding cut vertices and biconnected
components by giving a space efficient implementation of Tarjan’s classical lowpoint algorithm.
This takes O(m lgn lg lgn) time.

Given a biconnected graph, and two distinguished vertices s and t, st-numbering is a
numbering of the vertices of the graph so that s gets the smallest number, t gets the largest
and every other vertex is adjacent both to a lower-numbered and to a higher-numbered
vertex. Finding an st-numbering is an important preprocessing routine for a planarity
testing algorithm. In Section 7, we give an algorithm to determine an st-numbering of a
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biconnected graph that takes O(m lg2 n lg lgn) time using O(n) bits. This improves the
earlier implementations that take Ω(n lgn) bits.

Techniques. There are several approaches to find cut vertices and biconnected components.
An algorithm due to Tarjan [34] is the standard ‘textbook’ algorithm, and another due to
Schmidt [32] is based on chain decomposition of graphs. Both these approaches compute
DFS and process the DFS tree in specific order maintaining some auxiliary information of
the nodes. To implement these in O(n) bits, our main idea is to process the nodes of the
DFS tree in batches of O(n/ lgn) nodes. Towards that, we use tree-cover algorithms (that
are used in succinct representations of trees) that partition a tree into connected subtrees.
This is described in detail in Section 4.

Model of Computation. Like all the recent research that focused on space-efficient graph
algorithms [16, 1, 4, 3, 24], here also we assume that the input graph is given in a read-only
memory (and so cannot be modified). If an algorithm must do some outputting, this is
done on a separate write-only memory. When something is written to this memory, the
information cannot be read or rewritten again. So the input is “read only” and the output
is “write only”. In addition to the input and the output media, a limited random-access
workspace is available. The data on this workspace is manipulated at word level as in the
standard word RAM model, where the machine consists of words of size w = Ω(lgn) bits;
and any logical, arithmetic, and bitwise operations involving a constant number of words take
a constant amount of time. We count space in terms of the number of bits in the workspace
used by the algorithms. Historically, this model is called the register input model and it
was introduced by Frederickson [20] while studying some problems related to sorting and
selection. We assume that the input graph G = (V,E) is represented using adjacency array,
i.e., given a vertex v and an integer k, we can access the kth neighbor of vertex v in constant
time. This representation was used in [16, 3, 24] recently to design various space efficient
graph algorithms. We use n and m to denote the number of vertices and the number of
edges respectively, in the input graph G. Throughout the paper, we assume that the input
graph is a connected graph, and hence m ≥ n− 1.

2 Preliminaries

Rank-Select. Given a bitvector B of length n, the rank and select operations are defined
as follows:

ranka(i, B) = number of occurrences of a ∈ {0, 1} in B[1, i], for 1 ≤ i ≤ n;
selecta(i, B) = position in B of the ith occurrence of a ∈ {0, 1}.

The following theorem gives an efficient structure to support these operations.

I Theorem 1 ([11]). Given a bitstring B of length n, one can construct a o(n)-bit auxiliary
structure to support rank and select operations in O(1) time. Also, such a structure can be
constructed from the given bitstring in O(n) time.

Space-efficient DFS. Elmasry et al. [16] showed the following tradeoff result for DFS,

I Theorem 2 ([16]). For every function t : N→ N such that t(n) can be computed within
the resource bound of this theorem (e.g., in O(n) time using O(n) bits), the vertices of a
graph G can be visited in depth first order in O((m+ n)t(n)) time with O(n+ n lg lg n

t(n) ) bits.

ISAAC 2016
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In particular, fixing t(n) = O(lg lgn), we obtain a DFS implementation which runs in
O(m lg lgn) time using O(n) bits. We build on top of this DFS algorithm to design all of
our space-efficient algorithms.

Graph theoretic terminology. A cut vertex in an undirected graph is a vertex that when
removed (with its incident edges) from a graph creates more components than previously in
the graph. Similarly, a bridge is an edge that when removed (the vertices stay in place) from
a graph creates more components than previously in the graph. A graph is biconnected if it
is connected and contains at least 3 vertices, but no cut vertex. A graph is 2-edge-connected
if it is connected and contains at least 2 vertices, but no bridge. Let G = (V,E) be a
biconnected graph and s 6= t ∈ V . An ordering s = v1, v2, · · · , vn = t of the vertices of G is
called an st-ordering, if for all vertices vj , 1 < j < n, there exist 1 ≤ i < j < k ≤ n such that
{vi, vj}, {vj , vk} ∈ E. It is well-known that G is biconnected if and only if, for every edge
{s, t} ∈ E, it has an st-ordering.

Chain decomposition and its application. Schmidt [31] introduced a decomposition of the
input graph that partitions the edge set of the graph into cycles and paths, called chains,
and used this to design an algorithm to find cut vertices and biconnected components [32]
and also to test 3-connectivity [31] among others. In this section we discuss the details of
the decomposition algorithm and some of the applications for which we give space efficient
implementations in the paper later.

The algorithm first performs a depth first search on G. Let r be the root of the DFS tree
T . DFS assigns an index to every vertex v, namely, the time vertex v is discovered for the
first time during DFS – call it the depth-first-index of v (DFI(v)). Imagine that the back
edges are directed away from r and the tree edges are directed towards r. The algorithm
decomposes the graph into a set of paths and cycles called chains as follows. First we mark
all the vertices as unvisited. Then we visit every vertex starting at r in the increasing order
of DFI, and do the following. For every back edge e that originates at v, we traverse a
directed cycle or a path. This begins with v and the back edge e and proceeds along the tree
towards the root and stops at the first visited vertex or the root. During this step, we mark
every encountered vertex as visited. This forms the first chain. Then we proceed with the
next back edge at v, if any, or move towards the next vertex in the increasing DFI order and
continue the process. Let D be the collection of all such cycles and paths. Notice that the
cardinality of this set is exactly the same as the number of back edges in the DFS tree as
each back edge contributes to a cycle or a path. Also, as initially every vertex is unvisited,
the first chain would be a cycle as it would end in the starting vertex. Schmidt proved the
following theorem.

I Theorem 3 ([32]). Let D be a chain decomposition of a connected graph G(V,E). Then G
is 2-edge-connected if and only if the chains in D partition E. Also, G is 2-vertex-connected
if and only if δ(G) ≥ 2 (where δ(G) denotes the minimum degree of G) and D1 is the only
cycle in the set D where D1 is the first chain in the decomposition. An edge e in G is bridge
if and only if e is not contained in any chain in D. A vertex v in G is a cut vertex if and
only if v is the first vertex of a cycle in D \D1.

Banerjee et al. [3] gave a space-efficient implementation of Theorem 3. En route they also
provided an improved implementation for DFS (over Theorem 2) in sparse graphs (m = O(n)
edges). In particular, they proved the following,
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I Theorem 4 ([3]). A DFS traversal of an undirected or directed graph G can be performed
in O(m + n) time using O(m + n) bits. In the same amount of time and space, given a
connected undirected graph G, we can perform a chain decomposition of G, and using that we
can determine whether G is 2-vertex (and/or edge) connected. If not, in the same amount of
time and space, we can compute all the bridges, cut vertices, and output 2-vertex (and edge)
connected components.

Kammer et al. [24] recently improved the space bound for finding cut vertices, still using
linear time to O(n+min{m,n lg lgn}) bits.

3 DFS and applications using O(n lg(m/n)) bits

One can easily implement the tests in Theorem 3 in O(m) time using O(m) words, by storing
the DFIs and the entire chain decomposition, D. It is not too hard to improve the space to
O(n) words, still maintaining the O(m) running time. Theorem 4 shows how to perform the
tests using O(m+n) bits and O(m) time. The central idea there is to maintain the DFS tree
using O(m+ n) bits using an unary encoding of the degree sequence of the graph. We first
show how the space for the DFS tree representation can be improved to O(n lgm/n) bits.

I Lemma 5. Given the adjacency array representation of an undirected graph G on n vertices
with m edges, using O(m) time, one can construct an auxiliary structure of size O(n lg(m/n))
bits that can store a “pointer” into an arbitrary position within the adjacency array of each
vertex. Also, updating any of these pointers (within the adjacency array) takes O(1) time.

Proof. We first scan the adjacency array of each vertex and construct a bitvector B as
follows: starting with an empty bitvector B, for 1 ≤ i ≤ n, if di is the length of the adjacency
array of vertex vi (i.e., its degree), then we append the string 0dlg die−11 to B. The length of
B is

∑n
i=1dlg die, which is bounded by O(n lg(m/n)). We construct auxiliary structures to

support select queries on B in constant time, using Theorem 1. We now construct another
bitvector P of the same size as B, which stores pointers into the adjacency arrays of each
vertex. The pointer into the adjacency array of vertex vi is stored using the dlg die bits in
P from position select(i − 1, B) + 1 to position select(i, B), where select(0, B) is defined
to be 0. Now, using select operations on B and using constant time word-level read/write
operations, one can access and/or modify these pointers in constant time. J

I Lemma 6. Given a graph G with n vertices and m edges, in the adjacency array repres-
entation in the read-only memory model, the representation of a DFS tree can be stored using
O(n lg(m/n)) additional bits, which can be constructed on the fly during the DFS algorithm.

Proof. We use the representation of Lemma 5 to store parent pointers into the adjacency
array of each vertex. In particular, whenever the DFS outputs an edge (u, v), where u is the
parent of v, we scan the adjacency array of v to find u and store a pointer to that position
(within the adjacency array of v). The additional time for scanning the adjacency arrays
adds upto O(m) which would be subsumed by the running time of the DFS algorithm. J

We call the representation of the DFS tree of Lemma 6 as the parent pointer representation.
Now given Lemma 5 and 6, we can simulate the DFS algorithm of [3] (Theorem 4) to obtain
an O(n lg(m/n)) bits and O(m+n) time (see [3] for details) DFS implementation. The proof
of Theorem 4 then uses another O(m+ n) bits to construct the chain decomposition of G
and perform the tests as mentioned in Theorem 3, and we show here how even the space for
the construction of a chain decomposition and performing the tests can be improved. We
summarize our results in the following theorem below:
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I Theorem 7 (♠2). A DFS traversal of an undirected or directed graph G can be performed
in O(m+ n) time using O(n lg(m/n)) bits of space. In the same amount of time and space,
given a connected undirected graph G, we can perform a chain decomposition of G, and using
that we can determine whether G is 2-vertex (and/or edge) connected. If not, in the same
amount of time and space, we can compute all the bridges, cut vertices, and output 2-vertex
(and edge) connected components.

The above result for DFS improves the tradeoff result of Theorem 2 for relatively sparse
graphs. Specifically, to achieve O(m+ n) time for DFS, the algorithm of Theorem 2 uses
O(n lg lgn) bits. This is Ω(n lg(m/n)) for all values of m where m = O(n lgn). Hence, for
sparse graphs we obtain a better tradeoff. Also, it improves the space bound of Theorem 4,
from O(m + n) to O(n lg(m/n)), while maintaining the same linear running time. In
addition, it improves the algorithm for finding the cut vertices by Kammer et al. [24] from
O(n+ min{m,n lg lgn}) to O(n lg(m/n)).

4 Tree Cover and Space Efficient Construction

Central to all of our algorithms is a decomposition of the DFS tree. For this we use the
well-known tree covering technique which was first proposed by Geary et al. [21] in the
context of succinct representation of rooted ordered trees. The high level idea is to decompose
the tree into subtrees called minitrees, and further decompose the mini-trees into yet smaller
subtrees called microtrees. The microtrees are tiny enough to be stored in a compact table.
The root of a minitree can be shared by several other minitrees. To represent the tree,
we only have to represent the connections and links between the subtrees. Later He et
al. [23] extended this approach to produce a representation which supports several additional
operations. Farzan and Munro [18] modified the tree covering algorithm of [21] so that each
minitree has at most one node, other than the root of the minitree, that is connected to the
root of another minitree. This simplifies the representation of the tree, and guarantees that
in each minitree, there exists at most one non-root node which is connected to (the root of)
another minitree. The tree decomposition method of Farzan and Munro [18] is summarized
in the following theorem:

I Theorem 8 ([18]). A rooted ordered tree with n nodes can be decomposed into Θ(n/L)
minitrees of size at most 2L which are pairwise disjoint aside from the minitree roots.
Furthermore, aside from edges stemming from the minitree root, there is at most one edge
leaving a node of a minitree to its child in another minitree. The decomposition can be
performed in linear time.

In our algorithms, we apply Theorem 8 with L = n/ lgn. For this parameter L, since
the number of minitrees is only O(lgn), we can represent the structure of the minitrees
within the original tree (i.e., how the minitrees are connected with each other) using O(lg2 n)
bits. The decomposition algorithm of [18] ensures that each minitree has at most one ‘child’
minitree (other than the minitrees that share its root) in this structure. (We use this property
crucially in our algorithms.) We refer to this as the minitree-structure.

Explicitly storing all the minitrees requires ω(n) bits. One way to represent them efficiently
is to store them using any linear-bit encoding of a tree. But this representation doesn’t allow
us to efficiently compute the preorder numbers of the nodes, for example. Instead, we encode

2 For proofs of results marked with (♠), please refer to the full version [10].
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the entire tree structure using a linear-bit encoding, and store pointers into this encoding
to represent the minitrees, as described below. We first encode the tree using the balanced
parenthesis (BP) representation [28], summarized in the following theorem.

I Theorem 9 ([28]). Given a rooted ordered tree T on n nodes, it can be represented as a
sequence of balanced parentheses of length 2n. Using an additional o(n) bits, we can support
subtree size and navigational queries on T based on preorder and postorder.

We now represent each minitree by storing pointers to the set of all chunks in the BP
representation that together constitute the minitree. Farzan et al. [19, Lemma 2] show that
each minitree is split into a constant number of consecutive chunks in the BP sequence.
Hence, one can store a representation of the minitrees by storing a bitvector of length n

that marks the starting positions of these chunks in the BP sequence, together with an
O(lg2 n)-bit structure that stores, for each minitree, pointers to all the chunks in BP sequence
indicating the starting positions of the chunks corresponding to the minitrees. The bit vector
has O(lgn) 1’s since there are O(lgn) minitrees, and each minitree is split into a constant
number of chunks. We refer to the representation obtained using this tree covering (TC)
approach as the TC representation of the tree.

The following lemma shows that we can construct the TC representation of the DFS tree
of a given graph, using O(n) additional bits.

I Lemma 10 (♠). Given a graph G on n vertices and m edges, if there is an algorithm
that takes t(n,m) time and s(n,m) bits to perform DFS on G, then one can create the TC
representation of the DFS tree in t(n,m) +O(n) time, using s(n,m) +O(n) bits.

We use the following lemma in the description of our algorithms.

I Lemma 11 (♠). Let G be a graph, and T be its DFS tree. If there is an algorithm that
takes t(n,m) time and s(n,m) bits to perform DFS on G, then, using s(n,m)+O(n) bits, one
can reconstruct any minitree given by its ranges in the BP sequence of the TC representation
of T , along with the labels of the corresponding nodes in the graph in O(t(n,m)) time.

5 Chain decomposition using O(n) bits

Theorem 7 gives a chain decomposition algorithm that runs in O(m + n) time, using
O(n lg(m/n)) bits. In this section we describe how one can implement Schmidt’s chain
decomposition algorithm described in Section 2 using only O(n) bits using our partition of
the DFS tree of Section 4. The main idea of our implementation is to process all the back
edges out of each minitree, in the preorder of the minitrees. Also, when processing back edges
out of a minitree τ , we process all the back edges that go from τ to the other minitrees in
their postorder, processing all the edges from τ to a minitree τ1 before processing any other
back edges going out of τ to a different minitree. This requires us to go through all the edges
out of each minitree at most O(lgn) (number of minitrees) times (although it is subsumed
by the other parts of the computation, and doesn’t affect the overall running time). Thus
the order in which we process the back edges is different from the order in which we process
them in Schmidt’s algorithm, but we argue that this does not affect the correctness of the
algorithm. In particular, we observe that Schmidt’s algorithm correctly produces a chain
decomposition

even if we change the order in which we process vertices to any other order (instead of
preorder), as long as we process a vertex v only after all its ancestors are also processed –
for example, in level order.
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This also implies that as long as we process the back edges coming to a vertex v (from any
of its descendants) only after we process all the back edges going to any of its ancestors from
any of v’s descendants, we can produce a chain decomposition correctly. To process (i.e., to
output the chain containing) a back edge (u, v) between a pair of minitrees τ1 and τ2, where
u belongs to τ1, v belongs to τ2, and τ1 is an anscestor of τ2 in the minitree-structure, we
first output the edge (u, v), and then traverse the path from v to the root of τ2, outputting
all the traversed edges. We then start another DFS to produce the minitree τp containing
the parent p of the root of τ2, and output the path from p to the root of τp, and continue the
process untill we reach a vertex that has already been output as part of any chain (including
the current chain). We maintain a bitvector of length n to keep track of the vertices that
have been output as part of any chain, to perform this efficiently. A crucial observation that
we use in bounding the runtime is that once we produce a minitree τp for a particular pair
(τ1, τ2) of minitrees, we don’t need to produce it again, as the root of τ2 will be marked after
the first time we output it as part of a chain. Also, once we generate the two minitrees τ1
and τ2, we go through all the vertices of τ1 in preorder, and process all the edges that go
between τ1 and τ2. For a particular minitree τ1, once we process the back edges between
τ1 and all its descendant minitrees (i.e., descendants of the node corresponding to τ1 in the
minitree-structure), we finally process all the back edges that go within the minitree τ1.

The time taken for the initial part, where we construct the DFS tree, decompose it into
minitrees, and construct the auxiliary structures, is O(m lg lgn), using Theorem 2 with
t(n) = lg lgn. The running time of the algorithm is dominated by the cost of processing
the back edges. For each pair of minitrees, we may, in the worst-case, need to generate
O(lgn) minitrees. Since there are O(lg2 n) pairs of minitrees, and since generating each
minitree requires O(m lg lgn) time (using the DFS algorithm), the total running time is
O(m lg3 n lg lgn). Thus, we obtain the following.

I Theorem 12. Given an undirected graph G on n vertices and m edges, we can output a
chain decomposition of G in O(m lg3 n lg lgn) time using O(n) bits of space.

6 Finding cut vertices and biconnected components using O(n) bits

A naïve algorithm to test for biconnectivity of a graph G = (V,E) is to check if (V \ {v}, E)
is connected, for each v ∈ V . Using the O(n) bits and O(m + n) time BFS algorithm [3]
for checking connectivity, this gives a simple O(n) bits algorithm running in time O(mn).
Another approach is to use Theorem 12, as in the proof of Theorem 7, to test biconnectivity
and output cut vertices in O(m lg3 n lg lgn) time using O(n).

Here we show that using O(n) bits we can design an even faster algorithm running in
O(m lgn lg lgn) time. If G is not biconnected, then we also show how to find out all the cut-
vertices and biconnected components within the same time and space bounds. We implement
the classical low-point algorithm of Tarjan [34]. Recall that, the algorithm computes for
every vertex v, a value lowpoint[v] which is defined as

lowpoint[v] = min{DFI(v)∪{lowpoint[s]| s is a child of v}∪{DFI(w)|(v, w) is a back-edge}}

Tarjan proved that if vertex v is not the root, then v is a cut vertex if and only if v has
a child s such that lowpoint[s] ≥ v. (The root of a DFS tree is a cut vertex if and only if
the root has more than one child.) Since the lowpoint values requires Ω(n lgn) bits in the
worst case, this poses the challenge of efficiently testing the condition for biconnectivity when
only O(n) bits. To deal with this, as in the case of the chain decomposition algorithm, we
compute lowpoint values in O(lgn) batches using our tree covering algorithm. Cut vertices
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encountered in the process, if at all, are stored in a separate bitmap. We show that each
batch can be processed in O(m lg lgn) time using DFS, resulting in an overall runtime of
O(m lgn lg lgn).

6.1 Computing lowpoint, cut vertices and biconnected components
We first obtain a TC representation of the DFS tree using the decomposition algorithm
of Theorem 8 with L = n/ lgn. We then process each minitree, in the postorder of the
minitrees in the minitree structure. To process a minitree, we compute the lowpoint values
of each of the nodes in the minitree (except possibly the root). in overall O(m) time. During
the processing of any minitree, if we determine that a vertex is a cut vertex, we store this
information by marking the corresponding node in a seperate bit vector. Each minitree can
be reconstructed in O(m lg lgn) time using Lemma 11. The lowpoint value of a node is a
function of the lowpoints of all its children. However the root of a minitree may have children
in other minitress. Hence for the root of the minitree, we store the partial lowpoint value
(till that point) which will be used to update its value when all its subtrees have computed
their lowpoint values (possibly in other minitrees). Computing the lowpoint values in each
of the minitrees is done in a two step process. In the first step, we compute the DFI number
of the deepest back edge node of each node in the minitree. Here the deepest back edge
node of a node v is defined the smallest DFI value among the vertices w such that (v, w) is
a back edge. Banerjee et al. show in [3] how one can compute the deepest back edge from
any node while discussing a space-efficient implementation for computing a sparse spanning
biconnected subgraph of a given biconnected graph. The corresponding algorithm makes two
passes of DFS and hence takes O(m lg lgn) time using O(n) bits. We use that subroutine
here to compute the deepest back edges. As there are only Θ(n/ lgn) nodes, we have space
to store these values. In the second step, we do another DFS starting at the root of this
minitree and compute the lowpoint values as we will do in a normal DFS (as deepest back
edge values have been stored).

To compute the effect of the roots of the minitrees on the lowpoint computation, we
store various Θ(lgn) bit information with each of the Θ(lgn) minitree roots including their
partial/full lowpoint values, the rank of its first/last child in its subtree. After we process
one minitree, we generate the next minitree, in postorder, and process it in a similar fashion
and continue until we exhaust all the minitrees.

As we can mark all the cut vertices (if any) in a bitvector of length n, reporting them
and computing 2-connected components is a routine task. Clearly we have taken O(n) space
and the total running time is O(m lg lgn lgn) as we run the DFS algorithm O(lgn) times.
We formalize our theorem below.

I Theorem 13. Given an undirected graph G, in O(m lgn lg lgn) time and O(n) bits of
space we can determine whether G is 2-vertex connected. If not, in the same amount of time
and space, we can compute all the cut vertices of the graph and also output all the 2-vertex
connected components.

7 st-numbering

The st-ordering of vertices of an undirected graph is a fundamental tool for many graph
algorithms, e.g. in planarity testing, graph drawing. The first linear-time algorithm forst-
ordering the vertices of a biconnected graph is due to Even and Tarjan [17], and is further
simplified by Ebert [14], Tarjan [35] and Brandes [8]. All these algorithms, however, preprocess
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the graph using depth-first search, essentially to compute lowpoints which in turn determine
an (implicit) open ear decomposition. A second traversal is required to compute the actual
st-ordering. All of these algorithms take O(n lgn) bits of space. We give an O(n) bits
implementation of Tarjan’s [35] algorithm. We first describe the two pass classical algorithm
of Tarjan without worrying about the space requirement. Let us denote by p(v) the parent
of the vertex v in the DFS tree. DFI(v) and lowpoint(v) have the usual meaning as defined
previously. The first pass is a depth first search during which for every vertex v, p(v), DFI(v)
and lowpoint(v) are computed and stored. The second pass constructs a list L, which is
initialized with [s, t], such that if the vertices are numbered in the order in which they occur
in L, then we obtain an st-ordering. In addition, we also have a sign array of n bits, intialized
with sign[s]=-. The second pass is a preorder traversal of the spanning tree starting from
the root s of the DFS tree. It is easy to see that the procedure runs in linear time using
O(n lgn) bits of space. To make it space effcient, we use ideas similar to our biconnectivity
algorithm. At a high level, we generate the lowpoint values of the first n/ lgn vertices in
depth first order and process them. Due to space restriction, we cannot store the list L as in
Tarjan’s algorithm; instead we use the BP sequence of the DFS tree and augment it with
some extra information to ‘encode’ the final st-ordering, as described below.

Similar to our algorithms in the last two sections, this algorithm also runs in O(lgn)
phases and in each phase it processes n/ lgn vertices. In the first phase, to obtain the
lowpoint values of the first n/ lgn vertices in depth first order, we run as in our biconnectivity
algorithm a procedure to store explicitly for these vertices their lowpoint values in an array.
Also during the execution of the biconnectivity algorithm, the BP sequence is generated
and stored in the BP array. We create two more arrays, of size n bits, that have one to one
correspondence with the BP array. First array is for storing the sign for every vertex as
in Tarjan’s algorithm, and call it Sign. To simulate the effect of the list L, we create the
second array, called P , where we store the relative position, i.e., “before” or “after”, of every
vertex with respect to its parent. Namely, if u is the parent of v, and v comes before (after,
respectively) u in the list L in Algorithm 3, then we store P [v] = b (P [v] = a, respectively).
One crucial observation is that, even though the list L is dynamic, the relative position of
the vertex v does not change with respect to the position of u, and is determined at the time
of insertion of v into the list L (new verices may be added between u and v later). In what
follows, we show how to use the BP sequence, and the array P to emulate the effect of list L
and produce the st-ordering.

We first describe how to reconstruct the list L using the BP sequence and the P array.
The main observation we use in the reconstruction L is that a node v appears in L after
all the nodes in its child subtrees whose roots are marked with b in P , and also before all
the nodes in its child subtrees whose roots are marked with a in P . Also, all the nodes in a
subtree appear “together” (consecutively) in the list L. Thus by looking at the P [v] values of
all the children of a node u, and computing their subtree sizes, we can determine the position
in L of u among all the nodes in its subtree. With this approach, we can reconstruct the list
L, and hence output the st-numbers of all the nodes in linear time, if L can be stored in
memory - which requires O(n lgn) bits. Now to perform this step with O(n) bits, we repeat
the whole process of reconstruction lgn times, where in the i-th iteration, we reproduce
sublist L[(i− 1)n/ lgn+ 1, . . . , in/ lgn] – by ignoring any node that falls outside this range –
and reporting all these nodes with st-numbers in the range [(i− 1)n/ lgn+ 1, . . . , in/ lgn].
As each of these reconstruction takes O(m lgn lg lgn) time, we obtain the following.

I Theorem 14. Given an undirected biconnected graph G on n vertices and m edges, and
two distinct vertices s and t, we can output an st-numbering of all the vertices of G in
O(m lg2 n lg lgn) time, using O(n) bits of space.
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7.1 An application of st-numbering
Given vertices a1, · · · , ak of a graph G and natural numbers c1, · · · , ck with c1 + · · ·+ ck = n,
we want to find a partition of V into sets V1, · · · , Vk with ai ∈ Vi and |Vi| = ci for every i such
that every set Vi induces a connected graph in G. This problem is called the k-partitioning
problem. The problem is NP-hard even when k = 2, G is bipartite and the condition ai ∈ Vi

is relaxed [13]. But, Györi [22] and Lovász [25] proved that such a partition always exists
if the input graph is k-connected. Thus, let G be k-connected. In particular, if k = 2, the
k-partitioning problem can be solved in the following manner [33, 29]: Let v1 := a1 and
vn := a2, compute an v1vn-numbering v1, v2, · · · , vn and note that for any vertex vi (in
particular for i = c1) the graphs induced by v1, · · · , vi and by vi, · · · , vn are connected. Thus
applying Theorem 14, we obtain the following:

I Theorem 15. Given an undirected biconnected graph G, two distinct vertices a1, a2, and
two natural numbers c1, c2 such that c1 + c2 = n, we can obtain a partition (V1, V2) of the
vertex set V of G in O(m lg2 n lg lgn) time, using O(n) bits of space, such that a1 ∈ V1 and
a2 ∈ V2, |V1| = c1, |V2| = c2, and both V1 and V2 induce connected subgraph on G.

8 Conclusions and Open Problems

We have given O(m lgc n)-time, O(n)-bit algorithms for a number of important applications
of DFS. Obtaining linear time algorithms for them while maintaing O(n) bits of space
usage is an interesting open problem. Note that while there are O(n)-bit, O(m+ n)-time
algorithms for BFS, obtaining such an implementation for DFS is open. Another open
problem is whether our O(n)-bit st-numbering algorithm can be used to design a O(m lgc n)
time planarity test using O(n) bits of extra space.
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Abstract
We study the max-min fair allocation problem in which a set of m indivisible items are to be
distributed among n agents such that the minimum utility among all agents is maximized. In
the restricted setting, the utility of each item j on agent i is either 0 or some non-negative weight
wj . For this setting, Asadpour et al. [2] showed that a certain configuration-LP can be used to
estimate the optimal value within a factor of 4+δ, for any δ > 0, which was recently extended by
Annamalai et al. [1] to give a polynomial-time 13-approximation algorithm for the problem. For
hardness results, Bezáková and Dani [5] showed that it is NP-hard to approximate the problem
within any ratio smaller than 2.

In this paper we consider the (1, ε)-restricted max-min fair allocation problem, in which for
some parameter ε ∈ (0, 1), each item j is either heavy (wj = 1) or light (wj = ε). We show that
the (1, ε)-restricted case is also NP-hard to approximate within any ratio smaller than 2. Hence,
this simple special case is still algorithmically interesting.

Using the configuration-LP, we are able to estimate the optimal value of the problem within
a factor of 3 + δ, for any δ > 0. Extending this idea, we also obtain a quasi-polynomial time
(3 + 4ε)-approximation algorithm and a polynomial time 9-approximation algorithm. Moreover,
we show that as ε tends to 0, the approximation ratio of our polynomial-time algorithm approaches
3 + 2

√
2 ≈ 5.83.
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orics
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1 Introduction

We consider the Max-Min Fair Allocation problem. A problem instance is defined by (A,B,w),
where A is a set of n agents, B is a set of m items and the utility of each item j ∈ B perceived
by agent i ∈ A has weight wij . An allocation of items to agents is σ : B → A such that
σ(j) = i iff item j is assigned to agent i. The max-min fair allocation problem aims at finding
an allocation such that the minimum total weight received by an agent mini∈A

∑
j∈σ−1(i) wij

is maximized. The problem is also known as the Santa Claus Problem [4]. In the restricted
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version of the problem, it is assumed that each item j has a fixed weight wj such that for
each i ∈ A and j ∈ B, wij ∈ {0, wj}, i.e., if an agent has non-zero utility for an item j,
the utility is wj . We focus on this paper the restricted version of the problem (restricted
allocation problem) and refer to the problem with general weights the unrestricted allocation
problem. For the restricted allocation problem, let Bi = {j ∈ B : wij > 0} be the set of
items agent i is interested in. For a collection of items S ⊆ B, let w(S) =

∑
j∈S wj .

The problem can be naturally formulated as an integer program, with variable xij for
each i ∈ A and j ∈ B indicating whether item j is assigned to agent i. Its linear program
relaxation Assignment-LP (ALP) is shown as below.

max T

s.t.
∑
j∈Bi xijwj ≥ T, ∀i ∈ A∑

i∈A xij ≤ 1, ∀j ∈ B
xij ≥ 0, ∀i ∈ A, j ∈ B.

Let OPT be the maximum value of the restricted allocation problem such that in the
optimal allocation, every agent is assigned a set of items with total weight at least OPT.
Bezáková and Dani [5] showed that any feasible solution x and T for the ALP can be rounded
into an allocation such that every agent i receives at least T −maxj∈Bi wj total value, which
implies OPT ≥ T ∗ −maxj∈B wj , where T ∗ is the optimal value of the ALP. However, the
above result does not yield any guarantee on the integrality gap. Actually, it can be easily
shown that the integrality gap of ALP is unbounded since it is possible to have a feasible
solution with T > 0 while OPT = 0 (e.g., when |B| < |A|). It was shown in [5] that it is
NP-hard to approximate the problem within any ratio smaller than 2 by a reduction from
3-dimensional matching.

To overcome the limitation of ALP, a stronger linear program called Configuration-LP
(CLP) was proposed by Bansal and Sviridenko [4], in which an O( logn

log logn )-approximation
algorithm was obtained for the restricted allocation problem. For any T > 0, we call an
allocation a T -allocation if it assigns to every agent a set of items with total weight at least T .

I Definition 1 (Bundles with Sufficient Utility). For all i ∈ A, the collection of bundles with
utility at least T for agent i is C(i, T ) := {S ⊆ Bi : w(S) ≥ T}.

The CLP is a feasibility LP associated with T indicating whether it is possible to
(fractionally) assign to each agent one unit of bundle with sufficient utility. The LP (CLP(T ))
and its dual are shown as follows.

Primal min 0

s.t.
∑

S∈C(i,T )

xi,S ≥ 1, ∀i ∈ A

∑
i,S:j∈S∈C(i,T )

xi,S ≤ 1, ∀j ∈ B

xi,S ≥ 0, ∀i ∈ A,S ∈ C(i, T ).

Dual max
∑
i∈A

yi −
∑
j∈B

zj

s.t. yi ≤
∑
j∈S

zj , ∀i ∈ A,S ∈ C(i, T )

yi ≥ 0, ∀i ∈ A
zj ≥ 0, ∀j ∈ B.

Although CLP(T ) has an exponential number of variables, it is claimed in [4] that the
separation problem for the dual LP is the minimum knapsack problem: given a candidate
dual solution (y, z), a violated constraint can be identified by finding an agent i and a
configuration S ∈ C(i, T ) such that yi >

∑
j∈S zj . Hence, we can solve CLP(T ) to any

desired precision. Note that any feasible solution x of CLP(T ) induces a feasible solution x̂
for the ALP by setting x̂ij =

∑
S:j∈S∈C(i,T ) xi,S ≤ 1 for all i ∈ A and j ∈ B.
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I Definition 2 (Integrality Gap). Let T ∗ be the maximum value such that CLP(T ∗) is feasible.
The ratio T∗

OPT is known as the integrality gap.

Note that any upper bound c for the integrality gap implies that we can estimate the
optimal value of the problem within a factor of c+ δ, for any δ > 0. It is shown in [4] that
the integrality gap of CLP for the unrestricted allocation problem is bounded by O(

√
n).

By repeatedly using the Lovasz Local Lemma, Uriel Feige [8] proved that the integrality
gap of CLP for the restricted allocation problem is bounded by a constant. The result was
later turned into a constructive proof by Haeupler [11], who obtained the first constant
approximation algorithm for the restricted allocation problem, although the constant is
unspecified. The integrality gap of CLP was later shown in [2] to be no larger than 4
by a local search technique developed from Haxell [12] for finding perfect matchings in
bipartite hypergraphs. However, the algorithm is not guaranteed to terminate in polynomial
time. It is later shown by Polacek and Svensson [15] that a simple modification of the local
search algorithm can improve the running time from 2O(n) to nO(logn), which implies a
quasi-polynomial (4 + δ)-approximation algorithm, for any δ > 0. Very recently, Annamalai
et al. [1] further extended the local search technique developed in [2, 15] for the restricted
allocation problem and obtained a polynomial-time 13-approximation algorithm for the
problem.

1.1 The (1, ε)-Restricted Allocation Problem
We consider in this paper the (1, ε)-restricted allocation problem, in which for some ε ∈ (0, 1),
each item j ∈ B is either heavy (wj = 1) or light (wj = ε). As the simplest case of the
allocation problem, the problem is not well understood. The current best approximation
results for the problem are for the restricted allocation problem. Indeed, we believe that a
better understanding of the (1, ε)-restricted setting will shed light on improving the restricted
(and even the unrestricted) allocation problem.

The (1, ε)-restricted setting has been studied under different names. Golovin [10] studied
the “Big Goods/Small Goods” max-min allocation problem, which is exactly the same as
the problem we consider in this paper, in which a small item has weight either 0 or 1 for
each agent; a big item has weight either 0 or x > 1 for each agent. They gave an O(

√
n)-

approximation algorithm for this problem and proved that it is NP-hard to approximate the
“Big Goods/Small Goods” max-min allocation problem within any ratio smaller than 2 by
giving a hard instance with x = 2. We show in this paper that the inapproximability result
holds for any fixed x ≥ 2 by generalizing the hardness instance shown in [5]. Later Khot
and Ponnuswami [13] generalized the “Big Goods/Small Goods” setting and considered the
(0, 1, U)-max-min allocation problem with sub-additive utility function in which the weight
of an item to an agent is either 0, 1 or U for some U > 1 and obtained an n

α -approximation
algorithm with mO(1)nO(α) running time, for any α ≤ n

2 . Note that in their setting an
item can have weight 1 for an agent and U for another. In the seminal paper, Bansal and
Sviridenko [4] obtained an O( logn

log logn )-approximation algorithm for the restricted allocation
problem by first reducing the problem to the (1, ε)-restricted case for an arbitrarily small
ε > 0 while losing a constant factor on the approximation ratio, and then proving an
O( logn

log logn )-approximation algorithm for the (1, ε)-restricted case.
The max-min fair allocation problem is closely related to the problem of scheduling

jobs on unrelated machines to minimize makespan, which we call the min-max allocation
problem. The problem has the same input as the max-min fair allocation problem but aims
at finding an allocation that minimizes maxi∈A

∑
j∈σ−1(i) wij . Lenstra et al. [14] showed a

ISAAC 2016
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2-approximation algorithm for the min-max allocation problem by rounding the ALP for
the problem. Applying the techniques developed for the max-min fair allocation problem,
Svensson [16] gave a 5

3 + ε upper bound for the CLP’s integrality gap of the (1, ε)-restricted
min-max allocation problem and then extended it to a 1.9412 upper bound for the general case.
However, their algorithm is not known to converge in polynomial time. Recently Chakrabarty
et al. [7] obtained the first (2− δ)-approximation algorithm for the (1, ε)-restricted min-max
allocation problem, for some constant δ > 0. They considered the case when ε is close to 0
since it is easy to obtain a (2− ε)-approximation algorithm for the (1, ε)-restricted min-max
allocation problem.

Since the (1, ε)-restriction is considered in the community to be interesting for the min-max
setting, in this paper we consider this restriction for the max-min setting.

1.2 Summary of Our Results
We first show that we can slightly improve the hardness result of Golovin [10] for the (1, ε)-
restricted allocation problem. Note that in the unweighted case (ε = 1), the problem can be
solved in polynomial time by combining the max-flow computation between A and B, with a
binary search on the optimal value. The above algorithm for the unweighted case actually
provides a trivial 1

ε -approximation algorithm for the (1, ε)-restricted allocation problem.
Hence, we have a polynomial-time algorithm with ratio 1

ε < 2 for the problem when ε > 0.5.

I Theorem 3 (Inapproximability). For any ε ≤ 0.5, it is NP-hard to approximate the (1, ε)-
restricted allocation problem within any ratio smaller than 2.

The proof is included in our full version. Our reduction shows that it is NP-hard to
estimate the optimal value of the problem within any ratio smaller than 2. The above
hardness result implies that the integrality gap of CLP(T ) is at least 2 unless P = NP.
However, we can remove the P 6= NP assumption by giving a hard instance explicitly (in the
full version).

For the restricted allocation problem, the best hardness result on the approximation ratio
is 2 while the best upper bound for the integrality gap of CLP(T ) is 4. It is not known which
bound (or none) is tight. As a step towards closing this gap, we analyze the integrality gap
of CLP(T ) for the (1, ε)-restricted case and show that the upper bound of 4 is not tight in
this case (Section 2). Our upper bound implies that in polynomial time we can estimate
OPT for the (1, ε)-restricted allocation problem within a factor of 3 + δ, for any δ > 0.

I Theorem 4 (Integrality Gap). The integrality gap of the configuration-LP of the (1, ε)-
restricted allocation problem is at most 3.

We also observe that by picking the “closest addable edge”, the running time of the local
search algorithm can be improved to quasi-polynomial (Section 3). The idea was first used
by Polacek and Svensson [15] to obtain the (4 + δ)-approximation algorithm for the restricted
allocation problem. However, instead of constructing feasible dual solutions for CLP(T ), our
analysis is based on the assumption of T ≤ OPT and is a direct extension of our proof on
the integrality gap of CLP(T ).

I Theorem 5 (Quasi-Polynomial-Time Approximation). There exists a (3 + 4ε)-approximation
algorithm for the (1, ε)-restricted allocation problem that runs in nO( 1

ε logn) time.

We further extend the quasi-polynomial approximation algorithm by combining the lazy
update idea of [1] to obtain a polynomial approximation algorithm (Section 4).
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I Theorem 6 (Polynomial-Time Approximation). For any ε ∈ (0, 1), there exists a polynomial-
time 9-approximation algorithm for the (1, ε)-restricted allocation problem. Moreover, the
approximation ratio approaches 3 + 2

√
2 ≈ 5.83 as ε tends to 0.

Interestingly, while our quasi-polynomial- and polynomial-time algorithms are extended
from the integrality gap analysis by combining ideas on improving the running time of
local search, unlike existing techniques, our algorithms and analysis do not directly use the
feasibility of CLP(T ). To lead to contradictions, existing results [15, 1] tried to construct
feasible dual solutions for CLP(T ) with positive objective values (which implies the infeasibility
of CLP(T )). In contrast, our analysis shows that as long as T ≤ OPT, our algorithms
terminate with the claimed approximation ratios, which simplifies the analysis and is an
advantage in some cases when CLP(T ) cannot be applied, e.g., when the utility function is
sub-additive [13].

1.3 Other Related Work
Unrestricted Allocation Problem. Based on Bansal and Sviridenko’s proof [4] of O(

√
n)-

integrality gap for the unrestricted allocation problem, Asadpour and Saberi [3] achieved an
Õ(
√
n)-approximation algorithm. The current best approximation result for the problem is

an Õ(nδ)-approximation algorithm that runs in time nO( 1
δ ), for any δ = Ω( log logn

logn ), obtained
by Chakrabarty et al. [6].

Other Utility Functions. The max-min fair allocation problem with different utility func-
tions has also been considered. Golovin [10] gave an (m−n+ 1)-approximation algorithm for
the problem when the utility functions of agents are submodular. We note that their result
can also be extended to sub-additive utility functions. Khot and Ponnuswami [13] also con-
sidered the problem with sub-additive utility functions and obtained a (2n−1)-approximation
algorithm. Later Goemans and Harvey [9] obtained an Õ(n 1

2 +δ)-approximation for submod-
ular max-min allocation problem in nO( 1

δ ) time using the Õ(nδ)-approximation algorithm by
Chakrabarty et al. [6] as a black box.

2 Integrality Gap for Configuration LP

We show in this section that for the (1, ε)-restricted allocation problem, the integrality gap
of the CLP is at most 3. Fix T > 0 be such that CLP(T ) is feasible.

We show that whenever CLP(T ) is feasible, there exists a T
3 -allocation (hence OPT ≥ T

3 ),
which implies an integrality gap of at most 3. Given any solution x for CLP(T ) and the
induced ALP solution x̂, for all x̂ij = 0, we can remove j from Bi (pretending that i is not
interested in j). This operation will preserve the feasibility of x while (possibly) decreasing
OPT, which could only enlarge the integrality gap. From now on we assume that a positive
fraction of every item in Bi is assigned to agent i.

Assumption on T : To achieve a T
3 -allocation, we can assume that T < 3

2 ; otherwise, we can
get a T − 1 ≥ T

3 allocation by rounding the ALP solution x̂ [5]. We can further assume T ≥ 1
since otherwise we can set all weights wj ≥ T to T (which does not change CLP(T )) and
scale all weights so that the maximum weight is 1. From now on, we assume that T ∈ [1, 3

2 )
and CLP(T ) is feasible.

Let k = dTε e. Note that every bundle consisting solely of light items must contain at
least k items to have sufficient utility. For all i ∈ A, let B1

i = {j ∈ Bi : wj = 1} be the set

ISAAC 2016
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of heavy items and Bεi = {j ∈ Bi : wj = ε} be the set of light items. Our algorithm fixes
an integer r = dk3 e and tries to assign items such that each agent i receives either a heavy
item j ∈ B1

i or r light items in Bεi . Suppose we are able to find such an allocation, then the
integrality gap is T

rε ≤ 3.

2.1 Getting a “Minimal” Solution
Let x∗ be a solution for CLP(T ). We create another solution x (which might not be feasible)
as follows. Initialize xi,S = 0 for all i ∈ A and S ⊆ Bi. For all x∗i,S > 0, where S ∈ C(i, T ),
1. if S′ = S ∩B1

i 6= ∅, then set xi,S′ = x∗i,S ;
2. otherwise, S contains only light items and set xi,S = x∗i,S .

Note that for each i ∈ A we have the following properties on x:
1. (heavy/light configurations) if xi,S > 0, then (S ⊆ B1

i ∧ |S| ≥ 1) or (S ⊆ Bεi ∧ |S| ≥ k).
2. (covering constraint for agent)

∑
S⊆Bi xi,S =

∑
S∈C(i,T ) x

∗
i,S ≥ 1.

3. (packing constraint for item) for all j ∈ B:
∑
i,S:j∈S xi,S ≤

∑
i,S:j∈S∈C(i,T ) x

∗
i,S ≤ 1.

Now we construct a hypergraph H(A ∪B,E) as follows: for all xi,S > 0,
1. if S ⊆ B1

i , then for each j ∈ S, add {i, j} to E (we call such an edge heavy);
2. otherwise for each S′ ⊆ S and |S′| = r, add {i} ∪ S′ to E (we call such an edge light).

A matching M ⊆ E is a collection of disjoint edges. Note that any perfect matching of
H that matches all nodes in A provides an allocation that assigns each i ∈ A either a heavy
item or r light items. For all F ⊆ E, let A(F ) = A ∩ (

⋃
e∈F e) and B(F ) = B ∩ (

⋃
e∈F e).

2.2 Finding a Perfect Matching
Recall that the existence of a perfect matching in H(A ∪B,E) such that every agent in A is
matched implies that the integrality gap of CLP(T ) is at most 3.

I Theorem 7. The above hypergraph H(A ∪B,E) has a perfect matching.

Proof. Given a partial matching M ⊆ E, we show how to extend its cardinality by one
if |M | ≤ |A| − 1. Let i0 ∈ A\A(M) be an agent not matched by M . For the initial step,
suppose X1 contains an arbitrary edge e1 with A(e1) = {i0} and Y1 = blocking(e1) = {f ∈
M : B ∩ e1 ∩ f 6= ∅} be the blocking edges of e1. If blocking(e1) = ∅, then we can add edge
e1 to the matching. Assume blocking(e1) 6= ∅.

For the recursive step, suppose we already have edges Xt (where t = |Xt|) and Yt, which
together form an alternating tree rooted at i0. We consider adding the (t+ 1)-st edge to Xt

as follows. An edge e ∈ E is addable if (1) A(e) ∈ A(Xt ∪ Yt); (2) B(e) ∩B(Xt ∪ Yt) = ∅.
If such an edge et+1 exists and blocking(et+1) 6= ∅, let Xt+1 = Xt ∪ {et+1} and Yt+1 =
Yt ∪ blocking(et+1). If blocking(et+1) = ∅, then we contract Xt by swapping out blocking
edges (the details of contraction will be discussed later). The contraction operation guarantees
that every addable edge has at least one blocking edge.

I Claim 8 (Always Addable). There is always an addable edge et+1.

Proof. Let P = A(Xt ∪ Yt) be the agents in the tree. Note that |P | = |Yt|+ 1 since each
agent i 6= i0 in P has an unique blocking edge that introduces i.

Let X1
t (Y 1

t ) be the heavy edges and Xε
t (Y εt ) be the light edges of Xt (Yt).

We have |X1
t | = |Y 1

t | since heavy edges can only be blocked by heavy edges. We have
|Xε

t | ≤ |Y εt | since each addable edge has at least one blocking edge.



T.-H. Hubert Chan, Z. G. Tang, and X. Wu 23:7

Let x1
P =

∑
i∈P

∑
S⊆B1

i
xi,S be the total units of heavy bundles assigned to P by x,

which is a lower bound for the total number of heavy items B1
P = ∪i∈PB1

i agents in P are
interested in since

x1
P =

∑
i∈P

∑
S⊆B1

i

xi,S ≤
∑
i∈P

∑
S⊆B1

i

∑
j∈S

xi,S =
∑
j∈B1

P

∑
i,S:j∈S⊆B1

i

xi,S ≤ |B1
P |.

Let xεP =
∑
i∈P

∑
S⊆Bε

i
xi,S be the total units of light bundles assigned to P by x. By

construction of x, we have∑
i∈P

∑
S⊆Bi

xi,S =
∑
i∈P

∑
S⊆B1

i

xi,S +
∑
i∈P

∑
S⊆Bε

i

xi,S = x1
P + xεP ≥ |P |.

Since |Y 1
t | heavy items are already introduced in the tree, if x1

P > |Y 1
t |, then there must

exist an addable heavy edge for some i ∈ P . If x1
P ≤ |Y 1

t |, then we have xεP ≥ |P | − x1
P ≥

|Y εt |+ 1 ≥ |Xε
t |+ 1. Note that every light addable edge has at most r − 1 unblocked items,

the total number of light items in the tree is

|Bε(Xt ∪ Yt)| ≤ (r − 1)|Xε
t |+ r|Y εt | ≤ (2r − 1)(xεP − 1) < (2r − 1)xεP . (1)

For each i ∈ P and S ⊆ Bεi , if xi,S > 0, then by construction we have |S| ≥ k ≥ 3r − 2.
If i has no more addable light edges (has at most r − 1 unintroduced light items in H),
then at least

∑
S⊆Bε

i
(|S| − (r− 1))xi,S ≥ (2r− 1)

∑
S⊆Bε

i
xi,S units of configurations of light

items appear in the tree. If there is no more addable light edges for all i ∈ P , then we have

|Bε(Xt ∪ Yt)| ≥
∑

j∈Bε(Xt∪Yt)

∑
i,S:j∈S⊆Bε

i

xi,S ≥ (2r − 1)
∑
i∈P

∑
S⊆Bε

i

xi,S = (2r − 1)xεP ,

which is a contradiction to (1). J

Contraction: If blocking(et+1) = ∅, then we remove the blocking edge f that introduces
A(et+1) from the matching and include et+1 into the matching. Both et+1 and f are removed
from the tree. We also remove all edges added after f since they can possibly be introduced
by A(f). We call this operation a contraction on et+1. Note that this operation reduces
the size of blocking(e′) by one, for the edge e′ that is blocked by f . If blocking(e′) = ∅ after
that, then we further contract e′ recursively. After all contractions, suppose the remaining
addable edges in the tree are e1, e2, . . . , et′ (ordered by the time they are added to the tree),
we set t = t′, Xt′ and Yt′ be the addable and blocking edges, respectively.

Signature: At any moment before including an addable edge (suppose there are t addable
edges in the tree), let si = |blocking(ei)| for all i ∈ [t]. Let s = (s1, s2, . . . , st,∞) be the
signature of the tree. Then, we have the following.
1. The lexicographical value of s reduces after each iteration. If there is no contraction in

the iteration, then in the signature, the (t+ 1)-st coordinate decreases from ∞ to st+1,
while si remains the same for all i ≤ t. Otherwise, let ei be the edge whose number of
blocking edges is reduced by one but remains positive in the contraction phase. Then, we
have si is reduced by one while sj remains the same for all j < i.

2. There are at most 2n different signatures since
∑
i∈[t] si ≤ n and t ≤ n.

Since an addable edge can be found in polynomial time and the contraction operation stops
in polynomial time, a perfect matching can be found in n · 2n · poly(n) time. J
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3 Quasi-Polynomial-Time Approximation Algorithm

We show in this section that a simple modification on the algorithm for finding a perfect
matching in Section 2 can dramatically improve the running time from 2O(n) to nO(logn).
Assume that T ≤ OPT. Note that in this case we can still assume T ∈ [1, 3

2 ).
Note that combining the polynomial time 1

ε -approximation algorithm, the approximation
ratio we obtain in quasi-polynomial time is min{ 1

ε , 3 + 4ε} ≤ 4 for all ε ∈ (0, 1). Moreover,
when ε→ 0 (in which case the problem is still (2− δ)-inapproximable), our approximation
ratio approaches the integrality gap upper bound 3.

Proof of Theorem 5. Let T be a guess of OPT and k = dTε e. Since the statement trivially
holds for ε ≥ 1

4 ( 1
ε ≤ 3+4ε). We assume that ε < 1

4 (hence k ≥ 5). We show that if T ≤ OPT,
then we can find in quasi-polynomial time a T

3+4ε -allocation; if no such allocation is found
after the time limit, then T should be decreased as in binary search. Let r = d k

3+4εe. It
suffices to show that a feasible allocation that assigns to each agent i either a heavy item in
B1
i or r light items in Bεi can be found in nO(logn) time, for any ε < 1

4 . We define a heavy
edge {i, j} for each j ∈ B1

i and a light edge {i} ∪ S for each S ⊆ Bεi and |S| = r.
As in the proof of Theorem 7, we wish to find a perfect matching for all agents in A.

Suppose in some partial matching, there is an unmatched agent i0 and we construct an
alternating tree rooted at i0. For each addable edge e, we denote by d(e) the number of light
edges (including e) in the path from i0 to e in an alternating tree rooted at i0. Note that
a path is a sequence of edges alternating between addable edges and blocking edges. The
algorithm we use in this section is the same as previous, except that when there are addable
edges, we always pick the one e such that the distance d(e) is minimized. We show that
in this case there is always an addable edge within distance O( 1

ε logn).
Let Xi and Yi be the set of addable edges and blocking edges at distance i from i0,

respectively. Note that Yi = ∅ for all odd i since light blocking edge must be introduced due
to light addable edge. Moreover, since on the path from i0 to every addable edge e ∈ Xi,
the light edge (if any) closest to e must be a blocking edge (of even distance), we know that
Xodd contains only light edges and Xeven contains only heavy edges. Let Y 1

i and Y εi be the
set of heavy edges and light edges in Yi, respectively.

Let L = dlog1+ ε
10
ne. It suffices to prove Claim 9 below since it implies that

|Y ε≤2L+2| > (1 + ε

10)|Y ε≤2L| > (1 + ε

10)L|Y ε2 | ≥ n,

which is a contradiction and implies that there is always an addable edge within distance
2L+ 1. Note the the last inequality also comes from Claim 9 since otherwise |Y ε2 | = 0 and
|Y ε4 | = 0 ≤ ε

10 |Y
ε

2 | would be a contradiction.

I Claim 9. For all l ∈ [L], when there is no more addable edge within distance 2l + 1, we
have |Y ε2l+2| > ε

10 |Y
ε
≤2l|.

Proof. Let P = A(X≤2l ∪ Y≤2l) = A(Y≤2l) ∪ {i0}. Since there is no more addable edges
within distance 2l + 1, we know that every agent i ∈ P does not admit any addable edges.
Hence for each i ∈ P , all heavy items in B1

i are already included in B1(X1
≤2l) and at most

r − 1 light items in Bεi are not included in Bε(Xε
≤2l+1 ∪ Y ε≤2l+2).

Since T ≤ OPT, we know that at least |P | − |B1(X1
≤2l)| = |Y ε≤2l| + 1 agents in P are

assigned only light items. Hence, out of at least k light items assigned to each of those agents,
at least k − r + 1 items must be included in Bε(Xε

≤2l+1 ∪ Y ε≤2l+2), which means

|Bε(Xε
≤2l+1 ∪ Y ε≤2l+2)| ≥ (k − r + 1)(|Y ε≤2l|+ 1).
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Assume |Y ε2l+2| ≤ ε
10 |Y

ε
≤2l|, we have |Y ε≤2l+2| ≤ (1 + ε

10 )|Y ε≤2l|. Since every addable edge
contains at most r − 1 unblocked items (items not used by M), we have the following upper
bound for the number of light items in the tree:

|Bε(Xε
≤2l+1 ∪ Y ε≤2l+2)| ≤ (r − 1)|Xε

≤2l+1|+ r|Y ε≤2l+2| ≤ (1 + ε

10)(2r − 1)|Y ε≤2l|.

For ε < 1
4 , T ∈ [1, 3

2 ), k = dTε e and r = d k
3+4εe, we have k ≥ 3dk3 e − 2 ≥ 3r − 2. Suppose

k = 3r − 2, then we have

k = 3d k

3 + 4εe − 2 ≤ 3k
3 + 4ε + 1 = k − ( 4εk

3 + 4ε − 1),

which is a contradiction since 4εk
3+4ε > 1. Hence we have k ≥ 3r− 1, which implies k− r+ 1 ≥

(3r − 1)− (r − 1) = 2r ≥ (1 + ε
10 )(2r − 1) since r ≤ 5

ε . Hence we have a contradiction. J

At any moment before adding an addable edge, suppose we have constructed X≤2l and
Y≤2l. By the above argument we have 2l ≤ 2L = O( 1

ε logn). Let ai = −|Xi|. Let |Y 1
i | = bi

and |Y εi | = bi−1 for all even i. Let s = (a0, b0, a1, b1, . . . , a2l, b2l,∞) be the signature of the
alternating tree. We show that s is lexicographically decreasing accross all iterations.

No contraction: Suppose we added an addable edge e with blocking(e) 6= ∅, then e will be
included in X≤2l or a newly constructed X2l+1, in both cases the lexicographic value of s
decreases since the last modified coordinate decreases.

Contraction: Suppose the newly added edge has no blocking edge, then in the contraction,
let f ∈ Y ε2i, which must be light, be the last blocking edge that is removed. Since b2i−1
decreases while aj (for all j ≤ 2i−1) and bj (for all j ≤ 2i−2) do not change, the lexicographic
value of s decreases.

Since L = O( 1
ε logn), there are nO( 1

ε logn) different signatures. Since an addable edge can
be found in polynomial time and the contraction operation stops in polynomial time, the
running time of the algorithm is n · poly(n) · nO( 1

ε logn) = nO( 1
ε logn). J

4 Polynomial-Time Approximation Algorithm

We give a polynomial-time approximation algorithm in this section. Based on the previous
analysis, to improve the running time from nO(logn) to nO(1), we need to bound the total
number of iterations (signatures) by poly(n). On a high level, our algorithm is similar to
that of Annamalai et al. [1]: we apply the idea of lazy update and greedy player such that
after each iteration, either a new layer is constructed or the size of the highest layer changed
is reduced by a constant factor. However, instead of constructing feasible dual solutions, we
extend the charging argument used in the previous sections on counting the number of light
items in the tree to prove the exponential growth property of the alternating tree.

In binary search, let T be a guess of OPT. As explained earlier, we can assume T ∈ [1, 3
2 ).

Let k = dTε e. Our algorithm aims at assigning to each agent either a heavy item or r light
items, for some fixed r ≤ k

2 when T ≤ OPT. Such an allocation gives a k
r -approximation. Let

p ∈ (r, k) be an integer parameter. Let 0 < µ� 1 be a very small constant, e.g., µ = 10−10.
As before, for each i ∈ A, we call {i, j} a heavy edge for j ∈ B1

i , and {i} ∪ S a light edge
if S ⊆ Bεi . However, in this section, we use two types of light edges: either |S| = p (addable
edges) or |S| = r (blocking edges). Let M be a maximum matching between A and B1. We
can regard M as a partial allocation that assigns maximum number of heavy items. Let i0
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be an unmatched node in M . We can further assume that every heavy item is interesting to
at least 2 agents since otherwise we can assign it to the only agent and remove the item and
the agent from the problem instance. We use “ + ” and “− ” to denote the inclusion and
exclusion of singletons in a set, respectively.

4.1 Flow Network
Let G(A ∪ B1, EM ) be a directed graph uniquely defined by M as follows. For all i ∈ A
and j ∈ B1

i , if {i, j} ∈ M then (j, i) ∈ EM , otherwise (i, j) ∈ EM . We can interpret the
digraph as the residual graph of the “interest” network (a digraph with directed edges from
each i to j ∈ B1

i ) with current flow M . The digraph G has the following properties
every i ∈ A has in-degree ≤ 1, every j ∈ B1 has out-degree ≤ 1 and in-degree ≥ 1.
all heavy items reachable from i ∈ A with in-degree 0 must have out-degree 1 (otherwise
we can augment the size of M by one).

Given two sets of light edges Y and X (A(Y ) and A(X) do not have to be disjoint), let
f(Y,X) denote the maximum number of node-disjoint paths in G(A∪B1, EM ) from A(Y ) to
A(X). Let F (Y,X) be those paths. We will later see that each such path alternates between
heavy edges and their blocking edges. Unlike the quasi-polynomial-time algorithm, in our
polynomial-time algorithm, the heavy edges do not appear in the alternating tree. Instead,
they are used in the flow network G(A∪B1, EM ) to play a role of connecting existing addable
light edges and blocking light edges.

4.2 Building Phase
I Definition 10 (Layers). For all i ≥ 1, a layer Li is a tuple (Xi, Yi), where Xi is a set of
addable edges and Yi is a set of blocking edges that block edges in Xi.

Initialize l = 0, L0 = (∅, {(i0, ∅)}). We call an addable edge e = {i} ∪ P unblocked if it
contains at least r unblocked light items: |P\(

⋃
e′∈blocking(e) B

ε(e′))| ≥ r. Initialize the set
of unblocked addable edges be I = ∅. Throughout the whole algorithm, we maintain a set
I of unblocked addable edges and layers Li(Xi, Yi) for all i ≤ l, where Xi contains blocked
addable edges. Initialize Xl+1 = Yl+1 = ∅. We build a new layer as follows.

I Definition 11 (Addable). Given layers X≤l+1 and Y≤l, an edge e = {i} ∪ P is addable if
|P | = p and P ⊆ Bεi \Bε(X≤l+1 ∪ Y≤l) such that f(Y≤l, X≤l+1 ∪ I + e) > f(Y≤l, X≤l+1 ∪ I).

Note that such an edge is connected to a blocking edge in Y≤l by a path in G(A∪B1, EM )
that is disjoint from other paths connecting existing blocking edges and addable edges.

Given an addable edge: if it is unblocked, then include it in I; otherwise include it in Xl+1.
When there is no more addable edges, let Yl+1 = blocking(Xl+1) =

⋃
e∈Xl+1

blocking(e), set
l = l+ 1 and try to contract Ll. Note that a blocking edge can block multiple addable edges.

4.3 Collapse Phase
Let W = F (Y≤l, I) be constructed as follows. Initialize W = ∅ = F (Y≤0, I). Recursively
for i = 1, 2, . . . , l, let W = F (Y≤i, I) be augmented from W = F (Y≤i−1, I). In the final
W , let Wi ⊆ W be the paths from A(Yi) to A(I) and let Ii ⊆ I be those reached by Wi.
By the above construction, if f ∈ Y≤i have no out-flow in F (Y≤i, I), then it will not have
out-flow in F (Y≤j , I), for any j > i. Hence we have for all i = 1, 2, . . . , l, |Wi| = |Ii| and
|W≤i| = |I≤i| = f(Y≤i, I) = f(Y≤i, I≤i). Note that every path in Wi starts with an agent
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u ∈ A(Yi) that is assigned a light edge byM and ends at a agent v ∈ A(Ii) with an unblocked
addable edge, which provides a possibility of swapping out a blocking edge in the tree with
an unblocked addable edge (by reassigning all heavy items in the path).

I Definition 12 (Collapsible). We call layer Li collapsible if |Ii| ≥ µ|Yi|.

Intuitively, |Ii| ≥ µ|Yi| implies that we can swap out a µ fraction of blocking edges in Yi
(which is called a collapse). Let Lt be the earliest collapsible layer, we collapse it as follows.

Step-(1). For each path P (u, v) in Wt from e1 := {u} ∪R ∈ Yt to e2 := {v} ∪ P ∈ It:
1. M = M − e1 + e′, swap out blocking edge e1 with e′ := {v} ∪ P ′, where |P ′| = r and

P ′ ⊆ P\
⋃
e∈blocking(e2) B

ε(e),
2. reverse all heavy edges in P (u, v): M = M ∪{{i, j} : (i, j) ∈ P (u, v)∩ (A×B)}\{{i′, j′} :

(j′, i′) ∈ P (u, v) ∩ (B ×A)}.

Note that after the above operations, only Yt and M are changed: the size |Yt| is reduced
by a factor of at least µ and the number of heavy edges in M is not changed.

Step-(2). Set I = I≤t−1. Note that |W≤t−1| = f(Y≤t−1, I) = f(Y≤t−1, I≤t−1) still holds.

Step-(3). Set l = t and repeat the collapse if possible. Remove all unblocked edges in Xt

(since |Yt| decreases). For each removed unblocked edge e, include it in I if f(Y≤t−1, X≤t ∪
I + e) > f(Y≤t−1, X≤t ∪ I).

4.4 Invariants and Properties
I Fact 13 (Key Invariant). Since the construction of Lt (until Lt−1 is collapsed),
f(Y≤t−1, X≤t ∪ I) does not decrease and is always no less than |X≤t|.

Proof. We prove by induction on t ≥ 1. Consider the base case when t = 1. The state-
ment trivially holds when Lt is just constructed and when |Xt ∪ I| increases. Suppose in
some iteration |Xt ∪ I| decreases, then it must be because Yt is collapsed, in which case
f(Y≤t−1, X≤t ∪ I) does not change due to the update rule of step-(3).

Now assume the statement is true for t and consider t+ 1.
When Lt+1 is built we have f(Y≤t, X≤t+1 ∪ I) ≥ f(Y≤t−1, X≤t ∪ I ∪ Xt+1) =

f(Y≤t−1, X≤t ∪ I) + |Xt+1| ≥ |X≤t+1|. Since |Xi| does not increase afterwards for all
i ≤ t+ 1, applying the same argument to Lt+1 as above yields the fact. J

I Lemma 14 (Exponential Growth). Let r = max{dk9 e, d
k−10

3+2
√

2e}, if T ≤ OPT, then for all
i ∈ [l] we have |Yi| ≥ µ2|Y≤i−1|, which implies l = O( 1

µ2 logn).

Proof Sketch. suppose |Yt| < µ2|Y≤t−1|, then by Fact 13 we can show that |X≤t| ≤
f(Y≤t−1, X≤t ∪ I) < ( r

p−r+1 + 2µ)|Y≤t−1| (when µ is sufficiently small). Hence at the
moment when there is no more addable edge that can be included into X≤t, we can show
that the total number of items agents reachable from A(Y≤t−1) are interested in are not
enough to achieve T ≤ OPT. Please refer to our full version for the complete proof. J

Proof of Theorem 6. For any T and k = dTε e, the algorithm tries to compute an rε-
allocation, for integer r as large as possible, by enumerating all possible values of p between r
and k. For any fixed r and p, we try to augment the partial matching M that matches each
agent with either a heavy item or r light items. Hence it suffices to show that the algorithm
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terminates in polynomial time for augmenting the size of M by one. Since each iteration can
be done in polynomial time, it suffices to bound the number of iterations by poly(n). The
approximation ratio will be the maximum of kr , over all T ≤ OPT.

By Lemma 14 and the definition of collapsible, we know that after each iteration, either
(if no collapse) a new layer with |Yl+1| ≥ µ2|Y≤l| is constructed, or some |Yt| is reduced
to at most (1 − µ)|Yt| while Yi are unchanged, for all i < t. Let si = blog 1

1−µ

|Yi|
µ2i c and

s = (s1, s2, . . . , sl,∞) be the signature, then we have: (1) it is lexicographically decreasing
across all iterations: if there is no collapse, then some layer is newly constructed and hence
s decreases; otherwise let Lt be the last layer that is collapsed and |Yt| be the size of Yt
before it is collapse: we know that at the end of the iteration si is not changed for all
i < t while st ≤ blog 1

1−µ

(1−µ)|Yi|
µ2i c = blog 1

1−µ

|Yi|
µ2i c − 1 is decreased by at least one, which

also means s decreases; (2) its coordinates are not decreasing: for all i ∈ [l − 1] we have
si+1 = blog 1

1−µ

|Yi+1|
µ2i+2 c ≥ blog 1

1−µ

|Y≤i|
µ2i c ≥ si. Since we have l = O(logn) and si = O(logn)

for all i ∈ [l], the total number of iterations (signatures) is at most 2O(logn) = poly(n).

Approximation ratio: When k ≤ 9, then a trivial 9-approximation can be achieved by a
ε-allocation (maximum matching). By the proof of Lemma 14, the approximation ratio k

r is
always at most 9 and tends to 3 + 2

√
2 ≈ 5.83 as ε→ 0. J
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Abstract
In this paper we study the all-pairs shortest paths problem in (unweighted) unit-disk graphs. The
previous best solution for this problem required O

(
n2 logn

)
time, by running the O (n logn)-time

single-source shortest path algorithm of Cabello and Jejčič (2015) from every source vertex, where
n is the number of vertices. We not only manage to eliminate the logarithmic factor, but also
obtain the first (slightly) subquadratic algorithm for the problem, running in O

(
n2
√

log logn
logn

)
time. Our algorithm computes an implicit representation of all the shortest paths, and, in the
same amount of time, can also compute the diameter of the graph.
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1 Introduction

The all-pairs shortest paths (APSP) problem is one of the most known problems in the
field of algorithms: given a graph G = (V,E) with n vertices, where each edge has a real
weight, we are asked to compute the shortest paths between all pairs of vertices. The
classical algorithm of Floyd and Warshall solves the problem in O

(
n3) time. The first

improvement for general weighted dense graphs came in 1976 when Fredman [16] obtained an

algorithm of O
(
n3
(

log logn
logn

)1/3
)

time. This advancement sparked a number of algorithms

that save polylogarithmic factors. For more results for APSP in graphs with arbitrary
edge weights see [13, 32, 21, 34, 40, 35, 4, 22, 5, 23]. Recently, Williams [36] in a major
breakthrough provided an algorithm that achieves superpolylogarithmic speedup, requiring

n3

2Ω(√log n) randomized time, later derandomized by Chan and Williams [10]. For the case of

unweighted undirected graphs, Seidel [30] and Galil and Margalit [18] devised algorithms
that solve the problem in matrix multiplication time. For results on directed and unweighted
graphs and on graphs whose weights are small integers, see [17, 39, 18, 31, 33].

One very important class of graphs arising from computational geometry is unit-disk
graphs. A unit-disk graph is the intersection graph of a set of unit disks, which is defined by
creating a vertex for each unit disk and an edge between any two unit disks that intersect
each other. Equivalently, given a set S of n points in the plane (the disk centers, after
rescaling by a half), the unit-disk graph, UD(G), is defined by setting its vertex set to be S
and creating an edge between any two points of S whose Euclidean distance is at most one.
The edges are unweighted. The unit-disk graph with n vertices may contain Θ(n2) edges, as
every unit disk may intersect with every other unit disk. Since we aim for a subquadratic
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solution to the all-pairs shortest path problem, we do not construct the set of the edges
explicitly in our algorithms.

Unit-disk graphs are among the most studied families of graphs in geometry, with
motivation from communication networks. Unit-disk graphs are related to planar graphs: by
the circle packing theorem of Koebe–Andreev–Thurston any planar graph can be represented
as a coin disk graph, although the disks may have different radii; on the other hand, planar
graphs do not have large cliques unlike unit-disk graphs. Frederickson [15] gave an O

(
n2)-

time algorithm for solving the APSP problem in weighted planar graphs. Chan [6] improved
the bound for unweighted directed planar graphs with an O

(
n2 log logn

logn

)
-time algorithm (and

also considered general unweighted undirected sparse graphs). Wulff-Nilsen [37] independently
developed another O

(
n2 log logn

logn

)
-time algorithm for computing the diameter of unweighted

undirected planar graphs (and also announced similar results for the weighted case).
In this paper, we provide an algorithm for the APSP problem in unit-disk graphs that

requires O
(
n2
√

log logn
logn

)
time. The previously fastest solution was to run from each vertex

the single-source shortest path algorithm of Cabello and Jejčič [3], which required O
(
n2 logn

)
total time. (See [29, 19] for other previous results on shortest paths in unit-disk graphs.)
Therefore, we not only shave off the extra logarithmic factor of the previous result, but also
provide the first (slightly) subquadratic solution to the problem. Our algorithm computes an
implicit representation of the shortest paths: we encode the O

(
n2) shortest path distances

and predecessors using bit-packing techniques (for use of bit-packing techniques in shortest
path algorithms see [5]), so that we are still able to retrieve the shortest path distance of a
pair of vertices in O (1) time and the shortest path π itself in time linear in the number of
vertices of π. In the same amount of time, we can also compute the diameter of the graph.

In recent years, obtaining polylogarithmic speedup for standard algorithmic problems
have received considerable renewed attention. Such problems include 3SUM [20], Fréchet dis-
tance [1, 26], combinatorial Boolean matrix multiplication [8, 38], Klee’s measure problem [7],
CFL reachability [11], and many more. Our result can be seen as another contribution along
this line of research.

The polylogarithmic improvement that we obtain for APSP in unit-disk graphs goes
beyond standard word RAM tricks. First, in Section 2, we present a new algorithm for
the single-source shortest path problem for unit-disk graphs, running in linear time after
presorting the x- and y-coordinates of the input points. This improves over Cabello and
Jejčič’s single-source algorithm [3]. Their algorithm started with the Delaunay triangulation
and performed repeated nearest neighbor queries, which inherently required Ω (n logn)
time even excluding preprocessing cost. Our new algorithm is instead based on a simple
grid approach and exploits a linear-time Graham-scan-like procedure [28] for computing
upper envelopes of presorted unit disks. (According to [3], Efrat has also observed an
alternative, grid-based O (n logn)-time algorithm, but his suggested solution seemed a bit
more complicated and used a semi-dynamic data structure of Efrat et al. [25], which also
inherently required Ω (n logn) time even after presorting.)

Second, in Section 3, we extend the single-source algorithm to the case of multiple(
k = O

(√
logn

log logn

))
sources that lie in a cluster, i.e., in a common grid cell. In this case,

we have to construct not just one but k upper envelopes, one for each source. This leads
to a new kind of data structure problem: preprocess a set of unit disks (a “universe”) so
that given any subset of the universe, we can compute the upper envelope of the subset
in slightly sublinear time. Our ideas can similarly be applied to the following (even more
natural) problem, of independent interest: preprocess a point set (a universe) in 2D so that
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given any subset of the universe, we can compute its convex hull, again in slightly sublinear
time. Note that the input subset and the output can be encoded with linear number of bits,
and thus slightly sublinear number of words. Solving problems for “preprocessed universes” is
a relatively recent research direction (for example, see [9, 14, 12, 2]); our result with slightly
sublinear time provides an unusual addition to this body of work.

Finally, in Section 4, to obtain our subquadratic-time APSP algorithm, we draw inspiration
from previous algorithms for planar graphs [6, 37], which use planar separators to decompose
the graph into regions of polylogarithmic size, and table-lookup techniques to handle each
region. However, this approach does not directly apply to unit-disk graphs, because there
could be large cliques and no small separators. On the other hand, when there are many large
cliques, intuitively we should be able to exploit the multi-source algorithm from Section 3
to handle such clusters more efficiently. The challenge lies in how to carefully combine
these two approaches. For unit-disk graphs, we end up avoiding planar separators and
instead adopting a simpler shifted grid strategy [24]. This strategy is standard for geometric
approximation algorithms, but we use the technique in a new and interesting way to design
an exact algorithm (with an intricate balancing of parameters).

All of our algorithms operate in a standard unit-cost RAM model of computation, where
each word can store either an input point or a (logn)-bit integer. (We do not need to assume
integer input coordinates from a bounded universe: the input coordinate values may be real
numbers if we assume the availability of a few constant-degree algebraic predicates, as in
most real-RAM algorithms in computational geometry. We are not cheating when using
bit-packing and table-lookup tricks if they are done with (logn)-bit words and without exotic
word operations.)

2 Single-source shortest paths in linear time (after presorting)

In this section, we begin with the single-source problem: given a set S of n points, and a
source point s ∈ S, we want to compute the shortest paths from s to all points in S in the
unit-disk graph UD(G). We assume that the points in S have been presorted with respect to
both x and y. The approach that we follow is a variant of the classical breadth-first search
(BFS) algorithm.

The first step is to build a grid composed of square cells with side length 1√
2 . A cell c′ is

a neighbor of a cell c if the minimum distance between c and c′ is at most 1. Clearly, the
number of neighbors of a cell is constant. For each point p, as is the case in the classical BFS,
we have a value for its shortest-path distance from s, dist[p], and another for the predecessor,
pred[p], denoting the point before p in that path.

The algorithm iteratively performs the following step n − 1 times. In each step ` we
assume that we have already computed the distances and predecessors for all of the points
that are at distance no more than `− 1 from s and that we have a list, called the frontier,
containing all of the points being at distance exactly `− 1 from s. We find all points whose
shortest-path distance from s is ` by finding all points at distance at most 1 from the points
in the frontier, and we filter out the ones whose shortest-path distance from s has been
found in earlier steps. For the remaining points, we update their distances and predecessors
properly. Finally, we replace the frontier with the set of these points. It is easy to establish
the correctness of the algorithm by induction. The concepts of the grid, cells, neighboring
cells, and frontier points are depicted in Figure 1.

We say that a cell is visited at step ` if the algorithm performs an operation to any one
of its points during that step. When the algorithm visits a cell, each point of that cell is
used in operations at most twice. The following lemma is crucial for the rest of the section.

ISAAC 2016
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1√
2

1√
2

s

Figure 1 Here we see the grid created for six points depicted as black disks and squares. Each of
the thirty-six squares corresponds to a cell. The neighbors of the cell of the third row and fourth
column, containing the point s, are shaded gray. In the second step of the algorithm, where s is the
source, we see the four points that are at distance one from s, depicted as squares, and the shortest
path tree of s so far, depicted with line segments. Those four points compose the frontier for the
second step.

I Lemma 1. Each cell c is visited only a constant number of times.

Proof. A cell c is visited either (i) when at least one of its points enters the frontier or
(ii) when at least one of the points of a neighboring cell c′ of c enters the frontier.

In case (i), we note that once at least one point of c enters the frontier in a step of the
algorithm, then the rest of the points of c enter the frontier either in this step or in the
next because any two points of c are at distance at most one. Also, a point can be in the
frontier in exactly one step. Therefore, c has points in the frontier in at most two steps of
the algorithm.

In case (ii), c is visited when one of its neighbors, c′, has at least one frontier point. Since
the number of the neighbors of c is constant and, by case one, any cell has frontier points
at most twice, we conclude that a cell c is visited by its neighbors in a constant number of
steps of the algorithm. J

To find points that are at distance at most 1 from the points in the frontier, we solve the
following subproblem.

I Subproblem 2. Given a set of nr red points below a horizontal line h and another set of
nb blue points above h, both presorted by x, determine for each blue point whether there is a
red point at distance at most one from it.

I Lemma 3. We can solve Subproblem 2 in O (nr + nb) time.

Proof. We consider the upper envelope of the unit disks centered at the red points; it is
composed of the part of the boundary of the union of those unit disks that lies above h.

Notice that the parts of the boundaries of unit disks above h form a pseudoline arrangement.
For each unit disk we can extend that part to a x-monotone curve, a pseudoline, from x = −∞
to x =∞ such that it intersects only once with the pseudoline of another unit disk. Moreover,
we can make the order of the pseudolines at x = −∞ coincide with the order of x-coordinates
of the disk centers. An example of the pseudolines can be see in Figure 2. Then we can
compute the upper envelope of these pseudolines by adapting the standard Graham scan
algorithm [28] for computing upper envelopes of lines (i.e., convex hulls of points in the plane
by duality). Graham scan takes linear, O (nr), time after presorting. Notice that we do not
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h

(a)

h

(b)

h

x = −∞

(c)

Figure 2 In the first subfigure we see the unit disks of three red points, depicted as disks, and a
horizontal line h. In the second subfigure, we see the part of the boundaries of those unit disks lying
above h. In the third subfigure, we see the pseudolines corresponding to each unit disk as defined in
Lemma 3. Notice that the y-order of the pseudolines at x = −∞ coincides with the x-order of the
centers of their unit disks.

have to explicitly compute the pseudolines; the notion of the pseudolines is used only for
intuition. The algorithm, assuming that the points are presorted, scans them from left to
right, finds intersections between unit disks, and builds step-by-step the upper envelope.

Finally, to solve Subproblem 2, we want to determine for each blue point whether it is
below the upper envelope of the red disks. This can done by performing a linear scan over
the vertices of the upper envelope and the (presorted) blue points in O (nr + nb) time. J

Putting everything together, we obtain the following theorem.

I Theorem 4. Given a unit-disk graph, we can compute the shortest path tree from a given
source in O (n) time, if the input points have been pre-sorted by both x and y.

Proof. In step ` of the BFS algorithm, we find the points at distance exactly ` from the
source as follows. For each cell c having at least one point in the frontier and each neighbor
c′ of c, we use the subroutine from Lemma 3 on the input where the red points are the points
of c that are in the frontier and the blue points are all the points of c′.

The cells c and c′ are either horizontally or vertically separated; without loss of generality,
we can assume the former by rotation. By Lemmas 1 and 3, the total time of the BFS is
O (n).

Note that to identify the predecessors during the BFS, we need to strengthen Subproblem 2
to report for each blue point a witness red point (if exists) that is at distance at most 1; the
method in Lemma 1 can easily provide such witnesses. Initially assigning points to grid cells
can be done in linear time (without the need for hashing, because of presortedness). J

Applying the above theorem n times immediately yields an O
(
n2)-time algorithm for

APSP for unit-disk graphs. In the subsequent sections, we aim for a slightly subquadratic
algorithm.

3 Shortest paths for multiple sources in a cluster

In this section, we extend the single-source algorithm of the previous section to compute short-
est paths from k source points s1, . . . , sk ∈ S to all vertices in S, where k = O

(√
logn

log logn

)
and s1, . . . , sk lie in a common grid cell. The approach is to run BFS from the multiple
sources simultaneously but avoid a factor-k slowdown by using bit-packing tricks – this
approach is inspired by the first APSP algorithm in [6].

First, we extend Lemma 1 to the case of k source points, lying close to each other. We
say that a cell is visited at step ` if at the `-th level of the BFS for at least one of the sources,
the algorithm performs an operation to any one of its points.

ISAAC 2016
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I Lemma 5. If the k source points are in the same cell, each cell is visited only a constant
number of times.

Proof. Let dists[p] be the shortest-path distance between a source s and a point p. Observe
that for any two sources s and s′ in a common cell, dists[p] and dists′ [p] can differ by at most
one by the triangle inequality. Therefore, the first time that any point of a cell enters the
frontier of any source, by the next step of the algorithm that point will enter the frontier of
the rest of the sources. The rest of the proof is as in Lemma 1. J

If we apply the algorithm of Lemma 3 separately for the k sources, then the cost of
this operation alone would be O (nk), which we cannot afford. To overcome the issue, we
introduce an extension of Subproblem 2.

I Subproblem 6. Preprocess a universe R of nr red points below a horizontal line h and
another universe B of nb blue points above h, so that given any subset Q ⊆ R of the red
universe, we can determine for each blue point whether there is a red point of Q at distance
at most one from it, in sublinear total time.

As we have seen in the proof of Lemma 3, the key to solving the subproblem lies in the
construction of upper envelopes, so we concentrate on solving the following subproblem.

I Subproblem 7. Preprocess a universe R of nr red points below a horizontal line h, so that
given any subset Q ⊆ R of the red universe, we can compute the upper envelope of the unit
disks centered at Q (specifically the part above h) in sublinear time.

By sublinear we mean O
(

nr

polylogn

)
or O

(
nr+nb

polylogn

)
. The reason that sublinear time is

feasible at all is that we can represent (i) the input subset Q as an nr-bit vector, where the
i-th bit denotes whether the i-th red point in x-order is in Q, and (ii) the output upper
envelope is another nr-bit vector, where the i-th bit denotes whether the disk defined by
the i-th point participates in the upper envelope. We can pack either vector into O

(
nr

logn

)
words.

I Lemma 8. We can solve Subproblem 7 with O (nr lognr + nr2g) preprocessing time and
O
(
nr

log g
g

)
query time, for any given g ≤ logn.

Proof. During the preprocessing phase, we divide the x-ordered sequence of red points into
O
(
nr

g

)
chunks of at most g consecutive points each; the chunks lie in O

(
nr

g

)
disjoint slabs.

The red points of each chunk compose O (2g) possible subsets, and we precompute the upper
envelope for each such subset (specifically the part above h) in O (g) time. The computation
of all these envelopes, which we call small upper envelopes, needs O

(
nr

g 2gg
)

= O(nr2g) time.
We store a lookup table containing all the small upper envelopes, each represented as an
ordered array. In Figure 3, we see the chunks and the small upper envelope of each.

To answer a query for a given subset of the red points, we have to merge O
(
nr

g

)
small

upper envelopes for the relevant subsets of the O
(
nr

g

)
chunks. Observe that the O

(
nr

g

)
small upper envelopes themselves can be viewed as a pseudoline arrangement (since the
chunks are vertically separated). We can therefore apply Graham scan to compute the upper
envelope of the O

(
nr

g

)
small upper envelopes, using a linear O

(
nr

g

)
number of primitive

operations. We need two primitive operations: (i) finding the intersection point between two
small upper envelopes, and (ii) determining whether a given point is above or below a small
upper envelope. Both operations can be done in O (log g) time by binary searching (see [27]
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Figure 3 In the first subfigure we see the chunks of eight red points, drawn as disks, for g = 3,
and a horizontal line h. Notice that the last chunk has only two points. In the next three subfigures,
we see the small upper envelope associated with each chunk. The three small envelopes are seen
together in the fifth subfigure. Finally, in the sixth subfigure we see the upper envelope of the small
upper envelopes, which is the upper envelopes of all red points.

for (i)). Thus, Graham scan takes O
(
nr

g log g
)
time. The output is a sequence of O

(
nr

g

)
pieces of small upper envelopes; we can convert each piece into the bit-vector format, in
additional O

(
nr

logn

)
total time. In Figure 3, we see the upper envelope. J

I Lemma 9. We can solve Subproblem 6 with O (nr lognr + nb lognb + nr2gg + nbg) pre-
processing time and O

(
(nr + nb) log g

g

)
query time, for any given g ≤ logn.

Proof. We build on the method from Lemma 8. During the preprocessing phase, we also
divide the x-ordered sequence of blue points into O

(
nb

g

)
chunks of at most g consecutive blue

points each; the chunks lie in O
(
nb

g

)
disjoint slabs (regions each bounded by two vertical

lines). We store the following extra structures:
1. For each small upper envelope e and each slab σ that contains at least one vertex of e,

we precompute a g-bit vector where the i-th bit denotes whether the i-th blue point in σ
is below e. We store all these vectors in a lookup table. There are O

(
nr

g 2g
)
small upper

envelopes, each with O (g) vertices; the total time is O (nr2gg).
2. For each slab σ, we precompute the arrangement of the O (g) unit disks centered at the

blue points in σ; the arrangement has O
(
g2) complexity and we can build a point location

structure [28] in O
(
g2) time. For each face of the arrangement, we record a g-bit vector

where the i-th bit denotes whether the face is inside the disk for the i-th blue point.
There are O

(
nb

g

)
slabs; the total time is O (nbg).

To answer a query, we first construct the upper envelope E of the O
(
nr

g

)
small upper

envelopes as described in the proof of Lemma 8. We then need to determine for each blue
point whether it is below E.

We scan the slabs from left to right. Consider the next slab σ. Consider each small upper
envelope e that contributes arcs to E inside σ. We compute a bit vector vσ,e where the i-th
bit denotes whether the i-th blue point in σ is below e, as follows:
1. If σ contains at least one vertex of e, then vσ,e has already been precomputed in the

lookup table.

ISAAC 2016
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2. If σ contains no vertices of e, then only one disk contributes to e inside σ; say the disk is
defined by the red point q. We can determine vσ,e by looking up the face containing q in
the arrangement of the blue disks for σ, in O (log g) time by point location.

Finally, we take the bitwise-or of the bit vectors vσ,e over all small upper envelopes e
that contributes to E inside σ. The total number of bitwise-or operations and point location
queries is O

(
nr+nb

g

)
, yielding total query time O

(
nr+nb

g log g
)
. J

I Theorem 10. Given a unit-disk graph, after O
(
n logn+ n2O(k log k))-time preprocessing,

we can compute an implicit representation of the shortest path trees for any k ≤
√

logn
log logn

source points lying in a unit-diameter square, in O (n) time.

Proof. For each point p, we maintain k-bit vectors frontier [p] (resp. found[p]), where the
i-th bit denotes whether p is in the frontier of the i-th source (resp. whether p has previously
appeared in the frontier) in each step ` of the BFS algorithm.

In step ` of the BFS, we proceed as follows. For each cell c having at least one point in
one of the k frontiers and for each neighbor c′ of c, we use the subroutine from Lemma 9 on
the input where the red universe contains all nr points of c and the blue points are all nb
points of c′; for each of the k sources, we query with the red subset containing all points
in its frontier in c. The total time for the k queries is O

(
k(nr + nb) log g

g

)
= O(nr + nb) by

setting g = k log k.
One technical issue concerns the generation of the bit-vector representation for these

input red subsets (which are ordered by x or y depending on whether c and c′ are horizontally
or vertically separated). This can be done by taking each chunk of g red points p1, . . . , pg,
collecting the g k-bit vectors frontier [p1], . . . , frontier [pg], and performing a transposition
to generate k g-bit vectors, where the j-th bit of the i-th vector is equal to the i-th bit
of frontier [pj ]. The transposition involves simply shuffling bits between words and can be
straightforwardly implemented in O (1) time by table lookup if kg ≤ logn. The outputs can
similarly be converted by transposition to obtain vectors out[p] for the blue points p in c′,
where the i-th bit denotes whether p is at distance at most one from some red point in c
with respect to the i-th source.

We can update the k-bit vector found[p] by taking the bitwise-or with out[p]. At the end
of step `, we can update the k-bit vector frontier [p] by taking the bitwise-difference between
the new and old found[p] vectors. By Lemmas 5 and 9, the total time of the k simultaneous
BFSs is O (n).

Two remaining technical issues concern the encoding of the shortest path distances and
of the predecessors. To address the former issue, for each point p, we store dists1 [p] and work
with the vector containing distsi

[p]− dists1 [p] over all k sources si. Recall that these values
are in {−1, 0, 1} by the triangle inequality, and so the vector can be encoded in O (k) bits;
the total space over all n points is O

(
n+ nk

logn

)
= O(n) words, and it is easy to update the

distances of a point in constant time.
To address the latter issue, we need to strengthen Subproblem 6 so that given any blue

point, we can report a witness red point (if exists) that is at distance at most one in constant
time. Thus we need to perform a few modifications to the proof of Lemma 9. First in the
lookup tables during the preprocessing phase, we record witnesses for the true bits for each
g-bit vector, stored in a (g log g)-bit witness vector. In the query algorithm, consider each
slab σ. The upper envelope E inside σ consists of pieces of small upper envelopes. Divide σ
into subslabs by drawing vertical lines at the endpoints of these pieces. If, for each subslab,
we created a pointer from each blue point to the small upper envelope in the subslab, we
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r

1

Figure 4 In this figure we see the shifted grid. We assume that the points have already been
shifted. The nine big squares correspond to the supercells. The smaller square within each supercell
corresponds to the region of the supercell that contains points at distance more than one from its
boundary. The boundary points are drawn as green squares and the non-boundary points as black
disks.

would need O(kn) total time. To avoid that, for each subslab, we mark its rightmost blue
point, which can be found by binary search in O(log g) time; the total time for that is
O
(
nr+nb

g k log g
)

= O (nr + nb). Then we create a pointer from this marked point to the
small upper envelope of its subslab. Finally, for each slab, we create a pointer from each blue
point q to its successor among the marked blue points; these g pointers require O (g log g)
bits, can be created in constant time, and can be stored in a (g log g)-bit pointer vector, so
the total time for this step is O

(
nb

g k
)

= O
(

nb

log k

)
. Then, given any blue point q in σ, we

can retrieve the pointer vector of σ, look up the marked successor of q, follow its pointer to
the small upper envelope e in σ, and then look up q’s witness with respect to vσ,e, all in
constant time. J

4 All-pairs shortest paths in slightly subquadratic time

In this final section, we present our APSP algorithm for unit-disk graphs. Let r, a, b be
parameters to be chosen later. We build a grid composed of square cells with side length r,
where r is a parameter to be specified later

(
larger than 1√

2

)
. Call these larger grid cells

supercells. We say that a point p ∈ S is a boundary point if it is at distance at most one
from the boundary of some supercell. We begin with a standard shifted grid strategy by
Hochbaum and Maass [24]. The supercell and the boundary points are depicted in Figure 4.

I Lemma 11. There exists a translation of S such that the number of boundary points is
O
(
n
r

)
. The translation can be found in linear time.

Proof. Shift the points of S by a random vector from {1, . . . , r}2. The probability that a
point p ∈ S is a boundary point is at most 4

r , so the expected number of boundary points is
at most 4n

r . (It is straightforward to derandomize in linear time.) J

After applying Lemma 11 to build the grid, our algorithm proceeds in four steps:
1. We first compute the shortest paths between the O

(
n
r

)
boundary points and all points

in S. For this step, we can run the single-source algorithm of Section 2 O
(
n
r

)
times,

requiring O
(
n2

r

)
total time.

2. Next, for each supercell γi that contains more than a points or more than b boundary
points, we compute the shortest paths between all points in S ∩ γi and all points in S.
This time, we use the multi-source algorithm of Section 3. The points in γi can be grouped

ISAAC 2016
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into O
(
|S∩γi|
k + r2

)
clusters of size at most k, since the supercell can be decomposed

into O
(
r2) cells of diameter one. The number of supercells with more than a points is

O
(
n
a

)
and the number of supercells with more than b boundary points is O

(
n
rb

)
. Hence,

the total time for this step is O
(∑

i

(
|S∩γi|
k + r2

)
· n
)

= O
((
n
k +

(
n
a + n

rb

)
r2) · n) =

O
(
n2

k + n2r2

a + n2r
b

)
.

3. For each supercell γi with at most a points and at most b boundary points, we compute the
shortest paths between all pairs of points in S∩γi. For this step, we can run a naive cubic-
time APSP algorithm on S∩γi, after adding an extra weighted edge between each boundary
point u in γi and each point p ∈ S ∩ γi, with weight distu[p], which we have computed in
step 1. (These extra edges take care of the possibility that the shortest paths may not
stay inside γi.) The total time is O

(∑
i |S ∩ γi|3

)
= O

(∑
i |S ∩ γi|a2) = O

(
na2).

4. For each supercell γi with at most a points and at most b boundary points, we compute
the shortest paths between all points p ∈ S ∩ γi and all points q ∈ S− γi. Each such path
must pass through a boundary point in γi, i.e., we want to find minu (distu[p] + distu[q])
where the minimum is over all boundary points u in γi.
We describe a table lookup method inspired by the planar-graph APSP algorithm in [6].
For each connected component of the unit-disk graph of S ∩ γi, pick a representative
boundary point (if one exists) among the points of this component. For each point
p ∈ S ∩ γi, let rep(p) be the representative boundary point that lies in p’s connected
component. For each point q ∈ S − γi, define signature[q] to be the vector containing
signatureu[q] = distu[q]−distrep(u)[q] over all boundary points u in γi. Observe that these
values are bounded by O

(
r2) by the triangle inequality (since the distance between u and

rep(u) is at most O
(
r2)), and so the vector can be encoded in O (b log r) bits. All these

values have already been computed in step 1, and so the signatures of all points over all
supercells can be generated in O

(
n2

r

)
total time. (We can ignore empty signatures, i.e.,

supercells that do not have any boundary points.)
For each p ∈ S ∩ γi and each q ∈ S − γi,

min
u

(distu[p] + distu[q]) = distrep(p)[q] + min
u:rep(u)=rep(p)

(distu[p] + signatureu[q]) .

We can precompute the minimum in the right-hand side for each p ∈ S ∩ γi and each
possible signature, and store all these minimums in a lookup table in |S ∩ γi|2O(b log r)

time, for a total of n2O(b log r) time.

The running time of the entire algorithm is

O

(
n logn+ n2O(k log k) + n2

r
+ n2

k
+ n2r2

a
+ n2r

b
+ na2 + n2O(b log r)

)
.

To balance the third and the fourth term, we set k = r. To balance the third and the
sixth term, we set r =

√
b. To balance the third and the fifth term, we set a = b3/2. Finally,

we set b = ε logn
log logn for a sufficiently small constant ε, so that the second and the eighth terms

get absorbed by the others. We then obtain the desired O
(
n2
√

log logn
logn

)
time bound.

It is straightforward to modify the algorithm to retrieve any shortest-path distance in
constant time, and retrieve any shortest path in time proportional to its size. It is also
straightforward to modify the algorithm to compute the diameter (in step 4, for each p ∈ S∩γi
and each possible signature, we need to find the point q ∈ S − γi having this signature
that maximizes distrep(p)[q]; all these maximums can be computed in O

(
n · nr

)
total time by

scanning the distance values from all boundary points). We conclude:
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I Theorem 12. Given a unit-disk graph we can compute an implicit representation of the
shortest paths between all pairs, and the diameter of the graph, in O

(
n2
√

log logn
logn

)
time in

the RAM model.

5 Conclusion

It is an intriguing open problem to compute the diameter of a unit-disk graph in truly
subquadratic time, O(n2−ε), for some positive constant ε. Another related problem is APSP
in weighted unit-disk graphs, where the weight of an edge is defined as the Euclidean distance
between the centers of the unit disks it connects.

Acknowledgement. We thank Anna Lubiw for posing the question of APSP in unit-disk
graphs, and the participants of the algorithms problem session at Waterloo for discussion.
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Sink Evacuation on Trees with Dynamic Confluent
Flows∗†
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Abstract
Let G = (V,E) be a graph modelling a building or road network in which edges have-both travel
times (lengths) and capacities associated with them. An edge’s capacity is the number of people
that can enter that edge in a unit of time. In emergencies, people evacuate towards the exits. If
too many people try to evacuate through the same edge, congestion builds up and slows down
the evacuation.

Graphs with both lengths and capacities are known asDynamic Flow networks. An evacuation
plan for G consists of a choice of exit locations and a partition of the people at the vertices into
groups, with each group evacuating to the same exit. The evacuation time of a plan is the time it
takes until the last person evacuates. The k-sink evacuation problem is to provide an evacuation
plan with k exit locations that minimizes the evacuation time. It is known that this problem is
NP-Hard for general graphs but no polynomial time algorithm was previously known even for
the case of G a tree. This paper presents an O(nk2 log5 n) algorithm for the k-sink evacuation
problem on trees, which can also be applied to a more general class of problems.
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1 Introduction

Dynamic flow networks model movement of items on a graph.
Each vertex v is assigned some initial set of supplies wv. Supplies flow across edges. Each

edge e has a length – the time required to traverse it – and a capacity ce, which limits the
rate of the flow of supplies into the edge in one time unit. If all edges have the same capacity
ce = c the network is said to have uniform capacity. As supplies move around the graph,
congestion can occur as supplies back up at a vertex, increasing the time necessary to send a
flow.

Dynamic flow networks were introduced by Ford and Fulkerson in [7] and have since been
extensively used and analyzed. There are essentially two basic types of problems, with many
variants of each. These are the Max Flow over Time (MFOT) problem of how much flow
can be moved (between specified vertices) in a given time T and the Quickest Flow Problem
(QFP) of how quickly a given W units of flow can be moved. Good surveys of the area and
applications can be found in [19, 1, 6, 17].
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One variant of the QFP that is of interest is the transshipment problem, e.g., [12], in
which the graph has several sources and sinks, with the original supplies being the sources
and each sink having a specified demand. The problem is to find the minimum time required
to satisfy all of the demands. [12] designed the first polynomial time algorithm for that
problem, for the case of integral travel times.

Variants of QFP Dynamic flow problems can also model [10] evacuation problems. In
these, vertex supplies are people in a building(s) and the problem is to find a routing strategy
(evacuation plan) that evacuates all of them to specified sinks (exits) in minimum time.
Solving this using (integral) dynamic flows, would assign each person an evacuation path
with, possibly, two people at the same vertex travelling radically different paths.

A slightly modified version of the problem, the one addressed here, is for the plan to
assign to each vertex v exactly one exit or evacuation edge, i.e., a sign stating “this way
out”. All people starting or arriving at v must evacuate through that edge. After traversing
the edge they follow the evacuation edge at the arrival vertex. They continue following the
unique evacuation edges until reaching a sink, where they exit. The simpler optimization
problem is, given the sinks, to determine a plan minimizing the total time needed to evacuate
everyone; we call this the k-sink assignment problem. A more complicated version is, given
k, to find the (vertex) locations of the k sinks/exits and associated evacuation plan that
together minimizes the evacuation time. This is the k-sink location problem, which we also
refer to as ‘the’ k-sink evacuation problem on trees.

Flows with the property that all flows entering a vertex leave along the same edge are
known as confluent1; even in the static case constructing an optimal confluent flow is known
to be very difficult. i.e., if P 6= NP, then it is even impossible to construct a constant-factor
approximate optimal confluent flow in polynomial time on a general graph [4, 5, 3, 18].

Note that if the capacities are “large enough” then no congestion can occur and every
person follows the shortest path to some exit with the cost of the plan being the length of
the maximum shortest path. This is exactly the k-center problem on graphs which is already
known to be NP-Hard [9]. Unlike k-center, which is polynomial-time solvable for fixed k,
Kamiyama et al. [13] proves by reduction from the Partition problem, that, even for fixed
k = 1 finding the min-time evacuation protocol is still NP-Hard for general graphs.

The only known solvable case for general k is for G a path. For paths with uniform
capacities, [11] gives an O(kn) algorithm.2

When G is a tree the 1-sink location problem can be solved [16] in O(n log2 n) time. This
can be reduced [10] down to O(n logn) for the uniform capacity version, i.e., all the ce are
identical. For the assignment problem, [15] gives an O(n2k log2 n) algorithm for finding the
minimum time evacuation protocol. i.e., a partitioning of the tree into subtrees that evacuate
to each sink. The best previous known time for solving the k-sink location problem was
O(n(c logn)k+1), where c is some constant [14].

1.1 Our contributions
This paper gives the first polynomial time algorithm for solving the k-sink location problem
on trees. Our result uses the O(n log2 n) algorithm of [15], for calculating the evacuation
time of a tree given the location of a sink, as an oracle.

I Theorem 1. The k-sink location problem for evacuation can be solved in time O(nk2 log5 n).

1 Confluent flows occur naturally in other problems e.g. packet forwarding and railway scheduling [5].
2 This is generalized to the general capacity path to O(kn log2 n) in the unpublished [2].
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Figure 1 In (a), if wu = 20 the last person leaving u arrives at v at time t = 13. In (b) Assume
people at u, v are all evacuating to w and wu = 20 and wv > 0. The first person from u arrives at v

at time t = 11. If wv ≤ 40 all of the people on v enter (v, w) before or at t = 10, so there will be no
congestion when the first people from u arrive at v and they just sail through v without stopping.
The last people from u reach w at time t = 20.; but if wv > 40, some people who started at v will
still be waiting at v when the first people from u arrive there. In this case, there is congestion and
the people from u will have to wait. After waiting, the last person from u will finally arrive at w at
time 14 + b(20 + wv)/4c.

It is instructive to compare our approach to Frederickson’s [8] O(n) algorithm for solving
the k-center problem on trees, which was built from the following two ingredients.
1. An O(n) time previously known algorithm for checking feasibility, i.e., given α > 0, testing

whether a k-center solution with cost ≤ α exists
2. A clever parametric search method to filter the O(n2) pairwise distances between nodes,

one of which is the optimal cost, via the feasibility test.
Section 3, is devoted to constructing a first polynomial time feasibility test for k-sink
evacuation on trees. It starts with a simple version that makes a polynomial number of
oracle calls and then is extensively refined so as to make only O(k logn) (amortized) calls.

On the other hand, there is no small set of easily defined cost values known to contain the
optimal solution. We sidestep this issue by doing parametric searching within our feasibility
testing algorithm, Section 4, which leads to Theorem 1.

As a side result, a slight modification to our algorithm allows improving, for almost all k,
the best previously known algorithm for the k-sink assignment problem, from O(n2k log2 n)
[15] down to O(nk2 log4 n), as justified in the full paper.

2 Formal definition of the sink evacuation problem

Let G = (V,E) be an undirected graph. Each edge e = (u, v) has a travel time τe; flow
leaving u at time t = t0 arrives at v at time t = t0 + τe. Each edge also has a capacity ce ≥ 0.
This restricts at most ce units of resource to enter edge e in one unit of time. For our version
of the problem we restrict c to be integral; the capacity can then be visualized as the width
of the edge with only ce people being allowed to travel in parallel along the edge.

Consider wu people waiting at vertex u at time t = 0 to travel the edge e = (u, v). Only
ce people enter the edge in one time unit, so the items travel in dwu/cee packets, each of
size ce, except possibly for the last one. The first packet enters e at time t = 0, the second
at time t = 1, etc.. The first packet therefore reaches v at time t = τe time, the second at
t = τe + 1 and the last one at time t = τe + dwu/cee − 1. Figure 1(a) illustrates this process.
In the diagram people get moved along (u, v) in groups of size at most 6. If wu = 20, there
are 4 groups; the first one reaches v at time t = 10, the second at time t = 11, the third at
t = 12 and the last one (with only 2 people) at t = 13.

Now suppose that items are travelling along a path . . . u→ v → w → . . . where e1 = (u, v)
and e2 = (v, w). Items arriving at v can’t enter e2 until the items already there have left. This
waiting causes congestion which is one of the major complications involved in constructing
good evacuation paths. Figure 1(b) illustrates how congestion can build up.
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u2 v
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Figure 2 (a) evacuation problem with 4 vertices and sink at w. If wv = 8, wu1 = 4, wu2 = 10,
wu3 = 11 and sink at w, the last person arrives w at time 15. In (b) the left figure is a tree with the
k = 3 black vertices as sinks. The right figure provides an evacuation plan. Each non-sink vertex v

has exactly one outgoing edge and, following the directed edges from each such v leads to a sink.

As another example, consider Figure 2(a) with every node evacuating to w. When the
first people from u1 arrive at v, some of the original people still remain there, leading to
congestion. Calculation shows that the last people from u1 leave v at time 4 so when the
first people from u2 arrive at v at time 5, no one is waiting at v. But, when the first people
from u3 arrive at v some people from u2 are waiting there, causing congestion. After that,
people arrive from both u2 and u3 at the same time, with many having to wait. The last
person finally reaches w at time 15, so the evacuation protocol takes time 15.

Given a graph G, distinguish a subset S ⊆ V with |S| = k as sinks (exits). An evacuation
plan provides, for each vertex v 6∈ S, the unique edge along which all people starting at or
passing through v evacuate. Furthermore, starting at any v and following the edges will lead
from v to one of the S (if v ∈ S, people at v evacuate immediately through the exit at v).
Figure 2(b) provides an example.

Note that the evacuation plan defines a confluent flow. The evacuation edges form a
directed forest; the sink of each tree in the forest is one of the designated sinks in S.

Given the evacuation plan and the values wv specifying the initial number of people
located at each node, one can calculate, for each vertex, the time (with congestion) it takes
for all of its people to evacuate. The maximum of this over all v is the minimum time
required to evacuate all people to some exit using the rules above. Call this the cost for
S associated with the evacuation plan. The cost for S will be the minimum cost over all
evacuation plans using that set S as sinks.

The k-sink location problem is to find a subset S of size k with minimum cost. Recall
that [15] provides an O(n log2 n) problem for solving this problem if for tree G with k = 1.
We will use this algorithm as an oracle for solving the general k-location problem on trees.

Given the hardness results, there may not exist an efficient algorithm for general graphs,
but our algorithms can serve as fast subroutines for exhaustive search or heuristic methods.
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2.1 General problem formulation

The input to our algorithm(s) will be a tree Tin = (Vin, Ein), and a positive integer k. Let
n = |Vin| = |Ein|+ 1. Our goal will be to find a subset S ⊆ Vin with cardinality at most k
that can minimize the cost denoted by F (S). This will essentially involve partitioning the
Vin into ≤ k subtrees that minimizes their individual max costs.

In the main part of the paper, we denote by f(U, s), where s ∈ U , the time taken by all
people from nodes in U to evacuate to s. So given a set of sinks S, and a partition P of Vin
where |S ∩ P | = 1 for all P ∈ P, the total evacuation time is given by maxP∈P f(P, S ∩ P ).

Our solution will actually work for any f(U, v) that is a monotone min-max cost function.
This is a clean abstraction of evacuation functions that allows us to cleanly formulate and
understand proofs. Formulated this way, our techniques permit solving other related problems.
See the full paper for details.

We also write our proofs in the full paper under such framework. Our algorithms are
designed to make calls directly to an oracle A that, given any U that induces a connected
component of Tin and any v ∈ U , computes a monotone min-max cost function f(U, v). In
general such a polynomial time oracle must exist for the problem to even be in NP. As we
fully account for the time used to call the oracle in any way, there is no material difference
whether the oracle is considered a part of the algorithm or given in the input.

3 Bounded cost k-sink (feasibility test)

To tackle the more complicated general formulation, we first consider a simplification, which
is a decision problem whether all nodes can be evacuated given a time limit T , with k sinks.
We call the general version of this problem "bounded cost minmax k-sink". We will use an
algorithm solving this problem as a subroutine for solving the full problem; we measure the
time complexity by the number of calls to the oracle A, as follows.

I Theorem 2. If A runs in time tA(n), the bounded cost minmax k-sink problem can be
solved in time O(kmax(tA(n), n) logn).

I Definition 3. A feasible configuration is a set of sinks S ⊆ V with a partition P ∈ Λ(S)
where FS(P) ≤ T ; S is also separately called a feasible sink placement, and P is a partition
witnessing the feasibility of S. An optimal feasible configuration is a feasible sink placement
S∗ ⊆ V with minimum cardinality; we write k∗ := |S∗|.

If k∗ > k then the algorithm returns ‘No’. Otherwise, it returns a feasible configuration
(Sout,Pout) such that |Sout| ≤ k.

I Definition 4. Suppose U induces a subtree of Tin and S ⊆ U . We say U can be served by
S if, for some partition P of U , for each P ∈ P there exists s ∈ S such that f(P, s) ≤ T .

I Definition 5. Let U be the nodes of a connected component of G and v ∈ V (not necessarily
in U). We say that v supports U if one of the following holds:

If v ∈ U , then f(U, v) ≤ T .
If v /∈ U , let Π be the set of nodes on the path from v to U . Then f(U ∪ {v} ∪Π, v) ≤ T .

If U can be served by S, then any node in U is supported by some s ∈ S. The converse
is not necessarily true.
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3.1 Greedy construction

Our algorithms greedily build Sout and Pout on-the-fly, making irrevocable decisions on what
should be in the output. Sout is initialized to be empty. In each step, we add elements to
Sout but never remove them, and once |Sout| > k we immediately terminate with a ‘No’. If,
at termination, |Sout| ≤ k, we output Sout.

Similarly, Pout is initially empty, and the algorithm performs irrevocable updates to
Pout while running. An update to Pout is a commit. When set Pnew ⊆ Vin is committed
it is associated with some some sink in Sout (which might have to be added to Sout at the
same time). If Pnew shares its sink with an existing block P ∈ Pout, we merge Pnew into P .
Another way to view this operation is that either a new sink is added, or unassigned nodes
are assigned to an existing sink.

In essence, we avoid backtracking so that Sout does not lose elements, and blocks added
to Pout can only grow. For this to work, we must require, throughout the algorithm:
(C1) An optimal feasible sink placement S∗ exists where Sout ⊆ S∗.
(C2) For any P ∈ Pout there exists a unique s ∈ Sout such that |P ∩ Sout| = 1, and

f(P, s) ≤ T .

Additionally, Pout will be a partition of Vin upon termination with ‘yes’. When these
conditions all hold, then |Pout| ≤ k and (Sout,Pout) is feasible and output by the algorithm.

3.1.1 A separation argument

As the algorithm progresses, it removes nodes from the remaining graph (the working tree),
simplifying the combinatorial structure. We will need the definitions below:

I Definition 6 (Self sufficiency and T−v(u)). A subtree T ′ = (V ′, E′) of Tin is self-sufficient
if V ′ can be served by Sout ∩ V ′.

Given a tree T = (V,E), consider an internal node v ∈ V and one of its neighbors u ∈ V .
Removing v from T leaves a forest F−v of disjoint subtrees of T . Then there is a unique tree
T ′ = (V ′, E′) ∈ F−v such that u ∈ V ′, denoted by T−v(u) = (V−v(u), E−v(u)). The concept
of self sufficiency is introduced for subtree of this form.

Roughly speaking, if T−v(u) is self-sufficient, and u is a sink,
there is no need to add any other sinks to T−v(u), also no node outside T−v(u) will be

routed to any sink in T−v(u) other than u. This means all nodes in V−v(u) except u can be
removed from consideration; a more formal statement of this fact is given in the full version.

Throughout the algorithm, we maintain a ‘working’ tree T = (V,E) as well as a working
set of sinks S = Sout ∩ V . Initially, T = Tin. As the algorithm progresses, T is maintained
to be a subtree of Tin by peeling off self-sufficient subtrees, which ensures that solving the
bounded problem on T is equivalent to solving the bounded problem on Tin.

For this to work, we enforce that sink s is added to Sout and S only when, for some
neighbor u of s, the tree induced by V−s(u) ∪ {s} is self-sufficient with respective to the sink
set S ∪ {s}. This permits removing V−s(u) from T after adding s to Sout and S. So in the
algorithm we can assume that sinks exist only at the leaves of the working tree T .

3.2 Subroutine: Peaking Criterion

We now describe a convenient mechanism that allows us to greedily add sinks.
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I Definition 7 (Peaking criterion). Given T = (V,E), the ordered pair of points (u, v) ∈ V ×V
satisfies the peaking criterion (abbreviated PC ) if and only if u and v are neighbors, V−v(u)∩S
is empty, and finally f(V−v(u), u) ≤ T but f(V−v(u) ∪ {v}, v) > T .

I Lemma 8. Let S be a feasible sink placement for T , and let u, v ∈ V be neighbors. If (u, v)
satisfies the peaking criterion, then S′ := (S\V−v(u)) ∪ {u} is also a feasible sink placement.
In particular, if S is an optimal feasible sink placement, then so is S′.

If (u, v) satisfies the peaking criterion, we can immediately place a sink at u and then commit
V−v(u). The following demonstrates that, whenever S = ∅, at least 1 sink can be found using
the peaking criterion, unless a single node can s ∈ V support the entire graph.

I Lemma 9. Suppose for some v, u, f(V−v(u) ∪ {v}, v) > T , and S ∩ V−v(u) = ∅. Then
there exists a pair of nodes s, t ∈ V−v(u) ∪ {v} such that (s, t) satisfies the peaking criterion.

I Corollary 10. Given S = ∅, either one of the following occurs:
1. For any s ∈ V we have f(V, s) ≤ T , or
2. There exist a pair of nodes u, v ∈ V that satisfies the peaking criterion.

At stages where it is applicable, for each ordered pair (u, v) that satisfies the peaking
criterion we place a sink at u and remove nodes in V−v(u). If instead the first case of the
above corollary occurs, we can add an arbitrary s ∈ V to S and Sout and terminate.

3.3 Subroutine: Reaching Criterion
Corollary 10 provides two ways to add sinks to Sout. The peaking criterion is a way to add
sinks to T and remove certain nodes from T . On the other hand, the reaching criterion
(RC) is a way to remove sinks from T and S, while keeping them in Sout. Roughly speaking,
the reaching criterion finalizes all nodes that should be assigned to certain sinks, and then
removes all these nodes from consideration. To forumlate RC, we first introduce the hub
tree, which has convenient properties that arise from applying the peaking criterion.

I Definition 11 (Hubs). Let L ⊆ V be the leaves of the rooted tree T = (V,E). Let S ⊆ L,
be a set of sinks, with no sink in V \L. Let H(S) ⊆ V be the set of lowest common ancestors
of all pairs of sinks in T . The nodes in H(S) are the hubs associated with S.

The hub tree TH(S) = (VH(S), EH(S)) is the subgraph of T that includes all vertices and
edges along all possible simple paths among nodes H(S) ∪ S.

I Definition 12 (Outstanding branches). Given T = (V,E) and S, we say that a node w ∈ V
branches out to η if η is a neighbor of w in T that does not exist in VH(S). The subtree
T ′ := T−w(η) is called an outstanding branch; we say that T ′ is attached to w.

I Definition 13 (Bulk path). Given two distinct u, v ∈ VH(S), the bulk path BP(u, v) is the
union of nodes along the unique path Π between u, v (inclusive), along with all the nodes in
all outstanding branches that are attached to any node in Π.

Given T and S, we say a node v ∈ EH(S) can evacuate to s ∈ S if f(BP(v, s), s) ≤ T ;
when such s ∈ S exists for v, we say that v can evacuate. Given this we can formulate an
‘opposite’ to the peaking criterion, which allows us to remove nodes, including sinks, from T .

I Definition 14 (Reaching criterion). Given T = (V,E) and a set of sinks S, placed at the
leaves of T . Let T be RC-viable with respect to S and (u, v) ∈ V × V be an ordered pair of
nodes. u, v satisfy the reaching criterion (RC) if and only if they are neighbors in T , and
T−v(u) is self-sufficient while the tree induced by BP(v, u) ∪ V−v(u) is not.
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A crucial property arises after an exhaustive application of the peaking criterion.

I Definition 15 (RC-viable). Given T and sinks S, we say that T is RC-viable if:
1. all sinks S occur at the leaves of T
2. if T ′ = (V ′, E′) is an outstanding branch attached to w ∈ VH(S), then f(V ′∪{w}, w) ≤ T

I Lemma 16. Given T = (V,E) and sinks S, where S is a subset of leaves of T . Suppose
no ordered pair (u, v) ∈ V × V satisfy the peaking criterion. Then T is RC-viable.

Now when T is RC-viable w.r.t. S, there is no need to place sinks within outstanding
branches; this is because if an outstanding branch is attached to a node w, then a sink at w
can already serve the entire outstanding branch.

I Theorem 17. Suppose T = (V,E) is RC-viable with respect to S ⊆ V . If u, v ∈ V satisfies
the reaching criterion, then we can remove T−v(u) from T , and also commit all blocks in the
partitioning of T−v(u) that witnesses the self-sufficiency of T−v(u). By definition, T−v(u)
includes at least one sink from S.

After removing T−v(u) by the reaching criterion, we need to run the peaking criterion
again on T , in order to preserve RC-viability. Then, we can apply RC again. In this way, we
interleave the invocations of PC and RC to gradually eliminate nodes from the working tree.

3.3.1 Testing for self-sufficiency

In order to make use of the reaching criterion, we require efficient tests for self-sufficiency.
Note that [15] readily gives such test albeit at a higher time complexity. In our algorithm, we
perform self-sufficiency tests on a rooted subtree T ′ only if it satisfies some special conditions,
allowing us to exploit RC-viability and reuse past computations. By our arrangements, when
such T ′ passes our test we know it demonstrates a stronger form of self-sufficiency.

I Definition 18 (Recursive self-sufficiency). Given a rooted subtree T ′ = (V ′, E′) of T ,
V ′ ∩ S 6= ∅, we say that T ′ is recursively self-sufficient if for all u ∈ VH(S) ∩ V ′, the subtree
of T ′ rooted at u is self-sufficient.

A bottom-up approach can be used to test for recursive self-sufficiency, which in turn
implies ‘plain’ self-sufficiency.

I Lemma 19. Given a RC-viable rooted subtree T ′ = (V ′, E′) of T , V ′ ∩ S 6= ∅, where v is
the root. Suppose there exists a child u of v in VH(S) ∩ V ′ such that T−v(u) is recursively
self-sufficient, and there is a sink s ∈ S ∩ V−v(u) such that v can evacuate to s.

Then BP (v, s) ∪ V−v(u) is recursively self-sufficient. If, additionally, for every child u′
of v in VH(S) ∩ V ′, T−v(u′) is recursively self-sufficient, then T ′ is recursively self-sufficient.

We say that s is a witness to Lemma 19 for T ′ and v; we store this witness, as well as
the witness for every subtree of T ′ rooted at some v ∈ V ′. One can retrieve a partition P ′
of T ′ that witnesses the self-sufficiency of T ′, in O(|V ′|) time. For this to be useful, note
that only recursive self-sufficiency will be relevant. When a RC-viable tree is self-sufficient
but not recursively self-sufficient, if we process bottom-up, we can always cut off part of the
tree using the reaching criterion, so that the remainder is recursively self-sufficient. This is
demonstrated in the detailed algorithm, in the full paper.
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3.4 Combining the Pieces

The main ingredients of our algorithm are the peaking and reaching criteria along with ideas
to test self-sufficiency. We use the peaking criterion to add sinks to T , and then the reaching
criterion to remove sinks and nodes from T , until either T is empty or T can be served by a
single sink. In the following we describe a full algorithm that makes use of these ideas.

3.4.1 Simpler, iterative approach (‘Tree Climbing’)

Essentially, in this algorithm we iteratively check and apply the PC and RC bottom-up from
the leaves. We do not specify a root here; the root can be arbitrary, and changed whenever
necessary. As we go up from the leaves, for each pair (u, v) that forms an edge of the tree, we
would call the oracle A for f(V−v(u), u), f(V−v(u)∪ {v}, v) or f(BP(v, s), s) for some sink s,
and apply either the peaking criterion or the reaching criterion. By design RC is checked
whenever the tree is RC-viable, and PC is checked whenever the tree is not RC-viable, and
we do not need to test both on the same pair (u, v).

I Lemma 20. The bounded-cost tree-climbing algorithm makes O(n) calls to A.

Proof. We only make O(1) calls to evaluate f(·, ·) for each pair (u, v) ∈ Vin. J

After seeing the iterative approach, it is easier to understand the more advanced algorithm,
which uses divide-and-conquer and binary search to replace the iterative processes.

3.4.2 Peaking criterion by recursion

Macroscopically, we replace plain iteration with a fully recursive process. We do this once in
the beginning, as well as every time we remove a sink. Overall the algorithm makes O(k logn)
‘amortized’ calls to the oracle. Recall that the main purpose of the peaking criterion is to
place sinks and make the tree T RC-viable.

A localized view

We start with a more intuitive, localized view of the recursion. We evaluate f(·, ·) on sets of
nodes of the form V−v(u) or V−v(u) ∪ {v}. If f(V−v(u), u) ≤ T then we mark all nodes in
V−v(u); note that if f(V−v(u) ∪ {v}, u) > T but all nodes in V−v(u) are marked, then PC
can be invoked and V−v(u) is cut off. Sometimes we also mark the node v, if all but one of
its neighbors (that have not been cut off) are marked.

Over the course of the algorithm, we are given a node v ∈ V (along with other information
including which other nodes are marked), and for each neighbor u of v we decide whether to
evaluate au := f(V−v(u) ∪ {v}, v). As a basic principle to save costs, we do not wish to call
the oracle if all nodes in V−v(u) ∪ {v} are marked, or if V−v(u) ∪ {v} contains a sink.

When we do get au ≤ T , mark all nodes in V−v(u). Moreover, if no more than 1
neighbor of v is unmarked, and by this time v /∈ Sout, we also mark v. This part is the
same in tree-climbing, and maintains an important invariant regarding the set of marked
nodes: if u is marked but a neighbor v is not, then all nodes in V−v(u) are marked, and
f(V−v(u) ∪ {v}, v) ≤ T .

On the other hand, if in fact we find that au > T , we would wish to recurse into T−v(u),
because one sink must be placed in it. Now we return to a more global view.
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A global view

To maintain RC-viability we need to apply the oracle on various parts of T . In the iterative
algorithm, this process is extremely repetitive. Now we wish to segregate different sets of
nodes on the tree, so the oracle is only applied to separate parts.

I Definition 21 (Compartments and Boundaries). Let T ′ = (V ′, E′) be a subtree of T = (V,E).
The boundary δT ′ of T ′ is the set of all nodes in T ′ that is a neighbor of some node in V \V ′.

Now given a set of nodes W of a tree T = (V,E), the set of compartments CT (W ) is a
set of subtrees of T , where the union of all nodes is V , and for each T ′ = (V ′, E′) ∈ CT (W ),
V ′ is a maximal set of nodes that induces a subtree T ′′ of T such that δT ′′ ⊆W .

Intuitively, the set of compartments is induced by first removing W , so that T is broken
up into a forest of smaller trees, and for each of the small trees we re-add nodes in W that
were attached to it, where the reattached nodes are called the boundary. As opposed to
partitioning, two compartments may share nodes at their boundaries.

In the algorithm, we generate a sequence of sets W0 ⊆ W1, ...,Wt ⊆ V in the following
manner: W0 contains the tree median of T , and then to create Wi from Wi−1 we simply add
to Wi the tree medians of every compartment in CT (Wi).

For each i, we only make oracle calls that take the form f(V−v(u), s) or f(V−v(u)∪{v}, s).
We avoid choices of (u, v) that will cause evaluation on overlapping sets, based on information
gained on processing Wi−1 in the same way. In this way we only make essentially O(1)
‘amortized’ calls to the oracle for each i. For details see the full paper.

After removing nodes via the reaching criterion, we only need to do this on a subtree of T ,
which we can assume takes the same time as on the full tree. One can see that t = O(logn)
thus the peaking criterion takes at most O(k logn) amortized oracle calls.

3.4.3 Reaching criterion by Binary Search
Intuitively, with the reaching criterion we look for an edge (u, v) in TH(S) so that T−v(u),
which contains at least one sink, can be removed. Now given adjacent hubs h1 and h2, i.e.
hubs where there are no other hubs along the path from h1 to h2, consider any subtree of T
rooted at h1, in which h2 is a descendent of h1. Then exactly one of the following is true:
(P1) There is an edge (u, v) in the path Π(h1, h2) between h1 and h2, where u is a child of

v 6= h1, such that T−v(u) is recursively self-sufficient, but the subtree rooted at v is not.
(P2) Let u be the child of h1 that is on the path between h1 and h2. Then the subtree

rooted at u, i.e. T−h1(u), is recursively self-sufficient.

As h1 and h2 are adjacent hubs, for any edge (u, v) along the path, where v 6= h1 is the
parent of u, the subtree rooted at v is recursively self sufficient only if the subtree rooted at
u is. Suppose we know that the subtree rooted at h2 is recursively self-sufficient.

In the iterative algorithm we move upwards from h2 to h1 gradually until we find such
an edge, or upon reaching h1; this can be replaced by a binary search. This idea will let us
only use O(k2 logn) calls; proper amortization with pruning can reduce this to O(k logn)
oracle calls. See full paper. Theorem 2 follows from the above faster algorithm.

4 Full problem: cost minimization

Given an algorithm for the bounded cost problem, we may perform a binary search over
possible values of T for the minimal T ∗ allowing evacuation with k sinks. To produce a
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strongly polynomial time algorithm, at a higher level, we wish to search among a finite,
discrete set of possible values for T ∗. This can be done by a parametric searching technique.

4.1 Iterative approach
We start by modifying the iterative algorithm for bounded cost. In that algorithm, the
specific value of T dictates the contents of T , S, Sout etc., as well as which node pairs satisfy
either of PC and RC, at each step of that depends upon the outcome of a comparison of the
form f(·, ·) ≤ T , obtained from calling the oracle.

The idea is to run a parametric search version of the bounded cost algorithm. T will no
longer be a constant; we interfere the normal course of the algorithm by changing T during
runtime. The decision to interfere is based on a threshold margin (T L, T H ] that we maintain,
to keep track of candidate values of T ∗. Initially, (T L, T H ] = (−∞.+∞], and T = 0.

The following process terminates with some T ∈ (T L, T H ]; call this the ‘bounded cost
algorithm with interference’. Every time we evaluate a = f(·, ·), we set T based on the
following, before making the comparison a ≤ T and proceeding with the relevant if-clause.

1. If a ≤ T L, set T = T L, so the if-clause always resolves as f(·, ·) ≤ T .
2. If a > T H , set T = T H , so the if-clause always resolves as f(·, ·) > T .
3. If a ∈ (T L, T H ], run a separate clean, non-interfered instance of the bounded cost

algorithm with threshold value T := a, and observe the output.
Output is ‘No’: set T L := a, and T := a, resolving the if-clause as a = f(·, ·) ≤ T = a.
Otherwise, set T H := a, and T := T L.

I Lemma 22. Let (T<, T>] be the threshold margin at the end of the bounded cost algorithm
with interference. Then T> = T ∗. In particular, we can then run the bounded cost algorithm
(non-interfered) on T := T> to retrieve the optimal feasible configuration.

I Theorem 23. Minmax tree facility location can be solved in O(n2) calls to A.

Proof. We always allow the interfered algorithm to make progress, albeit with changing
values of T , so Lemma 20 still applies; f(·, ·) is evaluated at most O(n) times in the interfered
algorithm, thus we also launch a separate instance of the feasibility test O(n) times. J

4.2 Using divide-and-conquer and binary search
The above idea still works for applying RC, that we can use the same ideas of calling the
feasibility test and interfering as we evaluate f(·, ·). Thus we only interfere O(k logn) times,
making O(k2 log2 n) total calls to the oracle.

But it does not work well with the peaking criterion; that the divide-and-conquer algorithm
for the peaking criterion relies very strongly on amortization, and a naive application of
interference will perform O(n) feasibility tests, while we aim for O(k logn).

The basic idea is to filter through values of f(·, ·) where we decide to interfere. Intuitively,
the divide and conquer algorithm can be organized in t layers in reference to W1, ...,Wt

where t = O(logn), for each we evaluate f(·, ·) on certain pairs of nodes and sets. Each
evaluation of f(·, ·) can be identified with an edge of T , thus in each layer we have at most
O(n) evaluations, producing a list of O(n) values.

Thus, at each layer we evaluate f(·, ·), and binary search for a pair of values a<, a> such
that a< ≤ T ∗ < a>, making O(logn) calls to the bounded-cost algorithm, and then set
T = a< when proceeding to mark nodes and place sinks, before moving to the next layer.
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This gives O(log2 n) calls for a single application of the peaking criterion. As we only
need to apply the peaking criterion O(k) times, the resulting number of calls to the feasibility
test is O(k log2 n). As each call takes O(nk log3 n) time, Theorem 1 then follows.

5 Conclusion

Given a Dynamic flow network on a tree Tin = (V,E) we derive an algorithm for finding the
locations of k sinks that minimize the maximum time needed to evacuate the entire graph.
Evacuation is modelled using dynamic confluent flows. Only an O(n log2 n) time algorithm
for solving the one-sink (k = 1) case was previously known.

This paper gives the first polynomial time algorithm for solving the arbitrary k-sink
problem, developed in two parts. Section 3 gives an O(nk log3 n) algorithm to test the
feasibility of completing evacuation in time T with k sinks. Section 4 showed how to modify
this to an O(nk2 log5 n) algorithm for finding the minimum such T that permits evacuation.
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Abstract
We study the following problem: with the power of postselection (classically or quantumly), what
is your ability to answer adaptive queries to certain languages? More specifically, for what kind
of computational classes C, we have PC belongs to PostBPP or PostBQP? While a complete
answer to the above question seems impossible given the development of present computational
complexity theory. We study the analogous question in query complexity, which sheds light on
the limitation of relativized methods (the relativization barrier) to the above question.

Informally, we show that, for a partial function f , if there is no efficient1 small bounded-error
algorithm for f classically or quantumly, then there is no efficient postselection bounded-error
algorithm to answer adaptive queries to f classically or quantumly. Our results imply a new
proof for the classical oracle separation PNPO 6⊂ PPO, which is arguably more elegant. They also
lead to a new oracle separation PSZKO 6⊂ PPO, which is close to an oracle separation between
SZK and PP – an open problem in the field of oracle separations.

Our result also implies a hardness amplification construction for polynomial approximation:
given a function f on n bits, we construct an adaptive-version of f , denoted by F , on O(m·n) bits,
such that if f requires large degree to approximate to error 2/3 in a certain one-sided sense, then
F requires large degree to approximate even to error 1/2− 2−m. Our construction achieves the
same amplification in the work of Thaler (ICALP, 2016), by composing a function with O(logn)
deterministic query complexity, which is in sharp contrast to all the previous results where the
composing amplifiers are all hard functions in a certain sense.
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1 Introduction

1.1 Background
The idea of postselection has been surprisingly fruitful in theoretical computer science and
quantum computing [3, 11, 6]. Philosophically, it addresses the following question: if you
believe in the Many-worlds interpretation2 and can condition on a rare event (implemented
by killing yourself after observing the undesired outcomes), then what would you be able
to compute in a reasonable amount of time? The complexity classes PostBPP [12] and
PostBQP [1] are defined to represent the computational problems you can solve with the
ability of postselection in a classical world or a quantum world.

∗ The full version is available at http://arxiv.org/abs/1606.04016.
1 In the world of query complexity, being efficient means using O(polylog(n)) time.
2 https://en.wikipedia.org/wiki/Many-worlds_interpretation
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However, even with that seemingly omnipotent power of postselection, your computational
power is still bounded. It is known that PostBPP ⊆ PH [12], and (surprisingly) PostBQP =
PP [1]. Hence, it seems quite plausible that even with the postselection power, you are still
not able to solve a PSPACE-complete problem, as it is widely believed that PH and PP are
strictly contained in PSPACE.

Another more non-trivial (and perhaps unexpected) weakness of those postselection
computation classes, is their inability to simulate adaptive queries to certain languages.
For example, it is known that PNP[O(logn)]3 is contained in PostBPP [12], and this result
relativizes. But there is an oracle separation between PNP[ω(logn)] and PostBQP [4]. In other
words, there is no relativized PostBQP algorithm that can simulate ω(logn) adaptive queries
to a certain language in NP. In contrast, we know that P‖NP ⊆ PostBPP ⊆ PP [12], hence
they are capable of simulating non-adaptive queries to NP.

Then a natural question follows:

I Question 1.1. What is the limit of the abilities of these postselection classes on simulating
adaptive queries to certain languages? More specifically, is there any characterization of the
complexity class C such that PC is contained in PostBPP or PostBQP?

Arguably, a complete answer to this problem seems not possible at the present time: even
determining whether PNP ⊆ PP is already extremely hard, as showing PNP ⊆ PP probably
requires some new non-relativized techniques, and proving PNP 6⊂ PP implies PH 6⊂ PP,
which is a long-standing open problem.

1.2 Relativization and the analogous question in query complexity
So in this paper, inspired by the oracle separation in [4], we study this problem from a
relativization point of view. Relativization, or oracle separations are ultimately about the
query complexity. Given a complexity class C, there is a canonical way to define its analogue
in query complexity: partial functions which are computable by a non-uniform C machine
with polylog(n) queries to the input. For convenience, we will use Cdt to denote the query
complexity version of C. We adopt the convention that Cdt denotes the query analogue of C,
while Cdt(f) denotes the Cdt complexity of the partial function f .

For a partial function f , we use len(f) to denote its input length. We say a family of
partial functions f ∈ Cdt, if Cdt(f) = O(polylog(len(f))) for all f ∈ f .

In order to study this question in the query complexity setting, given a partial function
f , we need to define its adaptive version.

I Definition 1.2 (Adaptive Construction). Given a function f : D → {0, 1} with D ⊆ {0, 1}M
and an integer d, we define Adaf,d, its depth d adaptive version, as follows:

Adaf,0 := f and
Adaf,d : D ×Dd−1 ×Dd−1 → {0, 1}

Adaf,d(w, x, y) :=
{

Adaf,d−1(x) f(w) = 0
Adaf,d−1(y) f(w) = 1

where Dd−1 denotes the domain of Adaf,d−1.
The input to Adaf,d can be encoded as a string of length (2d+1 − 1) ·M . Thus, Adaf,d is

a partial function from D(2d+1−1) → {0, 1}.

3 O(logn) stands for the P algorithm can only make O(logn) queries to the oracle.
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Then, given a family of partial function f , we define Adaf := {Adaf,d | f ∈ f , d ∈ N}.
Notice that when you have the ability to adaptively solve d+ 1 queries to f (or with high

probability), then it is easy to solve Adaf,d. Conversely, in order to solve Adaf,d, you need
to be able to adaptively answer d+ 1 questions to f , as even knowing what is the right ith
question to answer requires you to correctly answer all the previous i− 1 questions.

Now, everything is ready for us to state the analogous question in query complexity.

I Question 1.3. What is the characterization of the partial functions family f such that
Adaf ∈ PostBPPdt (PostBQPdt)?

There are at least two reasons to study Question 1.3. First, it is an interesting question
itself in query complexity. Second, an answer to Question 1.3 also completely characterizes
the limitation on the relativized techniques for answering Question 1.1, i.e., the limitation of
relativized methods for simulating adaptive queries to certain complexity classes with the
power of postselection.

This paper provides some interesting results toward resolving Question 1.3.

1.3 Our results
Despite that we are not able to give a complete answer to Question 1.3. We provide some
interesting lower bounds showing that certain functions’ adaptive versions are hard for these
postselection classes.

Formally, we prove the following two theorems.

I Theorem 1.4 (Quantum Case). For a family of partial function f , Adaf 6∈ PostBQPdt(PPdt)
if f 6∈ SBQPdt ∩ coSBQPdt.

I Theorem 1.5 (Classical Case). For a family of partial function f , Adaf 6∈ PostBPPdt if
f 6∈ SBPdt ∩ coSBPdt.

Roughly speaking, SBP is a relaxation of BPP, it is the set of languages L such that
there exists a BPP machine M , which accepts x with probability ≥ 2α if x ∈ L; and with
probability ≤ α if x 6∈ L for a positive real number α. And SBQP is the quantum analogue
of SBP, where you are allowed to use a polynomial time quantum algorithm instead.4

Our theorems show that, for a partial function f , if there is no efficient classical (quantum)
algorithm which accepts all the 1-inputs with a slightly better chance than all the 0-inputs,
then there is no efficient PostBPP (PostBQP) algorithm that can answer adaptive queries to
f .

In fact, we prove the following two quantitatively tighter theorems, from which Theorem 1.4
and Theorem 1.5 follows easily.

I Theorem 1.6. Let f be a partial function and T be a non-negative integer. Suppose
d̂eg+(f) > T or d̂eg−(f) > T , then we have

PPdt(Adaf,d) > min(T/4, 2d−1).5

I Theorem 1.7. Let f : D → {0, 1} with D ⊆ {0, 1}M be a partial function and d be a
non-negative integer. Suppose SBPdt(f) > T or coSBPdt(f) > T , then we have

PostBPPdt(Adaf,d) > min(T/5, (2d − 1)/5).

4 For the formal definitions of SBP, PostBPP, PostBQP, SBQP and their equivalents in query complexity,
see the preliminaries.
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1.4 Applications in oracle separations
Our results have several applications in oracle separations.

A new proof for PNPO 6⊂ PPO:
We prove that SBQPdt(f) is indeed equivalent to one-sided low-weight approximate degree,
denoted by d̂eg+(f) (cf. Definition 2.8), which is lower bounded by one-sided approximate
degree deg+(f) (cf. Definition 1.8).
Using the fact that deg+(ANDn) ≥ Ω(

√
n), Theorem 1.4 implies that AdaAND 6⊂ PPdt,

yielding a simpler proof for the classical oracle separation between PNP and PP in [4].
Our proof is arguably simpler and more elegant. Also, unlike the seemingly artificial
problem ODD-MAX-BIT6 in [4], AdaAND looks like a more natural hard problem in PNP.
The new oracle separation PSZKO 6⊂ PPO :
Since the Permutation Testing Problem, denoted by PTPn (see Problem 2.12 for a
formal definition), satisfies deg+(PTPn) ≥ Ω(n1/3) and has a log(n)-time SZK protocol.
Theorem 1.4 implies that AdaPTP 6⊂ PPdt, which in turn shows an oracle separation
between PSZK and PP.
It has been an open problem [2] that whether there exists an oracle separation between
SZK and PP, our result is pretty close to an affirmative answer to that.7
Also, note that PSZK ⊆ PAM∩coAM = AM ∩ coAM, so our result improves on the oracle
separation between AM ∩ coAM and PP by Vereschchagin [18].

1.5 Applications in hardness amplification for polynomial approximation
Our construction also leads to a hardness amplification theorem for polynomial approximation.
In order to state our result, we need to introduce the definition of two approximate degrees
first.

I Definition 1.8. The ε-approximate degree of a partial function of f : D → {0, 1}, denoted
as d̃egε(f), is the least degree of a real polynomial p such that |p(x)− f(x)| ≤ ε when x ∈ D,
and |p(x)| ≤ 1 + ε when x 6∈ D.

We say a polynomial p one-sided ε-approximates a partial Boolean function f , if p(x) ∈
[0, ε] when f(x) = 0, and p(x) ≥ 1 when f(x) = 1.8 Then the one-sided ε-approximate
degree of a partial function f , denoted by degε+(f), is the minimum degree of a polynomial
one-sided ε-approximating f .

Now we are in a position to state our amplification theorem.

I Theorem 1.9. Let f be a partial function such that deg2/3
+ (f) > T and d be a positive

integer, we have d̃egε(Adaf,d) > T for ε = 0.5− 2−2d+1.

That is, given a function with high one-sided approximate degree for an error constant
bounded away from 1, it can be transformed to a function with high approximate degree
even for ε doubly exponentially close to 1/2 in d.9

6 Given a binary input x, it asks whether the rightest 1 in x is in an odd position.
7 Partially inspired by this work, an oracle separation between SZK and PP (in fact, UPP) has been

constructed in a very recent work of Bouland, Chen, Holden, Thaler and Vasudevan [5], thus resolved
this open problem.

8 Our definition of one-sided approximation is slightly different from the standard one [15, 8, 16], but
it greatly simplifies several discussions in our paper, and they are clearly equivalent up to a linear
transformation in ε.

9 Which is single exponential in the input length of the amplifier AdaQ, see the discussion below.
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Comparison with previous amplification results

There have been a lot of research interest in hardness amplification for polynomial approxim-
ation, many amplification results are achieved through function composition [9, 15, 17]. We
use f ◦ g to denote the block composition of f and g, i.e. f(g, g, . . . , g).

Our result can also be viewed as one of them. Let AdaQd := Adaid,d, where id is just the
identity function from {0, 1} to {0, 1}. Then we can see that in fact Adaf,d is equivalent to
AdaQd ◦ f . Let n = 2d+1 − 1, which is the input length of AdaQd.

However, all the previous amplification results are achieved by letting the amplifier f to
be a hard function. We list all these results for an easy comparison.

In the work of Bun and Tahler [9], they showed that for a function g such that deg+(g) > T ,
d̃egε(ORn ◦ g) > T for ε = 1/2 − 2−Ω(n). This is further improved by Sherstov [15] to
that deg±(ORn ◦ g) = Ω(min(n, T )). Here, the amplifier ORn is a hard function in the
sense that deg+(ORn) ≥ Ω(

√
n) [14].

In [17], Thaler showed that for a function g such that deg+(g) > T , d̃egε(ODD-MAX-BITn
◦ g) > T for ε = 1/2 − 2−Ω(n).10 In this case, the amplifier ODD-MAX-BITn is even
harder in the sense that it has a PPdt query complexity of Ω( 3

√
n) [4].

Moreover, it is easy to see that the randomized query complexity of both ORn and
ODD-MAX-BITn is the maximum possible Ω(n).

In contrast, our amplifier AdaQ, is extremely simple – it has a deterministic query
complexity of O(logn)!11

This is a rather surprising feature of our result. That means AdaQ also has an exact
degree of O(logn). Intuitively, composing with such a simple and innocent function seems
would not affect the hardness of the resulting function. Our result severely contradicts this
intuition. But from the view point of Theorem 1.4, composing with AdaQ indeed “adaptivize”
the function, makes it hard for PostBQP algorithms, which is in turn closely connected to PP
algorithms and therefore polynomial approximate degree. So this result is arguably natural
under that perspective, which illustrates a recurring theme in TCS: a new perspective can
lead to some unexpected results.

1.6 Paper organization
In Section 2 we introduce some preliminaries, due to the space constraints, some of the
formal definitions of those partial function classes in query complexity can be found in the
full version. We prove Theorem 1.4 and Theorem 1.6 in Section 3, and defer the proof for
Theorem 1.5 and Theorem 1.7 to the full version. Theorem 1.9 is proved in Section 3.4. And
we provide formal proofs for the two oracle separation results in the full version.

2 Preliminaries

2.1 Decision trees and quantum query algorithms
A (randomized) decision tree is the analogue of a deterministic (randomized) algorithm in
the query complexity world, and a quantum query algorithm is the analogue of a quantum
algorithm. See [7] for a nice survey on query complexity.

10This construction is further improved in a very recent work [10] by Bun and Thaler, with a more
sophisticated construction which does not follow the composition paradigm.

11A simple O(logn)-query algorithm just follows from the definition.
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Let T be a randomized decision tree, we use C(T ) to denote the maximum number of
queries incurred by T in the worst case12. Let Q be a quantum query algorithm, we use
C(Q) to denote the number of queries taken by Q.

We assume a randomized decision tree T (or a quantum query algorithm Q) outputs a
result in {0, 1}, and we use T (x) (Q(x)) to denote the (random) output of T (Q) given an
input x.

2.2 Complexity classes and their query complexity analogues
We assume familiarity with some standard complexity classes like PP. Due to space con-
straint, we only introduce the most relevant classes A0PPdt and PPdt here, and defer the
formal definitions of the partial function complexity classes SBPdt, SBQPdt, PostBPPdt and
PostBQPdt to the full version.

Recall that Cdt is the set of the partial function family f with Cdt(f) = O(polylog(len(f)))
for all f ∈ f , hence we only need to define Cdt(f) for a partial function f .

PPdt

We first define PPdt(f).

I Definition 2.1. Let f : D → {0, 1} with D ⊆ {0, 1}M be a partial function. Let T be a
randomized decision tree which computes f with a probability better than 1/2. Let α be the
maximum real number such that

Pr[T (x) = f(x)] ≥ 1
2 + α

for all x ∈ D.
Then we define PPdt(T ; f) := C(T )+log2(1/α), and PPdt(f) as the minimum of PPdt(T ; f)

over all T computing f with a probability better than 1/2.

A0PP and A0PPdt

In this subsection we review the definition of A0PP, and define its analogue in query
complexity. There are several equivalent definitions for A0PP, we choose the most convenient
one here.

I Definition 2.2. A0PP (defined by Vyalyi [19]) is the class of languages L ⊆ {0, 1}∗ for
which there exists a BPP machine M and a polynomial p, such that for all inputs x:
(i) x ∈ L =⇒ Pr [M (x) accepts] ≥ 1

2 + 2−p(|x|).
(ii) x /∈ L =⇒ Pr [M (x) accepts] ∈

[ 1
2 ,

1
2 + 2−p(|x|)−1].

I Definition 2.3. Let f : D → {0, 1} with D ⊆ {0, 1}M be a partial function. We say a
randomized decision tree T A0PP-computes f if there is a real number α > 0 such that

Pr[T (x) = 1] ≥ 1/2 + 2α when f(x) = 1.
Pr[T (x) = 1] ∈ [1/2, 1/2 + α] when f(x) = 0.

Fix a T A0PP-computing f , let α be the maximum real number satisfying above conditions.
Then we define A0PPdt(T ; f) = C(T ) + log2(1/α) for T A0PP-computing f and A0PPdt(f)
as the minimum of A0PPdt(T ; f) over all T A0PPdt-computing f . And we simply let
coA0PPdt(f) := A0PPdt(¬f).

12 i.e. the maximum height of a decision tree in the support of T
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Two relativized facts

We also introduce two important relativized results here. In [1], Aaronson showed that
PostBQP is indeed PP in disguise.

I Theorem 2.4 ([1]). PostBQP = PP.

And in [13], Kuperberg showed that SBQP is in fact equal to A0PP.

I Theorem 2.5 ([13]). SBQP = A0PP.

These two theorems relativize, hence we have the following corollaries.

I Corollary 2.6. SBQPdt = A0PPdt.

I Corollary 2.7. PostBQPdt = PPdt.

2.3 Low-weighted one-sided approximate degree
In this subsection, we introduce a new notion of one-sided approximate degree, which is
closely connected to A0PPdt(f).

I Definition 2.8. Write a polynomial p(x) :=
∑m
i=1 ai ·Mi(x) as a sum of monomials, we

define weight(p) :=
∑m
i=1 |ai|. The one-sided low-weight ε-approximate degree of a partial

function f denoted by d̂eg
ε

+(f), is defined by

d̂eg
ε

+(f) := min
p

max{deg(p), log2(weight(p))},

where p goes over all polynomials which one-sided ε-approximates f .13

We simply let d̂eg
ε

−(f) := d̂eg
ε

+(¬f). We also define d̂eg+(f) as d̂eg
1/2
+ (f). d̂eg− is

defined similarly.

Clearly d̂eg
ε

+(f) ≥ degε+(f). And the choice of constant 1/2 is arbitrary, as we can reduce
the approximation error by the following lemma.

I Lemma 2.9. For any 0 < ε1 < ε2 < 1, d̂eg
ε1

+ (f) ≤
⌈

ln ε−1
1

ln ε−1
2

⌉
· d̂eg

ε2

+ (f).

Proof. We can just take the
⌈

ln ε−1
1

ln ε−1
2

⌉th
power of the polynomial corresponding to d̂eg

ε2

+ (f). J

We show that d̂eg+(f) is in fact equivalent to A0PPdt(f) up to a constant factor.

I Theorem 2.10. Let f be a partial function, then

d̂eg+(f) ≤ 2 · A0PPdt(f) and A0PPdt(f) ≤ 2 · d̂eg+(f) + 2.

The proof is based on a simple transformation between a decision tree and the polynomial
representing it, we defer the details to the full version.

And the following corollary follows from the definitions.

I Corollary 2.11. Let f be a partial function, then

d̂eg−(f) ≤ 2 · coA0PPdt(f) and coA0PPdt(f) ≤ 2 · d̂eg−(f) + 2.

13Recall that a polynomial p one-sided ε-approximates a partial Boolean function f , if p(x) ∈ [0, ε] when
f(x) = 0, and p(x) ≥ 1 when f(x) = 1 as in Definition 1.8.
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2.4 The permutation testing problem
Finally, we introduce the permutation testing problem.

I Problem 2.12 (Permutation Testing Problem or PTP). Given black-box access to a function
f : [n]→ [n], and promised that either
(i) f is a permutation (i.e., is one-to-one), or
(ii) f differs from every permutation on at least n/8 coordinates.

The problem is to accept if (i) holds and reject if (ii) holds.
Assume n is a power of 2, we use PTPn to denote the Permutation Testing Problem

on functions from [n] → [n]. PTPn can be viewed as a partial function D → {0, 1} with
D ⊆ {0, 1}n·log2 n.

3 Proof for the quantum case

In this section we prove Theorem 1.4 and Theorem 1.6.
Let f : D → {0, 1} with D ⊆ {0, 1}M be a partial function, we say a polynomial p on M

variables computes f , if p(x) ≥ 1 whenever f(x) = 1, and p(x) ≤ −1 whenever f(x) = 0.

3.1 Existence of the hard distributions
In this subsection we show that if d̂eg+(f) is large, there must exist some input distributions
witness this fact in a certain sense.

I Lemma 3.1. Let f be a partial function and T be a non-negative integer. For convenience,
we say a polynomial p is valid, if it is of degree at most T , and satisfies weight(p) ≤ 2T .

If d̂eg
2/3
+ (f) > T , there exist two distributions D0 and D1 supported on f−1(0) and f−1(1)

respectively, such that

−p(D0) > 2 · p(D1),

where p(D) = Ex∼D[p(x)], for all valid polynomial p computing f .

In order to establish the above lemma, we need the following simple lemma.

I Lemma 3.2. For any valid polynomial p computing f , if d̂eg
2/3
+ (f) > T , then there exist

x ∈ f−1(0) and y ∈ f−1(1) such that −p(x) > 2 · p(y).

The proof is based on a simple calculation, the details can be found in the full version.
Then we prove Lemma 3.1.

Proof of Lemma 3.1. By Lemma 3.2, we have

min
p

max
(x,y)∈f0×f1

−p(x)− 2 · p(y) > 0,

where p is a valid polynomial which computes f , f0 := f−1(0) and f1 := f−1(1). By the
minimax theorem, and note that all the valid polynomials form a compact convex set, there
exists a distribution Dxy on f0 × f1 such that for any valid polynomial p computing f , we
have

E(x,y)∼Dxy
[−p(x)− 2 · p(y)] > 0.

Then we simply let D0 (D1) be the marginal distribution of Dxy on f0 (f1), which completes
the proof. J
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And the following corollary follows by the definition of d̂eg−.

I Corollary 3.3. Let f be a partial function and T be a non-negative integer, if d̂eg
2/3
− (f) > T ,

then there exist two distributions D0 and D1 supported on f−1(0) and f−1(1) respectively,
such that for all valid polynomial p computing f ,

p(D1) > −2 · p(D0).

3.2 Proof for Theorem 1.4 and Theorem 1.6
We first show Theorem 1.6 implies Theorem 1.4.

Proof of Theorem 1.4. Suppose f 6∈ SBQPdt, the case that f 6∈ coSBQPdt is similar.
By Corollary 2.6 and Theorem 2.10, there exists a sequence of function {fi}∞i=1 ⊆

f such that d̂eg+(fi) > log(len(fi))i. Then we consider the partial function sequence
{Adafi,dlog(len(fi))e}∞i=1 ⊆ Adaf .

By Theorem 1.6, we have

PPdt(Adafi,dlog(len(fi))e) > min(log(len(fi))i/4, len(fi)/2).

Note that len(Adafi,dlog(len(fi))e) ≤ 2 · len(fi)2, we can see Adaf /∈ PPdt due to the above
partial function sequence. J

Now, we are going to prove Theorem 1.6. We begin by introducing some consequences of
a function having low PPdt complexity.
I Lemma 3.4. Let f be a partial function, T be a positive integer. Suppose PPdt(f) ≤ T ,
then there exists a degree T -polynomial p computing f and satisfying weight(p) ≤ 22T .

The proof is based on a direct analysis of the polynomial representing the decision tree
for PPdt(f), we defer the details to the full version.

Our proof relies on the following two key lemmas.

I Lemma 3.5. Let f be a partial function with d̂eg
2/3
+ (f) > T . Then for each integer d, there

exist two distributions Dd1 and Dd0 supported on Ada−1
f,d(1) and Ada−1

f,d(0) respectively, such
that −p(D0) > 22d · p(D1) for any degree-T polynomial p computing Adaf,d and satisfying
weight(p) ≤ 2T .

I Lemma 3.6. Let f be a partial function with d̂eg
2/3
− (f) > T . Then for each integer d, there

exist two distributions Dd1 and Dd0 supported on Ada−1
f,d(1) and Ada−1

f,d(0) respectively, such
that p(D1) > −22d · p(D0) for any degree-T polynomial p computing Adaf,d and satisfying
weight(p) ≤ 2T .

We first show these two lemmas imply Theorem 1.6 in a straightforward way.

Proof of Theorem 1.6. We prove the case when d̂eg+(f) > T first.
Otherwise, suppose PPdt(Adaf,d) ≤ min(T/4, 2d−1). By Lemma 3.4, we have a degree-

T/4 polynomial p computing Adaf,d with weight(p) ≤ min(2T/2, 22d). From Lemma 2.9,
d̂eg+(f) = d̂eg

1/2
+ (f) ≤ 2 · d̂eg

2/3
+ (f), hence d̂eg

2/3
+ (f) > T/2. Then by Lemma 3.5, there

exist two distributions Dd1 and Dd0 supported on Ada−1
f,d(1) and Ada−1

f,d(0) respectively, such
that −p(D0) > 22d · p(D1) as p is of degree at most T/4 and satisfies weight(p) ≤ 2T/2.

But this means that −p(D0) > 22d , which implies there exists an x such that p(x) < −22d ,
therefore weight(p) > 22d , contradiction.

The case when d̂eg−(f) > T follows exactly in the same way by using Lemma 3.6 instead
of Lemma 3.5. J
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3.3 Proof for Lemma 3.5
Finally we prove Lemma 3.5. The proof for Lemma 3.6 is completely symmetric using
Corollary 3.3 instead of Lemma 3.1.

Proof of Lemma 3.5. Recall that a polynomial p is valid, if it is of degree at most T , and
satisfies weight(p) ≤ 2T . Let fd := Adaf,d and Dd be the domain of fd. We are going to
construct these distributions Dd0 ’s and Dd1 ’s by an elegant induction.

Construction of D0 and D1 from Lemma 3.1. By Lemma 3.1 there exist two distributions
D0 and D1 supported on f−1(0) and f−1(1) respectively, such that −p(D0) > 2 · p(D1) for
all valid polynomial p computing f .

The base case: construction of D0
0 and D0

1. For the base case d = 0, as f0 is just f , we
simply set D0

0 = D0 and D0
1 = D1. Then for all valid polynomial p computing f0, we have

−p(D0
0) > 2 · p(D0

1) = 220 · p(D0
1).

Construction of Dd
0 and Dd

1 for d > 0. When d > 0, suppose that we have already
constructed the required distributions Dd−1

0 and Dd−1
1 for fd−1. Decompose the input to fd

as (w, x, y) ∈ D ×Dd−1 ×Dd−1 as in the definition, we claim that

Dd0 = (D0,Dd−1
0 ,Dd−1

0 )14 and Dd1 = (D1,Dd−1
1 ,Dd−1

1 )

satisfy our conditions.

Analysis of Dd
0 and Dd

1 . Note that Dd
i is supported on f−1

d (i) for i ∈ {0, 1} from the
definition. Let p(w, x, y) be a valid polynomial computing fd. We set

p(Dw,Dx,Dy) := Ew∼Dw,x∼Dx,y∼Dy
[p(w, x, y)]

for simplicity, where Dw,Dx,Dy are distributions over D,Dd−1, Dd−1 respectively.
Then we have to verify that for all valid polynomial p computing fd,

−p(Dd0) = −p(D0,Dd−1
0 ,Dd−1

0 ) > 22d

· p(D1,Dd−1
1 ,Dd−1

1 ) = 22d

· p(Dd1).

We proceed by incrementally changing (D0,Dd−1
0 ,Dd−1

0 ) into (D1,Dd−1
1 ,Dd−1

1 ), and
establish inequalities along the way.

Step 1: (D0, Dd−1
0 , Dd−1

0 ) ⇒ (D0, Dd−1
1 , Dd−1

0 ). By the definition, we can see that
for any fixed W ∈ support(D0) and Y ∈ support(Dd−1

0 ), the polynomial in x defined
by pL(x) := p(W,x, Y ) is a valid polynomial computing fd−1, hence −pL(Dd−1

0 ) > 22d−1 ·
pL(Dd−1

1 ). By linearity, we have

−p(D0,Dd−1
0 ,Dd−1

0 ) > 22d−1
· p(D0,Dd−1

1 ,Dd−1
0 ).

Step 2: (D0, Dd−1
1 , Dd−1

0 ) ⇒ (D1, Dd−1
1 , Dd−1

0 ). Similarly, for any fixedX ∈ support(Dd−1
1 )

and Y ∈ support(Dd−1
0 ), by the definition, we can see that the polynomial in w defined

by pM (w) := −p(w,X, Y ) is a valid polynomial computing f , hence −pM (D0) > 2 · pM (D1).
Again by linearity, we have

p(D0,Dd−1
1 ,Dd−1

0 ) > −2 · p(D1,Dd−1
1 ,Dd−1

0 ) > −p(D1,Dd−1
1 ,Dd−1

0 ).
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Step 3: (D1, Dd−1
1 , Dd−1

0 ) ⇒ (D1, Dd−1
1 , Dd−1

1 ). Finally, for any fixedW ∈ support(D1)
and X ∈ support(Dd−1

1 ), the polynomial in y defined by pR(y) := p(W,X, y) is a polynomial
computing fd−1, hence −pR(Dd−1

0 ) > 22d−1 · pR(Dd−1
1 ). By linearity, we have

−p(D1,Dd−1
1 ,Dd−1

0 ) > 22d−1
· p(D1,Dd−1

1 ,Dd−1
1 ).

Putting the above three inequalities together, we have

−p(Dd0) = −p(D0,Dd−1
0 ,Dd−1

0 ) > 22d

· p(D1,Dd−1
1 ,Dd−1

1 ) = 22d

· p(Dd1).

This completes the proof. J

3.4 Application in hardness amplification for polynomial approximation

In this subsection, we slightly adapt the above proof in order to show Theorem 1.9.
For a polynomial p on n variables, let ‖p‖∞ := maxx∈{0,1}n |p(x)|. Lemma 3.5 shows

that, fix a partial function f with d̂eg+(f) > T , then for any polynomial computing Adaf,d
with weight(p) ≤ 2T , we must have ‖p‖∞ > 22d . The restriction on weight(p) is essential for
us to establish the connection between A0PPdt and d̂eg+, but it becomes troublesome when
it comes to proving a hardness amplification result.

Luckily, we can get rid of the restriction on weight(p) by making a stronger assumption
that deg+(f) > T . Formally, we have the following analogous lemma for Lemma 3.5.

I Lemma 3.7. Let f be a partial function with deg2/3
+ (f) > T . Then for each integer d, there

exist two distributions Dd1 and Dd0 supported on Ada−1
f,d(1) and Ada−1

f,d(0) respectively, such
that for any degree-T polynomial p computing Adaf,d, −p(Dd0) > 22d · p(Dd1) and consequently
‖p‖+∞ > 22d .

Proof. Using nearly the same proof for Lemma 3.1, we can show that for a partial function
f , if deg2/3

+ (f) > T , there exist two distributions D0 and D1 supported on f−1(0) and f−1(1)
respectively, such that −p(D0) > 2 · p(D1) for all degree-T polynomial p computing f . Then
we can proceed exactly as in the proof for Lemma 3.5 to get the desired distributions. J

Finally, we are ready to prove Theorem 1.9.

Proof of Theorem 1.9. Let F := Adaf,d. Suppose otherwise d̃egε(F ) ≤ T for ε = 0.5 −
2−2d+1. Then there exists a polynomial p such that ‖p‖∞ ≤ 1 + ε, p(x) ≤ 0.5− 2−2d+1 when
F (x) = 0, and p(x) ≥ 0.5 + 2−2d+1 when F (x) = 1.

Then we define polynomial q(x) := (p(x)− 0.5) · 22d−1. It is easy to see q(x) computes F .
Also, we have ‖q‖∞ ≤ (‖p‖∞ + 0.5) · 22d−1 < 22d , which contradicts Lemma 3.7, and this
completes the proof. J

Acknowledgment. I would like to thank Scott Aaronson, Adam Bouland, Dhiraj Holden
and Prashant Vasudevan for several helpful discussions during this work, Ruosong Wang
for many comments on an early draft of this paper, Justin Thaler for the suggestion on the
application in hardness amplification for polynomial approximation, and Mika Göös and
Thomas Watson for pointing out an issue in the proof of Theorem 1.7.

ISAAC 2016



26:12 Adaptivity vs. Postselection, and Hardness Amplification for Polynomial Approx.

References
1 Scott Aaronson. Quantum computing, postselection, and probabilistic polynomial-time.

Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, 461(2063):3473–3482, 2005.

2 Scott Aaronson. Impossibility of succinct quantum proofs for collision-freeness. Quantum
Information & Computation, 12(1-2):21–28, 2012.

3 Scott Aaronson and Alex Arkhipov. The computational complexity of linear optics. In
Proceedings of the forty-third annual ACM symposium on Theory of computing, pages 333–
342. ACM, 2011.

4 Richard Beigel. Perceptrons, PP, and the polynomial hierarchy. Computational Complexity,
4(4):339–349, 1994.

5 Adam Bouland, Lijie Chen, Dhiraj Holden, Justin Thaler, and Prashant Nalini Vas-
udevan. On SZK and PP. In Electronic Colloquium on Computational Complexity (ECCC),
volume 23, page 140, 2016.

6 Michael J. Bremner, Richard Jozsa, and Dan J. Shepherd. Classical simulation of com-
muting quantum computations implies collapse of the polynomial hierarchy. Proceed-
ings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,
467(2126):459–472, 2011.

7 Harry Buhrman and Ronald De Wolf. Complexity measures and decision tree complexity:
a survey. Theoretical Computer Science, 288(1):21–43, 2002.

8 Mark Bun and Justin Thaler. Dual polynomials for collision and element distinctness.
arXiv preprint arXiv:1503.07261, 2015.

9 Mark Bun and Justin Thaler. Hardness amplification and the approximate degree of
constant-depth circuits. In International Colloquium on Automata, Languages, and Pro-
gramming, pages 268–280. Springer, 2015.

10 Mark Bun and Justin Thaler. Approximate degree and the complexity of depth three
circuits. In Electronic Colloquium on Computational Complexity (ECCC), volume 23, page
121, 2016.

11 Andrew Drucker and Ronald de Wolf. Quantum proofs for classical theorems. arXiv
preprint arXiv:0910.3376, 2009.

12 Yenjo Han, Lane A Hemaspaandra, and Thomas Thierauf. Threshold computation and
cryptographic security. SIAM Journal on Computing, 26(1):59–78, 1997.

13 Greg Kuperberg. How hard is it to approximate the Jones polynomial? arXiv preprint
arXiv:0908.0512, 2009.

14 Noam Nisan and Mario Szegedy. On the degree of boolean functions as real polynomials.
Computational complexity, 4(4):301–313, 1994.

15 Alexander A. Sherstov. Breaking the Minsky-Papert barrier for constant-depth circuits. In
Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pages 223–232.
ACM, 2014.

16 Alexander A Sherstov. The power of asymmetry in constant-depth circuits. In Foundations
of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on, pages 431–450.
IEEE, 2015.

17 Justin Thaler. Lower bounds for the approximate degree of block-composed functions. In
Electronic Colloquium on Computational Complexity (ECCC), volume 21, page 150, 2014.

18 NK Vereschchagin. On the power of pp. In Structure in Complexity Theory Conference,
1992., Proceedings of the Seventh Annual, pages 138–143. IEEE, 1992.

19 Mikhail N. Vyalyi. QMA = PP implies that PP contains PH. In ECCCTR: Electronic
Colloquium on Computational Complexity, technical reports, 2003. URL: http://eccc.
hpi-web.de/report/2003/021/.

http://eccc.hpi-web.de/report/2003/021/
http://eccc.hpi-web.de/report/2003/021/


Search on a Line by Byzantine Robots∗

Jurek Czyzowicz1, Konstantinos Georgiou2, Evangelos Kranakis3,
Danny Krizanc4, Lata Narayanan5, Jaroslav Opatrny6, and
Sunil Shende7

1 Département d’informatique, Université du Québec en Outaouais, Gatineau,
QC, Canada
Jurek.Czyzowicz@uqo.ca

2 Department of Mathematics, Ryerson University, Toronto, Canada
konstantinos@ryerson.ca

3 School of Computer Science, Carleton University, Ottawa, Canada
kranakis@scs.carleton.ca

4 Department of Mathematics and Computer Science, Wesleyan University,
Middletown CT, USA
dkrizanc@wesleyan.edu

5 Department of Computer Science and Software Engineering, Concordia
University, Montreal, QC, Canada
lata@cs.concordia.ca

6 Department of Computer Science and Software Engineering, Concordia
University, Montreal, QC, Canada
opatrny@cs.concordia.ca

7 Department of Computer Science, Rutgers University, Camden, USA
sunil.shende@rutgers.edu

Abstract
We consider the problem of fault-tolerant parallel search on an infinite line by n robots. Starting
from the origin, the robots are required to find a target at an unknown location. The robots can
move with maximum speed 1 and can communicate in wireless mode among themselves. However,
among the n robots, there are f robots that exhibit byzantine faults. A faulty robot can fail to
report the target even after reaching it, or it can make malicious claims about having found the
target when in fact it has not. Given the presence of such faulty robots, the search for the target
can only be concluded when the non-faulty robots have sufficient verification that the target has
been found. We aim to design algorithms that minimize the value of Sd(n, f), the time to find
a target at a distance d from the origin by n robots among which f are faulty. We give several
different algorithms whose running time depends on the ratio f/n, the density of faulty robots,
and also prove lower bounds. Our algorithms are optimal for some densities of faulty robots.

1998 ACM Subject Classification F.1.2 Modes of Computation, Parallelism and concurrency,
B.8 Performance and Reliability, F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Cow path problem, Parallel search, Mobile robots, Wireless communic-
ation, Byzantine faults

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2016.27

∗ A full version of the paper is available at http://arxiv.org/abs/1611.08209.

© Jurek Czyzowicz, Konstantinos Georgiou, Evangelos Kranakis, Danny Krizanc, Lata Narayanan,
Jaroslav Opatrny, and Sunil Shende;
licensed under Creative Commons License CC-BY

The 27th International Symposium on Algorithms and Computation 2016.
Editor: Seok-Hee Hong; Article No. 27; pp. 27:1–27:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ISAAC.2016.27
http://arxiv.org/abs/1611.08209
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


27:2 Search on a Line by Byzantine Robots

1 Introduction

Searching on a line (also known as a single-lane cow-path or a linear search) problem is
concerned with a robot looking for a target placed at an unknown location on an infinite line;
the robot moves with uniform (constant) speed and can change direction (without any loss in
time) along this line. The ultimate goal is to find the target in optimal time [5]. Searching is
central to many areas of computer science including data structures, computational geometry,
and artificial intelligence. A version of the problem was first posed in 1963 by Bellman [12]
and independently considered in 1964 by Beck [7], where the target was placed according to
a known probability distribution on the real line, the robot was moving with uniform speed,
and the goal was to find the target in minimum expected time.

In this paper, we consider the problem of parallel, co-operative search on the infinite
line by n mobile robots at most f of which are faulty. The target is placed at a distance
unknown to the robots. The robots start at the same time and location and can communicate
instantaneously in wireless mode at any distance on the real line. While searching, the robots
may co-operate by exchanging (broadcasting) messages; however, the search may be impeded
by some of the robots (at most f) which may exhibit byzantine faults. The ultimate goal is
to minimize the time it takes all non-faulty robots to be certain that the correct location of
the target has been found.

1.1 Motion and communication model
To begin, we describe the robots’ locomotive and communication models used in a search
algorithm.

Robots and their trajectories. Robots are assumed to start at a common location, con-
sidered to be the origin of the line. They can move at maximum unit speed either along the
positive direction (described as moving right) or along the negative direction (described as
moving left); any robot can change direction arbitrarily often (by turning) without any loss
in time. An algorithm for parallel search specifies a trajectory unique to each robot that is
given by its turning points, and the speed(s) to follow between turning points. Since each
robot has a distinct identity, it may also follow a distinct trajectory. Robots are assumed
to have full knowledge of all trajectories, and moreover can communicate instantaneously
with each other in wireless mode at any distance. Since robots know all the trajectories, the
only kind of message broadcast by a robot R is whether or not it has found the target at
some location; if R stays silent while visiting some location, the implicit assumption made
by the other robots is that R did not detect the target there. Thus R follows its predefined
trajectory until either it finds the target, in which case it announces that it has found the
target, or it hears some other robot R′ announce that it has found the target, at which
point R may change its trajectory to participate in a verification protocol in regard to the
announcement.

Messages and communication. All n robots know that f of the robots are faulty but they
cannot differentiate in advance which among them are faulty; instead they must distinguish
faulty from non-faulty ones based on conflict resolution and verification of messages received
throughout the communication exchanges taking place during the execution of the search
protocol. To this end, robots are equipped with pairwise distinct identities which they cannot
alter at any time (in that respect our model is similar to the weakly Byzantine agent in [22]).
In addition to the correct identity, the current location of a robot is automatically included



J. Czyzowicz et al. 27:3

in any broadcast message sent by the robot. Consequently, a faulty robot that does not
follow its assigned trajectory can be immediately detected as faulty by the other robots, if it
chooses to broadcast at some stage. In all other ways, faulty robots are indistinguishable
from non-faulty (reliable) robots, except that the former can make deliberate positive and
negative detection errors as follows. A non-faulty or reliable robot never lies when it has
to confirm or deny the existence of the target at some location. Contrast this with a faulty
robot that may stay silent even when it detects or visits the target, or may claim that it has
found the target when, in fact, it has not found it. Thus, a reliable robot cannot necessarily
trust an announcement that the target has been found, nor can it be certain that a location -
visited silently by another robot - does not contain the target. In other words, the search
for a target can terminate only after at least one robot that is provably reliable has visited
the target and announced that it has been found. This requirement is critical to all our
algorithms: if at some time, multiple robots make conflicting announcements at a location
then the resulting (conflicting) votes can only be resolved if something is known about the
number of reliable robots that participated in the vote. For instance, if three robots vote
and it is known that two of them are reliable, then the majority vote would be the truth.

1.2 Preliminaries and notation
Consider a parallel search algorithm for a target located at distance d from the origin. First
we define the search time of the algorithm and its corresponding competitive ratio.

I Definition 1 (Search Time). Let Sd(n, f) denote the time it takes for a search algorithm
using a collection of n robots at most f of which are faulty, to find in parallel the location
of a target placed at a distance d (unknown to the robots) from the starting position (the
origin) of the robots on the line.

I Definition 2 (Competitive Ratio). The corresponding competitive ratio is defined as
Sd(n, f)/d, which is the ratio of the algorithm’s search time and the lower bound d on
the time taken by any algorithm for the problem.

For larger values of n and f , it will be more convenient to express our results in terms of
the density, β = f

n , of faulty robots. This leads to the following definition.

I Definition 3 (Asymptotic Competitive Search Ratio). Extend the definition of Sd(n, f)
above to non-integer values of n by replacing n with dne while the parameter f remains
integral. Let β = f

n . Then

Ŝ(β) = min {α | ∃ constant cβ such that ∀f > 0, Sd (f/β + cβ , f) ≤ αd} (1)

denotes the asymptotic competitive search ratio of any algorithm with search time Sd(n, f).

Note that if n ≥ 4f + 2, then in any partition of the robots into two groups each of size
at least 2f + 1, we will always have at least f + 1 reliable (non-faulty) robots per group.
Therefore, an algorithm that sends the corresponding robots in the two groups in opposite
directions is guaranteed to find the target in time d, because when the target is visited by
one of the groups, a straightforward majority vote in the group confirms its presence reliably.
Hence, Sd(4f + 2, f) = d, which is optimal. On the other hand, if n ≤ 2f , there is no
algorithm to complete the search: the f faulty robots may always completely disagree with
the reliable ones, making it impossible to be certain of the location of the target. Therefore,
in the sequel, we examine the interesting case where 2f + 1 ≤ n ≤ 4f + 1.
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Table 1 Upper and lower bounds on the search time Sd(n, f) for a given number n ≤ 6 of robots
and faults f = 1, 2. Byz UB and Byz LB denote the known upper and lower bound for byzantine
faults while Crash UB and Crash LB denote the known upper and lower bound for crash faults.

n, f Byz. UB Byz. LB Crash-UB Crash-LB
3, 1 9d 3.93d 5.24d 3.76d
4, 1 3d 3d d d

5, 1 2d 2d d d

6, 1 d d d d

5, 2 9d 3.57d 4.43d 3.57d
6, 2 4d 3d d d

Table 2 Upper and lower bounds on the asymptotic competitive search ratio Ŝ(β) for various
ranges of the density β. Note that for β > 1

2 the search problem is impossible to solve.

β ≤ 1
4 ( 1

4 ,
3

10 ] ( 3
10 ,

1
3 ] ( 1

3 ,
5

14 ] ( 5
14 ,

13
34 ] ( 13

34 ,
19
46 ] ( 19

46 ,
47

110 ] ( 47
110 ,

65
146 ] ( 65

146 ,
157
396 ] ( 157

396 ,
1
2 ]

UB 1 2 3 3 4 5 6 7 8 9
LB 1 2 2 3 3 3 3 3 3 3

1.3 Our results
In Section 2, we are concerned mostly with upper bounds. Subsection 2.1 establishes the
guiding principles for the design of algorithms.

We begin our study of upper bounds in Subsection 2.2 by establishing bounds for Sd(n, f)
for specific small values of n and f . These results are summarized in Table 1. For a
comparison, we include in Table 1 known results on the search time for algorithms on the
line with faulty robots that exhibit only crash faults [19], i.e., when the faulty robots never
send any messages.

For larger values of n and f we express our results in terms of the density β = f
n and

show how to extend our algorithms from small values of n and f to this setting. Table 2
summarizes our results from Subsection 2.3.

Subsection 2.4 concludes Section 2 with several intriguing algorithms in that for densities
f
n between 3

10 and 1
3 the resulting search time is between 2d and 3d. In Section 3, we derive

two lower bounds on the search time. All missing proofs are found in the full version of the
paper.

1.4 Related work
A search problem is usually seen as localization of a hidden target using searchers capable to
move in the environment. It is an optimization question, usually attempting to minimize the
time needed to complete the search. The question has been studied in numerous variations
involving static or moving targets, one or many searchers, known or unknown environment,
synchronous or asynchronous settings, different speed agents and many others (cf. [23]).

In several studies, when the environment is not known in advance, search implies
exploration, often involving mapping and localizing searchers within the environment
[2, 3, 21, 24, 26, 30]. However, even for the case of a known, simple environment like
a line, there were several interesting studies attempting to optimize the search time. They
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started with the independent works of Bellman [12] and Beck [7], in which the authors
attempted to minimize the competitive ratio in a stochastic setting. More exactly, they
proved that time 9d is needed to guarantee finding the target situated at a (a priori un-
known) distance d from the origin. Several other works on linear search followed (e.g. see
[4, 7, 8, 9, 10, 11, 12]). More recently the search by a single searcher was studied for different
models, e.g., when the turn cost was considered [20], when the bounds on the distance to the
target are known in advance [14], and when the target was moving or for more general linear
cost functions [13].

Most recently variants of linear search were studied for collections of collaborating
searchers (robots). [16] considered linear group search, when the process is completed when
the target is reached by the last robot visiting it. The robots collaborate attempting to
minimize the group search time. However, [16] shows that having many robots does not help
and the optimal search time is still bounded from below by 9d. Group search using a pair
of robots having distinct maximal speeds was studied in [6], in which techniques producing
optimal search time were designed.

Fault tolerance was studied in distributed computing in various settings in the past (e.g.,
see [25, 28, 29]). However, the subject of unreliability was mainly for static components of
the environment (e.g. network nodes or links), which was sometimes modelled by dynam-
ically evolving environments (cf. [15, 27]). The malfunctions arising to mobile robots were
investigated for various problems of gathering or pattern forming [1, 17, 22, 31] or patrolling
[18]. Recently [19] investigated crash faults of robots performing linear search, where the
time of finding the target by the first reliable robot was optimized. However, dealing with
Byzantine agents is in general more tricky, requiring to identify and to refute the most
malicious adversarial behavior (e.g., see [22]).

2 Upper Bounds

As already observed, if n ≥ 4f+2, linear search can be performed optimally in time d, and no
algorithm exists if n ≤ 2f . Therefore, we consider below the case when 2f + 1 ≤ n ≤ 4f + 1.
Clearly, the robots can always stay together as a group, and perform the doubling zig-zag
strategy that is optimal for a single robot and that has competitive ratio 9 [5, 7]. Since the
reliable robots (at least f + 1) are always in a majority, we are guaranteed to find the target.
This yields the following upper bound:

I Theorem 4. Sd(n, f) ≤ 9d.

In the remainder of this section, we provide upper bounds that, in general, are better
than those suggested by Theorem 4 for the search problem. We do so by identifying and
using some guiding principles to design search algorithms in the presence of faulty robots.

2.1 Principles for the design of algorithms
The general framework of our algorithms involves five basic principles, namely Partition into
Groups, Symmetry of Algorithms, Resolution of Conflicts, Simultaneous Announcements, and
Computations by the Robots, which we describe below in detail.

Partition into Groups. Depending on the ratio of faulty robots, we partition the robots
into a certain number of groups. Two of the groups lead the exploration in opposite direction
from the origin of the line. Further, each of these two groups will have at least f + 1 robots
so that at least some of the robots would announce the target when it is reached.
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Symmetry of Algorithms. The algorithms are symmetric as far as left and right part of the
line is concerned. We therefore typically discuss the behavior of the algorithm with respect
to one side of the line only.

Resolution of Conflicts. If at any time there is an announcement of a target, the robots
in the search groups stop until the claim is resolved. In the meantime, robots from some
other group(s) move to resolve the claim. Once the claim is resolved, either the target is
found and the robots stop, or a certain number of faulty robots is identified. From this time
onward, the algorithm disregards any message from these faulty robots, effectively reducing
the number of faulty robots to contend with, and the groups continue the search. Thus, each
such announcement exposes more of the faulty robots, until eventually, we can be certain of
a majority of robots in each search group being reliable, in which case the remaining search
can be easily finished.

Simultaneous Announcements. When two announcements are being made at the same
time, as usual with wireless transmissions, the algorithm deals only with one of them at
a time, chosen arbitrarily. After the resolution of the first announcement is done and the
search is possibly restarted, the robots redo their observation, and then the announcement is
repeated if needed, thus taking into consideration the situation after the resolution of the
first announcement. We show it does not influence the search time.

Computations by the Robots We assume that the time spent on calculations is negligible
in comparison with the time spent in moving. Thus, we count only the time needed in
movements of the robots until the target is found.

As indicated above, throughout the execution of the algorithms, conflicts will be resolved
by voting. More precisely, we define V (x, t) to be the vote of the robots about position x
at time t. If y robots have claimed that the target is at x at or before time t, while z have
claimed (by visiting and keeping silent) that it is not at x, then we say V (x, t) = (y, z).

I Definition 5 (Conflict). We say there is a conflict at position x at time t if V (x, t) = (y, z),
with 0 < y, z ≤ f .

The following two simple observations are used extensively in the proofs in this section.

I Lemma 6. Let V (x, t) = (y, z), and let f be the number of faulty robots before time t.
Then
1. If y > f then the target is at position x and the search is concluded.
2. If z > f then the target is not at position x and y new faulty robots have been identified

at time t.

I Lemma 7. Suppose at time t, there are f ′ faulty robots remaining, and there are at least
2f ′+ 1 robots at positions ≥ x and at least 2f ′+ 1 robots at positions ≤ −x. Then any target
that is distance d from the origin can be found in time t+ (d− x).

To build intuition, we start with giving algorithms with at most 2 faulty robots, and
later show how to use these techniques to give algorithms with asymptotic ratios for general
values of n and f .
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2.2 Algorithms for n ≤ 6
Since 2f + 1 ≤ n < 4f + 2, there are only two kinds of possible combinations of values with
n ≤ 6: either f = 1 and 3 ≤ n ≤ 5, or f = 2 and 5 ≤ n ≤ 6.

I Proposition 8. Sd(4, 1) ≤ 3d

Proof of Proposition 8. Partition all robots into two search groups, L, and R, with two
robots in each group. Each robot in R (L) moves right (left resp.) at speed 1 until it finds
the target or hears an announcement that the target has been found. Suppose now that
there is an announcement at time x from position x > 0. If V (x, x) = (2, 0), by Lemma 6,
the target has been found at x and the algorithm terminates. Suppose that V (x, x) = (1, 1).
Then one of the robots in L, say A, travels to x to resolve the conflict, taking additional
time 2x, while all other robots remain stationary. At time 3x, the robot A reaches x. If
V (x, 3x) = (2, 1), by Lemma 6, the target has been found, and the algorithm terminates.
If instead V (x, 3x) = (1, 2), then by Lemma 6, the faulty robot is identified, and all other
robots can be inferred to be reliable. Now the search continues with the groups moving in
opposite directions with only the reliable robots being considered, until the target is found.
Notice that an announcement at −x, simultaneous with that at x, would be resolved at time
3x with reliable robots. Therefore, if the target is at d or −d, the time taken to find it is
≤ 3x+ d− x = 2x+ d ≤ 3d since d > x. Thus in all cases, Sd(4, 1) ≤ 3d. J

If the number of robots increases to n = 5 (while f still equals 1), then it is possible
to send two groups of size 2 in opposite directions as in the algorithm above, but keep one
spare robot at the origin for conflict resolution. This improves the search time to at most 2d
since the spare is always at a distance d from a conflicting vote, and moreover, the spare is
definitely reliable since the faulty robot is part of the conflicting vote..

I Proposition 9. Sd(5, 1) ≤ 2d

Note that the cases, (n, f) = (5, 2) or (n, f) = (3, 1), satisfy n = 2f+1, the bare minimum
of robots necessary to guarantee termination. For these cases, it seems very difficult to
improve upon the upper bound on Sd(n, f) ≤ 9d from Theorem 4. In fact, we conjecture
that this best possible for the pairs (5, 2) and (3, 1) stated above.

By ensuring an appropriate redistribution of robots past the announcement of a conflict,
we can show the following result:

I Proposition 10. Sd(6, 2) ≤ 4d.

2.3 Algorithms for large n
We now consider the case of large n, with different values of the density, β = f/n, of faulty
robots. We start with generalizing the results from the previous subsection, then build
recursive techniques that allow us to deal with larger densities of faulty robots, while paying
a price in terms of the search time.

I Theorem 11. Sd
(

10f+4
3 , f

)
≤ 2d, provided that f ≡ 2 mod 3.

Using the fact that Sd(n+ k, f) ≤ Sd(n, f) for any k ≥ 0 and that Ŝ(β) ≤ Ŝ(β′) if β ≤ β′
we can easily derive the following corollary:

I Corollary 12. If β ≤ 3
10 then Ŝ(β) ≤ 2.
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I Theorem 13. Sd
(

14f+4
5 , f

)
≤ 3d provided f ≡ 4 mod 5.

Proof of Theorem 13. Partition the robots into two search groups L and R each containing
7f+2

5 robots. The robots in L move left and those in R move right at speed 1. Without
loss of generality, assume there is an announcement at x at time x. Let V (x, x) = (y, z).
Then if max{y, z} > f , the announcement is resolved using Lemma 6. Suppose instead that
max{y, z} ≤ f . Then min{y, z} ≥ 2f+2

5 and at least 2f+2
5 robots at x are faulty. In this

case, 3f+3
5 robots from L move from −x to x, and at the same time 2f+2

5 robots that voted
yes and 2f+2

5 that voted no are sent from x to −x. At time 3x, in total 2f + 1 robots have
voted at x, and by Lemma 6, either the target is identified, or at least 2f+2

5 faulty robots
are identified at −x and may be disregarded from now on. There are at most 3f−2

5 faulty
robots unidentified. After the exchange of robots and elimination of the faulty robots in the
worst case there are 6f+1

5 robots in L and in R, i.e., a majority of reliable robots in both
search groups. Therefore by Lemma 7, search for a target at distance d can be finished in
time 3x+ d− x ≤ 3d as claimed. Note that all quantities are integral if f ≡ 4 mod 5. J

As above, the following corollary is immediate:

I Corollary 14. If β ≤ 5
14 then Ŝ(β) ≤ 3.

As illustrated in the proofs of Theorems 11 and 13, when an announcement of a target is
made, either the target can be confirmed, or the number of unidentified faulty robots can be
reduced by an exchange of robots between the two search groups. For higher densities of
faulty robots this technique can be repeated, for which we pay by an increase in the search
time. This is the motivation for the recurrence formulas below that are used to obtain search
algorithms for higher densities of robots.

I Definition 15. Let Tx(l, s, r, f) be the minimum search time required by the robots to
find the target given that initially, l robots are located at −x, s robots are at the origin 0, r
robots are at +x, and f robots are faulty.

Since, as in the algorithms described so far, one way to solve our search problem is to
send two equal-sized groups of robots to positions x and −x, we get the following upper
bound.

I Lemma 16. ∀d ≥ x > 0 Sd(n, f) ≤ x+ Tx(n/2, 0, n/2, f). Furthermore, if n/2 ≥ 2f + 1
then Tx(n/2, 0, n/2, f) = d− x.

If there is an announcement at x, we can identify some of the faulty robots, and by paying
a price in terms of additional time, we can reduce it to a new problem with a smaller number
of faulty robots. This can be encapsulated in the following lemma:

I Lemma 17. Let k > 0 be even. Suppose there is an announcement at distance x from the
origin. Then for all a ≥ x, Tx(f + k, 0, f + k, f) ≤ 2x+ Ta(f + k/2, 0, f + k/2, f − k).

Proof of Lemma 17. Assume there are f +k robots each at x and −x, with at most f faulty
robots in all, and that a conflict occurs at x > 0 at some time t. Let V (x, x) = (y, z). Then
k ≤ min{y, z} ≤ max{y, z} ≤ f . Now the robots move as follows:
1. All f + k robots at position x move to −x.
2. f + k/2 of the robots at −x move to x.
Note that these movements take time 2x, and there are now f+k/2 robots at x and f+k/2+k
robots at −x. Since 2f + 3k/2 robots have now visited x, the vote V (x, 3x) is enough to
resolve the conflict, and there remain at most f − k faulty robots among the total 2f + k

robots. This proves the lemma. J
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Lemma 17 along with Theorem 13 can be used to obtain slower algorithms for higher
densities. We have:

I Theorem 18.
1. Ŝ(β) ≤ 5 for β ≤ 19/46.
2. Ŝ(β) ≤ 7 for β ≤ 65/146.

Similar to Lemma 17 the following lemma establishes a recurrence that can be used to
extend Theorem 11 to higher densities (at a cost of a higher competitive ratio).

I Lemma 19. Suppose there is an announcement at distance x from the origin. Then for
all a ≥ x and k ≥ f/4: Tx(f + k, 0, f + k, f) ≤ 2x+ Ta

(
4(f−k)

3 , 2(f−k)
3 , 3k, f − k

)
.

Using a similar argument to that used in Theorem 18 we can apply Lemma 19 and
Theorem 11 to get:

I Theorem 20.
1. Ŝ(β) ≤ 4 for β ≤ 13/34.
2. Ŝ(β) ≤ 6 for β ≤ 47/110.
3. Ŝ(β) ≤ 8 for β ≤ 157/396.

2.4 Algorithms for 3
10 ≤ β < 1

3

Finally we discuss a new class of algorithms for densities of fn between 3
10 and 1

3 whose search
time is between 2d and 3d.

Informally, in any of these algorithms, the robots are partitioned into two search groups,
that move in opposite directions at speed 1, and i middle groups, i odd, i ≥ 3, positioned at
regular intervals between the search groups. These i groups are used to solve any conflict
reached by the search groups. The positioning of the middle groups between the search
groups is achieved by them moving at a fraction of the maximal speed.

When a vote arises that cannot be resolved using Lemma 6, the middle groups are moved
to the point of conflict in sequence at speed 1 until a resolution of the conflict is obtained.
The middle groups not used in the resolution of a conflict on one side can be used to resolve
a conflict on the other side. This approach allows a fine-grain resolution of a conflict by
taking into account the result of the vote each time a group arrives to the conflict point.

I Lemma 21. Let i be an odd integer, i ≥ 3.
Sd( (3i+2)f

i+1 + 2, f)) ≤
(

3− 2
i+1

)
d, provided f ≡ 0 mod (i+ 1).

I Corollary 22.
1. Ŝ(β) ≤ 2.5 for β ≤ 4/13.
2. Ŝ(β) ≤ 2.67 for β ≤ 6/19.
3. Ŝ(β) ≤ 2.75 for β ≤ 8/25.
4. Ŝ(β) ≤ 2.8 for β ≤ 10/31.

3 Lower Bounds

It is straightforward to see that to achieve search time d, 4f + 2 robots are necessary; with
4f + 1 or fewer robots, at time d, either d or −d can be visited by at most 2f robots. The
adversary can make f of these 2f robots faulty, and it is impossible to be certain about the
answer. Formally we can prove the following result.
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I Lemma 23. Sd(5, 1) ≥ 2d.

Proof of Lemma 23. At time d− ε no one has visited d or −d. Consider where the robots
are at this time. It must be the case that one of the intervals (−d, 0) or (0, d) contains at
most 2 robots. Without loss of generality say it is (0, d). Put the target at d. Sort the robots
by distance to d (ties broken arbitrarily) and make the robot closest to d faulty and silent.
Then at least one robot from (−d, 0] must also reach d so that two non-faulty robots can
identify the target at d. Thus, the search time is at least d− ε+ d = 2d− ε. J

The next theorem shows that the density f/n = 3
10 in Theorem 11 is also a lower bound

on this ratio if we want to maintain the search time to be at most 2d.

I Theorem 24. If Sd(n, f) ≤ 2d then f
n ≤

3
10 .

Proof of Theorem 24. Assume on the contrary that nf ≤
10
3 −ε and that there is an algorithm

for solving the search problem in time 2d. Observe the intervals [−d, 0), {0}, (0,+d] at time
d and let us denote by l, r the number of robots within [−d, 0), (0,+d], and by s the number
of robots at the origin 0, respectively. By assumption l + r + s = (10/3− ε)f . Observe that
robots which are located at points different from −d, 0, d at time d may not be helpful in
reducing the 2d search time. Thus, without loss of generality we may assume that at time d
only the points −d, 0,+d are occupied by robots. Without loss of generality assume that
r ≤ l. We derive a contradiction by considering two cases.
1. Either l or r ≥ 4

3f . In this case we have that r+ s = 10
3 f − ε− l ≤

10
3 f − ε−

4
3f = 2f − ε.

Thus, s+ r robots are not sufficient to resolve conflicts on the right possibly involving f
faulty robots within time 2d.

2. Assume that there exists ε > 0 such that both, l, r ≤ ( 4
3 − ε)f . In particular, consider

r ≤ ( 4
3 − ε)f . Consider time d and suppose that up to min{r, 1

3f} of robots at d claim to
find the target. For the algorithm to attain time 2d, robots must be send from the start
position 0 at time d to position d so as to verify the claim. Since among the robots sent
to +d from 0 we could have all remaining faulty robots, the number of robots sent from 0
must be at least 2f + 1− r so that we a decision at time 2d can be made. However, if the
target is not at +d then the adversary could make it so that only 1

3f robots are faulty at
+d from among 2f+1 robots. However, now we have at most 10

3 f−ε−2f−1 = 4
3f−ε−1

robots at 0 or to the left of 0 and still 2
3f faulty robots remain among them. Thus, any

claim of target at −d′ to the left of −d cannot be verified in time 2d′ by the available
robots.

This proves the theorem. J

I Lemma 25. Sd(3f + 1, f) = 3d.

Proof of Lemma 25. The upper bound Sd(3f + 1, f) ≤ 3d has been proved in Theorem 13.
To prove the lower bound Sd(3f + 1, f) ≥ 3d we argue as follows. Consider visits to the set
of symmetric positions {−d,+d} by the robots. In particular, consider the first time t that
at least f + 1 robots complete visits to the second of the positions in the set. For instance,
without loss of generality, assume that position −d is visited first by at least f + 1 robots
and later (or instantaneously) by at least f + 1 robots. Clearly the time t is at least d. The
adversary arranges for a conflict at position +d. Note that unless t ≥ 3d, the sets of robots
visiting the two positions must be disjoint, and hence, the conflict at position +d involves
at most 2f robots participating in a vote, i.e. to resolve the conflict, at least one of the
robots that visited −d must move to +d. It follows that the total time required is at least
t+ 2d ≥ 3d. J
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Note that Lemma 25 implies a lower bound for densities β in the range 1/3 > β > 3/10.
In case n = 3, f = 1, we can show the following lower bound on the search time.

I Lemma 26. Sd(3, 1) ≥ 3.93d.

Proof. (Lemma 26) We start by considering three positive real numbers x, y, α such that

α− 1
2 ≤ x < y ≤ 2

α− 3 and α− 1
2 ≤ y

x
≤ 2
α− 3 . (2)

We will show that an α satisfying Inequalities (2) above is the competitive ratio of all search
algorithms for three robots with one Byzantine fault. Moreover, using Mathematica it can
be shown that the maximum value of α that satisfies (2) is 3.93.

Consider numbers −y, −x, −1, 0, 1, x, y on the real line and the movement of the three
robots with respect to these points. Assume on the contrary the competitive ratio is some
value ρ such that ρ < α. Throughout the arguments below we are using Inequalities (2).

Observe that two robots must visit the points −1, 1 before time α, otherwise we get a
contradiction to the competitive ratio because of Inequality (2). Therefore there exists a
robot, say A, that visited both of these points before time α. Same argument applies for
points −x, x. There exist a robot that visits both points −x, x before time αx. Observe
that this robot cannot be A. Indeed, otherwise it takes either time 2x + 1 to reach point
−1 or time 2 + 3x to reach point x. Let B be the robot that visits both points −x, x before
time αx. Because of the time constraints in Inequalities (2) the robot B must have either
positive trajectory (i.e., visiting x before −x) or negative trajectory (i.e., visiting −x before
x). However, it is easy to see that B cannot have a positive trajectory because it would be
too far to confirm an target placed at −1. This proves the lemma J

4 Discussion

In this paper, we considered a generalization of the well-known cow-path problem by having
the search done in parallel with a group of n robots, with up to f of them being byzantine
faulty. We presented optimal search algorithms for several ranges of values for β = f/n, the
fraction of faulty robots, and gave non-trivial upper and lower bounds in many cases. Several
interesting problems in the setting remain open, the most interesting one being to give tight
upper and lower bounds in the case n = 2f + 1.
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Abstract
Consider a complete weighted bipartite graph G in which each left vertex u has two real numbers
intercept and slope, each right vertex v has a real number quality, and the weight of any edge
(u, v) is defined as the intercept of u plus the slope of u times the quality of v. Let m (resp.,
n) denote the number of left (resp., right) vertices, and assume that m ≥ n. We develop a fast
algorithm for computing a maximum weight matching (MWM) of such a graph. Our algorithm
begins by computing an MWM of the subgraph induced by the n right vertices and an arbitrary
subset of n left vertices; this step is straightforward to perform in O(n logn) time. The remaining
m − n left vertices are then inserted into the graph one at a time, in arbitrary order. As each
left vertex is inserted, the MWM is updated. It is relatively straightforward to process each
such insertion in O(n) time; our main technical contribution is to improve this time bound to
O(
√
n log2 n). This result has an application related to unit-demand auctions. It is well known

that the VCG mechanism yields a suitable solution (allocation and prices) for any unit-demand
auction. The graph G may be viewed as encoding a special kind of unit-demand auction in which
each left vertex u represents a unit-demand bid, each right vertex v represents an item, and the
weight of an edge (u, v) represents the offer of bid u on item v. In this context, our fast insertion
algorithm immediately provides an O(

√
n log2 n)-time algorithm for updating a VCG allocation

when a new bid is received. We show how to generalize the insertion algorithm to update (an
efficient representation of) the VCG prices within the same time bound.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases Weighted bipartite matching, Unit-demand auctions, VCG allocation
and pricing

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2016.28

1 Introduction

Given an undirected graph G = (V,E), a matching of G is a subset M of E such that no two
edges in M share an endpoint. If G is a weighted graph, we define the weight of a matching
as the sum of the weights of its constituent edges. The problem of finding a maximum weight
matching (MWM) of a weighted bipartite graph, also known as the “assignment problem” in
operations research, is a basic and well-studied problem in combinatorial optimization. A
classic algorithm for the assignment problem is the Hungarian method [11], which admits
an O(|V |3)-time implementation. For dense graphs with arbitrary edge weights, this time
bound remains the fastest known. Fredman and Tarjan [5] introduce Fibonacci heaps,
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and by utilizing this data structure to speed up shortest path computations, they obtain
a running time of O(|V |2 log |V |+ |E| · |V |) for the maximum weight bipartite matching
problem. When the edge weights are integers in {0, . . . , N}, Duan and Su [4] give a scaling
algorithm with running time O(|E|

√
|V | logN). In this paper, we consider a restricted class

of complete weighted bipartite graphs where the edge weights have a special structure. Both
unweighted and weighted matching problems in restricted classes of bipartite graphs have
been studied extensively. Glover [7], Lipski and Preparata [13], Gabow and Tarjan [6], Steiner
and Yeomans [15], and Katriel [10] study matching problems in convex bipartite graphs, the
graphs in which the right vertices can be ordered in such a way that the neighbors of each
left vertex are consecutive. Plaxton [14] studies vertex-weighted matchings in two-directional
orthogonal ray graphs, which generalize convex bipartite graphs.

In the present paper, we develop a fast algorithm for computing an MWM of a complete
weighted bipartite graph with the following special structure: there are m left vertices, each
of which has two associated real values, a “slope” and an “intercept”; there are n right
vertices, each of which has an associated real “quality”; for each left vertex u and right vertex
v, the weight of edge (u, v) is given by the slope of u times the quality of v plus the intercept
of u. Since the weight of any edge (u, v) is determined by evaluating the linear function
specified by u (via the slope and intercept) on the quality of v, we refer to this problem as
bipartite matching with linear edge weights. Assuming that m ≥ n, we solve this problem in
O(m

√
n log2 n) time. We begin by solving the problem on a subgraph induced by the n right

vertices and an arbitrary subset of n left vertices; this turns out to be easy to accomplish
in O(n logn) time via sorting. We then insert the remaining left vertices one at a time, in
arbitrary order. As each left vertex is inserted, we update the solution in O(

√
n log2 n) time.

It is relatively straightforward to process each such insertion in O(n) time, yielding an overall
O(mn) time bound. Our algorithm provides a significant improvement over the latter bound,
which is the fastest previous result that we are aware of.

In recent work that is closely related to the current paper, Domaniç and Plaxton [3]
present a fast algorithm for bipartite matching with linear edge weights in the special case
where the qualities of the right vertices form an arithmetic sequence. Assuming that m ≥ n,
their algorithm runs in O(m logm) time. Applying that algorithm to the scheduling domain
directly solves the problem of scheduling unit jobs on a single machine with a common
deadline where each job has a weight and a profit, and the objective is to minimize the sum of
the weighted completion times of the scheduled jobs plus the sum of the profits of the rejected
jobs. Domaniç and Plaxton [3] also provide an extension that preserves the O(m logm)
time bound for the special case where the qualities correspond to the concatenation of
two arithmetic sequences. This extension solves a more general scheduling problem that
incorporates weighted tardiness penalties with respect to a common due date into the
objective.

By removing the technical restrictions on the qualities imposed in [3], the algorithm of the
present paper supports a richer edge weight structure, while continuing to admit a compact
graph representation that uses space linear in the number of vertices. In terms of scheduling,
the present algorithm addresses a broader class of problems than [3]; for example, it can
handle symmetric earliness and tardiness penalties with respect to a common due date, and
allows certain time slots to be marked as unavailable. Below we discuss another motivation
for the present work, which is based on its connection to unit-demand auctions.

In a unit-demand auction of a collection of items, each bidder submits a bid that specifies
a separate offer on each item, which may or may not be equal to the private valuation that
the bidder has for that item [1]. The outcome of the unit-demand auction is a pricing of
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the items and an allocation of each bidder to at most one item. In mechanism design, it
is known that the VCG mechanism is the only mechanism for unit-demand auctions that
achieves the desired properties of being efficient, strategyproof, and envy-free [8, 12]. Such
an auction can be modeled as a bipartite graph in which each left vertex represents a bid,
each right vertex represents an item, and the weight of the edge from a bid u to an item v

represents the offer of the bid u on item v. Then, a VCG allocation corresponds to an MWM
of such bipartite graph, and the VCG prices correspond to the dual variables computed by
the Hungarian method, i.e., they correspond to the prices having the minimum sum among
the ones that are the solutions to the dual of the linear program that solves the assignment
problem encoding the auction.

The main motivation for our interest in the problem we consider in this paper, given
the aforementioned desirable properties of the VCG mechanism, is to find frameworks to
encode unit-demand auctions that are expressive enough to have suitable applications while
being restrictive enough to yield efficient algorithms for finding VCG outcomes. For instance,
consider a unit-demand auction for last-minute vacation packages in which some trusted
third party (e.g., TripAdvisor) assigns a “quality” rating for each package and each bidder
formulates a unit-demand bid for every package by simply declaring a linear function of
the qualities of packages, i.e., determining the intercept and slope of this linear function.
Within this context, we can formulate an auction as a complete weighted bipartite graph in
the family that we consider in this paper. In some of the popular auction sites, e.g., eBay,
bidding takes place in multiple rounds. eBay implements a variant of an English auction
to sell a single item; the bids are sealed, but the second highest bid (plus one small bid
increment), which is the amount that the winner pays, is displayed throughout the auction.
We employ a similar approach by accepting the bids one-by-one and by maintaining an
efficient representation of the tentative outcome for the enlarged set of bids. We show that
we can process each bid in Õ(

√
n) time where n denotes the number of items in the auction.

More precisely, we present a data structure that is initialized by the entire set of n items;
the bids are introduced one-by-one in any order; the data structure maintains a compact
representation of a VCG outcome (allocation and prices) for the bids introduced so far and
for the entire set of items; it takes O(

√
n log2 n) time to introduce a bid; it takes O(n) time

to print the outcome at any time.

Organization. In Sect. 2, we give the formal definition of the problem and introduce some
useful definitions. In Sect. 3, we present an incremental framework for solving the problem.
In Sect. 4, we present a basic algorithm within the framework of Sect. 3. Built on the
concepts introduced in Sect. 4, we introduce a data structure and present our fast algorithm
in Sect. 5. The companion technical report [2] includes all of the material in the present
version plus some details and the proofs of all lemmas and theorems, which are omitted due
to space limitations. In [2, Section 6], we extend the incremental framework to compute the
VCG prices, and we present the algorithm within that framework.

2 Preliminaries

A bid is a triple u = (slope, intercept, id) where slope and intercept are real numbers, and id
is an integer. We use the notation u.slope and u.intercept to refer to the first and second
components of a bid u, respectively. The bids are ordered lexicographically. An item is a pair
v = (quality, id) where quality is a real number and id is an integer. We use the notation
v.quality to refer to the first component of an item v. The items are ordered lexicographically.

ISAAC 2016
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For any bid u and any item v, we define w(u, v) as u.intercept + u.slope · v.quality.
For any set of bids U and any set of items V , we define the pair (U, V ) as a unit-demand

auction with linear edge weights (UDALEW ). Such an auction represents a unit-demand
auction instance where the set of bids is U , the set of items is V , and each bid u in U offers
an amount w(u, v) on each item v in V .

A UDALEW A = (U, V ) corresponds to a complete weighted bipartite graph G where
left vertices are U , right vertices are V , and the weight of the edge between a left vertex u
and a right vertex v is equal to w(u, v). Hence, for a UDALEW, we use the standard graph
theoretic terminology, alluding to the corresponding graph. The family of all such graphs G
corresponds to the general graph family introduced in [3].

A matching of a UDALEW (U, V ) is a set M of bid-item pairs where each bid (resp.,
item) in M belongs to U (resp., V ) and no bid (resp., item) appears more than once in M .
The weight of a matching M , denoted w(M), is defined as the sum, over all bid-item pairs
(u, v) in M , of w(u, v).

In this paper, we solve the problem of finding a VCG outcome (allocation and prices) for
a given UDALEW A; a VCG allocation is any MWM of A, and we characterize the VCG
prices in [2, Sect. 6.2]. We reduce the problem of finding an MWM to the problem of finding
a maximum weight maximum cardinality matching (MWMCM) as follows: we enlarge the
given UDALEW instance A = (U, V ) by adding |V | dummy bids to U , each with intercept
zero and slope zero; we compute an MWMCM M of the resulting UDALEW A′; we remove
from M all bid-item pairs involving dummy bids.

We conclude this section with some definitions that prove to be useful in the remainder of
the paper. For any totally ordered set S — such as a set of bids, a set of items, or an ordered
matching which we introduce below — we make the following definitions: any integer i is
an index in S if 1 ≤ i ≤ |S|; for any element e in S, we define the index of e in S, denoted
index(e, S), as the position of e in the ascending order of elements in S, where the index of
the first (resp., last) element, also called the leftmost (resp., rightmost) element, is 1 (resp.,
|S|); S[i] denotes the element with index i in S; for any two indices i and j in S such that
i ≤ j, S[i : j] denotes the set {S[i], . . . , S[j]} of size j − i+ 1; for any two integers i and j
such that i > j, S[i : j] denotes the empty set; for any integer i, S[ : i] (resp., S[i : ]) denotes
S[1 : i] (resp., S[i : |S|]); a subset S′ is a contiguous subset of S if S′ = S[i : j] for some
1 ≤ i ≤ j ≤ |S|.

For any matching M , we define bids(M) (resp., items(M)) as the set of bids (resp., items)
that participate in M . A matching M is ordered if M is equal to

⋃
1≤i≤|M | {(U [i], V [i])}

where U denotes bids(M) and V denotes items(M). The order of the pairs in an ordered
matching is determined by the order of the bids (equivalently, items) of those pairs.

3 Incremental Framework

In this section, we present an incremental framework for the problem of finding an MWMCM
of a given UDALEW A = (U, V ). As discussed below, it is a straightforward problem if
|U | ≤ |V |. Thus, the primary focus is on the case where |U | > |V |. We start with a useful
definition and a simple lemma.

For any set of bids U and any set of items V such that |U | = |V |, we define matching(U, V )
as the ordered matching {(U [1], V [1]), . . . , (U [|U |], V [|U |])}.

Lemma 1 below shows how to compute an MWMCM of a UDALEW where the number of
bids is equal to the number of items. The proof follows from the rearrangement inequality [9,
Section 10.2, Theorem 368].
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I Lemma 1. For any UDALEW A = (U, V ) such that |U | = |V |, matching(U, V ) is an
MWMCM of A.

I Corollary 2. For any UDALEW A = (U, V ) such that |U | ≥ |V |, there exists an ordered
MWMCM of A.

If |U | < |V | in a given UDALEW (U, V ), then it is straightforward to reduce the problem
to the case where |U | = |V |. Let U ′ (resp., U ′′) denote the set of the bids in U having negative
(resp., nonnegative) slopes. Then we find an MWMCM M ′ of the UDALEW (U ′, V [ : |U ′|])
and an MWMCM M ′′ of the UDALEW (U ′′, V [|V | − |U ′′|+ 1 : ]), and we combine M ′ and
M ′′ to obtain an MWMCM of (U, V ).

It remains to consider the problem of finding an MWMCM of a UDALEW (U, V ) where
|U | > |V |. The following is a useful lemma. The proof is straightforward by an augmenting
path argument; see [3, Lemma 7] for the proof of a similar claim.

I Lemma 3. Let A = (U, V ) be a UDALEW such that |U | ≥ |V |. Let u be a bid that does not
belong to U . Let M be an MWMCM of A and let U ′ denote bids(M). Then, any MWMCM
of the UDALEW (U ′ + u, V ) is an MWMCM of the UDALEW (U + u, V ).

Lemma 3 shows that the problem of finding an MWMCM of a UDALEW (U, V ) where
|U | = |V |+ k reduces to k instances of the problem of finding an MWMCM of a UDALEW
where the number of bids exceeds the number of items by one. Below we establish an efficient
incremental framework for solving the MWMCM problem based on this reduction.

For any ordered matching M and any bid u that does not belong to bids(M), we define
insert(M,u) as the ordered MWMCM M ′ of the UDALEW A = (bids(M) + u, items(M))
such that the bid that is left unassigned by M ′, i.e., (bids(M) + u) \ bids(M ′), is maximum,
where the existence of M ′ is implied by Corollary 2.

We want to devise a data structure that maintains a dynamic ordered matchingM . When
the data structure is initialized, it is given an ordered matching M ′, and M is set to M ′; we
say that the data structure has initialization cost T (n) if initialization takes at most T (|M ′|)
steps. Subsequently, the following two operations are supported: the bid insertion operation
takes as input a bid u not in bids(M), and transforms the data structure so that M becomes
insert(M,u); the dump operation returns a list representation of M . We say that the data
structure has bid insertion (resp., dump) cost T (n) if bid insertion (resp., dump) takes at
most T (|M |) steps.

I Lemma 4. Let D be an ordered matching data structure with initialization cost f(n), bid
insertion cost g(n), and dump cost h(n). Let A be a UDALEW (U, V ) such that |U | ≥ |V |.
Then an MWMCM of A can be computed in O(f(|V |) + (|U | − |V |) · g(|V |) + h(|V |)) time.

In Sect. 4, we give a simple linear-time bid insertion algorithm assuming an array
representation of the ordered matching. Building on the concepts introduced in Sect. 4,
Sect. 5 develops an ordered matching data structure with initialization cost O(n log2 n),
bid insertion cost O(

√
n log2 n), and dump cost O(n) (Theorem 8). The results of Sect. 5,

together with Lemma 4, yield the O(m
√
n log2 n) MWMCM time bound claimed in Sect. 1.

Looking from an auction perspective, as discussed in Sect. 2, our goal is to compute a
VCG allocation and pricing given a UDALEW. In [2, Sect. 6], we show how to extend the data
structure of Sect. 5 to maintain the VCG prices as each bid is inserted. The asymptotic time
complexity of the operations remain the same; the additional computation for maintaining
the VCG prices takes O(

√
n) time at each bid insertion, where n denotes the size of the

matching maintained by the data structure.
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4 A Basic Bid Insertion Algorithm

In this section, we describe a linear-time implementation of insert(M,u) given an array
representation of the ordered matching. The algorithm described here is not only useful
because it introduces the concepts that the fast algorithm we introduce in Sect. 5 is built
on, but also the same approach is used in certain “block scan” computations of that fast
algorithm. We first introduce two functions that, in a sense evident by their definitions,
restrict insert(M,u) into two halves, left and right, of M split by u.

For any ordered matching M and any bid u that does not belong to bids(M), we
define insertL(M,u) (resp., insertR(M,u)) as the ordered MCM M ′ of the UDALEW
A = (bids(M) + u, items(M)) of maximum weight subject to the condition that the bid that
is left unassigned by M ′, i.e., (bids(M) + u) \ bids(M ′), is less (resp., greater) than u, where
the ties are broken by choosing the MCM that leaves the maximum such bid unassigned; if no
such MCM exists, i.e., u is less (resp., greater) than every bid in bids(M), then insertL(M,u)
(resp., insertR(M,u)) is defined as M .

The following lemma characterizes insert(M,u) in terms of insertL(M,u) and
insertR(M,u); the proof directly follows from the definitions of insert(M,u), insertL(M,u),
and insertR(M,u).

I Lemma 5. Let M be a nonempty ordered matching and let u be a bid that does not belong
to bids(M). Let ML denote insertL(M,u) and let MR denote insertR(M,u). Let W denote
the maximum of w(ML), w(M), and w(MR). Then,

insert(M,u) =


MR if w(MR) = W

M if w(M) = W > w(MR)
ML otherwise.

We now introduce some definitions that are used in Lemma 6 below to characterize
insertL(M,u) and insertR(M,u).

For any ordered matching M and any two indices i and j in M , we define M j
i as

matching(U − U [i], V − V [j]), where U denotes bids(M) and V denotes items(M).
LetM be a nonempty ordered matching, let U denote bids(M), and let V denote items(M).

Then we define ∆L(M) as w(M |M |1 ) − w(M), and we define ∆R(M) as w(M1
|M |) − w(M).

It is straightforward to see that ∆L(M [i : j]) and ∆R(M [i : j]) can be computed for any
1 ≤ i ≤ j ≤ |M | by the recurrences

∆L(M [k − 1 : j]) = ∆L(M [k : j]) + w(U [k], V [k − 1])− w(U [k − 1], V [k − 1]) (L1)
∆R(M [i : k + 1]) = ∆R(M [i : k]) + w(U [k], V [k + 1])− w(U [k + 1], V [k + 1]) (R1)

with base cases ∆L(M [j]) = −w(U [j], V [j]) and ∆R(M [i]) = −w(U [i], V [i]).
Let M be a nonempty ordered matching. Letting W denote max1≤i≤|M | w(M |M |i ), we

define ∆∗L(M) asW−w(M), and we define loserL(M) as max
{
i | w(M |M |i ) = W

}
. Symmet-

rically, lettingW ′ denote max1≤i≤|M | w(M1
i ), we define ∆∗R(M) asW ′−w(M), and we define

loserR(M) as max
{
i | w(M1

i ) = W ′
}
. By Lemma 1 and by the definitions of ∆L(M) and

∆R(M), it is straightforward to see that (∆∗L(M), loserL(M)) = max1≤i≤|M |(∆L(M [i : ]), i)
and (∆∗R(M), loserR(M)) = max1≤i≤|M |(∆R(M [ : i]), i) (the pairs compare lexicographi-
cally). Hence, ∆∗L(M [i : j]), loserL(M [i : j]), ∆∗R(M [i : j]), and loserR(M [i : j]) can be
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Algorithm 1 A linear-time implementation of bid insertion. The difference of the weight of
an MWMCM of the UDALEW A = (bids(M) + u, items(M)) and that of M is equal to δ,
and the maximum bid in bids(M) + u that is unmatched in some MWMCM of A is u∗.
Input: M is an ordered matching and u is a bid that does not belong to bids(M).
Output: insert(M,u).
1: Let U denote bids(M) and let V denote items(M)
2: C ← {(0, u)}
3: k ← index(u, U + u)
4: if k > 1 then
5: for i = k − 1 down to 1 do
6: Compute ∆L(M [i : k − 1]) via (L1)
7: Compute ∆∗L(M [i : k − 1]) and loserL(M [i : k − 1]) via (L2)
8: end for
9: C ← C + (w(u, V [k − 1]) + ∆∗L(M [ : k − 1]), U [i]) where i = loserL(M [ : k − 1])
10: end if
11: if k ≤ |M | then
12: for i = k to |M | do
13: Compute ∆R(M [k : i]) via (R1)
14: Compute ∆∗R(M [k : i]) and loserR(M [k : i]) via (R2)
15: end for
16: C ← C + (w(u, V [k]) + ∆∗R(M [k : ]), U [j]) where j = loserR(M [k : ]) + k − 1
17: end if
18: (δ, u∗)← the lexicographically maximum pair in C
19: return matching(U + u− u∗, V )

computed for any 1 ≤ i ≤ j ≤ |M | by the recurrences

(∆∗L(M [k − 1 : j]), loserL(M [k − 1 : j])) =
max{(∆∗L(M [k : j]), loserL(M [k : j]) + 1), (∆L(M [k − 1 : j]), 1)} (L2)

(∆∗R(M [i : k + 1]), loserR(M [i : k + 1])) =
max{(∆∗R(M [i : k]), loserR(M [i : k])), (∆R(M [i : k + 1]), k + 2− i)} (R2)

with base cases ∆∗L(M [j]) = −w(U [j], V [j]), ∆∗R(M [i]) = −w(U [i], V [i]), and loserL(M [j]) =
loserR(M [i]) = 1.

I Lemma 6. Let M be a nonempty ordered matching, let U denote bids(M), let V denote
items(M), let u be a bid that does not belong to U , let k denote index(u, U + u), let ML

denote insertL(M,u), and let MR denote insertR(M,u). If k > 1, then ML is equal to
Mk−1

i + (u, V [k−1]) and w(ML) = w(M) + ∆∗L(M [ : k − 1]) + w(u, V [k−1]) where i denotes
loserL(M [ : k − 1]); otherwise, ML = M . If k ≤ |M |, then MR is equal to Mk

j + (u, V [k])
and w(MR) = w(M) + ∆∗R(M [k : ]) + w(u, V [k]) where j denotes loserR(M [k : ]) + k − 1;
otherwise, MR = M .

Lemmas 5 and 6, together with (L1), (R1), (L2), and (R2), directly suggest a linear-time
computation of insert(M,u), as shown in Algorithm 1. If insertL(M,u) (resp., insertR(M,u))
is not equal to M , then the algorithm computes the difference w(insertL(M,u)) − w(M)
(resp., w(insertR(M,u))− w(M)) and adds a pair at line 9 (resp., line 16) to a set C where
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the first component is this difference, and the second component is the bid in bids(M) + u

that is left unassigned by insertL(M,u) (resp., insertR(M,u)). Then by Lemma 5, the
algorithm correctly returns insert(M,u) by choosing the maximum pair of C at line 18.

5 A Superblock-Based Bid Insertion Algorithm

In this section, we describe an ordered matching data structure based on the concept of a
“superblock”, and we show how to use this data structure to obtain a significantly faster bid
insertion algorithm than that presented in Sect. 4. Before beginning our formal presentation
in Sect. 5.1, we provide a high-level overview of the main ideas.

Recall that an ordered matching data structure maintains a dynamic ordered matchingM .
Let n denote |M |. We maintain a partition of the bids of M into contiguous “groups” of size
Θ(`), where ` is a parameter to be optimized later. The time complexity of Alg. 1 is linear
because the for loops starting at lines 5 and 12 process bid-item pairs in M sequentially. Our
rough plan is to accelerate the computations associated with this pair of loops by proceeding
group-by-group. We can process a group in constant time if we are given six “auxiliary
values” that depend on the “submatching” M ′ of M associated with the bids in the group,
namely: ∆L(M ′), ∆R(M ′), ∆∗L(M ′), ∆∗R(M ′), loserL(M ′), and loserR(M ′). The auxiliary
values associated with a group can be computed in Θ(`) time. A natural approach is to
precompute these auxiliary values when a group is created or modified, or when the set of
matched items associated with the group is modified. Unfortunately, a single bid insertion
can cause each bid in a contiguous interval of Θ(n) bids to have a new matched item. For
example, if a bid insertion introduces a “low” bid u and deletes a “high” bid u′, then each bid
between u and u′ gets a new matched item one position to the right of its old matched item.
Since a constant fraction of the groups might need to have their auxiliary values recomputed
as a result of a bid insertion, the overall time complexity remains linear.

The preceding discussion suggests that it might be useful to have an efficient way to
obtain the new auxiliary values of a group of bids when the corresponding interval of matched
items is shifted left or right by one position. To this end, we enhance the precomputation
associated with a group of bids as follows: Instead of precomputing only the auxiliary
values corresponding to the group’s current matched interval of items, we precompute the
auxiliary values associated with shifts of 0,±1,±2, . . . ,±Θ(`) positions around the current
matched interval. That way, unless a group of bids is modified (e.g., due to a bid being
deleted or inserted) we do not need to redo the precomputation with the group until it
has been shifted Ω(`) times. Since the enhanced precomputation computes Θ(`) sets of
auxiliary values instead of one set, a naive implementation of the enhanced precomputation
has Θ(`2) time complexity, leading once again to linear worst-case time complexity for bid
insertion. We obtain a faster bid insertion algorithm by showing how to perform the enhanced
precomputation in O(` log2 `) time.

Our O(` log2 `)-time algorithm for performing the enhanced precomputation forms the
core of our fast bid insertion algorithm. Here we briefly mention the main techniques used
to perform the enhanced precomputation efficiently; the reader is referred to [2, Sect. 5.3.1]
for further details. A divide-and-conquer approach is used to compute the auxiliary values
associated with the functions loserL and loserR in O(` log `) time; the correctness of this
approach is based on a monotonicity result (see [2, Lemmas 8 and 9]). A convolution-based
approach is used to compute the auxiliary values based on ∆L and ∆R in O(` log `) time
(see [2, Lemma 7]). The auxiliary values based on loserL (resp., loserR) are used within a
divide-and-conquer framework to compute the auxiliary values based on ∆∗L (resp., ∆∗R); in
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the associated recurrence, the overhead term is dominated by the cost of evaluating the same
kind of convolution as in the computation of the auxiliary values based on ∆L and ∆R. As a
result, the overall time complexity for computing the auxiliary values based on ∆∗L and ∆∗R
is O(` log2 `).

Section 5.1 introduces the concept of a “block”, which is used to represent a group of
bids together with a contiguous interval of items that includes all of the items matched to
the group. Section 5.3 presents a block data structure. When a block data structure is
“initialized” with a group of bids and an interval of items, the enhanced precomputation
discussed in the preceding paragraph is performed, and the associated auxiliary values are
stored in tables. A handful of “fields” associated with the block are also initialized; these fields
store basic information such as the number of bids or items in the block. After initialization,
the block data structure is read-only: Whenever a block needs to be altered (e.g., because a
bid needs to be inserted/deleted, because the block needs to be merged with an adjacent
block), we destroy the block and create a new one. The operations supported by a block
may be partitioned into three categories: “queries”, “lookups” and “scans”. Each query runs
in constant time and returns the value of a specific field. Each lookup runs in constant time
and uses a table lookup to retrieve one of the precomputed auxiliary values. Each of the two
linear-time scan operations (one leftgoing, one rightgoing) performs a naive emulation of one
of the for loops of Alg. 1; in the context of a given bid insertion, such operations are only
invoked on the block containing the insertion position of the new bid.

Section 5.1 defines the concept of a superblock, which is used to represent an ordered
matching as a sequence of blocks. A superblock-based ordered matching data structure
is introduced in Sect. 5.3, where each of the constituent blocks is represented using the
block data structure alluded to in the preceding paragraph. In Sect. 5.3, we simplify the
presentation by setting the parameter ` to Θ(

√
n). For this choice of `, we show that bid

insertion can be performed using O(1) block initializations, O(
√
n) block queries, O(

√
n)

block lookups, at most two block scans, and O(
√
n) additional overhead, resulting in an

overall time complexity of O(
√
n log2 n). In terms of the parameters ` and n, the approach

of Sect. 5.3 can be generalized to perform bid insertion using O(
⌈
n/`2⌉) block initializations,

O(n/`) block queries, O(n/`) block lookups, at most two block scans, and O(n/`) additional
overhead; it is easy to verify that setting ` to Θ(

√
n) minimizes the overall time complexity.

5.1 Blocks and Superblocks

We define a block B as a UDALEW (U, V ) where |U | ≤ |V |. For any block B = (U, V ), we
define shifts(B) as |V | − |U | + 1. For any block B = (U, V ) and any integer t such that
1 ≤ t ≤ shifts(B), we define matching(B, t) as matching(U, V [t : t+ |U | − 1]).

Let M be a nonempty ordered matching, let U denote bids(M), and let V denote
items(M). Let m be a positive integer, and let 〈a0, . . . , am〉, 〈b1, . . . , bm〉, and 〈c1, . . . , cm〉
be sequences of integers such that a0 = 0, am = |U |, and 1 ≤ bi ≤ ai−1 + 1 ≤ ai ≤ ci ≤ |U |
for 1 ≤ i ≤ m. Let Bi denote the block (U [ai−1 + 1 : ai], V [bi : ci]) for 1 ≤ i ≤ m. Then
the list of blocks S = 〈B1, . . . , Bm〉 is a superblock, and we make the following additional
definitions: matching(S) denotes M ; size(S) denotes |M |; bids(S) denotes U ; items(S)
denotes V ; shift(S, i) and shift(S,Bi) both denote bi− ai−1 for 1 ≤ i ≤ m; sum(S, i) denotes
ai for 0 ≤ i ≤ m; the leftmost block B1 and the rightmost block Bm are the boundary blocks,
the remaining blocks B2, . . . , Bm−1 are the interior blocks. Remark: For any superblock S,
matching(S) =

⋃
1≤i≤|S|matching(S[i], shift(S, i)).
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5.2 Algorithm 2
We obtain a significantly faster bid insertion algorithm than Alg. 1 by accelerating the
computations associated with the for loops starting at lines 5 and 12. Recall that the
first loop computes ∆∗L(M [ : k − 1]) and loserL(M [ : k − 1]), and the second one computes
∆∗R(M [k : ]) and loserR(M [k : ]). These two loops process a trivial representation of M
pair-by-pair using the recurrences (L1), (R1), (L2), and (R2). We start by generalizing
these recurrences; these generalizations allow us to compute the aforementioned values more
efficiently by looping over a superblock-based representation of the matching block-by-block,
instead of pair-by-pair.

Let M denote matching(U, V ), and let i, j, and k be three indices in M such that
i ≤ j < k. Then the following equation generalizes (L1), and it is straightforward to prove
by repeated application of (L1).

∆L(M [i : k]) = ∆L(M [j + 1 : k]) + w(U [j + 1], V [j]) + ∆L(M [i : j]). (L1′)

We also give a generalization of (L2), where the proof follows from the definitions of ∆∗L and
loserL.

(∆∗L(M [i : k]), loserL(M [i : k])) =

max
{

(∆∗L(M [j + 1 : k]), loserL(M [j + 1 : k]) + j + 1− i),
(∆∗L(M [i : j]) + w(U [j + 1], V [j]) + ∆L(M [j + 1 : k]), loserL(M [i : j]))

}
(L2′)

Symmetric equations generalizing (R1) and (R2) are given in [2].
We use (L1′) and (L2′) within a loop that iterates over a superblock-based representation

of the matching block-by-block. In each iteration of the loop, we are able to evaluate the
right-hand side of (L1′) and (L2′) in constant time because the terms involving M [j + 1 : k]
are carried over from the previous iteration, and the terms involving M [i : j] are already
stored in precomputed tables associated with the blocks of the superblock.

The high-level algorithm is given in Alg. 2. The input is a superblock S that represents
an ordered matching, denoted M (i.e., matching(S) = M), and a bid u that does not belong
to bids(S). The output is a superblock representing insert(M,u). The unique bid u∗ that is
unmatched in insert(M,u) is identified using the block-based framework alluded to above.
After identifying u∗, if u∗ 6= u, the algorithm invokes a subroutine Swap(S, u∗, u) which,
given a superblock S, a bid u∗ that belongs to bids(S), and a bid u that does not belong
to bids(S), returns a superblock that represents matching(bids(S) + u− u∗, items(S)). The
correctness of Alg. 2 is established in [2, Lemma 6], where it is shown that Alg. 2 emulates
the behavior of Alg. 1.

5.3 Fast Implementation of Algorithm 2
In this section, we first present a block data structure that precomputes the auxiliary tables
mentioned in Sect. 5.2 in quasilinear time, thus allowing lines 13 and 14 of Alg. 2 to be
performed in constant time. We then introduce a superblock-based ordered matching data
structure that stores the blocks using the block data structure, where the sizes of the blocks
are optimized to balance the cost of Swap with that of the remaining operations in Alg. 2.
We present our efficient implementation of Swap, which constructs only a constant number
of blocks, and analyze its time complexity in [2, Sections 5.3.3 and 5.3.4].

Let S be a superblock on which a bid insertion is performed, let B be a block in S,
and let Mt denote matching(B, t) for 1 ≤ t ≤ shifts(B). The algorithm may query ∆L(Mt),
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Algorithm 2 A high-level bid insertion algorithm using the superblock-based representation
of an ordered matching.
Input: S is a superblock and u is a bid that does not belong to bids(S).
Output: A superblock S′ such that matching(S′) = insert(matching(S), u).
1: Let M denote matching(S), let U denote bids(S), and let V denote items(S)
2: Let S[i] be (Ui, Vi) for 1 ≤ i ≤ |S|
3: σ(i)← sum(S, i) for 0 ≤ i ≤ |S|
4: C ← {(0, u)}
5: `← |{(U ′, V ′) | (U ′, V ′) ∈ S and U ′[1] < u}|
6: k ← if ` < 1 then 1 else index(u, U` + u) + 1 + σ(`− 1)
7: if k > 1 then
8: for i = k − 1 down to σ(`− 1) + 1 do
9: Compute ∆L(M [i : k − 1]) via (L1)

10: Compute ∆∗L(M [i : k − 1]) and loserL(M [i : k − 1]) via (L2)
11: end for
12: for i = `− 1 down to 1 do
13: Compute ∆L(M [σ(i− 1) + 1 : k − 1]) via (L1′)
14: Compute ∆∗L(M [σ(i− 1) + 1 : k − 1]) and loserL(M [σ(i− 1) + 1 : k − 1])

via (L2′)
15: end for
16: C ← C + (w(u, V [k − 1]) + ∆∗L(M [ : k − 1]), U [i]) where i = loserL(M [ : k − 1])
17: end if
18: if k ≤ |M | then
19: Compute ∆∗R(M [k : ]) and loserR(M [k : ]). See [2] for the code, which is symmetric

to lines 8 through 15.
20: C ← C + (w(u, V [k]) + ∆∗R(M [k : ]), U [j]) where j = loserR(M [k : ]) + k − 1
21: end if
22: (δ, u∗)← the lexicographically maximum pair in C
23: return if u∗ 6= u then Swap(S, u∗, u) else S

∆R(Mt), ∆∗L(Mt), ∆∗R(Mt), loserL(Mt), and loserR(Mt) for t = shift(S,B). If B is part
of the superblocks for a series of bid insertions, then these queries may be performed for
various t values. For a fast implementation of Alg. 2, instead of individually computing these
quantities at query time, we efficiently precompute them during the construction of the block
and store them in the following six lists. We define ∆L(B) as the list of size shifts(B) such
that ∆L(B)[t] is equal to ∆L(Mt) for 1 ≤ t ≤ shifts(B). We define the lists ∆R(B), ∆∗L(B),
∆∗R(B), loserL(B), and loserR(B) similarly. The representation of a block B = (U, V ) simply
maintains each of the following explicitly as an array: U , V , ∆L(B), ∆R(B), ∆∗L(B), ∆∗R(B),
loserL(B), and loserR(B). In what follows, we refer to that representation as the block data
structure for B.

The main technical contribution of this paper is that we can compute the aforementioned
lists efficiently as stated in the following theorem.

I Theorem 7. The block data structure can be constructed in O(|V | (log shifts(B) + log2 |U |))
time for any block B = (U, V ).

We now introduce a data structure called a superblock-based ordered matching (SOM );
the formal definition is deferred to [2, Sect. 5.3.2]. A SOM represents an ordered matching
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M by maintaining a superblock S such that matching(S) = M , where S is stored as a list of
block data structures.

I Theorem 8. The SOM has initialization cost O(n log2 n), bid insertion cost O(
√
n log2 n),

and dump cost O(n).

Theorem 8 states the main result of our paper, and is proved in [2, Sect. 5.3.4]. Here
we briefly mention key performance-related properties of the SOM, deferring the details to
[2, Sect. 5.3.2]. It is easy to see that Alg. 2 does not modify the superblock, except during
Swap at line 23. When Swap modifies the superblock, existing blocks are not modified;
rather, some existing blocks are deleted, and some newly constructed blocks are inserted.
We define the blocks in a SOM so that each block has Θ(

√
n) bids and Θ(

√
n) items, and so

that Swap can be implemented by constructing at most a constant number of blocks, where
n denotes the size of the matching represented by the SOM; we give an O(

√
n log2 n)-time

implementation of Swap in [2, Sections 5.3.3 and 5.3.4].
It is possible to support constant-time queries that return the bid matched to a given

item with some additional bookkeeping. Queries to find whether a bid is matched or not,
and if so, to return the matched item, can be implemented in logarithmic time by performing
binary search. Finally, it is possible to initialize the SOM with a matching consisting of all
dummy bids, each with intercept zero and slope zero, in linear time, since all of the weights
involving those bids are zero, and thus it is trivial to construct the blocks.
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Abstract
Given a permutation of n elements, stored as an array, we address the problem of replacing the
permutation by its kth power. We aim to perform this operation quickly using o(n) bits of extra
storage. To this end, we first present an algorithm for inverting permutations that uses O(lg2 n)
additional bits and runs in O(n lgn) worst case time. This result is then generalized to the
situation in which the permutation is to be replaced by its kth power. An algorithm whose worst
case running time is O(n lgn) and uses O(lg2 n+min{k lgn, n3/4+ε}) additional bits is presented.
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1 Introduction

Permutations are fundamental in computer science and are the subject of extensive study.
They are commonly used as a basic building block for space efficient encoding of strings [1, 8,
12, 14], binary relations [3, 2], integer functions [11] and many other combinatorial objects.

In this paper, we study the problem of transforming a permutation π to its kth power πk
in place. By “in place,” we mean that the algorithm executes while using “very little” extra
space. Ideally, we want the algorithm to use only a polylogarithmic number of additional
bits. The algorithm we present uses several new techniques that are of interest in their own
right and could find broader applications.

One interesting application of inverting a permutation in place was encountered in the
content of data ware-housing by a Waterloo company [4]. Under specific indexing schemes,
the permutation corresponding to the rows of a relation sorted by any given key is explicitly
stored. To perform certain joins, the inverse of a segment of the permutation is precisely
what is needed. This permutation occupies a substantial portion of the space used by the
indexing structure. Doubling this space requirement, to explicitly store the inverse of the
permutation, for the sole purpose of improving the time to compute certain joins may not be
practical, and indeed was not in the work leading to [4].

Since there are n! permutations of length n, the number of bits required to represent a
permutation is dlg(n!)e ∼ n lgn− n lg e+O(lgn) bits.1 Munro et al. [11] studied the space
efficient representation of general permutations where general powers of individual elements
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1 We use lgn to denote log2 n
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can be computed quickly. They gave a representation taking the optimal dlg(n!)e + o(n)
bits, that can compute the image of a single element of πk() in O(lgn/lg lgn) time; and a
representation taking (1 + ε)n lgn bits where πk() can be computed in constant time. The
preprocessing for these representations as presented in [11] requires an extra O(n) words
of space, so a solution that involves building them as an intermediate step will not be
considered inplace and therefore does not apply to our current problem. For further details
on permutation representations see [6, 10, 5].

Throughout this paper, we assume that the permutation is stored in an array A[1, . . . , n]
of n words. The array originally contains the values π(1), . . . , π(n), then, afterwards, it
contains the values πk(1), . . . , πk(n). Storing A requires ndlgne = n lgn + n(dlgne − lgn)
bits. When (dlgne − lgn) is “big,” we can reduce the space required by this representation
by encoding a constant number c of consecutive elements into a single object. This object is
essentially the c digits, base n number π[i]π[i+ 1] . . . π[i+ c− 1]. Encoding these n/c objects
of size dc lgne bits each, totals to n lgn+ n/c bits. To decode a value, we need a constant
number of arithmetic operations. This saving of memory at the cost of c accesses to interpret
one element of A carries through all of our work.

This paper is organized as follows. In Section 2, we review previous work on permuting
data in place [7], on which we base our work. In Section 3, we start by presenting an algorithm
for inverting permutations that uses O(b+ lgn) additional bits and runs in O(n2/b) worst
case time. Using a different approach, we improve the worst case time complexity to O(n lgn),
but using O(

√
n lgn) additional bits. This development then leads to our main algorithm for

inverting permutations, we achieve an algorithm with a worst case time complexity of O(n lgn)
using only O(lg2 n) additional bits. Then we face the problem that while π−1() leaves the
cycle structure as it was, higher powers may create more (smaller) cycles. This causes further
difficulty which is addressed in Section 4 where we generalize the algorithm from Section 3
to the situation in which the permutation is to be replaced by its kth power. An algorithm
whose worst case running time is O(n lgn) and uses O(lg2 n+ min{k lgn, n3/4+ε}) additional
bits is presented. Our solution relies on Rubinstein’s [13] work on finding factorizations into
small terms modulo a parameter. The final result can be improved if better factorization is
applied. However, we show that obtaining a better factorization is probably difficult since it
would imply Vinogradov’s conjecture [15]. We conclude our work in Section 5.

2 Background and Related Work

Fich et al. studied the problem of permuting external data according to a given permutation,
in place [7]. That is, given an array B of length n and a permutation π given by an oracle or
read only memory, rearrange the elements of B in place according to π.

It is not sufficient to simply assign B[π(i)] ← B[i] for all i ∈ {1, · · · , n}, because an
element in B may have been modified before it has been accessed. A permutation can be
thought of as a collection of disjoint cycles. The procedure Rotate, rotates the values in
B according to π by calling RotateCycle on the leader of each cycle. A cycle leader is a
uniquely identifiable position in each cycle. The smallest position in a cycle, or min leader,
is a simple example of a cycle leader.

The problem is to identify a position as leader by starting at that position and traversing
only forward along the cycle. Choosing the min leader would take Θ(n2) value inspections in
the worst case. A leader that we call the local min leader can be used to permute data in
O(n lgn) worst case time complexity using only O(lg2 n) additional bits [7]. As stated in [7],
the local min leaders of a permutation π are characterized as follows. Let E1 = {1, . . . , n}
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procedure Rotate(B)
for i← 0 to n− 1 do

if IsLeader(i) then
RotateCycle(B, i)

procedure RotateCycle(B, leader)
i← π(leader)
while i 6= leader do

Swap(B[i], B[leader])
i← π(i)

Figure 1 Rotates the values in B according to a permutation π.
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Figure 2 An illustration of πi.

and π1 = π. For positive integers r > 1, define Er as the set of local minima in Er−1
encountered following the cycle representation of the permutation πr−1 and define πr as the
permutation that maps each element of Er to the next element of Er that is encountered
following πr−1. More formally, Er = {i ∈ Er−1|π−1

r−1(i) > i < πr−1(i)} and πr : Er → Er is
defined such that πr(i) = πmr−1(i) where m = min {m > 0|πmr−1(i) ∈ Er}. Since at most half
the elements in each cycle are local minima, |Er| < |Er−1|/2 and r ≤ lgn. The leader of a
cycle is the unique position i, such that πr−1 . . . π1(i) ∈ Er. For example, if π = (1 7 2 9 4 5
3 10 6 8) as illustrated in Figure 2 (similar to Figure 6 in [7]), then

E1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, π1 = (1 7 2 9 4 5 3 10 6 8)
E2 = {1, 2, 4, 3, 6}, π2 = (1 2 4 3 6)
E3 = {1, 3}, π3 = (1 3)
E4 = {1}, π4 = (1)

The local min leader of the only cycle in π is the position 9 since π3π2π1(9) = 1.
The procedure IsLocalMinLeader (see Figure 3), checks if position i in the permutation

is the local min leader of his cycle. It has the property of proceeding at most 4n steps on the
permutation for a single element, and a total of O(n lgn) steps on the permutation for all
elements. We treat the local min leader technique as a black box. There are a few occasions
where we need details so we provide the procedure to make this paper more self contained.
We refer the reader to [7] for further details on this procedure.
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procedure IsLocalMinLeader(i)
elbow[0]← elbow[1]← i

for r ← 1, 2, . . . do
//loop invariant:
{elbow[r] = πr−1 . . . π1(i)}
Next(r)
if elbow[r] > elbow[r − 1] then

elbow[r]← elbow[r − 1]
Next(r)
if elbow[r] > elbow[r − 1] then

return false

elbow[r + 1]← elbow[r]
else if elbow[r] = elbow[r − 1] then

return true

procedure Next(r)
if r = 1 then
elbow[0]← π(elbow[1])

else
while elbow[r−1] < elbow[r−2] do

elbow[r − 1] ← elbow[r − 2]
Next(r − 1)

while elbow[r−1] > elbow[r−2] do
elbow[r − 1] ← elbow[r − 2]

Next(r − 1)

Figure 3 Checks if index i is a local min leader.

procedure InvertCycle(A, leader)
current← A[leader]
previous← leader

while current 6= leader do
next← A[current]
A[current]← previous

previous← current

current← next

A[leader]← previous

Figure 4 Inverts a permutation.

3 Inverting Permutations

To invert a permutation we can use the structure of the algorithm described in Figure 1, but
invert the cycles instead of rotating the data. Figure 4 shows how to invert a cycle. The
algorithm iterates over the permutation, and inverts each cycle only on its leader. A cycle
leader must be used that will remain unchanged once the cycle is inverted. An example of
such a cycle leader is the min leader.

Inverting a permutation using min leader will use O(lgn) additional bits and take Θ(n)
time if the permutation consists of one large cycle in increasing order; or Θ(n2) time if the
permutation consists of one large cycle in decreasing order. We note that for a random cycle
of length n this total cost would be about n lgn. The analysis is similar to the bidirectional
distributed algorithm for finding the smallest of a set of n uniquely numbered processors
arranged in a circle [9]. However, our interest is in finding algorithms with good worst case
performance.

A permutation can be inverted in linear time using a n-bit vector. The vector can be
used to mark corresponding positions in π as their cycles are inverted. This is equivalent to
using the min leader, but takes n+O(lgn) additional bits.

Using a technique presented in [7], the bit vector can be shrunk to b-bits by conceptually
dividing the permutation into dn/be sections each of size b (except possibly the last section
will be smaller). The b-bit vector is reset at the start of each section and is used to keep
track of which positions are encountered in the section being processed. If the position
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a b c

a < b < c

Figure 5 An example of a bad cycle.

under consideration for being a cycle leader has a corresponding bit with value 0, its cycle is
traversed searching for a smaller position. If no smaller position is found, then the position is
a cycle leader and the cycle is inverted. On the other hand, if the position under consideration
has a corresponding bit with value 1, then the position was previously encountered as part
of a cycle containing a smaller position in the section, and hence is not a cycle leader. Each
cycle will be traversed at most n/b times, thus the total runtime is n2/b and the space used
is b+O(lgn).

I Theorem 1. In the worst case, the array representation of a permutation of length n can
be replaced with its own inverse in O(n2/b) time using b+O(lgn) additional bits of space.

By setting b =
√
n we get the following corollary.

I Corollary 2. In the worst case, the array representation of a permutation of length n can
be replaced with its own inverse in O(n

√
n) time using O(

√
n) additional bits of space.

3.1 Inversion in O(n lg n) Time Using O(
√

n lg n) Bits
The local min leader of a cycle will, in general, change after the cycle has been inverted.
Figure 5 shows a simple example of this: b is the leader of the cycle, but if it were inverted,
c would become the leader. Since c > b, the algorithm in Figure 4 will invert the cycle once
on b and then again on c because c will look like a leader when it is reached in the outer
loop. Inverting the cycle the second time will undo the work of inverting it the first time.
We will call a cycle with this problem a bad cycle.

I Definition 3. A bad cycle is a cycle with the property that if inverted, has a new cycle
leader not yet processed, i.e., larger than the original leader.

It is not hard to build a permutation that will have Θ(n) bad cycles. Such a permutation
could just repeat our bad cycle pattern and create exactly bn/3c bad cycles. So, there is not
enough space to use even 1 bit to mark these cycles.

I Theorem 4. A permutation π represented as an array can be replaced with π−1 in place
using O(

√
n lgn) extra bits in O(n lgn) time.

Proof. Although the permutation π can contain up to n cycles, the number of distinct cycle
lengths in π, which we denote by k, is less than b

√
2nc (since

∑d√2n e
i=1 i > n). We store these

cycle lengths in an array L of size O(
√
n lgn) bits. This can be done in O(n lgn) time by

iterating over the permutation and computing the length of every cycle as it is detected
on its local min leader using the procedure IsLocalMinLeader (see Figure 3). After a
length is detected, query a balanced binary search tree H to check if the length computed
was already encountered; if it was not encountered, insert the new length to L and H. The
cycle lengths are ranked according to their position in L.

If a position i is found to be the local min leader of a cycle α, then the minimum position
in α is given by x = πr−1 . . . π1(i). Let j = π1 . . . πr−1(x), then x = π−1

r−1 . . . π
−1
1 (j) and j

is the local min leader of the inverse α−1 of α. When testing the position i for leadership,
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the procedure IsLocalMinLeader will store j in elbow[0] upon termination because of
its loop invariant (at the beginning of each iteration: elbow[r] = πr−1 . . . π1(i)). Thus, we
can identify the leader of α−1 while testing the leadership of position i without the need for
testing each position in α−1. A bad cycle can easily be identified by checking if j > i.

I Definition 5. A tail of a cycle is the position that points to its local min leader, i.e., if t is
the tail of a cycle c with local min leader l, then π(t) = l.

The algorithm iterates over the permutation similar to the algorithm in Figure 4, and
invert each cycle only on its local min leader. If a bad cycle α was detected, we modify the
tail of the inverted cycle α−1 to point to the rank of the length of the cycle instead of back
to the leader of the inverted cycle. Note that the tail (π(elbow[0])) can be found by probing
A[elbow[0]] before inverting the cycle.

When pointing to the ranks of the cycles length, we have to use values in the range of 1
to n, otherwise the size of each entry in A may increase to dlgne+ 1 bits and we may end up
using n additional bits. The problem now is that A does not distinguish between pointing to
a cycle length rank, or pointing to a different position in the cycle. This can be solved with
a table T of size O(

√
n lgn) bits that stores the positions of the permutation that point to

its first k positions. T will initially store π−1(1), . . . , π−1(k). It is set by initially traversing
the permutation, then it is updated as cycles are inverted.

While testing for the leadership of a position i, if a position t is found such that π(t) ≤ k,
then t can be checked against T in O(1) time to determine if A[t] points to a cycle length
rank or a position in the cycle. If it is the latter case, we simply continue. Else if it points to
a cycle length rank, abort the procedure IsLocalMinLeader and do not invert the cycle.
If the length traversed so far matches the cycle length stored in L at rank A[t], then the
position i is the local min leader of an already inverted cycle. Restore the cycle by setting
A[t] = i.

The total time spent is O(n lgn), and the space used is O(
√
n lgn+ lg2 n). J

3.2 Reducing Extra Space to O(lg2 n) Bits
Next, we extend the approach presented in the previous subsection to achieve an algorithm for
inverting permutations with O(n lgn) worst case time complexity while using only O(lg2 n)
bits. First we start with some definitions.

Given a permutation π, the depth of a position e ∈ π is the maximum index d such that
πd−1 . . . π2π(e) ∈ Ed.2 For example, the depth of 10 in Figure 2 is 3 since π2π1(10) = 1 ∈ E3
and π3π2π1(10) = 3 /∈ E4. Let c be a cycle in π of size l with local min leader s1. We define
S1 as the following sequence: s1, s2, . . . , sl where si = π(si−1) for i > 1; sl is the tail of the
cycle c. For i > 1, Si is a subsequence of Si−1 formed by the local minima in Si−1 excluding
Si−1’s first and last elements. The limited depth of a position e ∈ π is the maximum index
d such that πd−1 . . . π2π(e) ∈ Sd. The values s1, . . . , si−1 are not needed to evaluate the
limited depth of si, but the values si, . . . , sl are required. The limited depth of a position is
upper bounded by its depth. Notice that the first element in Si is always πi−1 . . . π(s1), since
s1 is the local min leader of c. Moreover, the limited depth d of a cycle’s local min leader
is either unique or shared by at most one other element π−1

1 . . . π−1
d−1(πd . . . π2π(s1)) in the

cycle. The depth and limited depth of a position can be computed in a manner similar to
the procedure IsLocalMinLeader with the same space and time complexity.

2 For the definition of πi where i ∈ {1, . . . , d} check Section 2.
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leader

intersection

tail
← spine →

↙
loop

↘
Figure 6 An example of a broken cycle.

We say that a cycle is broken if its tail points to a position other than its local min leader.
We call this position the broken cycle’s intersection. We define the spine to be the path from
the leader to the intersection, and the loop to be the cycle containing the intersection and
the tail. Figure 6 demonstrates these terms.

Following the algorithm described previously, when a cycle c is detected it is replaced by
its inverse; if c is detected to be a bad cycle, the tail of c−1 is modified to store the limited
depth of c−1’s local min leader k. In that case, the tail of c−1 will be modified to point to
the unique position whose limited depth is the same as k if that position was encountered
before k, thus making c−1 a broken cycle. Finally, c−1 will be restored once k is encountered.
As in the previous subsection, for A to distinguish between pointing to a limited depth, or
pointing to a different position in the cycle we use a table T of size O(lg2 n) bits that stores
the positions of the permutation that point to its first lgn positions.

The algorithm iterates over the permutation. At each position i, it interleaves four scans
F , L , T and H . For every operation run on F , a constant number of operations are run
on L ; and for every operation run on L a constant number of operations are run on T and
H . F is used to determine whether i is the local min leader of its cycle (c or c−1), L is
used to determine the limited depth of i, and T and H are used to determine if i’s cycle
was broken, and to restore it. The T and H scans have two phases:

The first phase is the classic tortoise and hare algorithm for cycle detection. It is used to
check if i’s cycle is broken. T (for tortoise) and H (for hare) both start at position i,
T proceeds at one step per iteration and H proceeds at two steps until they meet at
position j. Phase one will consist of no more than l iterations, where l is the length of i′s
cycle. This is because at each iteration, the forward distance (i.e. the distance from H

to T traversing forward in the cycle) between the two pointers will decrease by one; or if
the cycle was broken, the distance decreases once both pointers enter the broken cycle’s
loop. If one of the scans encounters a limited depth or if i is reachable from j, T and H

are aborted while F and L continue. Otherwise, we know that the cycle is broken and
we proceed to the second phase.
The aim of the second phase is to find the tail of the broken cycle c−1. Let λ be the
length of c−1’s loop, µ be the distance from i to c−1’s intersection, and δ be the distance
from the intersection to j. Denote by dt and dh the distance traveled by the pointers in
T and H respectively. dt = µ+ δ and dh = µ+ kλ+ δ where k ∈ Z+. We know

2dt = dh

2(µ+ δ) = µ+ kλ+ δ

µ = kλ− δ .

Thus, if we reset T ’s pointer to position i, while H remains at j, and as in the first
phase, T proceeds at one step per iteration and H proceeds at two steps: T and H

will meet at c−1’s intersection. Then, c−1’s tail can be found by iterating through c−1’s
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loop till a position that points to the intersection is reached. After finding the tail, the
limited depth of the intersection (which will always be the same as the limited depth of
c−1’s leader) is computed.

The L scan aims to compute the limited depth of position i. To do so, L should identify
the tail of c or c−1. L identifies the tail correctly if it encounters a position storing a limited
depth (then that position is the tail), or if the cycle is broken and the tail is computed
by the T and H scans (as is the case when the cycle is broken and i is on its spine). In
the other cases, the L scan assumes that the tail is the position pointing to i. It returns
a correct value if i is a local min leader, and it may not return a correct value otherwise.
However, returning an incorrect value in the other cases does not affect the correctness of
the algorithm.

The F scan tests whether i is the local min leader of c or c−1. If F encounters a limited
depth or if the scans T and H detect that c−1 is broken, F will behave as if the tail of c−1

points to i. The F scan terminates on one of the following cases:
The first case is F determines that i is not a local min leader. If so, the entire process of
all four scans is aborted.
The second case is F determines the position is a local min leader. Then, two cases can
occur:

If c−1 was broken or a limited depth was encountered, then we know that the cycle
is already inverted. Compare the limited depth of i that is computed by L to the
limited depth stored or computed by T and H . If the two values are equal make the
tail point to i. Alternatively, abort all four scans.
Otherwise, the cycle c is not inverted. Invert c and if it was bad store in its tail the
limited depth of c−1’s local min leader.

Analysis: All four scans use O(lg2 n) extra bits. The time complexity is bounded by the
time complexity of F , since the runtime of L , T and H is at most a constant factor
times the runtime of F . For each cycle c, the time spent by F testing for leadership before
inverting the cycle is O(l lg l) where l is the length of c. Inverting c and properly setting its
tail if it was bad will take O(l) time. After inverting c, if c−1 is bad at most one intermediate
broken cycle can be formed, since the limited depth of the local min leader is unique or
shared by at most one other position. This fact is crucial to our analysis, and it is the reason
why the L scan is introduced. The time spent testing for leadership for indices in c−1 is
divided into the following cases:

c−1 is broken and the position i being tested is in c−1’s loop.
Otherwise either c−1 is broken and i is in the spine, or c−1 is not broken and the tail
stores the limited depth of the leader.

If T does not inspect the tail, then the runtime will be the same as testing whether i
is the local min leader of c−1.
Otherwise, the procedure will test if i is the local min leader of the cycle formed by
pointing the tail of c−1 to i. It will iterate at most 4 times from i to the tail [7]. So,
the time complexity will be at most 4 times the time complexity of testing weather i
is the local min leader of c−1.

In all cases the runtime is bounded by O(l lg l). Thus, the total runtime per cycle is O(l lg l)
and the total runtime for the whole algorithm is O(n lgn).

I Theorem 6. In the worst case, the standard representation of a permutation of length n
can be replaced with its own inverse in O(n lgn) time using O(lg2 n) extra bits of space.
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c = 0 1 2 3

c2 = 0 1 2 3

Figure 7 Raising c to the second power results in two separate cycles.

4 Arbitrary Powers

The kth power of a permutation π is πk defined as follows:

πk(i) =


πk+1(π−1(i)) k < 0
i k = 0
πk−1(π(i)) k > 0

where k is an arbitrary integer. In this section we extend the techniques presented in the
previous section to cover the situation in which the permutation is to be replaced by its kth

power for an arbitrary integer k. We present an algorithm whose worst case running time is
O(n lgn) and uses O(lg2 n+ min{k lgn, n3/4+ε}) additional bits.

Without loss of generality, we assume that k is positive. If k is negative, we invert the
permutation then raise it to the power of −k. Raising a cycle to an arbitrary power can
result in several disjoint cycles as illustrated in Figure 7.

I Lemma 7. Raising a cycle of length l to its kth power, will produce gcd(k, l) cycles each
of length l/gcd(k, l).

Proof. Suppose µ cycles are produced. Since they are all symmetric, they will have the same
length λ. λ is the smallest positive integer such that (πk)λ(i) = πkλ(i) = i, so kλ = cl for an
integer c that is relatively prime with λ. Now

l = λµ

k = cl/λ = cµ,

but c is relatively prime with λ, so µ = gcd(k, l) and λ = l/gcd(k, l). J

Given a cycle, it is not hard to raise the cycle to its kth power while using O(k) words or
O(k lgn) bits. Starting from position i, store i, π(i), π2(i), . . . , πk−1(i) in an array B using
O(k lgn) bits. Replace A[i] with A[πk−1(i)], then replace A[π(i)] with A[πk(i)], and so on until
A[π(i)l−k] is reached where l is the length of the cycle. Replace A[π(i)l−k] till A[π(i)l−1] with
the values stored in B. When the procedure terminates, A[i], A[i+ 1], . . . , A[i+ gcd(k, l)− 1]
will contain a position from each resulting cycle. An algorithm to raise a permutation to its
kth power, will be the same as the algorithm presented in Subsection 3.2, however, the T

scan will raise cycles to their kth power instead of inverting them once they are detected.
Then, it will iterate through every cycle of the resulting gcd(k, l) cycles and compute its
leader to check if it was bad. If so, it computes the limited depth of the leader and store it
in the cycle’s tail.

I Theorem 8. In the worst case, the standard representation of a permutation of length n
can be replaced with its kth power, when k is bounded by some polynomial function of n, in
O(n lgn) time using O(lg2 n+ k lgn) extra bits of space.

Theorem 8 is useful if the value of k is small. In the next subsection, we show how to
power permutations using o(n) extra bits of space.
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4.1 Powering Permutations in O(n lg n) Time Using o(n) Extra Bits
To improve the space complexity, we only have to modify the way we are raising cycles to
their kth power. To raise a cycle to its kth power we first find its length l, then we factorize
k mod l. Since k mod l < l, it can be factored trivially in o(l) time while using little extra
storage.

Next, raise the cycle to the power of every prime factor p separately. Here we have to
distinguish between two cases:

First Case: p and l are relatively prime. We will use the following theorem given by
Rubinstein [13]:

I Theorem 9 (Rubinstein [13], Theorem 4.3). Let gcd(N, a) = 1 and R be a rectangle. Then,
cR(N, a), the number of solutions (x, y) to xy = N mod a with (x, y) lying in the rectangle
R is equal to

area(R)
a2 φ(a) +O(a1/2+ε)

for any ε > 0, where φ is Euler’s totient function.
In particular, there exist a point (x, y) where xy = N mod a in any square R with side

length at least a3/4+ε (R must be larger than a3/2+ε).

In this case gcd(p, l) = 1, so there always exist two integers x, y < l3/4+ε such that xy =
p mod l. To find x and y, do a linear search that takes O(l3/4+ε) time. Then, raise the
cycle to the xth power followed by the yth power using the method described in the previous
subsection. The total runtime is O(l) and the space used is O(l3/4+ε).

Second Case: p divides l. In this case gcd(p, l) = p (since p divides l). We will reduce this
case to the previous one. Modify the permutation π to form the permutation π′ that results
from adding an additional position e to the cycle c in π to form the cycle c′. More formally,
π′ is defined as follows:

Let a be a position in the cycle c; for all positions i ∈ π except π−1(a), π′(i) = π(i).
π′(π−1(a)) = e (where e is a new position).
π′(e) = a.

This modification can be done by storing a and two extra words, where the first word stores
the inverse of a, and the second stores the image of e (π′(e)). Each time the array A is
accessed at an index i, if A[i] is equal to a, i is checked against the first word stored. If they
match, then A[i] points to a otherwise A[i] points to e. Doing this eliminates the need for
increasing the word size.

Let {cij |0 ≤ i < l/p, 0 ≤ j < p} be the positions of c, such that
π(cij) = ci(j+1) if j < p− 1
π(cij) = c(i+1 mod l/p)0 if j = p− 1

Raising c to the power of p will result in p cycles such that the jth cycle cj will contain the
positions {cij |0 ≤ i < l/k}, where πp(cij) = c(i+1 mod l/p)j . The length of c′ is l + 1 and
gcd(l+ 1, p) = 1 (since p divides l), so raising c′ to the pth power will result in only one cycle.

Without loss of generality assume that a = c00. The positions cij satisfying a = πm(cij)
for some m ∈ [1, p− 1] are precisely c((l/p)−1)j where j ∈ [0, p− 1]. Notice that

π′p(cij) = πp(cij) for all cij such that a 6= πm(cij) for all m ∈ [1, p− 1]
π′p(c((l/p)−1)0) = e

π′p(c((l/p)−1)j) = c0(j−1) for 1 ≤ j < p

π′p(e) = c0(p−1)
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c = c00 c01 c10 c11⇒ c′ =
c00 c01 c10 c11 e

⇓
c2 = c00 c10 c01 c11⇐ c′2 = e c01 c11 c00 c10

Figure 8 An illustration of case two.

Thus, if we traverse forward in c′p starting from e, the first p positions are the positions in
cp−1 ordered correctly, and the second p positions are the positions in cp−2, and so on. . .
After modifying π to π′ raise c′ to its pth power. Iterate p positions starting from e, then
set A[c((l/p)−1)(p−1)] to c0(p−1). Recursively raise cp−1 to the power of the rest of the prime
factors. Repeat the same process for the rest of the cycles cp−2, . . . , c0. Each time one of the
resultant gcd(l, k) cycles is reached, find its local min leader and store the limited depth of
the leader in the tail if it is a bad cycle. This process is illustrated in Figure 8.

I Theorem 10. In the worst case, the standard representation of a permutation of length n
can be replaced with its kth power, when k is bounded by some polynomial function of n, in
O(n lgn) time using O(lg2 n+ min{k lgn, n3/4+ε}) extra bits of space.

The space complexity in Theorem 10 can be improved if better factoring is applied. More
precisely, if for any N and a where gcd(N, a) = 1, we can find g(a) factors x1, . . . , xg(a) ≤ f(a)
such that x1x2 . . . xg(a) = N mod a in h(a) time, then we can achieve an algorithm with
running time O((n+ h(n)) lgn+ g(n)n) that uses O(lg2 n+ min{k lgn, f(n) lgn}) extra bits
of space.

Note that given any factoring algorithm as described above, any quadratic non-residue
(mod p) can be factored to factors smaller than f(p). Since at least one of the factors must
also be a quadratic non-residue, this implies that the least quadratic non-residue (mod p) is
smaller than f(p). Thus, reducing f(n) to O(nε) is probably difficult since this improvement
would imply Vinogradov’s conjecture [15] (that the least quadratic non-residue (mod p) lies
below pε).

5 Conclusion

In this paper we presented an algorithm for inverting a permutation that runs in O(n lgn)
worst case time and uses O(lg2 n) additional bits. This algorithm is then extended to an
algorithm for raising a permutation to its kth power that runs in O(n lgn) time and uses
O(lg2 n + min{k lgn, n3/4+ε}) extra bits of space. Both algorithms presented rely on the
cycle’s local min leader presented in [7]. Moreover, they can easily be adapted to utilize any
different cycle leader. A better leader will yield a better algorithm without adding to the
worst case time or space complexity for both problems as well as the problem of permuting
in place [7].
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Abstract
We introduce space-efficient plane-sweep algorithms for basic planar geometric problems. It is
assumed that the input is in a read-only array of n items and that the available workspace
is Θ(s) bits, where lgn ≤ s ≤ n · lgn. Three techniques that can be used as general tools
in different space-efficient algorithms are introduced and employed within our algorithms. In
particular, we give an almost-optimal algorithm for finding the closest pair among a set of n
points that runs in O(n2/s + n · lg s) time. We also give a simple algorithm to enumerate the
intersections of n line segments that runs in O((n2/s2/3) · lg s+k) time, where k is the number of
intersections. The counting version can be solved in O((n2/s2/3) · lg s) time. When the segments
are axis-parallel, we give an O((n2/s) · lg4/3 s + n4/3 · lg1/3 n)-time algorithm that counts the
intersections and an O((n2/s) · lg s · lg lg s + n · lg s + k)-time algorithm that enumerates the
intersections, where k is the number of intersections. We finally present an algorithm that runs
in O((n2/s+ n · lg s) ·

√
(n/s) · lgn) time to calculate Klee’s measure of axis-parallel rectangles.
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1 Introduction

Because of the rapid growth of the input data sizes in current applications, algorithms that
are designed to efficiently utilize space are becoming even more important than before. One
other reason to run a space-efficient algorithm is the limitation in the memory sizes that can
be deployed to modern embedded systems. Therefore, many algorithms have been developed
with the objective to optimize the time-space product.

Several models of computation have been considered for the case when writing in the
input area is restricted. The objective of a space-efficient algorithm is to optimize the amount
of extra space needed to perform its task. In the multi-pass streaming model [19] the input is
assumed to be held in a read-only sequentially-accessible working space, and the goal would
be to optimize the number of passes an algorithm makes over the input. In the read-only
word RAM [16]—the model that we consider in this paper—the input is assumed to be stored
on a read-only randomly-accessible working space and arithmetic operations on operands
that fit in one word are assumed to take constant time each.

Throughout the paper, it is assumed that n is the number of items of the input, each
stored in a constant number of words, and that the available workspace is Θ(s) bits, where
lgn ≤ s ≤ n lgn. Since a single cursor, which is necessary to iterate over the input, already
needs Θ(lgn) bits, there is no hope to solve any of the problems with less workspace. In
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addition, and as usual on a word RAM, it is assumed that operations on the input coordinates
can be performed in constant time each. We emphasize that this assumption is not essential
for our algorithms to work, but only scales with their running times.

Next, we survey some of the major results known for the read-only random-access model.
Pagter and Rauhe [21] gave an asymptotically-optimal algorithm for sorting n elements
that runs in O(n2/s + n lg s) time. Beame [5] established a matching Ω(n2) lower bound
for the time-space product for sorting in the stronger branching-program model. Elmasry
et al. [15] introduced space-efficient algorithms for basic graph problems. Concerning
geometric problems, Chan [9] presented an algorithm for the closest-pair problem with
integer coordinates in the word RAM model, and his algorithm can be made to work in the
read-only model. Darwish and Elmasry [14] gave an optimal planar convex-hull construction
algorithm that runs in O(n2/s+ n lg s) time. Konagaya and Asano [17] gave an algorithm
for reporting line-segments intersections that runs in O((n2/

√
s) ·
√

lgn+ k) time, where k
is the number of intersections. Recently, Korman et al. [18] gave space-efficient algorithms to
construct triangulations and Voronoi diagrams whenever s = Ω(lgn · lg lgn) bits of working
space are available. Asano et al. [3] considered space-efficient plane-sweep algorithms for
Delaunay triangulation and Voronoi diagram. However, they only considered the case where
s = Θ(logn) bits, and both algorithms run in O(n2) time for this case.

As a building block for our algorithms we use the adjustable navigation pile [2]; an
efficient priority-queue-like data structure that uses O(s) bits, where lgn ≤ s ≤ n lgn, in
the read-only random-access model of computation. Given a read-only input array of n
elements and a specified value, an adjustable navigation pile can be initialized in O(n) time.
Subsequently, the elements that are larger than the given value can be streamed in sorted
order in O(n/s+ lg s) time per element. Thus, it is possible to stream the next k elements
starting with a specified value in sorted order in O((n/s + lg s) · k + n) time, and all the
elements of the array can be streamed in sorted order in O(n2/s+ n lg s) time.

Another ingredient that we use in some of our algorithms is a rank-select data structure [12].
A rank-select data structure can be built on a bit vector of length n using O(n) time and
o(n) extra bits, and supports in O(1) time the queries rank(i), which returns the number of
1-bits in the first i positions of the bit vector, and select(j), which returns the index of the
j-th 1-bit in the bit vector. In accordance, one can sequentially scan the entries of the bit
vector that have 1-bits in O(1) time per entry.

In this paper we give space-efficient plane-sweep algorithms that solve planar geometric
problems where one moves a line across the plane and maintains the intersection of that
line with the objects of interest. Many geometric problems have been solved using this kind
of algorithm [7, 8, 13]. We assume that the sweep line moves over the plane from left to
right. Typically, a plane-sweep algorithm uses a priority queue (event queue) to produce the
upcoming events in order and a balanced binary search tree (status structure) to store and
query the objects that cross the sweep line in order. The status structure is updated only
at particular event points. Since Θ(n) objects might be part of the search tree, a typical
plane-sweep algorithm needs Θ(n lgn) bits, which is true for the standard algorithms of all
problems considered here. In contrast to Asano et al. [3], all our algorithms allow a trade-off
between time and space and work for all values of s where lgn ≤ s ≤ n lgn.

In Section 2 we introduce a general technique that we call the divide-and-compress
technique relying on splitting the input array, and later employ it in our algorithms. In
Section 3 we give a simple algorithm that enumerates intersections among n line segments and
runs in O((n2/s2/3) · lg s+ k) time, where k is the number of intersections. Our algorithm is
asymptotically faster than that of Konagaya and Asano for all values of s. We point out that
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the same approach can be used to count the number of intersections in O((n2/s2/3) · lg s) time.
In Section 4 we give an algorithm for finding the closest pair among n points whose running
time is O(n2/s+n lg s). To obtain this result, we combine new ideas with the classical plane-
sweep and divide-and-conquer approaches for solving the closest-pair problem. A lower bound
of Ω(n2−ε) was shown by Yao [22] for the time-space product of the element-distinctness
problem, where ε is an arbitrarily small positive constant. This lower bound applies for the
closest-pair problem, indicating that our algorithm is close to optimal. In Section 5 we give
an algorithm for counting the intersections among n axis-parallel line segments that runs in
O((n2/s) · lg4/3 s+ n4/3 · lg1/3 n) time. The idea is to partition the plane as a grid and to
run local plane sweeps on parts of the plane with truncated segments. In Section 6 we sketch
a so-called batching technique to represent the sweep line for special plane-sweep algorithms
using fewer bits than usual, and then utilize this technique in Section 7 for enumerating
the intersections among n axis-parallel line segments in O((n2/s) · lg s · lg lg s+ n lg s+ k)
time, where k is the number of intersections. In Section 8 we show how to calculate Klee’s
measure (the area of the union) for n axis-parallel rectangles in O((n2/s) · lgn+ n lg s) time
if the corners of the rectangles are stored in sorted order. In Section 9 we introduce another
general technique that we call the multi-scanning technique where we partition the plane
and run several plane sweeps interleaved. We use this technique to calculate Klee’s measure
in O((n2/s+ n lg s) ·

√
(n/s) · lgn) time if the corners of the rectangles are unsorted. We

conclude the paper in Section 10 with some comments.

2 A Divide-and-Compress Technique: Splitting the Input Array

We call a problem decomposable if any partitioning of the input into subsets allows us to
compute a solution for the input by computing the partial solutions for these subsets as well as
for the unions of all pairs of subsets and by combining these partial solutions. We also assume
that the time needed to combine the results is bounded by the time to compute the partial
solutions. Examples of such problems that we deal with in this paper are the axis-parallel
line-segments intersections problem (Section 3) and closest-pair problem (Section 4). For the
closest-pair distance, the overall solution is the minimum among the partial solutions for the
subproblems. For the enumeration of the axis-parallel line-segments intersections, the overall
solution is the union of the non-overlapping partial solutions. The general line-segments
intersections problem is also decomposable, and can be handled using the same approach
with slight modifications.

The following technique divides the instance in smaller parts and so compresses the
necessary workspace used to solve a decomposable problem. Assume that the available
workspace is enough to only handle a subset of the input that comprises O(r) elements at a
time, for some parameter r smaller than the number n of elements in the input array. Split
the array into dn/re batches B1, . . . , Bdn/re of at most r consecutive elements each (the last
batch may have less) and proceed as follows: For i = 1, . . . , dn/re and j = i+ 1, . . . , dn/re,
apply the underlying algorithm within Bi ∪Bj . Compute the overall answer by combining
the partial results. As we try all pairs of subproblems, the algorithm correctly explores all
the possible subproblems Bi ∪ Bj for some i and j, and accordingly produces the output
correctly for decomposable problems.

The number of the subproblems handled in sequence is Θ(n2/r2). Let the time needed
to solve a subproblem of size O(r) be t(r) + k′ where k′ is the size of the output. Thus,
the overall time spend by the algorithm is O((n2/r2) · t(r) + k) where k is the size of whole
output.
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I Lemma 1. Suppose we know how to solve a decomposable problem P of size n using
s′ = Θ(f(n)) bits in O(n2/g(s′) + n lg s′) time, where f, g : IN → IR are functions with
lgn ≤ f(n) ≤ n lgn. For any s where lgn ≤ s ≤ s′, we can solve any instance I of P of size
n in O(n2/g(s)+(n2/f−1(s))·lg s) time with O(s) bits. In particular, when f(n) = O(n/ lgn)
and g(s) = O(s), we can solve I in O(n2/g(s)) time and O(s) bits.

Proof. By definition of P, we can solve instances of P that are of size r = df−1(s)e using s
bits in t(r) = O(r2/g(s) + r lg s) time. By applying the above construction, we can solve I
in O((n2/r2) · t(r)) = O(n2/g(s) + (n2/r) · lg s) = O(n2/g(s) + (n2/f−1(s)) · lg s) time. If
f(n) = O(n/ lgn), then f−1(s) = Ω(s lg s), and we can solve I in O(n2/g(s) + n2/s). If in
addition g(s) = O(s), the claimed time and space bounds follow. J

3 Line-Segments Intersections

Given a set of n line segments in the plane, the line-segments-intersections problem is to
enumerate all the intersection points among these line segments. The counting version of the
problem is to produce the number of these intersections. An optimal algorithm to enumerate
all the intersections that runs in O(n lgn+ k) time was given by Balaban [4], where n is the
number of segments and k is the number of intersections returned. Chazelle [11], improving
a result of Agarwal [1], showed how to count the intersections among n line segments in
O(n4/3 lg1/3 n) time, and how to report k bichromatic intersections in O(n4/3 lg1/3 n + k)
time, i.e., given sets of red and blue segments, to report all intersections between a red and a
blue segment. All these algorithms require a linear number of words, i.e., O(n lgn) bits.

If the available workspace is Θ(s) bits with lgn ≤ s ≤ n lgn, we give next a straightforward
application of the divide-and-compress technique. We can apply the reporting algorithms
on batches of size O(r) line segments, where we choose r = Θ(f−1(s)), i.e., r = Θ(s/ lg s).
First we apply Balaban’s algorithm for each batch separately, then we apply a bichromatic-
intersections algorithm on every pair of batches (coloring one of them red and the other blue).
Note that we cannot apply Balaban’s algorithm on pairs of batches since the partial solutions
will be overlapping (intersections among the segments of a batch will show up in several
partial solutions), and hence combining the partial solutions would be problematic. Thus, the
running time t(r) on r segments is O(r4/3 ·lg1/3 r). The reported intersections are the union of
the non-overlapping intersections found by solving the subproblems. Hence, the overall time
for this algorithm is O((n2/r2) · t(r) + k) = O((n2/r2/3) · lg1/3 r+ k) = O((n2/s2/3) · lg s+ k)
time, where k is the number of reported intersections.

I Theorem 2. Given a read-only array of n elements and Θ(s) bits of workspace, where
lgn ≤ s ≤ n lgn, the planar line-segments-intersections enumeration problem can be solved
in O((n2/s2/3) · lg s+ k) time, where k is the number of intersections returned. The counting
version can be solved in O((n2/s2/3) · lg s) time.

4 Closest Pair

Given a set of n points in the plane, the planar closest-pair problem is to identify a pair of
points that are closest to each other.

Assume for the moment that the available workspace is Θ(s) bits, where
√
n · lgn ≤ s ≤

n lgn. In a first step, we produce the points in sorted order according to their x-coordinate
values using an adjustable navigation pile and partition them into groups having ds/ lgne
successive points each (except possibly the last group). Partition the plane in vertical regions,
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called vertical stripes, where each region contains one group—if necessary, rotate the plane
slightly. More exactly, choose the vertical regions such that the vertical lines separating the
vertical stripes, called the vertical separators, pass through a point. We deal with the vertical
separators in our workspace by storing, for each of them, O(lgn) bits of the index of the
corresponding point in the input array. Since there are at most m = d(n/s) · lgne vertical
stripes, references to the x-coordinate values of all the vertical separators can be stored
in O((n/s) · lg2 n) bits, which is O(s) as long as s = Ω(

√
n · lgn). The entities of all the

separators can then be simultaneously stored within the available workspace. Additionally, all
the points of a vertical stripe can fit in the available workspace. Thus, a standard closest-pair
algorithm [13] can be applied to identify the closest pair among the points of each vertical
stripe one after the other. We then find the pair with the minimum closest distance among
all the vertical subproblems, and call this minimum distance δ.

To find a closest pair that is spread over two different stripes, we use a standard idea from
the divide-and-conquer algorithm for the closest-pair problem. In a second step, we produce
the points in sorted y-coordinate order using another adjustable navigation pile, but retain
only the points that lie within a horizontal distance δ from any of the vertical separators.
Call these points the candidate points. We consider the candidate points in the y-coordinate
order in groups having 8m points each (except the last group that may have less points). Call
the horizontal regions containing these groups the horizontal stripes. Note that references to
the points of a horizontal stripe can be stored in O((n/s) lg2 n) = O(s) bits, which can all
fit in the available workspace. We can then apply a standard closest-pair algorithm within
the working storage to identify the closest pair among the candidate points of every two
consecutive horizontal stripes in order. Let δ′ be the minimum closest distance among all
the horizontal subproblems. Finally, we return min(δ, δ′) as the closest-pair distance.

We prove next the correctness of the algorithm. We only have to show that the restriction
to the points close to the vertical separators in the second step is correct. We slightly
generalize the proof for the standard divide-and-conquer algorithm for the closest-pair
problem. Since the distance between any pair of points within a vertical stripe is at least δ,
any point that is at horizontal distance more than δ from all the vertical separators can not
be closer than δ to any other point. We then only need to proceed with the candidate points
that lie within a horizontal distance δ from any of the vertical separators. Fix a candidate
point p. Given a specific vertical separator, for the candidate points above p to be closer
than δ to p they must lie together with p within a 2δ × δ rectangle centered at the vertical
separator. Note that there could be at most 8 points above p within this rectangle whose
distances to p are less than δ, since 2 rows of 3 circles of diameter δ can cover the whole
rectangle and there can be at most one point in the two left and the two right circles as well
as at most two points in the middle circles. Since there are m vertical separators, the number
of candidate points P above p to be checked for possibly having a distance less than δ from
p is at most 8m; no other point above p can be at distance less than δ from p. (Actually, it
suffices to check only 5 candidate points above p for each separator [13, Exercise 33.4-2].)
Obviously, the points in P must be consecutive in the y-coordinate values. Since we store 8m
candidate points per stripe, the points in P lie in only two horizontal stripes, the horizontal
stripe that spans p and the horizontal stripe above it. We conclude that we need to only
consider the mutual distances among the points of each two consecutive horizontal stripes.

We can produce the points in sorted order in both coordinates in O(n2/s+ n lg s) time
using the adjustable navigation pile [2]. The time needed to execute the standard closest-pair
algorithm for all the stripes is O(n lg s) [13]. The check whether each point is close to one
of the separators or not runs in O(n lgn) = O(n lg s) time using a binary search among
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Figure 1 Counting axis-parallel line segments in three phases. Each stripe contains 12 points and,
for clarity reasons, all stripes have the same size. The black dots on the crossings of two segments
show the intersection points that are counted in each phase.

the x-coordinates of the separators for each point. Hence, the overall running time of the
algorithm is O(n2/s+ n lg s).

Assume now that we have Θ(s) bits available, where lgn ≤ s <
√
n · lgn. Let r = s2/ lg2 s.

As s = Θ(
√
r · lg r), we can apply the above algorithm on instances of size Θ(r). In such a

case, the running time for each of these instances would be t(r) = O(r2/s+ r lg s) = O(r2/s).
We then divide the input into dn/re batches of points and apply the divide-and-compress
technique, compute the closest pair within every pair of batches and return the overall closest
pair. The space needed is indeed O(s), and the time consumed is O((n/r)2t(r)) = O(n2/s).

I Theorem 3. Given a read-only array of n elements and Θ(s) bits of workspace, where
lgn ≤ s ≤ n lgn, the planar closest-pair problem can be solved in O(n2/s+ n lg s) time.

It is known that the closest-pair algorithm can be generalized from two to higher dimen-
sions [13] to run in O(n lgd−1 n) time in d dimensions. Applying the divide-and-compress
technique in a similar way as described above, we can solve the closest-pair problem in d
dimensions with Θ(s) bits of workspace in O(n2/s+ n lgd−1 s) time, where lgn ≤ s ≤ n lgn.

5 Counting Axis-Parallel Line-Segments Intersections

Given a set of n axis-parallel (horizontal or vertical) line segments in the plane, we want to
count the intersection points among these line segments.

Assume for the moment that the available workspace is Θ(s) bits, where n2/3 · lgn ≤ s ≤
n lgn. First, we produce the endpoints of the line segments in sorted order according to their
x-coordinate values using an adjustable navigation pile, and consider them in order in groups
having ds/ lgne points each (except possibly the last group that may have fewer points). As
in the previous section, these groups define the vertical stripes and vertical separators. Since
there are d(n/s) · lgne = O(n1/3) vertical stripes, references to the x-coordinate values of all
the separators can be stored within the workspace. We associate a line segment to a stripe if
at least one of its two endpoints lies inside the stripe. If we consider the line segments of
a vertical stripe, or more exactly, their positions in the input array, they can all fit in the
workspace. Thus, we can apply a standard line-segments-intersections counting algorithm to
each vertical stripe one after the other, and add these counts together. See the left side of
Fig. 1.

Subsequently, we produce the points in sorted order according to their y-coordinate
values using another adjustable navigation pile, and partition the plane in horizontal stripes
(analogous to the definition of the vertical stripes) such that each has ds/ lgne points (except
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possibly the last group that may have less points). It follows that the O(n1/3) references
to the so-called horizontal separators can be simultaneously stored in the workspace. In a
similar fashion as above, we apply a line-segments-intersections counting algorithm to each
horizontal stripe one after the other, and add these counts to the accumulated count. To
avoid counting intersections twice, we modify the access to the horizontal segments such
that further computations consider the segments to be truncated. Each new endpoint lies on
the closest vertical separator to the old endpoint intersecting the segment. Note that the
intersections of the truncated parts of the horizontal segments with vertical segments have
already been accounted for while dealing with the vertical stripes. See the middle of Fig. 1.

Let Ri,j be the cell formed by the intersection of the ith horizontal stripe with the jth
vertical stripe. A line segment spans a cell if it crosses two of the cell’s boundaries. It
remains to account for the intersections among these spanning segments. The number of
these intersections for each cell is the product of the numbers of its spanning horizontal and
vertical segments. We show next how to count the spanning horizontal segments for each
cell. The treatment for the vertical segments is similar. See the right side of Fig. 1.

A line segment is interior to a cell if both its endpoints lie inside the cell. For each cell
Ri,j , we store the count bi,j of horizontal segments beginning in the cell, the count fi,j of
horizontal segments finishing in the cell, and the count ti,j of the horizontal segments interior
to the cell. Since there are O(n2/3) cells, all these values can be stored in O(n2/3 · lgn) bits,
which is O(s) when s ≥ n2/3 · lgn. For every horizontal segment, we locate the starting and
ending cells using binary search among the separators, and increment the corresponding
counters in accordance. We then scan the cells of every horizontal stripe sequentially while
calculating ei,j the number of horizontal segments entering Ri,j , i.e., the number of segments
that have a non-empty intersection with Ri,j and Ri,j−1; this is done using ei,0 = 0 and
ei,j = ei,j−1 + bi,j−1 − fi,j−1. We finally obtain the number of horizontal segments spanning
Ri,j as ei,j − fi,j + ti,j . The time needed to produce the endpoints in sorted order in
both coordinates using the adjustable navigation pile is O(n2/s + n lg s) [2]. The time
needed to execute the standard segments-intersection counting algorithm for all the stripes
is O(n4/3 · lg1/3 n). The time needed to perform binary search among the separators is
O(n lg s). The time needed to count the intersections of the spanning segments of all the
cells is constant per cell and sums up to O(n2/3). It follows that the overall running time of
the algorithm is O(n4/3 · lg1/3 n).

Assume now that we have Θ(s) bits available, where lgn ≤ s < n2/3 · lgn. Let r =
s3/2/ lg3/2 s. Since s = Θ(r2/3 lg r), we can apply the above algorithm on instances of
Θ(r) elements. We divide the input array into dn/re batches of consecutive segments
and apply the divide-and-compress technique. First apply the algorithm on instances
for every batch individually, then on instances for every pair of batches. Using these
computed counts, the overall count can be easily calculated. The running time for each
instance would be t(r) = O(r4/3 · lg1/3 s). The overall time consumed in this case is
O((n/r)2 · t(r)) = O((n2/s) · lg4/3 s).

I Theorem 4. Given a read-only array containing the endpoints of n line segments and Θ(s)
bits of workspace, where lgn ≤ s ≤ n lgn, counting the planar axis-parallel line-segments
intersections can be done in O((n2/s) · lg4/3 s+ n4/3 · lg1/3 n) time.

6 A Batching Technique: Processing Sweep-Line Events in Batches

We now show that, if the given objects are axis-parallel, one may reduce the working storage
of the status structure to Θ(n) bits by processing the events in batches.
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For a parameter m to be set later, suppose our plane is divided into m vertical and
horizontal stripes such that each stripe contains O(n/m) local objects, where an object is
local for a stripe if it starts or ends within the stripe. As before, the boundaries of the
stripes are called separators. The intersection of a horizontal stripe with a vertical stripe
is called a cell. To apply the batching technique, we need a plane-sweep instance with the
following two properties: (1) All the events of the event queue are on vertical separators,
i.e., they result from so-called horizontally spanning objects. (2) All the objects of the status
structure start and end on horizontal separators, i.e., they are so-called vertically spanning
objects. Assume the available workspace is Θ(s) bits, where n ≤ s ≤ n lgn. By setting
m = d(n/s) · lgne, we can store references to all local objects of a stripe and references to
the coordinates of the separators in the working storage. Because of properties (1) and (2),
it is enough to update the status structure only once per vertical stripe with a batch of
objects. To ’represent’ the status structure, we split the vertical stripe to m cells formed
by the intersections with the horizontal stripes. Recall that there are O(n/m) vertically
spanning objects that are in a cells of the vertical stripe. We store their positions in an
array using a total of O((n/m) · lgn) = O(s) bits. In addition, we store for each of the m
cells a bit vector of O(n/m) bits indicating whether each of these objects spans the cell or
not. Over and above, for each bit vector of a cell, we build a rank-select data structure that
allows us to scan the vertical spanning objects of the cell in constant time per object. The bit
vectors and the rank-select structures are enough to represent the status structure. Thus, the
sweep line can be stored in a total of O(s) bits. We use an adjustable navigation pile as our
event queue to produce the events and the spanning objects in order. Since s ≥ n, the time
to produce all the events in order throughout the procedure is O(n lg s). When the sweep
line moves to a new vertical stripe, we update the representation of the status structure as
follows: The vertical spanning objects in the new stripe are produced by the navigation pile.
For each such object, the cells that it spans are allocated in O(m) time per object by simply
comparing the object coordinates with the horizontal separators. The bit-vectors entries and
the rank-select structures are updated accordingly. The time to update the status structure
(build a new one) is O(n). Throughout the algorithm, the total time to update the status
structure is O(n ·m) = O((n2/s) · lgn) = O((n2/s) · lg s).

It remains to show how to allocate an event point within the status structure representing
the sweep line. We would be satisfied with only identifying the cell that contains this event
point within the vertical stripe. We do that using binary search against the m horizontal
separators, consuming O(lgm) = O(lg lg s) time per event point.

I Lemma 5. Let I be a plane-sweep instance for which (1) and (2) holds. Using the batching
technique, a sweep can be performed on a plane with n objects, using a data structure that
can be stored in Θ(s) bits, where n ≤ s ≤ n lgn. The sweep makes a total of O((n/s) · lg s)
stopovers, and the data structure can be rebuilt in O(n) time per stopover plus a total of
O(n lg s) time, and queried in O(lg lg s) time per event. Handling all events at each stopover,
we can run a plane-sweep algorithm on I in O((n2/s) · lg s · lg lg s+ n · lg s) total time.

7 Enumerating Axis-Parallel Line-Segments Intersections

Assume for the moment that the available workspace is Θ(s) bits, where n ≤ s ≤ n lgn.
We use the same ideas as in Section 5. As before, we split the plane into m = d(n/s) · lgne

horizontal and vertical stripes where each except the last contains dn/me line segments. We
enumerate the intersections among the local parts of the segments within the stripes by
applying a standard line-segments-intersection enumeration algorithm.
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By truncating the segments, we assume from now on that all the endpoints lie on the
boundaries of the cells and the segments span the cells they cross. Note that each horizontal
line segment that spans a cell must intersect all the vertical segments spanning the same
cell. By applying the ideas of the batching technique, we store the vertical spanning line
segments that lie in the current vertical stripe and build a status structure that consumes
Θ(s) bits in O(n) time. Using this data structure it is possible to enumerate the vertical
segments that span a given cell in time proportional to the number of the reported segments.
For each horizontal segment, we check if it spans any of the cells of the sweep line. We do
that using binary search for each horizontal segment against the m horizontal separators.
After every binary search for a horizontal segment, we query the status structure to find
the vertical segments spanning the same cell, and so their intersections with the horizontal
segment are computed and reported. After locating the crossing cells of all the horizontal
segments with the sweep line, the sweep line is advanced to the next vertical stripe.

The total time needed to execute the standard algorithm locally within all the stripes is
O(n lg s), which matches the time bound to build the status structure of all vertical stripes
using the batching technique. The time to perform binary search for each of the horizontal
segments against the m cells of the status structure is O(n lgm). Hence, we can compute
all intersection points of a vertical stripe in O(n lgm + k′) time, where k′ is the number
of these intersections. Since we repeat these actions for every vertical stripe as the sweep
line advances, the total time is O(n ·m · lgm+ k) = O((n2/s) · lg s · lg lg s+ k), where k is
the number of intersections returned. Since we can partition the plane into stripes using a
navigation pile in O(n2/s+ n lg s) time, the total time consumed by the whole algorithm is
O((n2/s) · lg s · lg lg s+ n lg s+ k).

Assume next that we have Θ(s) bits of workspace, where lgn ≤ s < n. Let r = s. We can
then apply the above algorithm on instances of size Θ(r). In such a case, the running time for
each instance would be t(r)+k′ = O((r2/s)·lg s·lg lg s+r lg s+k′) = O((r2/s)·lg s·lg lg s+k′),
where k′ is the number of intersections. We then divide the input into dn/re batches
of segments and apply the divide-and-compress technique on pairs of batches, a batch
of vertical segments with a batch of horizontal segments. The total time consumed is
O((n/r)2 · t(r) + k) = O((n2/s) · lg s · lg lg s + k), where k is the number of intersections
returned.

I Theorem 6. Given a read-only array containing the endpoints of n line segments and Θ(s)
bits of workspace, where lgn ≤ s ≤ n lgn, enumerating the planar axis-parallel line-segments
intersections is done in O((n2/s) · lg s · lg lg s+ n lg s+ k) time, where k is the number of
intersections returned.

8 Measure of Axis-Parallel Rectangles

We consider the problem of computing the measure of a set of n axis-parallel rectangles, i.e.,
the size of the area of the union. The problem was posed by V. Klee, and thus called Klee’s
measure problem. Bentley [6] described an O(n lgn)-time algorithm that can be implemented
with Θ(n lgn) bits of working space. Bentley’s algorithm sweeps a vertical line from left to
right across the rectangles and maintains the intersection of the rectangles and the sweep
line. Another algorithm to compute the measure was presented by Overmars and Yap [20].
A generalization of the algorithm to d dimensions was given by Chan [10].

Assume that the available workspace is Θ(s) bits, where lgn ≤ s ≤ n lgn. To compute
the measure of a set of n axis-parallel rectangles, we use Bentley’s algorithm as a subroutine.
In this section, we restrict ourselves to the case where the corners of the rectangles are stored
sorted by their x-coordinates. This restriction is dropped in the next section.
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We split the plane into m = Θ((n/s) · lgn) horizontal stripes, where each stripe consists
of Θ(s/ lgn) rectangle corners and accordingly fit in the available workspace. A rectangle is
spanning a stripe if its vertical segments cross the two separators of the stripe. We process the
stripes in sorted y-coordinate order, one after the other. By using an adjustable navigation
pile, we produce and store the rectangles cornered within each stripe in sequence. Before
processing a stripe and storing the rectangles, we truncate those rectangles such that they
are shrunk to their intersection with the stripe. We would then run Bentley’s algorithm on
these rectangles. However, we need to also take into consideration the rectangles spanning
the stripe. We show next how to do that efficiently.

We horizontally scan the stripe and keep track of the spanning segments and the corners.
We accumulate as a global variable the width W of the union of the spanning rectangles so
far. To do that, we maintain z as the difference between the number of scanned spanning
segments that are left boundaries of a rectangle and the number of scanned spanning segments
that are right boundaries. Whenever z becomes positive, we record this coordinate as x1.
Whenever z returns back to zero, we record this coordinate as x2; we have just passed over a
spanning area, and accordingly update W by adding to it the value x2 − x1. Whenever we
meet a corner, we update its x-coordinate value as follows. If z is positive (the corner is in
a spanning area), first set the x-coordinate of this corner to x1. Either way, whether z is
positive or zero, we subtract the current value ofW from the x-coordinate of the corner. This
process of relocating the corners is called simplifying the rectangles in [10]. After finishing
the scan, we apply Bentley’s algorithm to the relocated corners and calculate the measure
within the current stripe. We also multiply W by the width of the stripe to get the area
covered by the spanning rectangles, and add this area to the calculated measure. The total
measure is the sum of the measures within all the stripes.

The time to sequentially scan the segments and simplify the rectangles within each stripe
is O(n) (as the segments are already sorted), and the time for applying Bentley’s algorithm
is O((s/ lgn) · lg s). The total time to process all the m stripes is O((n2/s) · lgn+ n lg s).

I Theorem 7. Given a read-only array storing the corners of n axis-parallel rectangles in
sorted x-coordinate order, and the available workspace is Θ(s) bits, where lgn ≤ s ≤ n lgn,
the measure (area of the union) can be computed in O((n2/s) · lgn+ n lg s) time.

9 A Multi-Scanning Technique: Partitioning the Plane

In this section we introduce a technique to replace one global sweep with many local sweeps,
and apply it to the measure problem if the input is not sorted. The idea is to perform
alternating vertical and horizontal sweeps on parts of the plane to identify cells, each
containing a set of objects that fit in the working storage. Once identified, we apply a local
algorithm within each cell. By partitioning the plane into a grid of cells, we combine the
local solutions for the cells together to obtain the final outcome. The details come next.

We partition the plane into m = d
√

(n/s) · lgne horizontal stripes, where each stripe
consists of O(n/m) corners. We process the horizontal stripes one after the other in sorted y-
coordinate order using an adjustable navigation pile. Once the two separators of a horizontal
stripe H are determined, we initialize an adjustable navigation pile YH for the stripe that
allows us to stream the corners within H ordered by their y-coordinates. We start sweeping
over the plane in sorted x-coordinate order using another adjustable navigation pile XH that
is initialized over the whole input. For this horizontal sweep, we are interested only in the
corners in H as well as the vertical segments spanning H—to find the spanning segments, we
have to take all corners of the plane into consideration. Whenever the number of corners in
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H produced by XH is ` = ds/ lgne (except for the last cell that may have less corners), we
have reached a vertical separator that identifies, as a right boundary, a cell V within H. The
corners of a cell can be stored in O(s) bits and hence fit in the working storage. During this
horizontal sweep over V, we calculate the horizontal width Wh of the area covered by the
vertically spanning rectangles, and in the meantime simplify these corners of V (relocate the
x-coordinates), as explained in the previous section, while storing them. We temporarily
pause the horizontal sweep, and start a vertical sweep within H after initializing YH using
the value of the horizontal separator between H and the stripe above it. During this vertical
sweep, we calculate the vertical width Wv of the area covered by the horizontally spanning
rectangles, and simplify the stored corners of V (this time, relocate the y-coordinates). Since
the corners within V fit in the working storage, we compute Klee’s measure of the parts of the
simplified rectangles within the cell V using Bentley’s algorithm. We add the areas covered
by the spanning vertical and the spanning horizontal rectangles to adjust the measure, and
subtract the intersection area Wh ×Wv that has been added twice. We repeatedly proceed
with the horizontal sweep using XH to identify and partially process a cell, then alternately
initialize YH and perform a vertical sweep within H to finish the processing of the cell. After
all the cells of a horizontal stripe are processed, we repeat the same actions for the next
horizontal stripes in sequence. Since we correctly calculate the measure within every cell,
the overall sum of all the local measures is what we are looking for.

Concerning the running time, we consider the time to produce the segments by the
navigation piles. Recall that XH sweeps over all the n corners, whereas YH sweeps only over
the O(n/m) corners of H. The navigation piles X for the horizontal sweeps repeatedly process
all the input for every horizontal stripe. Since we have a total of m such sweeps, the total time
consumed by the X navigation piles is O((n2/s+ n lg s) ·m). The navigation piles Y for the
vertical sweeps process the O(n/m) corners of a horizontal stripe in one sweep. Therefore, the
total time for each of these vertical sweeps is O((n/s+ lg s) · n/m+ n). It is straightforward
to verify that n/s+ lg s = Ω(m) for all considered values of n and s (it is either true that
n/s > m or otherwise lg s = Ω(m)). The total number of vertical sweeps done within each
horizontal stripe is O((n/m)/`), which is O(m) since m = d

√
(n/s) · lgne. It follows that the

total time of the vertical sweeps within one horizontal stripe is O(n2/s+ n lg s). Multiplying
by the number of horizontal stripes m, the total time consumed by the Y navigation piles is
O((n2/s+n lg s) ·m), matching the bound for the X piles. The time needed by the extended
local version of Bentley’s algorithm within each cell is O(` · lg `), resulting in a total of
O(n · lg s) time for all the calls to Bentley’s algorithm. The time for the navigation piles is
dominating.

I Theorem 8. Given a read-only array containing the corners of n axis-parallel rectangles,
and the available workspace is Θ(s) bits, where lgn ≤ s ≤ n lgn, the measure can be computed
in O((n2/s+ n lg s) ·

√
(n/s) · lgn) time.

10 Concluding Comments

We have given space-efficient plane-sweep algorithms for some basic geometric problems.
We believe that the techniques we introduce cover a range of ideas to handle many other
plane-sweep algorithms in a space-efficient manner. Another question is if it is possible to get
around with the extra logarithmic factors in the running times of the problem of enumerating
the general and the axis-parallel line-segments intersections. It also remains open if it is
possible to solve the measure problem more efficiently when the input is not sorted.
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Abstract
The maximum cut problem in graphs and its generalizations are fundamental combinatorial
problems. Several of these cut problems were recently shown to be fixed-parameter tractable and
admit polynomial kernels when parameterized above the tight lower bound measured by the size
and order of the graph. In this paper we continue this line of research and considerably improve
several of those results:

We show that an algorithm by Crowston et al. [ICALP 2012] for (Signed) Max-Cut Above
Edwards-Erdős Bound can be implemented in such a way that it runs in linear time
8k ·O(m); this significantly improves the previous analysis with run time 8k ·O(n4).
We give an asymptotically optimal kernel for (Signed) Max-Cut Above Edwards-Erdős
Bound with O(k) vertices, improving a kernel with O(k3) vertices by Crowston et al. [CO-
COON 2013].
We improve all known kernels for strongly λ-extendable properties parameterized above tight
lower bound by Crowston et al. [FSTTCS 2013] from O(k3) vertices to O(k) vertices.
As a consequence, Max Acyclic Subdigraph parameterized above Poljak-Turzík bound
admits a kernel with O(k) vertices and can be solved in time 2O(k) · nO(1); this answers an
open question by Crowston et al. [FSTTCS 2012].

All presented kernels can be computed in time O(km).
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Keywords and phrases Max-Cut, fixed-parameter tractability, kernelization
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1 Introduction

A recent paradigm in parameterized complexity is to not only show a problem to be fixed-
parameter tractable, but indeed to give algorithms with optimal run times in both the
parameter and the input size. Ideally, we strive for algorithms that are linear in the input
size, and optimal in the dependence on the parameter k assuming a standard hypothesis such
as the Exponential Time Hypothesis [17]. New results in this direction include fixed-parameter
algorithms for Graph Bipartization [18, 30], Planar Subgraph Isomorphism [9], DAG
Partitioning [29] and Subset Feedback Vertex Set [20].

Here, we consider the fundamental Max-Cut problem from the view-point of linear-time
fixed-parameter algorithms. In this classical NP-complete problem [19], the task is to find a
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bipartite subgraph of a given graph G with the maximum number mc(G) of edges. We refer
to the survey [26] for an overview of the research area.

We focus on Max-Cut parameterized above Edwards-Erdős bound. This parameterization
is motivated by the classical result of Edwards [10, 11] that any connected graph on n vertices
and m edges admits a cut of size at least

m/2 + (n− 1)/4 . (1)

This lower bound is known as the Edwards-Erdős bound, and it is tight for cliques of every
odd order n. Ngo.c and Tuza [24] gave a linear-time algorithm that finds a cut of size at
least (1).

Parameterizing Max-Cut above Edwards-Erdős bound means, for a given connected
graph G and integer k, to determine if G admits a cut that exceeds (1) by an amount
of k: formally, the problem Max-Cut Above Edwards-Erdős Bound (Max-Cut AEE)
is to determine if mc(G) ≥ |E(G)|/2 + (|V (G) − 1 + k)/4. It was asked in a sequence of
papers [5, 12, 21, 22] whether Max-Cut AEE is fixed-parameter tractable, before Crowston
et al. [7] gave an algorithm that solves instances of this problem in time 8k ·O(n4), as well as
a kernel of size O(k5). Their result inspired a lot of further research on this problem, leading
to smaller kernels of size O(k3) [4] and fixed-parameter algorithms for generalizations [23]
and variants [8].

In the Signed Max-Cut problem, we are given a graph G whose edges are labeled
by (+) or (−), and we seek a maximum balanced subgraph H of G, where balanced means
that each cycle has an even number of negative edges. Max-Cut is the special case
where all edges are negative. Signed Max-Cut finds applications in, e.g., modeling social
networks [14], statistical physics [1], portfolio risk analysis [15], and VLSI design [3]. The
dual parameterization of Signed Max-Cut by the number of edge deletions was also shown
to be fixed-parameter tractable [16].

Poljak and Turzík [25] showed that the property of having a large cut (i.e., a large bipartite
subgraph) can be generalized to many other classical graph properties, including properties
of oriented and edge-labeled graphs. They defined the notion of “λ-extendable” properties Π
and generalized the lower bound (1) to tight lower bounds for all such properties; we refer to
these lower bounds as the Poljak-Turzík bound for Π. Well-known examples of such properties
include bipartite subgraphs, q-colorable subgraphs for fixed q, or acyclic subgraphs of oriented
graphs. Mnich et al. [23] considered the problem Above Poljak-Turzík(Π) of finding
subgraphs in Π with k edges above the Poljak-Turzík bound; they gave fixed-parameter
algorithms for this problem on all “strongly” λ-extendable properties Π. A subclass of these,
requiring certain technical conditions, was later shown to admit polynomial kernels [8].

1.1 Our Contributions
Linear-Time FPT. Our first result is that the fixed-parameter algorithm given by Crowston
et al. [4] for the Signed Max-Cut AEE problem can be implemented in such a way that it
runs in linear time.

I Theorem 1 (?). The (Signed) Max-Cut AEE problem can be solved in time 8k ·O(m).

Theorem 1 considerably improves the earlier run time analysis [4, 7], which shows a run
time of 8k ·O(n4). At the same time, our algorithm improves the very involved algorithm by
Bollobás and Scott [2] that considers the weaker lower bound m/2 + (

√
8m+ 1−1)/8 instead

of (1). Third, Theorem 1 generalizes the linear-time algorithm by Ngo.c and Tuza [24] for
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the special case of Max-Cut with k = 0. Note that Max-Cut AEE cannot be solved in
time 2o(k) · nO(1) assuming the Exponential Time Hypothesis [7].

Linear Vertex Kernels. Our second contribution is a kernel with a linear number O(k) of
vertices for Max-Cut AEE and its generalization Signed Max-Cut AEE.

I Theorem 2. The (Signed) Max-Cut AEE problem admits a kernel with O(k) vertices,
which can be computed in time O(km).

These results considerably improve the previous best kernel bound of O(k3) vertices by
Crowston et al. [4]. Moreover, the presented kernel completely resolves the asymptotic
kernelization complexity of (Signed) Max-Cut AEE, since a kernel with o(k) vertices
would again contradict the Exponential-Time Hypothesis, as the Max-Cut problem can
be solved by checking all vertex bipartitions. On top of that, our kernelization is also fast.
In fact, we only need to compute O(k) DFS/BFS trees. The rest of the algorithm runs in
time O(m+ n).

Extensions to Strongly λ-Extendable Properties. As mentioned, the property of graphs
having large bipartite subgraphs can be generalized to λ-extendable properties as defined by
Poljak and Turzík [25] (we defer the formal definitions to Section 2). For a given λ-extendable
property Π, we consider the following problem.

Above Poljak-Turzík Bound(Π)
Input: A connected graph G and an integer k.
Question: DoesG have a spanning subgraphH ∈ Π s.t. |E(H)| ≥ λ·|E(G)|+ 1−λ

2 ·(|V (G)|−1)+k?

Note the slight change in the definition of k compared to (Signed) Max-Cut AEE, where
k was divided by 4 = 2

1−λ for λ = 1
2 .

Crowston et al. [4] gave polynomial kernels with O(k3) or O(k2) vertices for the problem
Above Poljak-Turzík(Π), for all strongly λ-extendable properties Π on possibly oriented
and/or labeled graphs satisfying at least one of the following properties.
(P1) λ 6= 1

2 ; or
(P2) G ∈ Π for all graphs G whose underlying simple graph is K3; or
(P3) Π is a hereditary property of simple or oriented graphs.
Our third result improves all these kernels for strongly λ-extendable properties to asymptot-
ically optimal O(k) vertices:

I Theorem 3. Let Π be any strongly λ-extendable property of (possibly oriented and/or
labeled) graphs satisfying (P1), or (P2), or (P3). Then Above Poljak-Turzík(Π) admits
a kernel with O(k) vertices, which is computable in time O(km).

Consequences for Acyclic Subdigraphs. Theorem 3 has several applications. For instance,
Raman and Saurabh [27] asked for the parameterized complexity of the Max Acyclic
Subdigraph problem above the Poljak-Turzík bound: Given a weakly connected oriented
graph G on n vertices and m arcs, does it have an acyclic sub-digraph of at least m/2 +
(n− 1)/4 + k arcs? For this problem, Crowston et al. [6] gave an algorithm with run time
2O(k log k) · nO(1) and showed a kernel with O(k2) vertices. They explicitly asked whether the
kernel size can be improved to O(k) vertices, and whether the run time can be improved
to 2O(k) · nO(1). Here, we answer their questions in the affirmative by using Theorem 3 and
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then applying an O∗(2n)-time algorithm by Raman and Saurabh [28, Thm. 2] to our kernel
with O(k) vertices.

I Corollary 4. The Max Acyclic Subdigraph problem parameterized above Poljak-Turzík
bound admits a kernel with O(k) vertices and can be solved in time 2O(k) · nO(1).

Again, assuming the Exponential Time Hypothesis, the run time of this algorithm is asymp-
totically optimal.

Due to space constraints, proofs of statements marked by (?) are deferred to the full version.

2 Preliminaries

We use ] to denote the disjoint union of sets. The term “graph” refers to finite undirected
graphs without self-loops, parallel edges, edge directions, or labels. For a graph G, let V (G)
denote its set of vertices and let E(G) denote its set of edges. In an oriented graph, each
edge e = {u, v} has one of two directions, −→e = (u, v) and←−e = (v, u); thus, an oriented graph
is a digraph without 2-cycles and loops. We sometimes write an edge e = {u, v} as e = uv,
if no confusion arises; this way, three distinct vertices a, b, c can induce a triangle abca. In
a labeled graph, each edge in E(G) receives one of a constant number of labels. For an
oriented and/or labeled graph G, let 〈G〉 denote the underlying simple graph obtained from
omitting orientations and/or labels. Throughout the paper, we assume graphs to be encoded
as adjacency lists.

A graph is connected if there is a path between any two of its vertices. A connected
component of G is a maximal connected subgraph of G. A cut vertex of a graph G is a vertex
whose removal increases the number of connected components. A graph is 2-connected if it
does not contain any cut vertices. A maximal 2-connected subgraph of a graph G is called
a block of G. A block that contains at most one cut vertex of G is called a leaf block of G.
A clique tree is a connected graph whose blocks are cliques, where a clique is a complete
subgraph of a graph. A clique forest is a graph whose connected components are clique
trees.1 For an oriented and/or labeled graph G we say that G has one of the above-defined
properties if 〈G〉 does.

Let G be a graph. For a vertex v ∈ V (G), let NG(v) = {u ∈ V (G) | {u, v} ∈ E(G)}. For
signed graphs G, we define NG(v) = N〈G〉(v). For a vertex set V ′ ⊆ V (G), let NG(V ′) =
(
⋃
v∈V ′ NG(v)) \ V ′. For disjoint vertex sets V1, V2 ⊆ V (G), let E(V1, V2) denote the set

of edges with one endpoint in V1 and the other endpoint in V2. For signed graphs G, let
E+(G) ⊆ E(G) be the edges with positive labels, and E−(G) = E(G) \ E+(G) be the
edges with negative labels. Define N+

G (v) = {u ∈ V (G) | vu ∈ E+(G)} and N−G (v) = {u ∈
V (G) | vu ∈ E−(G)} for all v ∈ V (G).

A graph property Π is simply a set of graphs. For a graph G, a Π-subgraph is a subgraph
of G that belongs to Π. A graph property Π is hereditary if for any G ∈ Π also all
vertex-induced subgraphs of G belong to Π. Poljak and Turzík [25] defined the notion
of “λ-extendability” for graph properties Π, and proved a lower bound on the size of any
Π-subgraph in arbitrary graphs. A related notion of “strong λ-extendability” was introduced
by Mnich et al. [23]; any strongly λ-extendable property is λ-extendable, but it is unclear
whether the other direction holds.

1 Clique forests are sometimes called block graphs; however, there are competing definitions for this term
in the literature and so we refrain from using it.
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I Definition 5. Let G be a class of (possibly labeled and/or oriented) graphs and let λ ∈ (0, 1).
A (graph) property Π is strongly λ-extendable on G if it satisfies the following properties:
(i) inclusiveness: {G ∈ G | 〈G〉 ∈ K1,K2} ⊆ Π.
(ii) block additivity: G ∈ G belongs to Π if and only if each block of G belongs to Π.
(iii) extendability: For any G ∈ G and any partition U]W of V (G) for which G[U ], G[W ] ∈ Π

there is a set F ⊆ E(U,W ) of size |F | ≥ λ|E(U,W )| for which G− (E(U,W ) \ F ) ∈ Π.

The set of all bipartite graphs Πbipartite is a strongly 1
2 -extendable property. Thus, Max-Cut

AEE is equivalent to Above Poljak-Turzík Bound(Πbipartite).
Poljak and Turzík[25] showed that, given a (strongly) λ-extendable property Π, any

connected graph G contains a subgraph H with at least λ|E(G)|+ 1−λ
2 (|V (G)| − 1) edges

such that H ∈ Π. We denote this lower bound by pt(G). Further, we define the excess of G
over this lower bound with respect to Π as ex(G) = max{|E(H)| − pt(G) | H ⊆ G,H ∈ Π}.
When considering properties of labeled and/or oriented graphs, we denote by ex(Kt) the
minimum value of ex(G) over all labeled and/or oriented graphs G with 〈G〉 = Kt; here, Kt

denotes the complete graph of order t. (Our definition slightly differs from the one by
Crowston et al. [8].)

A strongly λ-extendable property Π diverges on cliques if ex(Kj) > 1−λ
2 for some j ∈ N.

For example, every strongly λ-extendable property with λ 6= 1
2 diverges on cliques [8]. We

recall the following fact about diverging properties:

I Proposition 6 ([8, Lemma 8]). Let Π be a strongly λ-extendable property diverging on
cliques, and let j ∈ N, a > 0 be such that ex(Kj) = 1−λ

2 + a. Then ex(Ki) ≥ ra for all i ≥ rj.

We need the following proposition in all sections. For Signed Max Cut, we will apply
it with λ = 1

2 .

I Proposition 7 ([8, Lemma 6]). Let Π be a strongly λ-extendable property, let G be a
connected graph and let U1 ] U2 be a partition of V (G) into non-empty sets U1, U2. For
i = 1, 2 let ci be the number of connected components of G[Ui]. If ex(G[Ui]) ≥ ki for some
ki ∈ R and i = 1, 2, then ex(G) ≥ k1 + k2 − 1−λ

2 (c1 + c2 − 1).

3 Linear-Time Fixed-Parameter Algorithms and Linear Vertex
Kernels for Signed Max Cut

In this section we consider the Signed Max-Cut AEE problem. We show that the fixed-
parameter algorithm given by Crowston et al. [4] can be implemented in such a way that it
runs in time 8k · O(|E(G)|). That is, given a connected graph G whose edges are labeled
either positive (+) or negative (−), and an integer k, we can decide in time 8k ·O(|E(G)|)
whether G has a balanced subgraph of size |E(G)|/2 + (|V (G)| − 1 + k)/4. This will prove
Theorem 1. In the second part of the section we will show how to obtain a kernel with O(k)
vertices and thus prove Theorem 2.

Let us first reformulate the Signed Max-Cut AEE problem.

I Proposition 8 (Harary [13]). A signed graph G is balanced if and only if there exists
a partition V1 ] V2 = V (G) such that all edges in G[V1] and G[V2] are positive and all
edges E(V1, V2) between V1 and V2 are negative.

3.1 Linear-Time Fixed-Parameter Algorithm
The algorithm by Crowston et al. [4] starts by applying the following seven reduction rules.
We restate them here, as they are crucial for our results. A reduction rule is 1-safe if, on input
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(G, k) it returns a pair (G′, k′) such that (G, k) is a “yes”-instance for Signed Max-Cut
AEE if (G′, k′) is. (Note that the converse direction does not have to hold.) In a signed
graph G we call a triangle positive if its number of negative edges is even. In the description
of the rules, G is always a connected signed graph and C is always a clique that does not
contain a positive triangle.

I Reduction Rule 9. If abca is a positive triangle such that G− {a, b, c} is connected, then
mark a, b, c, delete them, and set k′ = k − 3.

I Reduction Rule 10. If abca is a positive triangle such that G− {a, b, c} has exactly two
connected components C and Y , then mark a, b, c, delete them, delete C, and set k′ = k − 2.

I Reduction Rule 11. Let C be a connected component of G− v for some vertex v ∈ V (G).
If there exist a, b ∈ V (C) such that G− {a, b} is connected and there is an edge av but no
edge bv, then mark a, b, delete them, and set k′ = k − 2.

I Reduction Rule 12. Let C be a connected component of G− v for some vertex v ∈ V (G).
If there exist a, b ∈ C such that G− {a, b} is connected and vabv is a positive triangle, then
mark a, b, delete them, and set k′ = k − 4.

I Reduction Rule 13. If there is a vertex v ∈ V (G) such that G − v has a connected
component C such that G[V (C) ∪ {v}] is a clique that does not contain a positive triangle,
then delete C. If |V (C)| is odd, then set k′ = k − 1. Otherwise, set k′ = k.

I Reduction Rule 14. If abc is a vertex-induced path in G for some vertices a, b, c ∈ V (G)
such that G− {a, b, c} is connected, then mark a, b, c, delete them, and set k′ = k − 1.

I Reduction Rule 15. Let C, Y be the connected components of G − {v, b} for some ver-
tices v, b ∈ V (G) such that vb /∈ E(G). If G[V (C) ∪ {v}] and G[V (C) ∪ {b}] are cliques that
do not contain a positive triangle, then mark v, b, delete them, delete C, and set k′ = k − 1.

We slightly changed Rule 13. Crowston et al. [4] always set k′ = k, whereas we set k′ = k−1
when |V (C)| is odd. In this case, pt(G[V (C)∪ {v}]) cannot be integral because |V (C)∪ {v}|
is even, and thus ex(G[V (C) ∪ {v}]) ≥ 1

4 . Therefore our change for k is 1-safe due to the
following result.

I Proposition 16 ([4, Lemma 2]). Let G be a connected signed graph and Z be a connected
component of G− v for some v ∈ V (G). Then ex(G) = ex(G− Z) + ex(G[V (Z) ∪ {v}]).

We subsume the results by Crowston et al. [4] in the following proposition.

I Proposition 17 ([4]). Rules 9–15 are 1-safe. To any connected signed graph with at least
one edge, one of these rules applies and the resulting graph is connected. If S is the set
of vertices marked during the exhaustive application of Rules 9–15 on a connected signed
graph G, then G− S is a clique forest. If |S| > 3k, then (G, k) is a “yes”-instance.

Following Crowston et al. [4, Corollary 3], we assume – without loss of generality – from
now on that the resulting clique forest G− S does not contain a positive edge.

I Lemma 18 (?). Let G be a connected signed graph, let X be a leaf block of G, and
let r ∈ V (G) such that V (X) \ {r} does not contain a cut vertex of G. Then we can apply
one of the Rules 9–15 to G deleting and marking only vertices from X in time O(|E(X)|).
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Given an instance (G, k), we can thus compute in time O(k · |E(G)|) a vertex set S that
either proves that (G, k) is a “yes”-instance or G− S is a clique forest. We now show that,
if a partition for the vertices in S is already given, we can in time O(|E(G)|) compute an
optimal extension to G. We use the following problem, which goes back to Crowston et
al. [7].

Max-Cut Extension
Input: A clique forest GS with weight functions wi : V (GS)→ N0 for i = 0, 1.
Task: Find an assignment ϕ : V (GS) → {0, 1} maximizing

∑
xy∈E(GS) |ϕ(x) − ϕ(y)| +∑1

i=0

∑
x : ϕ(x)=i wi(x).

I Lemma 19 (?). Max-Cut Extension can be solved in time O(|V (GS)|+ |E(GS)|) on a
clique forest GS.

We now give a proof sketch for Theorem 1. Lemma 18 allows us to find the set S from
Proposition 17 in time O(km) (the case that k is not decreased can only take O(m) total
time). Guess one of the at most 23k partitions on S and solve the corresponding Max-Cut
Extension problem with Lemma 19.

3.2 A Linear Vertex Kernal for Signed Max-Cut AEE
For the whole section, let G0 be the original graph, let S be the set of marked vertices during
the exhaustive application of Rules 9–15 on G0, and let Gr be the resulting graph after the
exhaustive application of our kernelization Rules 20–21 (to be defined later) on G0.

If there is a (unique by Proposition 17) remaining vertex v left after the exhaustive
application of Rules 9–15, then add a path vwx to G, i.e., define G′ = (V (G)∪{w, x}, E(G)∪
{vw,wx}). Then (G′, k + 2) is an instance of Max-Cut AEE that is due to Proposition 16
equivalent to (G, k) because the excess of a path of length 2 is 2/4. This implies that we
can w.l.o.g. assume that every vertex gets removed during the exhaustive application of the
reduction rules because we can assume we finish with deleting the new path with Rule 14.
Furthermore, as Rule 13 can then not be applied last, we can assume that at least one of the
vertices that are removed last is contained in S.

We will use two-way reduction rules which are similar to the two-way reduction rules by
Crowston et al. [4]. However, our two-way reduction rules have the property that connected
components of G− S cannot fall apart, i.e., two blocks in Gr − S are reachable from each
other if and only if the corresponding blocks in G0−S are reachable from each other. We can
thus show that Rules 9–15 can behave “equivalently” on Gr as on G0 (Lemma 24), i.e., that
the same set S of vertices can also be marked in Gr. This is the crucial idea which allows us
to obtain better kernelization results than previous papers, as it allows the following analysis.

To show size bounds for our kernel Gr, we (hypothetically) change the set of rules in
such a way that whenever a vertex s ∈ S is about to be removed, we additionally remove
internal vertices from different blocks of Gr − S that are all adjacent to s. This means that
for every s ∈ S, we find a star-like structure Ys such that Ys is removed together with s, and
the excess on Ys grows linearly in |Ys|. We can distribute the internal vertices from G− S in
such a way to the different Ys that all generated graphs are still connected. Then the large
excess of the different Ys translates to a large excess of Gr through Proposition 7.

We use this approach twice to first bound the number of special blocks (Lemma 25) and
then the number of internal vertices in special blocks (Lemma 27) to O(k). On the other
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hand, due to Rules 20–21 a constant fraction of vertices in Gr − S must be adjacent to S.
This completes the proof.

Let C be a block in the clique forest G−S. Define Cint = {v ∈ V (C) | NG−S(v) ⊆ V (C)}
as the interior of C, and Cext = V (C) \ Cint as the exterior of C. The block C is called
special if Cint ∩NG(S) is non-empty. Let B be the set of blocks and Bs be the set of special
blocks in Gr − S. A block C is a ∆-block if it is not special, contains exactly three vertices,
and |Cext| ≤ 2.

We now give our two-way reduction rules, which on input (G, k) produce an instance
(G′, k) of Signed Max-Cut AEE. Note that the parameter k does not change. We call a
rule 2-safe if (G, k) is a “yes”-instance if and only if (G′, k) is. The first rule is again due to
Crowston et al. [4], who showed it to be 2-safe. The run time analysis is our work. Recall
our assumption that (without loss of generality) G− S does not contain any positive edges.

I Reduction Rule 20. Let C be a block in G − S. If there exists X ⊆ Cint such that
|X| > |V (C)|+|NG(X)∩S|

2 ≥ 1, N+
G (x) ∩ S = N+

G (X) ∩ S and N−G (x) ∩ S = N−G (X) ∩ S for all
x ∈ X, then delete two arbitrary vertices x1, x2 ∈ X.

I Reduction Rule 21. Let C1, C2 be two ∆-blocks in G− S which share a common vertex v.
Make a block out of V (C1) ∪ V (C2), i.e., add negative edges {{u,w} | u ∈ V (C1) \ {v}, w ∈
V (C2) \ {v}} to G.

I Lemma 22 (?). Rules 20–21 are 2-safe. If they are applied to a connected graph G, then
the resulting graph G′ is also connected.

I Lemma 23 (?). Given S, Rules 20–21 can be applied exhaustively to G0 in total time O(m+
n).

I Lemma 24 (?). Rules 9–15 can be applied exhaustively to the graph Gr in such a way
that the set S′ of marked vertices is equal to S. Moreover, if only the Rules 11/13/14/15 are
applied to G0, the same set of rules is applied to Gr.

The last part of the lemma will be needed later in Section 4.2.

I Lemma 25 (?). If Gr−S has more than 11k special blocks, then (Gr, k) is a “yes”-instance
of Signed Max-Cut AEE.

I Lemma 26 (?). If Gr − S has more than 48k blocks, then (Gr, k) is a “yes”-instance
of Signed Max-Cut AEE. Otherwise, Gr − S has at most 48k external vertices, and∑

B∈B |Bext| ≤ 96k.

I Lemma 27 (?). If there are more than 117k internal vertices in special blocks in Gr − S,
then (Gr, k) is a “yes”-instance of Signed Max-Cut AEE.

We are now ready to prove Theorem 2.

Proof of Theorem 2. Let (G0, k) be an instance of Signed Max-Cut AEE. Like in Sec-
tion 3.1, apply Rules 9–15 exhaustively to (G0, k) in time O(k · |E(G0|), producing an instance
(G′, k′) and a vertex set S of marked vertices. If k′ ≤ 0, then (G′, k′) and thus also (G, k) is
a “yes”-instance.

Now apply Rules 20–21 exhaustively to (G0, k) in time O(|E(G)|) (Lemma 23) to obtain
an equivalent instance (Gr, k). Check whether (Gr, k) is a “yes”-instance due to Lemma 26
or Lemma 27. If this is not the case, then there are at most 3k vertices in S, at most 48k
external vertices in Gr − S and at most 117k internal vertices in special blocks. If there
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were more internal than external vertices in a non-special block, we could apply Rule 20
to this block. Thus, the number of internal vertices in non-special blocks is bounded by
96k according to Lemma 26. Hence, the total number of vertices in Gr is bounded by
3k + 48k + 117k + 96k = 264k. J

4 Linear Vertex Kernels for λ-Extendable Properties

In this section we extend our linear kernels for Signed Max-Cut to all strongly λ-ex-
tendable properties satisfying (P1), or (P2), or (P3). Henceforth, fix a strongly λ-extendable
property Π, and let (G0, k) be an instance of Above Poljak-Turzík Bound(Π). For
notational brevity, we assume the empty graph to be in Π.

As in the previous section, we use a set of 1-safe reduction rules devised by Mnich et
al. [23] to find a set S such that G0 − S is a clique forest; the difference compared to Signed
Max-Cut is the different change of k. Since we change the reduction rules slightly in the
next section, we refrain from stating the rules by Mnich et al. here.

I Lemma 28 ([23]). There is an algorithm that, given a connected graph G and k ∈ N,
either decides that ex(G) ≥ k, or finds a set S of at most 6k

1−λ vertices such that G− S is
a clique forest. This also holds for all strongly λ-extendable properties of oriented and/or
labeled graphs.

The detection which of the reduction rules can be applied to a graph G is completely
analogous to the Signed Max-Cut reduction rules. Hence, it follows immediately from
Lemma 18 that the rules can be applied exhaustively in time O(km).

4.1 Linear Kernel for Properties Diverging on Cliques
We show that Above Poljak-Turzík Bound(Π) admits kernels with O(k) vertices for all
strongly λ-extendable properties Π that are diverging on cliques and for which ex(Ki) > 0
for all i ≥ 2.

I Lemma 29 (?). Let Π be a strongly λ-extendable property diverging on cliques, and suppose
that ex(Ki) > 0 for all i ≥ 2. Then Above Poljak-Turzík Bound(Π) admits a kernel
with O(k) vertices.

I Theorem 30. Let Π be a strongly λ-extendable property. If λ 6= 1
2 or G ∈ Π for every G

with 〈G〉 = K3, then Above Poljak-Turzík Bound(Π) has a kernel with O(k) vertices.

Proof. Lemmas 24-26 from Crowston et al. [8] show that if λ 6= 1
2 or K3 ∈ Π, then Π diverges

on cliques and ex(Ki) > 0 for all i ≥ 2. Therefore, we can apply Lemma 29. J

4.2 Strongly 1
2-Extendable Properties on Oriented Graphs

We now turn to strongly 1
2 -extendable properties Π on oriented graphs. First of all we

modify the reduction rules by Mnich et al. [23] in such a way that they are compliant with
Rules 9–15. Let G always be a connected graph.

I Reduction Rule 31. Let C be a connected component of G− v for some vertex v ∈ V (G)
such that G[V ∪ {v}] is a clique. Delete C and set k′ = k.

I Reduction Rule 32. Let C be a connected component of G− v for some vertex v ∈ V (G)
such that C is a clique. If there exist a, b ∈ V (C) such that G − {a, b} is connected and
av ∈ E(G), but bv /∈ E(G), then mark a, b, delete them, and set k′ = k − 1

2 .
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w1 w2 w3

v1 v2 v3 v4

→

w1 w2

v1 v2 v4

Figure 1 Illustration of Rule 38.

I Reduction Rule 33. Let abc be a vertex-induced path for some vertices a, b, c ∈ V (G) such
that G− {a, b, c} is connected. Mark a, b, c, delete them, and set k′ = k − 1

4 .

I Reduction Rule 34. Let v, b ∈ V (G) such that vb /∈ E(G) and G− {v, b} has exactly two
connected components C, Y . If G[V (C) ∪ {v}] and G[V (C) ∪ {b}] are cliques, then mark v, b,
delete them, delete C, and set k′ = k − 1

4 .

Rules 31–34 are exactly Rules 13/11/14/15 for Signed Max-Cut AEE with all edges
negative.

I Lemma 35 (?). Rules 31–34 are 1-safe. To any connected graph with at least one edge,
one of the rules applies and the resulting graph is connected. If S is the set of marked vertices,
then G− S is a clique forest. If |S| > 12k, then (G, k) is a “yes”-instance.

Like Crowston et al. [8], we restrict ourselves to hereditary properties. Let
→
K3 be the

orientation of K3 which is an oriented cycle, and let
9
K3 be the only (up to isomorphisms)

other orientation of K3. Crowston et al. [8] showed that if
→
K3∈ Π, then also

9
K3∈ Π, and

thus Theorem 30 applies. We now consider the case that
→
K3 6∈ Π together with

9
K3∈ Π.

I Proposition 36 ([8]). Let Π be a hereditary strongly 1
2 -extendable property on oriented

graphs with
9
K3∈ Π. Then ex(Ki) > 0 for all i ≥ 4 and Π diverges on cliques.

Following this lemma, the conditions of Lemma 29 are almost satisfied. The only oriented
cliques without positive excess are K1 and

→
K3, because ex(K2) = 1

4 for 1
2 -extendable

properties. Blocks isomorphic to K1 can only occur as isolated vertices in G− S. We can
bound these like in the previous section. Hence, we only need reduction rules to bound the
number of blocks B in a clique forest with B ∼=

→
K3.

Let Π be a hereditary strongly 1
2 -extendable property on oriented graphs with

9
K3∈ Π.

Let (G0, k) be an instance of Above Poljak-Turzík(Π). Lemma 35 either proves that
(G0, k) is a “yes”-instance, or it finds a set S of at most 12k vertices such that G0 − S is a
clique forest. Starting with (G0, k), we apply the following reduction rules, which on input
(G, k) produce an equivalent instance (G′, k).

I Reduction Rule 37. Delete Bint of leaf blocks B in G−S with B ∼=
→
K3 and NG(S)∩Bint = ∅.

I Reduction Rule 38. Let B1, B2, B3 be non-leaf-blocks in G− S and v1, . . . , v4 ∈ V (G) be
such that (i) vi, vi+1 ∈ (Bi)ext for all i ∈ {1, 2, 3}; (ii) Bi ∼=

→
K3 for all i ∈ {1, 2, 3}; and

(iii) NG({v2, v3, w1, w2, w3}) = {v1, v4}, where wi is the internal vertex of Bi. Delete v3 and
w3. Add edges v2v4 and w2v4.

Intuitively speaking, Rule 38 takes three blocks in G− S that form a “path” and are all
isomorphic to

→
K3. If all vertices except the “endpoints” v1 and v4 are not adjacent to S,

then it is safe to delete one block. For an illustration, see Fig. 1.
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I Lemma 39 (?). Let Π be a hereditary strongly 1
2 -extendable property on oriented graphs

with
9
K3∈ Π. Then Rules 37–38 are 2-safe. The resulting graphs are connected.

From now on, let Gr be the resulting graph after the exhaustive application of Rules 37–38
onG0. Rules 37–38 are special cases of Rules 20–21. Because Rules 31–34 are Rules 13/11/14/15
for Signed Max-Cut AEE with all edges negative, the next lemma follows from Lemma 24.

I Lemma 40. Rules 31–34 can be applied exhaustively on the graph Gr in such a way that
the set S′ of vertices removed by their application is equal to S.

Let B+ be the set of blocks of Gr − S with positive excess, and let B− be the other
blocks, i.e., the blocks B with B ∼=

→
K3 or B ∼= K1. Let R ⊆ V (G) \ S be the set of vertices

that are only contained in exactly two blocks B1, B2 ∈ B− such that (B1)int = (B2)int = ∅.
Further, let V + ⊆ V (G) \ S be the set of vertices in blocks with positive excess, V − be the
set of vertices in blocks from B−, and let V −int ] V −ext = V − be the set of internal and external
vertices of blocks B ∈ B−, respectively. Note that V + and V − may intersect.

I Lemma 41 (?). It holds |V −| = O(|(R ∪ V −int) ∩NGr (S)|). Furthermore, if |(R ∪ V −int) ∩
NGr (S)| > 48k, then (Gr, k) is a “yes”-instance.

Using the same approach as in Section 4.1, one can show that |V +| = O(k) or (Gr, k)
is a “yes”-instance. As Lemma 41 bounds |V −| = O(k) for every “no”-instance, and
V + ∪ V − ∪ S = V (Gr), this suffices to prove the following result.

I Theorem 42 (?). Let Π be a hereditary strongly 1
2 -extendable property on oriented graphs

with
9
K3∈ Π. Then Above Poljak-Turzík Bound(Π) admits a kernel with O(k) vertices.

Proof of Theorem 3. Let λ ∈ (0, 1) and let Π be a strongly λ-extendable property of
(possibly oriented and/or labeled) graphs. If λ 6= 1

2 or G ∈ Π for every G with 〈G〉 = K3, we
can use Theorem 30. Otherwise, we only have to consider the case that Π is a hereditary
property of simple or oriented graphs.

Consider the case that
→
K3∈ Π or

9
K3∈ Π. If

→
K3∈ Π, then Crowston et al. [8] show that

9
K3∈ Π, i.e., we can use Theorem 30. And if

9
K3∈ Π, we use Theorem 42.

Now we may suppose that G 6∈ Π for every G with 〈G〉 = K3. Then Crowston et al. [8]
show that Π is the set of all bipartite graphs. Hence, in the case of simple graphs as well as
if
→
K3,

9
K3 6∈ Π for oriented graphs, we can use Theorem 2 to obtain a linear vertex kernel.

It is easy to see that Rules 37–38 can be applied exhaustively in time O(m). As λ is
constant and we can apply every other reduction rule in linear time, it follows a total run
time of O(λ · km) = O(km). J

5 Discussion

For the classical (Signed) Max-Cut problem, and its wide generalization to strongly
λ-extendable properties, parameterized above the classical Poljak-Turzík bound, we improved
the run time analysis for a known fixed-parameter algorithm to 8k · O(m). We further
improved all known kernels with O(k3) vertices for these problems to asymptotically optimal
O(k) vertices. We did not try to optimize the hidden constants, as the analysis is already
quite cumbersome.

It remains an interesting question whether all positive results presented here extend to
edge-weighted graphs, where each edge receives a positive integer weight and the number m
of edges in the Edwards-Erdős bound (1) is replaced by the total sum of the edge weights.
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Further, Mnich et al. [23] showed fixed-parameter tractability of Above Poljak-Turzík
Bound(Π) for all strongly λ-extendable properties Π. However, the polynomial kernelization
results by Crowston et al. [8] as well as in this paper do not seem to apply to the special
case of non-hereditary 1

2 -extendable properties. Such properties Π exist; e.g., Π = {G ∈
G | C 6∼= K3 for all 2-connected components C of G}. Also, for 1

2 -extendable properties on
labeled graphs we only showed a polynomial kernel for the special case of Signed Max-Cut.
It would be desirable to avoid these restrictions.
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Abstract
We provide a spectrum of results for the Universal Guard Problem, in which one is to obtain a
small set of points (“guards”) that are “universal” in their ability to guard any of a set of possible
polygonal domains in the plane. We give upper and lower bounds on the number of universal
guards that are always sufficient to guard all polygons having a given set of n vertices, or to
guard all polygons in a given set of k polygons on an n-point vertex set. Our upper bound proofs
include algorithms to construct universal guard sets of the respective cardinalities.
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1 Introduction

Problems of finding optimal covers are among the most fundamental algorithmic challenges
that play an important role in many contexts. One of the best-studied prototypes in a
geometric setting is the classic Art Gallery Problem (AGP), which asks for a small number
of points (“guards”) required for covering (“seeing”) all of the points within a geometric
domain. An enormous body of work on algorithmic aspects of visibility coverage and related
problems (see, e.g., O’Rourke [24], Keil [19], and [25]) was spawned by Klee’s question for
worst-case bounds more than 40 years ago: How many guards are always sufficient to guard
all of the points in a simple polygon having n vertices? The answer, as shown originally by
Chvátal [4], and with a very simple and elegant proof by Fisk [11], is that bn/3c guards are
always sufficient, and sometimes necessary, to guard a simple n-gon.

While Klee’s question was posed about guarding an n-vertex simple polygon, a related
question about point sets was posed at the 2014 NYU Goodman-Pollack Fest: Given a set S
of n points in the plane, how many universal guards are sometimes necessary and always
sufficient to guard any simple polygon with vertex set S? This problem, and several related
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questions, are studied in this paper. We give the first set of results on universal guarding,
including combinatorial bounds and efficient algorithms to compute universal guard sets that
achieve the upper bounds we prove. We focus on the case in which guards must be placed at
a subset of the input set S and thus will be vertex guards for any polygonalization of S.

A strong motivation for our study is the problem of computing guard sets in the face of
uncertainty. In our model, we require that the guards are robust with respect to different
possible polygonalizations consistent with a given set of points (e.g., obtained by scanning an
environment). Our Universal Guard Problem is, in a sense, an extreme version of the problem
of guarding a set of possible polygonalizations that are consistent with a given set of sample
points that are the polygon vertices: In the universal setting, we require that the guards are
a rich enough set to achieve visibility coverage for all possible polygonalizations. Another
variant studied here is the k-universal guarding problem in which the guards must perform
visibility coverage for a set of k different polygonalizations of the input points. Further, in
the full version of the paper [10], we study the case in which guards are required to be placed
at non-convex hull points of S, or at points of a regular rectangular grid.

Related Work

In addition to the worst-case results for the AGP, related work includes algorithmic results
for computing a minimum-cardinality guard set. The problem of computing an optimal
guard set is known to be NP-hard [24], even in very basic settings such as guarding a 1.5D
terrain [21]. Ghosh [13, 14] observed that greedy set cover yields an O(logn)-approximation
for guarding with the fewest vertices. Using techniques of Clarkson [5] and Brönnimann-
Goodrich [3], O(logOPT )-approximation algorithms were given, if guards are restricted to
vertices or points of a discrete grid [7, 8, 15]. For the special case of rectangle visibility in
rectilinear polygons, an exact optimization algorithm is known [27]. Recently, for vertex
guards (or discrete guards on the boundary) in a simple polygon P , King and Kirkpatrick [20]
obtained an O(log logOPT )-approximation, by building ε-nets of size O((1/ε)loglog(1/ε))
for the associated hitting set instances, and applying [3]. For the special case of guarding
1.5D terrains, local search yields a PTAS [22, 12]. Experiments based on heuristics for
computing upper and lower bounds on guard numbers have been shown to perform very
well in practice [1]. Methods of combinatorial optimization with insights and algorithms
from computational geometry have been successfully combined for the Art Gallery Problem,
leading to provably optimal guard sets for instances of significant size [2, 6, 23, 26, 9].

The notion of “universality” has been studied in other contexts in combinatorial optimiz-
ation [18, 16], including the traveling salesman problem (TSP), Steiner trees, and set cover.
For example, in the universal TSP, one desires a single “master” tour on all input points
so that, for any subset S of the input points, the tour obtained by visiting S in the order
specified by the master tour yields a tour that approximates an optimal tour on the subset.

Our Results

We introduce a family of universal coverage problems for the classic Art Gallery Problems.
We provide a spectrum of lower and upper bounds for the required numbers of guards. See
Table 2 and 3 for a detailed overview, and the following Section 2 for involved notation.

2 Preliminaries

For n ∈ N, let S (n) be the set of all discrete point sets in the plane that have cardinality n.
A single shell of a point set S is the subset of points of S on the boundary of the convex
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Table 1 The universal guard numbers considered in this paper.

universal guard numbers u (n) maxS∈S(n) w (P(S))
m-shelled universal guard numbers s (n, m) maxS∈S(n,m) w (P (S))
interior universal guard numbers i (n) maxS∈S(n) i (P (S))
k-universal guard numbers of simple polygons uk (n) maxS∈S(n) max A⊆P(S))

s.t. |A|=k

w (A)

k-universal guard numbers of polygons w. holes hk (n) maxS∈S(n) max A⊆H(S)
s.t. |A|=k

w (A)

grid universal guard numbers g (n) maxS∈Sg(n) w (P (S))

Table 2 Results for simple polygons. The approaches for the upper bounds for u (n) and s (n, m)
also apply to polygons with holes, yielding the same upper bounds.

m, n ∈ N u (n) s (n, m) g (n) i (n)
lower
bounds

(
1−Θ

(
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n

))
n
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n bn

2 c n−O(1)

upper
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Table 3 Overview of our results for k-universal guard numbers of simple polygons and of polygons
with holes. We give a new corresponding approach for the upper bounds of h1 (n) , h2 (n) , . . . . We
also consider the lower bounds for u1 (n) , u2 (n) , . . . as lower bounds for h1 (n) , h2 (n) , . . . .

n ∈ N u2 (n) u3 (n) u4 (n) u5 (n) uk (n)
for k ≥ 6

hk (n)
for k ∈ N

lower
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8 c
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9
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n) 5n
9

5n
9
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bounds
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9

19n
27

65n
81

211n
243 (1− ( 2

3 )k)n (1− ( 5
8 )k)n

hull of S. Recursively, for k ≥ 2, a point set lies on k shells, if removing the points on
its convex hull, leaves a set that lies on k − 1 shells. We denote by Sg (n) ⊂ S (n) and
S (n,m) ⊂ S (n) the set of all discrete point sets that form a rectangular a × b-grid of n
points for a, b, a · b = n ∈ N, and the set of all discrete point sets that lie on m shells for
m ∈ N, respectively.

For S ∈ S (n), let P (S) (resp., H (S)) be the set of all simple polygons (resp., polygons
with holes) whose vertex set equals S.

Let P be a polygon. We say a point p ∈ P sees (w.r.t. P ) another point q ∈ P

if pq ⊂ P ; we then write p ↔P q. The visible region (w.r.t. P ) of a point g ∈ P is
VP (g) = {a ∈ P : g ↔P a}. A point set G ⊆ S is a guard set for P if

⋃
g∈G VP (g) = P .

Furthermore, we say that G is an interior guard set for P if G is a guard set for P and no
g ∈ G is a vertex of the convex hull of P .

For a set A of polygons we say that G ⊆ S is a(n) (interior) guard set of A if G is a(n)
(interior) guard set for each P ∈ A. We denote by w (A) the minimum cardinality guard set
for A and by i (A) the minimum cardinality interior guard set for A. Furthermore, for any
given point set S we say that G ⊆ S is a guard set for S if G is a guard set for P (S). For
k,m, n ∈ N, the guard numbers are listed in Table 1.

ISAAC 2016



32:4 Universal Guard Problems

3 Bounds for Universal Guard Numbers

In the following, we provide different lower and upper bounds for the universal guard numbers.
In particular, the provided bounds can be classified by the number of shells on which the
points of the considered point set are located.

3.1 Lower Bounds for Universal Guard Numbers
In this section we give lower bounds for the universal guard numbers u (n) and s (n,m)
for n ∈ N and m ≥ 2. In particular, we provide lower bound constructions that can be
described by the following approach: For any given n ∈ N and m ≥ 2, we construct a point
set Sm ∈ S (n) as follows. Sm is partitioned into pairwise disjoint subsets B1, . . . , Bm, such
that

⋃m
i=1 Bi = S. For i ∈ {1, ...,m}, each Bi lies on a circle Ci such that Ci is enclosed by

Ci+1 for i ∈ {1, ...,m − 1}. Furthermore, C1, . . . , Cm are concentric and have “sufficiently
large” radii; see Sections 3.1.1, 3.1.2, and 3.1.3 for details. In particular, the radii depend on
the approaches that are applied for the different cases m = 2, m = 3, and m ≥ 4. We place
four equidistant points on Cm. The remaining points are placed on Cm−1, . . . , C1.

Note that s (n, 1) = 1 holds, because for every convex point set S ∈ S (n), P (S) consists
of only the boundary of the convex hull of S. Thus we start with the case of m = 2.

3.1.1 Lower Bounds for s (n, 2)
We give an approach that provides a lower bound for s (n, 2). In particular, for any n ∈ N,
we construct a point set S2 ∈ S (n) having n− 4 equally spaced points lie on circle C1 and
4 equally spaced points on a larger concentric circle C2, such that these 4 points form a
square containing C1; see Figure 5. In order to assure that the constructed subsets of S2
and S3, S4, . . . (which are described later) are nonempty, we require n ≥ 32 for the rest of
Section 3.1.

Let v be a point from the square and let p, q be two consecutive points from the circle C1,
such that the segments vp and vq do not intersect the interior of the circle C1; see Figure 1(a).
We choose the side lengths of the square such that the cone c that is induced by p and q
with apex at v contains at most n

8 points from C1 for all choices of v, p, and q.

I Lemma 1. Let G be a guard set of S2. Then we have |G| > n
2 − 4.

Proof. Suppose |G| ≤ bn−4
2 c − 1. This implies that there are two points p, q ∈ Sm \ G

such that p and q lie adjacent on C1; see Figure 1(b). Let w1, w2, w3, and w4 be the four
points from the square. At most two points v1, v2 ∈ {w1, w2, w3, w4} span a cone, such that
v1p, v1q, v2p, v2q do not intersect the interior of C1. W.l.o.g., we assume that these two
different cones c1 and c2 exist. c1 and c2 contain at most n

4 points from C. Thus, there is
another point w ∈ S2 \G such that v /∈ c1 ∪ c2. This implies that there is a polygon in which
w is not seen by a guard from G; see Figure 1(b). This is a contradiction to the assumption
that G is a guard set.

Thus we have |G| > bn−4
2 c − 1 ≥ n−4

2 − 2 = n
2 − 4. This concludes the proof. J

I Corollary 2. s (n, 2) ≥ bn
2 c − 4

3.1.2 A First Lower Bound for s (n, 3)
The high-level idea is to guarantee in the construction of S3 that at most two points on
C1 are unguarded; see Figure 2 for the idea of the proof of contradiction. By constructing
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Figure 1 Lower-bound construction for s (n, 2).
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(a) Lower-bound construction for s (n, 3). (b) An empty chamber 4 (w, p, q, v).

Figure 2 The lower-bound construction for s (n, 3).

S3 = B1∪B2∪B3 such that |B1| = bn−4
2 c, |B2| = dn−4

2 e, and |B3| = 4, we obtain |G| ≥ n
2 −5

for any guard set G of S3.
We consider the lower-bound construction Sm form−1 = 2 and n = (m−1)2l+4 = 3·2l+4

for any l ≥ 4, i.e., for all S3 ∈ S
(
2 · 2l + 4

)
for any l ≥ 2. The argument can easily be

extended to n ∈ N.
The points of B2 and B3 are placed on C2 and C3, such that they lie on 2l−1 lines; see

Figure 2(a). Let v ∈ B2 be chosen arbitrarily and p, q ∈ B1 such that p and q are the
neighbors of the point from B1 that corresponds to v ∈ B2. We choose the radius of C2 such
that the cone that is induced by p and q and with apex at v contains all points from B1; see
the gray cone in Figure 2(a). Furthermore, we choose the radius of C1 such that the square
that is induced by the four points from B1 contains all points from B1 ∪B2.

The key construction that we apply in the proofs of our lower bounds are chambers.

I Definition 3. Let S be an arbitrary discrete point set in the plane. Four points
p1, p2, p3, p4 ∈ S form a chamber, denoted 4 (p1, p2, p3, p4), if (1) p1 and p2 lie on dif-
ferent sides of the line p3p4 and (2) p3 and p4 lie on the same side of the line p1p2, and (3)
there is no point from S that lies inside the polygon that is bounded by the polygonal chain
〈p1, p2, p3, p4〉.

Let G ⊆ S. We say that 4 (p1, p2, p3, p4) is empty (w.r.t. G) if p2, p3, p4 /∈ G. Let
P ∈ P (S). We say that 4 (p1, p2, p3, p4) is part of P if p1p2, p2p3, p3p4 ⊂ ∂P .

Our proofs are based on the following simple observation.

I Observation 4. Let G be a guard set for a polygon P . There is no empty chamber that is
part of P .

Based on Observation 4 we prove the following lemma, which we then apply to the
construction above to obtain our lower bound for s (n,m).

I Lemma 5. Let G be a guard set for P (S3). Then we have |B1 \G| ≤ 2.

ISAAC 2016
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Proof. Suppose there are three points v, q, p ∈ B1 \G. W.l.o.g., we assume that q and p lie
on different sides w.r.t. the line ` that corresponds to the placement of v; see Figure 2(b).
Furthermore, we denote the point from B2 that lies above v by w. By construction it follows
that w, p, q, and v form an empty chamber 4 (w, p, q, v). Furthermore, we construct a
polygon P ∈ P (S3) such that 4 (w, p, q, v) is part of P ; see Figure 2(b). By Observation 4
it follows that G is not a guard set for P , a contradiction. This concludes the proof. J

There is a corresponding construction for all other values n ∈ N. In particular, we place
four points equidistant on C3, dn−4

2 e equidistant points on C2, and bn−4
2 c points on C1, such

that each point from C1 lies below a point from C2. The same argument as above applies to
the resulting construction of a point set. The constructions of Sm can be modified so that
no three points lie on the same line, by a slight perturbation. Thus, S3 can be assumed to
be in general position. We obtain the following corollary.

I Corollary 6. s (n, 3) ≥ n
2 − 5.

Proof. Lemma 5 implies that in the construction S3 at least bn−4
2 c − 2 points from B1

are guarded. Let G be an arbitrarily chosen guard set for P (S3). Thus we obtain |G| ≥
bn−4

2 c − 2 ≥ n−4
2 − 3 = n

2 − 5. J

In the following section we generalize the above approach from the case of three shells to
the case of m shells and combine that argument with the approach that we applied for the
case of m = 2. This also leads to the improved lower bound u3 (n) ≥ ( 3

4 −O( 1
n ))n.

3.1.3 (Improved) Lower Bounds for u (n) and s (n, m) for m ≥ 3
In this section we give general constructions S3, S4, . . . of the point sets that yield our lower
bounds for s (n,m) for m ≥ 3. The main difference in the construction of Sm for m ≥ 3,
compared to the previous section, is the choice of the radii of C1, ..., Cm. Similar as in
the previous section, we guarantee that on each circle C3, C4, . . . at most constant many
points are unguarded. Roughly speaking, the general idea is to choose five arbitrary points
q1, q2, q3, q4, q5 on Ci for i ∈ {3, 4, . . . }. There are three points u1, u2, u3 ∈ {q1, q2, q3, q4, q5},
such that the triangle induced by u1, u2, u3 does not contain the common mid point of
C1, C2, . . . . By choosing the radius of Ci+1 sufficiently large, we obtain that there is a
chamber 4 (u1, u2, u3, p), where p is a point on Ci+1. This implies that 4 (u1, u2, u3, p) is
empty if q1, q2, q3, q4, q5 are unguarded. Thus, at most four points on Ci are allowed to be
unguarded; see Corollary 9.

Finally, we show how the arguments for Sm yield lower bounds for s (n,m) and u (n).
Similar to the approach of the previous section, the constructed point sets S3, S4, . . . can

be modified to be in general position.

The Construction of Sm for m ≥ 3: We construct Sm such that |B1| = · · · = |Bm−1| = 2l,
|Bm| = 4, and hence n = (m−1)2l + 4 for l ≥ 4. In particular, similar as for the construction
of S3 from the previous section, we place the points of B1, . . . , Bm−1 equidistant on the
circles C1, . . . , Cm−1, such that the points lie on 2l−1 lines `1, . . . , `2l−1 ; see Figure 3(a).

In order to apply an argument that makes use of chambers, we need the following notation
of points on a circle Ci. Let n′ := 2l. Let v1, ..., v1+n′/2 be the points on Ci to one side or
on ` ∈ {`1, ..., `n′/2}. Let w1, ..., w1+n′/2 be their reflection across `; see Figure 3(b)+(c).
Let v1, ..., v1+n′/2 and w1, ..., w1+n′/2 be the points that lie not below and not above `; see
Figure 3(b)+(c). Let v, w ∈ Ci+1 be the points that correspond to v1+n′/4 and w1+n′/4.
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C1C2C3C4

`1 `2
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`4

`5

`6
`7`8

w1 w2

w3w4

`

v

v5

w5

w

p

w4

v4

Ci

Ci−1
v1

= w1

v9
= w9 `

v

v5

w5

w

p

w4

v4

Ci

Ci−1
v1

= w1

v9
= w9

(a) Construction of the (b) Segments between v (c) Segments between v

circles C1, ..., Cm. and vertices from and vertices from
the opposite side of Ci. the opposite side of Ci.

Figure 3 Construction of Sm for n = 68. For a simplified illustration we changed the ratios of
the circles’ radii and we shortened the lines adjacent to v.

For i ∈ {1, . . . ,m − 1}, we choose the radius of Ci+1 compared to the radius of Ci

sufficiently large, such that the following conditions are fulfilled; see Figure 3(b)+(c):
vwj intersects vjvj+1 in its interior for all j ∈ {1, ..., n/4 + 1},
vwj intersects vj−1vj in its interior for all j ∈ {n/4 + 2, ..., n/2 + 1},
wvj intersects the segment wjwj+1 in its interior for all j ∈ {1, ..., n/4 + 1}, and
wvj intersects the segment wj−1wj in its interior for all j ∈ {n/4 + 2, ..., n/2 + 1}.

Finally, we place the four points w1, w2, w3, w4 ∈ Bm such that all circles lie in the convex
hull of w1, w2, w3, and w4; see Figure 3(a).

The Analysis of Sm for m ≥ 3: First we show that we can choose three points u1, u2, u3
from five arbitrarily chosen points from Ci, such that there is another point u ∈ Ci+1 with
4 (u, u1, u2, u3) being a chamber; see Lemma 7. Next, we construct a polygon P ∈ P (Sm),
such that 4 (u, u1, u2, u3) is a part of P ; see Lemma 8. Finally, by combining Lemma 7 and
Lemma 8 we establish that on each Ci, at most four points are allowed to be unguarded; see
Corollary 9. This leads to several lower bounds for s (n,m) and u (n) .

I Lemma 7. Let q1, q2, q3, q4, q5 ∈ Ai be chosen arbitrarily. There are three points u1, u2, u3 ∈
{q1, q2, q3, q4, q5} and a point u ∈ Ai+1, such that 4 (u, u1, u2, u3) is a chamber.

Proof. We choose u1, u2, u3 from {q1, q2, q3, q4, q5}, such that u1, u2, u3 lie in the same half
of Ci, i.e., such that the midpoint of Ci does not lie inside the triangle t that is induced by
u1, u2, u3; see Figure 4. W.l.o.g., we assume that u2 lies between u1 and u3. Otherwise, we
rename the points appropriately.

We distinguish two cases. (C1) The number of points between u1 and u3 is odd and
(C2) the number of points between u1 and u3 is even. For (C1) and (C2) we use different
chambers for achieving the required contradiction; see Figure 4. A detailed analysis can be
found in the full paper [10]. J

I Lemma 8. There is a polygon P ∈ P (Sm) such that 4 (u, u1, u2, u3) is part of P .
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`
v1 = w1
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w
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w
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(a) Chambers for (C1). (b) Chambers for (C2).
of points between u1 and u2 is odd. of points between u1 and u2 is even.

Figure 4 Configuration of Lemma 7: three points from Ci in the same half of Ci imply a chamber.

w1 w2

w3w4

u1

u2
u3

w1 w2

w3w4

u1

u2

u3

(a) The case in which the number (b) The case in which the number
of points between u1 and u2 is odd. of points between u1 and u2 is even.

Figure 5 Construction of P for k = 6 and n = 16. For a simplified illustration we changed the
ratios of the circles’ radii (otherwise the figure would become too large).

Proof. We construct P for the cases (C1) and (C2) separately; see Figure 5. In both cases
we walk upwards on the line ` ∈ {`1, . . . , `n′/2} until we reach C1. Next we orbit Ci in a
zig-zag approach and finally connect all points from Ci−1, . . . , C1 in a similar manner; see
Figure 5. J

The combination of Lemma 7 and Lemma 8 implies the following corollary.

I Corollary 9. Let G ⊂ Sm be a guard set of P (Sm). Then |Bi\G| ≤ 4, for i ∈ {1, . . . ,m−2}.

Lower bounds for s (n, m) and u (n) which are implied by Corollary 9: We combine the
approach for s (n, 2) with Corollary 9, which yields the following lower bound for s (n,m)
for m ≥ 3.

I Corollary 10. Let m ≥ 3 and n′ = 2l with l ≥ 4. Furthermore, let G ⊂ Sm be a guard set
of Sm. Then we have |G| ≥

(
1− 1

2(m−1) + 8m
n(m−1)

)
|Sm|.

Proof. By Corollary 9 it follows that (m−2)(n′−4) points from B1∪· · ·∪Bm−2 are guarded.
Furthermore, by applying the approach of Lemma 1 to Bm−1 and Bm yields that at least
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n′

2 − 4 points from Bm−1 ∪Bm are guarded. Thus we obtain |G| ≥ (m− 2)(n′ − 4) + n′

2 − 4
which is upper-bounded by |Sm|

(
1− 1

2(m−1) −
8m

|Sm|(m−1)

)
because n′ = |Sm|−4

m−1 . J

I Theorem 11. s (n,m) ≥ n
(

1− 1
2(m−1) + 8m

n(m−1)

)
for m ≥ 3.

By choosing m appropriately, we obtain the following lower bound:

I Lemma 12. For any c < 1 and any guard set G for Sm there is an m ∈ N with |G| > c|Sm|.

Proof. The approach is to choose m := d 2n′

n′−4−cn′ e, which will imply |G| > c|Sm|.
Suppose |G| ≤ c|Sm|. Corollary 9 implies that at most four points on each circle

Ci ∈ {C1, ..., Ck} are unguarded. This leads to a contradiction as follows. We have |Sm| =
4+(m−1)n′. On C1, ..., Cm−2 there are at most four vertices that are unguarded. W.l.o.g., we
assume that w1, w2, w3, w4, and all points on Cm are unguarded. Thus, |G| ≥ (m−2)(n′−4).
By assumption we know |G| ≤ c(4 + (m − 1)n′). By applying m = d 2n′

n′−4−cn′ e, we obtain
a contradiction as follows: (m − 2)(n′ − 4) ≤ c(4 + (m − 1)n′) implies that 8 ≤ 4, since
m = d 2n′

n′−4−cn′ e. J

By choosing c appropriately, Lemma 12 leads to our general upper bound for u (n).

I Theorem 13. There is an m ∈ N such that |G| > (1 − 10√
|Sm|

)|Sm| holds for any guard
set G for P (Sm).

Proof. Choose c := (1 − 5
n′ ) in the approach of Lemma 12. This implies that at least

(1 − 5
n′ )|Sm| points have to be guarded. Furthermore, we have |Sm| = 4 + (m − 1)n′

and m = d 2n′

n′−4−cn′ e. This implies m ≤ 2n′

n′−4−(1− 5
n′ )n′

+ 1 = 2n′ + 1. Furthermore,

|Sm| ≤ 4 + 2(n′)2 implies
√
|Sm|/2/ − 1 ≤ n. Finally, applying Lemma 12 yields |G| >(

1− 5
√

2√
|Sm|−1

)
|Sm| >

(
1− 10√

|Sm|

)
|Sm|. J

I Theorem 14. u (n) ≥
(

1− 10√
n

)
n.

3.2 Upper Bounds for Universal Guard Numbers
In the following we give an approach to computing a non-trivial guard set of a given point set.
The number of the computed guards depends on the number m of shells of the considered
point set S. This approach yields upper bounds for s (n,m) for m ≥ 2.

For the case of m = 1, a naïve approach is simply to select one arbitrarily chosen guard
from S. In that case, P (S) just consists of the polygon that corresponds to the boundary of
the convex hull of S and an arbitrarily chosen point from S sees all points from all polygons
of P (S).

In the following, we first give an approach for the case of m = 2. Then, we generalize
that approach to the case of m ≥ 3.

3.2.1 Upper Bounds for s (n, 2)
First we describe the approach, followed by showing that the computed point set G is a
guard set for the considered point set. This leads to upper bounds for |G| which imply the
required upper bounds for s (n,m).

The high-level idea is to avoid areas that are unguarded by structures similar to chambers.
In particular, in the case of m = 2, a chamber cannot be part of a simple polygon; otherwise,
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p1
p2

p3
p4

p5

p6
vvl

vr

B1

B2

(a) chambers (b) For m = 2 a similar (c) Avoiding chambers
are not part of a structure may be part of a and similar structures by

simple polygon if m = 2. simple polygon. tangent points.

Figure 6 Possible chambers in case of two shells and how we avoid them.

the boundary of P meets points at least twice (Figure 6(a)). However, there is another
structure that has an effect similar to that of chambers and that also may cause unguarded
areas; see Figure 6(b). In the example of Figure 6(b), our approach guarantees that p2 or p6,
p2 or p4, and p4 or p6 is guarded. More generally, for p1, p3, and p5 we guarantee that the
unguarded points lie on one side w.r.t. the tangent points; see Figure 6(c).

In particular, let B1 be the points on the inner shell and B2 be the points on the outer
shell of the input point set S. If |B2| ≥

√
|B1|/2 we set G = B1. Otherwise, we choose all

points from B2 and every second point from B1. Furthermore, we compute for each v ∈ B2
the two tangent points vl and vr to B1 (see Figure 6(c)) and insert vl and vr into G. Let
〈v1, . . . , vk〉 ⊂ B1 be a sequence of maximal length that does not contain any tangent point
as previously computed. We insert all remaining points from B1 \ {v1, . . . , vk} that were not
already inserted in G.

I Theorem 15. For each point set S that lies on two convex hulls, we can compute in
O(|S| log |S|) time a guard set G with |G| ≤ (1− 1√

8|S|
)|S|.

I Corollary 16. s (n, 2) ≤ (1− 1√
8n

)n

3.2.2 Upper Bounds for s (n, m) for m ≥ 3
In this section we generalize the above approach to the case of m ≥ 3.

Let B1, . . . , Bm be the pairwise disjoint subsets of S that lie on the m shells of S. The
high-level idea of the approach is the following. If Bm is “large enough” (larger than a value
λ), we set G =

⋃m−1
`=1 B`. Otherwise, we carefully choose one subset Bj for j ∈ {1, . . . ,m}

and select partially its points as unguarded. All the remaining points are selected for G. In
particular, we set

⋃
`∈{1,...,m}\{j}B` ⊂ G. Then, we compute the tangent points on Bj for

all points from
⋃m

`=j+1 B`. Finally, we apply the same subroutine as in the case m = 2.

We choose j := arg max`∈{1,...,m−1}

(
n`

2
∑m

i=`+1
ni
− 1
)

and λ := nj

2
∑m

i=j+1
ni
−1. We refer

to the full paper for the detailed steps of the approach.
By applying a similar argument as for the case of m = 2, we can show that the computed

point set G ⊆ S is a guard set for P (S). For details, see the full paper.

I Theorem 17. For any point set S that lies on m convex hulls we can compute in O(n logn)

time a guard set G with |G| ≤
(

1− 1

16|S|(1− 1
2m )

)
|S|

This leads to our generalized upper bound for s (n,m) for m ≥ 3.

I Corollary 18. s (n,m) ≤
(

1− 1

16n(1− 1
2m )

)
n.
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4 Bounds for the k-Universal Guard Numbers

In the following we state several lower and upper bounds for various k-universal guard
numbers; proof details are in the full paper.

4.1 Lower bounds for uk (n)

I Theorem 19. u2 (n) ≥ b 3n
8 c

I Theorem 20. u3 (n) ≥ b 4n
9 c.

I Theorem 21. u5 (n) ≥ u4 (n) ≥ n
2 − 8

√
n− 23.

I Theorem 22. uk (n) ≥ b 5n
9 c for k ≥ 6.

4.2 Upper Bounds for k-Universal Guard Numbers

We give non-trivial upper bounds for uk (n) and hk (n), for all values n, k ∈ N. In particular,
we provide algorithms that efficiently compute guard sets for P (S) and H (S) for any given
S ∈ S (n) and analyze the computed guard sets.

I Theorem 23. uk (n) ≤
(

1−
( 2

3
)k
)

.

Hoffmann et al. [17] showed h1 (n) ≤ b 3n
8 c. Our approach implies for the traditional

guard number h1 (n) ≤ bn
2 c.

The following theorem shows that we can combine our approach with the method from [17].

I Theorem 24. hk (n) ≤
(

1−
( 5

8
)k
)
n.

5 Other Variants

Due to limited space, we state two variants of the Universal Art Gallery Problem but defer
the technical details to the full paper.

5.1 Interior Guards

In the Interior Universal Guards Problem (UGPI) we allow guards to be placed only at
points of S that are not convex hull vertices of S. For this case, we obtain an asymptotically
tight bound on the number of universal guards:

I Theorem 25. i (n) = n−Θ(1)

5.2 Full Grid Sets

A natural special case arises when considering universal guards for a full set of n = a× b grid
points on an integer lattice. We are also able in this case to achieve a tight worst-case bound:

I Theorem 26. g (n) = bn
2 c.
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6 Conclusion

There are many open problems that are interesting challenges for future work. In particular,
can the upper bound approaches for uk (n) and hk (n) be improved by making use of the
number of shells? Can the general approach of Theorem 23 be improved? What about lower
bounds for k-UGP for k ≥ 7?

The quest for better bounds is also closely related to other combinatorial challenges. Is
an instance of the 2-UGP 5-colorable? If so, our results give a first trivial upper bound
of 3

5n for the 2-UGP, which would be of independent interest. Is the bound of 1
2n for the

intersection-free k-UGP tight? Further questions consider the setting in which each vertex v
has a bounded candidate set of vertices that may be adjacent to v. Other variants arise when
the ratio of the lengths of the edges of the considered polygons is upper- and lower-bounded
by given constants. It may also be interesting to explore possible relations between universal
guard problems and universal graphs.
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Abstract
In a standard f -connectivity network design problem, we are given an undirected graph G =
(V,E), a cut-requirement function f : 2V → N, and non-negative costs c(e) for all e ∈ E. We are
then asked to find a minimum-cost vector x ∈ NE such that x(δ(S)) ≥ f(S) for all S ⊆ V . We
focus on the class of such problems where f is a proper function. This encodes many well-studied
NP-hard problems such as the generalized survivable network design problem.

In this paper we present the first strongly polynomial time FPTAS for solving the LP relaxa-
tion of the standard IP formulation of the f -connectivity problem with general proper functions f .
Implementing Jain’s algorithm, this yields a strongly polynomial time (2 + ε)-approximation for
the generalized survivable network design problem (where we consider rounding up of rationals
an arithmetic operation).
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1 Introduction

The input to a typical network design problem consists of a directed or undirected graph
G = (V,E), non-negative unit-capacity installation costs c(e) for all e ∈ E, and a collection of
connectivity requirements among the vertices in V . The goal is then to find a minimum-cost
capacity installation in G that satisfies the connectivity requirements. The above abstract
problem class captures many practically relevant optimization problems, many of which
are NP-hard. Therefore, maybe not surprisingly, there has been a tremendous amount of
research in the area of approximation algorithms for network design problems throughout
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the last four decades (e.g., see [17, 18]).

min
∑
e∈E

c(e)x(e) (IP)

s.t. x(δ(S)) ≥ f(S) ∀S ⊂ V
x ≥ 0, x integer.

Connectivity requirements can be modelled in many ways, but we will adopt the f -connectivity
viewpoint in this paper. Here, one is given a cut-requirement function f : 2V → N, and one
wants to find a minimum-cost non-negative integer vector x such that for each S ⊆ V , the
sum of variables x(e) for edges e crossing the cut S is at least f(S). In other words, we are
interested in problems that can be encoded by integer program (IP); here δ(S) denotes the
set of edges incident to a vertex in S and a vertex outside S, and x(δ(S)) :=

∑
e∈δ(S) x(e).

Restricting even further, we will henceforth only be concerned with instances of (IP)
where f is proper, that is, f satisfies the three properties of maximality (i.e., f(A ∪ B) ≤
max{f(A), f(B)} for all disjoint sets A,B ⊆ V ), symmetry (i.e., f(S) = f(V \ S) for all
S ⊆ V ), and f(V ) = 0. Program (IP) with proper cut-requirement function f captures
(among others) the special case where the goal is to find a minimum-cost network that
has r(u, v) edge-disjoint paths connecting any pair u, v of vertices (for given non-negative
integer parameters r). The implicit cut-requirement function in this case is then given by
f(S) := maxu∈S,v∈V \S r(u, v) for all S ⊆ V .

Based on the primal-dual method, Goemans and Williamson [12] first gave a 2H(fmax)-
approximation algorithm for (IP) with proper cut-requirement functions where one is allowed
to pick edges multiple times in the solution. Goemans et al. [11] later obtained the same
performance ratio for the setting where multiple copies of edges are not allowed. More
recently, in a breakthrough result, Jain [19] obtained a 2-approximation for the more general
class of skew-supermodular cut-requirement functions based on iterative rounding.

min
∑
e∈E

c(e)x(e) (LP1)

s.t. x(δ(S)) ≥ f(S)− z(δ(S)) ∀S ⊆ V
x(e) = 0 ∀e ∈ I
x ≥ 0

Jain’s algorithm iteratively fixes the value of a subset of variables in (IP). To aid this, he
first defines a slightly more general version of the IP, where the value of certain variables is
fixed. Specifically, for a set I ⊆ E of edges, assume that the value of variable x(e) is fixed
to z(e) ∈ N. The LP relaxation of the IP for the corresponding residual problem is given
in (LP1). Jain’s key observation was that the extreme points of the feasible region of (LP1)
are sparse, and have at least one variable with value at least 1/2.

Capitalizing on this insight, his algorithm then iteratively solves O(|V |) instantiations
of (LP1) while intermittently rounding up the values of large variables in the computed
solutions. In order to solve (LP1) one needs to employ the Ellipsoid method [16] together
with a polynomial-time seperation oracle for the LP’s constraints (see [7]).

Our work is motivated by Open Problem 4 in Williamson and Shmoys’ recent book [23]
where the authors point out that solving (LP1) for general (proper) functions f may be
computationally quite demanding despite the fact that it can be done efficiently in a theoretical
sense. The authors leave as an open problem the design of a primal-dual 2-approximation
for the survivable network design problem. Our main result is a replacement of the Ellipsoid-
based exact LP-solver calls in Jain’s algorithm by approximate ones that are based on the
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(in a sense) primal-dual multiplicative-weights method of [10]. We realize that the likely
intended meaning of primal-dual in Williamson and Shmoys’ open problem statement is the
primal-dual method for approximation algorithms (as in [12]). However we believe that the
contribution made in this paper is in line with the motivation given for Open Problem 4
in [23]: we substantially speed up LP computations in Jain’s algorithm at the expense of an
inconsequential loss in performance guarantee of the algorithm.

I Theorem 1. For any ε > 0, there is a (1 + ε)-approximation algorithm for (LP1) that
runs in strongly polynomial time1 independently of the values of c and f .

In contrast to our result, Jain [19] observes that the relaxations of (IP) and (LP1) are
of a combinatorial nature, and hence can be solved in strongly polynomial-time via Tardos’
algorithm [22] whenever their number of variables and constraints are polynomially bounded
(in the problem dimension). For example, (IP) and (LP1) have an equivalent compact
representation when f(S) = maxu∈S,v 6∈S r(u, v) for all S ⊆ V . We also note that one can
argue that the Ellipsoid method applied to (LP1) and the linear relaxation of (IP) terminates
in a strongly polynomial number of steps whenever function f(S) is polynomially bounded
(in the problem dimension), for all S ⊆ V as this implies small encoding-length of vertices of
the feasible region of (IP) and (LP1).

To achieve the result in Theorem 1, we rely on the multiplicative weights method of Garg
and Könemann [10] (henceforth referred to as GK). This is a natural idea as (LP1) belongs
to the class of positive covering LPs. As such, [10] applies to the LP dual of (LP1). The
algorithm can therefore be used to compute an approximate pair of primal and dual solutions
in strongly-polynomial time as long as we are able to provide it with a strongly-polynomial
time (approximation) algorithm for the so called shortest row problem. For (LP1) this boils
down to computing

min
f(S)−z(δ(S))≥1

S⊆V

x(δ(S))
f(S)− z(δ(S)) ,

for given x ∈ RE+ and z ∈ ZE+, i.e., finding a corresponding set S. The above shortest row
problem is solved directly by Gabow et al.’s strongly-polynomial time separation oracle
for the constraints of (LP1) (see [7]) in the case where I = ∅, and hence z = 0. Once
I 6= ∅, Gabow et al.’s algorithm can not be used directly to give a strongly polynomial-time
algorithm, and a more subtle approach is needed. In fact, in this case, we provide only a
(1 + ζ)-approximate solution to the shortest row problem (for appropriate ζ > 0). As is
well-known (e.g., see [6, 10]), the exact shortest-row subroutine used in GK may be replaced
by an α-approximate one, sacrificing a factor of α in the overall performance ratio of the
algorithm in [10]. We obtain the following direct corollary of Theorem 1.

I Corollary 2. Combining Theorem 1 with Jain’s algorithm, we obtain a strongly polynomial-
time2 (2 + ε)-approximation algorithm for (IP), that does not use linear programming solvers.

We once again stress that the above results hold for any not necessarily bounded proper
cut-requirement function f .

1 An algorithm is strongly polynomial if its number of arithmetic operations, i.e. the number of additions,
subtractions, multiplications, divisions and comparisons, is bounded by a polynomial in the dimension
of the problem (i.e., the number of data items in the input), and the length of the numbers occurring
during the algorithm is bounded by a polynomial in the length of the input.

2 If rounding up numbers is considered an arithmetic operation.
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Further related work

The past 30 years have seen significant research on solving linear programs efficiently; e.g., see
the work by Shahrokhi & Matula [21], Luby & Nisan [20], Grigoriadis & Khachian [14, 15],
Young [24, 25], Garg & Könemann [10], Fleischer [6], and Iyengar & Bienstock [3]. We refer
the reader to two recent surveys by Bienstock [2] and Arora, Hazan & Kale [1].

Particularly relevant to this paper is the work by Fleischer [5] who previously proposed
a Lagrangian-based approximation scheme for positive covering LPs with added variable
upper bounds. Their algorithm builds on [10] and [6], and achieves a performance ratio
of (1 + ε) for any positive ε using O(ε−2m log(Cm)) calls to a separation oracle for the
given covering problem; here m denotes the number of variables, and C is bounded by the
maximum objective function coefficient. Garg and Khandekar [9] later addressed the same
problem, and presented an improved algorithm with O(mε−2 logm+ min{n, log logC}) calls
to an oracle for the most violated constraint.

The algorithms in [5, 9] naturally apply to solving LP relaxations of various network
design IPs where the multiplicity x(e) of each edge e is limited to some given upper bound. As
the approaches in [5, 9] need to approximate the same type of the shortest row problem, as an
immediate corollary of our result, we obtain a strongly polynomial-time (2 + ε)-approximation
algorithm for (IP) with constant upper bounds on the variables. This captures in particular
the interesting case in which we have binary constraints for x.

Finally, we also mention the work of Garg & Khandekar [8] who present a fully polyonimal-
time approximation algorithm for the fractional Steiner forest problem. The algorithm also
applies to the more general problem of finding a minimum-cost fractional hitting set of a
given collection of clutters.

Organization

We first provide some more details on how to implement the iterative rounding algorithm
of Jain. We continue and provide a detailed description of GK with approximate oracles in
Section 3 for completeness, and describe the shortest-row oracles in Section 4. Finally, in
Section 5 we put together all ingredients to prove our main result.

2 Iterative rounding

Recall that Jain’s key structural insight was to observe that extreme points x ∈ RE+ of (LP1)
have x(e) ≥ 1/2 for at least one e ∈ E. Jain also noted that, in an implementation of his
algorithm, the computation of extreme points may be circumvented. In fact, he suggests
obtaining LP (LPg) from (LP1) by adding the constraint x(g) ≥ 1/2 for some edge g ∈ E.
Let optg be the objective function value of an optimum solution to (LPg). Jain’s structural
lemma now implies that ming∈E optg is at most the optimum value of (LP1). Jain’s algorithm
can now be implemented by replacing the computation of an optimum basic solution to the
residual problem in each iteration, by computing optimal solutions to linear programs of
type (LPg) for all edges g ∈ E.

Of course, we can also replace computing an optimal solution to (LPg) with computing
an approximate one, at the expense of a slight increase of the final approximation factor.
Jain’s method in this case is summarized for completeness in Algorithm 1.

I Claim 3. Given ζ > 0, Algorithm 1 is a 2(1 + ζ)|E|-approximation algorithm for (IP).
Moreover, Algorithm 1 terminates after at most |E| iterations of step 2.
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Algorithm 1 A 2(1 + ζ)|E|- approximation algorithm for (IP).
1: I0 ← ∅, z0(e)← 0 for all e ∈ E, k ← 0
2: while f(S)− zk(δ(S)) > 0 for some S ⊆ V do
3: k ← k + 1
4: for all g ∈ E \ Ik−1 do
5: find a (1 + ζ)-approximation xk,g for (LPg) with z := zk−1 and I := Ik−1
6: end for
7: let xk be a vector xk,g corresponding to ming∈E\Ik−1

∑
e∈E c(e)xk,g(e)

8: Ik ← Ik−1 ∪ {e ∈ E \ Ik−1 |xk(e) = 0 or xk(e) ≥ 1/2}
9: for all e ∈ E, let zk(e)← dxk(E)e if xk(e) ≥ 1/2, and zk(e)← zk−1(e) otherwise

10: end while
11: return zk

Proof. Jain’s structural lemma immediately implies that Ik−1 ( Ik ⊆ E for every k. Hence
the total number of iterations is at most |E|. In iteration k we fix the values of variable x(e),
e ∈ Ik \ Ik−1, and due to the definition of Ik \ Ik−1 we have zk(e) ≤ 2xk(e), e ∈ Ik \ Ik−1.
The remaining values xk(e), e ∈ E \ Ik form a valid solution for (LP1) with z(e) := zk(e),
e ∈ E, which is solved with approximation guarantee (1 + ζ) in the (k+ 1)-st iteration. Since
there are at most |E| iterations and in step 5 the found solution is a (1 + ζ)-approximation
of (LPg), we know that the objective value of the output is at most 2(1 + ζ)|E| times the
objective value of the linear relaxation of (IP), finishing the proof. J

Note that by Claim 3, if ζ ≤ ln(1 + ε)/|E| then Algorithm 1 gives a 2(1 + ε)-approximation
for (IP).

3 Multiplicative weights method

In this section, we briefly review the multiplicative weights method [10] of GK, when applied
to a positive covering LP of the form

min
∑
j∈[n]

c(j)x(j) (LP2)

s.t.
∑
j∈[n]

A(i, j)x(j) ≥ b(i) ∀i ∈ [m],

x ≥ 0 ,

where A(i, j) ≥ 0 for all i ∈ [m], j ∈ [n], b(i) > 0 for all i ∈ [m] and c(j) > 0 for all
j ∈ [n]. Note, that the linear program (LPg) is a positive LP of the above form when
simply eliminating variables x(e) for e ∈ I. In the same way, we can exclude the inequalities
corresponding to S ⊆ V with f(S)− z(δ(S)) ≤ 0.

Given i ∈ [m] and a vector x ∈ Rn+ we define the length len(i, x) of row i with respect
to x as

len(i, x) :=
∑
j∈[n]

A(i, j)x(j)/b(i) , (1)

and we denote by len(x) the shortest length of a row in A with respect to x, i.e. len(x) :=
mini∈[m] len(i, x). Now it is straightforward to reformulate (LP2) as

min
x≥0,x 6=0

∑
j∈[n]

c(j)x(j)/ len(x) . (2)
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Algorithm 2 The multiplicative weights algorithm to solve (LP2).

1: δ ← (1 + ζ)
(
(1 + ζ)n

)− 1
ζ , x0(j)← δ/c(j) for all j ∈ [n], y0(i)← 0 for all i ∈ [m], k ← 0

2: while
∑
j∈[n] c(j)xk(j) < 1 do

3: k ← k + 1
4: determine a (1 + ζ)-approximation for the shortest row with respect to xk−1, let it

be row qk
5: determine j ∈ [n] with the minimum value c(j)/A(qk, j), let it be column pk
6: for all i ∈ [m] do

yk(i)←
{
yk−1(i) + c(pk)/A(qk, pk) if i = qk

yk−1(i) otherwise .

7: end for
8: xk(j)←

(
1 + ζ c(pk)A(qk,j)

c(j)A(qk,pk)
)
xk−1(j) for all j ∈ [n]

9: end while
10: return xk/ len(xk) corresponding to mink

∑
j∈[n] c(j)xk(j)/ len(xk)

The multiplicative weights method of GK applied to the dual of (LP2) computes an
approximate pair of primal and dual solutions in strongly-polynomial time, as long as it is
provided with a strongly-polynomial time oracle for determining the row q of shortest length
(the shortest row) with respect to given lengths x ∈ Rn+ as in (1).

It is implicit in the work of [10, 6] that exact oracles can be replaced by approximate ones
(incurring a corresponding degradation in performance ratio, of course). Such a modification
is described from a packing point of view in [4], for example. Algorithm 2 shows the pseudo
code of the algorithm for completeness. In step 4 of the algorithm a (1 + ζ)-approximation
q of the shortest row with respect to some vector x ∈ Rn+ is computed. That is, q is a row
for which len(q, x) ≤ (1 + ζ) len(x). Section 4 describes how to obtain this approximation in
strongly-polynomial time.

We give a proof of the next lemma for completeness.

I Lemma 4 (implicit in [10, 6]). Algorithm 2 is a (1+4ζ)-approximation for (LP2). Moreover,
Algorithm 2 terminates after at most 1

ζ log1+ζ(1 + ζ)n iterations.

Proof. Let us define β := mink
∑

j∈[n]
c(j)xk(j)

len(xk) , below we show that β provides a good
approximation for the problem given by (2).

For every k ≥ 1 we have

∑
j∈[n]

c(j)xk(j)−
∑
j∈[n]

c(j)xk−1(j) =

ζ len(qk, xk−1)c(pk)b(qk)/A(qk, pk) ≤ ζ(1 + ζ) len(xk−1)×
∑
i∈[m]

b(i)(yk(i)− yk−1(i)) .

Hence,∑
j∈[n]

c(j)xk(j) ≤
∑
j∈[n]

c(j)x0(j) + ζ(1 + ζ)×
∑
h∈[k]

∑
i∈[m]

b(i)(yh(i)− yh−1(i)) len(xh−1) .
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Due to the definition of β we have len(xh−1) ≤
∑
j∈[n] c(j)xh−1(j)/β and thus

∑
j∈[n]

c(j)xk(j) ≤

∑
j∈[n]

c(j)x0(j) + ζ(1 + ζ)
β

×
∑
h∈[k]

∑
i∈[m]

b(i)(yh(i)− yh−1(i))
∑
j∈[n]

c(j)xh−1(j) . (3)

To show that the right-hand side of (3) is at most nδ eζ(1+ζ)
∑

i∈[m]
b(i)yk(i)/β , we use

induction. Indeed, the case k = 0 is clear, and to show the statement consider

∑
j∈[n]

c(j)x0(j) + ζ(1 + ζ)
β

×
∑
h∈[k]

∑
i∈[m]

b(i)(yh(i)− yh−1(i))
∑
j∈[n]

c(j)xh−1(j) ,

which equals

∑
j∈[n]

c(j)x0(j) + ζ(1 + ζ)
β

×
( ∑
h∈[k−1]

∑
i∈[m]

b(i)(yh(i)− yh−1(i))
∑
j∈[n]

c(j)xh−1(j)+

∑
i∈[m]

b(i)
(
yk(i) − yk−1(i)

) ∑
j∈[n]

c(j)xk−1(j)
)

Due to (3) we conclude that the last expression is at most

(
1 + ζ(1 + ζ)

β

∑
i∈[m]

b(i)
(
yk(i)− yk−1(i)

))
×
( ∑
j∈[n]

c(j)x0(j) + ζ(1 + ζ)
β

×

∑
h∈[k−1]

∑
i∈[m]

b(i)
(
yh(i) − yh−1(i)

) ∑
j∈[n]

c(j)xh−1(j)
)
.

Using the inequality (1 + α) ≤ eα, α ∈ R and the induction hypothesis we upper-bound the
expression above by

eζ(1+ζ)
∑

i∈[m]
b(i)
(
yk(i)−yk−1(i)

)
/β ×nδ eζ(1+ζ)

∑
i∈[m]

b(i)yk−1(i)/β = nδ eζ(1+ζ)
∑

i∈[m]
b(i)yk(i)/β

.

Now let us consider the last iteration t, where we have

1 ≤
∑
j∈[n]

c(j)xt(j) ≤ nδ eζ(1+ζ)
∑

i∈[m]
b(i)yt(i)/β

,

and thus

β∑
i∈[m] b(i)yt(i)

≤ ζ(1 + ζ)
ln((nδ)−1) (4)

whenever nδ < 1.
Now let us show that yt/ log1+ζ

( 1+ζ
δ

)
is a feasible solution for the dual of (LP2). It is

enough to show that

max
j

∑
i∈[m]

A(i, j)yt(i)
c(j) ≤ log1+ζ

1 + ζ

δ
.
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To see this note that for every j ∈ [n] and every k∑
i∈[m]

A(i, j)yk(i)
c(j) −

∑
i∈[m]

A(i, j)yk−1(i)
c(j) = A(qk, j)

c(j)
c(pk)

A(qk, pk) ≤ 1 ,

and
∑
i∈[m]

A(i,j)y0(i)
c(j) = 0. On the other hand for every j ∈ [n] and every k

xk(j)
xk−1(j) = 1 + ζ

c(pk)A(qk, j)
c(j)A(qk, pk) ≤ 1 + ζ ,

x0(j) = δ/c(j) and due to the termination condition xt−1(j) < 1/c(j) and hence xt(j) <
(1 + ζ)/c(j). This implies that the algorithm terminates after at most log1+ζ

1+ζ
δ iterations.

Thus, yt/ log1+ζ
( 1+ζ

δ

)
is a feasible solution for the dual of (LP2).

Hence, the algorithm provides a feasible solution for (2) with value β, which is an
approximation with guarantee

ζ(1 + ζ)
ln((nδ)−1) log1+ζ

1 + ζ

δ
= ζ(1 + ζ)

ln(1 + ζ)
ln 1+ζ

δ

ln((nδ)−1) ,

due to (4) and the fact that yt/ log1+ζ
( 1+ζ

δ

)
is a feasible solution for the dual of (LP2).

Thus, we obtain

ζ(1 + ζ)
ln(1 + ζ)

ln 1+ζ
δ

ln((nδ)−1) = ζ(1 + ζ)
(1− ζ) ln(1 + ζ) ≤

ζ(1 + ζ)
(1− ζ)(ζ − ζ2/2) ≤

1 + ζ

(1− ζ)2 ,

which is at most (1 + 4ζ) for ζ ≤ 0.15. J

4 The shortest row problem

In this section we describe how to (approximately) solve the shortest row problem needed in
Algorithm 2 when applied to (LP1). We start by stating the following simple remark, that
we will need at the end of our analysis.
I Remark 5. For every k ≥ 1 and every S ⊆ V , we have f(S) − zk(δ(S)) ≤ |E|/2 in
Algorithm 1.

Proof. Define x ∈ RE+ by letting x(e) := xk(e) whenever xk(e) < 1/2, and let x(e) := 0
otherwise. Then note that |E|/2 ≥ x(δ(S)) ≥ f(S) − zk(δ(S)), due to the feasibility of x
in (LP1) with z := zk and I := Ik. J

Let us recall that, for given x ∈ RE+, z ∈ ZE+, and proper function f , the shortest row
problem we need to solve is the following:

min
f(S)−z(δ(S))≥1

S⊆V

x(δ(S))
f(S)− z(δ(S)) .

The above shortest row problem is quite easy to solve when z = 0. In this case, Gabow
et al. [7] give a strongly-polynomial time separation oracle based on the construction of
Gomory-Hu trees [13], as we are now going to explain.

Given a graph G = (V,E) and values x(e) ∈ R+ for each e ∈ E, a Gomory-Hu tree [13]
is a capacitated tree T = (V, J) such that for any two vertices v, u ∈ V the minimum x-value
of a cut in G separating v and u equals the minimum x-value among the u-v cuts induced
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by the edges of T . More concretely, let Se and V \ Se induce connected components in T
after removing e from T . We then have

min
u∈S,v 6∈S
S⊆V

x(δ(S)) = min
u∈Se,v 6∈Se

e∈J

x(δ(Se)) .

The next lemma shows that in order to find the shortest row in the first iteration of
step 2 in Algorithm 1 (i.e. when z = 0), it is enough to compute a Gomory-Hu tree with
respect to values x(e) ∈ R+, e ∈ E.

I Lemma 6 ([7]). Given a graph G = (V,E), a proper function f : 2V → Z+ and a
Gomory-Hu tree T = (V, J) with respect to values x(e) ∈ R+, e ∈ E, we have

min
f(S)6=0
S⊆V

x(δ(S))/f(S) = min
f(Se) 6=0
e∈J

x(δ(Se))/f(Se) .

Proof. Consider S ⊆ V and the edges δT (S) in the Gomory-Hu tree T defined by S. By
definition of a Gomory-Hu tree x(δ(S)) ≥ x(δ(Se)) for every e ∈ δT (S), due to the cut in T
incurred by the vertices incident to e. Thus, to prove the claim it is enough to show that

f(S) ≤ max
e∈δT (S)

f(Se) . (5)

To show the last inequality let V1,. . . ,Vk be vertex sets of the connected components after
removing S in T . Thus, V1,. . . , Vk form a partition of V \ S, and so maxi∈[k] f(Vi) ≥
f(V \ S) = f(S). Choose i ∈ [k]. Replacing Se by V \ Se, we can assume that Se and Vi
are disjoint for every e ∈ δT (Vi). Thus the sets Se with e ∈ δT (Vi) partition V \ Vi, showing
that f(Vi) ≤ maxe∈δT (Vi) f(Se). Since, δT (Vi), i ∈ [k] partition δ(S) we get (5), finishing the
proof. J

In the later iterations of steps 2 in Algorithm 1, the inequality corresponding to S ⊆ V
has the form x(δ(S)) ≥ g(S), where g : 2V → Z+ is such that g(S) = f(S) − z(δ(S)) for
some z(e) ∈ Z+, e ∈ E, and a proper function f . Once z 6= 0, g(S) is not a proper function
any more and unfortunately, Gabow et al.’s algorithm can not be used directly. We do not
know how to solve this problem exactly in strongly-polynomial time, but we can approximate
it using the following observation.

Fix a value γ > 0, and let us check whether the optimal solution of the shortest row
problem has a value less than γ. The crucial fact is that given x(e) ∈ R+, e ∈ E and γ > 0
checking whether

min
f(S)−z(δ(S))≥1

S⊆V

x(δ(S))
f(S)− z(δ(S)) < γ .

is equivalent to checking whether

x(δ(S))/γ + z(δ(S)) < f(S)

for some S ⊆ V , i.e. it can be reduced to finding

min
f(S)6=0
S⊆V

x(δ(S))/γ + z(δ(S))
f(S) .

Therefore, we can apply Lemma 6 after replacing x(e) with x(e)/γ + z(e). This enables
us to use binary search to find a (1 + ζ)-approximation for the shortest row indexed by
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Algorithm 3 Determining upper and lower bounds γmin, γmax.
1: G0 = (V0, E0)← G = (V,E), f0(S)← f(S) for all S ⊆ V , k ← 0
2: while fk(S)− z(δGk(S)) > 0 for some S ⊆ Vk do
3: find a set S ⊆ Vk such that fk(S)− z(δGk(S)) ≥ 1, let it be Sk
4: determine e ∈ δGk(Sk) with maximum x(e), let it be ek ← {uk, vk}
5: contract ek in Gk (keeping multiple copies of edges) to obtain Gk+1, and set

fk+1(S)←
{
fk(S ∪ {uk, vk} \ wk) if wk ∈ S
fk(S) otherwise ,

for all S ⊆ Vk+1, where wk is the vertex in Gk+1 corresponding to the contracted edge ek.
6: k ← k + 1
7: end while
8: γmin ← mink 2x(ek)/|E|, and let p be the index for which this minimum is achieved
9: γmax ← x(δ(Up)), where Up is the vertex subset of V corresponding to the vertex subset
Sp of Vp

10: return γmin, γmax

vertex subsets whenever we have a lower bound γmin and an upper bound γmax on the length
of the shortest row. Giving trivial bounds on such a value (e.g. 1 and (|E| ·maxS f(S)))
is of course easy. However, given an interval [γmin, γmax] for binary search we have to
construct a Gomory-Hu tree dlog1+ζ γmax/γmine times, and therefore we need that γmax/γmin
is independent of the size of f in order to achieve strong polynomiality. To this aim, we
propose Algorithm 3.

I Lemma 7. Algorithm 3 computes an interval [γmin, γmax], which contains the shortest row
length with respect to x(e) ∈ R+, e ∈ E. Moreover, γmax/γmin ≤ |E|2/2, and the algorithm
runs in strongly-polynomial time.

Proof. Algorithm 3 works as follows. It does a sequence of at most |V | iterations. In
iteration k, it takes an arbitrary subset S corresponding to a violated cut, i.e. such that
fk(S)−z(δGk(S)) > 0, and contracts the edge ek in this cut of maximum x-value. Contracting
this edge naturally yields a graph Gk+1 and a function fk+1 to use in the next iteration. Note
that a violated subset S can be computed efficiently given that f is a proper function [12].

Our first claim is that γmin is a valid lower bound on the shortest row length. In other
words, we claim that for every S : f(S)− z(δ(S)) ≥ 1, we have

x(δ(S))
f(S)− z(δ(S)) ≥

x(ep)
|E|/2 = γmin .

Due to the termination condition, for every S ⊆ V with f(S) − z(δ(S)) ≥ 1 the edge
set δ(S) contains at least one of the edges e1,. . . ,et selected by the algorithms during its t
iterations. Therefore, x(δ(S)) ≥ x(ep), by the choice of p in step 8. Moreover, by Remark 5
f(S)− z(δ(S)) ≤ |E|/2. The claim then follows.

Our second claim is that γmax is a valid upper bound on the shortest row length. To see
this, note that f(Up) − z(δ(Up)) ≥ 1 because f(Up) = fp(Sp) and z(δ(Up)) = z(δGp(Sp)),
proving that γmax is a valid upper bound for the shortest length of a row indexed by S ⊆ V .

Finally, recalling that ep satisfies x(ep) = maxe∈δ(Up) x(e) (step 4), we have

γmax/γmin = x(δ(Up))
2x(ep)/|E|

≤ |E|2/2 . J
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5 Concluding remarks

We are now ready to put all pieces together and give a proof of Theorem 1 and Corollary 2
stated in the introduction.

Proof of Theorem 1. Given an ε > 0, we apply Algorithm 2 to (LP1) with ζ = ln(1+ε)/|E|.
Algorithm 2 in its turn approximates the shortest row at most O((ln |V |)/ζ2) times3. It
makes a call to Algorithm 3, computing at most |V | Gomory-Hu trees and afterwards the
binary search needs O((ln |E|)/ζ) computations of a Gomory-Hu tree in G = (V,E). Recall,
that ζ = ln(1 + ε)/|E| = Θ(ε/|E|) and hence each linear program appearing in Algorithm 1
is solved in time dominated by finding O(|E|3(ln |E|)2/ε3) Gomory-Hu trees. Note that
a Gomory-Hu tree for G = (V,E) with respect to values x(e) ∈ R+, e ∈ E can be found
by |V | computations of the minimum cut in G [13], so a Gomory-Hu tree can be found in
strongly-polynomial time. J

The number of times our algorithm solves the Gomory-Hu tree problem is substantially
smaller than the corresponding number for the Ellipsoid method given the classical estimation
for the encoding length of vertices or given that maxS f(S) is sufficiently large, because this
number for the Ellipsoid method grows proportionally with the logarithm of maxS f(S).

Proof of Corollary 2. To obtain a (2 + ε)-approximation for (IP) we apply Algorithm 1.
Algorithm 1 solves O(|E|2) linear programs, i.e. there are O(|E|2) calls of Algorithm 1 to
Algorithm 2 to solve linear programs, and it makes at most |E| roundings. Considering
rounding as a basic operation, the result follows. J

We conclude the paper with some open questions. It remains open whether one is able to
provide a 2-approximation algorithm for (IP), which does not need to solve linear programs.
This question is among the top 10 open questions in the theory of approximation algorithms
according to Shmoys and Williamson [23]. In our opinion, a good intermediate question is
whether it is possible to give an algorithm with a constant approximation guarantee such
that the number of linear programs solved in its course is bounded by a constant. One way
to prove this could be to exploit that after each rounding in the algorithm of Jain [19] we
have a sufficiently “good” feasible point for the new linear program.
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Abstract
Given a string X[1, n] and a position k ∈ [1, n], the Shortest Unique Substring of X covering k,
denoted by Sk, is a substring X[i, j] of X which satisfies the following conditions: (i) i ≤ k ≤ j,
(ii) i is the only position where there is an occurrence of X[i, j], and (iii) j − i is minimized. The
best-known algorithm [Hon et al., ISAAC 2015] can find Sk for all k ∈ [1, n] in time O(n) using
the string X and additional 2n words of working space. Let τ be a given parameter. We present
the following new results. For any given k ∈ [1, n], we can compute Sk via a deterministic
algorithm in O(nτ2 log n

τ ) time using X and additional O(n/τ) words of working space. For
every k ∈ [1, n], we can compute Sk via a deterministic algorithm in O(nτ2 logn) time using X
and additional O(n/τ) words and 4n+ o(n) bits of working space. For both problems above, we
present anO(nτ logc+1 n)-time randomized algorithm that uses n/ logc n words in addition to that
mentioned above, where c ≥ 0 is an arbitrary constant. In this case, the reported string is unique
and covers k, but with probability at most n−O(1), may not be the shortest. As a consequence of
our techniques, we also obtain similar space-and-time tradeoffs for a related problem of finding
Maximal Unique Matches of two strings [Delcher et al., Nucleic Acids Research 1999].
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1 Introduction

We consider a string X[1, n] with characters from an ordered alphabet Σ of cardinality σ.
The ith character, i ∈ [1, n], is denoted by X[i], and X[i, j], 1 ≤ i ≤ j ≤ n, is the substring
X[i] X[i+ 1] . . .X[j]. We denote by |X[i, j]| the length (j − i+ 1) of the substring X[i, j]. A
suffix starting at i is the string X[i, n] and a prefix ending at i is the string X[1, i]. A right
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extension of X[i, j] is a string X[i, j′], where j′ > j. A substring X[i, j] covers a position k iff
i ≤ k ≤ j. A substring X[i, j] is unique iff X[i, n] is the only suffix having X[i, j] as a prefix.
A substring X[i, j] is repeating iff there exists i′ 6= i such that X[i, j] is a prefix of X[i′, n].

I Definition 1 (Shortest Unique Substring Covering k). A substring X[i, j] is a shortest unique
substring covering a position k iff (i) X[i, j] covers k, and (ii) there does not exist a substring
X[i′, j′] that covers k and satisfies j′ − i′ < j − i.

We now present the following problems that will be discussed in the rest of the paper.
Throughout this paper, we will use Sk to denote any shortest unique substring of X covering
k. Note that there may be multiple choices of Sk.

I Problem 2 (Single k). Given X[1, n] and a position k ∈ [1, n], find any Sk.

I Problem 3 (All k). Given X[1, n], find any Sk for every k ∈ [1, n].

Previous Works and Our Contribution. To the best of our knowledge, the formal defin-
itions presented in Problems 2 and 3 were introduced by Pei et al. [19]. They also listed
several potential applications, for e.g., document searching on the internet. Arguably, the
most important applications lie in the field of Computational Biology. A few of them are
(see [19] and references therein): finding unique DNA signatures between closely related
organisms, aiding polymerase chain reaction (PCR) primer design, genome mapability, and
next-generation short reads sequencing.

For Problem 2, Pei et al. [19] presented an O(n) time and Θ(n) space (in words) solution.
For the second problem, their method incurred a time of O(n · h), where h is a variable
which for most practical purposes can be taken to be a constant. In the worst-case, however,
h is O(n); therefore, their solution takes O(n2) time, the space remains at Θ(n) words.
This is the first drawback of their approach. More importantly though, their solution is
intrinsically based on the Suffix Tree of the string X. A suffix tree [11] ST of a string S[1,m]
is a compacted trie on the set of all non-empty suffixes of the string S. The suffix tree has m
leaves (one per each suffix), and at most (m − 1) internal nodes. The leaves in the suffix
tree are arranged from left-to-right in the lexicographic order of the corresponding suffix
they represent. The space occupied is Θ(m) words, or equivalently Θ(m logm) bits. (We
assume the standard Word-RAM model of computation, where the size of a machine word is
Θ(logm) bits. Also, all logarithms are in base 2.)

Unfortunately, for most practical purposes, the suffix tree of a string S occupies space
much larger (15-50 times) compared to the |S| log |ΣS | bits of space needed by S. Here, ΣS
is the alphabet from which the characters in S are drawn. (Typically, ΣS = {1, 2, . . . , |ΣS |}.)
The space occupancy issue becomes more profound in the case when strings are much larger
in comparison to the size of the alphabet. An example is the DNA, in which the alphabet
has size four, but the lengths of the strings (such as in Human Genome) are typically in the
billions. Even with a space-efficient implementation, such as in [16], a suffix tree occupies 40
Gigabytes, whereas the input Human Genome occupies only 700 Megabytes. Since a primary
application of the Shortest Unique Substring (SUS) problem involves DNA, this presents a
serious bottleneck, as has been corroborated by the experimental results of Ileri et al. [14],
who were unable to run the algorithm of Pei et al. [19] for massive data sizes.

To alleviate the running time of O(n2) for Problem 3, Ileri et al. [14] introduced an O(n)-
time and Θ(n)-word algorithm. More importantly, their algorithm is more space-efficient
than the algorithm of Pei et al. [19]. They showed that their algorithm not only saves space
by a factor of 20, but also attains a speedup by a factor of 4. The space efficiency is achieved
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by replacing the suffix tree with a combination of the Suffix Array, its inverse, and the
LCP array of the string X. The suffix array [11] of S[1,m] is an array SAS [1,m] such that
SAS [i] = j iff S[j,m] is the ith lexicographically smallest suffix. The inverse suffix array
SA−1

S [1,m] is an array such that SA−1
S [j] = i iff SAS [i] = j. The Longest Common Prefix

(LCP) array [11] of S is an array LCP[1,m] such that LCP[m] = −1 and for i < m, LCP[i]
equals the length of the LCP of the suffixes starting at SAS [i] and SAS [i+ 1]. Hon et al. [13]
achieved further space improvements by introducing an in-place framework. Specifically,
their algorithm needs space 2n words in addition to that needed for storing the string X.
Remarkably, the time needed to compute Sk for every k still remains O(n). Furthermore,
they argued that 2n words is the minimum space needed to store Sk values explicitly, as we
need to store the start position and length of each Sk.

Despite all the efforts that have been invested into the SUS problems, the current best
solution of Hon et al. [13] still uses 2n words of space in addition to the space needed by
the input string X. Therefore, an important question is whether we can solve the problems
using o(n) words of additional space. We consider the following sub-linear space setting. In
addition to the input string X of length n, a parameter τ is provided. The task is to find Sk
using space O(n/τ) words in addition to the space needed for storing X. In this setting, we
present the following solutions for Problems 2 and 3.

For any given k ∈ [1, n], we can compute Sk via a deterministic algorithm in O(nτ2 log n
τ )

time using O(n/τ)-words of additional working space.
For every k ∈ [1, n], we can compute Sk via a deterministic algorithm in O(nτ2 logn)
time using O(n/τ)-words and 4n+ o(n)-bits of additional working space.

We assume τ = ω(1). Otherwise, we can simply use the algorithm of Hon et al. [13]. Thus,
we present the first algorithm which needs o(n) words of additional space for computing
SUS. We also present a randomized algorithm which reduces the above running time to
O(nτ logc+1 n) by using an additional n/ logc n words, where c ≥ 0 is any arbitrary constant.
Each computed Sk is unique and covers k, but with probability at most n−O(1), may not
be the shortest. Note that in this case, even by choosing c = 0, our space requirements are
strictly better (in the asymptotic sense) than that of Hon et al. [13]. By choosing τ = logn,
our algorithm achieves a space-factor improvement of O(logn), while matching the best
known running time of O(n) within poly-logarithmic factors.

We remark that our techniques imply (almost) the same results (compact space and
succinct index) attained by Belazzougui and Cunial [2] for a related problem of finding the
shortest unique prefix of every suffix of X. Our techniques also imply the first sub-linear
space algorithm for the related problem of finding Maximal Unique Matches (MUM) of two
strings [6].

Roadmap. We first present the two deterministic algorithms in Sections 2 and 3 respectively.
Section 4 introduces the randomized algorithms. A brief discussion on the MUM problem [6]
is presented Section 5.

2 Deterministic Algorithm for Single k

We begin with the following key observation.

I Observation 4. Sk is either the shortest unique prefix of a suffix that starts at a position
i ≤ k, or is the smallest right extension till k of such a prefix.

With this key intuition, we define LSi as the shortest unique prefix of the suffix X[i, n].

ISAAC 2016
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I Observation 5. LS1 is defined, whereas LSi for i > 1 may not be defined. If LSi is not
defined, then for any i′ > i, LSi′ is also not defined.

For any i ≤ k, we define LSki as LSi if LSi covers k; otherwise, LSki is the right extension of
LSi up to the position k, i.e., LSki = LSi ◦ X[i+ |LSi|, k], where ◦ denotes concatenation. By
this definition, Sk is a minimum length LSki , where i ≤ k and LSi is defined. Moving forward,
we will represent Sk by two integers: the starting position of Sk and the length |Sk|.

We first present the general idea behind the previous works. Once we know LSi for
every i ≤ k, where defined, we first compute LSki . Following this, Sk is computed simply by
selecting a LSki of minimum length. Specifically, start at i = 1, and compute the longest
repeating prefix of X[i, n]. Using the inverse suffix array and the LCP array, this can be
easily computed. If the length of this prefix is (n− i+ 1), then clearly LSi is not defined.
Otherwise, compute LSki from LSi, and repeat the process with (i+ 1). Finally, compute the
minimum length LSki , once we reach an i such that either LSi is not defined, or i > k.

In our case, we cannot construct the entire suffix array and LCP array, as it will violate
our space constraints. Also, storing all the LSi or LSki values is not an option, as in the
worst-case the space will become Θ(n) words. Therefore, we will compute LSi for a carefully
chosen set of O(n/τ) suffixes. Based on this, we present the following crucial lemma.

I Lemma 6. Let Ii = {i, i+ τ, i+ 2τ, . . . }, i ∈ [1, τ ], be a set of at most dn/τe suffixes. For
every i′ ∈ Ii, we can compute LSi′ in O(nτ log n

τ ) time using X and additional O(n/τ) words
of working space.

Using the above lemma, we prove the following theorem, which presents our first result.

I Theorem 7. For any given k ∈ [1, n], we can find Sk in O(nτ2 log n
τ ) time using X and

additional O(n/τ) words of working space.

Proof. Initialize S = n and sp = 1. Using Lemma 6, we first compute LSj for every j ∈ Ii by
choosing i = 1. Use LSj to compute LSkj for every j ∈ I1. Assign S = minj∈Ii{S, |LSkj |}. If
S is updated, then assign sp to the corresponding j. Repeat the process with i = 2, 3, . . . , τ .
Now, it remains to find LSj for all suffixes with j ∈ [n − τ + 2, n]. To find LSj and LSkj
for these suffixes simply use a brute-force approach. Since there are τ − 1 suffixes, each of
length at most τ − 1, the time needed is O(nτ2). At each step, update S and sp accordingly.
Finally, Sk is given by S and sp. Clearly, the claimed time and space bounds are met. J

2.1 Proof of Lemma 6
The central idea behind the proof is the use of a sparsification technique introduced by
Hon et al. [12]. In particular, we create a sampled suffix tree STi by using a set of roughly
n/τ regularly spaced suffixes, where the first suffix starts at position i. Now, we match the
string X in STi, starting with the position j = 1 if i > 1, and with j = 2 otherwise. Using
STi, we can find the longest repeating prefix of every sampled suffix w.r.t the positions
j, j + τ, j + 2τ, . . . . Then the process is repeated with every value of j ∈ [1, τ ], where j 6= i.
Finally, we use the longest repeating prefix of each sampled suffix, and extend it by one
character to find LSi′ for each i′ ∈ Ii. We now present the details.

Pre-process: Consider every substring of X of length τ that starts at a position which lies
in the set Ii = {i, i+ τ, i+ 2τ, . . . }. We first create a compacted trie T of these substrings,
and ignore the last substring, say X′i, of X if it has length less than τ . While creating T , for
every node u, store in a balanced binary search tree (BST) the first characters that label
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the edges starting from u. This BST will allow us to efficiently select a correct edge (or
create a new one) when a new string is inserted. Since the number of strings considered is
at most dn/τe, the number of nodes in T is at most 2dn/τe. Likewise, at any moment, the
number of nodes in all the BSTs combined is at most 2dn/τe, implying a search or insert
operation requires O(log n

τ ) time. Clearly, the space needed to create T is O(n/τ), and the
time required is O(n + n

τ log n
τ ). Note that each τ -length substring corresponds to a (not

necessarily unique) leaf in T , where the leaves are numbered according to the lexicographic
order of the substring they represent. We create a new (compressed) string Xτi by mapping
each τ -length substring of X starting at a position in Ii to the corresponding leaf number.
(We ignore the string X′i and the characters before i while creating Xτi .) Let Σi denote the
alphabet of Xτi . Note that Στi = {1, 2, . . . , |Στi |}, where |Στi | ≤ dnτ e is the number of leaves in
T . Also note that for any two integers p, q ∈ Στi , p < q iff the string corresponding to leaf p
in T is lexicographically smaller than the one corresponding to q.

Construct a suffix tree STi of Xτi $, where $ is a unique special character. Since |Xτi | ≤
dn/τe, the number of nodes in STi is at most 2dn/τe. Append X′i to the label (ignoring $) on
each edge from a leaf to its parent. We remark that the edge labels are not explicitly written,
but are obtained using two pointers to the start and end positions of the label in X. Each
non-root node u in STi has a suffix link pointing to a node Ψ(u), such that the string (over
Σ) obtained by concatenating the edge labels from root to Ψ(u) is same as the string from
root to u with the first τ characters truncated. By using the algorithm of Farach-Colton [8],
constructing STi along with the suffix links requires O(n/τ) time and space. Now, consider
the set Eu of outgoing edges of a node u. We will order them from left-to-right according
to the lexicographic order of the τ -length substring of X represented by the first character.
Since the lexicographic rank of the τ -length strings can be compared directly in O(1) time
based on its leaf index in T (i.e., based on its representative in Στi ), we can order the edges in
all such sets Eu in

∑
uO(|Eu| log |Eu|) = O((n/τ) log n

τ ) time using O(n/τ) space. Each leaf
in STi corresponds to a suffix of X with starting position in Ii, where leaves are numbered
from left-to-right in lexicographic order of the suffix they represent. For the pth leftmost
leaf, denoted by `p, let SAi[p] be the suffix array value, i.e., the starting position in Ii of the
corresponding suffix. Summarizing, the time needed to construct STi is O(n+ n

τ log n
τ ), and

the space usage is O(n/τ) words. We create a compacted trie STi(u) with the edges in Eu
by mapping the edge labels over Στi to the corresponding τ -length string over Σ. Call this
the navigation trie of node u. Note that each leaf in STi(u) corresponds to a unique child
of u in STi. As before, the edge labels are obtained using two pointers to X. The outgoing
edges of a node in the navigation trie are ordered based on the lexicographic order of the first
character from Σ, such that given a character x ∈ Σ, we can find the outgoing edge (if any)
beginning with x in O(log n

τ ) time. The number of nodes in all navigation tries combined is
at most 2dn/τe. Since the first τ -length strings labeling the outgoing edges of a node are
distinct, all navigation tries can be created in O(n+ n

τ log n
τ ) time.

Equip STi with the data structures in [3, 4], such that in O(1) time, we can (i) find
lca(u, v) i.e., the Lowest Common Ancestor (LCA) of two nodes u and v, and (ii) find
levelAncestor(u,W ) i.e., the ancestor of u which has node-depth W . Likewise, equip all
navigation tries with these data structures. Using these, given two leaves `k and `k′ in STi,
we can easily find their LCA in a particular navigation trie in O(1) time. For any node u in
STi, let path(u) denote the string formed by concatenating the edge labels over Σ from root
to u. Likewise, for any node u∗ in a navigation trie STi(u), let path(u∗) be the string path(u)
appended with the edge labels from u to u∗. Store |path(u)| (resp. |path(u∗)|) at each node
u in STi (resp. u∗ in STi(u)). The space and time required for these pre-processing steps
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can both be bounded by O(n/τ). With the aid of these pre-processing steps, in O(1) time,
we can find lcp(`k, `k′) i.e., the Longest Common Prefix (LCP) of path(`k) and path(`k′).

Query: Initially, each node u∗ in every navigation trie is unmarked; also, assign ∆(u∗) = 0.
Starting with j = 1 (if i > 1, and with j = 2 otherwise), we match successive symbols of the
string X[j, n] in STi as follows. Suppose, we are at a node u in STi. Find the correct edge
(if any) in STi(u) to traverse using the character X[j + |path(u)|]. Now, use the characters
starting from X[j + |path(u)|+ 1] to traverse STi(u) until either we reach a leaf `∗ (which
corresponds to a child u′ of u in STi), or we find a mismatch. In the first case, mark the
leaf `∗, set ∆(`∗) = |path(`∗)|, and repeat the process from u′. Otherwise, suppose we find a
failure on an edge to a node v∗ in STi(u) after successfully matching D characters starting
from u. Mark the node v∗, and store ∆(v∗) = max{∆(v∗), |path(u)|+D}. Follow the suffix
link of u to the node Ψ(u). We have the following two cases to consider.

If D < τ , then use the string X[j+ |path(u)|, j+ |path(u)|+D−1] and traverse STi(Ψ(u)).
Then, we resume matching from the reached position using X[j + |path(u)|+D,n].
If D ≥ τ , then v∗ is a leaf in STi(u) and represents a child v of u in STi. Use the string
X[j + |path(u)|, j + |path(u)|+ τ − 1] and traverse STi(Ψ(u)). At this point, we are on
an edge from a node w∗ to a leaf node in STi(Ψ(u)). The desired position to resume
matching on this edge is given by (D − |path(w∗)|+ 1).

In either case, we compare at most τ characters. Observe that on following a suffix link we
truncate τ characters starting from j, and are now trying to match X[j+ τ, n]. Therefore, the
total time needed to mark a node for j, j + τ, j + 2τ, . . . is O(n log n

τ ). Repeat this process
for every value of j ∈ [1, τ ], j 6= i. The total time needed is O(nτ log n

τ ).
We initialize an array LS of length |Ii| as follows. Assign LS[1] = lcp(`1, `2), and LS[p] =

max{lcp(`p−1, `p), lcp(`p, `p+1)}, where p ∈ [2, |Ii| − 1]. Finally, LS[|Ii|] = lcp(`|Ii|−1, `|Ii|).
Now, for each leaf `p in STi, we find its nearest marked ancestor `∗p. This is easily achieved in
O(n/τ) time and space by traversing STi and the navigation tries using lca and levelAncestor
queries. Simply assign LS[p] = 1 + max{LS[p],∆(`∗p)}. If LS[p] = |path(`p)|, then assign
LS[p] = n+ 1. (This implies that LS value for the position SAi[p] is not defined.) Clearly,
LS[p] and SAi[p] together give us LSSAi[p]. The time needed is O(n/τ).

3 Deterministic Algorithm for All k

I Observation 8 ([13, 14]). |LSk| ≤ |LSk+1| + 1, k ∈ [1, n − 1], where LSk and LSk+1 are
defined. S1 is the same as LS1. For any k ∈ [2, n], if Sk is the right extension of some LSk′ ,
k′ < k, then (i) Sk−1 ends at the position (k − 1), and (ii) Sk = Sk−1 ◦ X[k].

Assume that Sk−1, k > 1, is computed, where S1 = LS1 is known. We want to compute Sk.
The following are immediate from the above observation. If Sk−1 does not end at (k − 1),
then Sk is simply the shortest LSk′ that covers k. (Note that such an LSk′ must exist.)
Otherwise, Sk−1 ends at (k− 1), and Sk is simply the shorter of: (i) the shortest LSk′ , k′ ≤ k,
that covers k, if such a string exists, and (ii) Sk−1 ◦ X[k]. Thus the focus is to compute the
shortest LSk′ that covers k, if such a string exists. We prove the following theorem.

I Theorem 9. We can compute Sk for every k ∈ [1, n] in O(nτ2 logn) time using X and
additional O(n/τ) words and 4n+ o(n) bits of working space.

Following are a couple of well-known results that will be needed.
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I Fact 10 (Munro [18]). Consider a binary string B[1,m]. By using a data structure
occupying o(m) bits, in O(1) time, we can find (i) rank(i, c) = |{j ≤ i | B[j] = c}| and
(ii) select(j, c) = mini{i | rank(i, c) = j}, where c ∈ {0, 1}. The data structure can be
constructed in O(m) time using o(m) bits of working space in addition to the string B.

I Fact 11 (Fischer and Heun [9]). Consider an array A of m integers. By using a data
structure occupying 2m + o(m) bits, in O(1) time, we can find rmqA(i, j) i.e., a position
t ∈ [i, j] such that A[t] = min{A[t′] | t′ ∈ [i, j]}. The data structure can be constructed in
O(m) time using 2m+ o(m) bits of working space in addition to the array A.

Proof of Theorem 9. The key idea is to compute LSj for all values of j, where defined,
and then store it in a compact way. Specifically, use Lemma 6 to compute LSj for every
j ∈ Ii = {i, i + τ, i + 2τ, . . . }, first by choosing i = 1. Store these values explicitly, and
initialize |I1| empty binary strings B1, B2, . . . , B|I1|. Compute LSj for every j ∈ I2. For
each j ∈ I2, append (|LSj | + 1 − |LSj−1|) many 1s followed by a 0 to the binary string
Bdj/τe. (Note that (j − 1) ∈ I1, and LSj−1 has already been computed.) Now, compute
LSj for every j ∈ I3. For each j ∈ I3, append (|LSj | + 1 − |LSj−1|) many 1s followed by
a 0 to the binary string Bdj/τe. Delete the LSj values computed for j ∈ I2. Repeat the
process with i = 4, 5, . . . , τ . Suppose r is the last position such that LSr is defined. We
will ignore LSr+1, LSr+2, . . . , LSn while creating the binary strings. Now, we create a binary
string B = B1B

′
1B2B

′
2 . . . B

′
|I1|−1B|I1|, where B′p, p ∈ [1, |I1| − 1], is the string containing

(LSpτ+1 + 1− LSpτ ) many 1s followed by a 0. Delete the binary strings B1 through B|I1|. If
r > n− τ + 1, compute LSj for j ∈ [n− τ + 1, r] in O(nτ2) time using a brute-force approach.
For each j ∈ [n− τ + 2, r], append (|LSj |+ 1−|LSj−1|) many 1s followed by a 0 to the binary
string B. Finally, construct the rank-select structure of Fact 10 over B.

Since we will make τ calls to Lemma 6, the time required is O(nτ2 log n
τ ). Note that

r + |LSr| ≤ n + 1. By Observation 8, for any r′ < r, we have r′ + |LSr′ | ≤ r′ + 1 +
|LSr′+1|. By Observation 5, LSr′′ is not defined for any r′′ > r. It immediately follows that∑r−1
p=1(|LSp+1|+ 1− |LSp|) ≤ n. Observe that B is a binary string which is a concatenation

of (|LSp+1|+ 1− |LSp|) many 1s followed by 0 for all values of p from 1 to (r− 1). Therefore,
the total length of B is at most 2n. Then, |LSk| = |LS1|+ rank(select(k − 1, 0), 1)− k + 1,
where k ∈ [1, r]. By storing |LS1| and the position r explicitly in d2 logne = o(n) bits, LSk
can be retrieved in O(1) time. Since at any point we are storing LSj values for at most
3dn/τe choices of j, the working space needed is O(n/τ) words and 2n+ o(n) bits.

Now, we build an RMQ data structure over a conceptual array A. The length of A is the
number of zeroes inB i.e., |A| = r ≤ n, andA[p] = |LSp| = |LS1|+rank(select(p−1, 0), 1)−p+1.
Using Fact 11, we can construct this data structure using 2n+ o(n) bits of additional space.

Summarizing, the working space needed at any point is O(n/τ) words and 4n+ o(n) bits.
We return to the task of computing the shortest LSk′ , k′ ≤ k, that covers k. First locate

the smallest position k′′ ≤ k, such that LSk′′ covers k. This is achieved in O(logn) time via a
binary search using LS1, B and its associated rank-select structure. If k′′ does not exist, then
we are done. Otherwise, k′ = rmqA(k′′, k). The total time needed for all such computations
is O(n logn), and the claimed space and time bounds are met. J

I Corollary 12. Suppose, we can compute LS1, LS2, . . . , LSn in that order. We can store
|LSk|, k ∈ [1, n], in total 2n+ o(n) bits, such that a particular |LSk| value can be accessed
in O(1) time. (This is the same result as obtained by Belazzougui and Cunial [2].) Also,
by maintaining an additional 2n + o(n)-bit structure, for any k, in O(logn) time, we can
compute the shortest LSk′ , k′ ≤ k, that covers k, or verify that no such k′ exists. The total
time (in addition to that for computing every LSk value) to construct this 4n + o(n) data
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structure is O(n). The working space required is 4n+ o(n) bits. Using this, we can compute
Sk for every k ∈ [1, n] in an additional O(n logn) time and O(1) space.

4 Randomized Algorithm

We prove the following theorem in this section.

I Theorem 13. For a string X of length n, any given k ∈ [1, n], and any arbitrary constant
c ≥ 0, we can find Sk in O(nτ logc+1 n) time using X and additional n/ logc n+O(n/τ)-words
of working space. By using additional 4n+ o(n) bits, we can compute Sk for all values of k
in O(nτ logc+1 n) time. Each Sk computed is correct with probability at least 1− n−O(1).

4.1 Proof of Theorem 13
The key idea to reduce the time from O(nτ2 log n

τ ) is to modify Lemma 6 so that we can
carry out the same task in time O(n logc+1 n) time, with n/ logc n words of additional space.
In this context, we present the following lemma.

I Lemma 14. Let Ii = {i, i + τ, i + 2τ, . . . }, i ∈ [1, τ ], be a set of at most dn/τe suffixes.
For each i′ ∈ Ii, we can compute LSi′ correctly with high probability in O(n logc+1 n) time
using X and additional n/ logc n+O(n/τ)-words of working space.

Here and henceforth, by high probability, we mean that each computed LSi′ is unique, but
with probability at most n−O(1), may not be the shortest. Likewise, each computed Sk is
unique and covers k, but with probability at most n−O(1), may not be the shortest.

We observe that in Lemma 6 the nτ -factor in the time complexity is due to matching X
in the sampled suffix tree STi by passing the string τ times, each time with a different choice
of j ∈ [1, τ ], j 6= i. Each such pass costs us O(n log n

τ ) time. The idea is to reduce this by
speeding up (i) the time to find the correct outgoing edge of a node, and (ii) the time to
update the ∆ value of a node in a navigation trie. We will show that (i) can be achieved in
O(logc n) time, with a slight probability of a false positive using Rabin-Karp Fingerprint [15]
and perfect hashing [10]. For achieving (ii), the rough idea is to use randomization to binary
search on the navigation trie, along the path containing the longest repeating prefix. This
will cost us O(logc+1 n) time. We begin by revisiting a couple of important results.

I Fact 15 (Rabin-Karp Fingerprint [15]). Let S be a string, and p > |S| be a prime number.
Choose q ∈ Fp uniformly at random. The fingerprint of S is

Φ(S) =
|S|−1∑
k=0

S[k]qk mod p

The following are a few well-known properties of fingerprints [5]. The probability of Φ(S) =
Φ(S′) for two distinct strings S and S′ is at most m−λ+1, where m = |S| = |S′|, p ∈ Θ(mλ),
and λ ≥ 4 is a constant. The factor λ may be amplified by a constant number of computations.
For two strings S and S′, where m = |S|, we have (i) Φ(SS′) = Φ(S) + Φ(S′)qm mod p,
(ii) Φ(S) = Φ(SS′) − Φ(S′)qm mod p, and (iii) Φ(S′) =

(
Φ(SS′) − Φ(S)

)
q−m mod p.

Therefore, for these three equations, given the value of qm mod p and the FP values on right,
we compute the FP value on the left in O(1) time.

I Fact 16 (Probabilistic z-fast Trie, Theorem 4.1, Belazzougui et al. [1]). Consider the
compacted trie T of a set of t strings. Each string has length at most m. Given any string S,
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by using a probabilistic data structure, we can find the deepest node u (called the exit node)
in T such that path(u) is a prefix of S. The chances of an error is at most m−λ, where λ > 0
is an arbitrary constant. The space occupied by the probabilistic data structure is O(t) words,
and the time required is O(log(m+ t)).

The main technique behind Fact 16 is to associate each node u in the trie with a signature
function. Specifically, the signature function is based on path(u). If two strings are distinct,
then their signatures match with very low probability. Now, given the signature of each
prefix of S, the overall idea is to carry out a binary search on the signature of each node to
locate the desired node. Furthermore, given the compacted trie, and the signature of every
prefix of each of the t strings, the data structure of Fact 16 can be constructed in O(t) time.

I Lemma 17. Consider the compacted trie T of a set of t suffixes of a string Y having length
m. Given a string S and fingerprint of every logcm prefix, by maintaining an m/ logcm+O(t)
word data structure, we can find the deepest point (possibly, on an edge) such that the string
formed by concatenating edge labels from root to this point is a prefix of S. The time required
is O(logc+1 m), and the probability of an error is at most m−O(1). The data structure can be
constructed in O(m+ t(log t+ logcm)) time using m/ logcm+O(t) words of space.

Proof. We will use a different signature function as that of Belazzougui et al. [1]. (See [5]
for a similar usage.) Specifically, each node w is labeled with the fingerprint (FP) of path(w).
Each edge in T is labeled by a substring of Y . We maintain two pointers sp and ep to the
start and end position in Y , and store the value of qsp mod p. Here, p and q are defined as
in Fact 15. Also, at each node w, we store the value of q|path(w)| mod p. To compute this
simply sort the edges based on sp and the nodes w based on path(w) in O(t log t) time. The
time needed is O(m+ t log t), and the space occupied at any point is O(t) words.

Now, compute the FP of each of the prefixes of Y ending at the positions 1, 1 + logcm, 1 +
2 logcm, . . . in O(m) time using Fact 15. The space needed to compute and store this
information is at most (1 + m/ logcm) words. Using these, we can compute the FP of a
prefix of an edge label in O(logcm) time by simply finding the nearest prefix of Y whose FP
has been stored and then walking at most logcm characters in Y . Also, by pre-processing
the trie with levelAncestor queries [4], we can find the FP of a prefix of any of the t suffixes
in O(log t+ logcm) time as follows. Binary search using levelAncestor queries and |path(u)|
stored at each node u on the path from root to the leaf corresponding to the suffix. This
binary search enables us to find the edge position corresponding to the prefix whose FP value
we want to find. Then, the desired FP value is obtained using the edge pointers. Therefore,
we can construct the z-fast trie of Fact 16 in O(t(log t+ logcm)) time given T and the FP
of each prefix of Y . The space at any point is bounded by m/ logcm+O(t) words.

We return to our original task. Use the z-fast trie and the FP of each prefix of S to find
the exit node u. Then, use the character S[1 + |path(u)|] to select an outgoing edge (u, v) of
u. If no such edge exists, then the desired location is given by the node u. Otherwise, the
desired location lies on the edge (u, v). Using the FP of a prefix of S[|path(u)|+ 1, path(v)],
we binary search on the edge (u, v) to find the desired location. Each prefix computation
needs O(logcm) time. Thus, the total time required is O(logc+1 m). Since the number of
FP comparisons is O(logm), the probability of a false positive is O( logm

mλ
) = m−O(1). J

Proof of Lemma 14. Construct the suffix tree STi for each suffix starting at a location lying
in the set Ii = {i, i+ τ, i+ 2τ, . . . }. Now, create the navigation trie STi(u) of every node u.
The total time needed is O(n+ n

τ log n
τ ). Each edge in STi or a navigation trie has pointers

sp and ep to X. Use Lemma 17 to compute and store (i) q|path(w)| mod p for each node w in
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STi, and (ii) qsp mod p for each edge. Likewise, we compute and store the values for each
node and edge in every navigation trie. We maintain an array Aj which stores the values qj
mod p, qj+τ mod p, qj+2τ mod p, . . . . Initially, the array is maintained for j = 2 if i = 1,
and for j = 1, otherwise. As described in Lemma 17, the total time needed is O(n). The
construction space and that needed for storage are both bounded by O(n/τ) words.

Using Fact 15, we compute and store Φ(X[1, i]) for every i ∈ {1, 1+logc n, 1+2 logc n, . . . }
in O(n) time. The space needed is 1 + n/ logc n words. Compute the FP of the first τ -
characters of the edge label in STi; this is achieved in O(logc n) time. Use a perfect hash
function [10] at each node for selecting the correct outgoing edge based on the computed FP.
The total time and space needed to incorporate this information is O((n/τ) logc n). Finally,
we maintain the probabilistic z-fast trie of Fact 16 for each navigation trie. This can be
created as described in Lemma 17. Incorporating the probabilistic data structure for all
navigation tries requires O(n+ n

τ (log n
τ + logc n)) time.

Summarizing, the space needed to maintain the data structure comprising of STi, the
navigation tries and their adjoining z-fast tries is n/ logc n+O(n/τ) words. Moreover, the
data structure is constructed in O(n+ n

τ (log n
τ +logc n)) time using n/ logc n+O(n/τ) words.

Now, we start matching X in STi starting with j = 1 if i > 1, and with j = 2, otherwise.
To traverse STi, suppose we are at a node u, and have read up to position j′ in X. Use
Φ(X[j′ + 1, j′ + τ ]) to select a correct outgoing edge (if any). This is achieved in O(logc n)
time first by computing the FP using the array Aj , and then using perfect hashing. Similarly,
we can traverse every τ characters on an edge in STi in O(logc n) time. We do this until we
find a failure, or reach a child v of u. In the latter case, we mark v’s corresponding leaf `∗ in
STi(u), update ∆(`∗), and continue matching from v. In the former case, use Lemma 17 to
mark the correct node w∗ in STi(u) and update ∆(w∗) in O(logc+1 n) time. Now, follow the
suffix link of u. The correct position to start matching in an outgoing edge of Ψ(u) in STi
can be found in O(logc n) time. Continue, until the entire string X has been processed. The
total time needed is O(nτ logc+1 n). Now, we repeat the process with (j + 1) if i 6= (j + 1),
and with (j + 2), otherwise. The array Aj can be updated in O(n/τ) time to Aj+1 or Aj+2,
as the case is. The number of times this process is repeated is (τ − 1). Finally, for each
i′ ∈ Ii, we can compute LSi′ as described in Section 2.1 in O(n/τ) time. Hence, the total
time needed is O(n logc+1 n+ n

τ (log n
τ + logc n)) = O(n logc+1 n).

Note that if two strings are identical, then their FP values are necessarily the same.
Hence, each LSi′ is definitely unique, but may not be the shortest. The number of queries to
a z-fast trie, or a FP comparison are both bounded by O(n logn). Therefore, the probability
of an error is n−O(1) (achieved by appropriately choosing λ in Facts 15 and 16). J

Wrapping Up. As in Theorem 7, we will invoke Lemma 14 by rotating the choices of
i ∈ [1, τ ]. Finally, we compute the LSj values for j ∈ [n− τ + 2, n] as follows. Maintain the
FP of every logc n prefix of X[n− τ + 2, n]. Now to find LSj , binary search at each position
(other than j) of X with the suffix starting at j to find the longest repeating prefix. The FP
of a prefix of any of these suffixes (resp. of a suffix in X) is obtained in O(logc τ) time (resp.
O(logc n) time). The number of binary search operations is O(log τ). Thus, the overall time
is bounded by O(nτ(logc n) log τ) = O(nτ logc+1 n).

The discussion in this section and the techniques used in proving Theorems 7 prove the
first part of Theorem 13 for computing Sk for a single k. The latter part of the theorem is a
consequence of Corollary 12, which follows from the proof of Theorem 9. However, one needs
to be a little more careful while carrying out the steps in Theorem 9 because the relation
|LSi| ≤ |LSi+1|+ 1 in Observation 8 maybe violated due to false positives in FP matches.



A. Ganguly, W.-K. Hon, R. Shah, and S. V. Thankachan 34:11

Since no false negatives occur in FP matches, each computed LSi′ for any i′ is definitely
unique. Therefore, we can simply start from the rightmost i′ where |LSi′ | ≤ |LSi′+1|+ 1 is
violated and set |LSi′ | = |LSi′+1|+ 1 for each successive i′ from right to left. Observe that the
total number of changes to the binary strings B1 through B|I1| (see the proof of Theorem 9)
is at most 2n for each invoking of Lemma 14. Therefore, the total time needed to affect
these changes is O(nτ). Finally, the binary string B is again computed in O(n) time. The
rest of the steps remain the same as in the proof of Theorem 9. This completes the proof of
Theorem 13.

5 Maximal Unique Matches Problem

Let X1 and X2 be two strings of length n1 and n2 respectively, where n = n1 + n2. Each
character is drawn from a totally ordered alphabet Σ. We assume that X1 and X2 terminate
in two special characters $1 and $2 that does not appear anywhere else.

I Definition 18 (Maximal Unique Match). A Maximal Unique Match (MUM) of two strings
X1 and X2 is a string S that satisfies the following two properties: (i) S appears uniquely in
each string X1 and X2, and (ii) a left or right extension of S in X1 does not appear in X2.

I Problem 19. Given two strings X1 and X2, the task is to find the set S of all their maximal
unique matches. Each match is represented by its starting position in X1 and its length.

To the best of our knowledge, Problem 19 was formulated by Delcher et al. [6]. The main
motivation was its importance in aligning whole genome sequences consisting of millions
of nucleotides. They presented a software known as MUMmer 1.0. Further improvements
by Delcher et al. [7] and then by Kurtz et al. [17] lead to MUMmer 2.0 and MUMmer 3.0
respectively. The chief component of all these softwares (and underlying algorithm) is the
(generalized) suffix trees (GST) – a compacted trie storing all the suffixes of X1 and X2, and
occupying Θ(n) words. The following is the key observation.

I Observation 20. Given two strings X1 and X2 and their GST, a string S is an MUM
iff
(a) There exists a node v in the GST such that S = path(v). Moreover, v has exactly two

children (leaves), each labeled by a suffix from X1 and X2.
(b) There does not exist a node u which simultaneously satisfies: (i) u has a suffix link to v,

and (ii) u has exactly two children (leaves) that are labeled by suffixes from X1 and X2.

The GST of X1 and X2 can be built in O(n) time using the algorithm of Farach-Colton [8],
and leads to a simple O(n)-space and O(n)-time algorithm for Problem 19. The basic idea
to reduce the space is to build a GST only on n1/τ suffixes of X1 and n2/τ suffixes of X2 at
a time. This reduces the space to O(n/τ) words. By rotating the choice of n2/τ suffixes in
X2 roughly τ times, we will be able to determine the candidate set (i.e., a set containing the
MUMs) among the n1/τ suffixes of X1. Using the next set of n1/τ suffixes of X1, we will
be able to remove the incorrect choices from the candidate set. This idea, coupled with the
techniques for the SUS problem, leads to the following theorem.

I Theorem 21. Given X1 and X2, we can compute the set S (i) in O(nτ2 log n
τ ) time

using additional O(n/τ) words of working space, and (ii) correctly with high probability in
O(nτ logc+1 n) time using additional n/ logc n+O(n/τ) words of working space.
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Abstract
We introduce the subset assignment problem in which items of varying sizes are placed in a set
of bins with limited capacity. Items can be replicated and placed in any subset of the bins. Each
(item, subset) pair has an associated cost. Not assigning an item to any of the bins is not free in
general and can potentially be the most expensive option. The goal is to minimize the total cost
of assigning items to subsets without exceeding the bin capacities. This problem is motivated
by the design of caching systems composed of banks of memory with varying cost/performance
specifications. The ability to replicate a data item in more than one memory bank can benefit
the overall performance of the system with a faster recovery time in the event of a memory failure.
For this setting, the number n of data objects (items) is very large and the number d of memory
banks (bins) is a small constant (on the order of 3 or 4). Therefore, the goal is to determine
an optimal assignment in time that minimizes dependence on n. The integral version of this
problem is NP-hard since it is a generalization of the knapsack problem. We focus on an efficient
solution to the LP relaxation as the number of fractionally assigned items will be at most d. If
the data objects are small with respect to the size of the memory banks, the effect of excluding
the fractionally assigned data items from the cache will be small. We give an algorithm that
solves the LP relaxation and runs in time O(

( 3d

d+1
)

poly(d)n log(n) log(nC) log(Z)), where Z is
the maximum item size and C the maximum storage cost.
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1 Introduction

We define a combinatorial optimization problem which we call the subset assignment problem.
An instance of this problem consists of n items of varying sizes and d bins of varying capacities.
Any item can be replicated and assigned to multiple bins. A problem instance also includes
n · 2d cost parameters which denote for each item and each subset of the bins, the cost of
storing copies of the item on that subset of the bins. The objective is to find an assignment
of items to subsets of bins which minimizes the total cost subject to the constraint that the
sum of the sizes of items assigned to each bin does not exceed the capacity of the bin.

© Shahram Ghandeharizadeh, Sandy Irani, and Jenny Lam;
licensed under Creative Commons License CC-BY

27th International Symposium on Algorithms and Computation (ISAAC 2016).
Editor: Seok-Hee Hong; Article No. 35; pp. 35:1–35:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ISAAC.2016.35
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


35:2 The Subset Assignment Problem for Data Placement in Caches

The costs do not necessarily exhibit any special properties, although we do assume that
they are non-negative. For example, we do not assume that cost necessarily increases or
decreases the more bins an item is assigned to. Assigning an item to the empty set, which
corresponds to not assigning the item to any of the bins, is not free in general and can
potentially be the most expensive option for an item.

The subset assignment problem is a natural generalization of the multiple knapsack
problem (MKP), in which each item can only be stored on a single bin. The book by Martello
and Toth [17] and the more recent book by Kellerer et al. [14] both devote a chapter to
MKP. A restricted version of the subset assignment problem in which each item can only
be stored in a single bin corresponds to the multiple knapsack problem (MKP). MKP is
known to be NP-complete but does have a polynomial time approximation scheme [5]. For
the application we are interested in, the number of items n is very large (on the order of
billions) and the number of bins is a small constant (on the order of 3 or 4). Furthermore,
the size of even the largest item is small with respect to the capacity of the bins. Since there
is an optimal solution for the linear programming relaxation in which at most d items are
fractionally placed, the effect of excluding the fractionally assigned items from the cache is
negligible. Therefore, we focus on an efficient solution to the linear programming relaxation.

The linear relaxation of MKP can be expressed as a minimum cost flow on a bipartite
graph, a classic and well studied problem in the literature [1]. Tighter analysis for the case of
minimum cost flow on an imbalanced bipartite graph (n >> d) is given in [11] and improved
in [2]. Naturally, the goal with highly imbalanced bipartite graphs (which corresponds to
the situation in the subset assignment problem in which the number of items is much larger
than the number of bins) is to minimize dependence on n, even at the expense of greater
dependence on d.

We propose an algorithm for the linear programming relaxation of the subset assignment
problem that is similar in structure to cycle canceling algorithms for min-cost flow and is
also inspired by the concept of a bipush, which is central to the tighter analysis [11] and [2].
The analysis shows that our algorithm runs in O(f(d) poly(d)n log(n) log(nC) log(Z)), where
C is the maximum cost of storing an item on any subset of the bins and Z is the maximum
size of any item. The full details of this analysis are available in [10]. The function f(d) is
defined to be the number of distinct sets of vectors {~v1, . . . , ~vr} where ~vi ∈ {−1, 0, 1}d and
the solution ~α to the equation

∑r
i=1 αi~vi = ~0 with α1 = 1 is unique and positive (~α > 0). In

order for the solution ~α to be unique, the first r − 1 vectors must be linearly independent
and therefore r ≤ d + 1. If r < d + 1, the set can be uniquely expanded to a set of size
d + 1 such that the solution to

∑r
i=1 αi~vi = ~0 with α1 = 1 is unique and non-negative

(~α ≥ 0). This observation gives an upper bound of
( 3d

d+1
)
for f(d), hence the running time of

O(
( 3d

d+1
)

poly(d)n log(n) log(nC) log(Z)). Numerical simulation has shown that f(3) = 778
and f(4) = 531, 319. Since the problem specification requires n · 2d cost parameters, an
exponential dependence on d is unavoidable. A direction for future research is to reduce the
dependence on d from exponential in d2 to exponential in d.

A reasonable assumption for the cache assignment problem (the motivating application
for the subset assignment problem) is that it is never advantageous to replicate an item in
more than two bins. Under this assumption, the vectors can have at most 4 non-zero entries
and therefore the function f(d) is bounded by dO(d) poly(d) resulting in an overall running
time of O(dO(d) poly(d)n log(n) log(nC) log(Z)).

In a linear programming formulation of the problem there are 2dn variables and n+ d

constraints. The best polynomial time algorithms to solve a general instance of linear
programming require time at least cubic in n which for the values we consider is prohibitively
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large. (For example, Karmarkar’s algorithm requires O(N3.5L) operations in which N is
the number of variables and all input numbers can be encoded with O(L) digits [13].) Our
algorithm is closer to the Simplex algorithm in that after each iteration, the current solution
is a basic feasible solution. However, the algorithm does not necessarily traverse the edges
of the simplex. The algorithm selects an optimal local improvement which, in general, can
result in a solution which is not a basic feasible solution and then restore the solution to a
basic feasible solution without increasing the cost. It is not clear how to bound the running
time of any implementation of the Simplex algorithm in which the algorithm is bound to
traverse edges of the simplex. Since the problem can be formulated as a packing problem,
there is a randomized approximation algorithm whose solution is within a factor of 1 + ε of
optimal and whose running time is O(2d poly(d)n logn/ε2) [16].

1.1 Motivation
The subset assignment problem is motivated by the problem of managing a multi-level cache.
Although caches are used in many different contexts, we are particularly interested in the use
of caches to augment database management systems. Query results (called key-value pairs)
are stored in the cache so that the next time the query is issued, the result can be retrieved
from memory instead of recomputed from scratch. Typically key-value pairs vary in size as
they contain different types of data. Furthermore, re-computation can vary dramatically,
depending on the application. In some applications, a key-value pair is the result of hours of
data-intensive computation. If the key-value pair does not reside in the cache (corresponding
to allocating the item to the empty set in our formulation), this computation cost would
be paid every time the key-value pair is accessed. Memcached, currently the most popular
key-value store manager, is used by companies such as Facebook [19], Twitter and Wikipedia.
Today’s memcached uses DRAM for fast storage and retrieval of key-value pairs. However,
using a cache that consists of a collection of memory banks with different characteristics can
potentially improve cost or performance [7].

We model a sequence of requests to data items (key-value pairs) in the cache as a stream
of independent events as do social networking benchmarks such as BG [4] and LinkBench [3].
Cache management (or paging) under i.i.d. request sequences is also well studied in the
theory literature [20, 12]. If query and update (read and write) statistics are known in
advance, the optimal policy is a static placement of data items in the memory banks that
minimizes the expected time to service each request. A static placement can have much
better performance over adaptive online algorithms if the request frequencies are stable
[9, 8]. Since the popularity of queries do vary over time, a static placement would need to be
recomputed periodically based on recent statistics followed with a reorganization of key-value
pairs across memory banks.

With the advent of Non-Volatile Memory (NVM) such as PCM, STT-RAM, NAND
Flash, and the (soon to be released) Intel X-Point, cache designers are provided with a wider
selection of memory types with different performance, cost and reliability characteristics.
The relative read/write latency and bandwidth for different memory types vary considerably.

An important challenge in computer system design is how to effectively design caching
middleware that leverages these new choices [15, 7, 18]. The survey in [18] makes the case
that the advent of new storage technologies significantly changes the standard assumptions in
system design and leveraging such technologies will require more sophisticated workload-aware
storage tiering.

In this paper, the cache is composed of a small number of memory banks each of which
is a different type of memory. The goal is to find an optimal placement of data items in
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the cache. Our model also takes into account that a memory bank can fail due to a power
outage or hardware failure. (Non-volatile memories do not lose their content during a power
outage but they can experience hardware failures). If a memory bank fails, its contents must
be restored, either all at once or over time. In this case, it may be advantageous to store a
data item on more than one memory bank so that the data can be more easily recovered in
the event that one or more memory banks fail. On the other hand, maintaining multiple
copies of a key-value pair can be costly if they must be frequently updated. We express these
different trade-offs in an optimization problem by allowing a key-value pair to be replicated
and stored on any subset of the memory banks. The ∅ option represents not keeping the
key-value pair in the cache at all and recomputing the result from the database at every
query, an option that can be computationally very costly. Simulation results from [7] show
that it can be advantageous to store copies of data items in more than one memory bank to
speed up recovery time, although it depends on the read and write frequencies of the data
items as well as the failure rates of the memory.

[7] gives a detailed description for how the memory parameters and request frequencies
translate into costs and uses the model to study a closely related problem in which one is
given a fixed budget as well as the price for the different types of memory. The goal is to
determine the optimal amount of each type of memory to purchase as well as the optimal
placement of key-value pairs to memory banks that minimizes expected service time subject
to the overall budget constraint. The algorithm in [7] is implemented and evaluated using
traces generated by a standard social networking benchmark [4]. In this paper, we consider
the situation in which the design of the cache is already determined in that there is a set of
memory banks whose capacities are given as part of the problem input. The goal is to place
each item on a subset of the memory banks so that the capacities of each memory bank is
not exceeded and the total cost is minimized.

In both cases, the objective function is expected service time for all the items. The cost of
serving an item p located on subset S of the memory banks is a sum of three terms: the total
expected time to serve read requests to p, the total expected time to serve write requests to
p, and the total expected time needed to restore p in the event that one or more memory
bank in S fails. More explicitly:

cost(p, S) = read-freq(p) · read-time(p, S)
+ write-freq(p) · write-time(p, S)

+
∑

F

fail-freq(F ) ·
(
read-time(p, S \ F ) + write-time(p, F ∩ S).

)
The functions read-freq(p) and write-freq(p) represent the probability of a read or write
request to p. The function fail-freq(F ) is the probability that all the memory banks in subset
F fail. On a request to read an item p, item p can be obtained from any of the copies of p in
the cache. Therefore, read-time(p, S) represents the time to read p from the memory bank
in S that provides the fastest read time. The time to read a data item from a memory bank
depends on the size of the item as well as the latency and bandwidth for reading from that
type of memory. Updating an item, on the other hand, requires updating every copy of that
item in the cache. Therefore, write-time(p, S) is the maximum time to write p to any of the
memory banks in S, assuming that writing p to its multiple destinations is done in parallel.
(If writing is done sequentially, then write-time(p, S) is the sum of the write times over all
the memory banks in S). The time to write a data item to a memory bank depends on the
size of the item as well as the latency and bandwidth for writing to that type of memory.
Recovering from failure could involve reading from those memory banks that still have a
copy of p and rewriting them to those that lost it.
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Since the relative read/write frequencies for items and read/write times for memories
vary significantly, there is no useful structure to exploit in modeling the cost of assigning an
item to a subset which is why they are assumed to be arbitrary values given as part of the
input to the subset assignment problem. However, based on the empirical failure rates of the
memory technologies, it is reasonable to assume that two memory banks will never fail at
the same time. Under this assumption, there is no need to keep more than two copies of an
item in the cache and we can restrict the data placements for an item to subsets of size one
or two. The problem is addressed in this paper in its full generality although a better bound
on the running time can be obtained with this restriction.

2 Problem Definition

There are n items and each item p has a given size(p). There are d bins B = {b1, . . . , bd}.
Each bin b has a given capacity(b). An item can be replicated and placed on any subset of
the memory banks S ⊆ B. We call S a placement option for an item. Placing p on S has
cost denoted by cost(p, S) ≥ 0. A placement of items to memory banks is described by a set
of n · 2d variables x(p, S) ≥ 0 with the constraint that for each p,∑

S

x(p, S) = size(p). (1)

Also the capacity of each bin cannot be exceeded, so for each b,∑
S3b

∑
p

x(p, S) ≤ capacity(b). (2)

The goal is to minimize∑
p

∑
S

cost(p, S)x(p, S),

subject to the condition that all x(p, S) ≥ 0, (1) and (2) above.
The placement option ∅, corresponding to not placing an item in any of the bins, is an

option for every p, so the problem always has a feasible solution. For each bin b, we will add
an extra item p whose size is capacity(b). For each added p, cost(p,∅) = cost(p, {b}) = 0.
For all other S ⊆ B, cost(p, S) =∞. We assume that the pages are numbered so that the
extra item for bin bi is pi. With the additional items, we can assume that every solution
under consideration has every bin filled exactly to capacity since any extra space in bi can be
filled with pi without changing the cost of the solution. Therefore we require that for each b,∑

S3b

∑
p x(p, S) = capacity(b). An assignment which satisfies the equality constraints on

the bins is called perfectly filled.

3 Preliminaries

Our algorithm starts with a feasible, perfectly filled solution and improves the assignment
in a series of small steps, called augmentations. The augmentations, a generalization of a
negative cycle in min-cost flow, always maintain the condition that the current assignment
is feasible and perfectly filled. In each iteration the algorithm finds an augmentation that
approximates the best possible augmentation in terms of the overall improvement in cost.
An augmentation is a linear combination of moves in which mass is moved from x(p, S)
to x(p, T ) for some item p. Each move gives rise to a d-dimensional vector over {−1, 0, 1}
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that denotes the net increase or decrease to each bin as a result of the move. We require
that the linear combination of vectors for an augmentation equal ~0 in order to maintain
the condition that the bins are perfectly filled. The profile for an augmentation is the
set of vectors corresponding to the moves in that augmentation. In order to find a good
augmentation, we exhaustively search over all profiles and then find a good set of actual
moves that correspond to each profile. Exhaustively searching over all profiles introduces a
factor of f(d), the number of distinct profiles which is at most

( 3d

d+1
)
.

In order to bound the number of iterations, we also need to establish that there is an
augmentation that improves the cost by a significant factor. For flows, this is accomplished
by showing that the difference between the current solution and the optimal solution can be
decomposed into at most m simple cycles, where m is the number of edges in the network. If
∆ is the difference between the current and optimal cost, then there is a cycle that improves
the cost by at least ∆/m. We proceed in a similar way, showing that the difference between
two assignments can be decomposed into at most 2(n+ d) augmentations any of which can
be applied to the current assignment. Therefore there is an augmentation that improves the
cost by at least ∆/2(n+ d).

3.1 Augmentations
For S ⊆ B, ~S is a d-dimensional vector whose ith coordinate is 1 if bi ∈ S and is 0 otherwise.
Let V be the set of all length d vectors over {−1, 0, 1}. A set V ⊆ V is said to be minimally
dependent if V is linearly dependent and no proper subset of V is linearly dependent. If
V = {~v1, . . . , ~vr} is minimally dependent, then the values α1, . . . , αr such that

∑r
i=1 αi~vi = ~0

are unique up to a global constant factor. In order to make a unique vector ~α, we always
maintain the convention that α1 = 1. A minimally dependent set V is said to be positive if
the associated vector ~α > ~0.

A move is defined by a triplet (p, S, T ) that represents the possibility of moving mass
from x(p, S) to x(p, T ). The profile for a set of moves {(p1, S1, T1), . . . , (pr, Sr, Tr)} is the set
of vectors {(~T1 − ~S1), . . . , (~Tr − ~Sr)}. Note that the vector ~T − ~S represents the net increase
or decrease to each bin that results from moving one unit of mass from x(p, S) to x(p, T )
for some p. A set of moves is called an augmentation if the set of vectors in its profile is
minimally dependent and positive. Note that an augmentation contains at most d+ 1 moves.

An augmentation A = {(p1, S1, T1), . . . , (pr, Sr, Tr)} can be applied to a particular
assignment ~x if for every i = 1, . . . r, x(pi, Si) > 0. Let ~α be the unique vector of values
such that α1 = 1 and

∑r
j=1 αj(~Tj − ~Sj) = ~0. If the augmentation is applied with magnitude

a to ~x, then for every (pj , Sj , Tj) ∈ A, x(pj , Sj) is replaced with x(pj , Sj) − aαj and
x(pj , Tj) is replaced with x(pj , Tj) + aαj . The cost vector for an augmentation is ~c, where
cj = cost(pj , Tj)− cost(pj , Sj). The cost associated with applying the augmentation with
magnitude a is a(~c · ~α). Since the goal is to minimize the cost, we only apply augmentations
whose cost is negative.

For augmentation A = {(p1, S1, T1), . . . , (pr, Sr, Tr)}, let S(A) be the set of all pairs
(p, S) such that for some i, p = pi and S = Si. For each (p, S) ∈ S(A), define

α(p, S) =
∑

i:pi=p,Si=S

αi.

The maximum magnitude with which the augmentation A can be applied to ~x is

min
(p,S)∈S(A)

x(p, S)
α(p, S) .
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The following lemma is analogous to the fact for flows that says there is always a cycle in
the network representing the difference between two feasible flows. The proof is given in the
full version of the paper.

I Lemma 1. Let ~x and ~y be two feasible, perfectly filled assignments to the same instance of
the subset assignment problem. Then there is an augmentation that can be applied to ~x that
consists only of moves of the form (p, S, T ) where x(p, S) > y(p, S) and x(p, T ) < y(p, T ).

3.2 Basic Feasible Assignments
An item is said to be fractionally assigned if there are two subsets S 6= S′, such that
x(p, S) > 0 and x(p, S′) > 0. If items can only be assigned to single bins as in the standard
assignment problem, then it follows from total unimodularity that the optimal solution is
integral, assuming that all the input values are integers. For the subset assignment problem,
the optimal solution may not be integral, even if all the input values are integers. Here is an
example in which the item sizes and bin capacities are 1, but an optimal solution must have
fractionally assigned items: we have two items p and q and two bins b and c with costs

cost(p,∅) = 1, cost(p, {b, c}) = 0, cost(q,∅) = cost(q, {b, c}) = C,

cost(p, {b}) = cost(p, {c}) = C, cost(q, {b}) = cost(q, {c}) = 0,

where C is a large number. The optimal assignment is to equally distribute p over {b, c} and
∅, and to equally distribute q over {b} and {c}.

The linear programming formulation of the subset assignment problem has n+d constraints.
n constraints enforce that each p must be assigned:

∑
S x(p, S) = size(p). The other d

constraints, say that each bin must be exactly filled to capacity. Therefore, any basic feasible
solution to the linear programming formulation of the subset assignment problem has at
most n+ d non-zero variables. Since for every p, there is at least one S such that x(p, S) > 0
and n >> d, we know at least n− d of the items will not be fractionally assigned because
they have only one S such that x(p, S) > 0. The number of variables x(p, S) such that
0 < x(p, S) < size(p) is at most 2d, so the number of fractionally assigned items is at most d.

The criteria for a feasible solution to be a basic feasible solution is that once the variables
are chosen that will be positive, there is exactly one way to assign values to those variables
so that all the constraints are satisfied. Suppose we have a feasible assignment ~x. First place
the items in bins that are not fractionally assigned. If ~x is a basic feasible solution, then
there is a unique way to place the remaining items so that the bins are filled exactly to
capacity. We rephrase the definition of a basic feasible solution in the language of the subset
assignment problem and prove the same facts about the new definition.

Consider a feasible assignment ~x. Let Pfrac be the set of data items that are fractionally
assigned. Let Xfrac be the set of variables x(p, S) such that 0 < x(p, S) < size(p). Let
Pint be the set of items that are assigned to exactly one subset. That is p ∈ Pint if
x(p, S) ∈ {0, size(p)} for all S.

I Definition 2. For each p ∈ Pfrac select one S such that x(p, S) > 0. Denote the selected set
for p by Sp. Let X be the set of variables x(p, S) such that S 6= Sp and 0 < x(p, S) < size(p).
Let V be the set of vectors ~S− ~Sp for each x(p, S) ∈ X. Then ~x is a basic feasible assignment
(bfa) if and only if V is linearly independent.

Although the definition for a basic feasible assignment was given in terms of a particular
choice of Sp’s, the property of being a bfa does not depend on this choice.
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I Lemma 3. The condition of being a bfa does not depend on the choice of Sp, for p ∈ Pfrac.

Proof. Let p ∈ Pfrac and let {S1, . . . , Sr} be the subsets such that x(p, Sj) > 0. Suppose
that Sp is chosen to be Si. Select any two Sj 6= Sk. Since (~Sj − ~Sk) = (~Sj − ~Sp)− (~Sk − ~Sp),
the space spanned by all (~Sj − ~Sk) for Sj 6= Sk is equal to the space spanned by all (~Sj − ~Sp)
for Sj 6= Sp. The space spanned by all (~Sj − ~Sk) 6= ~0 is independent of the choice of Sp. J

I Lemma 4. If ~x is a bfa, then the number of variables in Xfrac is at most 2d and the
number of fractionally assigned items is at most d.

Proof. Since |X| = |V |, and V must be linearly independent for any bfa, it must be that if
~x is a bfa, then |X| ≤ d. The set of fractionally assigned variables (Xfrac) includes all the
x(p, Sp) for p ∈ Pfrac and X. For each x(p, Sp), there is at least one variable in X. Therefore
the number of variables such that 0 < x(p, S) < size(p) in any bfa is at most 2d. J

The process Restore, given in [10], takes an assignment ~x which may not be a bfa and
restores it to an assignment which is a bfa. The process maintains the condition that the
current assignment is feasible and perfectly filled. If the set V is linearly dependent, a linear
combination of the moves (p, Sp, S) is chosen for each x(p, S) ∈ X such that applying the
linear combination of moves keeps the bins perfectly filled. Since p has some weight on Sp

and some weight on S, all the moves can be applied in either the forward or reverse direction.
(A negative coefficient denotes applying a move in the reverse direction.) We pick a direction
for the linear combination of moves such that the cost does not increase. The combination of
moves is applied until either x(p, S) or x(p, Sp) becomes 0 for one of the moves represented in
V . Thus, the cost of the assignment does not increase and the number of fractionally assigned
variables decreases by at least one. The process continues until V is linearly independent.

I Lemma 5. There is an optimal solution that is also a bfa.

Proof. Start with an optimal assignment ~x which may not be a bfa. Apply Restore to ~x. The
resulting assignment is a bfa. And since the cost of ~x does not increase, ~x is still optimal. J

4 The Algorithm

The algorithm we present proceeds in a series of iterations. In each iteration, we apply an
augmentation to the current assignment. Since the resulting assignment may no longer be a
bfa, we then apply Restore to turn the solution back into a bfa.

Algorithm 1 MainLoop
x(p, S) = 0, for all p and S.
x(pi, {bi}) = capacity(bi), for i = 1, . . . , d. (Fill each bin with the “extra” items.)
x(pj ,∅) = size(pj), for j > d. (All the “original” items start outside the bins.)
P = Preprocess(d)
A = FindAugmentation(~x)
while A 6= ∅

Apply A to ~x with the largest possible magnitude
Restore(~x). (Transform ~x into a bfa.)
A = FindAugmentation(~x)

Note that it is possible to find an augmentation that moves from a bfa to another
bfa directly. This is essentially what the simplex algorithm does. However, not every
augmentation results in a bfa. The augmentations that do result in a bfa must include the
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moves that shift mass between the fractionally assigned items. (These moves correspond to
the vectors V described in the definition of a bfa). Restricting the augmentation in this way
may result in a sub-optimal augmentation. For example, those augmentations could require
decreasing a variable that is already very small in which case the augmentation can not be
applied with very large magnitude. So we allow the algorithm to select from the set of all
augmentations to get as much benefit as possible, and then move the assignment to a bfa.

4.1 Finding an augmentation that is close to the best possible
The first step is a preprocessing step in which every possible augmentation profile is generated.
This consists of generating every minimally dependent subset V of V and its associated ~α.
Preprocess (shown in the full version [10] of this paper) runs in time O(

( 3d

d+1
)

poly(d)). The
number of distinct augmentation profiles returned by the procedure is at most

( 3d

d+1
)
.

Given an augmentation profile V = {~v1, . . . , ~vr}, the goal is to find an augmentation
whose profile matches V and can be applied with a magnitude that gives close to the best
possible improvement. For each vector ~v ∈ V, we maintain a data structure with every
move (p, S, T ) such that ~T − ~S = ~v and x(p, S) > 0. We will call the set of all such moves
Moves(~v). The data structure should be able to answer queries of the form: given x0, find
the move (p, S, T ) such that cost(p, T )− cost(p, S) is minimized subject to the condition that
x(p, S) ≥ x0. These kind of queries can be handled by an augmented binary search tree in
logarithmic time [6].

For a given bfa ~x and augmentation A, one can calculate the maximum possible magnitude
a with which A can be applied to ~x. We will make use of upper and lower bounds for the
value a for any augmentation and bfa combination. Call these values amax and amin. Round
amin down so that amax/amin is a power of 2. The while loop in procedure FindAugmentation
runs for log(amax/amin) iterations.

Algorithm 2 FindAugmentation(~x)
BestCost = 0
A = ∅
for each augmentation profile V = {~v1, . . . , ~vr} and vector ~α

a = amax/2
while a ≥ amin

for i = 1, . . . , r
Let (pi, Si, Ti) be the move with the smallest cost among moves in

Moves(~vi) such that x(pi, Si) ≥ a · αi.
ci = cost(pi, Ti)− cost(pi, Si)

CurrentCost =
∑r

i=1 a · ci · αi

if CurrentCost < BestCost
BestCost = CurrentCost
A = {(p1, S1, T1), . . . , (pr, Sr, Tr)}

a = a/2
return A

For an augmentation A that can be applied to assignment ~x with magnitude a, the total
change in cost is denoted by cost(A, ~x, a). Recall that since we are minimizing cost we will
only apply an augmentation if the total change in cost is less than 0.

I Lemma 6. Let A1 be the augmentation returned by FindAugmentation(~x) and A2 be another
augmentation. If a1 and a2 are the maximum magnitudes with which A1 and A2 can be
applied to ~x, then 2d · cost(A1, ~x, a1) ≤ cost(A2, ~x, a2).
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Proof. Let V2 be the profile for A2. Let ~α be the vector associated with the profile
V2. Let ā be the value of the form amax/2j such that 2ā > a2 ≥ ā. There is an itera-
tion inside the while loop of FindAugmentation(~x) in which the augmentation profile is V2
and the value for a is ā. The augmentation constructed in this iteration will be called
V3. The moves in A2 are {(p(2)

1 , S
(2)
1 , T

(2)
1 ), . . . , (p(2)

r , S
(2)
r , T

(2)
r )}. The moves in A3 are

{(p(3)
1 , S

(3)
1 , T

(3)
1 ), . . . , (p(3)

r , S
(3)
r , T

(3)
r )}. Note that since V2 can be applied to ~x with mag-

nitude a2, it must be the case that for i = 1, . . . , r, x(p(2)
i , S

(2)
i ) ≥ αia2 because applying the

moves involves removing αia2 from x(p(2)
i , S

(2)
i ). Since a2 ≥ ā, x(p(2)

i , S
(2)
i ) ≥ αiā. The move

(p(3)
i , S

(3)
i , T

(3)
i ) is chosen to be the move with minimum cost such that x(p(3)

i , S
(3)
i ) ≥ αiā.

Therefore the cost of (p(3)
i , S

(3)
i , T

(3)
i ) is at most the cost of (p(2)

i , S
(2)
i , T

(2)
i ). The value of

the variable CurrentCost for that iteration is

CurrentCost3 = ā

r∑
i=1

αi

[
cost(p(3)

i , T
(3)
i )− cost(p(2)

i , S
(3)
i )
]

≤ ā

r∑
i=1

αi

[
cost(p(2)

i , T
(2)
i )− cost(p(2)

i , S
(2)
i )
]

≤ a2

2

r∑
i=1

αi

[
cost(p(2)

i , T
(2)
i − cost(p(2)

i , S
(2)
i )
]

= 1
2 cost(A2, ~x, a2)

Let CurrentCost1 be the value of the variable CurrentCost and a′ the value of the variable
a during the iteration in which the augmentation A1 is considered. Since A1 was selected
by FindAugmentation, CurrentCost1 ≤ CurrentCost3. It remains to show that the maximum
magnitude with which A1 can be applied is at least a′/d and therefore the actual change in
cost at most CurrentCost1/d.

Let V1 be the profile for A1 and let ~β be the vector associated with profile V1. Since we
are now only referring to one augmentation, we omit the subscripts and call the moves in
A = {(p1, S1, T1), . . . , (pr, Sr, Tr)}. We are guaranteed by the selection of the move (pi, Si, Ti)
that for every i, x(pi, Si)/βi ≥ a′. Let βsump,S and βmax

p,S denote the sum and maximum over
all βi such that pi = p and Si = S. The value of a1, the maximum value with which A can
be applied, is equal to x(p, S)/βp,S for some pair (p, S). We have

a1 = x(p, S)
βsump,S

≥ x(p, S)
d · βmax

p,S

≥ a′

d
. J

4.2 Number of iterations of the main loop
The procedure FindAugmentation takes a bfa ~x and returns an augmentation that reduces
the cost of the current solution by an amount which is within Ω(1/d) of the best possible
augmentation that can be applied to ~x. In order to bound the number iterations of the main
loop, we need to show that there always is a good augmentation that can be applied to ~x
that moves it towards an optimal solution. The idea is that for any two assignments ~x and ~y,
~x can be transformed into ~y by applying a sequence of augmentations. Each augmentation
decreases the number of variables in which ~x and ~y differ by one. Since the number of
non-zero variables in any bfa is at most n+ d, there are at most 2(n+ d) augmentations in
the sequence. Thus, if the difference in cost between ~y and ~x is ∆, one of the augmentations
will decrease the cost by at least ∆/2(n+ d). The idea is analogous to the partitioning the
difference between two min cost flows into a set of disjoint cycles. Some additional work is
required to establish that the chosen augmentation can be applied with sufficient magnitude.

The proofs of Lemmas 7, 8, 9 and 10 are given in the full version [10] of the paper.
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I Lemma 7. Let ~x be a bfa for an instance of the subset assignment problem and let ∆ be
the difference in the objective function between ~x and the optimal solution. Then there is an
augmentation A such that when A is applied to ~x with the maximum possible magnitude, the
cost drops by at least ∆/2(n+ d).

In order to bound the number of iterations in the main loop, we need to know the smallest
difference in cost between two assignments that have different cost.

I Lemma 8. If A is an invertible d× d matrix with entries in {−1, 0, 1} and ~b is a d-vector
with integer entries, then there is an integer ` ≤ dd/2 such that the solution ~x to A~x = ~b has
entries of the form k/` where k is an integer. Moreover, if ~b also has entries in {−1, 0, 1},
then the entries of x are at most equal to d.

The following bound comes from the fact that the fractionally assigned values are the
solution to a matrix equation with a d× d matrix over {−1, 0, 1}.

I Lemma 9. If ~x is a bfa, then there is an integer ` ≤ dd/2 such that every x(p, S) = k/`

for some integer k.

With this result, we can bound the number of iterations in our algorithm.

I Lemma 10. The number of iterations of the main loop is O(nd2 log(dnC)).

4.3 Analysis of the running time
The running time of Preprocess is dominated by the running time of the main loop, so
we just analyze the running time of the main loop. To bound the size of the augmented
binary search trees Moves(~v), observe that for each S, there is at most one T such that
~T − ~S = ~v. Therefore, the number of moves (p, S, T ) that can be stored in a single tree is
O(2dn). Updates are handled in logarithmic time, so the time per update to an entry in one
of the trees is O(d logn). Every time a variable x(p, S) changes, there are 2d subsets T such
that the move (p, S, T ) must be updated. In each iteration of the main loop there are O(d)
variable changes, resulting in a total update time of O(d22d logn).

By Lemma 4, the bfa at the beginning of an iteration has at most 2d fractionally assigned
variables. An augmentation consists of at most d+1 moves and therefore changes the value of
at most 2(d+ 1) variables. Thus, the input to Restore is an assignment with O(d) fractionally
assigned variables. Each iteration of Restore reduces the number of fractionally assigned
variables by at least one. Therefore, the number of iterations of Restore is bounded by O(d)
and the total time spent in Restore during an iteration is poly(d).

The inner loop of FindAugmentation requires O(d) queries to one of the augmented binary
search trees resulting in O(d2 logn) time for each iteration of the inner loop. The number
of times the inner loop is executed is log(amax/amin) times the number of augmentation
profiles, f(d). Therefore the running time of FindAugmentation dominates the running time
of an iteration of the main loop which is O(f(d)d2 logn log(amax/amin)). By Lemma 10, the
number of iterations of the main loop is O(nd2 log(dnC)), and since f(d) ≤

( 3d

d+1
)
, the total

running time is O(
( 3d

d+1
)
d4n logn(logn+ logC) log(amax/amin)). We now bound amax/amin:

I Lemma 11. The values of a are bounded above by amax = dd/2Z and below by amin =
1/dd/2+1, where Z = maxp size(p).

The proof of Lemma 11 is given in the full version [10]. Hence, we get that log(amax/amin)
is O(d2 log d logZ) and the total running time is O(

( 3d

d+1
)

poly(d)n log(n) log(nC) log(Z)).
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Abstract
In this paper, we investigate “gap problems”, which are promise problems where YES instances
are flexibly satisfiable in a certain sense, and NO instances are not satisfiable at all. These gap
problems generalise a family of constraint-related decision problems, including the constraint sat-
isfaction problem itself, the separation problem (can distinct variables be validly assigned distinct
values?) and the 2-robust satisfiability problem (does any assignment on two variables extend to
a full satisfying assignment?). We establish a Gap Trichotomy Theorem, which on Boolean do-
mains, completely classifies the complexity of the gap problems considered. As a consequence, we
obtain several well-known dichotomy results, as well as dichotomies for the separation problem
and the 2-robust satisfiability problem: all are either polynomial-time tractable or NP-complete.
Schaefer’s original dichotomy is a notable particular case.
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Keywords and phrases Constraint Satisfaction Problem, Robust satisfiability, Clone theory, Di-
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1 Introduction

Constraint Satisfaction Problems (CSPs) occur widely in practice, both as natural problems,
and as an underlying framework for constraint programming; see Tsang [23]. When the
template is restricted to some fixed finite domain, these problems still cover many important
practical problems as well as providing an important framework for theoretical considerations
in computational complexity. In the case of Boolean (2-element) domains, constraint problems
coincide with the SAT variants examined by Schaefer [20]. In his paper, Schaefer proved a
famous dichotomy: he showed that the complexity of CSPs over a fixed Boolean constraint
language is either decidable in polynomial time or is NP-complete. Since Schaefer’s seminal
contribution, there have been enormous advances toward a more general dichotomy for
constraint satisfaction problems on non-Boolean domains. In [10], Feder and Vardi argue
that fixed template CSPs emerge as the broadest natural class for which a dichotomy might
hold and propose the well-known Dichotomy Conjecture. Numerous extensions of Schaefer’s
result are now known. Amongst the broadest of these include the case of three-element
domains (Bulatov [7]), List Homomorphism Problems (Bulatov [8]), and the case of directed
graphs without sources and sinks (Barto, Kozik and Niven [4]).

In addition to direct extensions of Schaefer’s results, many variants of constraint satis-
faction problems have been shown to experience dichotomies like that of Schaefer’s, such
as counting CSPs [9] and balanced CSPs [21]. We explore computational complexity for
notions of “flexible satisfaction”: instead of asking for the existence of a single solution,
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one asks for enough solutions to satisfy a range of conditions. We focus in particular on
separability and robust satisfiability. The separation problem SEP asks if it is true that, for
every pair of distinct variables u and v, there is a solution giving u a different value to v.
The (k,F)-robust satisfiability problem asks if every compatible partial assignment on k

variables extends to a full solution. As explained in Jackson [13], the SEP condition arises
naturally in universal algebraic considerations, but is also closely related to problems without
a backbone: problems (typically SAT variants) where no variable is forced to take some fixed
value. Implicit constraints such as these are widely associated with computational difficulty;
see Monasson et al. [17] or Beacham and Culberson [5]. In the language of [5] for example, the
SEP condition corresponds to the unfrozenness of equality. The (k,F)-robustness condition
is an extension of a robustness condition of Abramsky, Gottlob and Kolaitis [1], who studied
robust satisfiability in relation to hidden-variable models in quantum mechanics and explicitly
invite the systematic study of the complexity of robust satisfiability for constraint problems.
In the present article, we completely classify the complexity of the (2,F)-robust problem
and the separation problem, in the case of Boolean domains.

Recall that for disjoint languages Y and N , the promise problem (Y,N) is the decision
problem for Y , where instances are promised to lie in Y ∪N ; see Goldreich [12] for example.
The problem (Y,N) is NP-hard if it is NP-hard to decide membership in any language
S containing Y and disjoint from N . In 2011, Gottlob proved NP-hardness of a promise
problem relating to (3k + 3)SAT: if Y(k-Rob) denotes the set of all (3k + 3)SAT instances
for which every possible partial assignment on k variables extends to a satisfying solution
and NCSP is the set of all NO instances for (3k + 3)SAT, then (Y(k-Rob),NCSP) is NP-hard.
This promise problem can be more precisely described as a gap problem, because having no
solutions at all is a strong shortfall relative to having k-robust satisfiability [12, p. 259].

Abramsky, Gottlob and Kolaitis [1] and then Jackson showed [13] that NP-hard gap
problems are also to be found for some other well-known NP-complete problems, including
3 SAT, G3C, NAE3 SAT, and positive 1-in-3 SAT. We investigate gap problems in the Boolean
case, establishing a Gap Trichotomy Theorem (Theorem 6) that provides dichotomies for
these flexible satisfaction problems, as well as several known dichotomy results. A notable
consequence is the recovery of Schaefer’s Theorem in case of core relational structures. In
addition to providing unified proofs for these dichotomies, the Gap Trichotomy Theorem
reveals that whenever the constraint satisfaction problem is hard, the more general promise
problem is also hard. The Gap Trichotomy Theorem also gives a continuum of examples in
the style of the five examples mentioned above.

The fundamental tools used in the aforementioned extensions of Schaefer’s dichotomy
for Boolean CSPs to higher domains and other related computational problems has been
the algebraic analysis of “polymorphisms” (see Definition 7 below). For SEP and robust
satisfiability, it is necessary to move to partial polymorphisms. As a second main result,
we show that the basic universal algebraic methods can nevertheless be established in this
setting, see Theorem 8 below.

2 Preliminaries: Separation and Robustness

We introduce four computational problems that will be of primary focus in this article.

I Definition 1. Let Γ be a set of relation symbols, each with an associated finite arity. A
template is a pair A = 〈A; ΓA〉 consisting of a finite set A together with an interpretation of
each n-ary relation symbol r ∈ Γ as a subset rA of An. The set ΓA = {rA | r ∈ Γ} is often
referred to as a constraint language over domain A.
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We define a ΓA-instance to be a triple I = (V ;A; C) consisting of a set of variables V , the
domain set A, and a set of constraints C. Each constraint c ∈ C is a pair 〈s, rA〉, where rA is
a k-ary relation in ΓA and s = (v1, . . . , vk) is a k-tuple involving variables from V . We define
a solution of I to be any assignment φ : V → A such that for each c = 〈(v1, . . . , vk), rA〉 in C,
we have (φ(v1), . . . , φ(vk)) ∈ rA.

Constraint satisfaction problem CSP(A) over template A.
Instance: a ΓA-instance I.
Question: is there a solution of I?

Nontrivial satisfaction problem CSPNonTriv(A) over template A.
Instance: a ΓA-instance I.
Question: is there a nontrivial solution of I?

Separation problem SEP(A) over template A.
Instance: a ΓA-instance I.
Question: for every pair {v1, v2} of distinct variables in V , is there is a solution φ : V → A

of I such that φ(v1) 6= φ(v2)?

Our fourth computational problem of interest requires some further definitions.

I Definition 2. Let R be a set of finitary relation symbols and let X = {xi | i ∈ I} be a set
of pairwise distinct variables. A formula in the language of R is called a primitive-positive
formula (abbreviated to pp-formula) if, for some ` ∈ N0 and m,n ∈ N, it is of the form:

(∃w1, . . . , w`)
m∧

i=1
αi(x1, . . . , xk, w1, . . . , w`),

where w1, . . . , w`, x1, . . . , xk are distinct variables, and each αi(x1, . . . , xk, w1, . . . , w`) is
either of the form y ≈ z, where ≈ is the symbol for the equality relation and y, z ∈
{x1, . . . , xk, w1, . . . , w`}, or of the form (y1, . . . , yk) ∈ r, for some k and relation r ∈ R of
arity k and {y1, . . . , yk} ⊆ {x1, . . . , xk, w1, . . . , w`}.

The particular case where ` = 0 (that is, no quantifiers) is used later, and is called a
conjunct-atomic formula.

I Definition 3. Let ΓA be a constraint language over a finite set A and let F be a finite set
of pp-formulæ in the language of Γ. Let (V ;A; C) be a constraint instance for ΓA. For a
subset S ⊆ V , we say that an assignment f : S → A is F-compatible if it preserves F .

In other words, if for some ρ(x1, . . . , xk) ∈ F and some tuple (s1, . . . , sk) ∈ Sk the formula
ρ(s1, . . . , sk) is true in (V ;A; C), then ρ(f(s1), . . . , f(sk)) must be true in A.

In the following, we let k be a nonnegative integer and F be a finite set of pp-formulæ in
the language of Γ.

The (k,F)-robust satisfiability problem (k,F)-Robust(A) over template A.
Instance: a ΓA-instance I.
Question: does every F -compatible assignment on k variables extend to a solution of I?

In the case where F consists of the set of pp-formulæ defining all projections of relations
in ΓA, the notion of F -compatibility has been called “local compatibility” and (k,F)-robust
satisfiability called “k-robust satisfiability”, see [1, §2]. In [13, Lemma 3.1], Jackson proposes
that F-compatibility is the natural localness condition in general.

ISAAC 2016



36:4 A Gap Trichotomy for Boolean Constraint Problems: Extending Schaefer’s Theorem

3 Main results: a gap trichotomy

The first main result presents a trichotomy of computational gap theorems for Boolean
constraint languages. As consequences we obtain dichotomy theorems for each of the four
computational problems described above.

I Notation 4. Let Γ be a finite set of relations on {0, 1}, let k ∈ N and let F be a finite set
of pp-formulæ in the language of Γ. We use

NCSP(Γ) to denote the set of NO instances for CSP(Γ),
NNonTriv(Γ) to denote the set of NO instances for CSPNonTriv(Γ),
Y(k,F)(Γ) to denote the set of YES instances for (k,F)-Robust(Γ),
YSEP(Γ) to denote the set of YES instances for SEP(Γ),
YSEP∩(k,F)(Γ) to denote the set of instances in YSEP(Γ) ∩Y(2,F)(Γ).

When the context refers to a specific constraint language Γ, we omit Γ from this notation.

I Definition 5. If P and Q are disjoint sets of Γ-instances, we say that Γ satisfies GAP(P,Q)
(or has the gap property GAP(P,Q)) if the promise problem (P,Q) is NP-hard.

We can now state one of main results of the article.

I Theorem 6 (Gap Trichotomy Theorem). Let Γ be a constraint language on {0, 1}. Exactly
one of the following statements is true.
1. Γ satisfies GAP(YSEP ∩Y(2,F),NCSP) for some finite set of pp-formulæ F .
2. CSP(Γ) is trivial but Γ satisfies GAP(YSEP ∩Y(2,F),NNonTriv) for some finite set of

pp-formulæ F .
3. The satisfiability problem, (2,F)-Robust(Γ) and the separation problem SEP(Γ) are

solvable in polynomial-time, for any finite set of pp-formulæ F .

I Remark. The language of polymorphisms and clone theory can be used to express precise
boundaries for when each condition of the three applies to a given Γ. We give full details
including which co-clones give rise to which complexity condition below; see Figure 1 and
the associated discussion. An overview of the proof of the Gap Dichotomy Theorem is given
in Section 7.

A number of dichotomy theorems are immediate consequences of the Gap Trichotomy
Theorem. We list four examples.

(Schaefer’s Dichotomy Theorem [20].) Observe that CSP(A) is NP-complete in case 1,
and polynomial time solvable in cases 2 and 3.
(Dichotomy Theorem for CSPNonTriv(A).) Observe that CSPNonTriv(A) is NP-complete
in cases 1 and 2, and polynomial time solvable in case 3.
(Dichotomy Theorem for SEP(A).) Observe that SEP(A) is NP-complete in cases 1 and
2, and polynomial time solvable in case 3.
(Dichotomy Theorem for (2,F)-Robust(Γ).) Observe that (2,F)-Robust(Γ) is NP-
complete for some F in cases 1 and 2, and polynomial time solvable for all F in case 3.

4 Main results: an algebraic approach

A pivotal development in the classification of fixed template CSP complexity was the
introduction of universal algebraic methods, starting with the work of Jeavons [14], Jeavons,
Cohen, Gyssens [15], with the full framework presented in Bulatov, Jeavons, Krokhin [6]. The
algebraic method is fundamental in Bulatov’s classification of tractable CSPs on 3-element
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domains [7], and of list homomorphism complexity [8], in the classification of tractable CSPs
over digraphs without sources and sinks [4], the classification of CSPs solvable by local
consistency check algorithm [2, 3], amongst others.

The algebraic approach concerns the analysis of polymorphisms of the template. For some
computational problems, polymorphism analysis appears too coarse; this is true for problems
considered in Schnoor and Schnoor [21] as well as the problems considered in the present
article. Following [21], our results are based on methods relating to partial polymorphisms.
I Definition 7. Let k, n ∈ N, let f : dom(f) → A be a n-ary partial operation, where
dom(f) ⊆ An, and let r be a k-ary relation on the set A. We say that f preserves r or r is
invariant under f or f is a partial polymorphism of r, if whenever a1 = (a11, . . . , a1n), a2 =
(a21, . . . , a2n), . . . , ak = (ak1, . . . , akn) are tuples in dom(f), then

(∀i ∈ {1, . . . n} (a1i, a2i, . . . aki) ∈ r) =⇒ (f(a1), f(a2), . . . , f(ak)) ∈ r.

If f is a total operation, then f is called a polymorphism of r. If F is set of partial
operations then we say that r is invariant under F if r is invariant under every operation
in F . We let PA be the set of all non-empty, non-nullary finitary partial operations on A
and RA be the set of all non-empty, non-nullary finitary relations on A. Define

pPol(R) := {f ∈ PA | f preserves each r ∈ R}

for any set R ⊆ RA.
The following theorems are analogous to some of the main contributions in Bulatov et

al. [6, Theorems 5.2 & 5.4], but now in the context of SEP and (k,F)-Robust and the algebra
of partial polymorphisms.

For any partial algebra A we let HS(A) be the smallest class of partial algebras in the
same signature closed under the formation of homomorphic images (H) and subalgebras (S).
I Theorem 8 (HS Theorem). Let A = 〈A;R〉 and B = 〈B;S〉 be templates and let F be a
finite set of pp-formulæ in the language of R. If S satisfies GAP(YSEP∩(k,F),NCSP) and
there exist partial algebras A = 〈A;FA〉 and B = 〈B;FB〉 such that
1. FB ⊆ pPol(S),
2. B ∈ HS(A), and
3. pPol(R) ⊆ FA,
then R satisfies GAP(YSEP∩(k,F),NCSP).
The case where A = B corresponds to the preservation of complexity of the gap property
under conjunct atomic reductions, which is critical to the proof of the Gap Trichotomy
Theorem. When A 6= B, the theorem lifts the complete classification given by the Gap
Trichotomy Theorem on Boolean domains to many problems on templates with non-Boolean
domains. With further effort, direct products can be incorporated into Item 2 of Theorem 8,
but the full version is beyond the scope of the present article, and will appear in subsequent
work.

In the full version of the present article, we show that HS theorems can be obtained for
other variants of the constraint satisfaction problem, namely the equivalence problem and
the implication problem, but whose definitions are not given due to space constraints.

A further useful simplification in the standard CSP setting has been the restriction
to so-called idempotent polymorphisms; see [6, Theorem 4.7]. A partial polymorphism
f : dom(f)→ A is idempotent if f(a, . . . , a) = a for every a ∈ A for which (a, . . . , a) ∈ dom(f).
As a final result we show that when analysing the complexity of SEP problems we may
restrict to idempotent partial polymorphisms. The full statement of this theorem can be
found in the complete version of the present article.
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5 Weak co-clones and strong partial clones

We now give more technical definitions that are required for the main arguments.

I Definition 9. Let m,n ∈ N, let f ∈ PA be m-ary and let g1, . . . , gm ∈ PA be n-ary. The
composition f(g1, . . . , gm) is an n-ary partial operation defined by

f(g1, . . . , gm)(x1, . . . , xn) := f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)),

where dom(f(g1, . . . , gm)) is the set{
(x1, . . . , xn) ∈

m⋂
i=1

dom(gi) | (g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)) ∈ dom(f)
}
.

I Definition 10. Let f, g ∈ PA. We say that f is a restriction of g if dom(f) ⊆ dom(g) and
f agrees with g on dom(f).

We let OA denote the subset of PA consisting of total operations.

I Definition 11. Let A be a non-empty set and let C ⊆ OA. Then C is a clone on the set A
if the following two conditions hold:
1. C contains all projection operations: that is, for all n ∈ N, the ith projection πi : An → A

given by πi(x1, . . . , xn) = xi belongs to C;
2. C is closed under compositions.
For a set F of total operations, [F ] will denote the smallest clone containing F and we refer
to [F ] as the clone generated by F . The set F is sometimes called a base for the clone [F ].

I Definition 12. Let A be a non-empty set. A subset R of RA is called a co-clone or
relational clone if it is closed under the formation of pp-definable relations. We define 〈R〉 to
be the smallest co-clone containing R and we refer to 〈R〉 as the co-clone generated by R.
The set R is sometimes called a base for 〈R〉.

The sets ℘(OA) and ℘(RA) are complete lattices, where ℘() is the powerset operator. A well-
known result of Geiger [11] states that pair of maps Inv : ℘(OA)→ ℘(RA) and Pol : ℘(RA)→
℘(PA) form a Galois correspondence between ℘(OA) and ℘(RA). In particular, we have

Inv(F ) := {r ∈ RA | r is invariant under each f ∈ F} and
Pol(R) := {f ∈ OA | f preserves each r ∈ R},

for each F ⊆ OA and each R ⊆ RA.
Clones on {0, 1} were characterised by Post [18] and are usually called “Boolean clones”.

An upset of Post’s lattice is given in Figure 1; the table included gives definitions of the
shaded vertices in terms of relations invariant under basic operations. The operations c0 and
c1 are the constant unary functions to 0 and 1, respectively, and ¬ is the usual negation
operation on {0, 1}. Shaded vertices in Figure 1 give the precise information for the Gap
Trichotomy Theorem:

Statement 1 applies when Γ generates a co-clone containing IN2(blue/dark grey);
Statement 2 applies when Γ generates a co-clone containing IN, but not containing IN2
(green/light grey);
Statement 3 holds otherwise.

In general, it seems difficult to use pp-formulæ to transfer the complexity of problems such
as SEP and (k,F)-Robust. Instead we use conjunct-atomic formulæ.
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GAP(YSEP∩(2,F), NCSP)

GAP(YSEP∩(2,F), NNonTriv) II2

II0 II1

II

IN2

IN

IV2

IV0 IV1

IV

IE2

IE0 IE1

IE

IL2

IL1IL0

IL

IL3

Co-clone Definition
II2 all Boolean relations
IN2 Inv({¬})
II0 Inv({c0})
II1 Inv({c1})
II Inv({c0, c1})
IN Inv({¬, c0})

Figure 1 An upset in the Boolean co-clone lattice, with a table of polymorphism definitions for
the shaded co-clones; I C abbreviates Inv(C), for each Boolean clone C.

I Definition 13. A subset R of RA is called a weak co-clone or weak system if it is closed
under the formation of conjunct-atomic definable relations. We can define 〈R〉6∃ to be the
smallest weak co-clone containing R and we refer to 〈R〉6∃ as the weak co-clone generated
by R. The set R is sometimes called a base for the weak system 〈R〉6∃.

If we restrict further to conjunct atomic formulæ without equality, then we write instead
〈R〉6∃,6= for the smallest system containing R and say that 〈R〉6∃,6= is the equality-free weak
system generated by R.

If we weaken the operators Inv and Pol to allow partial operations to be included in
the definition, we obtain a refined Galois connection between the complete lattices ℘(PA)
and ℘(RA) (see Romov [19]). In particular, sets of the form Inv(F ) are precisely the weak
co-clones, for F ⊆ PA. Sets of the form pPol(R), for R ⊆ RA, are called strong partial clones,
and coincide with those subsets of PA including all total projections and that are closed
under composition and domain restriction. Post’s lattice provides a useful approximation
to the lattice of strong partial clones in the Boolean setting: for each Boolean clone C, is it
known that the set of all strong partial clones whose total operations agree with C forms an
interval, and there are known generators for the top and bottom element in each of these
intervals [21]; these are critical in the main proofs to come.

I Definition 14. Let A be a non-empty set, let C be a clone on A and let Γ be a set of
finitary relations on A. We call Γ a weak base for the co-clone Inv(C) if I∪(C) = pPol(Γ).

We will often present relations in a matrix form. The representation is not unique, but
it is succinct. For a k-ary relation r = {a1, . . . , am} on a non-empty set A with |r| = m,
the matrix representation of r is the m× k matrix M = (aij) over A whose ith row is the
tuple ai. (Non-uniqueness follows because the ordering a1, . . . , am is arbitrary.)

I Definition 15. Define Cols3 to be the following 8-ary relation over {0, 1}:1 0 0 0 1 1 0 1
0 1 0 1 0 1 0 1
0 0 1 1 1 0 0 1


I Definition 16. Let C be a Boolean clone and let r be a relation on A. Define C(r) to be
the smallest relation containing r that is invariant under every operation in C. We refer
to C(r) as the C-closure of the relation r.
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Using the work of Schnoor and Schnoor [21] and Schnoor [22, Table 3.1], the following
construction gives weak-bases for each of the Boolean co-clones shaded in Figure 1.

I Proposition 17 ([21, Theorem 4.11], [22, Table 3.1]). Let I C be any of the Boolean co-clones
listed in the table within Figure 1. Then C(Cols3) is a weak-base for I C.

For example, to construct a weak base for the Boolean co-clone IN2 = Inv({¬}), we
simply close the relation Cols3 under ¬. Thus,

N2(Cols3) =



0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0


Weak bases that generate not only the smallest weak system but also the smallest equality-

free weak-system of relations generating the same co-clone will be crucial in the classification
of the problems considered. Schnoor and Schnoor [21, Definition 5.1] give an irredundancy
condition ensuring conjunct-atomic definability without equality. We omit the definition,
but observe that all six of the relations in Proposition 17 are irredundant.

I Theorem 18 ([21, Corollary 5.6]). Let A be a non-empty set, let C be a clone on A and let
Γ be an irredundant weak base for the co-clone Inv(C). If Γ′ is set of relations on A such
that 〈Γ′〉 = Inv(C), then 〈Γ〉 6∃,6= ⊆ 〈Γ′〉 6∃,6=.

The next two sections are dedicated to establishing the Gap Trichotomy Theorem.

6 Towards a dichotomy: gap properties

We begin with three results that are crucial for establishing gap properties. The first result is
an abridged version of [13, Theorem 6.1]. We let 2 denote the positive 1-in-3 SAT template
〈{0, 1}; {(1, 0, 0), (0, 1, 0), (0, 0, 1)}〉.

I Theorem 19 ([13]). Let K be the set consisting of all positive 1-in-3 SAT instances I with
the following properties:

no variable appears more than once in each constraint tuple of I,
I is 2-robustly positive 1-in-3 satisfiable.

Then the positive 1-in-3 SAT relation has GAP(K,NCSP).

The next lemma summarises the basic method employed in Abramsky, Gottlob and
Kolaitis [1] and Jackson [13]. It is essentially the definition of reduction for promise problems;
see [12, Definition 3], for example.

I Lemma 20. Let Γ and Γ′ be finite sets of relations on {0, 1}. Let A and B be disjoint
sets of Γ-instances and let X and Y be disjoint sets of Γ′-instances. Further, let Γ have the
gap property GAP(A,B). If there is a polynomial-time computable function f : IΓ → IΓ′

satisfying:
1. I ∈ A⇒ f(I) ∈ X,
2. I ∈ B ⇒ f(I) ∈ Y ,
then Γ′ satisfies GAP(X,Y ). In particular, Γ′ has the gap property GAP(f(A), f(B)).
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It is well known that the complexity of CSP(Γ) depends only on the co-clone generated
by Γ, see [14, Theorem 3.4] or alternatively [6, Theorem 2.16] for a proof explicitly using
pp-formulæ. We now give an analogous result that says when analysing the the complexity
of SEP and (2,F)-robust satisfiability we need only consider relations up to equality-free
conjunct-atomic definability. We first give a preliminary lemma.

I Lemma 21. Let ΓA be a constraint language over a finite set A and let RA be a finite
set of relations in 〈ΓA〉 6∃. There is a polynomial-time construction that transforms any
instance I = (V ;A; C) of CSP(RA) into an instance I ′ of CSP(ΓA) on the same variables,
and moreover, the solutions of I are exactly the solutions of I ′.

I Theorem 22. Let ΓA be a constraint language over a set A, let RA be any finite set of
relations in 〈ΓA〉 6∃, 6=, let F be a finite set of pp-formulæ in the language of R and let k ∈ N.
There is a polynomial-time computable function that reduces
1. CSP(RA) to CSP(ΓA),
2. SEP(RA) to SEP(ΓA), and
3. (k,F)-Robust(RA) to (k,G)-Robust(ΓA), for some finite set G of pp-formulæ in the

language of Γ.

Proof. The reduction from CSP(RA) to CSP(ΓA) is obtained immediately from Lemma 21.
This proves (1).

Since the solutions of I in CSP(RA) are precisely the solutions of I ′ in CSP(ΓA), it follows
that separating solutions of I are exactly the separating solutions of I ′. Hence I is a YES
instance of SEP(RA) if and only if I ′ is a YES instance of SEP(ΓA). This establishes (2).

For (3), consider r ∈ R of arity ` and abstractly expressible by an equality-free conjunct-
atomic formula r(x1, . . . , x`) in the language of Γ. For each pp-formula ρ(w1, . . . , wm) ∈ F ,
we construct a pp-formula ρΓ(w1, . . . , wm) in the language of Γ in the following way: replace
every occurrence of an `-ary relation symbol r in ρ with its conjunct-atomic defining formula
r(x1, . . . , x`). Let G = {ρΓ | ρ ∈ F}. Then since ρ(a1, . . . , am) is true in 〈A;RA〉 if and
only if ρΓ(a1, . . . , am) is true in 〈A; ΓA〉 for (a1, . . . , am) ∈ Am and ρ(w1, . . . , wm) ∈ F , it
follows that the F-compatible assignments on k variables of I are exactly the G-compatible
assignments on k variables of I ′. Thus, since the solutions of I are precisely the solutions of
I ′, by Lemma 21, it then follows that I is a YES instance of (k,F)-Robust(RA) if and only
if I ′ is a YES instance of (k,G)-Robust(ΓA). J

Theorem 22 holds more generally: with some caveats and proper amendment to the proof,
the assumption that R ⊆ 〈Γ〉6∃,6= can be weakened to R ⊆ 〈Γ〉6∃. However, this result is not
required for establishing our main theorems.

7 Proof of the Gap Trichotomy Theorem

In this section, we establish gap properties for relations generating the Boolean co-clones
II2, IN2, II0, II1, II or IN. These co-clones are shaded in Figure 1. Each co-clone must be
considered separately, however the proofs follow the same structure: we first establish a
gap property for the irredundant weak-base and then use the fact that gap properties are
preserved by the 〈−〉 6∃,6=-operator. We sketch details only in the case of II2.

7.1 The Boolean co-clone II2 and IN2

By Proposition 17, the relation I2(Cols3) of Definition 15 is an irredundant weak base for II2.
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I Proposition 23. The relation I2(Cols3) satisfies GAP(YSEP∩2-Rob,NCSP).

Proof outline. We apply Lemma 20, reducing from GAP(YSEP∩2-Rob,NCSP) for positive
1-in-3SAT. The result will then follow from Theorem 19.

Given an instance I = (V ; {0, 1}; C) of positive 1-in-3 SAT, construct an instance I? =
(V ?; {0, 1}; C?) of II2 - SAT in the following way.
1. First let V = {v̄ | v ∈ V } be a disjoint copy of V , and construct V ? = V ∪ V ∪ {>,⊥},

where >,⊥ 6∈ V ∪ V ,
2. for each constraint 〈(x, y, z),+1in3 SAT〉 in C, we include the constraint
〈(x, y, z, x̄, ȳ, z̄,⊥,>), I2(Cols3)〉 in C?.

Any solution ϕ of I in CSP(2) can be extended to a solution ϕ? of I? in the following way.
For each v ∈ V , define ϕ?(v) := ϕ(v), ϕ?(v̄) = ¬ ◦ ϕ(v), ϕ?(⊥) = 0 and ϕ?(>) = 1, where ¬
is the usual Boolean complement. For the converse direction, observe that the projection
π{1,2,3}(I2(Cols3)) = +1in3 SAT, thus if ψ is a solution of I? in II2 - SAT, then the restriction
ψ�V is a solution of I in CSP(2). Hence we have shown that any solution φ of I extends
uniquely to a solution φ? of I?.

Now assume that I lies in the class K of Theorem 19. Since I is 2-robustly satisfiable
and no variable appears more than once in each constraint tuple, it follows that I has the
following properties.
(♥) For every pair of distinct variables x and y in V , there are solutions ϕ1, ϕ2 and ϕ3 of I

satisfying

(ϕ1(x), ϕ1(y)) = (0, 0),
(ϕ2(x), ϕ2(y)) = (0, 1),
(ϕ3(x), ϕ3(y)) = (1, 0).

(♦) If x and y do not appear in a common constraint tuple, then there is a solution ϕ4 of I
satisfying (ϕ4(x), ϕ4(y)) = (1, 1).

These conditions can be used to show that I? ∈ YSEP∩2-Rob(II2 - SAT): there are a number
of cases according to the different combinations of containments in V, V , {>,⊥} for a given
pair of variables {u, v} ⊆ V ?. J

The following theorem now follows from Theorems 18 and 22.

I Theorem 24. Let Γ be a finite constraint language on {0, 1} such that 〈Γ〉 = II2. Then Γ
has the gap property GAP(YSEP∩(2,G),NCSP), for some finite set G of pp-formulæ in the
language of Γ, and consequently both (2,G)-Robust(Γ) and SEP(Γ) are NP-complete.

A similar approach gives an analogous theorem for constraint languages generating IN2:
the reduction can be taken from either of positive 1-in-3SAT directly, or by following from the
reduction in Proposition 23. Together with Theorem 24, these two cases cover Statement 1
of the Gap Trichotomy Theorem 6.

7.2 The Boolean co-clones with trivial CSPs but hard CSPNonTriv

This section relates to the clones II0, II1, II, IN corresponding to Statement 2 in the Gap
Dichotomy Theorem 6. In these cases, we can reuse the same fundamental construction used
for II2 and IN2. The proof proceeds as follows: to lie in YSEP or Y(2,F), it is necessary to
have an assignment in which ⊥ and > take different values. We then argue that this forces
solutions into II2 or IN2.
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7.3 Proving tractablity
We establish a theorem that covers all cases that are solvable in polynomial-time. The proof
relies on a result of Jackson [13, Proposition 3.2], which says that a constraint language Γ on
a finite set A is polynomial-time equivalent to ΓCon, with respect to Turing reductions, for
each of SEP(A) and (k,F)-Robust.

I Theorem 25. Let Γ be a constraint language on {0, 1}. If IN 6⊆ 〈Γ〉, then the computational
problems SEP(Γ) and (2,F)-Robust(Γ) are solvable in polynomial-time.

Proof. When IN 6⊆ 〈Γ〉, it follows from Post’s co-clone lattice (see Figure 1), that IN 6⊆
〈Γ ∪ {(0), (1)}〉 and then it is known that the constraint problem CSP(Γ ∪ {(0), (1)}) is
tractable; this can be found in Schaefer’s original argument for example; see [20, Lemma 4.1].
Then from [13, Proposition 3.2], the problems SEP(Γ) and (2,F)-Robust(Γ) are solvable in
polynomial-time. J

8 Proof of the HS Theorem

We give a brief overview of the proof for the HS Theorem. The result is established by
carrying the gap property through items 1, 2 and 3 of Theorem 8. The main difficulties arise
from items 2 (HS) and 3 (restricted pp-definability), requiring a series of polynomial-time
reductions. The constructions used for substructures and homomorphisms are based on
those in [6, 16], given in the standard CSP setting. In the case of taking substructures, SEP
and (2,F)-Robust carry through using the standard construction (the local compatibility
condition F is changed during the reduction). The homomorphism case however requires
proper amendment, including the addition of extra relations and non-trivial usage of the gap
property; the main complication arising from SEP. For item 3, we require a more general
version of Theorem 22. The addition of equality presents complications for (2,F)-robust
satisfiability, and we again require the use of a gap property to carry through the reduction.
The proof for SEP is similar however, a further slight variation of the proof is necessary.

Acknowledgements. The author is indebted to Marcel Jackson for many useful suggestions
and discussions, as well as her PhD supervisors Brian Davey and Tomasz Kowalski, for their
guidance and feedback.
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Abstract
Given two independent sets I and J of a graph G, imagine that a token (coin) is placed on
each vertex in I. Then, the Sliding Token problem asks if one could transforms I to J using
a sequence of elementary steps, where each step requires sliding a token from one vertex to
one of its neighbors, such that the resulting set of vertices where tokens are placed still remains
independent. In this paper, we describe a polynomial-time algorithm for solving Sliding Token
in case the graph G is a cactus. Our algorithm is designed based on two observations. First, all
structures that forbid the existence of a sequence of token slidings between I and J, if exist, can
be found in polynomial time. A no-instance may be easily deduced using this characterization.
Second, without such forbidden structures, a sequence of token slidings between I and J does
exist.

1998 ACM Subject Classification G.2.2 Graph algorithms

Keywords and phrases reconfiguration problem, token sliding, independent set, cactus

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2016.37

1 Introduction

A reconfiguration problem arises when we wish to find a step-by-step transformation between
two feasible solutions of a problem. In each transformation, each intermediate result is also
feasible, and each transformation step abides by a fixed reconfiguration rule. The reconfig-
uration problems attract the attention recently from the viewpoint of theoretical computer
science, and have been studied extensively for several well-known problems, including satis-
fiability [8, 12], independent set [9, 10, 11, 14], set cover, clique, matching [10],
and so on. For an overview of this research area, we refer the readers to [17].

Although the problems above might seem to be artificial, from the viewpoint of recreational
mathematics, the reconfiguration problems have already been played long time, and partially
well investigated. One of the most famous classic examples is the so-called 15 puzzle
(see Figure 1). If rectangles are allowed, we obtain a more general classic puzzle called
“sliding block puzzle” and its variants (see Figure 1). In 1964, Gardner said that “These
puzzles are very much in want of a theory” [7]. After 40 years, Hearn and Demaine gave
the theory. Using their proposed nondeterministic constraint logic model [9], they proved
that the general sliding block puzzle is PSPACE-complete, while it is linear time solvable
if all pieces are unit squares. We remind that finding an optimal solution is NP-complete
for yes-instance of this linear time solvable case. In this way, we can characterize three
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Swap them by sliding (impossible)

Figure 1 The 15 puzzle and sliding block puzzle.

familiar complexity classes P, NP, and PSPACE using the model of the sliding block puzzle,
a representative reconfiguration problem.

From the viewpoint of theoretical computer science, one of the most important problems
is the 3SAT. Even in the reconfiguration problem, the computational complexity of the
3SAT has been investigated, and it is shown to be PSPACE-complete [8]. Recently, for the
3SAT, an interesting trichotomy for the complexity of finding a shortest sequence has been
shown; that is, for the reconfiguration problem, finding a shortest sequence between two
satisfiable assignments is in P, NP-complete, or PSPACE-complete in certain conditions [13].
In general, the reconfiguration problems tend to be PSPACE-complete, and some polynomial
time algorithms are shown in restricted cases. However, we have to mind that it may
potentially have different computational complexity for deciding two configurations are
reconfigurable, for finding a sequence of feasible solutions between two configurations, or
for finding a shortest sequence of feasible solutions between two configurations. Especially,
since some problems are PSPACE-complete, we may have some case that the length of the
sequence of solutions can be super-polynomial even if the decision problem is in NP.

Beside the 3SAT, one of the most important problems in theoretical computer science
is the independent set problem. For this notion, the natural reconfiguration problem is
called the Sliding Token problem introduced by Hearn and Demaine [9]: Suppose that
we are given two independent sets I and J of a graph G = (V, E) and imagine that a token
(or coin) is placed on each vertex in I. Then, the Sliding Token problem asks if there
exists a sequence S = 〈I1, I2, . . . , I`〉 of independent sets of G such that (a) I1 = I, I` = J,
and |I| = |Ii| for all i with 1 ≤ i ≤ `; and (b) for each i, 2 ≤ i ≤ `, there is an edge uv in
E such that Ii−1 \ Ii = {u} and Ii \ Ii−1 = {v}. If such a sequence S exists, we call S a
TS-sequence and say that S reconfigures I to J in G and write I G

! J. Figure 2 illustrates a
sequence 〈I1, I2, . . . , I5〉 of independent sets which reconfigures I = I1 into J = I5. Hearn and
Demaine proved that the Sliding Token problem is PSPACE-complete for planar graphs
as an example of the application of their nondeterministic constraint logic model, which
can be used to prove PSPACE-hardness of many puzzles and games [9]. (We note that the
reconfiguration problem for independent set has some variants. In [11], the reconfiguration
problem for independent set is studied under three reconfiguration rules called “token
sliding,” “token jumping,” and “token addition and removal.” In this paper, we only consider
the token sliding model, and see [11] for the other models.)

For the Sliding Token problem, some polynomial-time algorithms have been shown
recently for bipartite permutation graphs [6] and claw-free graphs [2]. Linear-time algorithms
have been shown for cographs [11] and trees [4]. Even a shortest TS-sequence can be found
in polynomial time for a caterpillar [18]. On the other hand, PSPACE-completeness is also
shown for graphs of bounded tree-width [15] and planar graphs [9]. Recently, hardness results
for split graphs, and polynomial-time algorithm for interval graphs have been annouced by
Bonamy and Bousquet [1].



D.A. Hoang and R. Uehara 37:3

I = I1 I2 I3 I4 J = I5

Figure 2 A sequence 〈I1, I2, . . . , I5〉 of independent sets of the same graph, where the vertices in
independent sets are depicted by black circles (tokens).

In this paper, we give a polynomial-time algorithm for the Sliding Token problem for
a cactus. Intuitively, a cactus is a graph that is obtained by joining cycles. When we solve
the Sliding Token problem, there are three major points to be considered. First, we have
to decide a correspondence between the tokens in I and J. That is, we have to decide the
goal in J for each token in I, which is called target-assignments. Next, we design the route
for each token. In some graph class, say, a tree, the second one is easy since any pair of
vertices on a tree has unique path for joining them. However, even in this case, some token
is required to make “detours” to open its position to admit other tokens to go through its
neighbors (see [18] for the details). When the graph contains a cycle, since the route for
a token is not unique any more, we have to “choose” the route. Therefore, for each token,
we may have exponentially many choices and possibly super polynomial detours in general.
Especially, if a graph contains an odd cycle, the Sliding Token problem is quite difficult.

The idea of our algorithm is to characterize all structures that forbid the existence of a
TS-sequence between I and J first, and then prove the existence of a TS-sequence between
them when no such forbidden structures exist. A trivial forbidden structure is clearly the
sizes of I and J, i.e., if |I| 6= |J| then I cannot be reconfigured to J (and vice versa) using TS
rule. In case of cacti, two more forbidden structures, named rigid token and confined cycle,
are characterized (see Section 4). We claim that these structures (if exist) can be found in
polynomial time. For a cactus that does not contain these forbidden structures, we show
that a TS-sequence between I and J exists (Lemma 16). Despite of the non-trivial tasks
of identifying forbidden structures and designing reconfiguration sequences, this technique
was proved to be powerful for developing polynomial-time algorithms for solving several
reconfiguration problems [3, 4, 6, 16].

In this paper, some proof details are omitted due to the space restriction. For the
statements marked with (∗), one can find the corresponding proof details in the appendix.

2 Preliminaries

In this section, we define some notions that will be used in this paper. For the notions which
are not mentioned here, the readers are referred to [5].

Let G be a graph with vertex set V (G) and edge set E(G). For a vertex v, let NG(v) be
the set of all neighbors of v in G. Let NG[v] = NG(v) ∪ {v} and degG(v) = |NG(v)|. For a
subset X ⊆ V (G), we simply write NG[X] =

⋃
v∈X NG[v]. For two vertices u, v, denote by

distG(u, v) the length of a shortest uv-path in G. G is connected if any pair of vertices in G

are joined by at least one path; otherwise, we say that G is disconnected. For X ⊆ V (G),
denote by G[X] the subgraph of G induced by vertices of X. We write G−X to indicate
the graph G[V (G) \X]. Similarly, for a subgraph H of G, we denote by G−H the graph
G[V (G) \ V (H)], and we say that the graph G−H is obtained by removing H from G. An
independent set I of a graph G is a subset of V (G) in which for every u, v ∈ I, uv is not an
edge of G. For a subgraph H of G, sometimes we write I ∩H and I −H to indicate the
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t1
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t3
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Figure 3 The tokens t3 and t5 are (G, I, W )-confined, while t2 and t4 are not.

sets I ∩ V (H) and I \ V (H), respectively. A vertex v of G is called a cut vertex if G − v

is disconnected; otherwise, we say that v is a non-cut vertex. A block of G is a maximal
connected subgraph (i.e., a subgraph with as many edges as possible) with no cut vertex. G

is called a cactus if every block of G is either K2 or a simple cycle.
Let G be a graph and I an independent set of G. For a TS-sequence S, we write I ∈ S

if I appears in S. We say that S involves a vertex v if there exists some independent set
I ∈ S such that v ∈ I. We say that S = 〈I1, I2, . . . , I`〉 slides (or moves) the token t placed
at u ∈ I1 to v /∈ I1 in G if after applying the sliding steps described in S, the token t is
placed at v ∈ I`. Observe that a TS-sequence is reversible, i.e., I G

! J if and only if J G
! I.

The length of a TS-sequence S is defined as the number of independent sets contained in S.
One of the non-trivial structures that forbid the existence of a TS-sequence between any

two independent sets of a graph is the so-called rigid token. Let u ∈ I be a vertex of G. The
token t placed at u is called (G, I)-rigid if for any J such that I G

! J, u ∈ J. The set of
vertices where (G, I)-rigid tokens are placed is denoted by R(G, I). If t is not (G, I)-rigid,
we say that it is (G, I)-movable. Decide if a token is (G, I)-rigid is PSPACE-complete for a
general graph G [6].

Naturally, one can generalize the notion of rigid tokens in the following way. Let W ⊆ V (G)
be a subset of vertices of G. We say that t is (G, I, W )-confined if for every J such that
I G
! J, t is always placed at some vertex of W (see Figure 3). In other words, t can only be

slid along edges of G[W ]. Observe that a token t placed at some vertex u ∈ I is (G, I)-rigid
if and only if it is (G, I, {u})-confined.

Let H be an induced subgraph of G. H is called (G, I)-confined if I ∩H is a maximum
independent set of H and all tokens in I∩H are (G, I, V (H))-confined. In particular, if H is
a cycle (resp. a path) of G, we say that it is a (G, I)-confined cycle (resp. (G, I)-confined
path). We denote by C (G, I) the set of all (G, I)-confined cycles of G. We will see later that
(G, I)-confined cycles indeed form a structure that forbids the existence of a TS-sequence when
G is a cactus. For a vertex v ∈ V (H), we define Gv

H to be the (connected) component of GH

containing v, where GH is obtained from G by removing all edges of H. Observe that if G is
a cactus then for a cycle H of G and two distinct vertices u, v ∈ V (H), V (Gu

H)∩V (Gv
H) = ∅.

3 Some useful observations

In this section, we prove some useful observations. These observations will be implicitly used
in many statements of this paper. The next lemma describes some equivalent conditions of
being a (G, I)-confined induced subgraph, where I is a given independent set of a graph G.
Intuitively, the structure of a (G, I)-confined induced subgraph H guarantees that the tokens
inside (resp. outside) of H cannot be moved out (resp. in).
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I Lemma 1 (∗). Let I be an independent set of a graph G. Let H be an induced subgraph of
G. Then the following conditions are equivalent.
(i) H is (G, I)-confined.
(ii) For every independent set J satisfying I G

! J, J ∩H is a maximum independent set of
H.

(iii) I ∩H is a maximum independent set of H and for every J satisfying I G
! J, any token

tx placed at x ∈ J ∩H is (Gx
H , J ∩Gx

H)-rigid.

The next proposition says that if the given graph G is not connected, then one can deal
with each component separately.

I Proposition 2 (∗). Let I, J be two given independent set of G. Assume that G1, . . . , Gk

are the components of G. Then I G
! J if and only if I ∩Gi

Gi! J ∩Gi for i = 1, 2, . . . , k.

Thus, when dealing with Sliding Token, one can assume without loss of generality that
the given graph is connected. Next, we claim that in certain conditions, a TS-sequence in a
subgraph G′ of G can be somehow “extended” to a sequence in G, and vice versa.

I Proposition 3 (∗). Let u be a vertex of a graph G. Let S = 〈I1, I2, . . . , I`〉 be a TS-sequence
in G such that for any Ii ∈ S, u ∈ Ii, where i ∈ {1, 2, . . . , `}. Let G′ = G −NG[u]. Then
I1∩G′

G′

! I`∩G′. Moreover, for any TS-sequence S ′ = 〈I′1, . . . , I′l〉 in G′, I′1∪{u}
G
! I′l∪{u}.

Finally, we claim that if R(C, I) = R(C, J) = ∅, where C is a cycle and I, J are two
independent sets of C, then I C

! J if and only if |I| = |J|. In particular, if R(C, I) = ∅,
starting from a given independent set I, using token sliding, one can obtain any target
independent set J of the same cardinality.

I Lemma 4 (∗). Let C be a cycle. Let I and J be two given independent sets of C. Assume
that there are no (C, I)-rigid and (C, J)-rigid tokens. Then I C

! J if and only if |I| = |J|.

4 The forbidden structures

In this section, we describe two non-trivial structures that forbid the existence of a TS-
sequence between any two independent sets of a cactus G. The first structure is the (G, I)-rigid
tokens, i.e., the tokens in I that cannot be slid along any edge of G.

I Lemma 5. Let I be an independent set of a cactus G. For any vertex u ∈ I, the token t

placed at u is (G, I)-rigid (see Figure 4(a)) if and only if for every vertex v ∈ NG(u), there
exists a vertex w ∈

(
NG(v) \ {u}

)
∩ I satisfying one of the following conditions:

(i) The token tw on w is (G′, I ∩G′)-rigid, where G′ = G−NG[u].
(ii) The token tw on w is (G′, I ∩G′)-movable; and there exists a cycle C in G such that

u /∈ V (C), {v, w} ⊆ V (C), and the path P = C − v is (G′, I ∩G′)-confined.

Proof. First of all, we show the only-if-part. Let v ∈ NG(u). Assume that there exists
w ∈

(
NG(v) \ {u}

)
∩ I such that either (i) or (ii) holds. We claim that in both cases, t cannot

be slid to v.
If (i) holds then clearly there is no TS-sequence in G′ which slides tw to a vertex in
NG′(w) = NG(w) \ {v}. Hence, t cannot be slid to v.

ISAAC 2016
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Figure 4 The token placed at u ∈ I is (a) (G, I)-rigid or (b) (G, I)-movable.

When (ii) holds. Since tw is (G′, I ∩ G′)-movable, it can be (at least) slid in G′ to a
vertex x ∈ NG′(w) by some TS-sequence S. Since P is (G′, I ∩G′)-confined, there is no
TS-sequence in G′ that slides a token from G′ − P to P and vice versa. Clearly, this
also holds for S. Let w′ ∈ NG(v) ∩ V (C) such that w′ 6= w. Hence, if w′ /∈ I then before
sliding any other token in P , S must move a token in NP (w′) ∩ I (because I ∩ P is a
maximum independent set of P ) to w′. Clearly, NG(v) ∩ I′ 6= ∅ for any I′ such that
I ∩G′

G′

! I′, which means that t cannot be slid to v.
We have shown that if either (i) or (ii) holds, t cannot be slid to v. Since this holds for any
v ∈ NG(u), it follows that t is (G, I)-rigid.

Next, we show the if-part. More precisely, we claim that if both (i) and (ii) do not hold,
then t is (G, I)-movable (see Figure 4(b)).

Case 1: There exists v ∈ NG(u) such that
(
NG(v) \ {u}

)
∩ I = ∅. Clearly, t can be slid

to v and hence is (G, I)-movable.
Case 2: For all v ∈ NG(u),

(
NG(v) \ {u}

)
∩ I 6= ∅. Let w ∈

(
NG(v) \ {u}

)
∩ I. Since

(i) does not hold, we can assume that tw is (G′, I ∩ G′)-movable. Since (ii) does not
hold, for any cycle C of G, (at least) one of the following conditions does not hold: (a)
u /∈ V (C); (b) {v, w} ⊆ V (C); (c) P is (G, I)-confined. Note that by definition, w 6= u.
Additionally, since G is a cactus, there is at most one cycle C that contains both v and
w. Let H(G′, w) be the (connected) component of G′ containing w. We claim that for
each such w above, one can slide tw to a vertex in NH(G′,w)(w) without sliding another
token to a vertex in NG(v) beforehand. Eventually, there are no tokens in NG(v) other
than t. Consider the following cases:
Case 2-1: Any cycle C contains either v or w but not both of them. Since tw is

(G, I)-movable, it is also (H(G′, w), I ∩ H(G′, w))-movable. Assume that there ex-
ists a vertex x ∈ NG(v) ∩H(G′, w), x 6= w. Since H(G′, w) is connected, there exists
a wx-path Q in H(G′, w). Note that Q, vw and vx form a cycle in G that contains
both v and w, which contradicts our assumption. Hence, NG(v) ∩H(G′, w) = {w}.
Therefore, one can simply slides tw to a vertex in NH(G′,w)(w) without sliding another
token to a vertex in NG(v) beforehand.

Case 2-2: There is a (unique) cycle C that contains both v and w. When u ∈ V (C)
holds. As before, NG(v) ∩H(G′, w) = {w}. Otherwise, using the same argument as
before, we have that the wx-path Q, vw and vx form a cycle C ′ in G that contains
both v and w, where x ∈ NG(v) ∩ H(G′, w) and x 6= w. Because Q (a subgraph
of G′) does not contain u, it follows that C ′ 6= C, which is a contradiction. Since
NG(v)∩H(G′, w) = {w}, one can simply slides tw to a vertex in NH(G′,w)(w) without
sliding another token to a vertex in NG(v) beforehand.
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When u /∈ V (C) holds. Let w′ ∈ NC(v), w′ 6= w. By definition of a cactus and our
assumption, NC(v) ∩H(G′, w) = {w, w′}. Since {v, w} ⊆ V (C), it must happen that
the condition (c) does not hold. By Lemma 1, there exists an independent set I′ with
I ∩G′

G′

! I′ such that |I ∩ P | < bk/2c, where P = C − v and k is the length of C. (A
maximum independent set of P must be of size bk/2c.) Suppose that both w and w′

are in I′. Note that both tw and tw′ are (G′, I′)-movable. Let Sw be a TS-sequence
in G′ that slides tw to a vertex x ∈ NH(G′,w)(w). Similarly, let Sw′ be a TS-sequence
in G′ that slides tw′ to a vertex y ∈ NH(G′,w)(w′). Since |I′ ∩ P | ≤ bk/2c − 1, Sw

(resp. Sw′) does not involve any vertex in I∩Gx
C where x ∈ NC [w′] (resp. x ∈ NC [w]).

Note that by Proposition 3, Sw and Sw′ can indeed be performed in G. Clearly, after
applying both Sw and Sw′ , the number of tokens in NG(v) is reduced. Next, if either
w or w′ is in I′, we can simply perform either Sw or Sw′ , respectively. If none of them
is in I′, nothing needs to be done.

We have shown that in any case, the number of tokens in NG(v) is reduced each time we
slide the (G′, I∩G′)-movable token in w ∈

(
NG(v)\{u}

)
∩I to a vertex not in NG(v), and

all such slidings can be performed independently (in each component of G′). Eventually,
NG(v) ∩ I = {u}, and hence we can slide t to v immediately, which implies that t is
(G, I)-movable. J

We note that if an induced path P of a cactus G is of even length k, then by Lemma 1, it
follows that P is (G, I)-confined if and only if I ∩ P is a maximum independent set of P and
any token placed at x ∈ I∩ P is (Gx

P , I∩Gx
P )-rigid. Since k is even and I∩ P is a maximum

independent set of P , no token can be slid along any edge of P , i.e., the second condition is
equivalent to saying that any token placed at x ∈ I ∩ P is (G, I)-rigid. Now, we consider the
case k is odd.

I Lemma 6 (∗). Let G be a cactus. Let P = p1p2 . . . pl be an induced path in G. Let I be
an independent set of G satisfying that I ∩ P is a maximum independent set of P . Assume
that for any x ∈ I ∩ P , the token placed at x is (G, I)-movable.

Then, P is (G, I)-confined if and only if l is even (i.e., the length k = l − 1 of P is odd)
and there exist two independent sets I′1 and I′2 such that
(i) I G

! I′, where I′ ∈ {I, I′1, I′2},
(ii) I′1 ∩ P = {p1, p3, . . . , pl−1}, I′2 ∩ P = {p2, p4, . . . , pl}, and
(iii) for every x ∈ I′ ∩ P , the token placed at x is (Gx

P , I′ ∩Gx
P )-rigid.

The next lemma says that one can decide if the token t placed on u is (G, I)-rigid in
linear time. Consequently, R(G, I) can be computed in polynomial time.

I Lemma 7. Let I be an independent set of a cactus G. Let u ∈ I. One can check if the
token t placed on u is (G, I)-rigid in O(n) time, where n = |V (G)|. Consequently, one can
determine all (G, I)-rigid tokens in O(n2) time.

Proof. We describe a recursive function CheckRigid(G, I ∩G, u) for checking if t is (G, I)-
rigid1. Clearly, if NG(u) = ∅ then (by definition) t is (G, I)-rigid. We then consider the case
when NG(u) 6= ∅. We want to analyze the cases when t is not (G, I)-rigid using Lemma 5.
If there exists v ∈ NG(u) such that

(
NG(v) \ {u}

)
∩ I = ∅ then clearly t is not (G, I)-rigid.

Otherwise, for each w ∈
(
NG(v)\{u}

)
∩I, we need to check if the token tw at w is (G′, I∩G′)-

rigid, where G′ = G−NG[u]. It suffices to check if tw is (H(G′, w), I∩H(G′, w))-rigid, where

1 A pseudo-code of this algorithm is described in Algorithm 1 in the appendix.
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H(G′, w) is the (connected) component of G′ containing w. Note that by the definition of a
cactus, it must happen that 1 ≤ |NG(v) ∩H(G′, w)| ≤ 2.

Case 1: NG(v) ∩H(G′, w) = {w}. In this case, the cycle C mentioned in Lemma 5(ii) does
not exist. Hence, if for all w ∈

(
NG(v) \ {u}

)
∩ I, tw is not (H(G′, w), I∩H(G′, w))-rigid,

we can immediately conclude that t is not (G, I)-rigid, because we can slide all tw to a
vertex in NH(G′,w)(w) and slide t to v.

Case 2: NG(v) ∩ H(G′, w) = {w, w′}, (w′ 6= w). In this case, the cycle C mentioned in
Lemma 5(ii) does exist. If for all w ∈

(
NG(v)\{u}

)
∩I, tw is not (H(G′, w), I∩H(G′, w))-

rigid, we need to check if Lemma 5(ii) holds. If for all component H(G′, w) satisfying
NG(v) ∩H(G′, w) = {w, w′}, Lemma 5(ii) does not hold, then we can conclude that t is
not (G, I)-rigid, because we can slide all tw to a vertex in NH(G′,w)(w) (no token is slid
to w′ during this process) and slide t to v.
We now describe the function CheckConfinedPath for checking if Lemma 5(ii) holds.
Let C be the (unique) cycle in G (of length k) containing v, w (and also w′). Let
P = C−v = p1p2 . . . pk−1 with p1 = w, pk−1 = w′. By the definition of G′, it follows that
u /∈ V (C) ⊆ V (G′) ∪ {v}. Note that for each x ∈ V (C) \ {v} = V (P ), the graph Gx

C is a
subgraph of H(G′, w). If |I ∩ P | < bk/2c, Lemma 5(ii) clearly does not hold. If k is even
then it also does not hold, since tw is not (H(G′, w), I∩H(G′, w))-rigid. If |I ∩ P | = bk/2c,
we consider the set of tokens in I ∩ P . If there exists a vertex x ∈ I ∩ P such that the
token tx placed at x is (Gx

C , I ∩Gx
C)-movable, we can conclude that Lemma 5(ii) does

not hold since by moving tx to a vertex in Gx
C , we also obtain an independent set I′

satisfying I ∩G′
G′

! I′ and |I′ ∩ P | < bk/2c (see Lemma 1). Thus, we can now consider
the case when all tx (x ∈ I ∩ P ) are (Gx

C , I ∩ Gx
C)-rigid. Note that from Lemma 5

and the assumption that tw (and tw′ if w′ ∈ I) is (H(G′, w), I ∩H(G′, w))-movable, it
follows that for each x ∈ I ∩ P , tx must be (H(G′, w), I ∩H(G′, w))-movable, and thus
(G′, I ∩G′)-movable (see Proposition 2). Thus, one can now apply Lemma 6. One can
construct the independent sets I′1, I′2 described in Lemma 6 from I ∩G′ by sliding tokens
in G′ (which can also be extended to a TS-sequence in G) as follows. Let i be the smallest
index such that pi ∈ I′1 \ I. From the definition of I′1 ∩ P , i must be even. Since I ∩ P

is a maximum independent set of P , it follows that pj ∈ I′1 for j odd, j < i − 1, and
pj ∈ I \ I′1 for j even, j ≥ i. By Lemma 1, any token placed at x ∈ I ∩ P must be
(Gx

P , I ∩Gx
P )-rigid. Since the token tpi

on pi is (G′, I ∩G′)-movable but (Gpi

P , I ∩Gpi

P )-
rigid, it can only be slid to pi−1. In other words, there exists a TS-sequence Spi in G′

which slides tpi
to pi−1. Note that Spi

can be constructed recursively as follows. From
Lemma 5, if

(
NG′(pi−1) \ {pi}

)
∩ I = ∅, Spi

contains only a single step of sliding tpi
to

pi−1. On the other hand, if
(
NG′(pi−1) \ {pi}

)
∩ I 6= ∅, there must be a TS-sequence

S ′pi
in G′′ = G′ − NG′ [pi] which slides any token in

(
NG′(pi−1) \ {pi}

)
∩ I to some

vertex not in NG′(pi−1) \ {pi} without having to move a new token to NG′(pi−1) \ {pi}
beforehand. From Proposition 3, S ′pi

can be extended to a TS-sequence in G′. Hence,
Spi is constructed by simply performing S ′pi first, then performing a single sliding step
which moves tpi

to pi−1. Repeat the described steps, we finally obtain an independent
set I′1 which satisfies I ∩ G′

G′

! I′1 and I′1 ∩ P = {p1, p3, . . . }. Note that the recursive
construction of Spi

can indeed be derived from the recursive process of checking rigidity
which we are describing. A similar procedure can be applied for constructing I′2. Once
we constructed I′1 and I′2, we need to check for all y ∈ P ∩ (I′i \ I) (i = 1, 2) whether the
token ty placed at y is (Gy

C , I′i ∩Gy
C)-rigid. If all of such ty are (Gy

C , I′i ∩Gy
C)-rigid, by

Lemma 6, we conclude that Lemma 5(ii) holds.
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Next, we analyze the complexity of our algorithm. Note that the time complexity of this
recursive algorithm is proportional to the number of callings of the CheckRigid function.
Observe that for any vertex u ∈ V (G), the function CheckRigid is called for u at most
three times: at most one time during the process of checking Lemma 5(i) (the results of
this checking can be used for constructing the sets I′1 and I′2 described in Lemma 6), and at
most two times during the process of checking if Lemma 5(ii) holds. Hence, it takes at most
O(n) time to check if a token is (G, I)-rigid. Therefore, R(G, I) can be computed in O(n2)
time. J

In the remaining part of this section, we consider the second forbidden structure – the
(G, I)-confined cycles. Analogously to the case of confined paths, one can also derive (using
Lemma 1) that if a cycle C is of even length k, then it is (G, I)-confined if and only if I ∩ C

is a maximum independent set of C and any token placed at x ∈ I∩C is (G, I)-rigid. Similar
to Lemma 6, we have

I Lemma 8 (∗). Let G be a cactus. Let C = c1c2 . . . ckc1 be a cycle in G. Let I be an
independent set of G satisfying that I ∩ C is a maximum independent set of C. Assume that
for any x ∈ I ∩ C, the token placed at x is (G, I)-movable.

Then, C is (G, I)-confined if and only if k is odd and there exist three independent sets
I′1, I′2 and I′3 such that
(i) I G

! I′, where I′ ∈ {I, I′1, I′2, I′3},
(ii) I′1 ∩ C = {c1, c3, . . . , ck−2}, I′2 ∩ C = {c2, c4, . . . , ck−1}, I′3 ∩ C = {c3, c5, . . . , ck}, and
(iii) for every x ∈ I′ ∩ C, the token placed at x is (Gx

C , I′ ∩Gx
C)-rigid.

Using Lemma 8, we have

I Lemma 9 (∗). Let G be a cactus. Let I be an independent set of G. Assume that
R(G, I) = ∅. Then for any cycle C in G, one can decide if C is (G, I)-confined in O(n) time,
where n = |V (G)|. Consequently, computing C (G, I) takes at most O(n2) time.

Proof sketch. By modifying the function CheckConfinedPath in the proof of Lemma 7,
one can obtain an algorithm for checking if a length-k-cycle C = c1c2 . . . ckc1 in G is (G, I)-
confined. Keep in mind that C must satisfy the conditions given in Lemma 8. Moreover,
since R(G, I) = ∅, it suffices to consider only cycles of odd length. The condition R(G, I) = ∅
also implies that for any x ∈ I ∩ C, the token placed at x is (G, I)-movable. J

5 Sliding tokens on a cactus

In this section, we describe a polynomial-time algorithm for solving Sliding Token for
cacti and prove its correctness. More precisely, we claim that:

I Theorem 10. Let (G, I, J) be an instance of Sliding Token where G is a cactus and
I, J are two independent sets of G. Then, it takes at most O(n2) time to decide if I G

! J,
where n = |V (G)|.

Let (G, I, J) be an instance of Sliding Token where G is a cactus and I, J are two
independent sets of G. The following algorithm decides if I G

! J.

Step 1:
Step 1-1: If R(G, I) 6= R(G, J), return no.
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Step 1-2: Otherwise, remove all vertices in NG[R(G, I)] and go to Step 2. Let G′ be
the resulting graph.

Step 2:
Step 2-1: If C (G′, I ∩G′) 6= C (G′, J ∩G′), return no
Step 2-2: Otherwise, remove all cycles in C (G′, I ∩G′) and go to Step 3. Let G′′ be

the resulting graph.
Step 3: If |I ∩ F | 6= |J ∩ F | for some component F of G′′ then return no. Otherwise, return

yes.

We now estimate the running time of this algorithm. First of all, Lemma 7 ensures that
Step 1-1 can be performed in O(n2) time. Step 1-2 clearly can be performed in O(n)
time. Thus, Step 1 takes at most O(n2) time. Step 2 also takes at most O(n2) time since
by Lemma 9, Step 2-1 takes O(n2) time, and Step 2-2 can be performed in O(n) time.
Finally, Step 3 clearly runs in O(n) time. In total, the algorithm runs in O(n2) time.

It remains to show the correctness of our algorithm. First of all, we prove an useful
observation.

I Lemma 11 (∗). Let I be an independent set of a cactus G. Let v /∈ I. Assume that
R(G, I) = ∅, and NG(v) ∩ I 6= ∅. Then, there is at most one (G′, I ∩ G′)-rigid token in
NG(v) ∩ I, where G′ = G − v. On the other hand, if there exists a cycle C containing v

such that the path P = C − v is (G′, I ∩G′)-confined, then all tokens in NG(v) ∩ I must be
(G′, I ∩ G′)-movable. Moreover, if C (G, I) = ∅ then there is at most one cycle C with the
above described property.

The next lemma claims that Step 1-1 and Step 2-1 are correct.

I Lemma 12 (∗). Let I and J be independent sets of a cactus G. If R(G, I) 6= R(R, J),
then there is no TS-sequence in G which reconfigures I to J.

Assume that R(G, I) = R(G, J) = ∅. If C (G, I) 6= C (G, J) then there is no TS-sequence
in G which reconfigures I to J.

The next lemma ensures the correctness of Step 1-2 and Step 2-2.

I Lemma 13 (∗). Suppose that R(G, I) = R(G, J) for two given independent sets I and J of
a cactus G, and let G′ be the graph obtained from G by deleting the vertices in NG[R(G, I)] =
NG[R(G, J)]. Then I G

! J if and only if I ∩G′
G′

! J ∩G′. Furthermore, R(G′, I ∩G′) =
R(G′, J ∩G′) = ∅.

Suppose that C (G′, I ∩G′) = C (G′, I ∩G′) 6= ∅. Let G′′ be the graph obtained by removing
all cycles in C (G′, I ∩G′). Then I∩G′

G′

! J∩G′ if and only if I∩G′′
G′′

! J∩G′′. Furthermore,
R(G′′, I ∩G′′) = R(G′′, J ∩G′′) = ∅ and C (G′′, I ∩G′′) = C (G′′, J ∩G′′) = ∅.

Before proving the correctness of Step 3, we need some extra definitions. Let B1, B2
be two blocks of a cactus G. We say that B1 is a neighbor of B2 if V (B1) ∩ V (B2) 6= ∅. A
block B is safe if it has at most one cut vertex and at most one neighbor containing more
than one cut vertex. For example, the blocks marked with black color in Figure 5 are safe.
A vertex v ∈ V (G) is safe if it is a non-cut vertex of some safe block B of G.

For each cut vertex w of G, let Bw be the smallest subgraph of G such that Bw contains
all safe blocks of G containing w (see Figure 5). Bw can also be viewed as a collection of
safe blocks sharing the same cut vertex w. Observe that for two distinct cut vertices w1, w2,
V (Bw1) ∩ V (Bw2) = ∅. If no safe block contains w, we define Bw = ∅.
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w1

Bw1

w2

w3

Bw3

Bw2

Figure 5 Examples of safe blocks.

Let w be a cut vertex of a cactus G such that Bw 6= ∅. For each block B ∈ Bw,
since each block of G is either K2 or a simple cycle and all blocks in Bw share the
same (unique) cut vertex w, without loss of generality, assume that the vertices of B

are labeled as v0[B], v1[B], . . . , v|B|−1[B] such that v0[B] = w; vi[B] is adjacent to vi+1[B],
i ∈ {1, 2, . . . , |B| − 2}; and v0[B] is adjacent to v|B|−1[B].

I Lemma 14 (∗). Let I be an independent set of a given cactus G. Assume that R(G, I) = ∅
and C (G, I) = ∅. Let w be a cut vertex of G such that Bw 6= ∅. Assume that |I| ≥∑

B∈Bw

(
b|B|/2c − 1

)
.

(i) If
∑

B∈Bw

(
b|B|/2c − 1

)
= 0, then there exists an independent set I′ satisfying that

I G
! I′ and v ∈ I′, where v ∈ V (Bw) is some safe vertex of G and |B| denotes the

number of vertices of B ∈ Bw.
(ii) If

∑
B∈Bw

(
b|B|/2c − 1

)
≥ 1, then there exists an independent set I′ satisfying that

I G
! I′, NBw (w) ∩ I′ = ∅, and |I′ ∩ (Bw − w)| =

∑
B∈Bw

(
b|B|/2c − 1

)
.

I Lemma 15 (∗). Let I be an independent set of a given cactus G. Assume that R(G, I) = ∅,
and C (G, I) = ∅. Let w be a cut vertex of G such that Bw 6= ∅.
(i) If

∑
B∈Bw

(
b|B|/2c − 1

)
= 0. Let v ∈ V (Bw) be a safe vertex of G. Assume that v ∈ I.

Then, R(G∗, I∗) = ∅, where G∗ is the graph obtained from G by removing all vertices in
Bw and I∗ = I ∩G∗. Moreover, C (G∗, I∗) = ∅.

(ii) If
∑

B∈Bw

(
b|B|/2c− 1

)
≥ 1. Assume that I∩ (Bw −w) = I∩

⋃
B∈Bw

{v2[B], v4[B], . . . },
|I ∩ (Bw − w)| =

∑
B∈Bw

(
b|B|/2c − 1

)
and NBw

(w) ∩ I = ∅. Let G∗ be the graph
obtained from G by removing all vertices in NG[I ∩ (Bw − w)] and I∗ = I ∩G∗. Then
R(G∗, I∗) = ∅ and C (G∗, I∗) = ∅.

The next lemma ensures the correctness of Step 3.

I Lemma 16 (∗). Let G be a cactus. Let I and J be two given independent sets of G.
Assume that R(G, I) = R(G, J) = ∅ and C (G, I) = C (G, I) = ∅. Then I G

! J if and only if
|I| = |J|.
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A Details of Section 3

Proof of Lemma 1. We claim that (i) ⇔ (ii) and (ii) ⇔ (iii).
(i) ⇔ (ii).

(i) ⇒ (ii). Assume that (i) holds, i.e., I ∩ H is maximum and all tokens placed at
vertices in I ∩H are (G, I, V (H))-confined. Clearly, this implies (ii).
(ii) ⇒ (i). Assume that (ii) holds. i.e., for every independent set J satisfying I G

! J,
J ∩H is a maximum independent set of H. It follows that no token can be slid from
a vertex in H to a vertex in G−H. Moreover, since J ∩H is always maximum, no
token can be slid from a vertex in G−H to H. Thus, any token placed at a vertex in
I ∩H can only be slid along edges of H, i.e., it is (G, I, V (H))-confined.

(ii) ⇔ (iii).
(ii) ⇒ (iii). Assume that (ii) holds. First of all, it is clear that I ∩H is maximum.
Assume that there exists an independent set J, I G

! J, and a vertex x ∈ J ∩H such
that the token tx placed at x is (Gx

H , J ∩Gx
H)-movable, i.e., (iii) does not hold. Let

S = 〈I1 = I, I2, . . . , I` = J〉 be a TS-sequence in G which reconfigures I to J. Let
S ′ = 〈I′1 = J ∩ Gx

H , I′2, . . . , I′k〉 be a TS-sequence in Gx
H which slides x to a vertex

y ∈ NGx
H

(x). By definition of Gx
H , y /∈ V (H). Without loss of generality, assume that

x ∈ I′j \ I′k and y ∈ I′k \ I′j , where j = 1, 2, . . . , k − 1. For any independent set I of G,
I∩Gx

H is also an independent set of Gx
H . Therefore, one can construct the TS-sequence

〈I1 ∩Gx
H , I2 ∩Gx

H , . . . , I` ∩Gx
H〉 from S. Thus, we have I ∩Gx

H

Gx
H! J ∩Gx

H

Gx
H! I′k−1.

Note that for any independent set I′ of Gx
H , since V (Gx

H) ∩ (I − Gx
H) = ∅ the set

I′ ∪ (I − Gx
H) is also independent. Therefore, I G

! J G
! I′k−1 ∪ (I − Gx

H). Let
J′ = I′k−1 ∪ (I−Gx

H) then by our assumption J′ ∩H is a maximum independent set
of H. Let J′′ = I′k ∪ (I−Gx

H). Similarly, we also have J′′ ∩H must be a maximum
independent set of H. Since J′′ \ J′ = {y}, J′ \ J′′ = {x}, and y /∈ V (H), this is a
contradiction.
(iii) ⇒ (ii). Assume that (iii) holds. Assume that there exists an independent set J
such that I G

! J but J ∩H is not a maximum independent set of H, i.e., (ii) does
not hold. Let S = 〈I1 = I, I2, . . . , I` = J〉 be a TS-sequence which reconfigures I to
J. Without loss of generality, assume that Ii ∩H is a maximum independent set of
H for i = 1, 2, . . . , ` − 1. Let x ∈ I`−1 \ I` and y ∈ I` \ I`−1. Since I` ∩ H is not a
maximum independent set of H, |I` ∩H| < |Ii ∩H| for i = 1, 2, . . . , ` − 1. Hence,
y /∈ V (H). Since NG(x) = NGx

H
(x) ∪NH(x) and NGx

H
(x) ∩NH(x) = ∅, y must be in

Gx
H , which implies that S slides a token tx on x to a vertex y ∈ V (Gx

H). As in the
previous part, one can indeed derive a TS-sequence in Gx

H from S which slides tx to y,
i.e., it is (Gx

H , I`−1 ∩Gx
H)-movable. This is a contradiction. J

Proof of Proposition 2. Assume that S = 〈I1, . . . , I`〉 is a TS-sequence in G that reconfigures
I = I1 to J = I`. For any i ∈ {1, 2, . . . , k} and any independent set I of G, as I ∩ Gi ⊆ I,
I ∩Gi is also independent. Hence, Si = 〈I1 ∩Gi, . . . , I` ∩Gi〉 reconfigures I ∩Gi to J ∩Gi.

Assume that for each i ∈ {1, 2, . . . , k}, there exists a TS-sequence S ′i in Gi that recon-
figures I ∩Gi to J ∩Gi. For any two TS-sequences S ′i and S ′j (i, j ∈ {1, 2, . . . , k}), if the
length of S ′i is smaller than the length of S ′j then we can make them equal by appending
〈I ∩Gi, I ∩Gi, . . . 〉 to the end of S ′i. Thus, assume that all S ′i are of equal length, i.e., any
S ′i can be written in the form 〈Ii

1 = I ∩Gi, . . . , Ii
l = J ∩Gi〉. Let Ii be an independent set

of Gi. Since G1, G2, . . . , Gk are components of G,
⋃k

i=1 Ii forms an independent set of G.
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Thus, we can extend any sequence S ′i (i = 1, 2, . . . , k) to a TS-sequence Si in G as follows.

Si = 〈Ii
1 ∪

i−1⋃
j=1

Ij
l ∪

k⋃
j=i+1

Ij
1, . . . , Ii

l ∪
i−1⋃
j=1

Ij
l ∪

k⋃
j=i+1

Ij
1〉.

Clearly, the sequence S constructed by first applying S1, then S2, and so on is the one that
reconfigures I to J in G. J

Proof of Proposition 3. Since u ∈ I for any I ∈ S, the sequence S ′ = 〈I1 \ {u}, . . . , I` \ {u}〉
clearly reconfigures I1 ∩ G′ = I1 \ {u} to I` ∩ G′ = I` \ {u}. For any independent set I′
of G′, I′ ∪ {u} clearly forms an independent set of G. Hence, S = 〈I′1 ∪ {u}, . . . , I′l ∪ {u}〉
reconfigures I′1 ∪ {u} to I′l ∪ {u}. J

Proof of Lemma 4. If I C
! J then clearly |I| = |J|. Now, assume that |I| = |J|. We

claim that I C
! J. Let C = v1v2 . . . vkv1. Let I′ be an independent set of C such that

|I′| = |I| = |J| ≤ bk/2c and vi ∈ I′ if i is odd. We claim that I C
! I′. Similarly, one can also

show that J C
! I′. Consider the following cases:

Case 1: |I| = bk/2c. Since there are no (C, I)-rigid tokens and |I| = bk/2c, k must be odd.
Let i be the smallest index such that vi ∈ I \ I′, 2 ≤ i ≤ k. Hence, from the definition
of I′, i must be even. Moreover, vj ∈ I′ for odd j, 1 ≤ j < i− 1, and vj ∈ I for even j,
i ≤ j ≤ k − 1. Hence, one can slide the token on vi to vi−1 ∈ I′ \ I, then slide the token
on vi+2 to vi+1, and so on. Let S be the TS-sequence describing the above process, then
clearly I C

! I′, since each sliding step reduces |I′ \ I|.
Case 2: |I| < bk/2c. Let i be the smallest index such that vi ∈ I \ I′, 2 ≤ i ≤ k. If i = 2

then since there are no (C, I)-rigid tokens, we can assume without loss of generality that
vk /∈ I; otherwise there exists a TS-sequence that slides the token in vk to vk−1 and then
one can deal with the resulting independent set. Let j be the smallest index such that
vj ∈ I′ \ I, 1 ≤ j ≤ k. Since vi /∈ I′, i > j. Now, one can slide vi to vj and repeat the
process. Let S be the TS-sequence describing the above process, then clearly I C

! I′. J

B Details of Section 4

Proof of Lemma 6.
(⇐). Assume that l is even and the described independent sets I′1, I′2 exist. Since I ∩ P

is a maximum independent set of P , it suffices to show that all tokens in I ∩ P are
(G, I, V (P ))-confined. By Lemma 1, it is equivalent to saying that for every J satisfying
I G
! J, any token placed at x ∈ P ∩ J is (Gx

P , J∩Gx
P )-rigid. Let x ∈ J∩ I′1 ∩P for some

J such that I G
! J and suppose that the token tx placed at x is (Gx

P , I′1 ∩Gx
P )-rigid. We

claim that it is also (Gx
P , J∩Gx

P )-rigid. Assume for the contradiction that there exists an
independent set J′ of Gx

P such that J∩Gx
P

Gx
P! J′ but x /∈ J′. For any independent set I of

G, note that I∩Gx
P is also independent. Hence, it follows that I′1 ∩Gx

P

Gx
P! J∩Gx

P

GX
P! J′,

which then implies that tx is not (Gx
P , I′1 ∩ Gx

P )-rigid. This is a contradiction. Hence,
for every independent set J with I G

! J, any token in J ∩ I′1 ∩ P is (Gx
P , J ∩Gx

P )-rigid.
Similarly, for every independent set J with I G

! J, any token in J ∩ I′2 ∩ P is also
(Gx

P , J∩Gx
P )-rigid. Moreover, for every J with I G

! J, J∩P =
(
J∩I′1∩P

)
∪
(
J∩I′2∩P

)
.

Hence, every token placed at x ∈ J ∩ P is (Gx
P , J ∩Gx

P )-rigid.
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(⇒). Assume that P is (G, I)-confined. Since I ∩ P is a maximum independent set of P

and any token placed at x ∈ I ∩ P is (G, I)-movable, it follows that l must be even. We
show how to construct I′1 from I using TS rule. A similar process can be applied for
I′2. Let i be the smallest index such that pi ∈ I′1 \ I. From the definition of I′1 ∩ P , i

must be even. Since I ∩ P is a maximum independent set of P , it follows that pj ∈ I′1
for j odd, j < i − 1, and pj ∈ I \ I′1 for j even, j ≥ i. By Lemma 1, any token placed
at x ∈ I ∩ P must be (Gx

P , I ∩Gx
P )-rigid. Since the token tpi

on pi is (G, I)-movable but
(Gpi

P , I∩Gpi

P )-rigid, it can only be slid to pi−1. In other words, there exists a TS-sequence
Spi

in G which slides tpi
to pi−1 Note that Spi

can be constructed recursively as follows.
From Lemma 5, if

(
NG(pi−1) \ {pi}

)
∩ I = ∅, Spi

contains only a single step of sliding tpi

to pi−1. On the other hand, if
(
NG(pi−1)\{pi}

)
∩I 6= ∅, there must be a TS-sequence S ′pi

in G′ = G−NG[pi] which slides any token in
(
NG(pi−1) \ {pi}

)
∩ I to some vertex not in

NG(pi−1)\{pi} without having to move a new token to NG(pi−1)\{pi} beforehand. From
Proposition 3, S ′pi

can be extended to a TS-sequence in G. Hence, Spi
is constructed

by simply performing S ′pi first, then performing a single sliding step which moves tpi to
pi−1. Repeat the described steps, we finally obtain an independent set I′1 which satisfies
I ∩G′

G′

! I′1 and I′1 ∩ P = {p1, p3, . . . }. J

Proof of Lemma 8.
(⇐). Assume that k is odd and the described independent sets I′1, I′2, I′3 exist. As in

Lemma 6, it suffices to show that for every J with I G
! J, every token placed at x ∈ J∩C

is (Gx
C , J∩Gx

C)-rigid. For i ∈ {1, 2, 3}, let x ∈ J∩ I′i∩C for some J such that I G
! J and

suppose that the token tx placed at x is (Gx
C , I′i ∩Gx

C)-rigid. Using a similar argument as
in the proof of Lemma 6, one can show that tx is also (Gx

C , J ∩Gx
C)-rigid. Moreover, for

every J with I G
! J, J ∩ C =

⋃3
i=1(J ∩ I′i ∩ C). Hence, every token placed at x ∈ J ∩ C

is (Gx
C , J ∩Gx

C)-rigid, which completes the first part of our proof.
(⇒). Assume that C is (G, I)-confined. Since I ∩ C is a maximum independent set of C

and any token placed at x ∈ I ∩ C is (G, I)-movable, it follows that k must be odd. The
construction of I′1 and I′2 can be done similar as in the proof of Lemma 6. For constructing
I′3, instead of starting from I, we start from I′1 as the only TS-sequence we need is the
one that slides the token at c1 to ck, which can be obtained from the result of checking if
the token placed at c1 is (G, I′1)-rigid. J

Proof of Lemma 9. Assume that R(G, I) = ∅. We modified the function CheckConfined-
Path in Algorithm 1 to check if a length-k-cycle C = c1c2 . . . ckc1 in G is (G, I)-confined as
follows (see function CheckConfinedCycle in Algorithm 2). If k is even or |I ∩ C| < bk/2c
then clearly C is not (G, I)-confined. Otherwise, we first check if the token tx placed at
x ∈ I∩C are (Gx

C , I∩Gx
C)-rigid or not. If some of them does not satisfy the above condition,

then we can conclude that C is not (G, I)-confined as some token tx can be slid to a vertex in
Gx

C . Otherwise, we call the CheckRigid function (in Algorithm 1) for each vertex in I ∩ C.
Note that R(G, I) = ∅, thus it must return no and a TS-sequence which then can be used for
constructing the described sets I′1, I′2 and I′3 in Lemma 8. For constructing I′3, we start from
I′1 instead of I and hence need to perform checking if the token placed at c1 is (G, I′1)-rigid
or not beforehand. Next, after constructing these three independent sets, we check for all
y ∈ C ∩ (I′i \ I) (i = 1, 2, 3) whether the token ty placed at y is (Gy

C , I′i ∩Gy
C)-rigid. If all of

such ty are (Gy
C , I′i ∩Gy

C)-rigid, by Lemma 8, we conclude that C is indeed (G, I)-confined.
As in the case of Algorithm 1, in Algorithm 2, for each vertex u ∈ V (G), the CheckRigid

function is called at most 5 times: at most one time during the process of checking if it is
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Algorithm 1 Check if a token on u ∈ I is (G, I)-rigid.
Require: A cactus G, an independent set I of G, and a vertex u ∈ I.
Ensure: Return yes if the token on u is (G, I)-rigid; otherwise, return no and a TS-sequence Su

which slides t to some vertex v ∈ NG(u).
1: function CheckRigid(G, I, u) . Check if a token t on u is (G, I)-rigid.
2: if NG(u) = ∅ then
3: return yes
4: end if
5: for all v ∈ NG(u) do
6: if

(
NG(v) \ {u}

)
∩ I = ∅ then

7: return no and a TS-sequence Su involving the single step of sliding t from u to v.
8: end if
9: for w ∈

(
NG(v) \ {u}

)
∩ I do

10: Let G′ = G−NG[u].
11: Let H(G′, w) be the component of G′ containing w.
12: CheckRigid(H(G′, w), I ∩H(G′, w), w)
13: CheckRigid(G′, I ∩G′, w) ← CheckRigid(H(G′, w), I ∩H(G′, w), w)
14: end for
15: if CheckRigid(G′, I ∩G′, w) = no for any w ∈

(
NG(v) \ {u}

)
∩ I then

16: for all components H(G′, w) with |NG(v) ∩H(G′, w)| = 2 do
17: Let C be the (unique) cycle in G containing v, w.
18: CheckConfinedPath(H(G′, w), I ∩H(G′, w), C − v)
19: end for
20: if CheckConfinedPath(H(G′, w), I ∩H(G′, w), C − v) = no for any component

H(G′, w) with |NG(v) ∩H(G′, w)| = 2 then
21: return no and a TS-sequence Su which slides t from u to v.
22: end if
23: end if
24: end for
25: return yes
26: end function
27: function CheckConfinedPath(G, I, P )
28: Let k be the length of P .
29: if k is even or |I ∩ P | < bk/2c then return no
30: else
31: for all x ∈ I ∩ P do
32: if CheckRigid(Gx

P , I ∩Gx
P , x) = no then return no

33: end if
34: CheckRigid(G, I, x) . Must return no and a TS-sequence which will be used for the

construction of I′1 and I′2.
35: end for
36: Construct I′1 (as in Lemma 6).
37: for all x ∈ P ∩ (I′1 \ I) do
38: if CheckRigid(Gx

P , I′1 ∩Gx
P , x) = no then return no

39: end if
40: end for
41: Construct I′2 (as in Lemma 6).
42: for all x ∈ P ∩ (I′2 \ I) do
43: if CheckRigid(Gx

P , I′2 ∩Gx
P , x) = no then return no

44: end if
45: end for
46: return yes
47: end if
48: end function
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Algorithm 2 Check if a cycle is (G, I)-confined.
Require: A cactus G, an independent set I of G with R(G, I) = ∅, and a cycle C of G.
Ensure: Return yes if C is (G, I)-confined; otherwise, return no.
1: function CheckConfinedCycle(G, I, C)
2: Let k be the length of C.
3: if k is even or |I ∩ C| < bk/2c then return no
4: else
5: for all x ∈ I ∩ C do
6: if CheckRigid(Gx

C , I ∩Gx
C , x) = no then return no

7: end if
8: CheckRigid(G, I, x) . Must return no (as R(G, I) = ∅) and a TS-sequence

which will be used for the construction of I′1, I′2, and I′3.
9: end for
10: Construct I′1 (as in Lemma 8).
11: for all x ∈ (I′1 \ I) ∩ C do
12: if CheckRigid(Gx

C , I′1 ∩Gx
C , x) = no then return no

13: end if
14: end for
15: Construct I′2 (as in Lemma 8).
16: for all x ∈ (I′2 \ I) ∩ C do
17: if CheckRigid(Gx

C , I′2 ∩Gx
C , x) = no then return no

18: end if
19: end for
20: CheckRigid(G, I′1, c1)
21: Construct I′3 (as in Lemma 8).
22: for all x ∈ (I′3 \ I′1) ∩ C do
23: if CheckRigid(Gx

C , I′3 ∩Gx
C , x) = no then return no

24: end if
25: end for
26: return yes
27: end if
28: end function

(G, I)-rigid (and should return no because of our assumption), at most one time during the
process of checking if the token placed at c1 is (G, I′1)-rigid and at most three times during
the process of checking the conditions described in Lemma 8. Each function CheckRigid
takes O(|G|) time for any cactus G (see Lemma 7). Thus, it takes O(n) time to decide if a
cycle C is (G, I)-confined. Consequently, computing C (G, I) takes at most O(n2) time. J

C Details of Section 5

Proof of Lemma 11. Assume that there are two vertices w and w′ in NG(v)∩I such that the
tokens tw and tw′ placed at w and w′ are both (G′, I∩G′)-rigid, respectively (see Figure 6(a)).
From the assumption, tw and tw′ must be (G, I)-movable. Therefore, tw (at least) can be
slid to v. But, this can happen only when tw′ can be slid to a vertex in NG′(w′), i.e., tw′

is (G′, I ∩ G′)-movable, which contradicts our assumption. Hence, there is at most one
(G′, I ∩G′)-rigid token in NG(v) ∩ I.
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v

w1 w2 v

t1

t2 t3

(a) (b)

C1

C2

Figure 6 Illustration for Lemma 11
.

Now, assume that there exists a cycle C containing v such that the path P = C − v

is (G′, I ∩ G′)-confined. By Lemma 1, for every independent set I′ with I ∩ G′
G′

! I′,
|I ∩ P | = bk/2c, where k is the length of C. Hence, for every x ∈ I ∩ C, the token on x is
at least (Gx

C , I ∩Gx
C)-rigid. Hence, if k is even, it follows that no token can be slid (in G)

along edges of C, i.e., all tokens in I∩C are (G, I)-rigid, which is a contradiction. Therefore,
k must be odd. It follows that the tokens in NG(v) ∩ I ∩ C must be (G′, I ∩ G′)-movable.
Now, assume for the contradiction that the token tw′ at some vertex w′ ∈ (NG(v) ∩ I)− C

which is (G′, I ∩G′)-rigid. Since tw′ is (G, I)-movable, it can at least be slid to v. This is a
contradiction to Lemma 5(ii). Hence, every tokens in NG(v)∩ I must be (G′, I∩G′)-movable.

Finally, we claim that if C (G, I) = ∅ then there are at most one cycle C containing v

such that the path P = C − v is (G′, I ∩ G′)-confined. Assume for the contradiction that
there are two cycles C1 and C2 satisfy the above property (see Figure 6(b)). For i = 1, 2,
since v /∈ I and I∩ (Ci − v) is a maximum independent set of Ci − v, it follows that I∩Ci is
a maximum independent set of Ci. Additionally, note that C (G, I) = ∅. Thus, there is no
(G, I, V (Ci))-confined token (i = 1, 2) placed at any vertex of I∩Ci. From the assumption, all
tokens in I∩ (Ci− v) = I∩Ci are (G, I, V (Ci− v))-confined. On the other hand, since I∩C1
is a maximum independent set of C1, there exists a token t1 at some vertex v1 ∈ NC1(v). As
before, t1 must be (G, I, V (C1 − v))-confined and not (G, I, V (C1))-confined. Therefore, it
can be slid to v. Similarly, there exists a token t2 at some vertex at some vertex v2 ∈ NC2(v)
such that t2 is (G, I, V (C2 − v))-confined and not (G, I, V (C2))-confined. Clearly, t2 must
also be slid to v, but this is a contradiction since one need to slide t1 to a vertex not in
NG(v) first, which can be done (at least) when t2 has been moved. Note that since I ∩ C2
is a maximum independent set of C2, there always exists some token in NC2(v) while no
token in I ∩ C2 is moved to a vertex not in V (C2). Therefore, there are at most one cycle C

containing v such that the path P = C − v is (G′, I ∩G′)-confined. J

Proof of Lemma 12. By definition, a token t at u ∈ I is (G, I)-rigid if for every J such that
I G
! J, u ∈ J. It follows that t is also (G, J)-rigid, since for any independent set J′ such

that J G
! J′, I G

! J G
! J′, which then implies u ∈ J′. Hence, R(G, I) = R(G, J).

Assume that R(G, I) = R(G, J) = ∅. We claim that if I G
! J then C (G, I) = C (G, J).

Suppose that there exists a cycle C of G such that C ∈ C (G, I) \ C (G, J). That is, I ∩ C

is a maximum independent set of C, and all tokens in I ∩ C are (G, I, V (C))-confined. By
Lemma 1, for every J′ with I G

! J G
! J′, C ∩ J′ must also be a maximum independent set

of C, and the token tx placed at x ∈ J′ ∩ C is (Gx
C , J′ ∩Gx

C)-rigid, i.e., C ∈ C (G, J), which
is a contradiction. J
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Proof of Lemma 13. Assume that there exists a TS-sequence S = 〈I = I1, I2, . . . , J = J〉 in
G which reconfigures I to J, and R(G, I) = R(G, J). We show that I ∩G′

G′

! J ∩G′. Since
no tokens can be placed at any neighbor of R(G, I) = R(G, J) = R(G, Ii) (i = 1, 2, . . . , r),
for any independent set I of G, I \ R(G, I) is indeed an independent set of G′. For any
i ∈ {2, . . . , r}, let u ∈ Ii−1 \ Ii and v ∈ Ii \ Ii−1. Since u /∈ Ii and v /∈ Ii−1, both u and v

are not in R(G, I), hence they must be vertices of G′. Therefore, S ′ = 〈I1 \R(G, I), I2 \
R(G, I), . . . , J \R(G, I)〉 is a TS-sequence in G′ which reconfigures I \R(G, I) = I ∩G′ to
J \R(G, I) = J ∩G′.

Assume that there exists a TS-sequence S ′ = 〈I′1 = I∩G′, I′2, . . . , I′s = J∩G′〉 in G′ which
reconfigures I∩G′ to J∩G′. By definition of G′, it follows that for any independent set I′ of
G′, I′∪R(G, I) forms an independent set of G. Hence, S = 〈I′1∪R(G, I), I′2∪R(G, I), . . . , I′s∪
R(G, I)〉 is a TS-sequence which reconfigures I′1 ∪R(G, I) = I to Is ∪R(G, I) = J.

We now show that R(G′, I ∩G′) = ∅. Let v ∈ I ∩G′. Then, the token tv placed at v is
(G, I)-movable, because otherwise v ∈ R(G, I). Hence, there exists a TS-sequence S in G

which slides tv to a vertex w ∈ NG(v). Note that w ∈ V (G′). As before, from S, one can
construct a TS-sequence S ′ in G′ which slides tv to w, hence implies tv is (G′, I∩G′)-movable.
Therefore, R(G′, I ∩G′) = ∅. Similarly, one can also show that R(G′, J ∩G′) = ∅.

Suppose that C (G′, I ∩G′) = C (G′, I ∩G′) 6= ∅ and there exists a TS-sequence S ′ =
〈I′1 = I ∩G′, I′2, . . . , I′s = J ∩G′〉 in G′ that reconfigures I ∩G′ to J ∩G′. For j = 2, . . . , s,
let u ∈ I′j−1 \ I′j and v ∈ I′j \ I′j−1. Since all tokens in I ∩ C are (G′, I ∩ G′, V (C))-
confined, u and v must be either both in G′′ or both in some cycle C ∈ C (G′, I ∩G′) Hence,
S ′′ = 〈I′1 ∩ G′′ = I ∩ G′′, I′2 ∩ G′′, . . . , I′s ∩ G′′ = J ∩ G′′〉 is a TS-sequence in G′′ which
reconfigures I ∩G′′ to J ∩G′′.

Assume that there exists a TS-sequence S ′′ = 〈I′′1 = I ∩G′′, I′′2 , . . . , I′′t = J ∩G′′〉 in G′′

which reconfigures I∩G′′ to J∩G′′. We claim that one can construct a TS-sequence S ′ in G′

which reconfigures I∩G′ = (I∩G′′)∪(I∩C (G′, I ∩G′)) to J∩G′ = (J∩G′′)∪(J∩C (G′, I ∩G′)).
Note that for a given independent set I′′ of G′′ and a cycle C ∈ C (G′, I ∩G′), I′′ ∪

(
I ∩ C

)
may not be an independent set of G′. The same observation holds for any independent set
that is reconfigurable from I. Let F be the set of all components of G′′. From the previous
part, one can construct a TS-sequence S ′′F = 〈I′′1 ∩F, I′′2 ∩F, . . . , I′′t ∩F 〉 for each component
F ∈ F . Let A =

⋃
C∈C (G′,I∩G′)

⋃
x∈I∩C

(
NG′(x) \ V (C)

)
. For a given component F of G′′,

If S ′′F involves no vertex in A.
For any independent set IF ∈ S ′′F and any cycle C of G′, IF ∪(I∩C) forms an independent
set of G′. It follows that S ′′F can be “extended” to a TS-sequence in G′.
If S ′′F involves vertices in A′ = A ∩ F (see Figure 7).
Let C ∈ C (G′, I ∩G′). Since G′ is a cactus, there is at most one vertex v ∈ I ∩ C such
that NG′(v) ∩ V (F ) 6= ∅. Moreover, if there are two vertices u1, u2 ∈ V (F ) such that
NG′(ui) ∩ V (C) 6= ∅ (i = 1, 2) then they must both adjacent to v. By definition of
(G′, I ∩ G′, V (C))-confined tokens, for each such cycle C described above, there exists
a TS-sequence S(C, v) which slides the token tv at v ∈ I ∩ C (NG′(v) ∩ V (F ) 6= ∅) to
some vertex w in NC(v). Now, if there are two of such cycle C, say C1 and C2, let
v1 (resp. v2) be a vertex in I ∩ C1 (resp. I ∩ C2) such that NG′(v1) ∩ V (F ) 6= ∅ (resp.
NG′(v2)∩V (F ) 6= ∅). Since G is a cactus, V (Gx

C1
)∩V (Gy

C2
) = ∅ for any x ∈ V (C1)\{v1}

and y ∈ V (C2) \ {v2}. It follows that S(C1, v1) does not involve any vertex that is
involved with S(C2, v2) and vice versa.

The TS-sequence S ′ thus can be constructed as follows. First of all, we perform any sequence
S ′′F that does not involve vertices of A. Next, for a component F such that S ′′F involves
some vertex of A, let C ∈ C (G′, I ∩G′) be such that there exists a vertex v ∈ I∩C satisfying
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Figure 7 S ′′F involves vertices in A′ ⊆ A (Lemma 13).

NG(v) ∩ V (F ) ⊆ A. As observed before, such a vertex v is uniquely determined. Then, we
perform S(C, v), then perform S ′′F , and then perform S(C, v) in reverse order. If the vertex
w ∈ NC(v) where the token tv is slid to after performing S(C, v) is also in J then in the
step of reversing S(C, v), we do not reverse the step of sliding tv to w. At this moment, we
have reconfigured I ∩G′′ to J ∩G′′ in G′. The remaining problem is to reconfigure I ∩ C

to J ∩ C in G′ for each cycle C ∈ C (G′, I ∩G′), which can be done using Lemma 4 and the
observation that for any vertex v ∈ V (C), if v ∈ J then NG(v) ∩ J = ∅.

Using a similar argument as before (based on the fact that if I′ is an independent set
of G′ then I′ ∩ G′′ is also an independent set of G′′), one can show that R(G′′, I ∩G′′) =
R(G′′, J ∩G′′) = ∅, and C (G′′, I ∩G′′) = C (G′′, J ∩G′′) = ∅. J

Proof of Lemma 14. First of all, we claim that if NBw (w) ∩ I = ∅ then one can slide a
closest token in G∗ to w, where G∗ is the graph obtained from G by removing all vertices
in Bw − w. In other words, there exists an independent set J such that I G

! J and w ∈ J.
If w ∈ I then we are done. Thus, assume that w /∈ I. Let w′ ∈ I ∩ G∗ be such that
distG∗(w, w′) = minw′′∈I∩G∗ distG∗(w, w′′). Let P = w1 . . . wp (p ≥ 3) be a shortest ww′-
path with w1 = w and wp = w′. Let M = NG∗(wp−1) ∩ I. Since NBw (w) ∩ I = ∅, it follows
that M = NG∗(wp−1)∩ I = NG(wp−1)∩ I for any p ≥ 3. The definition of w′ implies that no
tokens are placed at NG[wi] for i = 1, 2, . . . , p− 2. We claim that a token on some vertex of
M can be slid to w. If |M | = 1, i.e., M contains only w′, then one can slide (in G) the token
on w′ to w directly. If |M | ≥ 2, then by Lemma 11, there exists at most one vertex z in M

such that the token on z is (G′, I ∩G′)-rigid, where G′ = G− wp−1 (see Figure 8(a)). On
the other hand, if there exists a cycle D containing wp−1 such that the path Q = D − wp−1
is (G′, I ∩G′)-confined, then all tokens in M must be (G′, I ∩G′)-movable (see Figure 8(b)).
Note that because C (G, I) = ∅, such a cycle D described above (if exists) must be unique.
Also note that by Lemma 5 and the assumption that R(G, I) = ∅, both z and D cannot
exist at the same time. If both of them do not exist, we can slide the token tw′ placed at w′

to w by first sliding all tokens in M − w′ (which are clearly (G′, I ∩G′)-movable) to some
vertices in G′, and then slide tw′ to w. If z exists, we first reduce the number of tokens in M

by sliding all tokens in M − z (which are clearly (G′, I ∩G′)-movable) to some vertices in
G′, and then slide the token tz on z to w. On the other hand, if D exists (uniquely), then
one can slide a token tz′ on z′ ∈ M ∩D to w by first sliding all tokens in M − C (which
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Figure 8 (a) The token tz at z is (G′, I ∩G′)-rigid; (b) The cycle D containing wp−1 such that
the path Q = D − wp−1 is (G′, I ∩G′)-confined.

are clearly (G′, I ∩G′)-confined) to some vertices in G′ then sliding tz′ to wp−1 (which, by
Lemma 11, is the only way of moving tz′ “out of” D), and finally to w.

Next, we estimate the maximum number of tokens that can be placed at vertices of
Bw. Observe that for any block B ∈ Bw, since B is either K2 or a cycle, B − w is indeed
a path. Moreover, the path P = B − w satisfies that any token tx placed at x ∈ I ∩ P

is (Gx
P , I ∩ Gx

P , V (P ))-confined, simply because in this case Gx
P is the graph contains a

single vertex x. By Lemma 11, there is at most one block B ∈ Bw that contains b|B|/2c
token(s), while all other blocks B′ 6= B must contain at most b|B′|/2c − 1 token(s). Thus,
|I ∩ Bw| ≤

∑
B∈Bw

(
b|B|/2c − 1

)
+ 1.

Finally, we claim that if |I ∩ Bw| ≤
∑

B∈Bw

(
b|B|/2c − 1

)
, then one can “arrange” the

tokens in I ∩ Bw such that there are no tokens placed at vertices of NBw [w]. More formally,
there exists an independent set J such that I G

! J and NBw [w] ∩ J = ∅. If there exists
a block B ∈ Bw such that |I ∩B| = b|B|/2c then since |I ∩ Bw| ≤

∑
B∈Bw

(
b|B|/2c − 1

)
,

there must be another block B′ ∈ Bw where |B′ ∩ I| < b|B′|/2c − 1. Since R(G, I) = ∅ and
C (G, I) = ∅, one can slide a token from B to w (if there is no token at w) and then slide it
to a vertex in B′. If there is a token at w, we slide it to a vertex in B′ directly. Since at
most one such block B exists, we can now assume that |I ∩B| ≤ b|B|/2c − 1 for every block
B ∈ Bw. Clearly, a block B ∈ Bw contains a token only when |B| ≥ 4, i.e., it is a cycle of
length at least 4. Using Lemma 4 and note that all blocks B ∈ Bw are safe, one can easily
obtain the described set J.

Using the above claims, we now prove Lemma 14.
(i) Assume that

∑
B∈Bw

(
b|B|/2c − 1

)
= 0. Since |B| ≥ 2 for any block B of G, it follows

that for all B ∈ Bw, 2 ≤ |B| ≤ 3, i.e., B is either K2 or a cycle of length 3. Clearly,
NBw

(w) = V (Bw) \ {w}.
Now, for a safe vertex v ∈ V (Bw), one must have that v ∈ NBw

(w) ⊆ NG(w). If v ∈ I
then we are done. Therefore, assume that v /∈ I. Note that in this case |I ∩ Bw| ≤ 1. If
|I ∩ Bw| = 0 then by the first claim above, one can slide a token to w, and then to v.
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Figure 9 Illustration of Case (i)-1 of Lemma 15(i).

Otherwise, if w ∈ I, then clearly the token placed at w can be slid to v. On the other
hand, if there is a vertex v′ /∈ {v, w} where v′ ∈ I ∩ Bw then since R(G, I) = ∅ and
C (G, I) = ∅, it follows that the token placed at v′ can be slid to a vertex outside the
block containing v′ and w, therefore must be slid to w (which is the unique cut vertex
of G in Bw), and then can be slid to v from w.

(ii) Assume that
∑

B∈Bw

(
b|B|/2c − 1

)
≥ 1. If |I ∩ Bw| =

∑
B∈Bw

(
b|B|/2c − 1

)
then we

can just simply use the third claim to “arrange” the tokens in I ∩ Bw.
If |I ∩ Bw| =

∑
B∈Bw

(
b|B|/2c − 1

)
+ 1 then there must exist a unique token t in

NBw
[w] which cannot be “arranged” using the third claim. Note that in this case

|I ∩ (Bw − w)| =
∑

B∈Bw

(
b|B|/2c − 1

)
. If t is placed at w then NBw (w) ∩ I = ∅ and

we are done. If t is placed at some vertex in NBw
(w) then it can be slid to w because

R(G, I) = ∅ and C (G, I) = ∅. By sliding t to w, there is now no token placed at any
vertex in NBw

(w), and the resulting independent set is the set I′ we need.
Hence, we can assume that |I ∩ Bw| <

∑
B∈Bw

(
b|B|/2c − 1

)
. We claim that one can

construct an independent set I′ such that I G
! I′, NBw (w)∩I′ = ∅, and |I′ ∩ (Bw − w)| =∑

B∈Bw

(
b|B|/2c − 1

)
. Using the third claim, we can assume without loss of generality

that NBw [w]∩ I = ∅. We construct the set I′ using TS rule as follows. While the number
of tokens in Bw−w is smaller than

∑
B∈Bw

(
b|B|/2c− 1

)
, we use the first claim to move

some token t not in Bw − w to w, then move t to some block B ∈ Bw which contains
less than b|B|/2c − 1 token(s), then using the third claim to “arrange” the set of tokens
in Bw so that NBw

[w] contains no token. Repeat the above steps until the number of
tokens in Bw is equal to

∑
B∈Bw

(
b|B|/2c − 1

)
, we finally obtain I′. J

Proof of Lemma 15.
(i) First of all, we claim that R(G∗, I∗) = ∅. Assume for the contradiction that R(G∗, I∗) 6=
∅. Let w′ ∈ I∗ be a vertex where a (G∗, I∗)-rigid token is placed. Let P = w1w2 . . . wp

be a vw′-path with w1 = v, w2 = w and wp = w′.

Case (i)-1: wp−1 = w. (See Figure 9)
In this case, it is clear that distG(w, wp) = 1. From Lemma 14, any block B ∈ Bw is
either K2 or a cycle of length 3. Let B be the safe block containing v. If B is K2 then
clearly the token tv placed at v is (G−w, I∩ (G−w))-rigid. On the other hand, if B

is a cycle of length 3 then the path B−w is clearly (G−w, I∩ (G−w))-confined. By
Lemma 11, in any of these two cases, the token twp placed at wp = w3 ∈ NG(w) must
be (G−w, I∩(G−w))-movable. By definition, G∗ is indeed a connected component of
G−w and I∗ = I∩G∗ = (I− v)∩ (G−w). Hence, twp

must be (G∗, I∩G∗)-movable,
which is a contradiction.

Case (i)-2: wp−2 = w. (See Figure 10.) In this case, we can assume that any (G∗, I∗)-
rigid token is of distance (in G) at least 2 from w (which then implies distG(w, wp) = 2
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Figure 10 Illustration of Case (i)-2 of Lemma 15(i).

in this case) since if otherwise then we back to Case i-(1) and claim that there must
be some contradiction.
Suppose that there exists a cycle C1 in G∗ such that wp−1 ∈ V (C1), wp /∈ V (C1),
and the path P1 = C1 − wp−1 is (G∗ −NG∗ [wp], I∗ ∩ (G∗ −NG∗ [wp]))-confined. Let
H(G∗ −NG∗ [wp], P1) be the component of G∗ −NG∗ [wp] containing P1. Since G is a
cactus, it follows that NG(w)∩H(G∗−NG∗ [wp], P1) = ∅. Hence, H(G∗−NG∗ [wp], P1)
must also be a component of G−NG[wp]. Therefore, C1 satisfies that wp−1 ∈ V (C1),
wp /∈ V (C1), and the path P1 = C1−wp−1 is (G−NG[wp], I∩(G−NG[wp]))-confined.
It follows that the token twp

placed at wp cannot be slid in G to wp−1. Note that
Lemma 11 implies that C1 is uniquely determined. Since twp

is (G, I)-movable, it
follows that there exists a vertex x1 ∈ NG(wp) \ {wp−1} such that twp can be slid
in G to x1. Since twp

is (G∗, I∗)-rigid, it follows that
(
NG∗(x1) \ {wp}

)
∩ I∗ =(

NG(x1) \ {wp}
)
∩ I 6= ∅.

Let x2 ∈ NG∗(x1) \ {wp}
)
∩ I∗. Now, if there exists a cycle C2 in G∗ such that

{x1, x2} ⊆ V (C2), wp /∈ V (C2), and the path P2 = C2 − x1 is (G∗ − NG∗ [wp], I∗ ∩
(G∗ −NG∗ [wp]))-confined, then using the same argument as with P1, it follows that
twp

cannot be slid in G to x1, which contradicts our assumption. Therefore, for any
x2 ∈ NG∗(x) \ {wp}

)
∩ I∗, such a cycle C2 does not exist.

Hence, there must be some x2 ∈ NG∗(x)\{wp}
)
∩ I∗ such that the token tx2 placed at

x2 must be (G∗ −NG∗ [wp], I∗ ∩ (G∗ −NG∗ [wp]))-rigid, and hence also (G∗, I∗)-rigid
since twp

is also (G∗, I∗)-rigid. On the other hand, since tx2 is (G, I)-movable, it follows
that the component H(G∗ −NG∗ [wp], x2) of G∗ −NG∗ [wp] containing x2 must not
be a component of G−NG[wp], which then implies that w ∈ V (H(G−NG[wp], x2)),
where H(G − NG[wp], x2) is the component of G − NG[wp] containing x2. Hence,
there exists a cycle C in G containing w, wp−1, wp, x1 and x2. As G is a cactus, the
cycle C is unique.
Let x3 6= x1 be another neighbor of x2 in C. Using a similar argument as with C1,
one can show that there does not exist any cycle C3 in G∗ such that x3 ∈ V (C3),
x2 /∈ V (C3), and the path P3 = C3 − x3 is (G∗ − NG∗ [y], I∗ ∩ (G∗ − NG∗ [x2]))-
confined. Note that in such cycle C3 described above, V (C3) ∩ V (C) = {x3}. Hence,
there must be some x4 ∈

(
NG∗(x3) \ {x2}

)
∩ I∗ such that the token tx4 placed at

x4 is (G∗ − NG∗ [x2], I∗ ∩ (G∗ − NG∗ [x2]))-rigid, and hence (G∗, I∗)-rigid as tx2 is
also (G∗, I∗)-rigid. On the other hand, since tx4 is (G, I)-movable, it follows that
the component H(G∗ − NG∗ [x2], x4) of G∗ − NG∗ [x2] containing x4 must not be
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a component of G − NG[x2], which then implies that w ∈ V (H(G − NG[x2], x4)),
where H(G−NG[x2], x4) is the component of G−NG[x2] containing x4. Since G is
a cactus, it must happen that x4 ∈ V (C). Repeat the arguments with vertices of
C, we finally obtain that there must be some (G∗, I∗)-rigid token placed at a vertex
u ∈ V (C) of distance 1 or 2 from w (in G). Since distG(w, wp) = 2 and twp

is a
closest (G∗, I∗)-rigid token to w, no (G∗, I∗)-rigid token can be placed at some vertex
of distance 1 from w. Thus, distG(w, u) = 2.
Hence, without loss of generality, we now can assume that there does not exist any
cycle C1 in G∗ such that wp−1 ∈ V (C1), wp /∈ V (C1), and the path P1 = C1 − wp−1
is (G∗ −NG∗ [wp], I∗ ∩ (G∗ −NG∗ [wp]))-confined (if such cycle C1 exists, then find
such vertex u described above and regard it as wp). Since twp

is (G∗, I∗)-rigid, there
must be some vertex x ∈

(
NG∗(wp−1) \ {wp}

)
∩ I∗ such that the token tx placed

at x is (G∗ − NG∗ [wp], I∗ ∩ (G∗ − NG∗ [wp]))-rigid, and hence also (G∗, I∗)-rigid as
twp is (G∗, I∗)-rigid. Thus, both twp and tx are (G∗ − wp−1, I∗ ∩ (G∗ − wp−1))-
rigid. Since all tokens in I are (G, I)-movable and wp−1 /∈ I, by Lemma 11, it
follows that at most one of the two tokens twp and tx is (G− wp−1, I ∩ (G− wp−1))-
rigid. Without loss of generality, assume twp

is not (G− wp−1, I ∩ (G− wp−1))-rigid.
Hence, it must happen that w ∈ V (H(G − wp−1, wp)), where H(G − wp−1, wp) is
the component of G − wp−1 containing wp. Thus, there exists a (unique) cycle C

in G containing w and wp. Now, let H(G∗ − wp−1, x) and H(G∗ − wp−1, wp) be the
components of G∗ −wp−1 containing x and wp−1, respectively. As H(G∗ −wp−1, wp)
is not a component of G − wp−1, it follows that H(G∗ − wp−1, x) is a component
of G − wp−1, that is, H(G∗ − wp−1, x) = H(G − wp−1, x) because if otherwise,
w ∈ V (H(G− wp−1, x)), which contradicts to the fact that G is a cactus. Hence, tx

is indeed (G−wp−1, I∩ (G−wp−1))-rigid, which means that twp
cannot be slid in G

to wp−1.
Let x1 ∈ NG(wp) \ {wp−1} be a neighbor of wp such that twp

can be slid in G to x1.
If x1 /∈ V (C) then since twp

is (G∗, I∗)-rigid and (G, I)-movable, it must happen that
w ∈ H(G− wp, x1), which is a contradiction as G is a cactus. Hence, x1 ∈ V (C). As
before, one can show that there exists a vertex x2 ∈

(
NG∗(x1) \ {wp}

)
∩ I∗ which is

(G∗, I∗)-rigid and (G, I)-movable, and hence must be in V (C). Repeat the arguments,
we finally obtain that there must be some (G∗, I∗)-rigid token placed at some vertex
in V (C) of distance 2 (in G) from w, say u, which is different from wp and x. Now, let
y be the common neighbor of w and u. As the token tu placed at u is (G∗, I∗)-rigid,
there exists some vertex y′ ∈

(
NG∗(y)\{u}

)
∩I∗ such that the token ty′ placed at y′ is

(G∗−NG∗ [u], I∗∩ (G∗−NG∗ [u]))-rigid, and hence (G∗, I∗)-rigid as tu is (G∗, I∗)-rigid.
Let H(G∗ −NG∗ [u], y′) be the component of G∗ −NG∗ [u] containing y′. Since ty′ is
(G, I)-movable, H(G∗ −NG∗ [u], y′) is not a component of G−NG[u], which means
that w ∈ H(G−NG[u], y′). But this is a contradiction as G is a cactus.

Case (i)-3: wp−1 6= w and wp−2 6= w. (See Figure 11.)
As before, one can assume that any (G∗, I∗)-rigid token is of distance (in G) at least
3 from w. Assume that there exists a cycle C1 such that wp−1 ∈ V (C1), wp /∈ V (C1),
wp−2 /∈ V (C1), and the path P1 = C1−wp−1 is (G∗−NG∗ [wp], I∗ ∩ (G∗−NG∗ [wp]))-
confined. As in Case (i)-2, one can show that there must be a (G∗, I∗)-rigid token
placed at some vertex of distance 1 or 2 (in G) from w, which then leads to a
contradiction. Hence, such a cycle C1 does not exist.
Now, consider a (unique) cycle C2 such that {wp−1, wp−2} ⊆ V (C2), wp /∈ V (C2),
and the path P2 = C2 − wp−1 is (G∗ −NG∗ [wp], I∗ ∩ (G∗ −NG∗ [wp]))-confined.
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Figure 11 Illustration of Case (i)-3 of Lemma 15(i).

Firs, assume that it does not exist. Since twp
is (G∗, I∗)-rigid, there must be some

vertex x ∈
(
NG∗(wp−1) \ {wp}

)
∩ I∗ such that the token tx placed at x is (G∗ −

NG∗ [wp], I∗ ∩ (G∗ −NG∗ [wp]))-rigid, and hence also (G∗, I∗)-rigid as twp
is (G∗, I∗)-

rigid. As before, at most one of the two tokens twp and tx is (G−wp−1, I∩(G−wp−1))-
rigid. Without loss of generality, assume that twp

is not (G−wp−1, I∩(G−wp−1))-rigid.
Hence, it must happen that w ∈ V (H(G−wp−1, wp)), where H(G−wp−1, wp) is the
component of G− wp−1 containing wp. Thus, there exists a (unique) cycle C in G

containing w and wp. Using a similar argument as in the previous part, one can show
that this will lead to a contradiction.
Therefore, such a cycle C2 described above must exist. Let p′ be the smallest
index (1 ≤ p′ ≤ p − 1) such that wp′ ∈ V (C2) ∩ V (P ). Using Lemma 8 and the
fact that for any x ∈ V (C2) \ {wp′}, G∗x

C2
= Gx

C2
(i.e., w ∈ G

wp′

C2
), we can thus

assume that wp′ ∈ I and the token twp′ placed at wp′ is (G∗wp′

C2
, I∗ ∩G∗

wp′

C2
)-rigid and

(Gwp′

C2
, I∩G

wp′

C2
)-movable. Replace G by G

wp′

C2
, the independent set I by I∩G

wp′

C2
, and

wp by wp′ in the previous arguments, one can then either obtain a contradiction (when
distG(w, wp′) ≤ 2) or repeat the arguments once more time (when distG(w, wp′) ≥ 3).
Hence, we can now conclude that R(G∗, I∗) = ∅.
Next, we claim that C (G∗, I∗) = ∅. Assume that it is not empty, i.e., there exists
a cycle C∗ ∈ C (G∗, I∗). Note that C∗ is also a cycle of G, and I ∩ C∗ = I∗ ∩ C∗,
which means that I ∩ C∗ is also a maximum independent set of C∗. Without loss of
generality, using Lemma 8, we can assume that there is some token tx placed at a
vertex x ∈ I∩C∗ such that tx is (Gx

C∗ , I∩Gx
C∗)-movable but (G∗x

C∗ , I∗ ∩G∗x
C∗)-rigid.

It follows that w ∈ V (Gx
C∗). Since any TS-sequence in Gx

C∗ can indeed be extended to
a TS-sequence in G (see the proof of Lemma 1), it follows that R(Gx

C∗ , I ∩Gx
C∗) = ∅.

Additionally, using the previous part, one can show that the removal of vertices in
Bw from Gx

C∗ does not result any new rigid token in the obtained graph G∗x
C∗ , which

clearly contradicts the assumption that tx is (G∗x
C∗ , I∗ ∩G∗x

C∗)-rigid.

(ii) We first claim that R(G∗, I∗) = ∅. Assume for the contradiction that R(G∗, I∗) 6= ∅.
Let w′ ∈ I∗ be a vertex where a (G∗, I∗)-rigid token is placed. Let Q = w1w2 . . . wq be
a ww′-path with w1 = w and wq = w′ (q ≥ 1).
Case (ii)-1: wq = w. First, assume that NBw

(w) ⊆ NG[I ∩ (Bw − w)]. Also note that
in this case |I ∩ Bw| =

∑
B∈Bw

(
b|B|/2c−1

)
+1. It follows that the token tw placed at

w cannot be slid (in G) to any vertex in NBw
(w). Let S = 〈I1 = I, I2, . . . , I`〉 be a TS-

sequence which slides tw to some vertex in NG∗(w). Since w is the unique cut vertex in
Bw and |I ∩ Bw| is maximum, S does not involve any vertex in I∩(Bw−w), i.e., for any
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J ∈ S, (I∩(Bw−w)) ⊆ J. (Roughly speaking, no token in Bw can “move out” while tw

“stay” in w). Hence, S ′ = 〈I1\(I∩(Bw−w)), I2\(I∩(Bw−w)), . . . , I`\(I∩(Bw−w))〉
is a TS-sequence in G∗ which slides tw to a vertex in NG∗(w), which is clearly a
contradiction. Hence, NBw (w) ( NG[I ∩ (Bw − w)]. It follows that there exists some
vertex x ∈ NBw

(w) ∩ V (G∗). From the definition of G∗ and I ∩ NBw
(w) = ∅, we

must have NG∗(x) ∩ I = {w}, i.e., tw can be directly slid to x in G∗, which is a
contradiction.

Case (ii)-2: wq−1 = w. Without loss of generality, we assume that no (G∗, I∗)-rigid
token is placed at w. Assume that there exists a cycle C1 in G∗ such that wq /∈ V (C1),
wq−1 ∈ V (C1), and the path P1 = C1 −wq−1 is (G∗ −NG∗ [wq], I ∩ (G∗ −NG∗ [wq]))-
confined. Let H(G∗ −NG∗ [wq], P1) be the component of G∗ −NG∗ [wq] containing
P1. Since all vertices in NG[I∩ (Bw −w)] are non-cut, H(G∗ −NG∗ [wq], P1) is also a
component of G−NG[wq], i.e., the token twq placed at wq cannot be slid to w in G.
Using a similar argument as in case i-(2), one can indeed assume that such cycle C1
does not exist and then derive some contradiction.

Case (ii)-3: wq−2 = w. Similar as in Case (i)-3, one can argue that there does not
exist any cycle C1 such that wq−1 ∈ V (C1), wq /∈ V (C1), wq−2 /∈ V (C1), and the
path P1 = C1 − wq−1 is (G∗ −NG∗ [wq], I ∩ (G∗ −NG∗ [wq]))-confined. On the other
hand, there must be some C2 with {wq−1, wq−2} ⊆ V (C2), wq /∈ V (C2) and the path
P2 = C2−wq−1 is (G∗−NG∗ [wq], I∩ (G∗−NG∗ [wq]))-confined. As in Case i-(3), we
assume that R(Gw

C2
, I ∩Gw

C2
) = ∅ and argue with the triple (Gw

C2
, I∩Gw

C2
, w) instead

of (G, I, wq) and immediately derive the contradiction because of Case ii-(1).
Case (ii)-4: wq−1 6= w and wq−2 6= w. One can use a similar argument as in Case

(i)-3 to claim that some contradiction must happen.
Using a similar argument as in part (i), one can also show that C (G∗, I∗) = ∅. J

Proof of Lemma 16. The only-if-part is trivial. We claim the if-part, i.e., if |I| = |J| then
I G
! J. In order to show this, we claim that there is some independent set I∗ such that

I G
! I∗ and J G

! I∗. The following algorithm constructs such I∗. Initially, I∗ = ∅.
Pick a cut vertex w with Bw 6= ∅.
If
∑

B∈Bw

(
b|B|/2c − 1

)
= 0, pick a safe vertex v ∈ V (Bw), using Lemma 14(i), slide a

token in I and a token in J to v. Let I′ = I \ {v} and J′ = J \ {v}. Add v to I∗. Remove
all vertices in Bw and let G′ be the resulting graph.
If
∑

B∈Bw

(
b|B|/2c− 1

)
≥ 1, using Lemma 14(ii), slide tokens of I and tokens of J to the

vertices in Bw. Using Lemma 4, for each block B ∈ Bw, exhaustively place the tokens
at the vertices v2[B], v4[B], . . . . Let I′ = I \ (Bw − w) and J′ = J \ (Bw − w). Add the
vertices in Bw where tokens are placed to I∗. Remove all vertices in NG[I∗ ∩ (Bw − w)].
Let G′ be the resulting graph.
Repeat the above steps with the new triple (G′, I′, J′). The algorithm stops when there
are no tokens to move.

The correctness of this algorithm is followed from Lemma 14 and Lemma 15. J
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is easy on the average if it can be solved efficiently on all but a small fraction (according to
the distribution) of the inputs.

The paper [6] gave an example of a noncomputable ensemble of distributions such that
every language with that ensemble of distributions is easy on the average iff it is easy in
the worst case. This explains why the average-case complexity studies not all but only
feasible ensembles of distributions. The most natural class of ensembles of distributions is
the class of polynomial-time samplable distributions. Such distributions are distributions of
outputs of polynomial-time randomized algorithms. The second important class of ensembles
of distributions is the class of polynomial-time computable ensembles of distributions. An
ensemble of distributions is computable in polynomial time if it’s cumulative distribution
function is computable in polynomial time. It is known that every polynomial-time comput-
able ensemble of distribution is polynomial-time samplable but the opposite is not true if
one-way functions exist [2].

It is well known that several hard problems can be efficiently solved on almost all inputs
for some natural distributions. For example the NP-complete problem Hamiltonian Path is
decidable in a linear time on almost all inputs according to the uniform distributions on the
graphs [3]. Another interesting example is the Graph Isomorphism problem that is solvable
in linear time on almost all inputs in the case of the uniform distribution on the inputs [1],
while there exists much more tricky distribution (see for example [8]) such that there are
no known polynomial-time algorithms that solve the graph isomorphism problem with high
probability.

Statement of the problem. The standard time hierarchy theorem in the average-case
settings states that for all a > 0 there exists a distributional problem (L,D) such that every
g(n)-time algorithm errs on almost all (or on a significant fraction of) inputs according to D
but there exists an algorithm with slightly bigger running time f(n) that correctly solves
the problem on almost all inputs according to D. For deterministic algorithms, it is easy to
show by the straightforward diagonalization that there exists a language L that is decidable
in na steps but every algorithm with running time O(na−ε) gives incorrect answer on all
sufficiently large inputs for ε > 0. For randomized algorithms with bounded error Pervyshev
[7] showed that for all b > 0 there exists a language L with the uniform distribution that
is decidable in randomized polynomial time with a bounded error on all but ε fraction of
inputs but every randomized algorithm with running time nb gives incorrect answer with
high probability on at least 1

2 − ε fraction of inputs for all ε > 0. The paper [5] showed that
the fraction of hard instances in the Pervyshev’s result may be improved to 1− 1

k − ε if we
switch from languages to k-valued functions.

In this paper we study the dual question: is it possible that a language suddenly transits
from very average-case easy to very average-case hard if we slightly increase the complexity
of the distribution? Namely, we study the following question: does there exists a language L
such that for all distributions E of complexity g(n) the distributional problem (L,E) is easy
on the average, but there exist an ensemble of distributions D of complexity f(n) such that
the distributional problem (L,D) is hard on the average?

We consider two complexity measures of distributions:
1. time complexity for sampling;
2. time complexity of computing the distribution function.
We say that a distributional problem (L,D) is easy on the average if there is a linear-time
algorithm that for all n gives correct answer on 1 − α(n) fraction (according to D) of
inputs of length n, where α(n) = o(1). (It seems that we may claim the existence of
a polynomial-time algorithm instead of linear-time, but it turns out that if there is
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an example with a polynomial-time algorithm, then there is also an example with a
linear-time algorithm).
We consider two variants of the notion that (L,D) is hard on the average:
1. strong hardness: every algorithm for infinitely many n give a correct answer on at

most β(n) fraction (according to D) of inputs of length n, where β(n) = o(1); (It
seems that we may claim this condition only for polynomial-time algorithms but it
turns out that if there is an example that is hard for polynomial-time algorithms, then
there is also an example that is hard for all algorithms.)

2. weak hardness: every algorithm for infinitely many n give a correct answer on at most
1− β(n) fraction (according to D) of inputs of length n. In this case it is reasonable
to assume that α(n) = o(β(n)).

It is desirable for f(n) to be not much larger than g(n). In tight results f(n) would be at
most polynomial in g(n); in other results f(n) is bounded by a quasipolynomial in g(n).

1.1 Our results
Samplable distributions. The most interesting complexity measure of distributions is the
complexity of sampling. In Section 3.1 we consider the statement with the strong notion
of hardness. We show that in this case the affirmative answer to our question is equivalent
to the following hierarchy for sampling distributions: there exists a distribution D that is
samplable in f(n) steps such that for every distribution F that is samplable in g(n) steps,
the statistical distance between D and F is at least 1− o(1).

Watson [9] recently proved the similar (but weaker for our goals) theorem:

I Theorem ([9]). For all a > 0, ε > 0 and k ∈ N there exists an ensemble D ∈ PSamp
such that:

for all n the distribution Dn is concentrated on {1, 2, . . . , k};
for every ensemble of distributions F ∈ Samp[na] there exist infinitely many n such that
statistical distance between Dn and Fn is at least 1− 1

k − ε.
Watson’s theorem is not sufficient for our goals since we need the statistical distance 1− o(1)
while the theorem gives the statistical distance 1 − δ for all constants δ > 0. We stress
that from the equivalence result the tending of the statistical distance to 1 is necessary in
order to get an example of a language that is easy according to easy distributions and hard
for some more complicated distribution. The proof of Watson’s theorem is based on the
tree-like diagonalization; we explain (see details in the end of Section 3.1) why the tree-like
diagonalization can not be used to get a statistical distance 1− o(1) for polynomial f and g.
The statistical distance in Watson’s theorem is optimal for distributions concentrated on k
values. Thus to get a statistical distance 1− o(1) the function k should be increasing and
thus the diagonalization tree should have outgoing degree at least k(n) and this condition
makes the diagonalization tree too large and it is impossible to layout it. We show that
it is possible to layout the tree in the case when f and g differ quasipolynomially. We
prove the hierarchy for sampling distributions for f(n) = nlogb n and g(n) = nloga n for all
0 < a < b. Our proof uses the proof strategy that is similar to Watson’s theorem but our
proof is significantly simpler and in particular, we do not use list-decodable error-correcting
codes for the transmitting information. From the hierarchy for sampling distributions and
the equivalence result we get the following theorem.

I Theorem 1. For all ε > 0 and c > 0 there exist a language L and a linear-time algorithm
A such that for every polynomial-time samplable ensemble of distributions F and all n,
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Prx←Fn [A(x) = L(x)] ≥ 1 − 1
2(log log logn)c and there exists D ∈ Samp[nlogε n] such that for

every algorithm B for infinitely many n, Prx←Dn [B(x) = L(x)] ≤ 1
2(log log logn)c .

Note that although Theorem 1 argues only about deterministic algorithms B, it implies that
for any probabilistic algorithm B′ with running time bounded by a computable function,
Prx←Dn [PrB′ [B′(x) = L(x)] > 1/2] ≤ 1

2(log log logn)c , where the inner probability is taken over
the random bits of algorithm B′. It is interesting to compare Theorem 1 with the result
of Gutfreund, Shaltiel and Ta-Shma [4]; they proved that for every α(n) = o(1) there is a
distribution D that is samplable in quasipolynomial-time such that for every NP-complete
language L every polynomial-time randomized algorithm fails to compute L with probability
at least α(n) for infinitely many n unless NP ⊆ BPP. In contrast to [4] Theorem 1 is
unconditional, uses the strong notion of hardness and additionally states that L is easy for
all polynomial-time samplable distributions, on the other hand the distribution from [4] is
the same for all NP-complete languages and NP-complete languages are important while a
language from Theorem 1 is an artificial language based on the tricky diagonalization.

In Section 3.2 we consider the weak notion of hardness and f(n) = poly(g(n)). Analogously
to the strong hardness we show that in this case the affirmative answer to our question is
equivalent to the following conjecture:

I Conjecture 2. There exist infinitely small functions β(n) and α(n) = o(β(n)) such that
for all integer a > 0 and b > 0 there exist an ensemble of distributions D ∈ PSamp, an
increasing sequence of integers ln and a sequence of sets Sn ⊆ {0, 1}ln such that the following
holds: D(Sn) > β(ln) for all n; for all F ∈ Samp[na], F (Sn) ≤ α(ln) for infinitely many n.

Nontrivial condition on this condition is that α(n) is infinitely small. For constants α and β
(α < β) the statement follows from Watson’s theorem. For infinitely small α the statement
is nontrivial even in the case α(n) = β(n). We prove the following theorem.

I Theorem 3. For all integer a > 0 and b > 0 there exist an ensemble of distributions
D ∈ PSamp, a sequence of integers ln and a sequence of sets Sn ⊆ {0, 1}ln such that the
following holds:

D(Sn) > 1
lbn

for all n;

For all F ∈ Samp[na], F (Sn) ≤ 1
lbn

for infinitely many n.

Computable distributions. In Section 4 we consider a complexity of a distribution as the
complexity of computing the distribution function. In case of computable distributions in
contrast to samplable ones it is possible to find an element with small probability using
binary search in polynomial time. However there is the following difficulty: it is not clear
how to verify efficiently whether an algorithm computes a distributional function or not.
This difficulty prevents to construct the universal computable distribution that dominates all
other computable distributions while it is possible to do in the samplable case. We overcome
this difficulty and prove the following result for the strong hardness and f(n) = poly(g(n)):

I Theorem 4. For every a > 0 there exists a language L and an ensemble of polynomial-time
computable distributions D such that:

there exists a linear-time algorithm A such that Prx←En [A(x) 6= L(x)] = O(2−n) for all
E that are computable in O(na) steps;
for every algorithm A and for all n, Prx←Dn [A(x) 6= L(x)] > 1− 1

2n−1 .
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2 Preliminaries

An ensemble of distributions is a sequence {Dn}∞n=1, where Dn is a probability distribution on
{0, 1}n. Sometimes it is convenient to assume that Dn is concentrated on {0, 1, . . . , 2n − 1}.

For two distributions A and B on {0, 1}n the statistical distance between them is
∆(A,B) = maxS⊆{0,1}n |Prx←A[x ∈ S]− Prx←B [x ∈ S]|.

A distributional problem is a pair (L,D) that consists of the language L and the ensemble
of distributions D. Let δ : N→ [0, 1] be a function. We say that a distributional problem
(L,D) is heuristically decidable it time t(n) with error δ(n) if there exists an algorithm
A such that A runs in O(t(n)) steps on the inputs of length n and the following holds:
Prx←Dn [A(x) 6= L(x)] ≤ δ(n) for all n. We denote it as (L,D) ∈ Heurδ(n)DTime[t(n)]. We
also define a class of distributional problems Heurδ(n)P =

⋃
c>0 Heurδ(n)DTime[nc].

We also define a class Heurδ(n)R that consists of all distributional problems (L,D) such
that there exists an algorithm A such that Prx←Dn [A(x) 6= L(x)] ≤ δ(n) for all n.

We say that an ensemble of distributions D is samplable in time t(n) if there exists a
randomized algorithm S that on the input 1n runs in at most O(t(n)) steps and S(1n) is
distributed accordingly Dn. The set of all ensembles that are samplable in time t(n) we
denote as Samp[t(n)]. We consider the set PSamp =

⋃
c>0 Samp[nc] of all polynomial-time

samplable ensembles.

3 Samplable distributions

3.1 Strong hardness
IDefinition 5. We say that time constructible functions f and g satisfy the hierarchy property
of sampling distributions with parameter λ(n) if there exists an ensemble of distributions
D ∈ Samp[f(n)] such that for every ensemble of distributions F ∈ Samp[g(n)], there exist
infinitely many numbers n such that the statistical distance between Dn and Fn is at least
1− λ(n).

I Definition 6. We say that time constructible functions f and g satisfy the hierarchy
property on complexity of distributional problems with parameters α(n) > 0 and β(n) > 0 if
there exist a language L and an ensemble of distributions D ∈ Samp[f(n)] steps such that:

(L,F ) ∈ Heurα(n)P for all F ∈ Samp[g(n)];
(L,D) /∈ Heur1−β(n)P.

We say that f and g satisfy strong hierarchy property on complexity of distributional problems
if the conditions are formulated as:

There is a linear-time algorithm A such that for all F ∈ Samp[g(n)] Prx←Fn [A(x) =
L(x)] ≥ 1− α(n) for all n large enough;
(L,D) /∈ Heur1−β(n)R.

I Lemma 7. For every time constructible functions f(n), h(n) and g(n) ≥ n if f and h satisfy
the hierarchy property on sampling distributions with parameter λ(n) and g(n) log g(n) =
o(h(n)) then f and g satisfy the strong hierarchy property on complexity of distributional
problems with parameters α(n) and λ(n) for α(n) = ω(λ(n)).

Proof. Let Ai be an enumeration of all randomized algorithms supplied with an alarm clock
that interrupt their executions after O(g(n)) steps. We will think about Ai as algorithms
that sample distributions; that is the output of Ai(1n) we interpret as a string from {0, 1}n
by some fixed way. Let B be an algorithm that samples a distribution as follows: on input
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1n with probability 1
2 it executes A1(1n) (and returns its result), with probability 1

22 it
executes A2(1n), . . . , with probability 1

2n−1 it executes An−1(1n) and with probability 1
2n−1

executes An(1n). Let B define an ensemble of distributions E. It is straightforward that
E ∈ Samp[h(n)].

Since f and h satisfy the hierarchy property of sampling distributions, there exists an
ensemble D ∈ Samp[f(n)] such that ∆(Dn, En) ≥ 1− λ(n) for infinitely many numbers n.
We denote the set of all such n as I = {n1, n2, . . . }. For n ∈ I there exists a set Sn ⊆ {0, 1}n
such that Dn(Sn)− En(Sn) ≥ 1− λ(n), hence En(Sn) ≤ λ(n).

We will define a language L such that L ⊆
⋃
n∈I Sn. Let Ti be an enumeration of all

algorithms. We define L such that for every x ∈ Snk , x ∈ L if and only if Tk does not stop
on the input x or rejects it. By the construction (L,D) /∈ Heur1−λ(n)R.

We consider an algorithm that returns 0 on every input. If R ∈ Samp[g(n)], then there
exists i such that Ai samples R. For n ≥ i for every set S ⊆ {0, 1}n the following inequality
holds: E(S) ≥ 2−iR(S). Hence for every ensemble R from Samp[g(n)] this algorithm has
error at most cλ(n), where c is a constant that depends only on the ensemble R; cλ(n) < α(n)
for n large enough. J

We also prove the opposite implication.

I Lemma 8. If f and g satisfy the hierarchy property of complexity of distributional problems
with parameters α(n) and β(n) then f and g satisfy the sampling hierarchy property with
parameter α+ β.

Proof. For all F ∈ Samp[g(n)] there exists a polynomial time algorithm A that solves (L,F )
in Heurα(n)P and also (L,D) /∈ Heur1−β(n)P. Let Sn be set of all x ∈ {0, 1}n such that
A(x) = L(x). We know that Fn(Sn) ≥ 1−α(n) for all n and Dn(Sn) ≤ β(n) for for infinitely
many n. Hence ∆(Dn, Fn) ≥ Fn(Sn)−Dn(Sn) ≥ 1− α(n)− β(n) for infinitely many n. J

Lemma 7 and Lemma 8 implies that if f and g satisfy the hierarchy property of the complexity
of distributional problems with two infinitely small parameters then f and g/ log2 g satisfy
the strong hierarchy property on the complexity of distributional problems with two infinitely
small parameters. As we mentioned Watson [9] proved that for every a > 0, ε > 0 and every
constant k there exists b > 0 such that na and nb satisfy the hierarchy property on sampling
distributions with parameter 1

k + ε. In fact Watson proved the stronger statement since
ensemble D is concentrated on k inputs. Watson conjectured that for every a > 0 there exists
infinitely small function α(n) there exists b > 0 such that na and nb satisfy the hierarchy
property on sampling distributions with parameter α(n). This statement is still an open
question. We prove the following theorem:

I Theorem 9. For every a, b, c such that 0 < a < b and c > 0 functions f(n) = nlogb n and
g(n) = nloga n satisfies the sampling hierarchy property with the parameter λ(n) = 1

2(log log logn)c .

I Corollary 10. For every a, b, c such that 0 < a < b and c > 0 functions f(n) = nlogb n and
g(n) = nloga n satisfies the strong hierarchy property on complexity of distributional problems
with parameters α(n) = β(n) = 1

2(log log logn)c .

Note that Theorem 1 stated in the introduction follows from Corollary 10.
Before giving a formal proof of Theorem 9 we present an idea of the proof.
In the following, we assume that random variables and elements of ensembles of distribu-

tions take values from the set {0, 1, . . . , 2n − 1} instead of {0, 1}n.
Our proof like a proof of the Watson’s theorem is based on the tree-like diagonalization.

We construct a distribution D and diagonalize over all distributions samplable in O(g(n))
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steps by the enumeration of their generators Ai. For the i-th distribution we will prove that
the statistical distance between D and Ai(1n) is large for some n from [ni, n∗i ], where n∗i is
significantly more than ni. For every i we construct a tree Ti with vertices uniquely marked
with numbers from [ni, n∗i ]. The root of Ti is marked by n∗i and leaves of Ti are marked with
numbers that are about ni. The number of a parent is greater than the number of a child
also the number of a parent is bounded by a quasipolynomial in numbers of its child. Let t
be an element from {0, 1, . . . , 2ni − 1} such that in all leaves Ai-probability of t is less then
λ(mi), where mi is the maximum leaf. Such t exists since there are not too many leaves,
the possible values of distributions is at least 2ni and for every distribution the number of
elements with probability at least λ(n) is at most 1

λ(n) . The distribution Dn∗
i
is concentrated

on t. We assume that for all n ∈ [ni;n∗i ] the statistical distance between Ai(1n) and Dn

is less than 1 − λ(n). Our goal is to define D in such a way that in at least one leaf D is
concentrated on t. This will contradict our assumption and the definition of t.

We will transmit information about t from a parent to at least one of its children.
The distribution D on the children of p has the following property: if Dp is concentrated
(with probability 1 − ε) on some element, then Dn is concentrated on the same element
for at least one child n of p. From the assumption about statistical distances we have that
Pr[Ai(1p) = t] ≥ λ(p)− ε, hence there are at most 2

λ candidates on the role of t if we have an
access to Ai(1p). We generate a list of all elements with Ai(1p)-probability at least λ(p)− ε.
In the first child of p we make D concentrated on the first element of the list, on the second
child on the second element and so on. There is a problem that there are possibly different
lists will be generated in different children; we solve this problem by using several thresholds
for frequencies. Formally we do it in the following lemma:

I Lemma 11. There is an algorithm C•(n, i, δ, λ) that has an oracle access to some random
variable γ taking values in {0, 1, . . . , 2n−1} such that for all positive integer n and δ, λ ∈ (0, 1]
if Pr[γ = t] ≥ λ for some t, then there is some integer 0 ≤ i ≤ d1 + 1

λe
2 such that

Pr[Cγ(n, i, δ, λ) = t] ≥ 1− δ and C• runs at most poly(n, log 1
δ ,

1
λ ) steps.

Proof. Consider the following algorithm Cγ(n, i, δ, λ):
1. Let k = d 1

λ + 1e and ε = λ3

10k ;
2. We interpret i as a pair (a, b), where a, b ∈ [k];
3. Request the oracle for N = d 2(n+1+log 1

δ )
ε2 e samples of γ;

4. Consider the list y1, . . . , ys of all elements with frequency at least λ− εa;
5. Return yb if b ≤ s or 0 otherwise.

Note that for λ ∈ (0, 1]

k(λ− ε(2k)) ≥ ( 1
λ

+ 1)(λ− λ3/5) = 1 + λ− λ2/5− λ3/5 > 1. (1)

Hence the number of elements x such that Pr[γ = x] > λ − εk is less than k; by the
similar reasons s < k, where s the size of the list in the 4-th step of the algorithm C.

Consider intervals Ij = [λ−εj−ε/2;λ−εj+ε/2]. There is a ∈ [k] such that Pr[γ = x] /∈ Ia
for all x since otherwise 1 =

∑
x Pr[γ = x] ≥ k(λ− εk − ε/2) that contradicts inequality (1).

Hence there is a ∈ [k] such that |Pr[γ = x]− λ− εa| > ε/2 for all x.
Let x1, . . . , xl be the list of all elements x such that Pr[γ = x] > λ− εa. We know that

if Pr[γ = x] > λ − εa, then Pr[γ = x] > λ − εa + ε/2 and also if Pr[γ = x] ≤ λ − εa, then
Pr[γ = x] < λ − εa − ε/2. For given a for every j ∈ [l], xj appears in the list from 4th
step of algorithm C with probability at least 1 − 2e−ε2N/2. If Pr[γ = x] ≤ λ − εa then by
Chernoff bound x does not appear in the list from the 4th step of the algorithm C with
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probability at least 1−2e−ε2N/2. Since γ is concentrated on the set of size 2n with probability
at least 1− 2n+1e−ε

2N/2 ≥ 1− δ the list generated on 4th step of algorithm C is precisely
the list x1, . . . , xl. Since Pr[D = t] > λ, there is b such that xb = t. Hence if i = (a, b) then
Pr[Cγ(n, i, δ, λ) = t] ≥ 1− δ. J

Proof of Theorem 9. Our proof is based on the tree-like delayed diagonalization. We diag-
onalize against all randomized algorithms supplied with a O(g(n))-alarm clock, we interpret
them as samplers of distributions. Let A1, A2, . . . be an enumeration of all randomized
algorithms supplied with a O(g(n))-alarm clock.

Let us consider an ε > 0 such that (1 + a)(1 + ε) < (1 + b) and fix some c. We
define integer sequences ni and n∗i such that n1 = 1, n∗i = 2(logni)(1+ε)di , where di =
dlog1+ε 2ed(log logni)2e and ni+1 = n∗i +1. For every i we define an ensemble of distributions
Dn for n ∈ {ni, ni + 1, . . . , n∗i } such that there exists k ∈ {ni, ni + 1, . . . , n∗i } such that
∆(Dk, Ai(1k)) ≥ 1− λ(k).

I Lemma 12. For every ε > 0 there exists a family of trees Ti such that:
1. The set of vertices of Ti is a subset of {ni, ni + 1, . . . , n∗i };
2. n∗i is the root of Ti;
3. All leaves of Ti have numbers at most mi = 2ni;
4. The depth of Ti is di = dlog1+ε 2ed(log logni)2e;
5. If p is a parent of n then p ≤ 2log1+ε n;
6. There is an algorithm that for any vertex n of Ti outputs the parent p of n and the number

of children of p that are less than n in poly(n) steps;
7. For every inner vertex v of Ti, v has k = d 1

λ(n∗
i

) + 1e2 children.

Proof. Let us denote δ = dlog1+ε 2e. We define a tree Ti as a complete balanced tree
with depth di. The number of leaves in the tree can be estimated as follows: kdi ≤
(2(log log logn∗i )3c)δ(log logni)2 ≤ (2(log logni)12c)δ(log logni)2 = 2δ(log logni)24c ≤ ni.

The root n∗i is the only vertex on the zero level. There are exactly ks vertices on s-th
level. Let ai,j = 2(logni)(1+ε)j , where j ∈ {0, 1, 2, . . . }. Vertices of Ti on level (di − s) are
[ai,s; ai,s + kdi−s − 1].

Note that ai,s+1−ai,s ≥ ai,1−ai,0 = 2(logni)(1+ε)−ni ≥ 2(logni)(1+ε)−1 > ni ≥ kdi ≥ kdi−s.
Hence on all levels there is enough place for vertices.

The parent of j-th vertex on s-th level has number b jk c. Let h(n) = nlogε n. Since
h(n+ k) ≥ h(n) + k we have h(2log(1+ε)s ni + j) ≥ h(2log(1+ε)s ni) + j ≥ 2log(1+ε)s+1

ni + j/k,
therefore the property 5 is satisfied. The verification of other properties is straightforward. J

Now we describe an algorithm that samples Dn for n ∈ {ni, . . . , n∗i } in O(f(n)) steps.
1. If n = n∗i then output the minimal ti ∈ {0, 1, . . . , 2ni − 1} such that for all l ∈ [ni;mi] we

have that Pr[Ai(1l) = ti] < λ(ni)/2. Such ti indeed exists since for every l there are at
most 2

λ(ni) elements with Ai(1l)-probability at least λ(ni)/2 and 2
λ(ni)mi ≤ 2ni . Such ti

can be found in at most micig(mi)2cig(mi) steps by brute force search over all possible
random bits, where ci is a constant that depends on i.

micig(mi)2cig(mi) ≤ 2mig(mi) ≤ 22nig(2ni) ≤ 22ni(2ni)2 loga ni
<

224 log(1+a) ni ≤ 2224(1+a) log logni
≤ 222(log logni)2

< n∗i = o(f(n∗i ))

2. If n is not a vertex of Ti then return 0.
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3. Otherwise, let p be the parent of n and j is a number of n in the list of all children of p.
By the property of Ti, p ≤ 2log1+ε n and such p can be found in poly(n) steps. We return
CAi(1p)(p, j, λ(n)/2, λ(p)/2), where C is the algorithm from Lemma 11. By Lemma 11 C
runs at most poly(p) steps and on every step the simulation of Ai(1p) occupies at most
cig(p) steps. Note that cig(p)poly(p) < 22 loga+1 p < 22 log1+a(2log1+ε n) = 22 log(1+a)(1+ε) n <

2log(1+b) n = f(n).

For the sake of contradiction we assume that for all n ∈ {ni, . . . , n∗i }, ∆(Dn, Ai(1n)) <
1 − λ(n). By induction on the level s of Ti we prove that there is a vertex v of level s in
Ti such that Dv(ti) ≥ 1 − λ(v)/2. If Dv(ti) ≥ 1 − λ(v) for some leaf v then Pr[Ai(1v) =
ti] ≥ (1− λ(v)/2)− (1− λ(v)) = λ(v)/2 but we define ti such that Pr[Ai(1v) = ti] < λ(v)/2.
Hence we will get a contradiction in leaves.

The base of induction follows from the construction of Dn∗
i
. Let us prove the inductive

step from s to s + 1. Let v be a vertex of level s such that Dv(ti) ≥ 1 − λ(v)/2. If v is a
leaf then we are done. Otherwise Pr[Ai(1v) = ti] > λ(v)/2 since ∆(Dv, Ai(1v)) < 1− λ(v).
Hence by Lemma 11 there is a child u with number j among the all children of v such that
Pr[CAi(1v)(v, j, λ(u)/2, λ(v)/2) = ti] > 1− λ(u)/2. J

Our proof in contrast to Watson’s proof does not use error correcting codes with list decoding.
This is because we find one element that has a small probability for all leaves of the tree. This
trick was impossible in Watson’s case since all distributions were concentrated on a constant
number of points. In Watson’s proof, there were a lot of information transmitted from the
root to leaves, and parts of this information were stored in different vertices. Watson used
list error decoding codes in order to prevent information distortion.

Now we show why this approach cannot be adapted to the case of g(n) = na and
polynomial f(n). The problem is the following: for nonconstant λ(n) the tree Ti should have
nonconstant degree: every inner vertex has at least ki children, where ki goes to infinity.
In the root of the tree, we have to make exponential in any leaf number of steps; and the
parent of every node n should be at most polynomial of every children. Thus for every leaf l
the distance between root and l is at least Ω(log `). Let mi be the leaf with the maximal
number; then the distance from the root to mi is at least L = Ω(logmi). Let S be the set of
vertices such that their numbers are less then mi but the numbers of their parents are more
then mi. Note that all vertices on the distance L from the root must either be in S or have
a descendent in S. Therefore the size of S should be at least kLi that is greater then mi for
large i, since ki goes to infinity. But this is a contradiction since S is set of vertices with
numbers less then mi.

3.2 Weak hardness

In this section we consider statement of the problem with the weak notion of hardness and
tight hierarchy (f(n) = poly(g(n))). We start from equivalent formulations:

I Proposition 13. The following statements are equivalent:
1. There exists infinitely small functions β(n) and α(n) = o(β(n)) such that for all a > 0

there exists an ensemble of distributions D ∈ PSamp and a language L such that the
following holds:

(L,F ) ∈ Heurα(n)P for all F ∈ Samp[na];
(L,D) /∈ Heurβ(n)P.
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2. There exists infinitely small functions β(n) and α(n) = o(β(n)) such that for all a > 0
there exist an ensemble of distributions D ∈ PSamp, an increasing sequence of integers
ln and a sequence of sets Sn ⊆ {0, 1}ln such that the following holds:
D(Sn) > β(ln) for all n;
For all F ∈ Samp[na], F (Sn) ≤ α(n) for infinitely many n.

3. There exists infinitely small functions β(n) and α(n) = o(β(n)) such that for all a > 0
there exists an ensemble of distributions D ∈ PSamp and a language L such that the
following holds:

there exists linear-time algorithm A such that for all F ∈ Samp[na], Prx←Fn [L(x) =
A(x)] ≥ 1− α(n) for all n large enough;
(L,D) /∈ Heurβ(n)R.

We prove the statement that is weaker than statement 2 from Proposition 13. Namely we
prove it in the case α(n) = β(n) = 1

nb
. By the similar way it is possible to prove it for other

infinitely small functions: 1
2n ,

1
logn etc.

Now we are ready for proving Theorem 3. We start from the intuition of the proof. For
simplicity we start from the proof of the other statement with threshold 1

2 instead of 1
lbn
. We

use the delayed diagonalization; we consider integer sequences ni and n∗i such that n1 = 1,
ni = n∗i + 1, n∗i = 2nai . Let Fi be enumeration of all randomized algorithms with alarm
clock na+1 such that every algorithm appears infinitely many times in this enumeration; we
consider Fi as samplers of distributions.

We denote by T0,n and T1,n the set of binary strings of length n starting with 0 and
1 respectively. Consider the following sampler of the distribution Dn: if n = n∗i , we find
ti ∈ {0, 1} such that Pr[Fi(1ni) ∈ Tti,ni ] ≤ 1

2 and return the random element from Tti,n∗i ; if
ni ≤ n < n∗i we execute Fi(1n+1) if it returns a string starting with s ∈ {0, 1} we return a
random element from Ts,n.

Assume that there exists E ∈ Samp[na] such that for all n > n0 if for some S ⊆ {0, 1}n,
Pr[Dn ∈ S] > 1

2 , then Pr[Fi(1n) ∈ S] > 1
2 . Let Fi is a sampler for E and i > n0. We know

that Pr[Dn∗
i
∈ Tti,n∗i ] = 1, then Pr[Fi(1n

∗
i ) ∈ Tti,n∗i ] > 1

2 , thus Pr[Dn∗
i
−1 ∈ Tti,n∗i−1] > 1

2 and
so on. Finally we get Pr[Fi(1ni) ∈ Tti,ni ] > 1

2 and this contradicts the definition of ti.
For threshold 1

k the proof will be the same but we split {0, 1}n into log k parts. In case
of threshold 1

nb
we will have a different number of parts for different n, and we will use trees

of intervals instead of chains.

Proof of Theorem 3. Consider an enumeration of all randomized algorithms Fi with alarm
clock na+1 such that every algorithm appears infinitely many times in this enumeration; we
consider Fi as samplers of distributions. We define integer sequences ni and n∗i such that
n1 = 1, n∗i = 2nai , and ni+1 = 2n∗i .

Split all strings of length n on nb nonempty sets; we call them intervals and denote by
Tj,n for j ∈ {1, 2, . . . , nb}. For n ∈ [ni;n∗i ] we define a graph (it will be a forest) as follows:

The set of vertexes of the graph is the set of all intervals Tj,n for n = 2k and ni ≤ n ≤ n∗i ;
All elements of Tj,ni are roots of trees of the forest;
For n ∈ {ni, 2ni, 4ni, . . . , n∗i /2}, Tj,n has 2b children: {Tj′,2n | 2b(j − 1) ≤ j′ ≤ 2bj − 1}.
All elements of Tj,n∗

i
are leaves of trees of the forest;

We define a sampler for D as follows. It gets on the input 1n:
If n = n∗i for some i, then find an interval Tj,ni with the smallest probability according to
Fi(1ni). If there are several such Tj,ni , we take one with the minimal j. (Note that this can
be done in poly(n∗i ) time by brute-force). Then chose random descendent of Tj,ni on length
n∗i and return some string form this descendent. Note that Pr[Fi(1ni) ∈ Tj,ni ] ≤ 1

nb
i

;
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If ni ≤ n < n∗i for some i, then run Fi(12n) and if the result belongs to a descendent of
Tj,n for some j, then return random string from Tj,n.

Let us prove that for all i there exists j and n ∈ [ni;n∗i ] such that Pr[Dn ∈ Tj,n] > 1
nb

and Pr[Fi(1n) ∈ Tj,n] ≤ 1
nb
. (This will conclude the proof of the theorem if we choose

Si = Tj,n.) Assume the opposite; that is for all j and n ≤ n∗i if Pr[Fi(1n) ∈ Tj,n] ≤ 1
nb
,

then Pr[Dn ∈ Tj,n] < 1
nb
. Let Tj,ni be an interval with the smallest probability according to

Fi(1ni), hence Pr[Fi(1ni) ∈ Tj,ni ] ≤ 1
nb
i

. By induction on l we prove that for all n = 2lni (and
n ≤ n∗i ) there exists k such that Tk,n is a descendant of Tj,ni and Pr[Dn ∈ Tk,n] ≤ 1

nb
. The

base case l = 0 is already proved. Let us prove the inductive step from l to l+1. Let n = 2lni.
Assume that Pr[Dn ∈ Tk,n] ≤ 1

nb
then by the pigeonhole principle and construction of D there

is one of 2b children of Tk′,2n such that Pr[Fi(12n) ∈ Tk′,2n] ≤ 1
(2n)b and hence by assumption

Pr[D2n ∈ Tk′,2n] ≤ 1
(2n)b . Therefore there exists k such that Pr[Dn∗

i
∈ Tk,n∗

i
] ≤ 1

(n∗
i

)b and
Tk,n∗

i
is a descendant of Tj,ni , but the construction of D implies that the D-probability of

every descendant of Tj,ni on length n∗i is equal to nbi
(n∗
i

)b >
1

(n∗
i

)b . J

I Corollary 14. For all a > 0 and b > 0 there exists a ensemble of distributions D ∈ PSamp,
a language L and a linear-time algorithm A such that the following holds: Prx←Fn [A(x) 6=
L(x)] = O( 1

nb
) for all F ∈ Samp[na]; (L,D) /∈ Heur 1

nb
R.

4 Computable distributions

Ensemble of distributions Dn is computable in time t(n) if for all n probabilities of all
elements according to Dn are binary rational numbers and there exists an algorithm A(x)
that runs in O(t(|x|)) steps and computes the cumulative distribution function of Dn (i.e.∑
y≤xDn(x), where ≤ is lexicographical order). The set of all ensembles that are computable

in time t(n) we denote as Comp[t(n)]. The set PComp =
⋃
c>0 Comp[nc] is the set of all

ensembles computable in polynomial time.

I Lemma 15. If an ensemble D ∈ PSamp and for all n the distribution Dn is concentrated
on one element, then D ∈ PComp.

It is possible to prove the statement that is analogous to hierarchy property of na and nb of
sampling distributions but for computable distributions.

I Proposition 16. For all a > 0 there exists an ensemble D ∈ PComp such that for all
ensembles F ∈ Comp[na] there are infinitely many numbers n such that ∆(Dn, Fn) ≥ 1−2−n.

Now we prove Theorem 4 that is similar to hierarchy property of na and nb on the complexity
of distributional problems but for computable distributions.

Proof. We cannot literally repeat the proof of Lemma 7 regardless of we have even already
proved Proposition 16. The reason is the following: not every algorithm computes the
distributional function, it is not necessary that it computes even monotonic function. And it
is not easy to verify that algorithms compute a distribution function.

Let Ai be an enumeration of all algorithms supplied with alarm-clock Cna, where C
is some constant. We interpret them as algorithms that compute distribution functions.
However, we remember that it is not necessary that all of them computes a correct distribution
function. We interpret the result of Ai(x) as a binary real number between 0 and 1.

For every n we will show that it is possible in poly(n) time to find xn ∈ {0, 1}n such that
if i ∈ {1, 2, . . . , n} and Ai is distributional function, then the Ai-probability of xn is at most
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2i−n. The distribution Dn would be concentrated on xn; the resulting ensemble is computable
in polynomial time by Lemma 15. If for all n we find such xn, then we may define L similarly
to the proof of Lemma 7. Namely we will choose L such that L ⊆

⋃
n{xn} and xn ∈ L if and

only if n-th algorithm in the enumeration of all algorithms rejects xn. For all F ∈ Comp[na]
the algorithm that returns 0 on all inputs decides (L,F ) in Heur2i−nDTime[n], if F is
computable by Ai in our enumeration. By the construction (L,D) /∈ Heur1− 1

2n−1
P.

Now we describe the procedure of finding strings xn. Initially I = {1, 2, . . . , n}, we will
delete element i from I if we discover that Ai is not a distribution function on {0, 1}n.
On each iteration we define F (x) =

∑
i∈I

1
2iAi(x). By binary search we try to find such

element x ∈ {0, 1}n that F (x)− F (x′) ≤ 2−n, where x′ is lexicographical predecessor of x
and F (x′) = 0 if x = 0n. If binary search succeeds, then xn := x. If binary search fails then
it means that we discover nonmonotonicity of F (x), using this we may find i ∈ I such that
Ai is nonmonotonic and exclude all such i from I and start new iteration. If I = ∅ then
choose xn = 0n, in other cases for all i ∈ I if Ai computes a correct distribution function
then xn has probability at most 2i−n. J

Acknowledgements. The authors are grateful to anonymous reviewers for useful comments.

References
1 László Babai, Paul Erdős, and Stanley Selkow. Random graph isomorphism. SIAM J.

Comput., 9(3):628–635, 1980.
2 Shai Ben-David, Benny Chor, Oded Goldreich, and Michael Luby. On the theory of average

case complexity. J. Comput. Syst. Sci., 44(2):193–219, 1992. doi:10.1016/0022-0000(92)
90019-F.

3 Yuri Gurevich and Saharon Shelah. Expected computation time for hamiltonian path
problem. SIAM J. Comput., 16(3):486–502, 1987.

4 Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. If NP languages are hard on
the worst-case, then it is easy to find their hard instances. Computational Complexity,
16(4):412–441, 2007. doi:10.1007/s00037-007-0235-8.

5 Dmitry Itsykson, Alexander Knop, and Dmitry Sokolov. Heuristic time hierarchies via
hierarchies for sampling distributions. In Algorithms and Computation – 26th International
Symposium, ISAAC 2015, Nagoya, Japan, December 9-11, 2015, Proceedings, pages 201–
211, 2015.

6 Ming Li and Paul M.B. Vitanyi. Average case complexity under the universal distribution
equals worst case complexity. Information Processing Letters, 42:145–149, 1992.

7 Konstantin Pervyshev. On heuristic time hierarchies. In IEEE Conference on Computa-
tional Complexity, pages 347–358, 2007. doi:10.1109/CCC.2007.20.

8 E.R. van Dama and M. Muzychuk. Some implications on amorphic association schemes.
Journal of Combinatorial Theory, Series A, 117:111–127, 2010.

9 Thomas Watson. Time hierarchies for sampling distributions. SIAM J. Comput.,
43(5):1709–1727, 2014. doi:10.1137/120898553.

http://dx.doi.org/10.1016/0022-0000(92)90019-F
http://dx.doi.org/10.1016/0022-0000(92)90019-F
http://dx.doi.org/10.1007/s00037-007-0235-8
http://dx.doi.org/10.1109/CCC.2007.20
http://dx.doi.org/10.1137/120898553


Computing the Pattern Waiting Time: A Revisit
of the Intuitive Approach∗
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Abstract
We revisit the waiting time of patterns in repeated independent experiments. We show that
the most intuitive approach for computing the waiting time, which reduces it to computing the
stopping time of a Markov chain, is optimum from the perspective of computational complexity.
For the single pattern case, this approach requires us to solve a system of m linear equations,
where m denotes the length of the pattern. We show that this system can be solved in O(m+n)
time, where n denotes the number of possible outcomes of each single experiment. The main
procedure only costs O(m) time, while a preprocessing procedure costs O(m+ n) time. For the
multiple pattern case, our approach is as efficient as the one given by Li [14].

Our method has several advantages over other methods. First, it extends to compute the
variance or even higher moment of the waiting time for the single pattern case. Second, it is
more intuitive and does not entail tedious mathematics and heavy probability theory. Our main
result (Theorem 2) might be of independent interest to the theory of linear equations.
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1 Introduction

In this paper, we revisit the waiting time of patterns in repeated independent experiments.
Consider an experiment with countably many outcomes, denoted by 1, . . . , n, where the
probabilities of the outcomes might be nonidentical. Let the experiment be performed
repeatedly. Given a collection of t finite sequences of possible outcomes, called patterns, we
compute the expected waiting time till one of the pattern is observed in a run of experiments.
We also compute the probability for each pattern to be the first to appear.

These quantities have been extensively studied in history and different approaches were
invented for computing them. The existing approaches apply complicated mathematical
tools, e.g. the generating functions applied in [12] and [4], the martingale theory applied in
[14], and the renewal theory applied in [4]. In this paper we revisit a much more intuitive
approach for computing them and we show that this approach is computationally optimal.

For the single pattern case, we use the following approach to compute the expected
waiting time. We reduce it to compute the expected stopping time of a Markov chain (see
its construction in Subsection 1.2), which consists of m nonterminal states, where m is
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the length of the given pattern. The expected stopping time can easily be computed in
polynomial time by standard methods, since it reduces to solve a system of linear equations
with m equations and m variables. We propose a novel method to solve this system and thus
compute the expected stopping time starting from any state of the Markov chain, which only
costs O(m+ n) time and thus is computationally optimal. This time complexity cannot be
guaranteed by standard linear system solving; for achieving it we exploit structural properties
of the Markov chain and some insights about pattern matching.

Our method easily extends to compute the variance or even higher moments of the waiting
time for a single pattern, starting from any state of the Markov chain. The running time is
still O(m+ n) for the variances, and is O(m · k2 + n) for the k-th moments.

For the multiple pattern case, computing the expected waiting time and the probability
for each pattern to be first to appear reduces to solving a system of linear equations with t+1
variables and t+ 1 equations, in which the coefficients can be computed by our algorithm for
the single pattern case. Our algorithm has the same time complexity as the one given in [14].

1.1 Related work and applications
The waiting time of patterns is a classic problem in probability theory which arises in 1960s
([17, 23]). Since then it has drawn a lot of attentions and has been studied extensively. It
has many applications in different fields, including computer science, telecommunication,
molecular biology, statics and applied probability; see [22, 11, 16, 15] and the references
within.

Due to the practical importance of the waiting time, several approaches were invented
for studying it. Guibas and Odlyzko [12] studied it via a combinatorial approach. They
computed the generating function of the number of strings with any fixed length which
contain none of the given patterns. Breen, Waterman and Zhang [4] obtained similar results
via a probabilistic approach, in which the renewal theory of Feller [7] is applied. Li [14]
studied it via martingale theory and general Markov chain theory (See also [19]). Most
approaches entail tedious mathematics and heavy probability theory, even for the single
pattern case. Useful reviews of different approaches can be found in two recent books: [3, 8].

To compute the waiting time, there is an intuitive approach as aforementioned. It appears
in several literatures and is usually called Markov Embedding approach. However, to the
best of our knowledge, researches have not recognized that this approach is optimum from
the perspective of computational complexity. (Usually, the stopping time of a Markov chain
cannot be computed in linear time).

Many variants of the original problem have been studied. For example, Fudos, Pitoura
and Szpankowski [9] studied the probability of exactly r occurrences of a pattern in a
fixed number of Bernoulli experiments (independent identical experiments). In addition,
people also considered the waiting time in Markovian experiments (Markovian dependent
experiments) instead of Bernoulli experiments; see [5, 18, 2] and the references within.

A closely related topic to the waiting time is the frequency of patterns. Régnier and
coauthors made important contributions to this topic. Let Ok denote the number of occurrence
of a given pattern in k Markovian experiments when overlapping is counted separately. [21]
computed the mean and variance of Ok. This result was extended to the higher order
Markovian experiments, for non-overlap or overlap counting, in [20].

The literature of the problem concerning the probability for each pattern to be the first
to appear starts from [17]. This problem is referred to as Penney’s Game ([1]). Conway gave
a beautiful formula for the 2-players Penney’s Game (See [10]). The best strategy is known
for choosing the pattern so that the winning probability is optimal; see [10, 12, 6].
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0 1 2 31 3 1

2, 3 1

2
2,3

Figure 1 The Markov chain corresponding to the above example.

1.2 Technique overview
Now, we define the aforementioned Markov chain corresponding to a single pattern, state
our main result and present the overview of our techniques.

The Markov chain corresponding to pattern W
Denote m = |W | and assumeW = W1W2..Wm. DenoteW (i) = W [1..i], which is the prefix of
W with length i. Recall that there are n possible outcomes and assume that the probability
of outcome i is Pr(i). Note that Pr(1), . . . , P r(n) are fixed parameters.

The Markov chain consists of m+ 1 states, state 0 to state m, each of which corresponds
to a prefix of W . State m is the terminal state. For each state i(0 ≤ i ≤ m − 1), there
are n outgoing edges whose ending points are denoted by τ(i, 1), . . . , τ(i, n), respectively.
Specifically, if it’s now at state i and the next outcome is j, the next state should be

τ(i, j) = max{h |W (h) is a suffix of (W (i) + ‘j’)}. (1)

The j-th outgoing edge of each state has an associated probability Pr(j).
Note: The symbol ‘+’ in Equation 1 indicates concatenation of strings.

I Example 1. Let W = “131”. n = 3. The corresponding Markov chain is drawn in Figure 1.

Clearly, computing the expected waiting time of pattern W reduces to computing the
expected stopping time of the preceding Markov chain.

Our Main Results
Suppose (c0, . . . , cm−1) are m constants. We consider the following system of linear equations.

xi =
{

0, i = m;
ci +

∑n
j=1 Pr(j) · xτ(i,j), i = 0..m− 1. (2)

Note that there are m+ 1 variables in this system, which are x0, . . . , xm, and there are
also m+ 1 equations. Our main result is the following.

I Theorem 2. The solution of system (2) can be computed in O(m+ n) time.

Denote ei as the expected “stopping time” starting from state i; and denote fi as the
expected “square of stopping time” starting from state i. Formally,

ei :=
∑
t≥0

t · Pr(It takes t steps to get the terminal state from state i); (3)

fi =
∑
t≥0

t2 · Pr(It takes t steps to get the terminal state from state i). (4)
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The following equations are easy to prove.

ei =
{

0, i = m;(∑n
j=1 Pr(j) · eτ(i,j)

)
+ 1, i = 0..m− 1. (5)

fi =
{

0, i = m;(∑n
j=1 Pr(j) · fτ(i,j)

)
+ (2ei − 1), i = 0..m− 1. (6)

Proof of (5). Assume i < m; otherwise it is trivial. By First-Step-Analysis,

ei =
∑n

j=1
Pr(j)

∑
t≥0

(t+ 1) · Pr(It takes t steps to get state m from state τ(i, j))

=
∑n

j=1
Pr(j) ·

(
eτ(i,j) + 1

)
=
(∑n

j=1
Pr(j) · eτ(i,j)

)
+ 1.

J

Proof of (6). Assume i < m; otherwise it is trivial. By First-Step-Analysis,

fi =
∑n

j=1
Pr(j)

∑
t≥0

(t+ 1)2 · Pr(It takes t steps to get state m from state τ(i, j))

=
∑n

j=1
Pr(j) ·

(
fτ(i,j) + 2eτ(i,j) + 1

)
=
(∑n

j=1
Pr(j) · fτ(i,j)

)
+ 2(ei − 1) + 1.

J

According to Theorem 2, we can compute array e = (e0, . . . , em) in O(m + n) time.
Moreover, after array e has been computed, we can further compute array f = (f0, . . . , fm)
in O(m+ n) time. The expected stopping time is e0, and its variance is f0 − e2

0.

I Corollary 3. Given a pattern W with length m, the expected waiting time of W and the
variance of the waiting time of W can be computed in O(m+ n) time.

The above method for computing the expectation and variance can be easily generalized
to compute the higher moments. We show this generalization in Section 5.

Technique overview – solve system (2)
System (2) has m unknowns x0, . . . , xm−1 to compute. Rather than compute them directly,
we define yi = x0 − xi and compute the unknowns y1, . . . , ym. The difficulty on computing
yi lies in computing the term

∑
j=1..n,j 6=Wi+1

Pr(j) · yτ(i,j), which is denoted by zi.
Let π : {0, ..,m} → {−1, ..,m− 1} be the well-known prefix function of W . Formally,

πi =
{
−1, i = 0;
max

{
h | h < i and W (h) is a suffix of W (i)} , i > 0. (7)

Our key observation is that zi can be computed from zπi in O(1) time. More specifically,

zi = zπi + [yπi+1 · Pr(Wπi+1)]− [yσi · Pr(Wi+1)] (for 1 ≤ i < m) ,

where σi = τ(πi,Wi+1).
Based on this observation, we compute y and z in O(m) time. Besides, we spend O(n+m)

time to compute the auxiliary array σ. Our method is computationally optimum, since
inputting the task instance would already cost O(n+m) time.
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Technique overview – the multiple pattern case
For the multiple pattern case, we only consider the expectation of waiting time and the
probability for each pattern to be first to appear; we do not consider variance of even higher
moments of the waiting time. Our method is similar to the one of Li [14]. Specifically, we
shall solve the same system of linear equations (which consists of t+ 1 variables) proposed
by Li. However, we use a different approach to compute the coefficients of this system.

Outline. We prove Theorem 2 in Section 2. We present an alternative linear algorithm for
computing e0, . . . , em−1 in Section 3. We consider the multiple pattern case in Section 4. We
compute the higher moments of the waiting time of a single pattern in Section 5.

2 Solving system (2) in linear time

I Definition 4. For 0 ≤ i ≤ m, we define a periods set

P(i) =
{

{0}, i = 0;
P(πi) ∪ {i}, i > 0.

The following lemmas can be found in any textbook on finite automata and is the basis
of the famous KMP (Knuth-Morris-Pratt) algorithm ([13]). We omit their trivial proofs.

I Lemma 5. Suppose 0 ≤ i ≤ m and 0 ≤ h ≤ i. Then,

h ∈ P(i) if and only if W (h) is a suffix of W (i).

I Lemma 6. For 1 ≤ i < m and 1 ≤ j ≤ n, we have

τ(i, j) =
{

i+ 1, j = Wi+1;
τ(πi, j), j 6= Wi+1.

(8)

In this section, we prove Theorem 2, which states that the system of linear equations
stated in (2) can be solved in linear time.

We do not compute x directly; instead, we compute another array y = (y0, . . . , ym),
which are defined as follows. To compute y efficiently, we introduce two more arrays
z = (z0, . . . , zm−1) and σ = (σ1, . . . , σm−1) as follows.

yi = x0 − xi (0 ≤ i ≤ m) (9)
zi =

∑
j=1..n,j 6=Wi+1

Pr(j) · yτ(i,j) (0 ≤ i < m) (10)

σi = τ(πi,Wi+1) (∀1 ≤ i < m) (11)

We state two formulas. (Their proofs are deferred for a moment.)

yi = (ci−1 + yi−1 − zi−1)/Pr(Wi) (for 1 ≤ i ≤ m) . (12)
zi = zπi + [yπi+1 · Pr(Wπi+1)]− [yσi · Pr(Wi+1)] (for 1 ≤ i < m) (13)

We give the algorithm in Algorithm 1.
Note that when we compute zi in Line 5, we have πi < i, π + 1 ≤ i and σi ≤ i. These

inequalities respectively imply that the quantities zπi , yπi+1, and yσi have been computed
before we compute zi. Therefore, Algorithm 1 is correct according to (12) and (13).
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Algorithm 1 Algorithm for computing x
1: Compute π and σ; . See the detailed algorithm in the next subsection.
2: y0, z0 ← 0;
3: for i = 1..m− 1 do
4: yi ← (ci−1 + yi−1 − zi−1)/Pr(Wi). . Applying (12).
5: zi ← zπi + yπi+1 · Pr(Wπi+1)− yσi · Pr(Wi+1) . Applying (13).
6: end for
7: ym ← (cm−1 + ym−1 − zm−1)/Pr(Wm); . Applying (12).
8: x0 ← ym. . Because ym = x0 − xm = x0 − 0 = x0.
9: Compute x1, . . . , xm−1 from y by formula xi = x0 − yi.

Proof of (12). Assume 1 ≤ i ≤ m. Then,

yi−1 + ci−1 = x0 − xi−1 + ci−1 (due to (9))

= x0 −
∑
j=1..n

Pr(j) · xτ(i−1,j) (due to (2))

= (
∑
j=1..n

Pr(j)) · x0 −
∑
j=1..n

Pr(j) · xτ(i−1,j) (since
n∑
j=1

Pr(j) = 1)

=
∑
j=1..n

Pr(j) · (x0 − xτ(i−1,j))

=
∑
j=1..n

Pr(j) · yτ(i−1,j) (due to (9))

=
∑

j=1..n,j 6=Wi

Pr(j) · yτ(i−1,j) + Pr(Wi) · yτ(i−1,Wi)

= zi−1 + Pr(Wi) · yτ(i−1,Wi) (due to (10))
= zi−1 + Pr(Wi) · yi. (since τ(i− 1,Wi) = i)

This further implies (12). J

Proof of (13). Assume 1 ≤ i < m. We have

zi =
∑

1≤j≤n,j 6=Wi+1

Pr(j) · yτ(i,j) =
∑

1≤j≤n,j 6=Wi+1

Pr(j) · yτ(πi,j)

The first equation follows from the definition (10), whereas the second follows from (8).
On the other side, by the definition (10) of zπi , we have

zπi =
∑

1≤j≤n,j 6=Wπi+1

Pr(j) · yτ(πi,j) .

Therefore,

zi − zπi = Pr(Wπi+1) · yτ(πi,Wπi+1)) − Pr(Wi+1) · yτ(πi,Wi+1).

Substituting τ(πi,Wi+1) and τ(πi,Wπi+1)) by σi and πi + 1 respectively, we obtain (13). J

I Remark. Proving Formula 13 is the key step in designing our linear time algorithm. This
formula shows that we can rapidly compute zi from zπi . The proof of this formula mainly
applies the properties of τ stated in Lemma 6.

In a more straight-forward way, we may apply Formula 10 instead of Formula 13 to
compute zi at Line 5. This would produce an alternative algorithm that runs in O(m2) time.
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2.1 Preprocessing procedure – computing π and σ in linear time
The prefix function π can be computed in O(m) time by using the famous KMP (Knuth-
Morris-Pratt) algorithm, see [13]. Next, we assume that π is computed and we present the
algorithm for computing σ = (σ1, . . . , σm−1). Recall that σi = τ(πi,Wi+1).

We describe the algorithm in Algorithm 2. It uses a Depth-First-Search (DFS).

Algorithm 2 Compute σ by a DFS
1: Tr[1..n] is a temporary array.
2: procedure ComputeSigma(i) . When entering this procedure, Tr[∗] = τ(i, ∗)
3: for j : π(j) = i do
4: σj ← Tr[Wj+1];
5: Tr[Wj+1]← j + 1; . Here, Tr[∗] becomes τ(j, ∗)
6: ComputeSigma(j);
7: Tr[Wj+1]← σj ; . Let Tr[∗] return to τ(i, ∗)
8: end for
9: end procedure

10: Tr[1], . . . , T r[n]← 0;
11: Tr[W1]← 1; . The last two lines make Tr[∗] = τ(0, ∗)
12: ComputeSigma(0)

The correctness of Algorithm 2 is obvious. When entering the procedure ComputeSigma
with parameter i, the temporary array Tr[1, . . . , n] stores τ(i, 1), . . . , τ(i, n).

This preprocessing procedure runs in O(n+m) time.
I Remark. There is a chance that this preprocessing procedure may be improved to O(m)
time. However, for two reasons the O(n+m) time solution is just fine. First, inputting the
task instance would cost O(n+m) time. Second, usually we can assume that n ≤ m. (If
n > m, we may modify the input parameters and merge the redundant outcomes at first.)

3 An alternative method followed by Li’s approach

In this section, we restate some beautiful results proved by Shuo-yen Robert Li in [14]. Then,
we show that based on these results, we can design an alternative algorithm which computes
e0, . . . , em−1 in O(m) time. We then compare this algorithm to Algorithm 1.

I Definition 7. Let A = A1A2 . . . As and W = W1W2 . . .Wm be two strings over {1..n}.
For every pair (i, j) of integers, write

δij =
{
Pr(Wj)−1, if 1 ≤ i ≤ s, 1 ≤ j ≤ m and Ai = Wj ;

0, otherwise. (14)

Then define

A ∗W = δ11δ22 . . . δss + δ21δ32 . . . δs,s−1 + . . .+ δs1 (15)

I Example 8. Let A = “2113”, W = “131”. Assume that Pr(1) = 1
2 , P r(2) = 1

3 , P r(3) = 1
6 .

Then W ∗W = 2 · 6 · 2 + 0 · 0 + 2 = 26, and A ∗W = 0 · 0 · 2 · 0 + 2 · 0 · 0 + 2 · 6 + 0 = 12.

I Lemma 9 ([14]). Given a starting string A, the expected waiting time for a pattern W is

W ∗W −A ∗W,

provided that W is not a substring of A. In particular, the waiting time of pattern W (without
a starting sequence) is W ∗W .
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By Lemma 9, we have the following equation for e0, . . . , em−1.

ei = W ∗W −W (i) ∗W. (16)

In the following, we prove the following result.

I Theorem 10. We can compute the values ofW (0)∗W = 0,W (1)∗W, . . . ,W (m)∗W = W ∗W
altogether in O(m) time, and thus compute e0, . . . , em−1 in O(m) time.

To prove this result, we first state the following equation of W (i) ∗W .
Recall the periods set P(i) defined in Definition 4. Denote prodh =

∏h
j=1 Pr(Wj)−1.

Then,

W (i) ∗W =
∑

h∈P(i)

prodh. (17)

The proof of Equation 17 is deferred for a moment.

Furthermore, recall that

P(i) =
{

{0}, i = 0;
P(πi) ∪ {i}, i > 0.

We obtain the following equation based on (17).

W (i) ∗W =
{

0, i = 0;
W (πi) ∗W + prodi, i > 0. (18)

According to this recursive equation, we obtain Theorem 10 immediately. The detailed
algorithm is omitted. In the following we prove Equation 17.

Proof of (17). Set A = W (i). According to the definition of A ∗W in (15),

W (i) ∗W = A ∗W
= δ11δ22 . . . δii + δ21δ32 . . . δi,i−1 + . . .+ δi1

= [W (i) is a suffix of W (i)] · Pr(W1)−1 . . . P r(Wi)−1+

[W (i−1) is a suffix of W (i)] · Pr(W1)−1 . . . P r(Wi−1)−1 + . . .

+ [W (1) is a suffix of W (i)] · Pr(W1)−1

=
∑

1≤h≤i
[W (h) is a suffix of W (i)] · prodi

=
∑

h∈P(i)

prodi

The last step is due to Lemma 5. J

I Remark. In designing the above linear algorithm for computing W (0) ∗W, . . . ,W (m) ∗W ,
the key is to apply the recursive formula (18). This formula tells us that we can compute
W (i) ∗W rapidly from W (π(i)) ∗W . We note that the same technique is applied in the
previous algorithm for computing z1, . . . , zm−1 shown in Section 2.

Lemma 9 provides a concise and beautiful formula, which reveals many insights of the
problem. However, its proof requires some advanced mathematic tools; for example, the
Doob’s fundamental theorem on stopping times of martingales. In addition, it only computes
the expected waiting time, while our approach easily extends to compute the variance.
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4 The multiple pattern case

In this section, we consider the multiple pattern case. Given a set of t patterns W1, . . . ,Wt.
Suppose that they are reduced, which means that no pattern is a substring of another. We
compute the expected waiting time till one of the pattern is observed in a run of experiments.
We also compute the probability for each pattern to be first to appear.

Our method is similar to the one given by Li [14].

I Lemma 11. For 1 ≤ i ≤ t, let Ni be the random variable which indicate the waiting time
till Wi is observed, and let pi be the probability that Wi precedes the remaining t− 1 patterns
and be the first pattern to appear. Let N = min(N1, . . . , Nt). Let ei,k denote the expected
stopping time of the Markov chain corresponding to Wi, starting from its state k. For every
i, j such that 1 ≤ i, j ≤ t, we denote by k(i, j) the largest k such that W (k)

i is a suffix of Wj.
Then

ei,0 = EN +
t∑

j=1
pjei,k(i,j) (1 ≤ i ≤ t) (19)

Proof.

ei,0 = E(Ni)
= EN + E(Ni −N)

= EN +
t∑

j=1
E(Ni −N | N = Nj)) · Pr(N = Nj)

= EN +
t∑

j=1
pjei,k(i,j) J

Note that the value of e can be computed by our algorithm for the simple pattern case. Also
note that we have another simple equation as follows.

t∑
j=1

pj = 1. (20)

In the matrix form, the t equations in (19) and the equation in (20) become:
0 1 . . . 1
1 e1,k(1,1) . . . e1,k(1,t)
. . . . . . . . . . . .

1 et,k(t,1) . . . et,k(t,t)




EN

p1
. . .

pt

 =


1
e1,0
. . .

et,0

 . (21)

Let M denote the coefficient matrix of this system. Li [14] proved that M is nonsingular.
So, we can compute EN, p1, . . . , pt by solving this system of linear equations.

5 Higher moments of the waiting time of a single pattern

For any integer k ≥ 0 and for any 0 ≤ i ≤ m, denote

gk,i :=
∑
t≥0

tk · Pr(It takes t steps to get the terminal state from state i). (22)

ISAAC 2016



39:10 Computing the Pattern Waiting Time: A Revisit of the Intuitive Approach

In Subsection 1.2, we defined array e = g1 and array f = g2 and we show that both of
them can be computed efficiently by applying Theorem 2. In the following we show that
arrays g1, . . . , gk can be computed altogether in O(m · k2) time (after the preprocessing
procedure for computing σ). As a corollary, we obtain:

I Corollary 12. Given a pattern W with length m, the first k moments of the waiting time
of W can be computed in O(n+m · k2) time.

We state an equation of gk at first. For k ≥ 1,

gk,i =
{

0, i = m;(∑n
j=1 Pr(j) · gk,τ(i,j)

)
+
∑k−1
h=0

(
k
h

)
(−1)k−1−hgh,i, i = 0..m− 1. (23)

I Example 13. For i < m, we have

g1,i =
(∑n

j=1
Pr(j) · g1,τ(i,j)

)
+g0,i;

g2,i =
(∑n

j=1
Pr(j) · g2,τ(i,j)

)
+2g1,i − g0,i;

g3,i =
(∑n

j=1
Pr(j) · g3,τ(i,j)

)
+3g2,i − 3g1,i + g0,i;

g4,i =
(∑n

j=1
Pr(j) · g4,τ(i,j)

)
+4g3,i − 6g2,i + 4g1,i − g0,i;

. . .

According to (23), we can apply Theorem 2 to compute gk after we have computed
g0, . . . , gk−1. Therefore, we obtain the aforementioned results and Corollary 12.

We apply the following identity to prove (23).

k∑
h=l

(
k

h

)(
h

l

)
(−1)h = 0 (when k > l ≥ 0) (24)

Proof of (24).

k∑
h=l

(
k

h

)(
h

l

)
(−1)h =

k∑
h=l

(
k

l

)(
k − l
h− l

)
(−1)h =

(
k

l

) k∑
h=l

(
k − l
h− l

)
(−1)h = 0 J
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Proof of (23). Assume i < m; otherwise it is trivial. By First-Step-Analysis,

gk,i =
∑n

j=1
Pr(j)

∑
t≥0

(t+ 1)k · Pr(It takes t steps to get state m from state τ(i, j))

=
∑n

j=1
Pr(j)

∑
t≥0
· (tk +

∑k−1

h=0

(
k

h

)
th) · Pr(It takes t steps ... from state τ(i, j))

=
(∑n

j=1
Pr(j) · gk,τ(i,j)

)
+
∑k−1

h=0

(
k

h

)∑n

j=1
Pr(j)gh,τ(i,j)

=
(∑n

j=1
Pr(j) · gk,τ(i,j)

)
+
∑k−1

h=0

(
k

h

)(
gh,i −

∑h−1

l=0

(
h

l

)
(−1)h−1−lgl,i

)
=
(∑n

j=1
Pr(j) · gk,τ(i,j)

)
−
∑k−1

h=0

(
k

h

)∑h

l=0

(
h

l

)
(−1)h−1−lgl,i

=
(∑n

j=1
Pr(j) · gk,τ(i,j)

)
−
∑k−1

l=0
gl,i ·

∑k−1

h=l

((
k

h

)(
h

l

)
(−1)h−1−l

)
=
(∑n

j=1
Pr(j) · gk,τ(i,j)

)
−
∑k−1

l=0
gl,i ·

((
k

l

)
(−1)k−l

)
=
(∑n

j=1
Pr(j) · gk,τ(i,j)

)
+
∑k−1

h=0
gh,i ·

((
k

h

)
(−1)k−1−h

)
Note that the second last step applies Identity 24. J
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Abstract
We consider capacitated vertex cover with hard capacity constraints (VC-HC) on hypergraphs.
In this problem we are given a hypergraph G = (V, E) with a maximum edge size f . Each edge
is associated with a demand and each vertex is associated with a weight (cost), a capacity, and
an available multiplicity. The objective is to find a minimum-weight vertex multiset such that
the demands of the edges can be covered by the capacities of the vertices and the multiplicity of
each vertex does not exceed its available multiplicity.

In this paper we present an O(f) bi-approximation for VC-HC that gives a trade-o� on the
number of augmented multiplicity and the cost of the resulting cover. In particular, we show
that, by augmenting the available multiplicity by a factor of k Ø 2, a cover with a cost ratio of!
1 + 1

k≠1
"

(f ≠ 1) to the optimal cover for the original instance can be obtained. This improves
over a previous result, which has a cost ratio of f2 via augmenting the available multiplicity by
a factor of f .
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1 Introduction

The capacitated vertex cover problem with hard capacities (VC-HC) models a demand-to-
service assignment scenario generalized from the classical vertex cover problem. In this
problem, we are given a hypergraph G = (V, E ™ 2V ) with maximum edge size f , where
each e œ E satisfies |e| Æ f and is associated with a demand de œ RØ0, and each v œ V

is associated with a weight (or cost) wv œ RØ0, a capacity cv œ RØ0, and an available
multiplicity mv œ ZØ0. The objective is to find a vertex multiset, or, cover, represented by a
demand assignment function h : E ◊ V æ RØ0, such that the following two constraints are
met:
1.

q
vœe he,v Ø de for all e œ E,

2. x
(h)
v Æ m(v) for all v œ V , where x

(h)
v :=

Ïq
e : eœE, vœe he,v/cv

Ì
,

and
q

vœV w(v) · xh(v) is minimized.
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In this paper, we consider bicriteria approximation for VC-HC with augmented multiplicity
constraints. In particular, we say that a demand assignment h forms an augmented (—, “)-
cover if it is feasible for the augmented multiplicity function mÕ

v := — · mv for all v œ V and
the cost ratio is at most “ compared to the optimal assignment for the original instance. In
other words, we are allowed to use additional multiplicities of the vertices up to a factor of —.

Background and Prior Work

The capacitated vertex cover generalizes vertex cover in that a demand-to-service assignment
model is evolved from the original 0/1 covering model. This transition was exhibited via
several work.

For classical vertex cover, it is known that a f -approximation can be obtained by LP
rounding and duality [1, 8]. Khot and Regev [13] showed that, assuming the unique game
conjecture, approximating this problem to a ratio better than f ≠ ‘ is NP-hard for any ‘ > 0
and f Ø 2.

Chuzhoy and Naor [4] considered VC-HC on simple graphs with unit edge demands, i.e.,
|e| = 2 and de = 1 for all e œ E. They presented a 3-approximation for the unweighted
version of this problem, i.e., wv = 1 for all v œ V . On the contrary, they showed that the
weighted version is at least as hard as set cover, which renders O(f)-approximations unlikely
to exist even for this simple setting. Due to this reason, subsequent work on VC-HC has
focused primarily on the unweighted version.

Gandhi et al. [5] gave a 2-approximation for unweighted VC-HC with unit edge demand by
presenting a refined rounding approach to [4]. Saha and Khuller [14] considered general edge
demands and presented an O(f)-approximation for f -hypergraphs. Cheung et al. [3] presented
an improved approach for this problem. They presented a

!
1 + 2/

Ô
3
"
-approximation for

simple graphs and a 2f -approximation for f -hypergraphs. The gap of approximation for this
problem was recently closed by Kao [10], who presented an f -approximation for any f Ø 2.

Grandoni et al. [6] considered weighted VC-HC with unit vertex multiplicity, i.e., mv = 1
for all v œ V , and augmented multiplicity constraints. They presented a primal-dual approach
that yields an augmented (2, 4)-cover for simple graphs1, which further extends to augmented
(f, f2)-cover for f -hypergraphs. This approach does not generalize, however, to arbitrary
vertex multiplicities and does not entail further parametric trade-o� either.

Further Related Work

The capacitated covering problem has been studied in various forms and variations. When
the number of available multiplicities is unlimited, this problem is referred to soft capacitated
vertex cover (CVC). This problem was first considered by Guha et al. [7], who gave a
2-approximation based on primal-dual. Kao et al. [11, 12, 9] studied capacitated dominating
set problem and presented a series of results for the complexity and approximability of this
problem. Bar-Yehuda et al. [2] considered partial CVC and presented a 3-approximation for
simple graphs based on local ratio techniques.

Wolsey [15] considered submodular set cover, which includes classical set cover as a
special case and which relates to capacitated covering in a simplified form, and presented a
(ln maxS f(S) + 1)-approximation. This approach was generalized by Chuzhoy and Naor [4]

1 The bicriteria approximation ratio of [6] is updated in the context due to the di�erent considered
models. In [6] each vertex is counted at most once in the cost of the cover, disregarding the number of
multiplicities it needs. In our model, however, the cost is weighted over the multiplicities of each vertex.
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to capacitated set cover with hard capacities and unit demands, for which a (ln ” + 1)-
approximation was presented, where ” is the maximum size of the sets.

Our Result and Approach

We consider VC-HC with general parameters and present bicriteria approximations that
yields a trade-o� between the number of augmented multiplicities and the resulting cost.
Our main result is the following bicriteria approximation algorithm:

I Theorem 1. For any integer k Ø 2, we can compute an augmented
1

k, (1 + 1
k≠1 )(f ≠ 1)

2
-

cover for weighted VC-HC in polynomial time.

This improves over the previous ratio of (f, f2) in [6] and provides a parameter trade-o�
on the augmented multiplicity and the quality of the solution. In particular, the cost ratio
we obtained for this bi-approximation is bounded within 3

2 (f ≠ 1) for all k Ø 2 and converges
asymptotically to f ≠ 1 as k tends to infinity.

Our algorithm builds on primal-dual charging techniques combined with a flow-based
procedure that exploits the duality of the LP relaxation. The primal-dual scheme we present
extends the basic framework from [12, 7], which were designed for the soft capacity model
where mv = Œ for all v. In contrast to the previous result in [6], we employ a di�erent
way of handling the dual variables as well as the primal demand assignments that follow.
The seemingly subtle di�erence entails dissimilar analysis and gives a guarantee that is
unavailable via their approach.

In particular, for the primal demand assignments, we use flow-based arguments to deal
with pending decisions. This ensures that the vertices whose multiplicity limits are attained
receive su�cient amount of demands to pay for their costs. The crucial observation in
establishing the bicriteria approximation factor is that the feasible regions of the dual LP
remains unchanged when the multiplicity constraint is augmented. Therefore the cost of the
solution obtained via the primal-dual approach can be bounded by the optimal cost of the
original instance. Together this gives our bi-approximation result.

The rest of this paper is organized as follows. In §2 we formally define VC-HC and
introduce the natural LP relaxation and its dual LP for which we will be working with. For
a better flow to present our bicriteria approximation, we first introduce our primal-dual
algorithm and the corresponding analysis in §3. In §4 we establish the bi-approximation
approximation ratio and prove Theorem 1. Finally we conclude in §5 with some future
directions for related problems.

2 Problem Statement and LP Relaxation

Let G = (V, E) denote a hypergraph with vertex set V and edge set E ™ 2V and f :=
maxeœE |e| denote the size of the largest hyperedge in G. For any v œ V , we use E[v]
to denote the set of edges that are incident to the vertex v. Formally, E[v] := {e : e œ
E such that v œ e}. This definition extends to set of vertices, i.e., for any A ™ V , i.e.,
E[A] :=

t
vœA E[v].

2.1 Capacitated Vertex Cover with Hard Capacities (VC-HC)
In this problem we are given a hypergraph G = (V, E ™ 2V ), where each e œ E is associated
with a demand de œ RØ0 and each v œ V is associated with a weight (or cost) wv œ RØ0, a
capacity cv œ RØ0, and its available multiplicities mv œ ZØ0.

ISAAC 2016
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By a demand assignment we mean a function h : E ◊ V æ ZØ0, where he,v denotes the
amount of demand that is assigned from edge e to vertex v. For any v œ V , we use Dh(v) to
denote the total amount of demand vertex v has received in h, i.e., Dh(v) =

q
eœE[v] he,v.

The corresponding multiplicity function, denoted x(h), is defined to be x
(h)
v = ÁDh(v)/cvË.

A demand assignment h is feasible if
q

vœe he,v Ø de for all e œ E and x
(h)
v Æ mv for all

v œ V . In other words, the demand of each edge is fully-assigned to (fully-served by) its
incident vertices and the multiplicity of each vertex does not exceed its available multiplicities.
The weight (cost) of h, denoted w(h), is defined to be

q
vœV wv · x

(h)
v .

Given an instance � = (V, E, de, wv, cv, mv) as described above, the problem of VC-HC
is to compute a feasible demand assignment h such that w(h) is minimized. Without loss of
generality, we assume that the input graph G admits a feasible demand assignment.2

Augmented Cover.

Let � = (V, E, de, wv, cv, mv) be an instance for VC-HC. For any integral — Ø 1, we say that
a demand assignment h forms an augmented (—, “)-cover if
1.

q
vœe he,v Ø de for all e œ E.

2. x
(h)
v Æ — · mv for all v œ V .

3. w(h) Æ “ · minhÕœF w(hÕ), where F is the set of feasible demand assignments for �.

2.2 LP Relaxation and the Dual LP
Let � = (V, E, de, wv, cv, mv) be the input instance of VC-HC. The natural LP relaxation of
VC-HC for the instance � is given below in LP(1). The first three inequalities model the
feasibility constraints of a demand assignment and its corresponding multiplicity function.
The fourth inequality states that the multiplicity of a vertex cannot be zero if any demand
gets assigned to it. This seemingly unnecessary constraint is required in giving a bounded
integrality gap for this LP relaxation.

Minimize
ÿ

vœV

wv · xv (1)

ÿ

vœe

he,v Ø de, ’e œ E

cv · xv ≠
ÿ

eœE[v]

he,v Ø 0, ’v œ V

xv Æ mv, ’v œ V

de · xv ≠ he,v Ø 0, ’e œ E, v œ e

xv, he,v Ø 0, ’e œ E, v œ e

The dual LP for the instance � is given below in LP(2). A solution � = (ye, zv, ge,v, ÷v)
to this LP can be interpreted as an extended packing LP as follows: We want to raise the
values of ye for all e œ E. However, the value of each ye is constrained by zv and ge,v that
are further constrained by wv for each v œ e. The variable ÷v provides an additional degree

2 By selecting all of the available multiplicities, the feasibility of G can be checked via a max-flow
computation.
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of freedom in this packing program in that it allows higher values to be packed into ye in
the cost of a reduction in the objective value. Note that, this exchange does not always
yield a better lower-bound for the optimal solution. In this paper we present an extended
primal-dual scheme to handle this flexibility.

Maximize
ÿ

eœE

de · ye ≠
ÿ

vœV

mv · ÷v (2)

cv · zv +
ÿ

eœE[v]

de · ge,v ≠ ÷v Æ wv, ’v œ V

ye Æ zv + ge,v, ’v œ V, e œ E[v]

ye, zv ge,v ÷v Ø 0, ’v œ V, e œ E[v]

For the rest of this paper, we will use OPT(�) to denote the cost of optimal solution for
the instance �. Since the optimal value of the above LPs gives a lower-bound on OPT(�)
which we will be working with, we also use OPT(�) to denote their optimal value in the
context.

3 A Primal-Dual Schema for VC-HC

In this section we present our extended primal-dual algorithm for VC-HC. The algorithm
we present extends the framework developed for the soft capacity model [12, 7]. In the
prior framework, the demand is assigned immediately when a vertex from its vicinity gets
saturated. In our algorithm, we keep some of decisions pending until we have su�cient
capacity for the demands. In contrast to the primal-dual scheme used in [6], which always
stores dual values in ge,v, we store the dual values in both ge,v and zv, depending on the
amount of unassigned demand v possesses in its vicinity. This ensures that, the cost of each
multiplicity is charged only to the demands it serves.

To obtain a solid bound for this approach, however, we need to guarantee that the vertices
whose multiplicity limits are attained receive su�cient amount of demands to charge to. This
motivates our flow-based procedure Self-Containment for dealing with the pending decisions.
During this procedure, a natural demand assignment is also formed.

3.1 The Algorithm
In this section we present our extended primal-dual algorithm Dual-VCHC. This algorithm
takes as input an instance � = (V, E, d, w, c, m) of VC-HC and outputs a feasible primal
demand assignment h together with a feasible dual solution � = (yv, zv, ge,v, ÷v) for �.

The algorithm starts with an initial zero dual solution and eventually reaches a locally
optimal solution. During the process, the values of the dual variables in � are raised gradually
and some inequalities will meet with equality. We say that a vertex v is saturated if the
inequality cv · zv +

q
eœE[v] de · ge,v ≠ ÷v Æ wv is met with equality.

Let E„ := {e : e œ E, de > 0} be the set of edges with non-zero demand and V „ := {v :
v œ V, mv · cv > 0} be the set of vertices with non-zero capacity. For each v œ V , we use
d„(v) =

q
eœE[v]flE„ de to denote the total amount of demand in E[v] fl E„. For intuition,

E„ contains the set of edges whose demands are not yet processed nor assigned, and V „

corresponds to the set of vertices that have not yet saturated.

ISAAC 2016
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In addition, we maintain a set S, initialized to be empty, to denote the set of vertices that
have saturated and that have at least one incident edge in E„. Intuitively, S corresponds to
vertices with pending assignments.

The algorithm works as follows. Initially all dual variables in � and the demand assignment
h are set to be zero. We raise the value of the dual variable ye for each e œ E„ simultaneously
at the same rate. To maintain the dual feasibility, as we increase ye, either zv or ge,v has
to be raised for each v œ e. If d„(v) Æ cv, then we raise ge,v. Otherwise, we raise zv. In
addition, for all v œ e fl S, we raise ÷v to the extent that keeps v saturated.

When a vertex u œ V „ becomes saturated, it is removed from V „. Then we invoke a
recursive procedure Self-Containment(S fi {u}, u), which we describe in the next paragraph,
to compute a pair (SÕ, hÕ), where

SÕ is a maximal subset of S fi {u} whose capacity, if chosen, can fully-serve the demands
in E[SÕ] fl E„, and
hÕ is the corresponding demand assignment function (from E[SÕ] fl E„ to SÕ).

If SÕ = ÿ, then we leave the assignment decision pending and add u to S. Otherwise, SÕ is
removed from S and E[SÕ] is removed from E„. In addition, we add the assignment hÕ to
final assignment h to be output. This process repeats until E„ = ÿ. Then the algorithm
outputs h and � and terminates.

We also note that, the particular vertex to saturate in each iteration is the one with the
smallest value of w„(v)/ min{cv, d„(v)}, where w„(v) := wv ≠

1
cv ·zv +

q
eœE[v] de ·ge,v ≠÷v

2

denotes the current slack of the inequality associated with v œ V „.

The Procedure Self-Containment(A, u)

In the following we describe the recursive procedure Self-Containment(A, u). It takes as
input a vertex subset A ™ V and a vertex u œ V and outputs a pair (SÕ, h̃Õ), where SÕ is
a maximal subset of A whose capacity is su�cient to serve the unassigned demands in its
vicinity, and hÕ is the corresponding demand assignment.

First we define a directed flow-graph G(A) with a source s+ and a sink s≠ for the vertex
set A as follows. Excluding the source s+ and the sink s≠, G(A) is a bipartite graph induced
by E[A] fl E„ and A. For each e œ E[A] fl E„, we have a vertex ẽ and an edge (s+, ẽ) in G.
Similarly, for each v œ A we have a vertex ṽ and an edge (ṽ, s≠). For each v œ A and each
e œ E[v] fl E„, we have an edge (ẽ, ṽ) in G.

The capacity of each edge is defined as follows. For each e œ E[A] fl E„, the capacity
of (s+, ẽ) is set to be de. For each v œ A, the capacity of (ṽ, s≠) is set to be mv · cv. The
capacities of the remaining edges are unlimited.

The procedure Self-Containment works as follows. If u œ A, then it computes the max-
flow h̃ for G(A) with the additional constraint that h̃(ũ, s≠) is minimized among all max-flows
for G(A).3 If u /œ A, then it simply computes any max-flow h̃ for G(A). Let

SÕ =
)

v : v œ A such that h̃(s+, ẽ) = de for all e œ E[v] fl E„
*

be the subset of A that is able to serve the demand in E[SÕ] fl E„. If SÕ = A or SÕ = ÿ, then
it returns (SÕ, h̃Õ), where h̃Õ is the demand assignment induced by h̃. Otherwise it returns
Self-Containment(SÕ, u).

3 This criterion can be achieved by imposing an additional constraint when computing the augmenting
paths.
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3.2 Properties of Dual-VCHC
Below we derive basic properties of our algorithm. Since the algorithm keeps the constraints
feasible when increasing the dual variables, we know that � is feasible for the dual LP for �.
In the following, we first show that h is a feasible demand assignment for � as well. Then we
derive properties we will be using when establishing the bi-approximation factor next section.

Feasibility of the demand assignment h

We begin with procedure Self-Containment. Let (SÕ, h̃Õ) be the pair returned by procedure
Self-Containment(S fi {u}, u). The following lemma shows that SÕ is indeed maximal.

I Lemma 2. If there exists a B ™ S fi {u} such that B can fully-serve the demand in
E[B] fl E„, then B ™ SÕ.

Proof. Let S1, S2, . . . , Sk, where S1 = S fi {u} ∏ S2 ∏ . . . ∏ Sk = SÕ, denote the input of
the procedure Self-Containment(S fi {u}, u) in each recursion.

Below we argue that B ™ Si implies that B ™ Si+1 for all 1 Æ i < k. Let h̃B denote a
maximum flow for the flow graph G(B). Since B can fully-serve the demand in E[B] fl E„,
we know that h̃B(s+, ẽ) = de for all e œ E[B] fl E„.

Consider the flow function computed by Maxflow(G(Si), u) and denote it by h̃i. If
h̃i(s+, ẽ) < de for some e œ E[B] fl E„, then we embed h̃B into h̃i, i.e., cancel the flow from
E[B] fl E„ to B in h̃i and replace it by h̃B . We see that the resulting flow strictly increases
and remains valid for G(Si), which is a contradiction to the fact that h̃i is a maximum flow
for G(Si). Therefore, we know that h̃i(s+, ẽ) = de for all e œ E[B] fl E„ and the vertices of
B must be included in Si+1. This show that B ™ Si for all 1 Æ i Æ k. J

The following lemma states the feasibility of this primal-dual process.

I Lemma 3. E„ becomes empty in polynomial time. Furthermore, the assignments computed
by Self-Containment during the process form a feasible demand assignment.

The cost incurred by h

Below we consider the cost incurred by the partial assignments computed by Self-Containment.
Let VS denote the set of vertices that have been included in the set S. For any vertex v that
has saturated, we use (SÕ

v, hÕ
v) to denote the particular pair returned by Self-Containment

such that v œ SÕ
v. Note that, this pair (SÕ

v, hÕ
v) is uniquely defined for each v that has

saturated. Therefore, we know that he,v = (hÕ
v)e,v holds for any e œ E[v].

In the rest of this section, we will simply use he,v when it refers to (hÕ
v)e,v for simplicity

of notations. Recall that DhÕ
v
(v) denotes the amount of demand v receives in hÕ

v. We have
the following proposition for the dual solution � = (ye, zv, ge,v, ÷v), which follows directly
from the way the dual variables are raised.

I Proposition 4. For any v œ V such that d„(v) > cv when saturated, the following holds:
zv = ye for all e œ E[v] with he,v > 0.
÷v > 0 only when v œ VS.

The following lemma gives the properties for vertices in VS .

I Lemma 5. For any v œ VS, we have
1. DhÕ

v
(v) = mv · cv.

2. wv · mv = DhÕ
v
(v) · ye ≠ mv · ÷v for all e œ E[v] such that he,v > 0.
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E0

E1

S0

ṽ

S1

ũ

Sj0Ej0

h̃(ũ, s�) > 0

s�

h̃(ṽ, s�)

S0
E[S0] \ E�

< mv · cv

Figure 1 Alternating paths in the flow-graph G(SÕ).

Proof. First we prove that DhÕ
v
(v) < mv · cv. Without loss of generality, we assume that

mv Ø 1 and DhÕ
v
(v) < mv · cv for a contradiction.

Consider the iteration for which the vertex v was removed from S and let u be the vertex
that becomes saturated in that iteration. By Lemma 2, we know that in the beginning of
that iteration, @B ™ S such that B can fully-serve E[B] fl E„. Therefore it follows that
u œ SÕ

v, for otherwise SÕ
v would have been removed from S in the previous iteration.

Consider the flow-graph G(SÕ
v) and the max-flow h̃Õ

v to which hÕ
v corresponds. We know

that h̃Õ
v(ẽ, ũ) = 0 for all e œ E[v] fl E„, for otherwise we have an alternating path ũ æ ẽ æ ṽ

so that we can reroute the flow ẽ æ ũ æ s≠ to e æ ṽ æ s≠, which is a contradiction to the
fact that the max-flow we compute is the one that minimizes the flow from ũ to s≠.

Let S0 := {v} and E0 := E[v] fl E„. For i Ø 1, consider the sets Si and Ei defined as

Si :=
€

eœEi≠1

{vÕ : vÕ œ e fl SÕ
v} and Ei := E[Si] fl E„.

Note that, u /œ Si implies that Si ( Si+1, for otherwise Si would be a subset of S that
can fully-serve E[Si] fl E„ since the beginning of the iteration, a contradiction to Lemma 2.
Therefore u œ Sj for some j Ø 1 since |Si| Æ |SÕ

v| < Œ. Let j0 be the smallest integer such
that u œ Sj0 . By definition we have S0 ( S1 ( . . . ( Sj0 ™ SÕ

v. This corresponds to an
alternating path to which we can reroute the flow from u to v, a contradiction. See also
Fig. 1 for an illustration. Therefore we have DhÕ

v
(v) = mv · cv.

For the second half of this lemma, since v œ VS , we know that d„(v) > cv before it gets
saturated. Therefore, by Proposition 4, we know that ye = zv holds for all e œ E[v] such that
he,v > 0. It follows that wv = cv · zv ≠ ÷v = cv · ye ≠ ÷v and wv · mv = DhÕ

v
(v) · ye ≠ mv · ÷v

as claimed. J

The following auxiliary lemma, which is carried over from the previous primal-dual
framework, shows that, for any vertex v with d„(v) Æ cv when saturated, we can locate at
most cv units of demands from E[v] such that their dual value pays for wv. This statement
holds intuitively since v is saturated.
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I Lemma 6. For any v œ V with d„(v) Æ cv when saturated, we can compute a function
¸v : E[v] æ RØ0 such that the following holds:
(a) 0 Æ he,v Æ ¸v(e) Æ de, for all e œ E[v].
(b)

q
eœE[v] ¸v(e) Æ cv.

(c)
q

eœE[v] ¸v(e) · ye = wv.

Intuitively, Proposition 4 and Lemma 5 provide a solid upper-bound for vertices whose
capacity is fairly used. However, we remark that, this approach does not yield a solid
guarantee for vertices whose capacity is barely used, i.e., DhÕ

v
(v) π cv. The reason is that

the demand that is served (charged) by vertices that have been included in S, i.e., those
discussed in Lemma 5, cannot be charged again since their dual values are inflated during
the primal-dual process.

4 Augmented Cover

In this section we establish the following theorem:

I Theorem 7. For any integer k Ø 2, we can compute an augmented
1

k, (1 + 1
k≠1 )(f ≠ 1)

2
-

cover for VC-HC in polynomial time.

Let � = (V, E, d, w, c, m) be the input instance. Let mÕ
v := k · mv denote the augmented

multiplicity function for each v œ V . We invoke algorithm Dual-VCHC on the instance
�Õ = (V, E, d, w, c, mÕ). Let h be the demand assignment and � = (y, z, g, ÷) be the dual
solution output by the algorithm for �Õ.

The following observation is crucial in establishing the bi-approximation ratio: The dual
solution �, which was computed for instance �Õ, is also feasible for input instance �.

I Lemma 8. � is feasible for LP(2) with respect to �. In other words, we have
ÿ

eœE

de · ye ≠
ÿ

vœV

mv · ÷v Æ OPT (�).

Proof. The statements follow directly since LP(2) has the same feasible region for � and �Õ.
J

It is also worth mentioning that, the assignment h computed by Dual-VCHC already
gives an augmented

1
k, (1 + 1

k≠1 )f
2

-cover. To obtain our claimed ratio, however, we further
modify some of the demand assignments in h to achieve better utilization on the residue
capacity of the vertices. Below we describe this procedure and establish the bi-approximation
ratio.

Let VS denote the set of vertices that have been included in S. For each v œ V such that
Dh(v) < cv, let ¸v denote the function given by Lemma 6 with respect to v. We use hú to
denote the resulting assignment to obtain, where hú is initialized to be h. For each e œ E,
we repeat the following operation until no such vertex pair can be found:

Find a vertex pair u œ e \ VS and v œ e such that
I

hú
e,u > 0,

Dhú(u) > cu,
and

I
Dh(v) < cv,

hú
e,v < ¸v(e).

Then reassign min
)

hú
e,u, ¸v(e) ≠ hú

e,v

*
units of demand of e from u to v.

In particular, we set
I

hú
e,u = hú

e,u ≠ Ru,v,

hú
e,v = hú

e,v + Ru,v,
where Ru,v := min

)
hú

e,u, ¸v(e) ≠ hú
e,v

*
.
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Intuitively, in assignment hú if some demand is currently assigned to a vertex in V \ VS

that requires multiple multiplicities, then we try to reassign it to vertices that have surplus
residue capacity (according to the function ¸v) to balance the load. Note that, in this process
we do not use additional multiplicities of the vertices, and the reassignments are performed
only between vertices not belonging to VS .

The following lemma shows that, the cost incurred by vertices in V \VS can be distributed
to the dual variables of the edges.

I Lemma 9. We have
ÿ

vœV \VS

wv · x(hú)
v Æ (f ≠ 1) ·

ÿ

vœVS

ÿ

eœE[v]

hú
e,v · ye + f ·

ÿ

vœV \VS

ÿ

eœE[v]

hú
e,v · ye.

The following lemma provides a lower bound for OPT(�) in terms of the net sum of the
dual values over the edges.

I Lemma 10. We have
ÿ

eœE

de · ye Æ k

k ≠ 1 · OPT(�).

Proof. For each v œ VS , by Lemma 5 we have
q

eœE[v] hú
e,v = mÕ

v ·cv = k ·mv ·cv. Furthermore,
by the way how ÷v is raised, we know that ÷v Æ cv · zv = cv · ye holds for all e œ E[v] such
that hú

e,v > 0. Therefore, it follows that

mv · ÷v Æ mv · cv · ye Æ 1
k

·
ÿ

eœE[v]

hú
e,v · ye. (3)

By Inequality (3) and Lemma 8, it follows that

ÿ

eœE

A
de ≠ 1

k
·

ÿ

vœeflVS

hú
e,v

B
· ye Æ OPT(�). (4)

Therefore,

ÿ

eœE

de · ye =
ÿ

vœV

ÿ

eœE[v]

hú
e,v · ye Æ

ÿ

eœE

A
k

k ≠ 1 · de ≠ 1
k ≠ 1 ·

ÿ

vœeflVS

hú
e,v

B
· ye

= k

k ≠ 1 ·
A

ÿ

eœE

A
de ≠ 1

k
·

ÿ

vœVSfle

hú
e,v

B
· ye

B

Æ k

k ≠ 1 · OPT(�),

where the last inequality follows from Inequality (4). J

In the following we establish the bi-criteria approximation factor and prove Theorem 7.

I Lemma 11. We have

w(hú) Æ
3

1 + 1
k ≠ 1

4
· (f ≠ 1) · OPT (�)

for any integer k Ø 2.
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Proof. By Lemma 5, we have Dh(v) = mÕ
v · cv = k · mv · cv for any v œ VS . Therefore,

wv · x(hú)
v = (cv · zv ≠ ÷v) · k · mv =

ÿ

eœE[v]

hú
e,v · ye ≠ k · mv · ÷v.

Applying Lemma 9, we obtain

w(hú) =
ÿ

vœVS

wv · x(hú)
v +

ÿ

vœ(V \VS)

wv · x(hú)
v

Æ

Q

a
ÿ

vœVS

ÿ

eœE[v]

hú
e,v · ye ≠ k ·

ÿ

vœV

mv · ÷v

R

b

+

Q

a(f ≠ 1) ·
ÿ

vœVS

ÿ

eœE[v]

hú
e,v · ye + f ·

ÿ

vœ(V \VS)

ÿ

eœE[v]

hú
e,v · ye

R

b

= f ·
ÿ

vœV

ÿ

eœE[v]

hú
e,v · ye ≠ k ·

ÿ

vœV

mv · ÷v

= k ·

Q

a
ÿ

vœV

ÿ

eœE[v]

hú
e,v · ye ≠

ÿ

vœV

mv · ÷v

R

b + (f ≠ k) ·
ÿ

vœV

ÿ

eœE[v]

hú
e,v · ye.

The former item is upper-bounded by k · OPT(�) by Lemma 8. Combing the above with
Lemma 10, we obtain

w(hú) Æ
3

k + (f ≠ k) · k

k ≠ 1

4
· OPT(�) =

3
1 + 1

k ≠ 1

4
· (f ≠ 1) · OPT(�)

as claimed. J

5 Conclusion

We conclude with some future directions. In this paper we presented bi-approximations for
augmented multiplicity constraints. It is also interesting to consider VC-HC with relaxed
demand constraints, i.e., partial covers. The reduction framework for partial VC-HC provided
by Cheung et al. [3] and the tight approximation for VC-HC provided by Kao [10] jointly
provided an almost tight f + ‘-approximation when the vertices are unweighted.

When the vertices are weighted, it is known that O
! 1

‘

"
f bi-approximations can be

obtained via simple LP rounding. Comparing to the O
! 1

‘

"
bi-approximation result we can

obtain for classical vertex cover, there is still a gap, and this would be an interesting direction
to explore.
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Abstract
In this paper, we study the effect of surrogate objective functions in optimization problems.
We introduce surrogate ratio as a measure of such effect, where the surrogate ratio is the ratio
between the optimal values of the original and surrogate objective functions.

We prove that the surrogate ratio is at most µ|1/p−1/q| when the objective functions are p- and
q-norms, and the feasible region is a µ-dimensional space (i.e., a subspace of Rµ), a µ-intersection
of matroids, or a µ-extendible system. We also show that this is the best possible bound. In
addition, for µ-systems, we demonstrate that the ratio becomes µ1/p when p < q and unbounded
if p > q. Here, a µ-system is an independence system such that for any subset of ground set the
ratio of the cardinality of the largest to the smallest maximal independent subset of it is at most
µ. We further extend our results to the surrogate ratios for approximate solutions.
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Keywords and phrases surrogate optimization, matroid, extendible system, p-norm
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1 Introduction

When we model real-world problems as mathematical optimization problems, we often
face some difficulties choosing appropriate objective functions for the problems. This, for
instance, follows from ambiguity and computational difficulty of real objective functions. We
demonstrate such examples below. In order to overcome such difficulties, it is natural to
make use of surrogate objective functions.

Ambiguity: The first example is for ambiguous objective functions. For instance, consider
car navigation system to find a fastest route from an origin to a destination in a road
network. It usually solves the shortest path problem with estimated transit time for each
road. This is simply because we do not know the actual transit time which depends on
traffic congestion. Thus, estimated objective functions are used as surrogate ones.

Computational difficulty: Second, we sometimes approximate the objective function to
reduce computational cost. For example, consider the following sparse approximation
problem: we are given a vector b ∈ Rm and a matrix A ∈ Rm×n (n � m), and we are
asked to find a vector x to minimize ‖x‖0 (= | supp(x)|) subject to Ax = b. Unfortunately,
the problem is computationally intractable (NP-hard) [19], and it is often replaced to
minimizing ‖x‖1 (=

∑n
i |xi|) or ‖x‖2 (=

∑n
i x

2
i ) (see, e.g., [20]). The resulting problem

can be regarded as a linear or convex programming problem, and thus, we can efficiently
solve the surrogate optimization problem.
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Multi-objective optimization: Consider a scenario in which we have multiple objectives. In
this case, we sometimes use their weighted sum as a surrogate objective function. For
instance, in a mean-variance portfolio optimization: given an expected return vector
p̄ ∈ Rn and a variance-covariance matrix V ∈ Rn×n, we are asked to find a weight vector
x ∈ Rn (

∑n
i=1 xi = 1, xi ≥ 0 ∀i = 1, . . . , n) to maximize the expected return p̄>x and

minimize the risk x>V x. A standard way to obtain a solution for the problem is to
maximize p̄>x− λx>V x, where λ is called a risk-aversion coefficient [4].

Fairness-efficiency trade-off: The next example follows from the trade-off between efficiency
and fairness. Consider the following facility location problem: given a set of demand
points D ⊆ V in a metric space (V, d), we are asked to select k facilities F ⊆ V to open
while minimizing p

√∑
i∈D(minj∈F d(i, j))p for p ≥ 1. We can see that the case of p = 1

(i.e., k-median problem) is efficient and the other extreme case p = +∞ (i.e., k-center
problem) is fair. Furthermore, an optimal solution for each p can be regarded as a solution
which balances the efficiency and the fairness (see discussion in [7]). Golovin et al. [7]
have suggested that the optimal solution for sufficiently large p is good for this trade-off.
Namely, sufficient large p provides a good surrogate objective function.

Potential games: The last example is in potential games. A game is said to be a potential
game if the incentive of all players to change their strategy can be expressed by using a
single global function called potential function [18]. Potential games always admit a pure
Nash equilibrium and, in particular, any minimizer of the potential function is a pure
Nash equilibrium. Thus, the potential minimizers are recognized as important solution
concept in potential games. On the other hand, the efficiency of a solution is measured
by the social cost, which is, for example, the sum or maximum of players’ cost. For
instance, consider the following load balancing game [21]. There are n users N and m
identical machines M . Each user i ∈ N has a job with weight wi and chooses a machine
to place the job. A combination of choices yields an assignment A : N →M . The load
of machine j ∈ M under assignment A is defined as lj(A) =

∑
i∈N :A(i)=j wi. The cost

of user i ∈ N corresponds to the load on machine A(i), i.e., lA(i)(A). Then, a potential
for the problem is ‖l(A)‖2

2 (=
∑
j∈M lj(A)2) and a social cost is (usually) the makespan

‖l(A)‖∞ (= maxj∈M lj(A)).

In this paper, we quantify the effect of surrogate objective functions by introducing
surrogate ratio. The surrogate ratio compares the optimal solutions with respect to the
original and surrogate objective functions. Our approach is analogous to the worst-case
performance analysis in algorithm theory, such as the approximation ratio, the competitive
ratio, and the robustness factor. As the first step in analyzing the surrogate ratio, this paper
focuses on optimization problems of maximizing p-norms. Maximizing p-norms are well
studied in many areas as shown above. For n-dimensional real vector x ∈ Rn and positive
real p ∈ R+, p-norm of x is defined by ‖x‖p = p

√∑n
i=1 |xi|p. We remark that ‖ · ‖p for p with

p < 1 is not a norm, but we treat ‖ · ‖p for any positive real p. We also use the notation that
‖x‖∞ = limp→∞ ‖x‖p = maxi |xi| for a real vector x ∈ Rn.

Our model

We discuss the following four types of surrogate ratios between p- and q-norms for maximiza-
tion problems with a compact non-empty feasible region S ⊆ Rµ:

ρ(S, p, q) = max{‖x‖p : x ∈ S}/min{‖x‖p : x ∈ arg maxx∈S ‖x‖q},
η(S, p, q) = max{‖x‖p : x ∈ S}/max{‖x‖p : x ∈ arg maxx∈S ‖x‖q},
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ρα(S, p, q) = max{‖x‖p : x ∈ S}/min{‖x‖p : x ∈ α-arg maxx∈S ‖x‖q},
ηα(S, p, q) = max{‖x‖p : x ∈ S}/max{‖x‖p : x ∈ α-arg maxx∈S ‖x‖q},

where α ≥ 1 and

α-arg maxx∈S f(x) = {x ∈ S : f(x) ≥ f(x′)/α (∀x′ ∈ S)}.

Here, we assume for simplicity that the ratios are 1 if S = {0}. Then any optimal (α-
approximate) solution for q-norm is a ρ(S, p, q)-approximate (ρα(S, p, q)-approximate) solution
for p-norm and there exists an optimal (α-approximate) solution for q-norm that is an
η(S, p, q)-approximate (ηα(S, p, q)-approximate) solution for p-norm. The ratios above are
respectively called the worst surrogate ratio, the best surrogate ratio, the worst α-approximation
surrogate ratio, and the best α-approximation surrogate ratio. By definitions, we have

1 ≤ ηα(S, p, q) ≤ η(S, p, q) ≤ ρ(S, p, q) ≤ ρα(S, p, q)

for any S, p, q > 0, and α ≥ 1. Moreover, ρ(S, p, q) = ρ1(S, p, q) and η(S, p, q) = η1(S, p, q)
hold. We remark that the surrogate ratios between general two functions can be defined in
the same way.

In this paper, we deal with maximum weight independent set problems, which are fun-
damental in combinatorial optimization and contain a number of important problems such
as maximum weight stable set problem, maximum weight matching problem, and knapsack
problem (see, e.g., [15]). An independence system is a set system (E,F), i.e., E is a finite
set and F is a family of subsets of E, with the following two properties: (I1) ∅ ∈ F and (I2)
Y ⊆ X ∈ F implies Y ∈ F . Given an independence system (E,F), a subset F of E is called
independent set if F belongs to F , and an (inclusion-wise) maximal independent set is called
a base. For an independence system (E,F) and non-negative weight w(e) for e ∈ E, the
maximization problem with p-norm is defined as max{wp(X) : X ∈ F} where we define

wp(X) = p

√∑
e∈X

w(e)p.

An independence system (E,F) is called matroid if X,Y ∈ F , |X| < |Y | implies the existence
of v ∈ Y \X such that X ∪ {v} ∈ F , and µ-intersection if it is an intersection of µ matroids
defined over E. As extensions of µ-intersection, we consider µ-extendible systems and
µ-systems. An independence system (E,F) is called µ-extendible1 if

∀X,Y ∈ F , ∀e ∈ Y \X, ∃Z ⊆ X \ Y such that |Z| ≤ µ, X ∪ {e} \ Z ∈ F ,

and µ-system if for all S ⊆ E the ratio of the cardinality of the largest to the smallest
maximal independent subset of S is at most µ. For simplicity, we assume that µ ≥ 1 in this
paper (although we can take µ = 0 for (E, 2E)). It is known that classes of these systems
have the following relationships [17]:

µ-intersection ⊆ µ-extendible ⊆ µ-system.

For an independence system (E,F) with a weight w : E → R+, we denote the best
surrogate ratio as ρ(E,F , w; p, q). We also define η(E,F , w; p, q), ρα(E,F , w; p, q), and
ηα(E,F , w; p, q) similarly.

1 Kakimura and Makino [11] called this system µ-exchangeable.
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Table 1 Summary of the surrogate ratios for maximization problems.

µ-dimensional
space

µ-intersection µ-extendible µ-system

ρ, η µ|1/p−1/q|

[Thms. 2, 3]

µ|1/p−1/q|

[Thm. 6]

µ|1/p−1/q|

[Thm. 6]

{
µ1/p (p < q),
∞

(
p>q
µ>1

)
,

1 (otherwise)

[Thm. 13]

ηα

(α > 1)
max

{
1, µ
|1/p−1/q|

α

}
[Thm. 3]

max
{

1, µ
|1/p−1/q|

α

}
[Thm. 3]

max
{

1, µ
|1/p−1/q|

α

}
[Thm. 3]

{
µ1/p (p < q),
∞

(
p>q

µ1/q>α

)
,

1 (otherwise)

[Thm. 13]

ρα
(α > 1)

α · µ|1/p−1/q|

[Thm. 2]

{
∞ (p 6= q)
α (p = q)

[Thm. 9]

{
∞ (p 6= q)
α (p = q)

[Thm. 9]

{
∞ (p 6= q)
α (p = q)

[Thm. 9]

Our results

In this paper, we analyze the surrogate ratios. For a µ-dimensional compact feasible region
S ⊆ Rµ, we show that the best and the worst surrogate ratios are both µ|1/p−1/q|. Analogously,
we prove that the best and worst surrogate ratios for a µ-intersection of matroids and a
µ-extendible system are µ|1/p−1/q|. On the other hand, for a µ-system with µ > 1, we cannot
bound the surrogate ratios by µ|1/p−1/q|. The ratios become µ1/p if p < q, and unbounded if
p > q. Note that, optimality of a matroid (when µ = 1) is independent of p, since the greedy
algorithm, which always produces an optimal solution, does not need the values of weights
but the ordering of them. Thus, the surrogate ratios are 1 in this case. Moreover, for any
independence system, the greedy solution2 coincides with an optimal solution for a p-norm
with a sufficiently large p. Our result for µ-systems implies that the greedy solution is a
µ-approximate solution by choosing p = 1 and q as a sufficiently large number, that is also
shown by Jenkyns [10] and Korte and Hausmann [14]. The best α-approximation surrogate
ratio is basically α times smaller than the previous one, i.e. the case α = 1. On the contrary,
the worst α-approximation surrogate ratio goes to infinity except for the µ-dimensional
compact case.

Our results are summarized as Table 1.

Related work

The surrogate ratio is not just an analogy of the ratios shown below, but also closely related
to them.

For a multi-objective or robust optimization problem, a natural measure of goodness of
a solution is the ratio between the value of the solution and the optimal one for the worst
objective function. The ratio is called robustness factor [9] (also studied under the name of
simultaneous approximation ratio [6] or global approximation ratio [16]). To be more precise,
assume that we want to maximize f1, . . . , fn under the constraint x ∈ S. Then a solution
x ∈ S is β-robust if fi(x) ≥ fi(y)/β holds for all y ∈ S and i = 1, . . . , n. Thus, we can obtain
a β-robust solution by maximizing g, if the surrogate ratio is at most β for each fi and g.

2 To be precise, “greedy solution” may not be unique when there exist ties in the weights. However, we
can perturb the weights slightly to break the ties with arbitrarily small changes in the values of p-norms.
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Azar et al. [3] introduced a concept of an all-norm ρ-approximation algorithm, which
supplies one solution that guarantees ρ-approximation to p-norms simultaneously. They gave
a 2-approximation polynomial time algorithm for the p-norm load balancing problem (or
rather, the problem of restricted assignment model).

Hassin and Rubinstein [9] studied a robustness version of maximum weight independent
set problem when the objective functions are the sum of the k largest weights of selected
elements for all positive integer k. They showed that, when the family of independent set is
that of matchings in a graph, the optimal solution for p-norm (p ≥ 1) is min{2(1/p)−1, 2−1/p}-
robust. This implies the existence of

√
2-robust solution for any graph by choosing p = 2.

They also proved that
√

2-robust is the best possible. Fujita et al. [5] extended the result
to the matroid intersection case. Kakimura and Makino [11] further extended the result to
the µ-extendible system and showed that the optimal solution with respect to p-norm is
min{µ(1/p)−1, µ−1/p}-robust. We remark that this result does not imply our results.

For a potential game, consider a surrogate ratio of a social cost and a potential function.
Then the surrogate ratio can be used to quantify the inefficiency of selfish behavior in the
game. In fact, the ratio is studied under the name of the inefficiency ratio of stable equilibria
[2] or the potential-optimal price of anarchy [13]. Note that, in algorithmic game theory, one
of the most famous measures to quantify the inefficiency of a game is the price of stability,
which is the ratio of the social cost at the best equilibrium to the minimum social cost possible
[1]. An upper bound on the price of stability is often calculated by using the surrogate ratio.
This bounding technique is called potential function method [1]. Moreover, we can see that
the price of stability is a surrogate ratio where we do not replace the objective function but
the feasible region is restricted from all the possible strategy profiles to the set of equilibria.

2 Surrogate ratios for µ-dimensional space

In this section, we study the surrogate ratios for µ-dimensional space. The following
proposition plays an important role to obtain upper bounds on the surrogate ratios.

I Proposition 1 (Norm Inequalities (see, e.g., [8])). For any n-dimensional vector x ∈ Rn
and 0 < p ≤ q ≤ ∞, it holds that ‖x‖q ≤ ‖x‖p ≤ n

1
p−

1
q ‖x‖q.

We first evaluate the worst (α-approximation) surrogate ratio.

I Theorem 2. For any 0 < p, q ≤ ∞ and α ≥ 1, we have

max
S⊆Rµ:non-empty

compact

max{‖x‖p : x ∈ S}
min{‖x‖p : x ∈ α-arg maxx∈S ‖x‖q}

= α · µ|1/q−1/p|. (1)

Proof. We first claim that the left hand side of (1) is upper bounded by α · µ|1/q−1/p|. Let
M = max{‖x‖q : x ∈ S}. Then we have

max{‖x‖p : x ∈ S}
min{‖x‖p : x ∈ α-arg maxx∈S ‖x‖q}

≤ max{‖x‖p : ‖x‖q ≤M}
min{‖x‖p : ‖x‖q ≥M/α}

.

By Proposition 1, if p ≤ q, we have max{‖x‖p : ‖x‖q ≤M} ≤ µ1/p−1/q ·M and min{‖x‖p :
‖x‖q ≥ M/α} ≥ M/α. Otherwise (i.e., p > q), we have max{‖x‖p : ‖x‖q ≤ M} ≤ M

and min{‖x‖p : ‖x‖q ≥ M/α} ≥ µ1/p−1/q ·M/α. Therefore, we obtain max{‖x‖p : ‖x‖q ≤
M}/min{‖x‖p : ‖x‖q ≥M/α} = α · µ|1/q−1/p|.

Next, we show that there exists a µ-dimensional compact set S that attains the maximum
in (1). Let Aγ = {aγ ,1} where aγ = (γ · µ1/q, 0, . . . , 0)> ∈ Rµ and 1 = (1, 1, . . . , 1)> ∈ Rµ.
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41:6 Surrogate Optimization for p-Norms

Then, we can observe that the worst α-approximation surrogate ratio of Aα or A1/α is
α · µ|1/q−1/p|. J

This theorem yields that any α-approximate solution for q-norm is α ·µ|1/q−1/p|-approximate
solution for p-norm.

Next, we evaluate the best (α-approximation) surrogate ratio.

I Theorem 3. For any 0 < p, q ≤ ∞ and α ≥ 1, we have

sup
S⊆Rµ:non-empty

compact

max{‖x‖p : x ∈ S}
max{‖x‖p : x ∈ α-arg maxx∈S ‖x‖q}

= max{1, µ|1/q−1/p|/α}. (2)

Proof. We first claim that max{‖x‖p : x ∈ S}/max{‖x‖p : x ∈ α-arg maxx∈S ‖x‖q} ≤
max{1, µ|1/q−1/p|/α} holds for any non-empty, compact set S ⊆ Rµ. Let xp ∈ arg max

x∈S
‖x‖p.

If α ≥ µ|1/q−1/p|, then xp ∈ α-arg maxx∈S ‖x‖q by Theorem 2 (with α = 1). Thus,
max{‖x‖p : x ∈ S}/max{‖x‖p : x ∈ α-arg maxx∈S ‖x‖q} = 1. Otherwise, i.e., µ|1/q−1/p| >

α ≥ 1, let r satisfies α = µ|1/q−1/r| and min{p, q} ≤ r ≤ max{p, q}, and let xr ∈
arg maxx∈S ‖x‖r. Then xr ∈ α-arg maxx∈S ‖x‖q by Theorem 2 and hence

max{‖x‖p : x ∈ S}
max{‖x‖p : x ∈ α-arg maxx∈S ‖x‖q}

≤ max{‖x‖p : x ∈ S}
‖xr‖p

≤ max{‖x‖p : x ∈ S}
min{‖x‖p : x ∈ arg maxx∈S ‖x‖r}

≤ µ|1/r−1/p| = µ|1/q−1/p|

α

where the last inequality holds by Theorem 2.
Conversely, the best α-approximation surrogate ratio of Aα+ε or A1/(α+ε) in the proof

of Theorem 2 converges to max{1, µ|1/q−1/p|/α} as ε goes to +0. Thus, we obtain the
theorem. J

This theorem implies that there exists x ∈ (α-arg maxx∈S ‖x‖p) ∩ (β-arg maxx∈S ‖x‖q) if
αβ ≥ µ|1/p−1/q|.

3 Independence systems

In this section, we study some properties of independence systems.
For an independence system (E,F) and A ⊆ E, define F|A = {X : A ⊇ X ∈ F}.

Then (A,F|A) is called the restriction of (E,F) to A. Also, define for (E,F) and A ⊆ E,
F \ A = {X \ A : X ∈ F} and F/A = {X \ A : A ⊆ X ∈ F}. Then (E \ A,F \ A) and
(E \A,F/A) are called the deletion and the contraction of (E,F) by A, respectively. If an
independence system (E,F) is µ-extendible, then (A,F|A), (A,F \ A), and (E \ A,F/A)
are also µ-extendible [11].

Since a µ-extendible system is a µ-system, we have the following proposition.

I Proposition 4. If (E,F) is a µ-extendible system, then we have |X| ≤ µ · |Y | for any bases
X,Y of (E,F).

Next, we see that the supremum of the worst surrogate ratio coincides with that of the
best surrogate ratio for any independence system.
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I Lemma 5. For any independence system (E,F) and p, q > 0, we have

sup
w:E→R+

ρ(E,F , w; p, q) = sup
w′:E→R+

η(E,F , w′; p, q). (3)

4 Surrogate ratios for µ-intersection and µ-extendible systems

In this section, we provide the maximum value of the surrogate ratio for µ-intersection and
µ-extendible system. By Lemma 5, we only need to consider the worst one. We remind that
we use the notation ρ(E,F , w; p, q) = max{wp(X):X∈F}

min{wp(X):X∈arg maxX∈F wq(X)} for the worst surrogate
ratio.

We show that the tight bound of the surrogate ratio is µ|1/q−1/p|.

I Theorem 6. For any 0 < p ≤ ∞ and 0 < q <∞, we have

max
(E,F):µ-intersection

w:E→R+

ρ(E,F , w; p, q) = max
(E,F):µ-extendible

w:E→R+

ρ(E,F , w; p, q) = µ|1/q−1/p|.

We first provide the lower bound.

I Lemma 7. For any 0 < p ≤ ∞, 0 < q <∞, and µ (≥ 1), there exists a µ-intersection of
matroids (E,F) and a weight w : E → R+ such that

ρ(E,F , w; p, q) = µ|1/q−1/p|.

Proof. Let F = {X : X = {e0} or X ⊆ L} for L = {e1, . . . , eµ}. Here, (E,F) is a µ-
intersection of matroids. In fact, F =

⋂µ
i=1 Fi holds for partition matroids Fi = {X ⊆

{e0, e1, . . . , eµ} : |X ∩ {e0, ei}| ≤ 1}. Let w(e0) = µ1/q, w(e1) = w(e2) = · · · = w(el) = 1.
Then wp({e0}) = wq({e0}) = µ1/q and wp(L) = µ1/p, wq(L) = µ1/q. Thus, the surrogate
ratio is

max{wp(X) : X ∈ F}
min{wp(X) : X ∈ arg maxX∈F wq(X)} = max{µ1/p, µ1/q}

min{µ1/p, µ1/q}
= µ|1/q−1/p|,

which proves the lemma. J

We next present the upper bound.

I Lemma 8. For any 0 < p ≤ ∞ and 0 < q < ∞, any µ-extendible independence system
(E,F) (µ ≥ 1) and any weight w : E → R+, we have

ρ(E,F , w; p, q) ≤ µ|1/q−1/p|.

Proof. We assume that p 6= q since the claim is obvious for the case p = q. We show
ρ(E,F , w; p, q) ≤ µ|1/q−1/p| for any µ-extendible system (E,F) and any weight w : E → R+
by contradiction. We only prove the case p > q because the case p < q can be observed in a
similar way. Assume that there exists a µ-extendible system (E,F) and a weight w : E → R+
such that ρ(E,F , w; p, q) > µ|1/q−1/p|. We choose such (E,F) so that |E| is as small as
possible and w so that ρ(E,F , w; p, q) is maximal for (E,F). Such a w exists since we can
pick

w ∈ arg max
{
up(Xp) : u

p(Xq)=1, uq(Xq)≥uq(X) (∀X∈F), ue≥0 (∀e∈E),
Xp,Xq∈F

}
,
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41:8 Surrogate Optimization for p-Norms

where the objective function is continuous and the feasible region is non-empty and compact.
Here, the feasible region is bounded because ue ≤ uq(Xq) ≤ |Xq||1/q−1/p| · up(Xq) ≤
|E||1/q−1/p| for each e ∈ E and closed because intersection or union of finitely many closed
sets is closed. Let

Xp ∈ arg max
X∈F

wp(X) and Xq ∈ arg min{wp(X) : X ∈ arg max
X∈F

wq(X)}.

Without loss of generality, we may assume Xp and Xq are bases of (E,F). We consider the
following seven cases.

Case 1. |Xp| = 1. Let Xp = {e∗}. Then |Xq| ≤ µ by Proposition 4. Therefore, we have
that the surrogate ratio is at most

wp(Xp)
wp(Xq)

≤ w(e∗)
min{up(Xq) : uq(Xq) ≥ w(e∗)} = w(e∗)

µ1/p−1/q · w(e∗)
= µ|1/q−1/p|

where the second equality holds by the norm inequality (Proposition 1) and |Xq| ≤ µ.

Case 2. w(e) = 0 for some e ∈ E. In this case, ρ(E,F , w; p, q) = ρ(E \ {e},F \ {e}, w; p, q)
holds since Xp \ {e} ∈ arg maxX∈F\{e} wp(X) and Xq \ {e} ∈ arg min{wp(X) : X ∈
arg maxX∈F\{e} wq(X)}. This contradicts the minimality of |E|.

Case 3. Xp ∪ Xq ( E. Let e ∈ E \ (Xp ∪ Xq). Then ρ(E,F , w; p, q) ≤ ρ(E \ {e},F \
{e}, w; p, q) since Xp ∈ arg max

X∈F\{e}
wp(X) and Xq ∈ arg min{wp(X) : X ∈ arg max

X∈F\{e}
wq(X)}.

This contradicts the minimality of |E|.

Case 4. Xp ∩Xq 6= ∅. Let e ∈ Xp ∩Xq. Then ρ(E,F , w; p, q) ≤ ρ(E \ {e},F/{e}, w; p, q)
since Xp \{e} ∈ arg max

X∈F/{e}
wp(X) and Xq \{e} ∈ arg min{wp(X) : X ∈ arg max

X∈F/{e}
wq(X)}. This

contradicts the minimality of |E|.

Case 5. There exists X ′p ∈ arg maxX∈F wp(X) such that X ′p 6= Xp. We may assume that
w(e) > 0 for any e ∈ E by Case 2, Xp∪Xq = E by Case 3, and Xp∩Xq = ∅ by Case 4. Then
X ′p ∪Xq ( Xp ∪Xq = E holds because X ′p ∪Xq = E implies X ′p ) Xp and w(X ′p) > w(Xp),
a contradiction. Thus we have X ′p ∈ arg maxX∈F|(X′p∪Xq) w

p(X) and Xq ∈ arg min{wp(X) :
X ∈ arg maxX∈F|(X′p∪Xq) w

q(X)}. This contradicts the minimality |E|.

Case 6. There exists X ′q ∈ arg maxX∈F wq(X) such that X ′q 6∈ {Xp, Xq}. We may assume
that w(e) > 0 for any e ∈ E by Case 2, and Xp ∪Xq = E and Xp ∩Xq = ∅ by Cases 3 and
4. Then wp(Xp)/wp(Xq) is at most

p

√√√√max
{∑

e∈Xp\X′q
w(e)p∑

e∈Xq∩X′q
w(e)p ,

∑
e∈Xp∩X′q

w(e)p∑
e∈Xq\X′q

w(e)p

}
= max

{
wp(Xp \X ′q)
wp(Xq ∩X ′q)

,
wp(Xp ∩X ′q)
wp(Xq \X ′q)

}

by the mediate inequality. Let F1 = (F|(Xp∪X ′q))/(Xp∩X ′q) and F2 = (F|(Xq∪X ′q))/(Xq∩
X ′q). Then Xp \X ′q ∈ arg maxX∈F1 w

p(X), Xq ∩X ′q ∈ arg maxX∈F1 w
q(X), Xp ∩X ′q ∈ F2,
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and Xq \X ′q ∈ arg maxX∈F2 w
q(X). Thus, we have

wp(Xp \X ′q)
wp(Xq ∩X ′q)

≤ maxX∈F1 w
p(X)

min{wp(X) : X ∈ arg maxX∈F1 w
q(X)} ≤ µ

|1/q−1/p|,

wp(Xp ∩X ′q)
wp(Xq \X ′q)

≤ maxX∈F2 w
p(X)

min{wp(X) : X ∈ arg maxX∈F2 w
q(X)} ≤ µ

|1/q−1/p|

by the minimality of |E| and hence we have wp(Xp)/wp(Xq) ≤ µ|1/q−1/p|, a contradiction.

Case 7. The other case, i.e., |Xp| ≥ 2, wp(Xp) > wp(X) for any X ∈ F \ {Xp}, wq(Xq) >
wq(X) for any X ∈ F \ {Xp, Xq}, Xp ∩Xq = ∅, Xp ∪Xq = E, and w(e) > 0 for any e ∈ E.
Let s, t ∈ Xp such that s 6= t and w(s) ≥ w(t). For a sufficiently small positive number ε,
define

ŵe =


w(e) (e ∈ E \ {s, t}),
(w(e)q + ε)1/q (e = s),
(w(e)q − ε)1/q (e = t).

Recall that q < ∞. Then Xp ∈ arg maxX∈F ŵp(Xp) and {Xq} = arg maxX∈F ŵq(X).
Here, ŵp(Xp) > wp(Xp) and ŵp(Xq) = wp(Xq). Thus ρ(E,F , w; p, q) = wp(Xp)/wp(Xq) <
ŵp(Xp)/ŵp(Xq) = ρ(E,F , ŵ; p, q), which contradicts the maximality of ρ(E,F , w; p, q). J

By Lemmas 7 and 8, we obtain Theorem 6.

5 Worst α-approximation surrogate ratio

In this section, we prove that the worst α-approximation surrogate ratio (α > 1)

ρα(E,F , w; p, q) = max{wp(X) : X ∈ F}
min{wp(X) : X ∈ α-arg maxX∈F wq(X)}

is unbounded even if (E,F) is a free matroid (i.e., F = 2E), when p 6= q.

I Theorem 9. For any α > 1 and 0 < p ≤ ∞, 0 < q < ∞ (p 6= q), there ex-
ists a sequence of matroids (Ek,Fk) and non-negative weights wk : Ek → R+ such that
limk→∞ ρα(Ek,Fk, wk; p, q) =∞.

Proof. Let E = {e1, . . . , ek, ek+1} and let wk(e1) = · · · = wk(ek) = 1, wk(ek+1) =
q
√

(αq − 1) · k. Define F = 2E . Then maxX∈F wpk(X) = wpk(E) = p
√

((αq − 1) · k)p/q + k

and maxX∈F wqk(X) = wqk(E) = α ·k1/q. Here, A = {e1, . . . , ek} is an α-approximate solution
for wqk since wqk(A) = k1/q. Thus, the surrogate ratio of α-approximation is at least

wpk(E)
wpk(A) =

p
√

((αq − 1) · k)p/q + k

k1/p = p

√
(αq − 1)p/q · kp/q−1 + 1→∞ (k →∞)

when p > q > 0.
The proof for the case q > p > 0 is similar. J

We remark that ρα(E,F , w; p, p) ≤ α holds by the definition. In addition, it holds that
ρα(E,F , w; p, p) = α when E = {x, y}, F = 2E , and w(x) = α− 1, w(y) = 1.

ISAAC 2016



41:10 Surrogate Optimization for p-Norms

6 Best α-approximation surrogate ratio

In this section, we provide the best α-approximation surrogate ratio (α > 1)

ηα(E,F , w; p, q) = max{wp(X) : X ∈ F}
max{wp(X) : X ∈ α-arg maxX∈F wq(X)}

for µ-intersection of matroids and µ-extendible systems.

I Theorem 10. For any 0 < p ≤ ∞, 0 < q <∞, and α ≥ 1, we have

sup
(E,F):µ-intersection

w:E→R+

ηα(E,F , w; p, q) = sup
(E,F):µ-extendible

w:E→R+

ηα(E,F , w; p, q) = max
{

1, µ
|1/q−1/p|

α

}
.

We first provide the lower bound.

I Lemma 11. For any 0 < p ≤ ∞, 0 < q < ∞, and α ≥ 1, integer µ (≥ 1), and ε > 0,
there exists a µ-intersection of matroids (E,F) and a weight w : E → R+ such that

max{wp(X) : X ∈ F}
max{wp(X) : X ∈ α-arg maxX∈F wq(X)} = max{1, µ|1/q−1/p|/(α+ ε)}.

Proof. Let F = {X : X = {e0} or X ⊆ B} for B = {e1, . . . , eµ}. Here, (E,F) can be viewed
as µ-intersection of matroids. In fact, F =

⋂µ
i=1 Fi when Fi = {X ⊆ E : |X ∩ {e0, ei}| ≤ 1}.

Then the lemma holds, for the case p < q, by setting w(e0) = (α + ε) · µ1/q and w(e1) =
w(e2) = · · · = w(eµ) = 1. Also, for the case p > q, we can observe the lemma by analyzing
the weights u(e0) = µ1/q/(α+ ε) and u(e1) = u(e2) = · · · = u(eµ) = 1. J

We next present the upper bound.

I Lemma 12. For any p, q > 0, α ≥ 1, a µ-extendible independence system (E,F) and a
weight w : E → R+, we have

max{wp(X) : X ∈ F}
max{wp(X) : X ∈ α-arg maxX∈F wq(X)} ≤ max{1, µ|1/q−1/p|/α}.

Proof. Let Xp ∈ arg maxX∈F wp(X) and Xq ∈ arg maxX∈F wq(X). If α ≥ µ|1/q−1/p|, then
Xp ∈ α-arg maxX∈F wq(X) by Lemma 8. Thus, max{wp(X) : X ∈ F}/max{wp(X) : X ∈
α-arg maxX∈F wq(X)} = 1.

Otherwise, i.e., µ|1/q−1/p| > α ≥ 1, let r satisfies α = µ|1/q−1/r| and min{p, q} ≤ r ≤
max{p, q}, and let Xr ∈ arg maxX∈F wr(X). Then Xr ∈ α-arg maxX∈F wq(X) by Lemma 8
and hence

max{wp(X) : X ∈ F}
max{wp(X) : X ∈ α-arg maxX∈F wq(X)} ≤

max{wp(X) : X ∈ F}
wp(Xr)

≤ max{wp(X) : X ∈ F}
min{wp(X) : X ∈ arg maxX∈F wr(X)}

≤ µ|1/r−1/p| = µ|1/q−1/p|

α

where the last inequality holds by Lemma 8. J

By Lemmas 11 and 12, we get Theorem 10.
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7 Surrogate ratios for µ-system

In this section, we show the surrogate ratios for µ-systems. By Theorem 9, the worst
α-approximation surrogate ratio (α > 1) goes to infinity when p 6= q. Hence, we here only
analyze the best (approximation) surrogate ratio.

I Theorem 13. For any p, q > 0 and α ≥ 1, we have

sup
(E,F):µ-system

w:E→R+

ηα(E,F , w; p, q) =


µ1/p (p < q),
∞ (p > q, µ1/q > α),
1 (otherwise).

We first prove the lower bound.

I Lemma 14. For any p, q > 0, µ (≥ 1), and α ≥ 1, there exists a sequence of µ-systems
(Ek,Fk) and weights wk : Ek → R+ (k = 1, 2, . . . ) such that

lim
k→∞

ηα(Ek,Fk, wk; p, q) =
{
µ1/p (p < q),
∞ (p > q, µ1/q > α).

Proof. Let Ek = {e1, e2, . . . , ek·µ, f}, Fk = {F ⊆ Ek : f 6∈ F or |F | ≤ k}. Then (Ek,Fk)
is a µ-system. Let X = {e1, . . . , ek·µ} and Yσ = {f, eσ(1), . . . , eσ(k−1)} (1 ≤ σ(1) < · · · <
σ(k− 1) ≤ k ·µ). We can see the lemma, for the case p > q > 0 and µ1/q > α ≥ 1, by setting
wk(ei) = 1 (i = 1, . . . , k · µ), wk(f) = q

√
k · (µ/β − 1) + 1 where β is an arbitrary number

such that µ > β > αq. Also we can observe the lemma, for the case q > p > 0, by choosing
wk(ei) = 1 (i = 1, . . . , k · µ) and wk(f) = α q

√
k · µ. J

We next provide the upper bound for the case p < q.

I Lemma 15. For any q > p > 0, µ-system (E,F) (µ ≥ 1), and weight w : E → R+, we
have ρ(E,F , w; p, q) ≤ µ1/p.

Proof. Let Xq = {a1, . . . , ak} ∈ arg min{wp(X) : X ∈ arg maxX∈F wq(X)} and Xp =
{b1, . . . , bl} ∈ arg maxX∈F wp(X). Without loss of generality, we may assume Xp and Xq

are bases. Thus, we have l ≤ µ ·k because (E,F) is a µ-system. We additionally assume that
w(a1) ≥ w(a2) ≥ · · · ≥ w(ak) and w(b1) ≥ w(b2) ≥ · · · ≥ w(bl). For simplicity, define w(bi) =
0 for i > l. Since (E,F) is a µ-system, there exists a feasible set {a1, . . . , ai, bji+1 , . . . , bjk}
for each i ∈ {0, 1, . . . , k − 1} such that jt ≤ (t − 1) · µ + 1 (t = i + 1, . . . , k). As Xq is
an optimal solution for wq, we have wq({a1, . . . , ak}) ≥ wq({a1, . . . , ai, bji+1 , . . . , bjk}) ≥
wq({a1, . . . , ai, bi·µ+1, . . . , b(k−1)·µ+1}) and thus

w(ai+1)q + · · ·+ w(ak)q ≥ w(bi·µ+1)q + · · ·+ w(b(k−1)·µ+1) (i = 0, . . . , k − 1).

Hence, we have w(ak)p+w(ak−1)p+· · ·+w(a1)p ≥ w(b(k−1)µ+1)p+w(b(k−2)µ+1)p+· · ·+w(b1)p
by Karamata’s inequality [12]. (Karamata’s inequality is also known as Hardy–Littlewood–
Pólya inequality [8].) Therefore, we obtain

wp(Xq) = p

√√√√ k∑
i=1

w(ai)p ≥ p

√√√√ k∑
i=1

w(b(i−1)µ+1)p ≥ p

√√√√ 1
µ

µ·k∑
i=1

w(bi)p = 1
µ1/p · w

p(Xp),

which proves the lemma. J
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Finally, we show the upper bound for the case p > q and µ1/q ≤ α.

I Lemma 16. For any p > q > 0, µ1/q ≤ α, µ-system (E,F) (µ ≥ 1) and any weight
w : E → R+, we have ηα(E,F , w; p, q) ≤ 1.

Proof. By Lemma 15, there exists X∗ ∈ arg max{wp(X) : X ∈ F} such that wq(X∗) ≥
max{wq(X) : X ∈ F}/µ1/q. Thus, we have ηα(E,F , w; p, q) = 1. J

Therefore, we get Theorem 13 by Lemmas 14, 15, and 16.
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Abstract
In this paper, we introduce maximum composition ordering problems. The input is n real func-
tions f1, . . . , fn : R → R and a constant c ∈ R. We consider two settings: total and partial
compositions. The maximum total composition ordering problem is to compute a permutation
σ : [n] → [n] which maximizes fσ(n) ◦ fσ(n−1) ◦ · · · ◦ fσ(1)(c), where [n] = {1, . . . , n}. The max-
imum partial composition ordering problem is to compute a permutation σ : [n] → [n] and a
nonnegative integer k (0 ≤ k ≤ n) which maximize fσ(k) ◦ fσ(k−1) ◦ · · · ◦ fσ(1)(c).

We propose O(n logn) time algorithms for the maximum total and partial composition order-
ing problems for monotone linear functions fi, which generalize linear deterioration and short-
ening models for the time-dependent scheduling problem. We also show that the maximum
partial composition ordering problem can be solved in polynomial time if fi is of the form
max{aix + bi, ci} for some constants ai (≥ 0), bi and ci. As a corollary, we show that the two-
valued free-order secretary problem can be solved in polynomial time. We finally prove that there
exists no constant-factor approximation algorithm for the problems, even if fi’s are monotone,
piecewise linear functions with at most two pieces, unless P=NP.
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Keywords and phrases function composition, time-dependent scheduling
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1 Introduction

In this paper, we introduce optimal composition ordering problems and mainly study their
time complexity. The input of the problems is n real functions f1, . . . , fn : R → R and a
constant c ∈ R. In this paper, we assume that the input functions are piecewise linear,
and the input length of a piecewise linear function is the sum of the sizes of junctions and
coefficients of linear functions. We consider two settings: total and partial compositions.
The maximum total composition ordering problem is to compute a permutation σ : [n]→ [n]
that maximizes fσ(n) ◦ fσ(n−1) ◦ · · · ◦ fσ(1)(c), where [n] = {1, . . . , n}. The maximum partial
composition ordering problem is to compute a permutation σ : [n]→ [n] and a nonnegative
integer k (0 ≤ k ≤ n) that maximize fσ(k) ◦ fσ(k−1) ◦ · · · ◦ fσ(1)(c). For example, if the input
consists of f1(x) = 2x− 6, f2(x) = 1

2x+ 2, f3(x) = x+ 2, and c = 2, then the ordering σ such
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that σ(1) = 2, σ(2) = 3, and σ(3) = 1 is optimal for the maximum total composition ordering
problem. In fact, f1 ◦ f3 ◦ f2(c) = f1(f3(f2(c))) = f1(f3(c/2 + 2)) = f1(c/2 + 4) = c+ 2 = 4
provides the optimal value of the problem. The ordering σ above and k = 2 is optimal for
the maximum partial composition ordering problem, where f3 ◦ f2(c) = 5. We also consider
the maximum exact k-composition ordering problem, which is a problem to compute a
permutation σ : [n]→ [n] that maximizes fσ(k) ◦ fσ(k−1) ◦ · · · ◦ fσ(1)(c) for given n functions
f1, . . . , fn : R→ R, a constant c ∈ R, and a nonnegative integer k (0 ≤ k ≤ n). We remark
that the minimization versions are reducible to the maximization ones.

As we will see in this paper, the optimal composition ordering problems are natural and
fundamental in many fields such as artificial intelligence, computer science, and operations
research. However, to the best of the authors’ knowledge, no one explicitly studies the
problems from the algorithmic point of view. We below describe single machine time-
dependent scheduling problems and the free-order secretary problem, which can be formulated
as the optimal composition ordering problems.

Time-dependent scheduling

Consider machine scheduling problems with time-dependent processing times, called time-
dependent scheduling problems [6, 12].

Let Ji (i = 1, . . . , n) denote a job with a ready time ri ∈ R, a deadline di ∈ R, and a
processing time pi : R→ R, where ri ≤ di is assumed. Different from the classical setting, the
processing time pi is not constant, but depends on the starting time of job Ji. The model has
been studied to deal with learning and deteriorating effects, for example [13, 14, 15, 19, 20].
Here each pi is assumed to satisfy pi(t) ≤ s+ pi(t+ s) for any t and s ≥ 0, since we should
be able to finish processing job Ji earlier if it starts earlier. Among time-dependent settings,
we consider the single machine scheduling problem to minimize the makespan, where the
input is the start time t0 (= 0) and a set of Ji (i = 1, . . . , n) above. The makespan denotes
the time when all the jobs have finished processing, and we assume that the machine can
handle only one job at a time and preemption is not allowed. We show that the problem can
be viewed as the minimum total composition ordering problem.

Define a function fi by

fi(t) =


ri + pi(ri) (t ≤ ri),
t+ pi(t) (ri < t ≤ di − pi(t)),
∞ (t > di − pi(t)).

Then the problem can be reduced to the minimum total composition ordering problem for
(fi)i∈[n] and c = t0.

A number of restrictions on the processing time pi(t) has been studied in the literature
(e.g., [3, 5, 17]).

In the linear deterioration model, the processing time pi is restricted to be a monotone
increasing linear function that satisfies pi(t) = ait + bi for two positive constants ai and
bi. Here ai and bi are respectively called the deterioration rate and the basic processing
time of job Ji. Gawiejnowicz and Pankowska [13], Gupta and Gupta [14], Tanaev et al.
[19], and Wajs [20] obtained the result that the time-dependent scheduling problem of this
model (without the ready time ri nor the deadline di) is solvable in O(n logn) time by
scheduling jobs in the nonincreasing order of the ratios bi/ai. As for the hardness results, it
is known that the proportional deterioration model with ready time and deadline, the linear
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deterioration model with ready time, and the linear deterioration model with deadlines are
all NP-hard [4, 11].

Another model is called the linear shortening model introduced by Ho et al. [15]. In this
model, the processing time pi is restricted to be a monotone decreasing linear function that
satisfies pi(t) = −ait+ bi with ai and bi such that 1 > ai > 0, bi > 0. They showed that the
time-dependent scheduling problem of this model can be solved in O(n logn) time by again
scheduling jobs in the nonincreasing order of the ratios bi/ai.

Free-order secretary problem

The free-order secretary problem is another application of the optimal composition ordering
problems, which is closely related to a branch of the problems such as the full-information
secretary problem [9], knapsack and matroid secretary problems [1, 2, 18] and stochastic
knapsack problems [7, 8]. Imagine that an administrator wants to hire the best secretary
out of n applicants for a position. Each applicant i has a nonnegative independent random
variable Xi as his ability for the secretary. Here X1, . . . , Xn are not necessarily based on the
same probability distribution, and assume that the administrator knows all the probability
distributions of Xi’s before their interviews, where such information can be obtained by
their curriculum vitae and/or results of some written examinations. The applicants are
interviewed one-by-one, and the administrator can observe the value Xi during the interview
of the applicant i. A decision on each applicant is to be made immediately after the interview.
Once an applicant is rejected, he will never be hired. The interview process is finished if
some applicant is chosen, where we assume that the last applicant is always chosen if he is
interviewed since the administrator has to hire exactly one candidate. The objective is to
find an optimal strategy for this interview process, i.e., to find an interview ordering together
with the stopping rule that maximizes the expected value of the secretary hired.

Let fi(x) = E[max{Xi, x}]. We now claim that our secretary problem can be represented
by the maximum total composition ordering problem ((fi)i∈[n], c = 0).

Let us first consider the best stopping rule for the interview to maximize the expected
value for the secretary hired when the interview ordering is fixed in advance. Assume that
the applicant i is interviewed in the ith place. Note that E[Xn] (= fn(0)) is the expected
value under the condition that all the applicants except for the last one are rejected, since
the last applicant is hired. Consider the situation that all the applicants except for the last
two ones are rejected. Then it is a best stopping rule that the applicant n− 1 is hired if and
only if Xn−1 ≥ fn(0) is satisfied (i.e., the applicant n is hired if and only if Xn−1 < fn(0)),
where fn−1 ◦ fn(0) is the expected value for the best stopping rule, under this situation. By
applying backward induction, we have the following best stopping rule: we hire the applicant
i (< n) and stop the interview process, if Xi ≥ fi+1 ◦ · · · ◦fn(0) (otherwise, the next applicant
is interviewed), and we hire the applicant n if no applicant i (< n) is hired. It turns out
that f1 ◦ · · · ◦ fn(0) is the maximum expected value for the secretary hired, if the interview
ordering is fixed such that the applicant i is interviewed in the ith place.

Therefore, the secretary problem (i.e., finding an interview ordering, together with a
stopping rule) can be formulated as the maximum total composition ordering problem
((fi)i∈[n], c = 0).

In addition, let us assume that Xi is an m-valued random variable that takes the value
aji with probability pji ≥ 0 (j = 1, . . . ,m). Here we assume that a1

i ≥ · · · ≥ ami ≥ 0 and
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∑m
j=1 p

j
i = 1. Then we have

fi(x) =
m∑
j=1

pji max{aji , x} = max
l=0,...,m

{∑l

j=1
pjia

j
i +

∑m

j=l+1
pjix

}
.

Note that this fi is a monotone convex piecewise linear function with at most (m+ 1) pieces.

Main results obtained in this paper

In this paper, we consider the computational issues for the optimal composition ordering
problems, when all fi’s are monotone and almost linear.

We first show that the problems become tractable if all fi’s are monotone and linear, i.e.,
fi(x) = aix+ bi for ai ≥ 0.

I Theorem 1. The maximum partial and total composition ordering problems for monotone
nondecreasing linear functions are both solvable in O(n logn) time.

Recall that the algorithm for the linear shortening model (resp., the linear deterioration
model) for the time-dependent scheduling problem is easily generalized to the case when
all ai’s satisfy ai < 1 (resp., ai > 1). The best composition ordering is obtained as the
nondecreasing order of the ratios bi/ai. This idea can be extended to the maximum partial
composition ordering problem in the mixed case (i.e., some ai > 1 and some ai′ < 1) of
Theorem 1. However, we cannot extend it to the maximum total composition ordering
problem. In fact, we do not know if there exists such a simple criterion on the maximum
total composition ordering. We instead present an efficient algorithm that chooses the best
ordering among linearly many candidates.

We also provide a dynamic-programming based polynomial-time algorithm for the exact
k-composition setting.

I Theorem 2. The maximum exact k-composition ordering problem for monotone nonde-
creasing linear functions is solvable in O(k · n2) time.

We next consider monotone, piecewise linear case. It can be directly shown from the
time-dependent scheduling problem that the maximum total composition ordering problem
is NP-hard, even if all fi’s are monotone, concave, and piecewise linear functions with at
most two pieces, i.e., fi(x) = min{a1

ix+ b1
i , a

2
ix+ b2

i } for some constants a1
i , a2

i , b1
i , and b2

i

with a1
i , a

2
i > 0. It turns out that all the other cases become intractable, even if all fi’s are

monotone and consist of at most two pieces. Furthermore, the problems are inapproximable.

I Theorem 3.
(i) For any positive real number α (≤ 1), there exists no α-approximation algorithm for the

maximum total (partial) composition ordering problem even if all fi’s are monotone,
concave, and piecewise linear functions with at most two pieces, unless P=NP.

(ii) For any positive real number α (≤ 1), there exists no α-approximation algorithm for the
maximum total (partial) composition ordering problem even if all fi’s are monotone,
convex, and piecewise linear functions with at most two pieces, unless P=NP.

Here fi can be represented by fi(x) = max{a1
ix+ b1

i , a
2
ix+ b2

i } for some constants a1
i , a2

i ,
b1
i , and b2

i with a1
i , a

2
i > 0 if fi is a monotone, convex, and piecewise linear function with at

most two pieces.
As for the positive side, if each fi is a monotone, convex, and piecewise linear function

with at most two pieces such that one of the pieces is constant, then we have the following
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result, which implies that the two-valued free-order secretary problem can be solved in O(n2)
time.

I Theorem 4. Let fi(x) = max{aix+ bi, ci} for some constants ai (≥ 0), bi and ci. Then
the maximum partial composition ordering problem is solvable in O(n2) time.

Due to space limitation, we omit several proofs. They can be found in the full version of
this paper [16].

2 Maximum Partial Composition Ordering Problem

In this section, we discuss tractable results for the maximum partial composition ordering
problem for monotone and almost-linear functions. We deal with the problem as the maximum
total composition ordering problem for functions f i (i ∈ [n]), where f i(x) = max{fi(x), x}.
It is easy to see that the objective value of the maximum partial composition ordering
problem ((fi)i∈[n], c) is equal to the one of the maximum total composition ordering problem
((f i)i∈[n], c). Let us start with the maximum partial composition ordering problem for
monotone linear functions fi(x) = aix + bi (ai ≥ 0), i.e., the total composition ordering
problem for f i(x) = max{aix+ bi, x} (ai ≥ 0).

The following binary relation � plays an important role in the problem.

I Definition 5. For two functions f, g : R→ R, we write f � g (or g � f) if f ◦g(x) ≤ g◦f(x)
for any x ∈ R, f ' g if f � g and f � g (i.e., f ◦ g(x) = g ◦ f(x) for any x ∈ R), and f ≺ g
(or g � f) if f � g and f 6' g.

Note that the relation � is not total relation in general, here a relation � is called total
if f � g or g � f for any f, g. For example, let f1(x) = max{2x, 3x} and f2(x) = max{2x−
1, 3x+ 1}. Then f1 ◦ f2(0) (= 3) is greater than f2 ◦ f1(0) (= 1), but f1 ◦ f2(−2) (= −10) is
less than f2 ◦ f1(−2) (= −9).

However, if two consecutive functions are comparable, then we have the following easy
but useful lemma.

I Lemma 6. Let f1, . . . , fn be monotone nondecreasing functions. If fi � fi+1, then it holds
that fn ◦ · · · ◦ fi+2 ◦ fi+1 ◦ fi ◦ fi−1 ◦ · · · ◦ f1(x) ≥ fn ◦ · · · ◦ fi+2 ◦ fi ◦ fi+1 ◦ fi−1 ◦ · · · ◦ f1(x)
for any x ∈ R.

It follows from the lemma that, for monotone functions fi, there exists a maximum total
composition ordering fn ◦ fn−1 ◦ · · · ◦ f1 that satisfies f1 � f2 � · · · � fn, if the relation
is total. Moreover, if the relation � is in addition transitive (i.e., f � g and g � h imply
f � h), then it is not difficult to see that f1 � f2 � · · · � fn becomes a sufficient condition
that fn ◦ fn−1 ◦ · · · ◦ f1 is a maximum total composition ordering, where the proof is given
as the more general form in Lemma 8.

The relation is total if all functions are linear or of the form max{ax+ b, x} with a ≥ 0.

I Lemma 7. The relation � is total for linear functions.

Proof. Let fi(x) = aix+ bi and fj(x) = ajx+ bj . Then we have

fi � fj ⇐⇒ fi ◦ fj(x) ≤ fj ◦ fi(x) for any x ∈ R
⇐⇒ ai(ajx+ bj) + bi ≤ aj(aix+ bi) + bj for any x ∈ R
⇐⇒ bi(1− aj) ≤ bj(1− ai). (1)

Since the last inequality consists of only constants, we have fi � fj or fi � fj . J
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When all functions are of the form max{ax+ b, x} with a ≥ 0, the totality of the relation
is proven in Lemma 11.

We further note that the relation � is transitive for linear functions f(x) = ax + b

with a > 1, since (1) is equivalent to bi/(1 − ai) ≤ bj/(1 − aj), and hence the ordering
b1/(1− a1) ≤ b2/(1− a2) ≤ · · · ≤ bn/(1− an) gives an optimal solution for the maximum
total composition ordering problem. Therefore, it can be solved efficiently by sorting the
elements by bi/(1 − ai). The same statement holds when all linear functions have slope
less than 1. This idea is used for the linear deterioration and linear shortening models for
time-dependent scheduling problems. However, in general, this is not the case, i.e., the
relation � does not satisfy transitivity. Let f1(x) = 2x+ 1, f2(x) = 2x− 1, and f3(x) = x/2.
Then we have f1 ≺ f2, f2 ≺ f3, and f3 ≺ f1, which implies that the transitivity is not
satisfied for linear functions, and f1 ≺ f2, f2 ≺ f3, and f3 ≺ f1 hold, implying that the
transitivity is not satisfied for the functions of the form max{ax+ b, x} with a ≥ 0. These
show that the maximum total and partial composition ordering problems are not trivial,
even when all functions are monotone and linear.

We first show the following key lemma which can be used even for non-transitive relations.

I Lemma 8. For monotone nondecreasing functions fi : R→ R (i ∈ [n]), if a permutation
σ : [n]→ [n] satisfies that i ≤ j implies fσ(i) � fσ(j) for any i, j ∈ [n], then σ is an optimal
solution for the maximum total composition ordering problem ((fi)i∈[n], c).

Proof. Without loss of generality, we may assume that σ is the identity permutation. Let
σ′ be an optimal solution for the maximum total composition ordering problem such that
it has the minimum inversion number, where the inversion number denotes the number of
pairs (i, j) with i < j and σ′(i) > σ′(j). Then we show that σ′ is the identity permutation
by contradiction. Assume that σ′(l) > σ′(l + 1) for some l. Then consider the following
permutation:

τ(i) =


σ′(i) (i 6= l, l + 1),
σ′(l + 1) (i = l),
σ′(l) (i = l + 1).

Since σ′(l + 1) < σ′(l) implies fσ′(l+1) � fσ′(l) by the condition of the identity σ, Lemma 6
implies that τ is also optimal for the problem. Since τ has an inversion number smaller than
the one for σ′, we derive a contradiction. Therefore, σ′ is the identity. J

As mentioned above, if the relation � is in addition transitive (i.e., � is a total preorder),
then such a σ always exists.

To efficiently solve the maximum partial composition ordering problem for the linear
functions, we show that for f i(x) = max{aix+ bi, x} (ai ≥ 0), (i) there exists a permutation
σ which satisfies the condition in Lemma 8 and (ii) the permutation σ can be computed
efficiently. Let us analyze the relation � in terms of the following γ.

I Definition 9. For a linear function f(x) = ax+ b, we define

γ(f) =


b

1−a (a 6= 1),
+∞ (a = 1 and b < 0),
−∞ (a = 1 and b ≥ 0).

Note that γ(f) is the solution of the equation f(x) = x if γ(f) 6= −∞,+∞.
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In the rest of the paper, we assume without loss of generality that no fi is the identity (i.e.,
fi(x) = x), since we can ignore identity function for both the total and partial composition
problems.

I Lemma 10. Let fi(x) = aix + bi and fj(x) = ajx + bj be (non-identity) monotone
nondecreasing functions. Then we have the following statements;
(a) if ai, aj = 1, then fi ' fj,
(b) if ai, aj ≥ 1 and ai · aj > 1, then fi � fj ⇔ γ(fi) ≤ γ(fj),
(c) if ai, aj < 1, then fi � fj ⇔ γ(fi) ≤ γ(fj),
(d) if ai ≥ 1, aj < 1, then fi � fj ⇔ γ(fi) ≥ γ(fj) and fi � fj ⇔ γ(fi) ≤ γ(fj).

I Lemma 11. For (non-identity) monotone nondecreasing linear functions fi(x) = aix+ bi
and fj(x) = ajx+ bj, we have the following statements;
(a) if ai, aj ≥ 1 and γ(fi) ≤ γ(fj), then f i � f j,
(b) if ai, aj < 1 and γ(fi) ≤ γ(fj), then f i � f j,
(c) if ai < 1, aj ≥ 1, and γ(fi) ≤ γ(fj), then f i ' f j,
(d) if ai ≥ 1, aj < 1, and γ(fi) ≤ γ(fj), then f i � f j.

Note that Lemma 11 implies that the relation � is total for the functions of the form
max{ax+ b, x} with a ≥ 0. Moreover, it implies that the following permutation σ satisfies
the condition in Lemma 8.

For a linear function f(x) = ax + b, let δ(f) = +1 if a ≥ 1 and otherwise δ(f) = −1.
Let σ : [n] → [n] denote a permutation that is compatible with the lexicographic ordering
with respect to (δ(fi), γ(fi)), i.e., (δ(fσ(i)), γ(fσ(i))) is lexicographically smaller than or
equal to (δ(fσ(j)), γ(fσ(j))) if i < j. Namely, there exists an integer k such that 0 ≤ k ≤ n,
δ(fσ(1)) = · · · = δ(fσ(k)) = −1, δ(fσ(k+1)) = · · · = δ(fσ(n)) = +1, γ(fσ(1)) ≤ · · · ≤ γ(fσ(k)),
and γ(fσ(k+1)) ≤ · · · ≤ γ(fσ(n)). Then we have the following lemma by Lemma 11.

I Lemma 12. For (non-identity) monotone nondecreasing linear functions fi (i ∈ [n]), let σ
denote a permutation compatible with the lexicographic order with respect to (δ(fi), γ(fi)).
Then i ≤ j implies fσ(i) � fσ(j) for any i, j ∈ [n].

By Lemmas 8 and 12, the maximum partial composition ordering problem for the
monotone nondecreasing linear functions fi, equivalently, the maximum total composition
ordering problem for the functions f i such that fi’s are monotone nondecreasing linear
functions can be solved by computing the lexicographic order with respect to (δ(fi), γ(fi)).
Therefore, it can be solved in O(n logn) time, which proves the partial composition part
of Theorem 1. We remark that the time complexity O(n logn) of the problem is the best
possible in the comparison model. We also remark that the optimal value for the maximum
partial composition ordering problem for fi(x) = aix+ bi (ai ≥ 0) forms a piecewise linear
function (in c) with at most (n+ 1) pieces.

We next extend this tractability result to Theorem 4. For i ∈ [n], let hi(x) = aix+ bi be
a monotone nondecreasing linear function, and let fi(x) = max{hi(x), ci} for a constant ci.
We consider the maximum partial composition ordering problem for fi’s. As mentioned in
the introduction, the problem includes the two-valued free-order secretary problem, and it is
a generalization of the maximum partial composition ordering problem for monotone linear
functions.

We instead consider the maximum total composition ordering problem for the functions

f i(x) = max{aix+ bi, ci, x} for ai ∈ R+, bi, ci ∈ R. (2)
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I Lemma 13. Let c ∈ R, and let f i (i ∈ [n]) be a function defined as (2). Then there exists
an optimal solution σ for the maximum total composition ordering problem ((f i)i∈[n], c) such
that no i (> 1) satisfies hσ(i) ◦ fσ(i−1) ◦ · · · ◦ fσ(1)(c) < cσ(i), where hi(x) = aix+ bi.

Proof. Let σ denote an optimal solution for the problem. Assume that there exists an index
i that satisfies the condition in the lemma. Let i∗ denote the largest such i. Then by the
definition of i∗, we have fσ(i∗) ◦ · · · ◦ fσ(1)(c) = fσ(i∗)(c) = cσ(i∗). It holds that cσ(i) < cσ(i∗)

for any i with 0 ≤ i < i∗, since cσ(i) ≤ fσ(i) ◦ · · · ◦ fσ(1)(c) ≤ fσ(i∗−1) ◦ · · · ◦ fσ(1)(c) < cσ(i∗),
where cσ(0) = c is assumed. Thus, we have fσ(n) ◦ · · · ◦ fσ(1)(c) = fσ(n) ◦ · · · ◦ fσ(i∗)(c) ≤
fσ(i∗−1)◦· · ·◦fσ(1)◦fσ(n)◦· · ·◦fσ(i∗)(c). This implies that (σ(i∗), . . . σ(n), σ(1). . . . , σ(i∗−1))
is also an optimal permutation for the problem. Moreover, in the composition according to
this permutation, the constant part of f̄i (i 6= i∗) is not explicitly used by the definition of i∗
and cσ(i) < cσ(i∗) for any i (< i∗), which completes the proof. J

Proof of Theorem 4. It follows from Lemma 13 that an optimal solution for the problem
can be obtained by solving the following n + 1 instances of the maximum partial com-
position ordering problem for monotone nondecreasing linear functions ((hi)i∈[n], c) and
((hi)i∈[n]\{k}, ck) for all k ∈ [n].

Therefore, we have an O(n2 logn)-time algorithm by directly applying Theorem 1 to
the problem. Moreover, we note that the maximum partial composition ordering problem
for monotone nondecreasing linear functions can be solved in linear time, if we know the
lexicographic ordering with respect to (δ, γ). This implies that the problem can be solved in
O(n2) time by first computing the lexicographic order with respect to (δ(hi), γ(hi)). J

3 Maximum Total Composition Ordering Problem

In this section we prove the total composition part of Theorem 1 and Theorem 2.
The following lemma shows the relationships between γ(fi), γ(fj), γ(fj ◦fi) and γ(fi ◦fj)

for monotone linear functions.

I Lemma 14. For monotone nondecreasing linear functions fi(x) = aix+ bi and fj(x) =
ajx+ bj (ai, aj ≥ 0), we have the following statements.
(a) If γ(fi) = γ(fj), then γ(fi) = γ(fj) = γ(fj ◦ fi),
(b) If γ(fi) < γ(fj) and ai, aj ≥ 1, then γ(fi) ≤ γ(fj ◦ fi) ≤ γ(fj),
(c) If γ(fi) < γ(fj) and ai, aj < 1, then γ(fi) ≤ γ(fj ◦ fi) ≤ γ(fj),
(d) If γ(fi) < γ(fj), ai < 1, aj ≥ 1, and ai · aj ≥ 1, then γ(fj ◦ fi) ≥ γ(fj) (> γ(fi)),
(e) If γ(fi) < γ(fj), ai < 1, aj ≥ 1, and ai · aj < 1, then γ(fj ◦ fi) ≤ γ(fi) (< γ(fj)),
(f) If γ(fi) < γ(fj), ai ≥ 1, aj < 1, and ai · aj ≥ 1, then γ(fj ◦ fi) ≤ γ(fi) (< γ(fj)),
(g) If γ(fi) < γ(fj), ai ≥ 1, aj < 1, and ai · aj < 1, then γ(fj ◦ fi) ≥ γ(fj) (> γ(fi)).

By Lemmas 10 and 14, we have the following inequalities for compositions of four
functions.

I Lemma 15. For monotone nondecreasing linear functions fi(x) = aix+ bi (i = 1, 2, 3, 4),
if a1, a3 ≥ 1, a2, a4 < 1 and γ(f1) ≥ γ(f2) ≥ γ(f3) ≥ γ(f4), then we have

f4 ◦ f3 ◦ f2 ◦ f1(x) ≤ max{f4 ◦ f1 ◦ f3 ◦ f2(x), f3 ◦ f2 ◦ f4 ◦ f1(x)} for any x.

I Lemma 16. For monotone nondecreasing linear functions fi(x) = aix+ bi (i = 1, 2, 3, 4),
if a1, a3 < 1, a2, a4 ≥ 1 and γ(f1) ≥ γ(f2) ≥ γ(f3) ≥ γ(f4), then we have

f4 ◦ f3 ◦ f2 ◦ f1(x) ≤ max{f4 ◦ f1 ◦ f3 ◦ f2(x), f3 ◦ f2 ◦ f4 ◦ f1(x)} for any x.
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Proof. We only prove Lemma 15 since the proof of Lemma 16 is similar. Let g(x) = f3◦f2(x).
If a2 ·a3 ≥ 1, then γ(g) ≤ γ(f3) ≤ γ(f1) holds by 1 and 6 in Lemma 14, and g◦f1(x) ≤ f1◦g(x)
holds by 1 and 2 in Lemma 10. Thus, we have f4 ◦ f3 ◦ f2 ◦ f1(x) ≤ f4 ◦ f1 ◦ f3 ◦ f2(x).

On the other hand, if a2 ·a3 < 1, then γ(g) ≥ γ(f2) ≥ γ(f4) holds by 1 and 7 in Lemma 14,
and f4 ◦ g(x) ≤ g ◦ f4(x) holds by 3 in Lemma 10. Thus, we have f4 ◦ f3 ◦ f2 ◦ f1(x) ≤
f3 ◦ f2 ◦ f4 ◦ f1(x). J

By Lemmas 15 and 16, we obtain the following lemma.

I Lemma 17. There exists an optimal permutation σ for the maximum total composition
ordering problem for monotone nondecreasing functions fi (i ∈ [n]) such that at most two i’s
satisfy δ(fσ(i)) · δ(fσ(i+1)) = −1.

Next, we provide inequalities for compositions of three functions.

I Lemma 18. For monotone nondecreasing linear functions fi(x) = aix+ bi (i = 1, 2, 3), if
a1, a3 ≥ 1, a2 < 1, a1 · a2 · a3 ≥ 1 and γ(f1) ≥ γ(f2) ≥ γ(f3), then we have

f3 ◦ f2 ◦ f1(x) ≤ max{f2 ◦ f1 ◦ f3(x), f1 ◦ f3 ◦ f2(x)} for any x.

I Lemma 19. For monotone nondecreasing linear functions fi(x) = aix+ bi (i = 1, 2, 3), if
a1, a3 < 1, a2 ≥ 1, a1 · a2 · a3 < 1 and γ(f1) ≥ γ(f2) ≥ γ(f3), then we have

f3 ◦ f2 ◦ f1(x) ≤ max{f2 ◦ f1 ◦ f3(x), f1 ◦ f3 ◦ f2(x)} for any x.

Proof. We only prove Lemma 18 since the proof of Lemma 19 is similar. If a2 · a3 ≥ 1, then
γ(f3◦f2) ≤ γ(f3) ≤ γ(f1) by 1 and 6 in Lemma 14, and it implies f3◦f2◦f1(x) ≤ f1◦f3◦f2(x)
by 1 and 2 in Lemma 10. If a2 ·a3 < 1 and γ(f3◦f2) ≥ γ(f1), then f3◦f2◦f1(x) ≤ f1◦f3◦f2(x)
by 4 in Lemma 10.

If a1 · a2 ≥ 1, then γ(f2 ◦ f1) ≥ γ(f1) ≥ γ(f3) by 1 and 4 in Lemma 14, and it implies
f3 ◦ f2 ◦ f1(x) ≤ f2 ◦ f1 ◦ f3(x) by 1 and 2 in Lemma 10. If a1 · a2 < 1 and γ(f2 ◦ f1) ≤ γ(f3),
then f3 ◦ f2 ◦ f1(x) ≤ f2 ◦ f1 ◦ f3(x) by 4 in Lemma 10.

Otherwise, we have a2 · a3 < 1, a1 · a2 < 1, γ(f3 ◦ f2) < γ(f1), and γ(f2 ◦ f1) > γ(f3).
Then we have γ((f3 ◦ f2) ◦ f1) ≥ γ(f1) by 4 in Lemma 14, and γ(f3 ◦ (f2 ◦ f1)) ≤ γ(f3) by 6
in Lemma 14 since a1 · a2 · a3 ≥ 1. Therefore γ(f1) = γ(f2) = γ(f3), This together with
γ(f3 ◦ f2) < γ(f1) contradicts 1 in Lemma 14. J

By Lemmas 10, 14, 17, 18, and 19, we get the following lemmas.

I Lemma 20. If
∏n
i=1 ai ≥ 1, then there exists an optimal permutation σ such that, for

some two integers s, t (0 ≤ s ≤ t ≤ n), δ(fσ(t+1)) = · · · = δ(fσ(n)) = δ(fσ(1)) = · · · =
δ(fσ(s)) = −1, δ(fσ(s+1)) = · · · = δ(fσ(t)) = 1, γσ(t+1) ≤ · · · ≤ γσ(n) ≤ γσ(1) ≤ · · · ≤ γσ(s),
and γσ(s+1) ≤ · · · ≤ γσ(t).

I Lemma 21. If
∏n
i=1 ai < 1, then there exists an optimal permutation σ such that, for some

two integers s, t (0 ≤ s ≤ t ≤ n), δ(fσ(t+1)) = · · · = δ(fσ(n)) = δ(fσ(1)) = · · · = δ(fσ(s)) = 1,
δ(fσ(s+1)) = · · · = δ(fσ(t)) = −1, γσ(t+1) ≤ · · · ≤ γσ(n) ≤ γσ(1) ≤ · · · ≤ γσ(s), and
γσ(s+1) ≤ · · · ≤ γσ(t).

Proof. We only prove Lemma 20 since the proof of Lemma 21 is similar. By Lemma 17,
there exists an optimal permutation σ and two integers s, t (0 ≤ s ≤ t ≤ n) such that
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δ(fσ(1)) = · · · = δ(fσ(s)) = −δ(fσ(s+1)) = · · · = −δ(fσ(t)) = δ(fσ(t+1)) = · · · = δ(fσ(n)). By
Lemma 10, we have

γσ(1) ≤ · · · ≤ γσ(s), γσ(s+1) ≤ · · · ≤ γσ(t), γσ(t+1) ≤ · · · ≤ γσ(n).

This implies that the lemma holds when s = 0 or t = n. For 0 < s ≤ t < n, we separately
consider the following two cases.

Case 1: If δ(fσ(s+1)) = · · · = δ(fσ(t)) = +1, let g = fσ(n−1)◦· · ·◦fσ(2). Then Lemma 10 and
the optimality of σ imply γ(fσ(1)) ≥ γ(g) ≥ γ(fσ(n)), since −δ(fσ(1)) = δ(g) = −δ(fσ(n)) =
+1. This proves the lemma.

Case 2: If δ(fσ(s+1)) = · · · = δ(fσ(t)) = −1, then let h1 = fσ(s) ◦ · · · ◦fσ(1), h2 = fσ(t) ◦ · · · ◦
fσ(s+1) and h3 = fσ(n) ◦ · · · ◦ fσ(t+1). If γ(h1) < γ(h2), then h3 ◦ h2 ◦ h1(x) ≤ h3 ◦ h1 ◦ h2(x)
by 4 in Lemma 10. If γ(h2) < γ(h3), then h3 ◦h2 ◦h1(x) ≤ h2 ◦h3 ◦h1(x) by 4 in Lemma 10.
Otherwise (i.e., γ(h1) ≥ γ(h2) ≥ γ(h3)), we have

h3 ◦ h2 ◦ h1(x) ≤ max{h2 ◦ h1 ◦ h3(x), h1 ◦ h3 ◦ h2(x)}

by Lemma 18. In either case, we can obtain a desired optimal solution by modifying σ. J

By Lemmas 20 and 21, we obtain polynomial time algorithm for the maximum total
composition ordering problem for monotone nondecreasing linear functions.

Proof of the total composition part of Theorem 1. By Lemmas 20 and 21, the total com-
position ordering problem for monotone nondecreasing linear functions can be computed as
follows. Let σ : [n] → [n] be a permutation which satisfies δ(fσ(1)) = · · · = δ(fσ(r)) = −1,
δ(σ(r + 1)) = · · · = δ(fσ(n)), γ(fσ(1)) ≤ · · · ≤ γ(fσ(r)), and γ(fσ(r+1)) ≤ · · · ≤ γ(fσ(n)).
Then Lemmas 20 and 21 implies that there exists an optimal solution of the form (σ(t), σ(t+
1), . . . , σ(n), σ(1), σ(2), . . . , σ(t− 1)) for some t. Therefore, the problem can be computed
in polynomial time by checking n permutations above. To reduce the time complexity, let
dk = fσ(k−1) ◦ · · · ◦ fσ(1) ◦ fσ(n) ◦ · · · ◦ fσ(k)(c) for k = 1, . . . , n. Let a =

∏n
i=1 ai. Then it

is not difficult to see that dk+1 = aσ(k) · (dk − a · c) − bσ(k) · (a − 1) + a · c, and hence the
problem is solvable in O(n logn) time. J

Next, we prove Theorem 2. We use dynamic programming to find the optimal value.

Proof of Theorem 2. Without loss of generality, we may assume that the indices of functions
are δ(f1) = · · · = δ(fr) = −1, δ(fr+1) = · · · = δ(fn) = 1, γ(f1) ≤ · · · ≤ γ(fr), and
γ(fr+1) ≤ · · · ≤ γ(fn). We use dynamic programming to solve the problem. Let m(i, j, l) be
the maximum value of fσ(l) ◦ · · · ◦ fσ(1)(c) for a permutation σ such that i ≤ σ(1) < σ(2) <
· · · < σ(l) ≤ i+ j − 1 if i+ j − 1 ≤ n, and i ≤ σ(1) < · · · < σ(p) ≤ n, 1 ≤ σ(p+ 1) < · · · <
σ(l) ≤ i+ j − 1− n for some p (0 ≤ p ≤ l) if i+ j − 1 > n. We claim that the optimal value
for the problem is maxni=1 m(i, n, k).

Let σ∗ : [n]→ [n] be an optimal permutation for the problem. By Lemmas 20 and 21,
we can assume that i∗ ≤ σ∗(1) < · · · < σ∗(p) ≤ n, 1 ≤ σ∗(p+ 1) < · · · < σ∗(k) ≤ i∗ − 1 for
some i∗ and p. Therefore, we have fσ∗(k) ◦ · · · ◦ fσ∗(1)(c) ≤ m(i∗, n, k) ≤ maxni=1 m(i, n, k)
and thus maxni=1 m(i, n, k) is the optimal value for the problem.
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For each i, j, l, the value m(i, j, l) satisfies the following relation:

m(i, j, l) =


c (l = 0),
fσ(j)(m(i, j − 1, l − 1)) (l ≥ 1, j = l),
max{m(i, j − 1, l), fσ(j)(m(i, j − 1, l − 1))} (l ≥ 1, j > l).

To evaluate maxni=1 m(i, n, k), our algorithm calculate the values of m(i, j, l) for 0 ≤ i, j ≤ n
and 0 ≤ l ≤ k. Therefore, we can obtain the optimal value for the problem in O(k · n2)
time. J

4 Negative Results for the Optimal Composition Ordering Problems

In the previous sections, we show that both the total and partial composition ordering
problems can be solved efficiently if all fi’s are monotone linear. It turns out that they cannot
be generalized to nonlinear functions fi. In this section, we show the optimal composition
ordering problems are in general intractable, even if all fi’s are monotone increasing, piecewise
linear functions with at most two pieces. We remark that the maximum total composition
ordering problem is known to be NP-hard, even if all fi’s are monotone increasing, concave,
piecewise linear functions with at most two pieces [4], which can be shown by considering
the time-dependent scheduling problem.

Due to space limitation, we only provide the result for the concave case.

The concave case

In this section, we consider the case in which all fi’s are monotone increasing, concave,
piecewise linear functions with at most two pieces, that is, fi is given as fi(x) = min{a1

ix+
b1
i , a

2
ix+ b2

i } for some reals a1
i , a2

i , b1
i and b2

i with a1
i , a

2
i > 0. For our reductions, we use the

Partition problem, which is known to be NP-complete [10].
Partition: Given n positive integers a1, . . . , an with

∑n
i=1 ai = 2T , ask whether exists a

subset I ⊆ [n] such that
∑
i∈I ai = T .

Proof for Theorem 3(i). We show that Partition can be reduced to the problem. Let
a1, . . . , an denote positive integers with

∑n
i=1 ai = 2T . We construct n + 2 functions fi

(i = 1, . . . , n+ 2) as follows:

fi(x) =


x+ ai if i = 1, . . . , n,
min

{
2x, 1

2x+ 3
2T
}

if i = n+ 1,
6αT (x− (3T − 1

2 )) + (3T − 1
2 ) if i = n+ 2.

It is clear that all fi’s are monotone, concave, and piecewise linear with at most two pieces.
Moreover, we note that all fi’s (i = 1, . . . , n + 1) satisfy fi(x) ≥ x if 0 ≤ x ≤ 3T , and
fn+2(x) ≤ x if x ≤ 3T − 1/2. We claim that 3T is the optimal value for the maximum
partial (total) composition ordering problem for fi (i = 1, . . . , n+ 1) and c = 0 if there exists
a partition I ⊆ [n] such that

∑
i∈I ai = T , and the optimal value is at most 3T − 1/2 if∑

i∈I ai 6= T for any partition I ⊆ [n]. This implies that the optimal value for the maximum
partial (total) composition ordering problem for fi (i = 1, . . . , n+ 2) and c = 0 is at least
3αT if

∑
i∈I ai = T for some I ⊆ [n], and at most 3T if

∑
i∈I ai 6= T for any partition

I ⊆ [n], since fn+2(3T ) = 3αT + 3T − 1/2 > 3αT and fn+2(x) ≤ x if x ≤ 3T − 1/2. Thus,
there exists no α-approximation algorithm for the problems unless P=NP.
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Let σ : [n + 1] → [n + 1] denote a permutation with σ(l) = n + 1. Then define
I = {σ(i) : i = 1, . . . , l − 1} and q =

∑
i∈I ai. Note that

∑n+1
i=l+1 aσ(i) =

∑
i 6∈I ai = 2T − q.

Consider the function composition by σ:

fσ(n+1) ◦ · · · ◦ fσ(l+1) ◦ fσ(l) ◦ fσ(l−1) ◦ · · · ◦ fσ(1)(0)
= fσ(n) ◦ · · · ◦ fσ(l+1) ◦ fn+1(q)

= fσ(n) ◦ · · · ◦ fσ(l+1)

(
min

{
2q, 1

2q + 3
2T
})

= min
{

2q, 1
2q + 3

2T
}

+ 2T − q = min
{
q, −1

2q + 3
2T
}

+ 2T.

Note that min
{
q, − 1

2q + 3
2T
}
≤ T holds, where the equality holds only when q = T . This

implies that

fσ(n+1) ◦ · · · ◦ fσ(l+1) ◦ fσ(l) ◦ fσ(l−1) ◦ · · · ◦ fσ(1)(0)
{

= 3T (q = T ),
≤ 3T − 1/2 (q 6= T )

(3)

since q is an integer. This proves the claim. J
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Abstract
The modularity is a quality function in community detection, which was introduced by Newman
and Girvan (2004). Community detection in graphs is now often conducted through modularity
maximization: given an undirected graph G = (V,E), we are asked to find a partition C of V that
maximizes the modularity. Although numerous algorithms have been developed to date, most of
them have no theoretical approximation guarantee. Recently, to overcome this issue, the design
of modularity maximization algorithms with provable approximation guarantees has attracted
significant attention in the computer science community.

In this study, we further investigate the approximability of modularity maximization. More
specifically, we propose a polynomial-time
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holds. This improves the current best additive approximation error of 0.4672, which was recently
provided by Dinh, Li, and Thai (2015). Interestingly, our analysis also demonstrates that the
proposed algorithm obtains a nearly-optimal solution for any instance with a high modularity
value. Moreover, we propose a polynomial-time 0.16598-additive approximation algorithm for
the maximum modularity cut problem. It should be noted that this is the first non-trivial ap-
proximability result for the problem. Finally, we demonstrate that our approximation algorithm
can be extended to some related problems.
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1 Introduction

Identifying community structure is a fundamental primitive in graph mining [11]. Roughly
speaking, a community (also referred to as a cluster or module) in a graph is a subset
of vertices densely connected with each other, but sparsely connected with the vertices
outside the subset. Community detection in graphs is a powerful way to discover components
that have some special roles or possess important functions. For example, consider the
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graph representing the World Wide Web, where vertices correspond to web pages and edges
represent hyperlinks between pages. Communities in this graph are likely to be the sets of
web pages dealing with the same or similar topics, or sometimes link spam [14].

To date, numerous community detection algorithms have been developed, most of which
are designed to maximize a quality function. Quality functions in community detection
return some value that represents the community-degree for a given partition of the set of
vertices. The best known and widely used quality function is the modularity, which was
introduced by Newman and Girvan [24]. Let G = (V,E) be an undirected graph consisting
of n = |V | vertices and m = |E| edges. The modularity, a quality function for a partition
C = {C1, . . . , Ck} of V (i.e.,

⋃k
i=1 Ci = V and Ci ∩ Cj = ∅ for i 6= j), can be written as

Q(C) =
∑
C∈C

(
mC

m
−
(
DC

2m

)2
)
,

where mC represents the number of edges whose endpoints are both in C, and DC represents
the sum of degrees of the vertices in C. The modularity represents the sum, over all
communities, of the fraction of the number of edges within communities minus the expected
fraction of such edges assuming that they are placed at random with the same degree
distribution.

Although the modularity is known to have some drawbacks (e.g., the resolution limit [12]),
community detection is now often conducted through modularity maximization: given an
undirected graph G = (V,E), we are asked to find a partition C of V that maximizes
the modularity. Note that the modularity maximization problem has no restriction on
the number of communities in the output partition; thus, the algorithms are allowed to
specify the best number of communities by themselves. Brandes et al. [5] proved that
modularity maximization is NP-hard. A wide variety of applications (and this hardness
result) have promoted the development of modularity maximization heuristics. In fact,
there are numerous algorithms based on various techniques such as greedy procedure [4, 24],
simulated annealing [17], spectral optimization [23], and mathematical programming [1, 20, 6].
Although some of them are known to perform well in practice, they have no theoretical
approximation guarantee at all.

Recently, to overcome this issue, the design of modularity maximization algorithms with
provable approximation guarantees has attracted significant attention in the computer science
community. DasGupta and Desai [8] designed a polynomial-time ε-additive approximation
algorithm1 for dense graphs (i.e., graphs with m = Ω(n2)) using an algorithmic version of the
regularity lemma [13], where ε > 0 is an arbitrary constant. Moreover, Dinh, Li, and Thai [9]
very recently developed a polynomial-time 0.4672-additive approximation algorithm. This is
the first polynomial-time additive approximation algorithm with a non-trivial approximation
guarantee (that is applicable to any instance).2 Note that, to our knowledge, this is the
current best additive approximation error. Their algorithm is based on the semidefinite
programming (SDP) relaxation and the hyperplane separation technique.

1 A feasible solution is α-additive approximate if its objective value is at least the optimal value minus α.
An algorithm is called an α-additive approximation algorithm if it returns an α-additive approximate
solution for any instance. For an α-additive approximation algorithm, α is referred to as an additive
approximation error of the algorithm.

2 A 1-additive approximation algorithm is trivial because Q({V }) = 0 and Q(C) < 1 for any partition C.
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1.1 Our Contribution
In this study, we further investigate the approximability of modularity maximization. Our
contribution can be summarized as follows:
1. We propose a polynomial-time

(
cos
(

3−
√

5
4 π

)
− 1+

√
5

8

)
-additive approximation algorithm

for the modularity maximization problem. Note here that cos
(

3−
√

5
4 π

)
− 1+

√
5

8 < 0.42084
holds; thus, this improves the current best additive approximation error of 0.4672,
which was recently provided by Dinh, Li, and Thai [9]. Interestingly, our analysis also
demonstrates that the proposed algorithm obtains a nearly-optimal solution for any
instance with a high modularity value.

2. We propose a polynomial-time 0.16598-additive approximation algorithm for the maximum
modularity cut problem. It should be noted that this is the first non-trivial approximability
result for the problem.

3. We demonstrate that our additive approximation algorithm for the modularity maximiza-
tion problem can be extended to some related problems.

First result

Let us describe our first result in details. Our additive approximation algorithm is also based
on the SDP relaxation and the hyperplane separation technique. However, our analysis is
essentially different from the one by Dinh, Li, and Thai [9], and is much more effective for
many practical instances.

The algorithm by Dinh, Li, and Thai [9] reduces the SDP relaxation for the modularity
maximization problem to the one for MaxAgree problem arising in correlation clustering
(e.g., see [2] or [7]) by adding an appropriate constant to the objective function. Then, the
algorithm adopts the SDP-based 0.7664-approximation algorithm3 for MaxAgree prob-
lem [7]. Specifically, their algorithm generates 2 and 3 random hyperplanes to obtain feasible
solutions, and then returns the better one. Their analysis of the additive approximation
guarantee depends heavily on the above reduction; the additive approximation error of 0.4672
is just derived from 2(1− κ), where κ represents the approximation ratio of the SDP-based
algorithm for MaxAgree problem (i.e., κ = 0.7664). The analysis of the SDP-based
algorithm for MaxAgree problem [7] aims at multiplicative approximation rather than
additive one. As a result, the analysis by Dinh, Li, and Thai [9] has caused a gap in terms of
additive approximation. In fact, as shown in our analysis, their algorithm already has the
approximation error of cos

(
3−
√

5
4 π

)
− 1+

√
5

8 (< 0.42084).
In contrast, our algorithm and analysis do not depend on such a reduction. In fact,

our algorithm just solves the SDP relaxation for the modularity maximization problem
without any transformation. Moreover, our algorithm employs a hyperplane separation
procedure that extends the one used in their algorithm. Specifically, our algorithm chooses
an appropriate number of hyperplanes using the information of the optimal solution to the
SDP relaxation so that the lower bound on the expected modularity value is maximized. It
should be emphasized that our analysis directly evaluates an additive approximation error
of the proposed algorithm, unlike the analysis by Dinh, Li, and Thai [9]. As a result, our
analysis improves their additive approximation error, and demonstrates that the proposed

3 A feasible solution is α-approximate if its objective value is at least α times the optimal value. An
algorithm is called an α-approximation algorithm if it returns an α-approximate solution for any instance.
For an α-approximation algorithm, α is referred to as an approximation ratio of the algorithm.
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algorithm has a much better lower bound on the expected modularity value for many practical
instances. In particular, for any instance with optimal value close to 1 (a trivial upper
bound), our algorithm obtains a nearly-optimal solution. Note here that, as reported in
previous work [4, 6, 25], there are many large real-world networks that have a partition with
a very high modularity value. At the end of our analysis, we summarize a lower bound on
the expected modularity value with respect to the optimal value of a given instance.

Second result

Here we describe our second result in details. The modularity maximization problem has
no restriction on the number of clusters in the output partition. On the other hand, there
also exist a number of problem variants with such a restriction. The maximum modularity
cut problem is a typical one, where given an undirected graph G = (V,E), we are asked to
find a partition C of V consisting of at most two components (i.e., a bipartition C of V ) that
maximizes the modularity. This problem appears in many contexts in community detection.
For example, a few hierarchical divisive heuristics for the modularity maximization problem
repeatedly solve this problem either exactly [6] or heuristically [1], to obtain a partition C of
V . Brandes et al. [5] proved that the maximum modularity cut problem is NP-hard (even on
dense graphs). More recently, DasGupta and Desai [8] showed that the problem is NP-hard
even on d-regular graphs with any fixed d ≥ 9. However, to our knowledge, there exists no
approximability result for the problem.

Our additive approximation algorithm adopts the SDP relaxation and the hyperplane
separation technique, which is identical to the subroutine of the hierarchical divisive heuristic
proposed by Agarwal and Kempe [1]. Specifically, our algorithm first solves the SDP relaxation
for the maximum modularity cut problem (rather than the modularity maximization problem),
and then generates a random hyperplane to obtain a feasible solution for the problem.
Although the computational experiments by Agarwal and Kempe [1] demonstrate that
their hierarchical divisive heuristic maximizes the modularity quite well in practice, the
approximation guarantee of the subroutine in terms of the maximum modularity cut was not
analyzed. Our analysis shows that the proposed algorithm is a 0.16598-additive approximation
algorithm for the maximum modularity cut problem. At the end of our analysis, we again
present a lower bound on the expected modularity value with respect to the optimal value of
a given instance. This reveals that for any instance with optimal value close to 1/2 (a trivial
upper bound in the case of bipartition), our algorithm obtains a nearly-optimal solution.

Third result

Finally, we describe our third result. We first extend our additive approximation algorithm
for the modularity maximization problem to the well-known graph partitioning problem
called the clique partitioning problem [16]. Then, we apply the result for the following three
special cases of the clique partitioning problem: the weighted modularity maximization
problem [22], the directed modularity maximization problem [19], and Barber’s bipartite
modularity maximization problem [3], all of which are NP-hard (see [8] and [21]).

1.2 Related Work
Multiplicative approximation algorithms

There also exist multiplicative approximation algorithms for modularity maximization.
DasGupta and Desai [8] designed an Ω(1/ log d)-approximation algorithm for the modularity



Y. Kawase, T. Matsui, and A. Miyauchi 43:5

maximization problem on d-regular graphs with d ≤ n
2 logn . They extended the approximation

algorithm to the weighted modularity maximization problem. On the other hand, Dinh and
Thai [10] developed algorithms for scale-free graphs with a prescribed degree sequence. In
their graphs, the number of vertices with degree d is fixed to some value proportional to d−γ ,
where −γ is called the power-law exponent.

Inapproximability results

There are some inapproximability results for the modularity maximization problem. Das-
Gupta and Desai [8] showed that it is NP-hard to obtain a (1− ε)-approximate solution for
some constant ε > 0 (even for complements of 3-regular graphs). More recently, Dinh, Li,
and Thai [9] proved a much stronger statement, that is, there exists no polynomial-time
(1− ε)-approximation algorithm for any ε > 0, unless P = NP. It should be noted that these
results are on multiplicative approximation rather than additive one. In fact, there exist no
inapproximability results in terms of additive approximation for modularity maximization.

1.3 Preliminaries
Here we introduce definitions and notation used in this paper. Let G = (V,E) be an
undirected graph consisting of n = |V | vertices and m = |E| edges. Let P = V × V . By
simple calculation, as mentioned in Brandes et al. [5], the modularity can be rewritten as

Q(C) = 1
2m

∑
(i,j)∈P

(
Aij −

didj
2m

)
δ(C(i), C(j)),

where Aij is the (i, j) component of the adjacency matrix A of G, di is the degree of i ∈ V ,
C(i) is the (unique) community to which i ∈ V belongs, and δ is the Kronecker symbol equal
to 1 if two arguments are identical and 0 otherwise. This form is useful to write mathematical
programming formulations for modularity maximization. For convenience, we define

qij = Aij
2m −

didj
4m2 for each (i, j) ∈ P.

We can divide the set P into the following two disjoint subsets: P≥0 = {(i, j) ∈ P | qij ≥ 0}
and P<0 = {(i, j) ∈ P | qij < 0}. Clearly, we have

∑
(i,j)∈P≥0

qij +
∑

(i,j)∈P<0
qij =∑

(i,j)∈P qij = 0, and thus
∑

(i,j)∈P≥0
qij =

∑
(i,j)∈P<0

−qij . We denote this value by q, i.e.,
q =

∑
(i,j)∈P≥0

qij . Note that for any instance, we have q < 1.

1.4 Paper Organization
In Section 2, we revisit the SDP relaxation for the modularity maximization problem, and
then describe an outline of our algorithm. In Section 3, the approximation guarantee of the
proposed algorithm is carefully analyzed. In Section 4, we present our additive approximation
algorithm for the maximum modularity cut problem. We mention the extension of our
additive approximation algorithm to some related problems in Section 5. Due to space
limitations, some proofs are omitted, which can be found in the full version [18].

2 Algorithm

The modularity maximization problem can be formulated as follows:

max.
∑

(i,j)∈P

qij (yi · yj) s.t. yi ∈ {e1, . . . , en} (∀i ∈ V ),

ISAAC 2016
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Algorithm 1 Hyperplane(k)
Input: Graph G = (V,E)
Output: Partition C of V
1: Obtain an optimal solution X∗ = (x∗ij) to SDP
2: Generate k random hyperplanes and obtain a partition Ck = {C1, . . . , C2k} of V
3: return Ck

where ek (1 ≤ k ≤ n) represents the vector that has 1 in the kth coordinate and 0 elsewhere.
We denote by OPT the optimal value of this original problem. Note that for any instance,
we have OPT ∈ [0, 1). We introduce the following semidefinite relaxation problem:

SDP : max.
∑

(i,j)∈P

qijxij s.t. xii = 1 (∀i ∈ V ), xij ≥ 0 (∀i, j ∈ V ), X = (xij) ∈ Sn+,

where Sn+ represents the cone of n× n symmetric positive semidefinite matrices. It is easy
to see that every feasible solution X = (xij) of SDP satisfies xij ≤ 1 for any (i, j) ∈ P .
Although the algorithm by Dinh, Li, and Thai [9] reduces SDP to the one for MaxAgree
problem by adding an appropriate constant to the objective function, our algorithm just
solves SDP without any transformation. Let X∗ = (x∗ij) be an optimal solution to SDP,
which can be computed (with an arbitrarily small error) in time polynomial in n and m.
Using the optimal solution X∗, we define the following two values:

z∗+ = 1
q

∑
(i,j)∈P≥0

qijx
∗
ij and z∗− = 1

q

∑
(i,j)∈P<0

qijx
∗
ij ,

both of which are useful in the analysis of the approximation guarantee of our algorithm.
Clearly, we have 0 ≤ z∗+ ≤ 1 and −1 ≤ z∗− ≤ 0.

We apply the hyperplane separation technique to obtain a feasible solution of the mod-
ularity maximization problem. Specifically, we consider the following general procedure:
generate k random hyperplanes to separate the vectors corresponding to the optimal solution
X∗, and then obtain a partition Ck = {C1, . . . , C2k} of V . For reference, the procedure is
described in Algorithm 1. Note here that at this time, we have not yet mentioned how to
determine the number k of hyperplanes we generate. As revealed in our analysis, we can
choose an appropriate number of hyperplanes using the value of z∗+ so that the lower bound
on the expected modularity value of the output of Hyperplane(k) is maximized.

3 Analysis

In this section, we first analyze an additive approximation error of Hyperplane(k) for each
positive integer k ∈ Z>0. Then, we provide an appropriate number k∗ ∈ Z>0 of hyperplanes,
which completes the design of our algorithm. Finally, we present a lower bound on the
expected modularity value of the output of Hyperplane(k∗) with respect to the value of OPT.

When k random hyperplanes are generated independently, the probability that two vertices
i, j ∈ V are in the same cluster is given by

(
1− arccos(x∗ij)/π

)k, as mentioned in previous
works (e.g., see [7] or [15]). For simplicity, we define the function fk(x) = (1− arccos(x)/π)k

for x ∈ [0, 1]. Here we present the lower convex envelope of each of fk(x) and −fk(x).

I Lemma 1. For any positive integer k, the lower convex envelope of fk(x) is given by
fk(x) itself, and the lower convex envelope of −fk(x) is given by the linear function hk(x) =
−1/2k + (1/2k − 1)x for x ∈ [0, 1].
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The following lemma lower bounds the expected modularity value of the output of
Hyperplane(k).

I Lemma 2. Let Ck be the output of Hyperplane(k). For any positive integer k, it holds that

E[Q(Ck)] ≥ q
(
fk(z∗+) + hk(−z∗−)

)
.

Proof. Recall that Ck(i) for each i ∈ V denotes the (unique) cluster in Ck that includes the
vertex i. Note here that δ(Ck(i), Ck(j)) for each (i, j) ∈ P is a random variable, which takes
1 with probability fk(x∗ij) and 0 with probability 1− fk(x∗ij). The expectation E[Q(Ck)] can
be transformed as follows:

E[Q(Ck)] = E

 ∑
(i,j)∈P

qijδ(Ck(i), Ck(j))


=

∑
(i,j)∈P

qijfk(x∗ij) =
∑

(i,j)∈P≥0

qijfk(x∗ij) +
∑

(i,j)∈P<0

−qij · (−fk(x∗ij)).

Using Lemma 1, we have

E[Q(Ck)] ≥
∑

(i,j)∈P≥0

qijfk(x∗ij) +
∑

(i,j)∈P<0

−qijhk(x∗ij)

= q

 ∑
(i,j)∈P≥0

(
qij
q

)
fk(x∗ij) +

∑
(i,j)∈P<0

(
−qij
q

)
hk(x∗ij)


≥ q

fk
 ∑

(i,j)∈P≥0

(
qij
q

)
x∗ij

+ hk

 ∑
(i,j)∈P<0

(
−qij
q

)
x∗ij


= q

(
fk(z∗+) + hk(−z∗−)

)
,

where the last inequality follows from Jensen’s inequality. J

The following lemma provides an additive approximation error of Hyperplane(k) by
evaluating the above lower bound on E[Q(Ck)] using the value of OPT.

I Lemma 3. For any positive integer k, it holds that

E[Q(Ck)] ≥ OPT− q
(
z∗+ − fk(z∗+) + 1

2k

)
.

Proof. Clearly, (z∗+, z∗−) satisfies q(z∗+ + z∗−) ≥ OPT and z∗− ≤ 0. Thus, we obtain

q
(
fk(z∗+) + hk(−z∗−)

)
≥
(
OPT− q(z∗+ + z∗−)

)
+ q

(
fk(z∗+) + hk(−z∗−)

)
=
(
OPT− q(z∗+ + z∗−)

)
+ q

(
fk(z∗+)− 1/2k + (1/2k − 1)(−z∗−)

)
= OPT− q

(
z∗+ − fk(z∗+) + 1/2k + (1/2k)z∗−

)
≥ OPT− q

(
z∗+ − fk(z∗+) + 1/2k

)
.

Combining this with Lemma 2, we have E[Q(Ck)] ≥ q
(
fk(z∗+) + hk(−z∗−)

)
≥ OPT −

q
(
z∗+ − fk(z∗+) + 1/2k

)
, as desired. J

For simplicity, we define the function gk(x) = x− fk(x) + 1/2k for x ∈ [0, 1]. Then, the
inequality of the above lemma can be rewritten as

E[Q(Ck)] ≥ OPT− q · gk(z∗+).

ISAAC 2016
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Figure 1 A brief illustration of the additive approximation error of Hyperplane(k) with respect
to the value of z∗+. For simplicity, we replace q by its upper bound 1. Specifically, the function
gk(x) = x − fk(x) + 1/2k for x ∈ [0, 1] is plotted for k = 1, 2, 3, 4, and 5, as examples. The point(
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)
is an intersection of the functions g2(x) and g3(x).

Figure 1 plots the above additive approximation error of Hyperplane(k) with respect to the
value of z∗+.

As can be seen, the appropriate number of hyperplanes (i.e., the number of hyperplanes
that minimizes the additive approximation error) depends on the value of z∗+. Intuitively, we
wish to choose k∗∗ that satisfies k∗∗ ∈ arg mink∈Z>0 gk(z∗+). However, it is not clear whether
Hyperplane(k∗∗) runs in polynomial time. In fact, the number k∗∗ becomes infinity if the
value of z∗+ approaches 1. Therefore, alternatively, our algorithm chooses

k∗ ∈ arg min
k∈{1,...,max{3,dlog2 ne}}

gk(z∗+).

First, we analyze the worst-case performance of Hyperplane(k∗). The following lemma
says that (i) the worst-case performance of Hyperplane(k∗) is exactly the same as that of
Hyperplane(k∗∗); and moreover (ii) to achieve the same worst-case performance as that of
Hyperplane(k∗∗), it suffices to choose k from the set {2, 3}.

I Lemma 4. Let S be one of the sets {2, 3}, {1, . . . ,max{3, dlog2 ne}}, and Z>0. It holds
that

max
x∈[0,1]

min
k∈S

gk(x) = cos
(

3−
√

5
4 π

)
− 1 +

√
5

8 .

I Remark. Here we consider the algorithm that executes Hyperplane(2) and Hyperplane(3),
and then returns the better solution. Note that this algorithm is essentially the same as
that proposed by Dinh, Li, and Thai [9]. The above lemma implies that the algorithm by
Dinh, Li, and Thai [9] already has the worst-case performance exactly the same as that of
Hyperplane(k∗) (and Hyperplane(k∗∗)). However, as shown below, Hyperplane(k∗) has a much
better lower bound on the expected modularity value for many instances.

Finally, we present a lower bound on the expected modularity value of the output of
Hyperplane(k∗) with respect to the value of OPT (rather than z∗+). The following lemma is
useful to show that the lower bound on the expected modularity value with respect to the
value of OPT is not affected by the change from k∗∗ to k∗.
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I Lemma 5. For any k′ ∈ arg mink∈Z>0 gk(OPT), it holds that k′ ≤ max{3, dlog2 ne}.

We are now ready to prove the main result of this paper.

I Theorem 6. Let Ck∗ be the output of Hyperplane(k∗). It holds that

E[Q(Ck∗)] ≥ OPT− q
(

cos
(

3−
√

5
4 π

)
− 1 +

√
5

8

)
.

In particular, if OPT ≥ cos
(

3−
√

5
4 π

)
holds, then E[Q(Ck∗)] > OPT− qmink∈Z>0 gk(OPT).

Note here that q < 1 and cos
(

3−
√

5
4 π

)
− 1+

√
5

8 < 0.42084.

Proof. From Lemmas 3 and 4, it follows directly that

E[Q(Ck∗)] ≥ OPT− q
(

cos
(

3−
√

5
4 π

)
− 1 +

√
5

8

)
.

Here we prove the remaining part of the theorem. Assume that OPT ≥ cos
(

3−
√

5
4 π

)
holds. By simple calculation, for any k ∈ Z>0, we have g′′k (x) < 0 for x ∈ (0, 1).
This means that for any k ∈ Z>0, the function gk(x) is strictly concave, and more-
over, so is the function mink∈{1,...,max{3,dlog2 ne}} gk(x). From Lemma 4 and the fact that
mink∈{1,...,max{3,dlog2 ne}} gk

(
cos
(

3−
√

5
4 π

))
= cos

(
3−
√

5
4 π

)
− 1+

√
5

8 holds, we see that the

function mink∈{1,...,max{3,dlog2 ne}} gk(x) attains its maximum at x = cos
(

3−
√

5
4 π

)
. Thus, the

function mink∈{1,...,max{3,dlog2 ne}} gk(x) is strictly monotonically decreasing over the interval[
cos
(

3−
√

5
4 π

)
, 1
]
. Therefore, we have

E[Q(Ck∗)] ≥ OPT− q min
k∈{1,...,max{3,dlog2 ne}}

gk(z∗+)

> OPT− q min
k∈{1,...,max{3,dlog2 ne}}

gk(OPT) = OPT− q min
k∈Z>0

gk(OPT),

where the second inequality follows from z∗+ ≥ OPT/q > OPT and the last equality follows
from Lemma 5. J

Figure 2 depicts the above lower bound on E[Q(Ck∗)]. As can be seen, if OPT is close to
1, then Hyperplane(k∗) obtains a nearly-optimal solution. For example, for any instance with
OPT ≥ 0.99990, it holds that E[Q(Ck∗)] > 0.96109, i.e., the additive approximation error is
less than 0.03891. For such instances, the reduction-based analysis by Dinh, Li, and Thai [9]
provides no guarantee better than the worst-case performance.

I Remark. The additive approximation error of Hyperplane(k∗) depends on the value of q < 1;
the less the value of q, the better the additive approximation error. Thus, it is interesting to
find some graphs that have a small value of q. For instance, for any regular graph G that
satisfies m = α

2 n
2, it holds that q = 1− α, where α is an arbitrary constant in (0, 1). Here

we prove the statement. Since G is regular, we have di = 2m/n = αn for any i ∈ V . Hence,
for any {i, j} ∈ E, it holds that qij = Aij

2m −
didj

4m2 = 1
αn2 − 1

n2 > 0. Therefore, we have

q =
∑

(i,j)∈P≥0

qij = 2
∑
{i,j}∈E

qij = 2m
(

1
αn2 −

1
n2

)
= 1− α.
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Figure 2 A brief illustration of the lower bound on the expected modularity value of the output
of Hyperplane(k∗) with respect to the value of OPT. For simplicity, we replace q by its upper bound
1. Note that k′ ∈ arg mink∈Z>0 gk(OPT).

Algorithm 2 Modularity Cut
Input: Graph G = (V,E)
Output: Bipartition C of V
1: Obtain an optimal solution X∗ = (x∗ij) to SDPcut
2: Generate a random hyperplane and obtain a bipartition Cout = {C1, C2} of V
3: return Cout

4 Maximum Modularity Cut

The maximum modularity cut problem can be formulated as follows:

max. 1
2
∑

(i,j)∈P

qij(yiyj + 1) s.t. yi ∈ {−1, 1} (∀i ∈ V ).

We denote by OPTcut the optimal value of this original problem. Note that for any instance,
it holds that OPTcut ∈ [0, 1/2], as shown in DasGupta and Desai [8]. We introduce the
following semidefinite relaxation problem:

SDPcut : max. 1
2
∑

(i,j)∈P

qij(xij + 1) s.t. xii = 1 (∀i ∈ V ), X = (xij) ∈ Sn+,

where recall that Sn+ represents the cone of n× n symmetric positive semidefinite matrices.
Let X∗ = (x∗ij) be an optimal solution to SDPcut, which can be computed (with an arbitrarily
small error) in time polynomial in n and m. Note here that x∗ij may be negative for (i, j) ∈ P
with i 6= j, unlike SDP in the previous section.

We generate a random hyperplane to separate the vectors corresponding to the optimal
solution X∗, and then obtain a bipartition C = {C1, C2} of V . For reference, the procedure is
described in Algorithm 2. As mentioned above, this algorithm is identical to the subroutine
of the hierarchical divisive heuristic for the modularity maximization problem, which was
proposed by Agarwal and Kempe [1].

The main result of this section is the following theorem.
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Figure 3 An illustration of the lower bound on the expected modularity value of the output of
Algorithm 2.

I Theorem 7. Let α = min−1<x<1
1−arccos(x)/π

(x+1)/2 (' 0.878567). Let Cout be the output of
Algorithm 2. It holds that

E[Q(Cout)] > OPTcut − 0.16598.

In particular, if OPTcut ≥
√
π2−4
2π (' 0.385589) holds, then E[Q(Cout)] ≥ α

2 −
arccos(2·OPTcut)

π .

Figure 3 depicts the above lower bound on E[Q(Cout)]. As can be seen, if OPTcut is close to
1/2, then Algorithm 2 obtains a nearly-optimal solution.

5 Extension

We first extend our additive approximation algorithm for the modularity maximization
problem to the clique partitioning problem. In the clique partitioning problem, we are given
a finite set V and a weight function c : V × V → R. Let P = V × V . The aim is to find a
partition C of V that maximizes the sum of weights of the pairs within the same clusters, i.e.,

QCPP(C) =
∑

(i,j)∈P

cijδ(C(i), C(j)).

Although our definition is slightly different from the traditional one (see e.g., [16]), it remains
essentially the same. Clearly, the modularity maximization problem can be reduced to the
clique partitioning problem. In fact, it suffices to set cij = qij for each (i, j) ∈ P .

We can extend Hyperplane(k) to the clique partitioning problem by replacing qij with
cij in the description of the algorithm. Furthermore, we can also extend our analysis of the
additive approximation error of Hyperplane(k). Note here that we should redefine

z∗+ = 1
c+

∑
(i,j)∈P≥0

cijx
∗
ij and z∗− = 1

c−

∑
(i,j)∈P<0

cijx
∗
ij ,

where c+ =
∑

(i,j)∈P≥0
cij and c− =

∑
(i,j)∈P<0

cij . This is due to the fact that c+ = c− does
not necessarily hold. For the clique partitioning problem, we have the following key lemma,
which is a generalization of Lemma 3.
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I Lemma 8. Let Ck be the output of Hyperplane(k). It holds that

E[QCPP(Ck)] ≥ OPT−
(
c+z

∗
+ − c+fk(z∗+) + c−

1
2k

)
.

Using this lemma, we can choose an appropriate number k∗ of hyperplanes and analyze the
additive approximation error of Hyperplane(k∗). Note that if c+ = c− holds, then we obtain
the additive approximation error of c+

(
cos
(

3−
√

5
4 π

)
− 1+

√
5

8

)
.

Finally, we mention the results for the following three problems: the weighted modularity
maximization problem [22], the directed modularity maximization problem [19], and Barber’s
bipartite modularity maximization problem [3]. These problems are all special cases of the
clique partitioning problem, where c+ = c− < 1 holds. For the detailed description of the
above problems, see the full version [18]. We have the following corollary.

I Corollary 9. There exist polynomial-time
(

cos
(

3−
√

5
4 π

)
− 1+

√
5

8

)
-additive approxima-

tion algorithms for the weighted modularity maximization problem, the directed modularity
maximization problem, and Barber’s bipartite modularity maximization problem.
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Abstract
Given an edge-weighted undirected graph G = (V,E,w), the density of S ⊆ V is defined as
w(S)/|S|, where w(S) is the sum of weights of the edges in the subgraph induced by S. The
densest subgraph problem asks for S ⊆ V that maximizes the density w(S)/|S|. The problem
has received significant attention recently because it can be solved exactly in polynomial time.
However, the densest subgraph problem has a drawback; it may happen that the obtained subset
is too large or too small in comparison with the desired size of the output.

In this study, we address the size issue by generalizing the density of S ⊆ V . Specifically, we
introduce the f -density of S ⊆ V , which is defined as w(S)/f(|S|), where f : Z≥0 → R≥0 is a
monotonically non-decreasing function. In the f -densest subgraph problem (f -DS), we are asked
to find S ⊆ V that maximizes the f -density w(S)/f(|S|). Although f -DS does not explicitly
specify the size of the output subset of vertices, we can handle the above size issue using a convex
size function f or a concave size function f appropriately. For f -DS with convex function f , we
propose a nearly-linear-time algorithm with a provable approximation guarantee. In particular,
for f -DS with f(x) = xα (α ∈ [1, 2]), our algorithm has an approximation ratio of 2 ·n(α−1)(2−α).
On the other hand, for f -DS with concave function f , we propose a linear-programming-based
polynomial-time exact algorithm. It should be emphasized that this algorithm obtains not only
an optimal solution to the problem but also subsets of vertices corresponding to the extreme
points of the upper convex hull of {(|S|, w(S)) | S ⊆ V }, which we refer to as the dense frontier
points. We also propose a flow-based combinatorial exact algorithm for unweighted graphs that
runs in O(n3) time. Finally, we propose a nearly-linear-time 3-approximation algorithm.
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Keywords and phrases graphs, dense subgraph extraction, densest subgraph problem, approxi-
mation algorithms
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1 Introduction

Finding dense components in a graph is an active research topic in graph mining. Techniques
for identifying dense subgraphs have been used in various applications. For example, in Web
graph analysis, they are used for detecting communities (i.e., sets of web pages dealing with the
same or similar topics) [9] and spam link farms [12]. As another example, in bioinformatics,
they are used for finding molecular complexes in protein interaction networks [4] and
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identifying regulatory motifs in DNA [10]. Furthermore, they are also used for expert team
formation [6, 17] and real-time story identification in micro-blogging streams [2].

To date, various optimization problems have been considered to find dense components
in a graph. The densest subgraph problem is one of the most well-studied optimization
problems. Let G = (V,E,w) be an edge-weighted undirected graph consisting of n = |V |
vertices, m = |E| edges, and a weight function w : E → Q>0, where Q>0 is the set of positive
rational numbers. For a subset of vertices S ⊆ V , let G[S] be the subgraph induced by
S ⊆ V , i.e., G[S] = (S,E(S)), where E(S) = {{i, j} ∈ E | i, j ∈ S}. The density of S ⊆ V

is defined as w(S)/|S|, where w(S) =
∑
e∈E(S) w(e). In the (weighted) densest subgraph

problem, given an (edge-weighted) undirected graph G = (V,E,w), we are asked to find
S ⊆ V that maximizes the density w(S)/|S|.

The densest subgraph problem has received significant attention recently because it can
be solved exactly in time polynomial in n and m. In fact, there exist a flow-based exact
algorithm [13] and a linear-programming-based (LP-based) exact algorithm [7]. Moreover,
Charikar [7] demonstrated that the greedy algorithm designed by Asahiro et al. [3], which is
called the greedy peeling, obtains a 2-approximate solution1 for any instance. This algorithm
runs in O(m+ n) time for unweighted graphs and O(m+ n logn) time for weighted graphs.

However, the densest subgraph problem has a drawback; it may happen that the obtained
subset is too large or too small in comparison with the desired size of the output. To
overcome this issue, some variants of the problem have often been employed. The densest
k-subgraph problem (DkS) is a straightforward size-restricted variant of the densest subgraph
problem. In this problem, given an additional input k being a positive integer, we are asked
to find S ⊆ V of size k that maximizes the density w(S)/|S|. Note that in this problem,
the objective function can be replaced by w(S) since |S| is fixed to k. Unfortunately, it is
known that this size restriction makes the problem much harder to solve. In fact, Khot [14]
proved that DkS has no PTAS under some reasonable computational complexity assumption.
The current best approximation algorithm has an approximation ratio of O(n1/4+ε) for any
ε > 0 [5].

Furthermore, Andersen and Chellapilla [1] introduced two relaxed versions of DkS.
The first problem, the densest at-least-k-subgraph problem (DalkS), asks for S ⊆ V that
maximizes the density w(S)/|S| under the size constraint |S| ≥ k. For this problem, Andersen
and Chellapilla [1] adopted the greedy peeling, and demonstrated that the algorithm yields
a 3-approximate solution for any instance. Later, Khuller and Saha [15] investigated the
problem more deeply. They proved that DalkS is NP-hard, and designed a flow-based
algorithm and an LP-based algorithm. These algorithms have an approximation ratio of 2,
which improves the above approximation ratio of 3. The second problem is called the densest
at-most-k-subgraph problem (DamkS), which asks for S ⊆ V that maximizes the density
w(S)/|S| under the size constraint |S| ≤ k. The NP-hardness is immediate since finding a
maximum clique can be reduced to it. Khuller and Saha [15] proved that approximating
DamkS is as hard as approximating DkS within a constant factor.

1.1 Our Contribution
In this study, we address the above size issue by generalizing the density of S ⊆ V . Specifically,
we introduce the f -density of S ⊆ V , which is defined as w(S)/f(|S|), where f : Z≥0 → R≥0

1 A feasible solution is called a γ-approximate solution if its objective value times γ is greater than or
equal to the optimal value. An algorithm is called a γ-approximation algorithm if it runs in polynomial
time and returns a γ-approximate solution for any instance. For a γ-approximation algorithm, γ is
referred to as an approximation ratio of the algorithm.
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is a monotonically non-decreasing function with f(0) = 0.2 Note that Z≥0 and R≥0 are the
set of nonnegative integers and the set of nonnegative real numbers, respectively. In the
f -densest subgraph problem (f -DS), we are asked to find S ⊆ V that maximizes the f -density
w(S)/f(|S|). For simplicity, we assume that E 6= ∅. Thus, any optimal solution S∗ satisfies
|S∗| ≥ 2. Although f -DS does not explicitly specify the size of the output subset of vertices,
we can handle the above size issue using a convex size function f or a concave size function f
appropriately. In fact, we see that any optimal solution to f -DS with convex (resp. concave)
function f has a size smaller (resp. larger) than or equal to that of the densest subgraph.
For details, see Section 2 and Section 3.

Here we mention the relationship between our problem and DkS. Any optimal solution
S∗ to f -DS is a maximum weight subset of size |S∗|, i.e., argmax{w(S) | S ⊆ V, |S| = |S∗|},
which implies that S∗ is also optimal to DkS with k = |S∗|. Furthermore, a γ-approximation
algorithm for DkS implies a γ-approximation algorithm for f -DS. Using the above O(n1/4+ε)-
approximation algorithm for DkS, we can obtain an O(n1/4+ε)-approximation algorithm for
f -DS.

We summarize our results for each of the case where f is convex and f is concave.

The case where f is convex. Let us describe our results for the case where the size function
f is convex. A function f : Z≥0 → R≥0 is called convex if f(x)− 2f(x+ 1) + f(x+ 2) ≥ 0
holds for any x ∈ Z≥0. We first prove the NP-hardness of f -DS with a certain convex
function by a reduction from DamkS. Thus, for f -DS with convex function f , one of the best
possible ways is to design algorithms with a provable approximation guarantee.

To this end, we propose a min
{

2f(n)/n
f(|S∗|)−f(|S∗|−1) ,

f(2)/2
f(|S∗|)/|S∗|2

}
-approximation algorithm,

where S∗ ⊆ V is an optimal solution to f -DS with convex function f . Our algorithm
consists of the following two procedures, and outputs the better solution found by them.
The first one is based on the brute-force search, which obtains an f(2)/2

f(|S∗|)/|S∗|2 -approximate
solution in O(m + n) time. The second one adopts the greedy peeling, which obtains a

2f(n)/n
f(|S∗|)−f(|S∗|−1) -approximate solution in O(m+ n logn) time. Thus, the total running time
of our algorithm is O(m+ n logn). Our analysis on the approximation ratio of the second
procedure extends the analysis by Charikar [7] for the densest subgraph problem.

At the end of our analysis, we observe the behavior of the approximation ratio of our
algorithm for three size functions. We consider size functions between linear and quadratic
because, as we will see later, f -DS with any super-quadratic size function only produces
constant-size optimal solutions. The first example is f(x) = xα (α ∈ [1, 2]). We show that
the approximation ratio of our algorithm is 2 ·n(α−1)(2−α), where the worst-case performance
of 2 · n1/4 is attained at α = 1.5. The second example is f(x) = λx+ (1− λ)x2 (λ ∈ [0, 1)).
For this case, the approximation ratio of our algorithm is (2−λ)/(1−λ), which is a constant
for a fixed λ. The third example is f(x) = x2/(λx+ (1− λ)) (λ ∈ [0, 1]). Note that this size
function is derived by density function λw(S)

|S| + (1− λ)w(S)
|S|2 . The approximation ratio of our

algorithm is 4/(1 + λ), which is at most 4.

The case where f is concave. Next let us describe our results for the case where the size
function f is concave. A function f : Z≥0 → R≥0 is called concave if f(x) − 2f(x + 1) +

2 To handle various types of functions (e.g., f(x) = xα for α > 0), we set the codomain of the function
f to be the set of nonnegative real numbers. We assume that we can compare p · f(i) and q · f(j) in
constant time for any p, q ∈ Q and i, j ∈ Z≥0.
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Figure 1 An example graph and corresponding points in P = {(|S|, w(S)) | S ⊆ V }. The
diamond-shaped points, i.e., (0, 0), (4, 6), (7, 10), and (8, 11), are the dense frontier points.

f(x+ 2) ≤ 0 holds for any x ∈ Z≥0. Unlike the above convex case, f -DS in this case can be
solved exactly in polynomial time.

In fact, we present an LP-based exact algorithm, which extends Charikar’s exact algorithm
for the densest subgraph problem [7] and Khuller and Saha’s 2-approximation algorithm
for DalkS [15]. It should be emphasized that our LP-based algorithm obtains not only an
optimal solution to f -DS but also some attractive subsets of vertices. Let us see an example
in Figure 1. The graph consists of 8 vertices and 11 unweighted edges. For this graph, we
plotted all the points contained in P = {(|S|, w(S)) | S ⊆ V }. We refer to the extreme
points of the upper convex hull of P as the dense frontier points. The densest subgraph is a
typical subset of vertices that corresponds to a dense frontier point. Our LP-based algorithm
obtains a corresponding subset of vertices for every dense frontier point.

Moreover, in this concave case, we design a combinatorial exact algorithm for unweighted
graphs. Our algorithm is based on the standard technique for fractional programming. By
using the technique, we can reduce f -DS to a sequence of submodular function minimizations.
However, applying a submodular function minimization algorithm leads to a computationally
expensive algorithm, which runs in O(n5(m+ n) · logn) time. To reduce the computation
time, we replace a submodular function minimization algorithm with a much faster flow-based
algorithm that substantially extends a technique of Goldberg’s flow-based algorithm for the
densest subgraph problem [13]. The total running time of our algorithm is O(n3).

Although our flow-based algorithm is much faster than the reduction-based algorithm,
the running time is still long for large-sized graphs. To design an algorithm with much
higher scalability, we adopt the greedy peeling. As mentioned above, this algorithm runs in
O(m+ n) time for unweighted graphs and O(m+ n logn) time for weighted graphs. We see
that the algorithm yields a 3-approximate solution for any instance.

1.2 Related Work

Tsourakakis et al. [17] introduced a general optimization problem to find dense subgraphs,
which is referred to as the optimal (g, h, α)-edge-surplus problem. The problem asks for
S ⊆ V that maximizes edge-surplusα(S) = g(|E(S)|) − αh(|S|), where g and h are strictly
monotonically increasing functions, and α > 0 is a constant. The intuition behind this
optimization problem is the same as that of ours. In fact, the first term g(|E(S)|) prefers
S ⊆ V that has a large number of edges, whereas the second term −αh(|S|) penalizes S ⊆ V
with a large size. Tsourakakis et al. [17] were motivated by finding near-cliques (i.e., relatively
small dense subgraphs), and they derived the function OQCα(S) = |E(S)| − α

(|S|
2
)
, which is

called the OQC function, by setting g(x) = x and h(x) = x(x − 1)/2. For OQC function
maximization, they adopted the greedy peeling and a simple local search heuristic.
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Recently, Yanagisawa and Hara [18] introduced density function |E(S)|/|S|α for α ∈ (1, 2],
which they called the discounted average degree. For discounted average degree maximization,
they designed an integer-programming-based exact algorithm, which is applicable only to
graphs with thousands of edges. They also designed a local search heuristic, which is
applicable to Web-scale graphs but has no provable approximation guarantee. As mentioned
above, our algorithm for f -DS with convex function f runs in O(m+ n logn) time, and has
an approximation ratio of 2 · n(α−1)(2−α) for f(x) = xα (α ∈ [1, 2]).

2 Convex Case

In this section, we investigate f -DS with convex function f . A function f : Z≥0 → R≥0 is
called convex if f(x) − 2f(x + 1) + f(x + 2) ≥ 0 holds for any x ∈ Z≥0. We remark that
f(x)/x is monotonically non-decreasing for x since we assume that f(0) = 0. It should be
emphasized that any optimal solution to f -DS with convex function f has a size smaller than
or equal to that of the densest subgraph. To see this, let S∗ ⊆ V be an optimal solution to
f -DS and S∗DS ⊆ V be the densest subgraph. Then we have

f(|S∗|)
|S∗|

= w(S∗)/|S∗|
w(S∗)/f(|S∗|) ≤

w(S∗DS)/|S∗DS|
w(S∗DS)/f(|S∗DS|)

= f(|S∗DS|)
|S∗DS|

. (1)

This implies the statement because f(x)/x is monotonically non-decreasing.

2.1 Hardness
We first state that f -DS with convex function f contains DamkS as a special case.

I Theorem 1. For any integer k ∈ [2, n], S ⊆ V is optimal to DamkS if and only if S is
optimal to f -DS with (convex) function f(x) = max{x, 2w(V ) · (x− k)/w(e) + k}, where e
is an arbitrary edge.

2.2 Our Algorithm
In this subsection, we provide an algorithm for f -DS with convex function f . Our algorithm
consists of the following two procedures, and outputs the better solution found by them.
Let S∗ be an optimal solution to the problem. The first one is based on the brute-force
search, which obtains an f(2)/2

f(|S∗|)/|S∗|2 -approximate solution in O(m+ n) time. The second
one adopts the greedy peeling [3], which obtains a 2f(n)/n

f(|S∗|)−f(|S∗|−1) -approximate solution
in O(m + n logn) time. Combining these results, which will be proved later, we have the
following theorem.

I Theorem 2. Let S∗ ⊆ V be an optimal solution to f -DS with convex function f . For the
problem, our algorithm runs in O(m+ n logn) time, and it has an approximation ratio of

min
{

2f(n)/n
f(|S∗|)− f(|S∗| − 1) ,

f(2)/2
f(|S∗|)/|S∗|2

}
.

2.2.1 Brute-Force Search
As will be shown below, to obtain an approximation ratio of f(2)/2

f(|S∗|)/|S∗|2 , it suffices to find
the heaviest edge. Clearly, this algorithm runs in O(m + n) time. However, we present
a more general algorithm, which is useful for some case. Our algorithm examines all the
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Algorithm 1 Brute-force search
1: for i← 2, . . . , k
2: Find S∗i ∈ argmax{w(S) | S ⊆ V, |S| = i} by examining all the candidate subsets
3: return S ∈ {S∗2 , . . . , S∗k} that maximizes w(S)/f(|S|)

subsets of vertices of size at most k, and then returns an optimal subset among them, where
k is a constant and k ≥ 2. For reference, we describe the procedure in Algorithm 1.

This algorithm can be implemented to run in O((m+ n)nk) time because the number of
subsets with at most k vertices is

∑k
i=0
(
n
i

)
= O(nk) and the value of w(S)/f(|S|) for S ⊆ V

can be computed in O(m+ n) time.
We analyze the approximation ratio of the algorithm. Let S∗i denote a maximum weight

subset of size i, i.e., S∗i ∈ argmax{w(S) | S ⊆ V, |S| = i}. We refer to w(S∗i )/
(
i
2
)
as the edge

density of i vertices. The following lemma gives a fundamental property of the edge density.

I Lemma 3. The edge density is monotonically non-increasing for the number of vertices,
i.e., w(S∗i )/

(
i
2
)
≥ w(S∗j )/

(
j
2
)
holds for any 1 ≤ i ≤ j ≤ n.

Using the above lemma, we can provide the result of the approximation ratio.

I Lemma 4. Let S∗ ⊆ V be an optimal solution to f -DS with convex function f . If |S∗| ≤ k,
then Algorithm 1 obtains an optimal solution. If |S∗| ≥ k, then it holds that

w(S∗)
f(|S∗|) ≤

2 · f(k)/k2

f(|S∗|)/|S∗|2 ·
w(S∗k)
f(k) .

Proof. If |S∗| ≤ k, then Algorithm 1 obtains an optimal solution since S∗ ∈ {S∗2 , . . . , S∗k}.
If |S∗| ≥ k, then we have

w(S∗)
f(|S∗|) ≤

f(k)/
(
k
2
)

f(|S∗|)/
(|S∗|

2
) · w(S∗k)

f(k)

= 1− 1/|S∗|
1− 1/k · f(k)/k2

f(|S∗|)/|S∗|2 ·
w(S∗k)
f(k) ≤

2 · f(k)/k2

f(|S∗|)/|S∗|2 ·
w(S∗k)
f(k) ,

where the first inequality follows from Lemma 3, and the last inequality follows from
|S∗| ≥ k ≥ 2. J

From this lemma, we see that Algorithm 1 with k = 2 has an approximation ratio of
f(2)/2

f(|S∗|)/|S∗|2 .

2.2.2 Greedy Peeling
Here we adopt the greedy peeling. For S ⊆ V and v ∈ S, let dS(v) denote the weighted
degree of the vertex v in the induced subgraph G[S], i.e., dS(v) =

∑
{u,v}∈E(S) w({u, v}). Our

algorithm iteratively removes the vertex with the smallest weighted degree in the currently
remaining graph, and then returns S ⊆ V with maximum w(S)/f(|S|) over the iteration.
For reference, we describe the procedure in Algorithm 2. This algorithm runs in O(m+ n)
time for unweighted graphs and O(m+ n logn) time for weighted graphs.

The following lemma provides the result of the approximation ratio.

I Lemma 5. Let S∗ be an optimal solution to f-DS with convex function f . Algorithm 2
returns a solution S ⊆ V that satisfies

w(S)
f(|S|) ≥

1
2 ·

f(|S∗|)− f(|S∗| − 1)
f(n)/n · w(S∗)

f(|S∗|) .
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Algorithm 2 Greedy peeling
1: Sn ← V

2: for i← n, . . . , 2
3: Find vi ∈ argminv∈Si

dSi(v) and Si−1 ← Si \ {vi}
4: return S ∈ {S1, . . . , Sn} that maximizes w(S)/f(|S|)

Proof. Choose an arbitrary vertex v ∈ S∗. By the optimality of S∗, we have

w(S∗)
f(|S∗|) ≥

w(S∗ \ {v})
f(|S∗| − 1) .

By using the fact that w(S∗ \ {v}) = w(S∗)− dS∗(v), this inequality can be transformed to

dS∗(v) ≥ (f(|S∗|)− f(|S∗| − 1)) · w(S∗)
f(|S∗|) . (2)

Let l be the smallest index that satisfies S∗ ⊆ Sl. Note that vl ∈ S∗. Using inequality (2),
we have

w(S)
f(|S|) ≥

w(Sl)
f(l) = 1

2 ·
∑
u∈Sl

dSl
(u)

f(l) ≥ 1
2 ·

l · dSl
(vl)

f(l) ≥ 1
2 ·

dS∗(vl)
f(l)/l

≥ 1
2 ·

f(|S∗|)− f(|S∗| − 1)
f(l)/l · w(S∗)

f(|S∗|) ≥
1
2 ·

f(|S∗|)− f(|S∗| − 1)
f(n)/n · w(S∗)

f(|S∗|) ,

where the second inequality follows from the greedy choice of vl, the third inequality follows
from Sl ⊇ S∗, and the last inequality follows from the monotonicity of f(x)/x. J

2.3 Examples
Here we observe the behavior of the approximation ratio of our algorithm for three convex
size functions. We consider size functions between linear and quadratic because f -DS with
any super-quadratic size function only produces constant-size optimal solutions. This follows
from the inequality f(2)/2

f(|S∗|)/|S∗|2 ≥ 1 (i.e., f(2)/2 ≥ f(|S∗|)/|S∗|2) by Lemma 4.

(i) The case where f(x) = xα (α ∈ [1, 2]). The following corollary provides the
approximation ratio of our algorithm.

I Corollary 6. For f-DS with f(x) = xα (α ∈ [1, 2]), our algorithm has an approximation
ratio of 2 · n(α−1)(2−α).

Proof. Let s = |S∗|. By Theorem 2, the approximation ratio is at most

min
{

2f(n)/n
f(s)− f(s− 1) ,

f(2)/2
f(s)/s2

}
= min

{
2nα−1

sα − (s− 1)α , 2α−1 · s2−α
}

≤ min
{

2nα−1

sα−1 , 2 · s2−α
}
≤ 2 · n(α−1)(2−α).

The first inequality follows from the fact that sα − (s − 1)α = sα − (s − 1)α−1(s − 1) ≥
sα− sα−1(s− 1) = sα−1. The last inequality follows from the fact that the first term and the
second term of the minimum function are monotonically non-increasing and non-decreasing
for s, respectively, and they have the same value at s = nα−1. J

Note that an upper bound on 2 · n(α−1)(2−α) is 2 · n1/4, which is attained at α = 1.5.
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44:8 The Densest Subgraph Problem with a Convex/Concave Size Function

(ii) The case where f(x) = λx + (1 − λ)x2 (λ ∈ [0, 1)). The following corollary
provides an approximation ratio of Algorithm 1, which is a constant for a fixed λ.

I Corollary 7. For f-DS with f(x) = λx+ (1− λ)x2 (λ ∈ [0, 1)), Algorithm 1 with k = 2
has an approximation ratio of (2− λ)/(1− λ). Furthermore, for any ε > 0, Algorithm 1 with
k ≥ 2

ε ·
λ

1−λ has an approximation ratio of 2 + ε.

(iii) The case where f(x) = x2/(λx+(1−λ)) (λ ∈ [0, 1]). This size function is derived
by density function λw(S)

|S| + (1− λ)w(S)
|S|2 . The following corollary provides an approximation

ratio of our algorithm, which is at most 4.

I Corollary 8. For f-DS with f(x) = x2/(λx+ (1− λ)) (λ ∈ [0, 1)), our algorithm has an
approximation ratio of 4/(1 + λ).

3 Concave Case

In this section, we investigate f -DS with concave function f . A function f : Z≥0 → R≥0 is
called concave if f(x)− 2f(x+ 1) + f(x+ 2) ≤ 0 holds for any x ∈ Z≥0. We remark that
f(x)/x is monotonically non-increasing for x since we assume that f(0) = 0. Note that any
optimal solution to f -DS with concave function f has a size larger than or equal to that of
the densest subgraph. This follows from inequality (1) and the monotonicity of f(x)/x.

3.1 Dense Frontier Points

Here we define the dense frontier points and prove some basic properties. We denote by P
the set {(|S|, w(S)) | S ⊆ V }. A point (x, y) ∈ P is called a dense frontier point if it is a
unique maximizer of y−λx over P for some λ > 0. In other words, the extreme points of the
upper convex hull of P are the dense frontier points. The densest subgraph is a typical subset
of vertices corresponding to a dense frontier point. We prove that (i) for any dense frontier
point, there exists some concave function f such that any optimal solution to f -DS with
the function f corresponds to the dense frontier point, and conversely, (ii) for any strictly
concave function f (i.e., f that satisfies f(x)− 2f(x+ 1) + f(x+ 2) < 0 for any x ∈ Z≥0),
any optimal solution to f -DS with the function f corresponds to a dense frontier point.

We first prove (i). Note that each dense frontier point can be written as (i, w(S∗i )) for
some i, where S∗i is a maximum weight subset of size i. Let (k,w(S∗k)) be a dense frontier
point and assume that it is a unique maximizer of y − λ̂x over P for λ̂ > 0. Consider the
concave function f such that f(x) = λ̂x+ w(S∗k)− λ̂k for x > 0 and f(0) = 0. Then, any
optimal solution S∗ to f -DS with the function f corresponds to the dense frontier point (i.e.,
(|S∗|, w(S∗)) = (k,w(S∗k)) holds) because w(S)/f(|S|) is greater than or equal to 1 if and
only if w(S)− λ̂|S| ≥ w(S∗k)− λ̂k.

We next prove (ii). Let f be any strictly concave function. Let S∗k be an optimal solution
to f -DS with the function f , and take λ̂ that satisfies (f(k) − f(k − 1)) · w(S∗

k)
f(k) > λ̂ >

(f(k+1)−f(k)) · w(S∗
k)

f(k) . Note that the strict concavity of f guarantees the existence of such λ̂.
Since f is strictly concave, we have w(S∗k)+ λ̂(|S|−k) ≥ w(S∗

k)
f(k) ·f(|S|) ≥ w(S)

f(|S|) ·f(|S|) = w(S)
for any S ⊆ V , and the equalities hold only when (|S|, w(S)) = (k,w(S∗k)). Thus, (k,w(S∗k))
is a unique maximizer of y − λ̂x over P, and hence is a dense frontier point.
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Algorithm 3 LP-based algorithm
1: for k ← 1, . . . , n
2: Solve LPk and obtain an optimal solution (xk, yk)
3: Compute r∗k that maximizes w(Sk(r))/f(|Sk(r)|)
4: return S ∈ {S1(r∗1), . . . , Sn(r∗n)} that maximizes w(S)/f(|S|)

3.2 LP-Based Algorithm

We provide an LP-based polynomial-time exact algorithm. We introduce a variable xe for
each e ∈ E and a variable yv for each v ∈ V . For k = 1, . . . , n, we construct the following
linear programming problem:

LPk : max.
∑
e∈E

w(e) · xe s.t.
∑
v∈V

yv = k, xe ≤ yu, xe ≤ yv (∀e = {u, v} ∈ E),

xe, yv ∈ [0, 1] (∀e ∈ E, ∀v ∈ V ).

For an optimal solution (xk, yk) to LPk and a real parameter r, we define a sequence of
subsets Sk(r) = {v ∈ V | ykv ≥ r}. For k = 1, . . . , n, our algorithm solves LPk to obtain
an optimal solution (xk, yk), and computes r∗k that maximizes w(Sk(r))/f(|Sk(r)|). Note
here that to find such an r∗k, it suffices to check all the distinct sets Sk(r) by simply setting
r = ykv for every v ∈ V . The algorithm returns S ∈ {S1(r∗1), . . . , Sn(r∗n)} that maximizes
w(S)/f(|S|). For reference, we describe the procedure in Algorithm 3. Clearly, the algorithm
runs in polynomial time.

In what follows, we demonstrate that Algorithm 3 obtains an optimal solution to f -DS
with concave function f . The following lemma provides a lower bound on the optimal value
of LPk.

I Lemma 9. For any S ⊆ V , the optimal value of LP|S| is at least w(S).

We have the following key lemma.

I Lemma 10. Let S∗ ⊆ V be an optimal solution to f -DS with concave function f , and let
k∗ = |S∗|. Furthermore, let (x∗, y∗) be an optimal solution to LPk∗ . Then, there exists a
real number r such that Sk∗(r) is optimal to f -DS with concave function f .

Proof. For each e = {u, v} ∈ E, we have x∗e = min{y∗u, y∗v} from the optimality of (x∗, y∗).
Without loss of generality, we relabel the indices of (x∗, y∗) so that y∗1 ≥ · · · ≥ y∗n. Then we
have

∫ y∗
1

0
w(Sk

∗
(r))dr =

∫ y∗
1

0

 ∑
e={u,v}∈E

w(e) · [y∗u ≥ r and y∗v ≥ r]

 dr

=
∑

e={u,v}∈E

∫ y∗
1

0
(w(e) · [y∗u ≥ r and y∗v ≥ r]) dr

=
∑

e={u,v}∈E

w(e) ·min{y∗u, y∗v} ≥
∑
e∈E

w(e) · x∗e ≥ w(S∗),

where [y∗u ≥ r and y∗v ≥ r] is 1 if the condition in the square bracket is satisfied and 0
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otherwise, and the last inequality follows from Lemma 9. Moreover, we have∫ y∗
1

0
f(|Sk

∗
(r)|)dr =

n∑
h=1

f(h) · (y∗h − y∗h+1) =
n∑
h=1

(f(h)− f(h− 1)) · y∗h

≤
k∗∑
h=1

(f(h)− f(h− 1)) = f(k∗)− f(0) = f(k∗),

where we assume that y∗n+1 = 0, and the inequality holds by the concavity of f (i.e.,
f(h+ 2)− f(h+ 1) ≤ f(h+ 1)− f(h)),

∑n
h=1 y

∗
h = k∗, and y∗h ≤ 1.

Let r∗ be a real number that maximizes w(Sk∗(r))/f(|Sk∗(r)|) in [0, y∗1 ]. Using the above
two inequalities, we have

w(S∗)
f(k∗) ≤

∫ y∗
1

0 w(Sk∗(r))dr∫ y∗
1

0 f(|Sk∗(r)|)dr
=

∫ y∗
1

0

(
w(Sk∗

(r))
f(|Sk∗ (r)|) · f(|Sk∗(r)|)

)
dr∫ y∗

1
0 f(|Sk∗(r)|)dr

≤

∫ y∗
1

0

(
w(Sk∗

(r∗))
f(|Sk∗ (r∗)|) · f(|Sk∗(r)|)

)
dr∫ y∗

1
0 f(|Sk∗(r)|)dr

= w(Sk∗(r∗))
f(|Sk∗(r∗)|) .

This completes the proof. J

Clearly, Algorithm 3 examines Sk∗(r∗) as a candidate subset of the output. Therefore,
we have the result.

I Theorem 11. Algorithm 3 is a polynomial-time exact algorithm for f-DS with concave
function f .

By Lemma 10, for any concave function f , an optimal solution to f -DS with the function
f is contained in {Sk(r) | k = 1, . . . , n, r ∈ [0, 1]} whose cardinality is at most n2. As shown
above, for any dense frontier point, there exists some concave function f such that any
optimal solution to f -DS with the function f corresponds to the dense frontier point. Thus,
we have the following result.

I Theorem 12. We can find a corresponding subset of vertices for every dense frontier point
in polynomial time.

3.3 Flow-Based Algorithm
Here we provide a combinatorial exact algorithm for unweighted graphs (i.e., w(e) = 1 for
every e ∈ E). We first show that using the standard technique for fractional programming, we
can reduce f -DS with concave function f to a sequence of submodular function minimizations.
The critical fact is that maxS⊆V w(S)/f(|S|) is at least β if and only if minS⊆V (β · f(|S|)−
w(S)) is at most 0. Note that for β ≥ 0, the function β · f(|S|)−w(S) is submodular because
β · f(|S|) and −w(S) are submodular [11]. Thus, we can calculate minS⊆V (β · f(|S|)−w(S))
in O(n5(m + n)) time using Orlin’s algorithm [16], which implies that we can determine
maxS⊆V w(S)/f(|S|) ≥ β or not in O(n5(m+ n)) time. Hence, we can obtain the value of
maxS⊆V w(S)/f(|S|) by binary search. Note that the objective function of unweighted f -DS
may have at most O(mn) distinct values since w(S) is a nonnegative integer at most m.
Thus, the procedure yields an optimal solution in O(log(nm)) = O(logn) iterations. The
total running time is O(n5(m+ n) · logn).

To reduce the computation time, we replace Orlin’s algorithm with a much faster algorithm
that substantially extends a technique of Goldberg’s flow-based algorithm for the densest
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Algorithm 4 Flow-based algorithm
1: Construct the (unweighted) directed network (U,A)
2: {b1, . . . , br} = {p/f(q) | p = 0, 1, . . . ,m, q = 2, 3, . . . , n} such that b1 < · · · < br
3: imin ← 1 and imax ← r

4: while TRUE
5: i← b(imax + imin)/2c
6: Compute a minimum s–t cut (X,Y ) in (U,A,wbi

)
7: if the cost of (X,Y ) is larger than w(V ) then imax ← i− 1
8: else if the cost of (X,Y ) is less than w(V ) then imin ← i+ 1
9: else return X ∩ V

subgraph problem [13]. The key technique is to represent the value of β · f(|S|)−w(S) using
the cost of minimum cut of a certain directed network constructed from G and β ≥ 0.

For a given graph G = (V,E,w) and a real number β ≥ 0, we construct a directed
network (U,A,wβ) as follows. The vertex set U is defined by U = V ∪ P ∪ {s, t}, where
P = {p1, . . . , pn}. The edge set A is given by A = As ∪At ∪A1 ∪A2, where

As = {(s, v) | v ∈ V }, At = {(p, t) | p ∈ P},
A1 = {(u, v), (v, u) | {u, v} ∈ E}, and A2 = {(v, p) | v ∈ V, p ∈ P}.

The edge weight wβ : A→ R≥0 is defined by

wβ(e) =


d(v)/2 (e = (s, v) ∈ As),
β · k · ak (e = (pk, t) ∈ At),
1/2 (= w({u, v})/2) (e = (u, v) ∈ A1),
β · ak (e = (v, pk) ∈ A2),

where d(v) is the degree of vertex v (i.e., d(v) = |{u ∈ V | {u, v} ∈ E}|), and

ak =
{

2f(k)− f(k + 1)− f(k − 1) (k = 1, . . . , n− 1),
f(n)− f(n− 1) (k = n).

Note that ak ≥ 0 holds since f is a monotonically non-decreasing concave function.
The following lemma reveals the relationship between an s–t cut in (U,A,wβ) and the

value of β · f(|S|)− w(S).

I Lemma 13. Let (X,Y ) be any s–t cut in the network (U,A,wβ), and let S = X ∩ V .
Then, the cost of (X,Y ) is equal to w(V ) + β · f(|S|)− w(S).

From this lemma, we see that the minimum s–t cut value is w(V ) + minS⊆V (β · f(|S|)−
w(S)). Therefore, for a given value β ≥ 0, we can determine whether there exists S ⊆ V

that satisfies w(S)/f(|S|) ≥ β by checking the minimum s–t cut value is at most w(V ) or
not. Our algorithm applies binary search for β within the possible objective values of f -DS
(i.e., {p/f(q) | p = 0, 1, . . . ,m, q = 2, 3, . . . , n}). For reference, we describe the procedure in
Algorithm 4. The minimum s–t cut problem can be solved in O(N3/ logN) time for a graph
with N vertices [8]. Thus, the running time of our algorithm is O( n3

logn · log(mn)) = O(n3)
since |U | = 2n+ 2. We summarize the result in the following theorem.

I Theorem 14. Algorithm 4 is an O(n3)-time exact algorithm for unweighted f-DS with
concave function f .

Finally, we remark that Algorithm 4 can be modified for weighted f -DS with concave
function f so that a (1 + ε)-approximate solution is obtained in O(n3 · log(1/ε)) time.
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3.4 Greedy Peeling
Here we provide an approximation algorithm with much higher scalability. Specifically, we see
that the greedy peeling (Algorithm 2) has an approximation ratio of 3 for f -DS with concave
function f . As mentioned above, the algorithm runs in O(m+n) time for unweighted graphs
and O(m + n logn) time for weighted graphs. The proof of the following theorem relies
on the monotonicity of f(x)/x and the fact that the greedy peeling is a 3-approximation
algorithm for DalkS [1].

I Theorem 15. The greedy peeling (Algorithm 2) has an approximation ratio of 3 for f -DS
with concave function f .
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Abstract
In 1969, Roberts introduced proper and unit interval graphs and proved that these classes are
equal. Natural generalizations of unit interval graphs called k-length interval graphs were con-
sidered in which the number of different lengths of intervals is limited by k. Even after decades of
research, no insight into their structure is known and the complexity of recognition is open even
for k = 2. We propose generalizations of proper interval graphs called k-nested interval graphs in
which there are no chains of k + 1 intervals nested in each other. It is easy to see that k-nested
interval graphs are a superclass of k-length interval graphs.

We give a linear-time recognition algorithm for k-nested interval graphs. This algorithm adds
a missing piece to Gajarský et al. [FOCS 2015] to show that testing FO properties on interval
graphs is FPT with respect to the nesting k and the length of the formula, while the problem
is W[2]-hard when parameterized just by the length of the formula. Further, we show that a
generalization of recognition called partial representation extension is polynomial-time solvable
for k-nested interval graphs, while it is NP-hard for k-length interval graphs, even when k = 2.
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1 Introduction

An interval representation R of a graph G is a collection
{
〈u〉 : u ∈ V (G)

}
of intervals of

the real line such that uv ∈ E(G) if and only if 〈u〉 ∩ 〈v〉 6= ∅. A graph is an interval graph if
it has an interval representation, and we denote this class by INT.

An interval representation is called proper if 〈u〉 ⊆ 〈v〉 implies 〈u〉 = 〈v〉, and unit if the
length of all intervals 〈u〉 is one. The classes of proper and unit interval graphs (denoted
PROPER INT and UNIT INT) consist of all interval graphs which have proper and unit
interval representations, respectively. Roberts [27] proved that PROPER INT = UNIT INT.
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R
(a)

R
(b)

Figure 1 (a) An interval representation with the nesting three. (b) The disjoint union of two
components with the minimum nesting two requiring three different lengths of intervals. On the left,
the shorter intervals are shorter than 1

4 of the longer ones. On the right, they are longer than 1
3 .

PROPER INT = UNIT INT

INT

2-LengthINT

3-LengthINT

2-NestedINT

3-NestedINT

· · ·
· · ·

(a) (b)

1
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3
1
1
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Code:
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Figure 2 (a) The Hasse diagram of proper inclusions of the considered classes. (b) We can label
each interval by the length of a maximal chain of nested intervals ending in it. We code the graph
by the left-to-right sequence of left endpoints ` and right endpoints r together with their labels.

The Studied Classes. In this paper, we consider two hierarchies of subclasses of interval
graphs which generalize proper and unit interval graphs. The class k-NestedINT consists of
all interval graphs which have representations with no k + 1 intervals 〈u0〉 , . . . , 〈uk〉 such
that 〈u0〉 ( 〈u1〉 ( · · · ( 〈uk〉; see Fig. 1a. The class k-LengthINT consists of all interval
graphs which have representations having at most k different lengths of intervals; see Fig. 1b.
We know by [27] that 1-NestedINT = PROPER INT = UNIT INT = 1-LengthINT.

For an interval graph G, we denote the minimum nesting over all interval representations
by ν(G), and the minimum number of interval lengths by λ(G). Since nested intervals have
different lengths, we know that ν(G) ≤ λ(G) and this inequality may be strict (as in Fig. 1b).
For each k ≥ 2, (k − 1)-LengthINT ( k-LengthINT ( k-NestedINT ( (k + 1)-NestedINT.
Fishburn [10, Theorem 5, p. 177] shows that graphs G in 2-NestedINT have unbounded λ(G),
so 2-NestedINT 6⊆ k-LengthINT for each k. See Figure 2a.

Partial Representation Extension. This problem was introduced by Klavík et al. [19]. A
partial representation R′ of G is an interval representation

{
〈x〉′ : x ∈ V (G′)

}
of an induced

subgraph G′ of G. The vertices of G′ and the intervals of R′ are called pre-drawn. A
representation R of G extends R′ if and only if it assigns the same intervals to the vertices
of G′: 〈x〉 = 〈x〉′ for every x ∈ V (G′).

Problem: Partial Representation Extension – RepExt(C)
Input: A graph G and a partial representation R′ of an induced subgraph G′.

Output: Is there an interval representation of C of G extending R′?

An O(n2)-time algorithm for RepExt(INT) was given in [19]. There are two different
linear-time algorithms [3, 18] for this problem. Minimal obstructions making partial repres-
entations non-extendible are described in [21]. A linear-time algorithm for proper interval
graphs [16] and a quadratic-time algorithm for unit interval graphs [30] are known.

The partial representation extension problems were considered for other graph classes.
Polynomial-time algorithms are known for circle graphs [7], and permutation and function
graphs [15]. The problems are NP-hard for chordal graphs [17] and contact representations
of planar graphs [6]. The complexity is open for circular-arc and trapezoid graphs.
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Previous Results and Motivation. The classes k-LengthINT were introduced by Graham
as a natural hierarchy between unit interval graphs and interval graphs; see Fig. 2a. Unfortu-
nately, even after decades, the only results known are curiosities that illustrate the incredibly
complex structure of k-LengthINT, very different from the case of unit interval graphs. For
instance, k-LengthINT is not closed under disjoint unions; see Fig. 1b.

Leibowitz et al. [23] show that the class 2-LengthINT contains caterpillars, threshold, and
unit interval graphs with one additional vertex. Further, there exist graphs G with λ(G) > 2
such that λ(G \ x) ≤ λ(G)− 2 for x ∈ V (G) [23]. Fishburn [9] shows that there are infinitely
many forbidden induced subgraphs for 2-LengthINT (where UNIT INT are interval graphs
just without K1,3). It is also known [8] that there are graphs in 2-LengthINT such that, when
the shorter length is fixed to 1, the longer one can be one of the real numbers belonging to
arbitrary many distinct intervals of the real line, arbitrary far from each other.

Not much is known about the computational complexity of problems involving k-LengthINT,
even recognition is open for k = 2. In [5], a polynomial-time algorithm is given for computing
λ(G) for interval graphs G which are extended bull-free or almost threshold (which highly
restricts them). Skrien [29] characterized 2-LengthINT which can be realized by lengths zero
(points) and one (unit intervals), leading to a linear-time recognition algorithm. As most
of the efficient algorithms for intersection graph classes require representations, very little
is known how to algorithmically use that a given interval graph can be represented by k
lengths. In this paper, we show that partial representation extension is NP-hard already for
2-LengthINT.

All these difficulties lead us to introduce another hierarchy of k-NestedINT which general-
izes proper interval graphs; see Fig. 2. We illustrate the nice structure of k-NestedINT by
describing a relatively simple linear-time recognition algorithm which we also generalize to a
more involved polynomial-time algorithm for partial representation extension. To the best of
our knowledge, the only reference is Fishburn’s book [10] in which the parameter ν(G) called
depth is considered and linked to k-LengthINT. There are some different generalizations of
proper interval graphs [26], which are less rich and not linked to k-LengthINT.

Since k-NestedINT seem to share many properties with proper interval graphs, several
future directions of research are immediately offered. It should be possible to describe
minimal forbidden induced subgraphs. For the computational problems which are tractable
for proper interval graphs and hard for interval graphs, the complexity of the intermediate
problems for k-NestedINT can be studied. (One such problem is FO property checking,
discussed below.)

Our Results. In [14], a polynomial-time algorithm is given for recognizing 2-LengthINT
when intervals are partitioned into two subsets A and B, each of one length, and both G[A]
and G[B] are connected. This approach might be generalized for partial representation
extension, but we show that removing the connectedness condition makes it hard:

I Theorem 1. The problem RepExt(2-LengthINT) is NP-hard when every pre-drawn interval
is of one length a. It remains NP-hard even when (i) the input prescribes two lengths a = 1
and b, and (ii) for every interval, the input assigns one of the lengths a or b. Also, it is
W[1]-hard when parameterized by the number of pre-drawn intervals.

In comparison, we give a dynamic programming algorithm for recognizing k-NestedINT,
based on a data structure called an MPQ-tree. We show that we can optimize nesting
greedily from the bottom to the top. We compute three different representations for each
subtree and we show how to combine them.
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I Theorem 2. The minimum nesting number ν(G) can be computed in time O(n + m)
where n is the number of vertices and m is the number of edges. Therefore, the problem
Recog(k-NestedINT) can be solved in linear time.

This result has the following application in the computational complexity of deciding
logic formulas over graphs. Let ϕ be the length of a first-order logic formula for graphs. By
the locality, this formula can be decided in G in time nO(ϕ). Since it is W[2]-hard to decide
it for general graphs when parameterized by ϕ, it is natural to ask for which graph classes
there exists an FPT algorithm running in time O(nc · f(ϕ)).

In [13], it is shown that the problem above is W[2]-hard even for interval graphs. On the
other hand, if an interval graph is given together with a k-length interval representation, [13]
gives an FPT algorithm with respect to the parameters ϕ and the particular lengths of the
intervals. It was not clear whether such an algorithm is inherently geometrical. Recently,
Gajarský et al. [12] give a different FPT algorithm for FO property testing for interval graphs
parameterized by ϕ and the nesting k, assuming that a k-nested interval representation is
given by the input. By our result, this assumption can be removed since we can compute an
interval representation of the optimal nesting in linear time.

The problem RepExt(k-NestedINT) is more involved since a straightforward greedy
optimization from the bottom to the top does not work. We describe a complex dynamic
programming algorithm which computes with exponentially many possibilities efficiently.

I Theorem 3. The problem RepExt(k-NestedINT) can be solved in polynomial time.

The last result contrasts with Theorem 1. Partial representation extension of k-NestedINT
and k-LengthINT are problems for which the geometrical version (at most k lengths) is much
harder than the corresponding topological problem (the left-to-right ordering of endpoints of
intervals). A generalization of partial representation extension called bounded representations
is NP-complete for unit interval graphs [16], but polynomial-time solvable for proper interval
graphs [2]. Partially embedded planar graphs can be extended in linear time [1], but extension
of geometric straight-line embeddings is NP-hard [25].

2 Extending Partial Representations with Two Lengths

The complexity of recognizing k-LengthINT is a long-standing open problem, even for k = 2.
In this section, we show that RepExt is NP-complete even when k = 2.

Proof of Theorem 1. Assume (i) and (ii). We adapt the reduction from 3-Partition used
in [17, 16]. Let A1, . . . , A3s and M be input of 3-Partition, with M

2 < Ai <
M
4 and∑

Ai = Ms. The task is to split Ai’s into s triples, each summing to exactly M .
We solve this problem by constructing an interval graph G and a partial representation

R′ as depicted in Fig. 3. We claim that R′ can be extended using two lengths of intervals if
and only if the original instance of 3-Partition is solvable. We set a = 1 and b = s · (M + 1).
The partial representation R′ consists of s+1 disjoint pre-drawn intervals v0, . . . , vs of length
a, with their pre-drawn positions `′(vi) = i · (M + 2). So they split the real line into s equal
gaps of size M + 1 and two infinite regions.

Aside v0, . . . , vs, the graph G contains exactly one vertex w of the length b, adjacent to
every vertex in G. Further, for each Ai, the graph G \ w contains P2Ai

(a path with 2Ai

vertices) as one component, with each vertex of the length a.
This reduction is clearly polynomial. It remains to show that R′ is extendible if and

only if the instance of 3-Partition is solvable. First, because of the length constraint, in
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Figure 3We consider the following input for 3-Partition: s = 2,M = 7, A1 = A2 = A3 = A4 = 2
and A5 = A6 = 3. The associated graph G is depicted on top, and at the bottom we find one of its
extending representations, giving the 3-partitioning {A1, A3, A6} and {A2, A4, A5}.

every extending representation has `(w) = 1; otherwise it would not intersect either v0, or vs.
Therefore, each of the paths P2Ai

has to be placed in exactly one of the s gaps. In every
representation of P2Ai

, it requires the space at least Ai + ε for some ε > 0. Therefore, three
paths can be packed into the same gap if and only if their three integers sum to at most M .
Therefore, an extending representation R′ gives a solution to 3-Partition, and vice versa.
We get W[1]-hardness by a similar reduction from BinPacking, as in [17].

The above reduction can be easily modified when (i) and (ii) are avoided. We add two
extra vertices: w0 adjacent to v0 and ws adjacent to vs such that both are non-adjacent to
w. It forces the length of w to be in the interval [s · (M + 1), s · (M + 1) + 2), so the length b
does not have to be prescribed. Also, this reduction works even when each interval does not
have a length assigned, aside the pre-drawn intervals in R′ indeed. J

3 Basic Properties of k-Nested Interval Graphs

The nesting defines a partial ordering ( of intervals and we denote by ν(u) the length of the
longest chain of nested intervals ending with 〈u〉. By Pred(u), we denote the set of all direct
predecessors of 〈u〉 in (.

I Lemma 4. An interval graph belongs to k-NestedINT if and only if it has an interval
representation which can be partitioned into k proper interval representations.

Proof. Let R be an interval representation partitioned into proper interval representations
R1, . . . ,Rk. No chain of nested intervals contains two intervals from some Ri, so the nesting
is at most k. On the other hand, let R be a k-nested interval representation. We label each
interval by the length of the longest chain of nested intervals ending in it; see Fig. 2b. Notice
that the intervals of each label i ∈ {1, . . . , k} form a proper interval representation Ri. J

Interval graphs and the subclasses k-NestedINT and k-LengthINT are closed under in-
duced subgraphs, so they can be characterized by minimal forbidden induced subgraphs.
Lekkerkerker and Boland [24] describe them for interval graphs, and Roberts [27] proved that
1-NestedINT=1-LengthINT are claw-free interval graphs. On the other hand, 2-LengthINT
have infinitely many minimal forbidden induced subgraphs [9] which are interval graphs.

4 Maximal Cliques and MPQ-trees

I Lemma 5 (Fulkerson and Gross [11]). A graph is an interval graph if and only if there
exists a linear ordering < of its maximal cliques such that, for each vertex, the maximal
cliques containing this vertex appear consecutively.

ISAAC 2016
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Figure 4 Two equivalent MPQ-trees with denoted sections. In all figures, we denote P-nodes by
circles and Q-nodes by rectangles.

An ordering of the maximal cliques satisfying the statement of Lemma 5 is called a
consecutive ordering. Each interval graph has O(n) maximal cliques of total size O(n+m)
which can be found in linear time [28].

PQ-trees. A PQ-tree T is a rooted tree, introduced by Booth and Lueker [4]. Its leaves are
in one-to-one correspondence with the maximal cliques. Its inner nodes are of two types:
P-nodes and Q-nodes. Each P-node has at least two children, each Q-node at least three. The
orderings of the children of inner nodes are given. The PQ-tree T represents one consecutive
ordering <T called the frontier of T which is the ordering of the leaves from left to right.

The PQ-tree T represents all consecutive orderings of G as frontiers of equivalent PQ-trees
which can be constructed from T by sequences of equivalent transformations of two types:
(i) an arbitrary reordering of the children of a P-node, and (ii) a reversal of the order of the
children of a Q-node; see Fig. 4. A subtree of T consists of a node and all its descendants.
For a node N , its subtrees are the subtrees which have the children of N as the roots.

MPQ-trees. The MPQ-tree [22] is an augmentation of the PQ-tree in which the nodes of
T have assigned subsets of V (G) called sections. To a leaf representing a clique C, we assign
one section s(C). Similarly, to each P-node P , we assign one section s(P ). For a Q-node Q
with subtrees T1, . . . , Tq, we have q sections s1(Q), . . . , sq(Q) ordered from left to right, each
corresponding to one subtree. Examples of sections are depicted in Fig. 4.

The section s(C) has all vertices contained in the maximal clique C and no other maximal
clique. The section s(P ) of a P-node P has all vertices that are contained in all maximal
cliques of the subtree rooted at P and in no other maximal clique. Let Q be a Q-node with
subtrees T1, . . . , Tq. Let x be a vertex contained only in maximal cliques of the subtree
rooted at Q, contained in maximal cliques of at least two subtrees. Then x is contained in
every section si(Q) such that some maximal clique of Ti contains x.

Every vertex x is in sections of exactly one node of T . In the case of a Q-node, it is
placed in consecutive sections of this node. For a Q-node Q, if x is placed in a section si(Q),
then x is contained in all cliques of Ti. Every section of a Q-node is non-empty, and two
consecutive sections have a non-empty intersection.

5 Recognizing k-nested Interval Graphs

Our linear-time algorithm is a dynamic programming on the MPQ-tree. We process from
the bottom to the top, and we optimize the minimal nesting.

Two vertices x and y are twins if and only if N [x] = N [y]. The standard observation is
that twins can be ignored since they can be represented by identical intervals, and notice
that this does not increase nesting and the number of lengths. We can locate all twins in
time O(n+m) [28] and we can prune the graph by keeping one vertex per equivalence class
of twins. So no two vertices belong to the exactly same sections of the MPQ-tree.
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G[T ]
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G[T ]

〈u〉 〈v〉

Figure 5 The graphs Ga, Gb and Gc with representations, defining the triple (a, b, c) of T . The
vertices of G[T ] are adjacent to the added vertices u and v and not to the others.

Triples. We compute triples (a, b, c) for each subtree of the MPQ-tree: a is the optimal
nesting of the entire subtree, b is the nesting when the subtree is placed on a side of its
parent, and c is used for Q-nodes. We define for a subtree T a triple (a, b, c) as follows. Let
G[T ] be the interval graph induced by the vertices of the sections of T . Let Ga, Gb and Gc

be graphs as in Fig. 5. We define a = ν(Ga)− 1 = ν(G[T ]), b = ν(Gb)− 1, and c = ν(Gc)− 1.
The triple can be interpreted as increase in the nesting, depending how G[T ] is represented

with respect to the rest of the graph. We compute these triples from the leaves to the root,
and output a of the root as ν(G).

I Lemma 6. For any subtree T , its triple (a, b, c) satisfies a− 1 ≤ b ≤ c ≤ a.

Proof. We prove equivalently that ν(Ga)− 1 ≤ ν(Gb) ≤ ν(Gc) ≤ ν(Ga). We trivially know
that ν(Gb) ≤ ν(Gc) since Gb is an induced subgraph of Gc.

Our definition ofGa implies that ν(Ga) = ν(G[T ])+1, since in every interval representation
of Ga, both endpoints of 〈u〉 are covered by attached paths, and there the representation
of G[T ] is nested in 〈u〉. Since ν(Gb) ≥ ν(G[T ]), the inequality ν(Ga)− 1 ≤ ν(Gb) follows.
Alternatively, for a representation of Gb optimizing nesting, we stretch 〈u〉 (which increases
nesting by at most one) and add the second attached path, to get a representation of Ga.

It remains to show the last inequality that ν(Gc) ≤ ν(Ga). Consider the representation
of Ga with optimal nesting, in which G[T ] is strictly contained inside 〈u〉. By shifting r(u)
to the left and adding 〈v〉, we get a representation of Gc with the same nesting. J

Leaves. We initiate (a, b, c) for every leaf L of the MPQ-tree as follows. If s(L) = ∅, we
put (0, 0, 0); otherwise we put (1, 0, 0). The reason is that the vertices of s(L) form a clique.

P-nodes. Let T1, . . . , Tp be the children of a P-node P , with p ≥ 2, with the computed
triple (ai, bi, ci) for each subtree Ti. We want to compute (a, b, c) for P . We first assume
that s(P ) 6= ∅. Let w ∈ s(P ), then the vertices of every subtree except two outer subtrees Ts

and Tt are nested inside 〈w〉, so their minimal nesting number is increased by one. We can
choose optimally two outer subtrees Ts and Tt, and their outer maximal cliques. Only the
intervals contained in these two outer maximal cliques are not nested inside 〈w〉.

We get the following formulas (see Fig. 6):

a =
{

max{a1, . . . , ap}, s(P ) = ∅,
mins 6=t max{bs, bt, ai : i 6= s, t}+ 1, s(P ) 6= ∅.

b = min
s

max{bs, ai : i 6= s},

c = max{a1, . . . , ap}.

ISAAC 2016
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(1, 0, 0)

(1, 1, 1)

(2, 1, 1)

(2, 2, 2)

(3, 2, 2)

R

Figure 6 An MPQ-tree representing G with the computed triples (a, b, c) (equal on each level)
and a representation minimizing nesting. We have that ν(G) = 3.

I Lemma 7. The formulas compute the triple (a, b, c) of a P-node P correctly.

Proof. Let T be the subtree with P as the root. We know that a = ν(G[T ]). If s(P ) = ∅, then
G[T ] is the disjoint union of G[T1], . . . , G[Tp] with ai = ν(G[Ti]), so a = max{a1, . . . , ap}.
Otherwise, let {w} = s(P ). Vertices of every subtree except for two outer Ts and Tt, which
we are free to choose, are completely nested inside; so we minimize over all possible choices of
Ts 6= Tt. For every i 6= s, t, we have the optimal nesting ai increased by one because of 〈w〉.
Now, Ts can be placed on one side of 〈w〉, while the other side is blocked by the remaining
vertices. Therefore, we can simulate this by Gb of G[Ts], where u corresponds to w, so the
optimal nesting of G[T ] is at least bs + 1, and similarly for Tt and bt + 1.

Concerning b, we have in every representation 〈u〉 with one side covered by the attached
path. Therefore all vertices of G[T ] are either nested in 〈u〉, or intersect the other side. We
can always place all vertices of s(P ) in such a way that they are not nested in 〈u〉, and so we
can ignore them. All vertices of G[T ] except for one subtree Ts, which we can arbitrarily
choose, have to be nested in 〈u〉. Therefore, their optimal nesting ai is increased by one by
〈u〉. For Ts, the nesting again corresponds to the optimal nesting of Gb of G[Ts], which is
bs + 1. Therefore we get ν(Gb) = mins max

(
{ai + 1 : i 6= s} ∪ {bs + 1}

)
, which gives the

formula for b since b = ν(Gb)− 1. Concerning c, we have also 〈v〉. We can choose Ts and Tt

so that Ts has optimized nesting with respect to 〈u〉 and Tt with respect to 〈v〉. But anyway
all intervals of G[Ts] are nested in 〈v〉 and all intervals of G[Tt] are nested in 〈u〉. Therefore
this optimization is useless and we just get ν(Gc) = max{a1, . . . , ap}+ 1. J

I Lemma 8. For a P-node with p children, the triple (a, b, c) can be computed in O(p).

Proof. By Lemma 6, we always have either bi = ai − 1, or bi = ai. Only in the former case,
we can optimize the nesting by choosing s or t equal i. We call these Ti savable. Concerning
c, we just find the maximum ai which can be done in time O(p). Concerning a and b, we
first locate all Ti which maximize ai. If at least one of them is not savable, say Tj , then
a = aj + 1 and b = aj . Otherwise if all are savable, then the values depend on the number of
Ti’s maximizing ai. If there are at most two, then a = ai, otherwise a = ai + 1. If there is at
most one, then b = bi, otherwise b = bi + 1. J

Q-nodes. To optimize Q-nodes, the values c are also required. Let Q be a Q-node with
children T1, . . . , Tq, where q ≥ 3, each with a triple (ai, bi, ci). We first work with each section
si(Q) separately. For intervals of sections of Q, we define their nesting ( as follows: u ( v if
v is contained in a section more to the left than all sections of u and in a section more to the
right than all sections of u. (In every representation, 〈u〉 is contained in 〈v〉.)

For each subtree Ti, we choose whether to optimize its left side, or its right side. For the
optimized side, the nesting is increased by bi, while for the other side it is increased by ci.
We denote the increase in the nesting on the left side by ©←i and on the right side by ©→i .
So we choose either ©←i = bi and ©→i = ci, or ©←i = ci and ©→i = bi.
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Suppose that we have some choice of ©←i and ©→i for each subtree Ti. Let ν(x) be the
length of the longest chain of nested intervals ending with 〈x〉, minimized over all possible
interval representations of G. We compute the nesting ν(x) for each x belonging to sections
of Q, from bottom to the top of (. Suppose that we process some x and we know ν(y) for
every direct predecessor of x, and let ss(Q) be the leftmost section of x and st(Q) be the
rightmost section. We get the following formula:

ν(x) = max{©←s ,©→t , ai, ν(y) : s < i < t and y ∈ Pred(x)
}

+ 1.

Then, we compute (a, b, c) as follows:

a = max{a1, . . . , aq, ν(y) : y ∈ Pred(u)},
b← = max{b1, a2, . . . , aq, ν(y) : y ∈ Pred(u)},
b→ = max{a1, . . . , aq−1, bq, ν(y) : y ∈ Pred(u)},
c = max{a1, . . . , aq, ν(y) : y ∈ Pred(u) or y ∈ Pred(v)}.

We put b = min{b←, b→}. For each of numbers a, b and c, we choose the minimum over all
possible choices of ©←i and ©→i .

I Lemma 9. The formulas compute the triple (a, b, c) of a Q-node Q correctly.

Proof. Notice that there exists a representation such that two intervals of sections of Q are
nested as in the relation ( defined above. For each subtree with some choice of ©←i and
©→i , we have precomputed what is the optimal nesting and what is the length of a longest
chain ending with a vertex not contained in the leftmost clique (©←i ), and of a longest chain
not ending with a vertex in the rightmost clique (©→i ). The formulas extends these chains
according to the vertices of sections of Q and of added vertices u and v in Ga, Gb, Gc. The
length of a longest chain ending with u or v is used. J

I Lemma 10. For each of a, b←, b→ and c, the choices of ©←i and ©→i are done greedily.

Proof. We argue for a, the argument is similar for the others. Notice that values ©←i and
©→i describe the starting length of some chains. We can easily compute how much are these
chains extended by the intervals of sections of Q and by u. We find out which side needs to
save more, for which we choose bi, and for the other side we choose ci. These values can be
chosen for different subtrees independently since their chains start differently. J

I Lemma 11. For a Q-node Q with q children, the triple (a, b, c) can be computed in time
O(q +mQ), where mQ is the number of edges of G[Q].

Proof. For every interval u in sections of Q, we know its leftmost section and its rightmost
section. We compute the DAG of nesting for all vertices of the sections of Q. This can be
done by considering all edges, and testing for each whether the pair is nested.

For each of a, b←, b→, and c, we add vertex u (and possibly v) to this DAG, together
with correct edges according to their nesting. Then for each vertex of this DAG, we compute
the length of the longest chain starting in this vertex. This can be done in linear time by
processing the DAG from top to the bottom. Next, we process the subtrees Ti. For each,
we compute how much chains of length ai, ©←i and ©→i are prolonged. Then we greedily
choose ©←i and ©→i from bi and ci. The total consumed time is O(q +mQ). J

Proof of Theorem 2. If a graph is an interval graph, we can compute its MPQ-tree in time
O(n+m). Then we process the tree from the bottom to the root and compute triples (a, b, c)
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for every node, as described above. We output a of the root which is the minimal nesting
number ν(G). By Lemmas 7 and 9, this value is computed correctly. By Lemmas 8 and 11,
the running time of the algorithm is O(n+m). J

6 Extending Partial Representations of Minimal Nesting

In this section, we sketch a polynomial-time algorithm of Theorem 3; see the full version [20].

Partial Ordering C. The paper [18] characterizes all extendible partial representations in
terms of consecutive orderings. A certain partial ordering C of maximal cliques is derived
from the partial representation R′.

I Lemma 12 ([18]). A partial representation R′ is extendible if and only if there exists a
consecutive ordering < of the maximal cliques extending C. The consecutive orderings of
extending representations are exactly the consecutive ordering extending C.

General Idea. We want to minimize the nesting similarly as in Section 5. A partial
representation R′ poses three restrictions: (i) Some pre-drawn intervals can be nested in
each other which increases the nesting. (ii) The consecutive ordering has to extend C which
restricts the possible shuffling of subtrees. (iii) Some subtrees can be optimized differently
depending whether they are placed on the left or on the right of its parent.

Concerning (iii), instead of a triple, we compute for every subtree T a tuple (a, b←, c→, b→, c←).
These number are equal to minimum nestings of extending representations of partial repres-
entations of Ga, Gb and Gc, in which the pre-drawn vertices of G[T ] are pre-drawn the same
and we have pre-drawn 〈u〉′ (and possibly 〈v〉′) with their added neighbors. The difference
between b← and b→ is whether 〈u〉′ covers the right side of G[T ], or covers the left side of
G[T ]; similarly for c← and c→.

For (i), we compute for pre-drawn intervals 〈x〉′ their nesting ν(x) in an optimal extending
representation of R′ constructed by the algorithm, from bottom to the top as they are
encountered in the MPQ-tree. We show that for each variable ν(x) and each b←, c→, b→ and
c←, their values are determined up to one and we can force some subtrees to optimize them.
Unfortunately, some of these values cannot be optimized simultaneously, so we introduce
the concept of an optimization graph H. The variables are represented by vertices and we
have an edge xy ∈ E(H) if and only if they cannot be optimized at the same time. The
optimizable subsets of variables are the independent sets in H.

P-nodes. We have a P-node P with subtrees T1, . . . , Tp with the computed tuple
(ai, b

←
i , c

→
i , b

→
i , c

←
i ) and the optimization graph Hi for each subtree Ti and ν(x). Because of

(ii), we get that Ts has to be one of the minimal elements min(C) of C and Tt one of the
maximal elements max(C). Suppose that Ts ∈ min(C) and Tt ∈ max(C) is fixed.

We first compute ν(x) for intervals of s(P ), according to (. Assuming that we know ν(y)
for every y ∈ Pred(x), we compute ν(x) as follows:

ν(x) = max
{
b←s , b

→
t , ai, ν(y) : i 6= s, t and y ∈ Pred(x)

}
+ 1.
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Then, we compute (a, b←, b→, c→, c←):

a = max{a1, . . . , ap, ν(y) : y ∈ Pred(u)}.
b← = max{b←s , ai, ν(y) : i 6= s and y ∈ Pred(u)}.
c→ = max{b→t , ai, ν(y) : i 6= t and y ∈ Pred(v)}.
b→ = max{b→t , ai, ν(y) : i 6= t and y ∈ Pred(u)}.
c← = max{b←s , ai, ν(y) : i 6= s and y ∈ Pred(v)}.

The value of a can be always obtained greedily. Since the values given by T1, . . . , Tn are
not fully determined, we create a new optimization subgraph H of T as the disjoint union of
H1, . . . ,Hp together with new pre-drawn vertices of s(P ) and b←, b→, c← and c→, and we
add suitable edges.

We run the above computation over all choices of Ts ∈ min(C) and Tt ∈ max(C). Since
b← and c→ might be optimized using different subtrees Ts and Tt than b→ and c←, we argue
that the situation is not very limited, so we can combine optimizations together in one H.

Q-node. We have a Q-node Q with subtrees T1, . . . , Tq with the computed tuple
(ai, b

←
i , c

→
i , b

→
i , c

←
i ) and the optimization graph Hi for each subtree Ti and ν(x). Because

of (ii), we get that the Q-node might be flippable (which greatly restricts it), or not. For
a subtree Ti, we may optimize it with respect to its left side, which is encoded by b←i and
c→i , or with respect to the right side, which is encoded by c←i and b→i . In the former case,
we put ©←i = b←i and ©→i = c→i . In the latter case, we put ©←i = c←i and ©→i = b→i . We
have trade-offs leading to exponentially many possibilities how ©←i and ©→i can be chosen,
which we capture by the optimization graph H.

Suppose that we fix some choices of ©←i and ©→i . Unlike for P-nodes, we compute ν(x)
for all intervals of sections of Q, not just for the pre-drawn ones. For two such vertices, we
define ( by nesting of sections, similarly as in Section 5. We process them from the bottom
to the top according to (. Suppose that we process some x and we know ν(y) for every
direct predecessor of x, and let ss(Q) be the leftmost section of x and st(Q) be the rightmost
section. We get the following formula:

ν(x) = max{©←s ,©→t , ai, ν(y) : s < i < t and y ∈ Pred(x)
}

+ 1.

Then, we compute (a, b←, b→, c→, c←) as follows:

a = max{a1, . . . , aq, ν(y) : y ∈ Pred(u)}
b← = max{b←1 , ai, ν(y) : i > 1 and y ∈ Pred(u)}.
c→ = max{b→n , ai, ν(y) : i < n and y ∈ Pred(v)}.
b→ = max{b→n , ai, ν(y) : i < n and y ∈ Pred(u)}.
c← = max{b←1 , ai, ν(y) : i > 1 and y ∈ Pred(v)}.

By some involved structural properties, each variable is determined up to one. We encode all
possibilities into the optimization graph H, similarly as in the case of P-nodes.

Putting Together. We construct a polynomial-time algorithm for RepExt(k-NestedINT)
as follows. We process the MPQ-tree from the bottom to the top. We have to argue that
each step can be computed in polynomial time (easy) and that it computes the tuples
(a, b←, b→, c→, c←) and the optimization graph H correctly (involved).
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Abstract
We study pattern matching problems on two major representations of uncertain sequences used
in molecular biology: weighted sequences (also known as position weight matrices, PWM) and
profiles (i.e., scoring matrices). In the simple version, in which only the pattern or only the
text is uncertain, we obtain efficient algorithms with theoretically-provable running times using
a variation of the lookahead scoring technique. We also consider a general variant of the pattern
matching problems in which both the pattern and the text are uncertain. Central to our solution
is a special case where the sequences have equal length, called the consensus problem. We
propose algorithms for the consensus problem parameterized by the number of strings that match
one of the sequences. As our basic approach, a careful adaptation of the classic meet-in-the-
middle algorithm for the knapsack problem is used. On the lower bound side, we prove that our
dependence on the parameter is optimal up to lower-order terms conditioned on the optimality
of the original algorithm for the knapsack problem.
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1 Introduction

We study two well-known representations of uncertain texts: weighted sequences and profiles.
A weighted sequence (also known as position weight matrix, PWM) for every position and
every letter of the alphabet specifies the probability of occurrence of this letter at this
position; see Table 1 for an example. A weighted sequence represents many different strings,
each with the probability of occurrence equal to the product of probabilities of its letters
at subsequent positions of the weighted sequence. Usually a threshold 1

z is specified, and
one considers only strings that match the weighted sequence with probability at least 1

z . A
scoring matrix (or a profile) of length m is an m× σ matrix. The score of a string of length
m is the sum of scores in the scoring matrix of the subsequent letters of the string at the
respective positions. A string is said to match a scoring matrix if its matching score is above
a specified threshold Z.
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Table 1 A weighted sequence X of length 4 over the alphabet Σ = {a, b}.

X[1] X[2] X[3] X[4]

π
(X)
1 (a) = 1/2 π

(X)
2 (a) = 1 π

(X)
3 (a) = 3/4 π

(X)
4 (a) = 0

π
(X)
1 (b) = 1/2 π

(X)
2 (b) = 0 π

(X)
3 (b) = 1/4 π

(X)
4 (b) = 1

Weighted Pattern Matching and Profile Matching. First of all, we study the standard
variants of pattern matching problems on weighted sequences and profiles, in which only
the pattern or the text is an uncertain sequence. In the best-known formulation of the
Weighted Pattern Matching problem, we are given a weighted sequence of length n,
called a text, a solid (standard) string of length m, called a pattern, both over an alphabet of
size σ, and a threshold probability 1

z . We are asked to find all positions in the text where the
fragment of length m represents the pattern with probability at least 1

z . Each such position
is called an occurrence of the pattern in the text; we also say that the fragment of the text
and the pattern match. The Weighted Pattern Matching problem can be solved in
O(σn logm) time via the Fast Fourier Transform [5]. In a more general, indexing variant of
the problem, considered in [1, 12], one can preprocess a weighted text in O(nz2 log z) time to
report all occ occurrences of a given solid pattern of length m in O(m+ occ) time. (A similar
indexing data structure, which assumes z = O(1), was presented in [4].) Very recently, the
index construction time was reduced to O(nz) for constant-sized alphabets [2].

In the classic Profile Matching problem, the pattern is an m × σ profile, the text
is a solid string of length n, and our task is to find all positions in the text where the
fragment of length m has a score which is at least Z. A naïve approach to the Profile
Matching problem works in O(nm+mσ) time. A broad spectrum of heuristics improving
this algorithm in practice is known; for a survey see [16]. One of the principal techniques,
coming in different flavours, is lookahead scoring that consists in checking if a partial match
could possibly be completed by the highest scoring letters in the remaining positions of the
scoring matrix and, if not, pruning the naïve search. The Profile Matching problem can
also be solved in O(σn logm) time via the Fast Fourier Transform [17].

Weighted Consensus and Profile Consensus. As our most involved contribution, we study
a general variant of pattern matching on weighted sequences and the consensus problems
on uncertain sequences, which are closely related to the Multichoice Knapsack problem.
In the Weighted Consensus problem, given two weighted sequences of the same length,
we are to check if there is a string that matches each of them with probability at least 1

z .
A routine to compare user-entered weighted sequences with existing weighted sequences in
the database is used, e.g., in JASPAR1, a well-known database of PWMs. In the General
Weighted Pattern Matching (GWPM) problem, both the pattern and the text are
weighted. In the most common definition of the problem (see [3, 12]), we are to find all
fragments of the text that give a positive answer to the Weighted Consensus problem with
the pattern. The authors of [3] proposed an algorithm for the GWPM problem based on the
weighted prefix table that works in O(nz2 log z + nσ) time. Solutions to these problems can
be applied in transcriptional regulation: motif and regulatory module finding; and annotation
of regulatory genomic regions.

In an analogous way to the Weighted Consensus problem, we define the Profile
Consensus problem. Here we are to check for the existence of a string that matches both

1 http://jaspar.genereg.net

http://jaspar.genereg.net
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the scoring matrices above threshold Z. The Profile Consensus problem is actually a
special case of the well-known (especially in practice) Multichoice Knapsack problem
(also known as the Multiple Choice Knapsack problem). In this problem, we are given
n classes C1, . . . , Cn of at most λ items each—N items in total—each item c characterized
by a value v(c) and a weight w(c). The goal is to select one item from each class so that the
sums of values and of weights of the items are below two specified thresholds, V and W . (In
the more intuitive formulation of the problem, we require the sum of values to be above a
specified threshold, but here we consider an equivalent variant in which both parameters are
symmetric.) The Multichoice Knapsack problem is widely used in practice, but most
research concerns approximation or heuristic solutions; see [14] and references therein. As far
as exact solutions are concerned, the classic meet-in-the middle approach by Horowitz and
Sahni [11], originally designed for the (binary) Knapsack problem, immediately generalizes
to an O∗(λdn

2 e)-time2 solution for Multichoice Knapsack.
Several important problems can be expressed as special cases of the Multichoice

Knapsack problem using folklore reductions (see [14]). This includes the Subset Sum
problem, which, for a set of n integers, asks whether there is a subset summing up to a given
integer Q, and the k-Sum problem which, for k = O(1) classes of λ integers, asks to choose
one element from each class so that the selected integers sum up to zero. These reductions
give immediate hardness results for the Multichoice Knapsack problem, and they can be
adjusted to yield the same consequences for Profile Consensus. For the Subset Sum
problem, as shown in [7, 10], the existence for every ε > 0 of an O∗(2εn)-time solution would
violate the Exponential Time Hypothesis (ETH) [13, 15]. Moreover, the O∗(2n/2) running
time, achieved in [11], has not been improved yet despite much effort. The 3-Sum conjecture
[9] and the more general k-Sum conjecture state that the 3-Sum and k-Sum problems cannot
be solved in O(λ2−ε) time and O(λd

k
2 e(1−ε)) time, respectively, for any ε > 0.

Our Results. As the first result, we show how the lookahead scoring technique combined
with a data structure for answering longest common prefix (LCP) queries in a string can
be applied to obtain simple and efficient algorithms for the standard pattern matching
problems on uncertain sequences. For a weighted sequence, by R we denote the size of its
list representation, and by λ the maximal number of letters with score at least 1

z at a single
position (thus λ ≤ min(σ, z)). In the Profile Matching problem, we set M as the number
of strings that match the scoring matrix with score above Z. In general M ≤ σm, however,
we may assume that for practical data this number is actually much smaller. We obtain the
following running times:
O(mσ + n logM) for Profile Matching;
O(R log2 log λ+ n log z) deterministic and O(R+ n log z) randomized (Las Vegas, failure
with probability R−c for any given constant c) for Weighted Pattern Matching.

The more complex part of our study is related to the consensus problems and to the
GWPM problem. Instead of considering Profile Consensus, we study the more general
Multichoice Knapsack. We introduce parameters based on the number of solutions with
feasible weight or value: AV = |{(c1, . . . , cn) : ci ∈ Ci for all i = 1, . . . , n,

∑
i v(ci) ≤ V }|,

that is, the number of choices of one element from each class that satisfy the value threshold;
AW = |{(c1, . . . , cn) : ci ∈ Ci for all i = 1, . . . , n,

∑
i w(ci) ≤W}|; A = max(AV , AW ), and

a = min(AV , AW ). We obtain algorithms with the following complexities:

2 The O∗ notation suppresses factors polynomial with respect to the instance size (encoded in binary).
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O(N +
√
aλ logA) for Multichoice Knapsack;

O(R+
√
zλ(log log z+ log λ)) for Weighted Consensus and O(n

√
zλ(log log z+ log λ))

for General Weighted Pattern Matching.

Note that a ≤ A ≤ λn and thus the running time of our algorithm for Multichoice
Knapsack is bounded by O(N + nλ(n+1)/2 log λ). Up to lower order terms (i.e., the factor
n log λ = (λ(n+1)/2)o(1)), this matches the time complexities of the fastest known solutions
for both Subset Sum (also binary Knapsack) and 3-Sum. The main novel part of our
algorithm for Multichoice Knapsack is an appropriate (yet intuitive) notion of ranks
of partial solutions. We also provide a simple reduction from Multichoice Knapsack to
Weighted Consensus, which lets us transfer the negative results to the GWPM problem.

The existence, for every ε > 0, of an O∗(zε)-time solution for Weighted Consensus
would violate the Exponential Time Hypothesis.
For every ε > 0, an O∗(z0.5−ε)-time solution for Weighted Consensus would imply an
O∗(2(0.5−ε)n)-time algorithm for Subset Sum.
For every ε > 0, an Õ(R+ z0.5λ0.5−ε)-time3 solution for Weighted Consensus would
imply an Õ(λ2−ε)-time algorithm for 3-Sum.

For the higher-order terms our complexities match the conditional lower bounds; therefore,
we put significant effort to keep the lower order terms of the complexities as small as possible.

Model of Computations. For problems on weighted sequences, we assume the word-RAM
model with word size w = Ω(logn+ log z) and σ = nO(1). We consider the log-probability
model of representations of weighted sequences, that is, we assume that probabilities in the
weighted sequences and the threshold probability 1

z are all of the form c
p

2dw , where c and d are
constants and p is an integer that fits in a constant number of machine words. Additionally,
the probability 0 has a special representation. The only operations on probabilities in our
algorithms are multiplications and divisions, which can be performed exactly in O(1) time
in this model. Our solutions to the Multichoice Knapsack problem only assume the
word-RAM model with word size w = Ω(logS + log a), where S is the sum of integers in the
input instance; this does not affect the O∗ running time.

Structure of the Paper. We start with Preliminaries, where we formally introduce the
problems and the main notions used throughout the paper. The following three sections
describe our algorithms: in Section 3 for Profile Matching and Weighted Pattern
Matching; in Section 4 for Profile Consensus; and in Section 5 for Weighted Con-
sensus and General Weighted Pattern Matching. We conclude with a few remarks
in Section 6.

2 Preliminaries

Let Σ = {s1, s2, . . . , sσ} be an alphabet of size σ. A string S over Σ is a finite sequence of
letters from Σ. We denote the length of S by |S| and, for 1 ≤ i ≤ |S|, the i-th letter of S by
S[i]. By S[i..j] we denote the string S[i] . . . S[j] called a factor of S (if i > j, then the factor
is an empty string). A factor is called a prefix if i = 1 and a suffix if j = |S|. For two strings
S and T , we denote their concatenation by S · T (ST in short).

3 The Õ notation ignores factors polylogarithmic with respect to the input size.



T. Kociumaka, S. P. Pissis, and J. Radoszewski 46:5

For a string S of length n, by lcp(i, j) we denote the length of the longest common prefix
of factors S[i..n] and S[j..n]. The following fact specifies a well-known efficient data structure
answering such queries. It consists of the suffix array with its inverse, the LCP table and a
data structure for range minimum queries on the LCP table; see [6] for details.

I Fact 1. Let S be a string of length n over an alphabet of size σ = nO(1). After O(n)-time
preprocessing, given indices i and j (1 ≤ i, j ≤ n) one can compute lcp(i, j) in O(1) time.

The Hamming distance between two strings X and Y of the same length, denoted by
dH(X,Y ), is the number of positions where the strings have different letters.

2.1 Profiles
In the Profile Matching problem, we consider a scoring matrix (a profile) P of size m×σ.
For i ∈ {1, . . . ,m} and j ∈ {1, . . . , σ}, we denote the integer score of the letter sj at the
position i by P [i, sj ]. The matching score of a string S of length m with the matrix P is

Score(S, P ) =
m∑
i=1

P [i, S[i]].

If Score(S, P ) ≥ Z for an integer threshold Z, then we say that the string S matches the
matrix P above threshold Z. We denote the number of strings S that match P above threshold
Z by NumStringsZ(P ).

For a string T and a scoring matrix P , we say that P occurs in T at position i with
threshold Z if T [i..i+m− 1] matches P above threshold Z. Then OccZ(P, T ) is the set of all
positions where P occurs in T . These notions let us define the Profile Matching problem:

Profile Matching Problem
Input: A string T of length n, a scoring matrix P of size m× σ, and a threshold Z.
Output: The set OccZ(P, T ).
Parameters: M = NumStringsZ(P ).

2.2 Weighted Sequences
A weighted sequence X = X[1] . . . X[n] of length |X| = n over alphabet Σ = {s1, s2, . . . , sσ}
is a sequence of sets of pairs of the form X[i] = {(sj , π(X)

i (sj)) : j ∈ {1, 2, . . . , σ}}. Here,
π

(X)
i (sj) is the occurrence probability of the letter sj at the position i ∈ {1, . . . , n}. These

values are non-negative and sum up to 1 for a given i.
For all our algorithms, it is sufficient that the probabilities sum up to at most 1 for each

position. Also, the algorithms sometimes produce auxiliary weighted sequences with sum of
probabilities being smaller than 1 on some positions.

We denote the maximum number of letters occurring at a single position of the weighted
sequence (with non-zero probability) by λ and the total size of the representation of a weighted
sequence by R. The standard representation consists of n lists with up to λ elements each, so
R = O(nλ). However, the lists can be shorter in general. Also, if the threshold probability 1

z

is specified, at each position of a weighted sequence it suffices to store letters with probability
at least 1

z , and clearly there are at most z such letters for each position. This reduction can
be performed in linear time, so we shall always assume that λ ≤ z.

The probability of matching of a string S with a weighted sequence X, |S| = |X| = m, is

P(S,X) =
m∏
i=1

π
(X)
i (S[i]).
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We say that a string S matches a weighted sequence X with probability at least 1
z , denoted

by S ≈ 1
z
X, if P(S,X) ≥ 1

z . Given a weighted sequence T , by T [i..j] we denote weighted
sequence, called a factor of T , equal to T [i] . . . T [j] (if i > j, then the factor is empty). We
say that a string P occurs in T at position i if P matches the factor T [i..i+m− 1]. The set
of positions where P occurs in T is denoted by Occ 1

z
(P, T ).

Weighted Pattern Matching Problem
Input: A string P of length m and a weighted sequence T of length n with at most λ
letters at each position and R in total, and a threshold probability 1

z .
Output: The set Occ 1

z
(P, T ).

3 Profile Matching and Weighted Pattern Matching

In this section we present a solution to the Profile Matching problem. Afterwards, we
show that it can be applied for Weighted Pattern Matching as well.

For a scoring matrix P , the heavy string of P , denoted H(P ), is constructed by choosing
at each position the heaviest letter, that is, the letter with the maximum score (breaking ties
arbitrarily). Intuitively, H(P ) is a string that matches P with the maximum score.

I Observation 2. If we have Score(S, P ) ≥ Z for a string S of length m and an m × σ
scoring matrix P , then dH(H(P ), S) ≤ blogMc where M = NumStringsZ(P ).

Proof. Let d = dH(H(P ), S). We can construct 2d strings of length |S| that match P with
a score above Z by taking either of the letters S[j] or H(P )[j] at each position j such that
S[j] 6= H(P )[j]. Hence, 2d ≤M , which concludes the proof. J

Our solution for the Profile Matching problem works as follows. We first construct
P ′ = H(P ) and the data structure for finding lcp values between suffixes of P ′ and T . Let the
variable s store the matching score of P ′. In the p-th step, we calculate the matching score of
T [p..p+m−1] by iterating through subsequent mismatches between P ′ and T [p..p+m−1] and
making adequate updates in the matching score s′, which starts at s′ = s. The mismatches
are found using lcp-queries. This process terminates when the score s′ drops below Z or
when all the mismatches have been found. In the end, we include p in OccZ(P, T ) if s′ ≥ Z.
This gives the following result.

I Theorem 3. Profile Matching problem can be solved in O(mσ + n logM) time.

Proof. Let us bound the time complexity of the presented algorithm. The heavy string P ′ can
be computed in O(mσ) time. The data structure for lcp-queries in P ′T can be constructed
in O(n+m) time by Fact 1. Each query for lcp(P ′[i..m], T [j..n]) can then be answered in
constant time by a corresponding lcp-query in P ′T , potentially truncated to the end of P ′.
Finally, for each position p in the text T we will consider at most blogMc+ 1 mismatches
between P ′ and T , as afterwards the score s′ drops below Z due to Observation 2. J

Basically the same approach can be used for Weighted Pattern Matching. In a
natural way, we extend the notion of a heavy string to weighted sequences. Now we can
restate Observation 2 in the language of probabilities instead of scores:

I Observation 4. If a string P matches a weighted sequence X of the same length with
probability at least 1

z , then dH(H(X), P ) ≤ blog zc.
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Comparing to the solution to Profile Matching, we compute the heavy string of the
text instead of the pattern. An auxiliary variable α stores the matching probability between
a factor of H(T ) and the corresponding factor of T ; it is updated when we move to the next
position of the text. The rest of the algorithm is basically the same as previously. In the
implementation, we perform the following operations on a weighted sequence:

computing the probability of a given letter at a given position,
finding the letter with the maximum probability at a given position.

In the standard list representation, the latter can be performed on a single weighted sequence
in O(1) time after O(R)-time preprocessing. We can perform the former in constant time
if, in addition to the list representation, we store the letter probabilities in a dictionary
implemented using perfect hashing [8] (we build a single hash table for all positions). This way,
we can implement the algorithm in O(n log z +R) time w.h.p. Alternatively, deterministic
dictionaries [18, Theorem 3] (one for each position) can be used to obtain a deterministic
solution in O(R log2 log λ+ n log z) time. We arrive at the following result.

I Theorem 5. Weighted Pattern Matching can be solved in O(R+ n log z) time with
high probability by a Las-Vegas algorithm or in O(R log2 log λ+n log z) time deterministically.

I Remark. In the same complexity one can solve the GWPM problem with a solid text.

4 Profile Consensus as Multichoice Knapsack

Let us start with a precise statement of the Multichoice Knapsack problem.

Multichoice Knapsack Problem
Input: A set C of N items partitioned into n disjoint classes Ci, each of size at most λ,
two integers v(c) and w(c) for each item c ∈ C, and two thresholds V and W .
Question: Does there exist a choice S (a set S ⊆ C such that |S ∩ Ci| = 1 for each i)
satisfying both

∑
c∈S v(c) ≤ V and

∑
c∈S w(c) ≤W?

Parameters: AV and AW : the number of choices S satisfying
∑
c∈S v(c) ≤ V and∑

c∈S w(c) ≤W , respectively; as well as A = max(AV , AW ) and a = min(AV , AW ).

Indeed, we see that the Profile Consensus problem reduces to the Multichoice
Knapsack problem. For two m× σ scoring matrices, we construct n = m classes of λ = σ

items each, with values equal to the negated scores of the letters in the first matrix and
weights equal to the negated scores in the second matrix; both thresholds V and W are equal
to −Z.

For a fixed instance of Multichoice Knapsack, we say that S is a partial choice if
|S ∩ Ci| ≤ 1 for each class. The set D = {i : |S ∩ Ci| = 1} is called its domain. For a partial
choice S, we define v(S) =

∑
c∈S v(c) and w(S) =

∑
c∈S w(c).

The classicO(2n/2)-time solution to the Knapsack problem [11] partitionsD = {1, . . . , n}
into two domains D1, D2 of size roughly n/2, and for each Di it generates all partial choices S
ordered by v(S). Hence, it reduces the problem to an instance of Multichoice Knapsack
with two classes. It is solved using the following folklore lemma.

I Lemma 6. The Multichoice Knapsack problem can be solved in O(N) time if n = 2
and the elements c of C1 and C2 are sorted by v(c).

The same approach generalizes to Multichoice Knapsack. The partition is chosen to
balance the number of partial choices in each domain, and the worst-case time complexity is
O(
√
Qλ), where Q =

∏n
i=1 |Ci| is the number of choices.
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Our aim in this section is to replace Q with the parameter a (which never exceeds Q).
The overall running time is going to be O(N +

√
aλ logA).

Two challenges arise when adapting the meet-in-the-middle approach: how to restrict
the set of partial choices to be generated so that a feasible solution is not missed, and how
to define a partition D = D1 ∪D2 to balance the number of partial choices generated for
D1 and D2. A natural idea to deal with the first issue is to consider only partial choices
with small values v(S) or w(S). This is close to our actual solution, which is based on the
notion of ranks of partial choices. Our approach to the second problem is to consider multiple
partitions: those of the form D = {1, . . . , j}∪ {j+ 1, . . . , n} for 1 ≤ j ≤ n. This results in an
extra O(n) factor in the time complexity. However, preprocessing can assure n = O( logA

logλ ).
While dealing with these two issues, a careful implementation is required to avoid several
further extra factors in the running time. In case of our algorithm, this is only O(log λ),
which stems from the fact that we need to keep partial solutions ordered by v(S).

For a partial choice S, we define rankv(S) as the number of partial choices S′ with
the same domain for which v(S′) ≤ v(S). We symmetrically define rankw(S). Ranks are
introduced as an analogue of match probabilities in weighted sequences. Probabilities are
multiplicative, while for ranks we have submultiplicativity:

I Fact 7. If S = S1 ∪ S2 is a decomposition of a partial choice S into two disjoint subsets,
then rankv(S1) rankv(S2) ≤ rankv(S) (and same for rankw).

Proof. Let D1 and D2 be the domains of S1 and S2, respectively. For every partial choices
S′1 over D1 and S′2 over D2 such that v(S′1) ≤ v(S1) and v(S′2) ≤ v(S2), we have v(S′1∪S′2) =
v(S′1) + v(S′2) ≤ v(S). Hence, S′1 ∪ S′2 must be counted while determining rankv(S). J

For 0 ≤ j ≤ n, let Lj be the list of partial choices with domain {1, . . . , j} ordered by
value v(S), and for ` > 0 let V (`)

Lj
be the value v(S) of `-th element of Lj (∞ if ` > |Lj |).

Analogously, for 1 ≤ j ≤ n + 1, we define Rj as the list of partial choices over {j, . . . , n}
ordered by v(S), and for r > 0, V (r)

Rj
as the value of the r-th element of Rj (∞ if r > |Rj |).

The following two observations yield a decomposition of each choice into a single item
and two partial solutions of a small rank. In particular, we do not need to know AV in order
to check if the ranks are sufficiently large.

I Lemma 8. Let ` and r be positive integers such that V (`)
Lj

+V
(r)
Rj+1

> V for each 0 ≤ j ≤ n.
For every choice S with v(S) ≤ V , there is an index j ∈ {1, . . . , n} and a decomposition
S = L ∪ {c} ∪R such that v(L) < V

(`)
Lj−1

, c ∈ Cj, and v(R) < V
(r)
Rj+1

.

Proof. Let S = {c1, . . . , cn} with ci ∈ Ci and, for 0 ≤ i ≤ n, let Si = {c1, . . . , ci}. If
v(Sn−1) < V

(`)
Ln−1

, we set L = Sn−1, c = cn, and R = ∅, satisfying the claimed conditions.
Otherwise, we define j as the smallest index i such that v(Si) ≥ V (`)

Li
, and we set L = Sj−1,

c = cj , and R = S \ Sj . The definition of j implies v(L) < V
(`)
Lj−1

and v(L ∪ {c}) ≥ V
(`)
Lj

.
Moreover, we have v(L∪{c})+v(R) = v(S) ≤ V < V

(`)
Lj

+V (r)
Rj+1

, and thus v(R) < V
(r)
Rj+1

. J

I Fact 9. Let `, r > 0. If V (`)
Lj

+ V
(r)
Rj+1

≤ V for some j ∈ {0, . . . , n}, then ` · r ≤ AV .

Proof. Let L and R be the `-th and r-th entry in Lj and Rj+1, respectively. Note that
v(L ∪R) ≤ V implies rankv(L ∪R) ≤ AV by definition of AV . Moreover, rankv(L) ≥ ` and
rankv(R) ≥ r (the equalities may be sharp due to draws). Now, Fact 7 yields the claimed
bound. J
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Note that Lj can be obtained by interleaving |Cj | copies of Lj−1, where each copy
corresponds to extending the choices from Lj−1 with a different item. If we were to construct
Lj having access to the whole Lj−1, we could proceed as follows. For each c ∈ Cj , we
maintain an iterator on Lj−1 pointing to the first element S on Lj−1 for which S ∪ {c}
has not yet been added to Lj . The associated value is v(S ∪ {c}). All iterators initially
point at the first element of Lj−1. Then the next element to append to Lj is always S ∪ {c}
corresponding to the iterator with minimum value. Having processed this partial choice,
we advance the pointer (or remove it, once it has already scanned the whole Lj−1). This
process can be implemented using a binary heap Hj as a priority queue, so that initialization
requires O(|Cj |) time and outputting a single element takes O(log |Cj |) time.

For r ≥ 0, let L(r)
j be the prefix of Lj of length min(r, |Lj |) and R(r)

j be the prefix of Rj
of length min(r, |Rj |). A technical transformation of the procedure stated above leads to an
online algorithm that constructs the prefixes L(r)

j and R(r)
j (details will be provided in the

full version). Along with each reported partial choice S, the algorithm also computes w(S).

I Lemma 10. After O(N)-time initialization, one can construct L(i)
1 , . . . ,L(i)

n online for
i = 0, 1, . . ., spending O(n log λ) time per each step. Symmetrically, one can construct
R(i)

1 , . . . ,R(i)
n in the same time complexity.

Also the following reduction can be obtained (details are left for the full version).

I Lemma 11. Given an instance I of the Multichoice Knapsack problem, one can
compute in O(N +λ logA) time an equivalent instance I ′ with A′V ≤ AV , A′W ≤ AW , λ′ ≤ λ,
and n′ = O( logA

logλ ).

Note that we may always assume that λ ≤ a. Indeed, if we order the items c ∈ Ci
according to v(c), then only the first AV of them might belong to a choice S with v(S) ≤ V .

I Theorem 12. Multichoice Knapsack can be solved in O(N +
√
aλ logA) time.

Proof. Below, we give an algorithm working in O(N +
√
AV λ logA) time. The final solution

runs it in parallel on the original instance and on the instance with v and V swapped with w
and W , waiting until at least one of them terminates.

We increment an integer r starting from 1, maintaining ` =
⌈
r
λ

⌉
and the lists L(`)

j and
R(r)
j+1 for 0 ≤ j ≤ n, as long as V (`)

Lj
+ V

(r)
Rj+1

≤ V for some j (or until all the lists have been
completely generated). By Fact 9, we stop at r = O(

√
AV λ). Lemma 11 lets us assume that

n = O( logA
logλ ), so the running time of this phase is O(N +

√
AV λ logA) due to Lemma 10.

The preprocessing time of Lemma 11 is dominated by this complexity.
Due to Lemma 8, every feasible solution S admits a decomposition S = L ∪ {c} ∪R with

L ∈ L(`)
j−1, c ∈ Cj , and R ∈ R

(r)
j+1 for some index j. We consider all possibilities for j. For

each of them we will reduce searching for S to an instance of the Multichoice Knapsack
problem with N ′ = O(

√
AV λ) and n′ = 2. By Lemma 6, these instances can be solved in

O(n
√
AV λ) = O(

√
AV λ

logA
logλ ) time in total.

The items of the j-th instance are going to belong to classes L(`)
j−1 �Cj and R(r)

j+1, where
L(`)
j−1�Cj = {L∪{c} : L ∈ L(`)

j−1, c ∈ Cj}. The set L(`)
j−1�Cj can be constructed by merging

|Cj | ≤ λ sorted lists, each of size ` = O(
√
AV /λ), i.e., in O(

√
AV λ log λ) time. Summing up

over all indices j, this gives O(
√
AV λ log λ logA

logλ ) = O(
√
AV λ logA) time.

Clearly, each feasible solution of the constructed instances represents a feasible solution
of the initial instance, and by Lemma 8, every feasible solution of the initial instance has its
counterpart in one of the constructed instances. J
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5 Weighted Consensus and General Weighted Pattern Matching

The Weighted Consensus problem is formally defined as follows.

Weighted Consensus Problem
Input: Two weighted sequences X and Y of length n with at most λ letters at each
position and R in total, and a threshold probability 1

z .
Output: A string S such that S ≈ 1

z
X and S ≈ 1

z
Y or NONE if no such string exists.

If two weighted sequences satisfy the consensus, we write X ≈ 1
z
Y and say that X

matches Y with probability at least 1
z . With this definition of a match, we extend the notion

of an occurrence and the notation Occ 1
z
(P, T ) to arbitrary weighted sequences.

General Weighted Pattern Matching (GWPM) Problem
Input: Two weighted sequences P and T of length m and n, respectively, with at most
λ letters at each position and R in total, and a threshold probability 1

z .
Output: The set Occ 1

z
(P, T ).

In the case of the GWPM problem, it is more useful to provide an oracle that finds
witness strings that correspond to the respective occurrences of the pattern. Such an oracle,
given i ∈ Occ 1

z
(P, T ), computes a string that matches both P and T [i..i+m− 1].

Our algorithms rely on the following simple observation, originally due to Amir et al. [1].

I Fact 13 ([1]). A weighted sequence has at most z different matching strings.

The Weighted Consensus problem is actually a special case of Multichoice Knap-
sack. Namely, given an instance of the former, we can create an instance of the latter with
n classes Ci, each containing an item ci,s for every letter s which has non-zero probability at
position i in both X and Y . We set v(ci,s) = − log π(X)

i (s) and w(ci,s) = − log π(Y )
i (s) for

this item, whereas the thresholds are V = W = log z. It is easy to see that this reduction
indeed yields an equivalent instance and that it can be implemented in linear time. By
Fact 13, we have A ≤ z for this instance, so Theorem 12 yields the following result:

I Corollary 14. Weighted Consensus problem can be solved in O(R+
√
zλ log z) time.

The GWPM problem can be clearly reduced to n + m − 1 instances of Weighted
Consensus. This leads to a naïve O(nR+ n

√
zλ log z)-time algorithm. Below, we remove

the first term in this complexity. Our solution applies the approach used in Section 3 for
Weighted Pattern Matching and uses an observation analogous to Observation 4.

I Observation 15. If X and Y are weighted sequences that match with threshold 1
z , then

dH(H(X),H(Y )) ≤ 2 blog zc. Moreover there exists a consensus string S such that S[i] =
H(X)[i] = H(Y )[i] unless H(X)[i] 6= H(Y )[i].

Our algorithm starts by computing P ′ = H(P ) and T ′ = H(T ) and the data structure
for lcp-queries in P ′T ′. We try to match P with every factor T [p..p + m − 1] of the text.
Following Observation 15, we check if dH(T ′[p..p+m− 1], P ′) ≤ 2 blog zc . If not, then we
know that no match is possible. Otherwise, let D be the set of positions of mismatches
between T ′[p..p+m− 1] and P ′. Assume that we store α =

∏m
j=1 π

(T )
p+j−1(T ′[p+ j − 1]) and

β =
∏m
j=1 π

(P )
j (P ′[j]). Then, in O(|D|) time we can compute α′ =

∏
j /∈D π

(T )
p+j−1(T ′[p+j−1])

and β′ =
∏
j /∈D π

(P )
j (P ′[j]). Now, we only need to check what happens at the positions in D.
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If D = ∅, then it suffices to check if α ≥ 1
z and β ≥ 1

z . Otherwise, we construct two
weighted sequences X and Y by selecting only the positions from D in T [p..p+m− 1] and
in P . We multiply the probabilities of all letters at the first position in X by α′ and in Y by
β′. It is clear that X ≈ 1

z
Y if and only if T [p..p+m− 1] ≈ 1

z
P .

Thus, we have reduced the GWPM problem to at most n − m + 1 instances of the
Weighted Consensus problem for strings of length O(log z). By Corollary 14, solving
each instance takes O(λ log z +

√
zλ log z) = O(

√
zλ log z) time. Our reduction requires

O(R log2 log λ) time to preprocess the input (as in Theorem 5), but this is dominated by the
O(n
√
zλ log z) total time of solving the Weighted Consensus instances. If we memorize

the solutions to all those instances together with the underlying sets of mismatches D, we
can also implement the oracle for the GWPM problem with O(m)-time queries.

A tailor-made solution can be designed (details will be provided in the full version)
to replace the generic algorithm for the Multichoice Knapsack problem, which lets us
improve the log z factor to log log z + log λ.

I Theorem 16. The GWPM problem can be solved in O(n
√
zλ(log log z + log λ)) time. An

oracle for the GWPM problem using O(n log z) space and supporting queries in O(m) time
can be computed within the same time complexity.

A reduction from Multichoice Knapsack to Weighted Consensus (proofs will
be provided in the full version) immediately yields that any significant improvement in
the dependence on z and λ in the running time of our algorithm would lead to breaking
long-standing barriers for special cases of Multichoice Knapsack.

I Theorem 17. Weighted Consensus problem is NP-hard and cannot be solved in:
1. O∗(zε) time for every ε > 0, unless the Exponential Time Hypothesis (ETH) fails;
2. O∗(z0.5−ε) time for some ε > 0, unless there is an O∗(2(0.5−ε)n)-time algorithm for the

Subset Sum problem;
3. Õ(R+ z0.5λ0.5−ε) time for some ε > 0 and for n = O(1), unless there is an O(λ2(1−ε))-

time algorithm for 3-Sum.

Nevertheless, it might still be possible to improve the dependence on n in the GWPM
problem. For example, one may hope to achieve Õ(nz0.5−ε + z0.5) time for λ = O(1).

6 Final Remarks

In Section 4, we gave an O(N + a0.5λ0.5 logA)-time algorithm for the Multichoice Knap-
sack problem. Improvement of either exponent to 0.5− ε would result in a breakthrough
for the Subset Sum and 3-Sum problems, respectively. Nevertheless, this does not refute
the existence of faster algorithms for some particular values (a, λ) other than those emerging
from instances of Subset Sum or 3-Sum. Indeed, we can show an algorithm that is superior
if log a

logλ is a constant other than an odd integer. We can also prove it to be optimal (up to
lower order terms) for every constant log a

logλ unless the k-Sum conjecture fails. The details will
be provided in the full version.
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Abstract
We study networks obeying time-dependent min-cost path metrics, and present novel oracles
for them which provably achieve two unique features: (i) subquadratic preprocessing time and
space, independent of the metric’s amount of disconcavity; (ii) sublinear query time, in either
the network size or the actual Dijkstra-Rank of the query at hand.
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1 Introduction

Concurrent technological infrastructures (e.g., road networks, social networks, e-commerce
platforms, energy-management systems) are typically of very large scale and impose as a
routine task the computation of min-cost paths in real-time, while their characteristics usually
evolve with time. The large-scale and real-time response challenges have been addressed in
the last 15 years by means of a new algorithmic trend: the provision of oracles. That is,
data structures created by appropriately selecting precomputed information (summaries)
and which subsequently support query algorithms with real-time responses. The quality of
an oracle is assessed by its preprocessing space and time requirements, the time-complexity
of the query algorithm and the approximation guarantee (stretch). Numerous oracles have
been proposed and analyzed (see e.g., [1, 21, 22, 24, 25, 27, 28, 29] and references therein) for
large-scale, mostly undirected networks, accompanied by a static arc-cost metric. In tandem
with oracles, an equally important effort (with similar characteristics) has also emerged in the
last 15 years under the tag of speedup techniques, for approaches tailored to work extremely
well in real-life instances (see e.g., [3] and references therein).

The temporality of the network characteristics is often depicted by some kind of pre-
determined dependence of the metric on the actual time that each resource is used (e.g.,
traversal speed in road networks, packet-loss rate in IT networks, arc availability in social
networks, etc). Perhaps the most typical application scenario, motivating also our work, is
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route planning in road networks where the travel-time for traversing an arc a = uv (modeling
a road segment) depends on the temporal traffic conditions while traversing uv, and thus
on the departure-time from its tail u. This gives rise to time-varying network models and
to computing min-cost (a.k.a. shortest) paths in such networks. Several variants of this
problem try to model time-variation of the underlying graph and/or the arc-cost metric
(e.g., dynamic shortest paths, parametric shortest paths, stochastic shortest paths, temporal
networks, etc). In this work we assume that the cost variation of each arc a is determined
by a continuous, piecewise linear (pwl) and periodic function D[a] of the time at which a is
actually being traversed1, as in [7, 8, 12, 20]. When providing route plans in time-dependent
road networks, arc-costs are considered as arc-travel-times, and time-dependent shortest paths
as minimum-travel-time paths. The goal is then to determine the cost (minimum-travel-time)
of a shortest path from an origin o to a destination d, as a function of the departure-time to
from o. Due to the time-dependence of the arc-cost metric, the actual arc-cost value of an
arc a = uv is unknown until the exact time tu ≥ to at which uv starts being traversed.

Problem setting and related work. Two variants of the time-dependent shortest path
problem have been considered in the literature: TDSP (o, d, to) (resp. TDSP (o, ?, to)) focuses
on the one-to-one (resp. one-to-all) determination of the scalar cost of a minimum-travel-
time path to d (resp. for all d), when departing from the origin o at time to. TDSP (o, d)
(resp. TDSP (o, ?)) focuses on the one-to-one (resp., one-to-all) succinct representation of
the time-dependent minimum-travel-time path function(s) D[o, d] from o to d (resp. towards
all reachable d), and all departure-times from o. TDSP (o, d, to) has been studied as early
as [5]. The first work on TDSP (o, d, to) for continuous time-axis was [11] where it was
proved that, if waiting-at-nodes is allowed unconditionally, then TDSP (o, d, to) is solvable
in quasilinear time via a time-dependent variant of Dijkstra’s algorithm (we call it TDD),
which relaxes arcs by computing the arc costs “on the fly”, upon settling their tails. A
more complete treatment of the continuous-time case, considering various limitations in the
waiting-times at nodes of the network, was provided in [13]; an algorithm was also given for
TDSP (o, d, to), whose complexity cannot be bounded by a function of the network topology.
An excellent overview of the problem is provided in [20]. Among other results, it was proved
that for affine arc-cost functions possessing the FIFO property (according to which all the
arc-cost functions have slopes at least −1), in addition to TDD, a time-dependent variant
of the label-correcting Bellman-Ford algorithm also works. Moreover, if waiting-at-nodes
is forbidden and the arc-costs do not preserve the FIFO property, then subpath-optimality
of shortest paths is not necessarily preserved. In that case, many variants of the problem
become NP-hard [23]. Additionally, when shortest path costs are well defined and optimal
waiting-times at nodes always exist, a non-FIFO arc with unrestricted-waiting-at-tail policy
is equivalent to a FIFO arc in which waiting at the tail is not beneficial [20]. For these
reasons, we focus here on instances for which the FIFO property holds, as indeed is the case
with most of past and recent works on TDSP (o, d, to). The complexity of TDSP (o, d) was
first questioned in [6, 7] and remained open until recently, when it was proved in [12] that,
even for FIFO-abiding pwl arc-cost functions and a single origin-destination pair (o, d), the
number of breakpoints for succinctly representing D[o, d] is (1 + K) · nΘ(logn), where n is

1 Major car navigator vendors provide real-time estimations of travel-time values by periodically sampling
the average speed of road segments, using the cars connected to the service as sampling devices. The
most customary way to represent this historic traffic data, is to consider the continuous pwl interpolants
of the sample points as arc-travel-time functions of the corresponding instance.
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the number of vertices and K is the number of breakpoints in all the arc-cost functions.
Note that K can be substituted by the number K∗ of concavity-spoiling breakpoints (at
which the slopes increase) of the arc-cost functions. Several output-sensitive algorithms for
the construction of D[o, d] have appeared [7, 8, 12, 20], the most efficient being the ones
in [8, 12]. Due to the hardness of TDSP (o, d), and also since the arc-cost functions are
typically only (e.g., pwl) approximations of the actual costs, it is quite natural to seek for
succinct representations of approximations to D[o, d], which aim at trading-off accuracy for
computational effort. Several one-to-one (1 + ε)-approximation algorithms for TDSP (o, d)
have appeared in the literature [8, 12, 19], the most successful being those provided in [19].
The first one-to-all (1 + ε)-approximation algorithm for TDSP (o, ?), called bisection (BIS),
was given in [17]. It is based on bisecting the (common to all functions) axis of departure-
times from o and considers slightly stricter assumptions than just the FIFO property for the
arc-cost metric. BIS requires O

(
K∗

ε · log2 (n
ε

))
calls to TDSP (o, ?, to), assuming that the

travel-time diameter is upper-bounded by the period T = nα, for some tuning parameter
α ∈ (0, 1). Note that all one-to-one approximation algorithms for TDSP (o, d) [8, 12, 19]
demand, in worst-case, a comparable amount of calls to TDSP (o, ?, to), just for one od-pair.

Minimum-travel-time oracles for time-dependent networks (TD-oracles henceforth) had
received no attention until recently [17]. A TD-oracle is an offline-precomputed data structure
that allows the efficient evaluation of an upper-approximation ∆[o, d](to) of D[o, d](to), for
any possible query (o, d, to) ∈ V ×V ×R≥ 0 that may appear in an online fashion. One trivial
solution would be to provide a succinct representation of ∆[o, d] for all (o, d) ∈ V ×V , for the
sake of rapid evaluations in the future but at the expense of superquadratic space. Another
trivial solution would be to execute TDD “on-the-fly” per query (o, d, to), at the expense
of superlinear query-time. A non-trivial TD-oracle should aim to trade-off preprocessing
requirements with query-times and approximation guarantees. In particular, it should
precompute a data structure in subquadratic time and space, and also provide a query
algorithm which evaluates efficiently (i.e., faster than TDD) ∆[o, d](to), where ∆[o, d] must be
a provably good approximation of D[o, d]. Note that there exists important applied work
(speedup heuristics) for computing time-dependent shortest paths (e.g., [4, 9, 10, 18]), which
however provide mainly empirical evidence on the success of the adopted approaches.

The TD-oracles in [17] require O
(
n2−β(K∗ + 1)

)
preprocessing space and time, for

constant β ∈ (0, 1), and can answer queries (under certain conditions) in time O
(
nδ
)
, for

constant δ ∈ (0, 1). When K∗ ∈ o(n), the oracles can be fine-tuned to assure query-time
o(n) and preprocessing requirements o

(
n2). An extensive experimental evaluation of those

oracles on a real-world road network is provided in [14], demonstrating their practicality, at
the expense, however, of large memory consumption due to the linear dependence of the
preprocessing space on K∗ which can be Ω(n). The main challenge addressed here is to
provide TD-oracles that achieve: (i) subquadratic preprocessing requirements, independently
of K∗; and (ii) query-times sublinear, not just in the network size n, but in the number
Γ[o, d](to) (a.k.a. Dijkstra-Rank) of settled vertices when executing TDD(o, ?, to) until d is
settled.

Our contributions and roadmap. We address positively the aforementioned challenge by
providing: (i) A novel and remarkably simple algorithm (TRAP) (cf. Section 3) for constructing
one-to-many (1 + ε)-upper-approximations ∆[o, d] (summaries) of minimum-travel-time
functions D[o, d], for all “sufficiently distant” destinations d from the origin o. TRAP requires
o(n) calls to TDSP (o, ?, to), which is independent of the degree of concavity K∗. Its novelty
is that it does not demand the concavity of the unknown function to approximate. (ii) The

ISAAC 2016
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Table 1 Achievements of oracles for TD-instances with period T = nα, for α ∈ (0, 1). The stretch
of all query algorithms is 1 + σ(r) = 1 + ε · (1+ε/ψ)r+1

(1+ε/ψ)r+1−1 . For all but the first oracle, we assume
that β ↓ 0.

preprocessing space/time query time recursion budget (depth) r
[17] K∗ · n2−β+o(1) nδ+o(1) r ∈ O(1)

TRAPONLY n2−β+o(1) nδ+o(1) r ≈ δ
α − 1

FLAT n2−β+o(1) nδ+o(1) r ≈ 2δ
α − 1

HORN n2−β+o(1) ≈ Γ[o, d](to)δ+o(1) r ≈ 2δ
α − 1

TRAPONLY and FLAT oracles (cf. Section 4) which exploit TRAP and BIS to construct minimum-
travel-time summaries from randomly selected landmarks to all reachable destinations. The
preprocessed data structures require subquadratic space and time, independently of K∗.
FLAT uses the query algorithms of [17]. TRAPONLY needs to extend them in order to recover
missing summaries for local neighborhoods around each landmark. In both cases sublinear
query-times are achieved. (iii) The HORN oracle (cf. Section 5) which organizes a hierarchy of
landmarks, from many local landmarks possessing summaries only for small neighborhoods
of destinations around them, up to a few global landmarks possessing summaries for all
reachable destinations. HORN’s preprocessing requirements are again subquadratic. We then
devise and analyze a novel query algorithm (HQA) to exploit this hierarchy, with query-time
sublinear in the Dijkstra-Rank of the query at hand. Except for the choice of landmarks,
our algorithms are deterministic. An experimental study [15] demonstrates the excellent
performance of our oracles in practice, achieving considerable memory savings and query-
times about three orders of magnitude faster than TDD, and more than 70% faster than those
in [14]. Table 1 summarizes the achievements of the TD-oracles presented here and their
comparison with the oracles in [17]. Due to lack of space, all missing proofs are provided in
the full version of the paper [16].

2 Preliminaries

Notation and terminology. For any integer k ≥ 1, let [k] = {1, 2, . . . , k}. A time-dependent
network instance (TD-instance henceforth) consists of a directed graph G = (V,A) with |V | =
n vertices and |A| = m ∈ O(n) arcs, where each arc a ∈ A is accompanied with a continuous,
pwl arc-cost function D[a] : R≥ 0 7→ R>0. We assume that all these functions are periodic
with period T > 0 and are defined as follows: ∀k ∈ N,∀t ∈ [0, T ), D[a](kT + t) = d[a](t),
where d[a] : [0, T )→ (0,Ma] is such that limt↑T d[a](t) = d[a](0), for some fixed integer Ma

denoting the maximum possible cost ever seen for arc a. Let alsoM = maxa∈AMa denote the
maximum arc-cost ever seen in the entire network. Since D[a] is periodic, continuous and pwl,
it can be represented succinctly by a sequence of Ka breakpoints (i.e., pairs of departure-times
and arc-cost values) defining d[a]. K =

∑
a∈AKa is the number of breakpoints representing

all arc-cost functions, Kmax = maxa∈AKa, and K∗ is the number of concavity-spoiling
breakpoints (the ones at which the arc-cost slopes increase). Clearly, K∗ ≤ K, and K∗ = 0
for concave arc-cost functions. To ease the exposition and also for the sake of compliance
with terminology in previous works (inspired by the primary application scenario of route
planning in time-dependent road networks), we consider arc-costs as arc-travel-times and
time-dependent shortest paths as minimum-travel-time paths. This terminology facilitates
the following definitions. The arc-arrival-time function of a ∈ A is Arr[a](t) = t+D[a](t),
∀t ∈ [0,∞). The path-arrival-time function of a path p = 〈a1, . . . , ak〉 in G (represented as a
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sequence of arcs) is the composition Arr[p](t) = Arr[ak](Arr[ak−1](· · · (Arr[a1](t)) · · · )) of
the arc-arrival-time functions for the constituent arcs. The path-travel-time function is then
D[p](t) = Arr[p](t)− t.

For any (o, d) ∈ V × V , Po,d denotes the set of od-paths. For any p ∈ Po,x and q ∈ Px,d,
s = p • q ∈ Po,d is the concatenation of p and q at x. The earliest-arrival-time function
is Arr[o, d](to) = minp∈Po,d {Arr[p](to)}, ∀to ≥ 0, while the minimum-travel-time function
is defined as D[o, d](to) = minp∈Po,d {D[p](to)} = Arr[o, d](to) − to. For a given query
(o, d, to), SP [o, d](to) = {p ∈ Po,d : Arr[p](to) = Arr[o, d](to)} is the set of earliest-arrival-
time (equivalently, minimum-travel-time) paths. ASP [o, d](to) is the set of od-paths whose
travel-time values are (1 + ε)-approximations of the minimum-travel-time among all od-paths.

When we say that we “grow a TDD ball from (o, to)”, we refer to the execution of TDD
from o ∈ V at departure-time to ∈ [0, T ) for solving TDSP (o, ?, to) (resp. TDSP (o, d, to),
for a specific destination d). Such a call, denoted as TDD(o, ?, to) (resp. TDD(o, d, to)), takes
time O(m+ n log(n)[1 + log log(1 +Kmax)]) = O(n log(n) log log(Kmax)]), using predecessor
search for evaluating continuous pwl functions [17]. The Dijkstra-Rank Γ[o, d](to) of (o, d, to)
is the number of settled vertices up to d, when executing TDD(o, d, to).
∀a = uv ∈ A and [ts, tf ) ⊆ [0, T ), we define upper- and lower-bounding travel-time

metrics: the minimally-congested travel-time D[uv](ts, tf ) := mintu∈[ts,tf ){D[uv](tu)} and
the maximally-congested travel-time D[uv](ts, tf ) := maxtu∈[ts,tf ){D[uv](tu)}. If [ts, tf ) =
[0, T ), we refer to the static free-flow and full-congestion metrics D,D : A → [1,M ],
respectively. Each arc a ∈ A is also equipped with scalars D[a] and D[a] in these static
metrics. For any arc-cost metric D, diam(G,D) is the diameter (largest possible vertex-
to-vertex distance) of the graph. For example, diam(G,D) is the free-flow diameter of
G.

In our TD-instance, we assume that T ≥ diam(G,D). If not, we take the minimum
number c of copies of each d[a] as a single arc-travel-time function d′[a] : [0, cT ) 7→ R>0 and
D′[a](t + kT ′) = d′[a](t), ∀t ∈ [0, T ′) such that T ′ = cT ≥ diam(G,D′). In addition, we
can guarantee that T = nα for a constant α ∈ (0, 1) of our control. If T 6= nα, we scale the
travel-time metric by setting D′′ = nα

T ·D (e.g., we change the unit by which we measure time
from milliseconds to seconds) and use the period T ′′ = nα, without affecting the structure of
the instance at all. From now on we assume w.l.o.g. that T = nα ≥ diam(G,D).

For any v ∈ V , departure-time tv ∈ R≥ 0, integer F ∈ [n] and R > 0, B[v;F ](tv)
(B[v;R](tv)) is a ball of size F (of radius R) grown by TDD from (v, tv), in the time-dependent
metric. Analogously, B[v;F ] (B[v;R]) and B[v;F ] (B[v;R]) are, respectively, the size-F
(radius-R) balls from v in the free-flow and fully-congested travel-time metrics.

A pair of continuous, pwl, periodic functions ∆[o, d] and ∆[o, d]), with a (hopefully) small
number of breakpoints, are (1 + ε)-upper-approximation and (1 + ε)-lower-approximation of
D[o, d], if ∀to ≥ 0, D[o,d](to)

1+ε ≤ ∆[o, d](to) ≤ D[o, d](to) ≤ ∆[o, d](to) ≤ (1 + ε) ·D[o, d](to) .

Assumptions on the arc-cost metric. The directedness and time-dependence of the TD-
instance imply an asymmetric arc-cost metric, which also evolves with time. To achieve a
smooth transition from static and undirected graphs towards time-dependent and directed
graphs, we need a quantification of the degrees of asymmetry and evolution of our metric over
time. These are captured via a set of parameters depicting the steepness of the minimum-
travel-time functions, the ratio of minimum-travel-times in opposite directions, and the
relation between graph expansion and travel-times. We make some assumptions on the
values of these parameters, which seem quite natural for our main application scenario (route
planning in road networks). We only present a qualitative interpretation of them. Their
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exact statements, along with their validation on real-world road networks, are presented in
[16]. It is noted that Assumptions 1 and 2 were exploited also in the analyses in [17].

I Assumption 1 (Bounded Travel-Time Slopes). All the minimum-travel-time slopes are
bounded in a given interval [−Λmin,Λmax], for given constants Λmin ∈ [0, 1) and Λmax ≥ 0.

I Assumption 2 (Bounded Opposite Trips). The ratio of minimum-travel-times in opposite
directions between two vertices, for any specific departure-time but not necessarily via the
same path, is upper bounded by a given constant ζ ≥ 1.

I Assumption 3 (Growth of Free-Flow Dijkstra Balls). ∀F ∈ [n], the free-flow ball B[v;F ]
blows-up by at most a polylogarithmic factor, when expanding its (free-flow) radius up to the
value of the full-congestion radius within B[v;F ].

Finally, we need to quantify the correlation between the arc-cost metric and the Dijkstra-
Rank metric induced by it. For this reason, inspired by the notion of the doubling dimension
(e.g., [2] and references therein), we consider some scalar λ ≥ 1 and functions f, g : N 7→ [1,∞),
such that the following hold: ∀(o, d, to) ∈ V ×V × [0, T ), (i) Γ[o, d](to) ≤ f(n) · (D[o, d](to))λ,
and (ii) D[o, d](to) ≤ g(n) · (Γ[o, d](to))1/λ. This property trivially holds, e.g., for λ = 1,
f(n) = n, and g(n) = maxa∈A

{
D[a]

}
. Of course, our interest is for the smallest possible

values of λ and at the same time the slowest-growing functions f(n), g(n). Our last assumption
quantifies the boundedness of this correlation by restricting λ, f(n) and g(n).

I Assumption 4. There exist λ ∈ o
(

log(n)
log log(n)

)
and f(n), g(n) ∈ polylog(n) s.t. the following

hold: (i) Γ[o, d](to) ≤ f(n) · (D[o, d](to))λ, and (ii) D[o, d](to) ≤ g(n) · (Γ[o, d](to))1/λ.
Analogous inequalities hold for the free-flow and the full-congestion metrics D and D.

Note that static oracles based on the doubling dimension (e.g., [2]) demand a constant
value for λ. We relax this by allowing λ to be even a (sufficiently slowly) growing function of n.
We also introduce some additional slackness, by allowing divergence from the corresponding
powers by polylogarithmic factors. In the rest of the paper we consider sparse TD-instances
(i.e., m ∈ O(n)), compliant with Assumptions 1, 2, 3, and 4.

3 The TRAP approximation method

The trapezoidal (TRAP) method is a novel algorithm for computing one-to-many (1 +ε)-upper-
approximations ∆[`, v] : [0, T ) 7→ R>0 of D[`, v], from a (landmark) vertex ` towards all
sufficiently distant destinations v. TRAP is remarkably simple and works as follows. First, [0, T )
is split into

⌈
T
τ

⌉
consecutive length-τ subintervals, where τ is a tuning parameter to be fixed

later. Then, for each interval [ts, tf = ts + τ) ⊆ [0, T ), a (1 + ε)-upper-approximation of the
projection D[`, v] : [ts, tf ) 7→ R>0 is constructed. Finally, the concatenation of all these (1+ε)-
upper-approximations per subinterval constitutes the requested (1 + ε)-upper-approximation
∆[`, v] of D[o, d] : [0, T ) 7→ R>0. Note that, contrary to BIS, no assumption is made on the
shapes of the min-cost functions to approximate within each subinterval; in particular, no
assumption is made on them being concave. TRAP only exploits the fact that τ is small, along
with Assumption 1 on the boundedness of travel-time slopes. We now describe the upper- and
lower-approximations of D[o, d] that we construct in a subinterval Ik = [ts = (k − 1)τ, tf =
kτ) ⊂ [0, T ), k ∈

[⌈
T
τ

⌉]
, from a vertex ` ∈ V towards some destination v ∈ V . The quality of

the upper-approximation depends on the value of τ and the delay values at the endpoints of Ik,
as we shall explain shortly. TRAP computes the following two functions of D[`, v] (cf. Fig. 1):
∀t ∈ Ik, δk[`, v](t) = min

{
D[`, v](tf ) + Λmintf − Λmint , D[`, v](ts)− Λmaxts + Λmaxt

}
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Figure 1 The upper-approximation δk[`, v] (thick orange, upper pwl line), and lower-
approximation δk[`, v] (thick green, lower pwl line), of the unknown function D[`, v] (blue pwl
line) within Ik = [ts = (k − 1)τ, tf = kτ).

and δk[`, v](t) = max
{
D[`, v](tf )− Λmaxtf + Λmaxt , D[`, v](ts) + Λmints − Λmint

}
and

considers them as the upper- and lower-approximating functions of D[`, v] within Ik. The
correctness of this choice is proved in the next lemma, which follows by Assumption 1.

I Lemma 5. δk[`, v](t) and δk[`, v](t) upper- and lower-approximate D[`, v](t) within Ik.

Let (tm, Dm) and (tm, Dm) be the intersections of the legs in the definitions of δk[`, v] and
δk[`, v], respectively. The maximum additive error in Ik (c.f. Figure 1) is MAE(Ik) :=
maxt∈Ik

{
δk[`, v](t)− δk[`, v](t)

}
= δk[`, v](tm)− δk[`, v](tm) . The following lemma proves

that, for τ sufficiently small, MAE(Ik) cannot be large. It also provides a sufficient condition
for the value of τ so that δk[`, v] is a (1 + ε)-upper-approximation of D[`, v] in Ik.

I Lemma 6. ∀(`, v) ∈ L× V , ∀k ∈
[⌈
T
τ

⌉]
and Ik = [(k − 1)τ, kτ), the following hold: (1)

MAE[`, v](Ik) ≤ Λmax · τ ; (2) δk[`, v] is a (1 + ε)-upper-approximation of D[`, v] within Ik,
if
[
D[`, v](ts) ≥

(
Λmin + Λmax

ε

)
· τ
]
∨
[
D[`, v](tf ) ≥

(
1 + 1

ε

)
Λmax · τ

]
For given τ > 0 and ` ∈ L, the set of faraway destinations from ` is V [`](τ) = {v ∈

V : τ [`, v] > τ} . τ [`, v] = D[`,v]
(1+1/ε)Λmax

is a sufficient τ -value for δk[`, v] being (1 + ε)-upper-
approximation of D[`, v] within Ik = [(k−1)τ [`, v], kτ [`, v]) (cf. Lemma 6). The next theorem
proves that TRAP provides a (1 + ε)-upper-approximation ∆[`, v] for all faraway destinations
from `, and also estimates the preprocessing requirements of the algorithm.

I Theorem 7. Fix ` ∈ L, F > f(n), and τ ∈ (0, T ) s.t. |V [`](τ)| = n − F . Let τ∗ =
minv∈V [`](τ)

{
D[`,v]

(1+1/ε)Λmax

}
. ∀v ∈ V [`](τ), ∆[`, v] is the concatenation of all the upper-

approximating functions δk[`, v] that TRAP returns per subinterval Ik = [ tsk = (k−1)τ∗ , tfk =
min{kτ∗, T} ) : k ∈

[⌈
T
τ∗

⌉]
. Then, ∀v ∈ V [`](τ), ∆[`, v] is a (1 + ε)-upper-approximation of

D[`, v] in [0, T ), requiring PRE SPACE... at most 2
⌈
T
τ∗

⌉
breakpoints. PRE TIME... The

number of calls to TDSP (`, ?, t) for their construction is
⌈
T
τ∗

⌉
≤ 1 + T (1+1/ε)Λmax

minv∈V [`](τ){D[`,v]} ∈
O(nα) .

Proof of Theorem 7. τ∗ is the appropriate length for the subintervals which assures that
TRAP returns (1 + ε)-upper-approximations for all faraway destinations from `. By definition
it holds that τ∗ ≥ τ . Since F > f(n), it holds that TRAP does not consider destinations at
free-flow distance less than 1. To see this, fix v ∈ V s.t. D[`, v] ≤ 1. By Assumption 4,
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Γ[`, v] ≤ f(n) ·D[`, v]λ ≤ f(n) < F . Thus, we can be sure that v /∈ V [`](τ). Since T = nα,
we conclude that T

τ∗ = T (1+1/ε)Λmax
minv∈V [`](τ) D[`,v] ∈ O(nα). We proceed now with the analysis of TRAP.

[0, T ) is split into
⌈
T
τ∗

⌉
consecutive length-τ∗ subintervals. Lemma 5 assures that for each

Ik = [kτ∗, (k+1)τ∗) an upper-approximating function δk[`, v] ofD[`, v] is determined, for each
v ∈ V [`](τ). The concatenation of all these functions constitutes the upper-approximating
function ∆[`, v] for D[`, v] within [0, T ). Since τ [`, v] ≥ τ∗ ⇒ D[`, v] ≥

(
1 + 1

ε

)
Λmaxτ

∗, we
deduce (cf. Lemma 6) that, for all v ∈ V [`](τ), the produced upper-approximations within
the consecutive length-τ∗ intervals are (1 + ε)-approximations of D[`, v]. TRAP preprocesses
` ∈ L by making

⌈
T
τ∗

⌉
∈ O(nα) calls to TDSP (`, ?, t), to sample the endpoints of all the⌈

T
τ∗

⌉
length-τ∗ subintervals. For storing ∆[`, v], it needs 2

⌈
T
τ∗

⌉
breakpoints (at most one

intermediate breakpoint (tm, Dm) per subinterval). J

4 Oracles with fully-informed landmarks

We now describe two novel oracles with landmarks possessing summaries for all reachable
destinations, excluding possibly a small neighborhood around them. We start with a random
landmark set L ⊂uar(ρ) V , i.e., we decide independently and uniformly at random whether
each vertex is a landmark, with probability ρ = n−ω for a constant ω ∈ (0, 1). We consider as
faraway vertices from ` ∈ L, all the vertices at free-flow distance at most R = T θ from it, for
a constant θ ∈ (0, 1) to be determined later. F = max`∈L {|B[`;R]|} is the maximum number
of faraway vertices from a landmark. The next lemma shows that the main parameters we
should consider w.r.t. a TD-instance are λ (cf. Assumption 4) and α ∈ (0, 1) s.t. T = nα.
All the other parameters essentially adjust their values to them.

I Lemma 8. For ν ∈ (0, 1) s.t. T = diam(G,D)1/ν , θ ∈ (0, 1) s.t. ν
θ ∈ O(1) and λ, f, g

defined as in Assumption 4, the following hold: (i) 1
λν = α± o(1), and (ii) F ∈ n[1±o(1)]θ/ν .

The TRAPONLY oracle. A first attempt towards avoiding the dependency of the preprocessing
requirements on K∗ is to develop an oracle, called TRAPONLY, whose preprocessing is based
solely on TRAP.TRAPONLY PREPROCESSING... The preprocessing of TRAPONLY first
considers as subinterval length the value τ = R

(1+1/ε)Λmax
> 0. It then calls TRAP for

each landmark ` ∈ L, which guarantees (1 + ε)-upper-approximations for all the faraway
destinations v ∈ V [`](τ) (cf. Theorem 7).RQA+... The distances of nearby destinations
from ` are left to be computed by the query algorithm of TRAPONLY, which is an appropriate
variant of RQA (we call it RQA+) which additionally grows a small TDD ball of size F polylog(F )
(cf. Assumption 3) from each newly settled landmark. TRAPONLY COMPLEXITY... The
following theorem analyzes the performance of TRAPONLY.

I Theorem 9. The expected time of RQA+ and the preprocessing requirements of TRAPONLY
are: E {QRQA+} ∈ O

(
nωr+max{ω, θν }+o(1)

)
and STRAPONLY, PTRAPONLY ∈ O

(
n2+α·(1−θ)−ω+o(1)).

Proof of Theorem 9. During the preprocessing, TRAPONLY makes
⌈
T
τ∗

⌉
≤ 1+ T (1+1/ε)Λmax

R =
1 + T 1−θ(1 + 1/ε)Λmax calls of TDD(`, t), for departure-times t ∈

{
0, τ∗, 2τ∗, . . . ,

⌈
T
τ∗

⌉
−1
}

and landmarks ` ∈ L, where the equality comes from Lemma 8. Therefore, the preprocessing-
time is dominated by the aggregate time for all these TDD probes. Taking into account
that each TDD probe takes time O(n log(n) log log(Kmax)) and that |L| = ρn = n1−ω

landmarks, by using Lemma 8 we get the following: PTRAPONLY = n1−ω · n 1−θ
νλ [1+o(1)] ·

n log(n) log log(n) ∈ n2−ω+ 1−θ
νλ [1+o(1)]+ log log(n)+log log log(n)

log(n) = n2−ω+α·(1−θ)+o(1) . The calcu-
lations are analogous for the required preprocessing space: For all landmarks ` ∈ L
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and all their faraway destinations v ∈ V [`](τ), the total number of breakpoints to store
is at most STRAPONLY = 2

⌈
T
τ∗

⌉
ρn2 ∈ n2−ω+ 1−θ

νλ [1+o(1)]+o(1) = n2−ω+α·(1−θ)+o(1) . As for
the query-time complexity of RQA+, recall that the expected number of TDD balls that
it grows is (1/ρ)r. Additionally, RQA+ grows (1/ρ)r TDD balls from the corresponding
closest landmarks. Each ball from a new center costs O((1/ρ) log(1/ρ)). Each ball from
a landmark costs O(F polylog(F )) ∈ n[1±o(1)]θ/ν . Thus, the expected query-time is upper-
bounded as follows: E {QRQA+} ∈ O((1/ρ)r[(1/ρ) log(1/ρ) + F polylog(F )] log log(Kmax)) =
O
(
nωr+max{ω,[1+o(1)]θ/ν}) . J

The next corollaries are parameter-tuning examples showcasing the trade-offs among the
sublinearity of query-time, the subquadratic preprocessing requirements and the stretch.

I Corollary 10. For δ ∈ (α, 1), β ∈ (0, α2ν], ω = δ
r+1 , θ = δν

r+1 and r =
⌊
δ·(1+αν)
α+β

⌋
−1,

STRAPONLY, PTRAPONLY ∈ n2−β+o(1), E {QRQA+} ∈ nδ+o(1) and the stretch is 1 + σ(r) = 1 + ε ·
(1+ε/ψ)r+1

(1+ε/ψ)r+1−1 .

I Corollary 11. For any integer k ≥ 2, let η(k) =
⌈

log(k/(k−1))
log(1+ε/ψ)

⌉
−1, δ ∈ (0, 1) and β ∈(

0, δ
η(k)+2

)
. Then TRAPONLY achieves stretch 1 + k · ε with STRAPONLY, PTRAPONLY ∈ n2−β+o(1)

and E {QRQA+} ∈ nδ+o(1), by scaling the TD-instance so that T = nα, for α = δ−[η(k)+2]·β
η(k)+2−δν .

The FLAT oracle. Our second attempt, the FLAT oracle, provides preprocessed information
for all reachable destinations per landmark, and uses the query algorithm RQA [17]. PRE:
BIS+TRAP... FLAT considers again as subinterval length the value τ = R

(1+1/ε)Λmax
> 0. Then,

it constructs summaries for all reachable destinations per landmark ` ∈ L exploiting both
BIS and TRAP: BIS handles all the (at most F = max`∈L {|B[`;R]|}) nearby destinations
in B[`;R], whereas TRAP handles all the faraway destinations of V \ B[`;R]. The space
requirements for the summaries created by TRAP are exactly the same as in TRAPONLY. As for
the summaries computed by BIS, we avoid the linear dependence of BIS on K∗ by assuring
that F is sufficiently small (but not too small) and exploiting Assumption 3 which guarantees
that the involved subgraph B′[`;F ] in the preprocessing phase of BIS on behalf of ` has size
O(F polylog(F )). The next lemma shows that BIS is affected only by the concavity-spoiling
breakpoints of arc-travel-time functions in B′[`;F ], rather than the entire graph.

I Lemma 12. ∀(`, v) ∈ L×B[`;F ],∀u ∈ V \B′[`;F ],∀t ∈ [0, T ), D[`, v](t) < D[`, u](t) .

Proof of Lemma 12. From the definitions of the involved free-flow and full-congestion
Dijkstra balls, the following holds: D[`, v](t) ≤ D[`, v] ≤ R[`] < D[`, u] ≤ D[`, u](t) . J

The following theorem summarizes the complexities of the FLAT oracle.

I Theorem 13. The query-time QRQA and the preprocessing time PFLAT and space SFLAT of FLAT
are: E {QRQA} ∈ O

(
nω(r+1)+o(1)) and PFLAT , SFLAT ∈ O

(
n1−ω+o(1) · [n2θ/ν + n1+α·(1−θ)]

)
.

Proof of Theorem 13. BIS requires space at most F 2 polylog(F ), since by Lemma 12 the
involved graph only contains F polylog(F ) vertices and concavity-spoiling breakpoints at the
arc-travel-time functions. For the faraway vertices of V \B[`;F ], since τ = R

(1+1/ε)Λmax
, TRAP

provides (1 + ε)-approximate summaries for all destinations v ∈ V \B[`;R], because the suffi-
cient condition of Theorem 7 holds: D[`, v] > R = (1 + 1/ε) Λmaxτ . Thus, we conclude that
SFLAT ∈ ρn

[
F 2 polylog(F ) + T (1+1/ε)Λmaxn

R

] /∗ L.8 ∗/

= n1−ω[n(2θ/ν)·[1+o(1)] + n1+α·(1−θ)[1+o(1)]]
= n1−ω+[1+o(1)]·max{ 2θ/ν , 1+α(1−θ) }+o(1) , since f(n), g(n) ∈ polylog(n). J
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The next corollaries are parameter-tuning examples to showcase the effectiveness of FLAT.

I Corollary 14. If δ ∈ (α, 1), β ∈
(

0, α·(1+α)
2/ν+α

]
, ω = δ

r+1 , r =
⌊
δ
α ·

2/ν+α
(β/α)·(2/ν+α)+(2/ν−1)

⌋
−1

and θ = 1+α
2/ν+α , then FLAT has PFLAT, SFLAT ∈ n2−β+o(1), E {QRQA} ∈ nδ+o(1) and stretch

1 + σ(r) = 1 + ε · (1+ε/ψ)r+1

(1+ε/ψ)r+1−1 .

I Corollary 15. For integer k ≥ 2, let η(k) =
⌈

log(k/(k−1))
log(1+ε/ψ)

⌉
−1 and δ ∈ (0, 1). FLAT achieves

a target stretch 1 + k · ε with preprocessing requirements n2−o(1) and expected query-time
nδ+o(1), by scaling the TD-instance so that T = nα for α = 2δ

[η(k)+2]·(2−ν)−δν , as β ↓ 0.

Comparison of TRAPONLY and FLAT. Both TRAPONLY and FLAT depend on the travel-time
metric, but are independent of the degree of disconcavity K∗. On one hand, TRAPONLY is a
simpler oracle, at least w.r.t. its preprocessing phase. On the other hand, FLAT achieves a
better approximation for the same TD-instance and anticipations for sublinear query-time
nδ and subquadratic preprocessing requirements n2−β . This is because, as β ↓ 0, FLAT
guarantees a recursion budget r of (roughly) 2δ

a − 1, whereas TRAPONLY achieves about half
this value and r has an exponential effect on the stretch that the query algorithms achieve.

5 The HORN oracle

We now describe and analyze the Hierarchical ORacle for time-dependent Networks (HORN),
whose query algorithm is highly competitive against TDD, not only for long-range queries (i.e.,
having Dijkstra-Rank proportional to the network size) but also for medium- and short-range
queries, while ensuring subquadratic preprocessing space and time. The main idea of HORN is
to preprocess: many landmarks, each possessing summaries for a few destinations around
them, so that all short-range queries can be answered using only these landmarks; fewer
landmarks possessing summaries for more (but still not all) destinations around them, so
that medium-range queries be answered by them; and so on, up to only a few landmarks
(those required by FLAT) possessing summaries for all reachable destinations. The area of
coverage C[`] ⊂ V of ` is the set of its nearby vertices, for which ` possesses summaries. `
is called informed for each v ∈ C[`], and uninformed for each v ∈ V \ C[`]. The landmarks
are organized in a hierarchy, according to the sizes of their areas of coverage. Each level
Li in the hierarchy is accompanied with a targeted Dijkstra-Rank Ni ∈ [n], and the goal of
HORN is to assure that Li should suffice for RQA to successfully address queries (o, d, to) with
Γ[o, d](to) ≤ Ni, in time o(Ni). The difficulty of this approach lies in the analysis of the
query algorithm. We want to execute a variant of RQA which, based on a minimal subset
of landmarks, would guarantee a (1 + σ(r))-approximate solution for any query (o, d, to)
(as in TRAPONLY and FLAT), but also time-complexity sublinear in Γ[o, d](to). We propose
the Hierarchical Query Algorithm (HQA) which grows an initial TDD ball from (o, to) that
stops only when it settles an informed landmark ` w.r.t. d which is at the “right distance”
from o, given the density of landmarks belonging to the same level with `. HQA essentially
“guesses” as appropriate level-i in the hierarchy the level that contains `, and continues with
the execution of RQA with landmarks having coverage at least equal to that of ` (cf. Fig. 2).

Initialization of HORN. We use the following parameters for the hierarchical construction:
(i) k ∈ O(log log(n)) determines the number of levels (minus one) comprising the hierarchy
of landmarks. (ii) γ > 1 determines the actual values of the targeted Dijkstra-Ranks, one
per level of the hierarchy. For example, as γ gets closer to 1, the targeted Dijkstra-Ranks
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uninformed

informed and in-time

informed but too early

Figure 2 Demonstration of execution of HQA. Dashed circles indicate areas of coverage. Solid
circular stripes indicate the rings of the corresponding levels in the hierarchy. Landmark `1,o is
uninformed and `3,o, although informed, comes too early. `2,o is both informed and within the ring
of its own level, leading HQA to deduce that the appropriate level is i = 2.

accumulate closer to small- and medium-rank queries. (iii) δ ∈ (0, 1) is the parameter
that quantifies the sublinearity of the query algorithm (HQA), in each level of the hierarchy,
compared to the targeted Dijkstra-Rank of this level. In particular, if Ni is the targeted
Dijkstra-Rank corresponding to level-i in the hierarchy, then HQA should be executed in time
O
(
(Ni)δ

)
, if only the landmarks in this level (or in higher levels) are allowed to be used.

Preprocessing of HORN. ∀i ∈ [k], we set the targeted Dijkstra-Rank for level-i to Ni =
n(γi−1)/γi . Then, we construct a randomly chosen level-i landmark set Li ⊂uar(ρi) V , where
ρi = N

−δ/(r+1)
i = n−δ(γ

i−1)/[(r+1)γi]. Each `i ∈ Li acquires summaries for all (and only
those) v ∈ C[`i], where C[`i] is the smallest free-flow ball centered at `i containing ci =
Ni ·nξi = n(γi−1)/γi+ξi vertices, for a sufficiently small constant ξi > 0. The summaries to the
Fi = cχi nearby vertices around `i are constructed with BIS; the summaries to the remaining
ci − Fi faraway vertices of `i are constructed with TRAP, where χ = θ

ν = 1+α
2+αν ∈

[
1
2 ,

2
2+ν

]
is

an appropriate value determined to assure the correctness of FLAT w.r.t. the level-i of the
hierarchy. An ultimate level Lk+1 ⊂uar(ρk+1) V of landmarks, with ρk+1 = n−

δ
r+1 , assures

that HORN is also competitive against queries with Dijkstra-Rank greater than n(γk−1)/γk .
We choose in this case ck+1 = Nk+1 = n, Fk+1 = nχ and C[`k+1] = V , ∀`k+1 ∈ Lk+1.

Description of HQA. A TDD ball from (o, to) is grown until d is settled, or the (ESC)-criterion
or the (ALH)-criterion is fulfilled (whichever occurs first):

Early Stopping Criterion (ESC): `o ∈ L = ∪i∈[k+1]Li is settled, which is informed
(d ∈ C[`o]) and, for ϕ ≥ 1, ∆[`o,d](to+D[o,`o](to))

D[o,`o](to) ≥ (1 + ε) · ϕ · (r + 1) + ψ − 1 .
Appropriate Level of Hierarchy (ALH): For some level i ∈ [k] of the hierarchy, the
first landmark `i,o ∈ Li is settled such that: (i) d ∈ C[`i,o] (`i,o is “informed”); and
(ii) N

δ/(r+1)
i

ln(n) ≤ Γ[o, `i,o](to) ≤ ln(n) · Nδ/(r+1)
i (`i,o is at the “right distance”). In that

case, HQA concludes that i is the “appropriate level” of the hierarchy to consider. Observe
that the level-(k + 1) landmarks are always informed. Thus, if no level-(≤ k) informed
landmark is discovered at the right distance, then the first level-(k + 1) landmark that
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will be found at distance larger than ln(n) ·Nδ/(r+1)
k will be considered to be at the right

distance, and then HQA concludes that the appropriate level is k + 1.

If d is settled, an exact solution is returned. If (ESC) causes termination of HQA, the value
D[o, `o](to) + ∆[`o, d](to +D[o, `o](to)) is reported. Otherwise, HQA stops the initial ball due
to the (ALH)-criterion, considering i ∈ [k + 1] as the appropriate level, and then continues
executing the variant of RQA, call it RQAi, which uses as its landmark set Mi = ∪k+1

j=i Lj .
Observe that RQAi may fail constructing approximate solutions via certain landmarks in Mi

that it settles, since they may not be informed about d. Eventually, HQA returns the best
od-path (w.r.t. the approximate travel-times) among the ones discovered by RQAi via all
settled and informed landmarks `. Theorem 16 summarizes the performance of HORN.

I Theorem 16. Consider any TD-instance with λ ∈ o
(√

log(n)
log log(n)

)
and g(n), f(n) ∈

polylog(n) (cf. Assumption 4). For ϕ = ε·(r+1)
ψ·(1+ε/ψ)r+1−1 and k ∈ O(log log(n)), let ξi ∈([

(1 + λ) · log log(n) + λ log
(

1 + ζ
1−Λmin

)]
/ log(n) , 1− γ−i

)
, for all i ∈ [k]. Then, for

any query (o, d, to) s.t. Ni∗−1 < Γ[o, d](to) ≤ Ni∗ for some i∗ ∈ [k+ 1], any δ ∈ (α, 1), β > 0,
and r =

⌊
δ
α ·

(2/ν+α)(1−γ)
β·(2/(αν)+1)+2/ν−1

⌋
−1, HORN achieves E {QHQA} ∈ (Ni∗)δ+o(1), PHORN , SHORN ∈

n2−β+o(1) and stretch 1 + ε (1+ε/ψ)r+1

(1+ε/ψ)r+1−1 , with probability at least 1−O
( 1
n

)
.
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Abstract
One of the important tasks in the analysis of spatio-temporal data collected from moving entities
is to find a group: a set of entities that travel together for a sufficiently long period of time.
Buchin et al. [2] introduce a formal definition of groups, analyze its mathematical structure, and
present efficient algorithms for computing all maximal groups in a given set of trajectories. In
this paper, we refine their definition and argue that our proposed definition corresponds better
to human intuition in certain cases, particularly in dense environments.

We present algorithms to compute all maximal groups from a set of moving entities according
to the new definition. For a set of n moving entities in R1, specified by linear interpolation in a
sequence of τ time stamps, we show that all maximal groups can be computed in O(τ2n4) time.
A similar approach applies if the time stamps of entities are not the same, at the cost of a small
extra factor of α(n) in the running time. In higher dimensions, we can compute all maximal
groups in O(τ2n5 logn) time (for any constant number of dimensions).

We also show that one τ factor can be traded for a much higher dependence on n by giving a
O(τn42n) algorithm for the same problem. Consequently, we give a linear-time algorithm when
the number of entities is constant and the input size relates to the number of time stamps of
each entity. Finally, we provide a construction to show that it might be difficult to develop an
algorithm with polynomial dependence on n and linear dependence on τ .
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48:2 A Refined Definition for Groups of Moving Entities and its Computation

1 Introduction

Nowadays, inexpensive modern devices with advanced tracking technologies make it easy to
track movements of an entity. This has led to the availability of movement data for various
types of moving entities (human, animals, vehicles, etc.). Since a tracking device typically
returns a single location at each time stamp, each moving entity will be represented by a
moving point. Data may consist of just one trajectory tracked over a period of time, or a
whole collection of trajectories that are all tracked over the same time period. Note that for
the latter case, the locations of each trajectory are not necessarily collected at the same time
stamps. It is common to denote the number of trajectories (or moving entities) by n and
the number of time stamps used for each trajectory by τ . Hence, the input size is Θ(τn).
Depending on the application, one of n or τ can be much larger than the other.

To analyze moving object data, a number of methods have been developed in recent times.
These methods perform similarity analysis or compute a clustering, outliers, a segmentation,
or various patterns that may emerge from the movement of the entities (for surveys see [3, 15]).
These methods are often based on geometric algorithms, because the data is essentially
spatial.

One particular type of pattern that has been well-studied is flocking [1, 4, 5]. Intuitively,
a flock is a subset of the entities moving together (or simply being together) over a period of
time. Other names for this and closely related concepts with slightly different definitions
are herds [6], convoys [8], moving clusters [9], mobile groups [7], swarms [11], and groups [2].
Buchin et al. [2] introduce a model called the trajectory grouping structure which not only
defines groups, but also the splitting of a group into subgroups and its opposite, merging.
The algorithmic problem of reporting all maximal groups that occur in the trajectories is
solved in O(τn3 + N) time, where N ∈ O(τn4) is the output size (the summed size of all
groups reported). The algorithm also considers times in between the τ time stamps where
the locations are recorded as relevant. In between these time stamps, locations are inferred
by linear interpolation over time.

In this paper we continue the study of such groups, but we propose a refined definition
to the one by Buchin et al. [2]. We motivate why it captures our intuition better and present
algorithms to compute all maximal groups.

Previous definition of a group. The definition of a group by Buchin et al. [2] relies on
three parameters: one for the distance between entities, one for the duration of a group, and
one for the size of a group. We review their definitions next.

For a set of moving entities X , two entities x and y are directly ε-connected at time t if
the Euclidean distance between x and y is at most ε at time t, for some given ε ≥ 0. Two
entities x and y are ε-connected in X at time t if there is a sequence x = x0, ..., xk = y, with
{x0, ..., xk} ⊆ X and for all i, xi and xi+1 are directly ε-connected at time t.

In [2], a group for an entity inter-distance ε, a minimum required duration δ, and a
minimum required size m, is defined as a subset G ⊆ X and corresponding time interval I
for which three conditions hold:
(i) G contains at least m entities.
(ii) I has a duration at least δ.
(iii) Every two entities x, y ∈ G are ε-connected in X at all times in I.

Furthermore, a group G with time interval I is maximal if there is no time interval I ′ ⊃ I
for which G is also a group, and there is no proper superset G′ ⊃ G that is also a group
during I [2].
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Figure 1 In the definition by [2], x and y are ε-connected during [t0, t2].
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Figure 2 Entities in G = {a, h} are ε-connected using entities not in G.

Refined definition of a group. One issue with the previous definition is that it does not
correspond fully to our intuition. Two entities x and y may form a (rather small) maximal
group in an interval I even if they are always far apart, as long as there are always entities
of X in between them to make x and y ε-connected in X . These entities in between are not
part of the maximal group, but they do cause x and y to be ε-connected by the previous
definition. This can have counter-intuitive effects especially in dense crowds. To avoid such
issues, we refine the definition of a group. In particular, we replace condition (iii) above by:
(iii’) Every two entities x, y ∈ G are ε-connected in G during I.

We define maximal groups in the same way as before.

We give two examples that show the difference in these definitions.
First, consider a number of stationary entities S and two entities x and y, see Figure 1.

Entity x starts (at time t0) to the North of S and moves around its perimeter to the East.
Entity y starts (at t0) to the South and also moves around the perimeter to the East. After
encountering (at t1) each other at the East side, both continue together eastward, away from
the stationary entities in S (ending at t2). By the definition in [2], x and y form a maximal
group in the interval [t0, t2]. By our refined definition, they form a maximal group during
[t1, t2], starting when x and y are at distance ε and actually encounter each other.

Second, the previous definition can even see groups of entities that were never close, see
Figure 2. Here, {a, h} is a maximal group in the interval I = [t1, t3] using the definition
in [2]. At each time, a and h are ε-connected, but through different subsets of entities. By
choosing the coordinates carefully, we can ensure that no supergroup of {a, h} is also a group
in the same time interval, and hence {a, h} will be maximal. Although a and h move in the
same direction with the same speed, intuitively they do not form a group because they are
too far apart and separated by other entities that move in the opposite direction. With our
refined definition, we do not consider {a, h} a group in the interval I, and hence also not a
maximal group.

Results and Organization. We have refined the previous definition for a group of moving
entities by Buchin et al. [2] and gave two examples and argue why our refined definition can
give an intuitively plausible group. From now on, we will use the term “group” to denote a
group of entities that comply with our refined definition.

In the following section, we show that for a set X of n moving entities in R1 with τ time
stamps each, the number of maximal groups by the refined definition is O(τn3), which is
tight in the worst case.
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In Section 3, we present algorithms to compute all maximal groups in R1. First we
consider the case where all trajectories have their vertices at the same time and begin with a
basic algorithm for that runs in O(τ3n6) time. Subsequent improvements lead to a running
time of O(τ2n4). When the time stamps of trajectories are not the same, we show that our
algorithm runs in O(τ2n4α(n)) time.

Next, for moving entities in Rd (d > 1), we model entities and their inter-distance into
graphs and show that all maximal groups can be computed in O(τ2n5 logn) time, regardless
the uniformity of the time stamps in the trajectories. We show how to achieve this bound in
Section 4.

In Section 5, we consider situations where the value of n is significantly smaller than τ ,
which is typical in real-life moving entity datasets. We give an O(τ2nn4) time algorithm for
entities that move in any constant dimension.

Finally, we show an exponential bound on the number of maximal groups that can contain
any given time t in the last section.

2 Preliminaries

Let X be a set of n entities moving in R1, given by locations at τ time stamps. A trajectory
of an entity in X can be expressed by a piecewise-linear function which maps time to a
point in R1. If R1 is associated with the vertical axis and time with the horizontal axis of a
2-dimensional plane, the trajectories of entities in X are polylines with τ vertices each. We
will use the same notation to denote an entity and its trajectory. We assume that there are
no two parallel edges of trajectories.

Let dij(t) be the Euclidean distance between i ∈ X and j ∈ X at time t. When dij(t) = ε,
we say that an ε-event occurs. For any ε-event v, we denote by tv the time when v occurs
and ω(v) the function that returns the two entities that create v. We assume that no two or
more ε-events occur at the same time.

Consider an ε-event v; let ω(v) = {i, j}. If i and j are further than ε immediately before
tv, then v is a start ε-event; if they are further immediately after tv it is an end ε-event. If
there is no entity k ∈ X located strictly in between i and j at tv (so dik(tv) + djk(tv) = ε),
then we say that v is a free ε-event.

I Observation 1. The number of ε-events is O(τn2).

Let G be a group of entities in time interval I that is maximal in size. All entities in G
are pairwise ε-connected in the interval I, and hence, there are no free ε-events in G during
I. In the arrangement of trajectories from G, we define the height of a face as the length of
the longest vertical line segment inside the face. Thus, no face has height greater than ε.

It is also clear that G can begin only at a start ε-event and end only at an end ε-event.
Furthermore, we observe that if a start ε-event (or end ε-event) of G is not a free ε-event
with respect to the entities in G, then before (or after) the interval I, entities in G are still
pairwise ε-connected and we can extend the interval of G. Therefore, G can be a maximal
group only if both the start ε-event and end ε-event are free ε-events (but this is not a
sufficient condition).

I Observation 2. There can be at most one maximal group that starts and ends at a
particular pair of start ε-event and end ε-event.

I Theorem 3. For a set X of n entities, each entity moving along a piecewise-linear trajectory
of τ edges, the maximum number of maximal group is Θ(τn3).



M. van Kreveld, M. Löffler, F. Staals, and L. Wiratma 48:5

Proof. Any group G that starts at a start ε-event contains at most n entities. When a free
end ε-event involving G occurs, only group G ends but a subgroup of G with fewer entities
may continue longer. This can happen at most n− 1 times. Therefore, the maximum number
of maximal groups is O(τn3). Furthermore, there can be Ω(τn3) maximal groups because
the lower bound construction by van Goethem et al. [14] also works for our definition of a
group. J

The approach to compute all maximal groups is to work on the arrangement A of line
segments that are the trajectories. For a subset G ⊆ X and interval I, we can remove
entities from G that are separated at a face with height larger than ε in I (corresponding to
a free ε-event). Only if there are no such faces, the remaining entities in G can be a group.
Note that removing entities in G involves removing the corresponding trajectories from the
arrangement A, which can cause new faces that are free ε-events.

3 Algorithms for Entities in R1

In this section, first we consider the case where the trajectories have the same time stamps.
We present a basic algorithm that computes all maximal groups in O(τ3n6) time for entities
moving in R1. Then we present a more efficient algorithm that runs in O(τ2n4) time.
Furthermore, we present an O(τ2n4α(n)) time algorithm if the vertices of the trajectories
have different time stamps.

3.1 Basic Algorithm
We describe a simple algorithm to compute all maximal groups. Let Vs and Ve be the sets
of all start ε-events and all end ε-events respectively. Fix one event of each type: α ∈ Vs
and β ∈ Ve. By Observation 2, there is only one maximal group G that starts at α and
ends at β. Furthermore, observe that G necessarily contains the entities ω(α) = {a, b} and
ω(β) = {c, d}, and that if G is a maximal group on I = [tα, tβ ], then all entities in G are on
the same side at time tγ ∈ (tα, tβ) when a free ε-event γ occurs. We then use the following
approach to find G (if it exists):
1. Initialize a set G containing all entities in X .
2. Build an arrangement A induced by the trajectories of the entities in G on I.
3. A face f in A contains a free ε-event γ if (and only if) the height of f is more than ε. If

f has height larger than ε, test if (the trajectories of) a, b, c, and d, all lie on the same
side of f . If not, there is no maximal group G that starts at α and ends at β. If they
do pass on the same side, let S denote the set of entities whose trajectories lie on the
other side of f . Remove these entities of S from G, and remove their trajectories from
A. Observe that new free ε-events may appear because removal of a trajectory from A
merges two faces of A into a larger one. See Figure 3. Repeat this step until there is no
more free ε-event γ with tγ ∈ (tα, tβ).

4. Check that α and β are now free. If so, G is a maximal group on I, and hence we can
report it. If not, G is actually a group during a time interval I ′ ⊃ I. Hence, G may be
maximal in size, but not in duration. We do not report G in this case.

I Theorem 4. Given a set X of n entities in which each entity moves in R1 along a trajectory
of τ edges, all maximal groups can be computed in O(τ3n6) time using the Basic Algorithm.

Proof. The number of combination of a pair of start and end ε-events is O(τ2n4). Building
an arrangement from trajectories of entities takes O(τn2) time. Removing a trajectory e
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Figure 3 Removing trajectory p (due to the free ε-event γ) causes the ε-event π to become a free
ε-event.

and checking new faces in A takes time proportional to the zone complexity of e: O(τn).
Since there are at most n trajectories to be removed, the whole process to remove entities for
each interval I takes O(τn2) time. Therefore, the running time of the algorithm is O(τ3n6)
time. J

3.2 Improved Algorithm
The previous algorithm checks every pair of possible start and end ε-events α and β to
potentially find one maximal group. To improve the running time, we fix a start ε-event α
and consider the O(τn2) end ε-events β in increasing order. We show that we can check for
a maximal group on [tα, tβ ] in amortized O(1) time.

We build the arrangement A for all trajectories, starting from time tα, and sort the end
ε-events β, with tβ > tα on increasing time. We then consider the end ε-events β in this
order, while maintaining a maximal set G that is ε-connected in G throughout the time
interval [tα, tβ ].

Let ω(α) = {a, b} be the entities defining the start ε-event α, and let G ⊇ {a, b} be the
largest ε-connected set on [tα, tβ ]. We compute the largest ε-connected set on [tα, tβ′ ] for
the next ending event β′ as follows. Note that this set will be a subset of G.

Let S be the set of entities that separate from a and b at β. We remove all trajectories
from the entities in S from A. As before, this may introduce faces of height larger than ε.
For every such face f , we check if a and b still pass f on the same side. If not, there can
be no maximal groups that contain a and b, start at tα, and end after tβ . If a and b lie on
the same side of f , we add all entities that lie on the other side of f to S and remove their
trajectories from A. We repeat this until all faces in A that have non-empty intersection
with the vertical strip defined by [tα, tβ′ ] have height at most ε (or until we have found a
face that splits a and b). It follows that the set G′ = G \ S is the largest set containing a
and b that is ε-connected throughout [tα, tβ′ ]. If α and β′ are free with respect to G′ then
we report G′ as a maximal group.

Building the arrangement A takes O(τn2) time, and sorting the ending-events takes
O(τn2 log(τn)) time. By the Zone Theorem, we can remove each trajectory in O(τn) time.
Checking the height of the new faces can be done in the same time bound. It follows that
the total running time is O(τn2(τn2 + τn2 log(τn) + R)) where R is the total time for
removing trajectories from the arrangement. Clearly, R is bounded by the complexity of the
arrangement: O(τn2). So, the total running time is O(τ2n4 log(τn)).

Further Improvement We can avoid repeated sorting of end ε-events by pre-sorting them
in a list, and for each start ε-event, use this list. The list will contain events that do not
concern the entities involved in the start ε-event, but this can be tested easily in constant
time. Thus, we conclude:
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I Theorem 5. Given a set X of n entities in which each entity moves in R1 along a trajectory
of τ edges, all maximal groups can be computed in O(τ2n4) time.

Next, we consider finding all maximal groups when the vertices of different trajectories do
not have the same time stamps. We use the same idea as in the above algorithm: take one
start ε-event α at a time and remove trajectories to find all maximal groups containing ω(α).

We use a similar strategy to split trajectories vertically into τ cells as in [10], where
each cell now contains O(n) segments of trajectories. It follows that the complexity of each
cell is bounded by the number of possible intersections between segments: O(n2). Thus,
building the arrangement A still takes O(τn2) time. However, by the Zone Theorem for
an arrangement of line segments, removing a trajectory in each cell now takes O(nα(n))
time [13], where α(n) is the inverse Ackermann Function. Therefore, the total time to remove
trajectories in A is O(τn2α(n)) time and we obtain:

I Theorem 6. Given a set X of n entities in which each entity moves in R1 along a trajectory
of τ edges under the condition that their vertices have different time stamps, all maximal
groups can be computed in O(τ2n4α(n)) time.

4 Algorithms for Entities in Rd

In Rd (d > 1), it is harder to test whether an ε-event really connects or disconnects because
the two entities may be ε-connected through other entities in the group. This observation
immediately gives the condition for an ε-event to be free. We model our moving entities
as a graph where vertices represent entities and an edge exists if two entities are directly
ε-connected. As in Parsa [12], we can maintain the graph under edge updates, while allowing
same component queries, in O(logn) time per operation.

To compute maximal groups, we start at a start ε-event α and maintain the connected
component C throughout the sequence of sorted ε-events. At each ε-event β, we remove any
vertices that are disconnected from C and start again from α in case we remove anything.
We stop if a and b are disconnected. If α is a free ε-event when we reach β again, we report
C as a maximal group and continue.

We start at O(τn2) ε-events and for each, we process O(τn2) ε-events. We may need to
restart this process up to n − 1 times. In Rd, our approach only examine the ε-events of
entities and does not affected by whether the vertices of trajectories have the same time or
not, therefore we obtain the same result for both cases:

I Theorem 7. Given a set X of n entities moving in Rd along a trajectory of τ edges, all
maximal groups can be computed in O(τ2n5 logn) time.

5 Algorithms with Linear Dependence on τ

In many real-life situations, the number of vertices in each trajectory is much larger than
the number of moving entities. Therefore, the dependence of the algorithm on τ is more
important than the dependence on n. Next, we show a simple algorithm that is linear in τ ,
at the cost of an exponential dependence on n. In particular, our algorithm will compute all
maximal groups in O(τn42n) time.

We consider all 2n subsets of X in order of decreasing size, while maintaining the set of
maximal groups found so far (ordered by increasing starting time). For each subset G we
determine the maximal time intervals during which G is ε-connected, and for each such an
interval I we check if G is dominated by a maximal group H ⊃ G on I. If such a set does
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not exist, G is a maximal group on I. Notice that we only need to know when the start
ε-event and end ε-event of a particular group occured. Therefore, this algorithm applies to
both cases where the time stamps of the entities are not the same.

For each subset G, we consider the ε-events generated by the entities in G. We can
compute all these O(τn2) ε-events in O(τn2 logn) time, by sorting the groups of O(n2)
ε-events between two consecutive time stamps separately, and concatenating the resulting
τ lists. We then go through the ε-events in order, and check if G is ε-connected at every
ε-event. We can easily handle every event in O(n2) time, by naively checking if the entities
in G are ε connected (we can easily improve on this, but the total running time will be
dominated by the number of sets anyway). It follows that we can compute the sequence SG
of maximal time intervals on which G is ε-connected in O(τn4) time. Note that SG contains
at most O(τ) such time intervals.

For each interval I in SG we now have to check if G is a maximal group during I. The
set G is a maximal group on I if and only if there is no maximal group H ⊃ G on a time
interval that contains I. Since we maintain the maximal groups larger than G (and the time
interval on which they are a maximal group), ordered by increasing starting time, we can
iterate through them once, and extract the maximal groups that are a superset of G. Since,
by Theorem 3 there are at most O(τn3) maximal groups, this takes at most O(τn4) time.
Let I denote the set of time-intervals corresponding to those groups, ordered by increasing
starting time. We now simply scan through SG and I simultaneously, while maintaining the
time interval in I that started earliest and has not ended yet. For every interval I in SG we
can then check if G is a maximal group on I in constant time. In total this takes O(τn3)
time. Using a similar simultaneous scan we can add the intervals on which G is maximal to
our set of maximal groups found so far.

It follows that we can compute all time intervals on which G is maximal in O(τn4) time.
Since we do this for all subsets G ⊆ X we obtain the following result.

I Theorem 8. Given a set X of n entities in which each entity moves in Rd along a trajectory
of τ edges, we can compute all maximal groups in O(τn42n) time, using O(τn3) space.

6 A Lower Bound on the Maximum Number of Maximal Groups at
some Time t

The result in the previous section shows that, when τ is large but n is small, we can improve
the dependence on τ from quadratic to linear. However, we pay for this by having an
exponential dependence on n. This naturally raises the question whether an algorithm with
linear dependence on τ , but polynomial dependence on n, is possible. While we do not know
the answer to this question, we present a construction which may indicate that such a result
is hard to obtain, if possible at all.

We show that the number of maximal groups that contain a given time t can be exponential
in n, provided that τ is sufficiently large. Without the requirement that the maximal groups
must span a single moment in time, it is easy to make a construction of trajectories that has a
number of maximal groups that is linear in τ , even with just two entities, so it is unbounded
in n. Similarly, we can easily construct trajectories that give rise to 2n − n − 1 maximal
groups (with a group size of at least m = 2) that are different in composition using roughly
2n time stamps by making these groups consecutive. The construction that we present, where
many different maximal groups occur simultaneously, is more involved, and shows that there
may be Ω(

√
2n) maximal groups simultaneously when there are Ω(

√
2n) time stamps. While

the result does not imply any lower bound for the problem of computing all maximal groups,
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Figure 4 Right half of the lower bound construction for k = 3. The times very near the start
and end ε-events of q and q′ are shown together with the bitstring of the k-max group that ends
there. At tmid, all trajectories are in a single point (the trajectories are not shown near tmid).

it suggests that it may be difficult to obtain an algorithm that is linear in τ and polynomial
in n. Several natural approaches to the problem (based on, for instance, divide-and-conquer)
appear not to work due to this construction and the result on simultaneous maximal groups.

I Theorem 9. There exists a set X of n entities in R1 whose trajectories are defined by
Θ(
√

2n) time stamps, for which the number of maximal groups at some time t is Ω(
√

2n).

Proof. We use a set of n = 2k + 2 entities, denoted p1, . . . , pk, p′1, . . . , p′k, and q and q′. We
are interested in counting the groups that contain q, q′, and for each i, exactly one of pi and
p′i. We call any such group k-max and will show that they are all maximal. A k-max group
G is encoded by a length-k bitstring where the i-th bit is 1 if pi ∈ G and it is 0 if p′i ∈ G.

We make a construction with the following properties; the half after tmid is illustrated
for k = 3 in Figure 4:
1. The trajectory of pi is the reverse of p′i, with respect to tmid (that is, mirrored in tmid),

and vice versa.
2. A k-max group starts and ends at free εq-events of q and q′.
3. A k-max group encoded by bitstring B starts a fraction after time 1 + B and ends a

fraction before time tmid + 1 +B, where B is interpreted as a binary number.
4. There are only O(1) trajectory vertices of each trajectory within one time unit.
5. Each k-max group is maximal.

At tmid, all trajectories pass through a single point to ensure they are continuous when
mirroring, and they are pairwise directly ε-connected. It is the moment in time for which
Ω(
√

2n) maximal groups exist, as we will show. After tmid, the entities q and q′ will have 2k
pairs of ε-events: an end ε-event directly followed by a start ε-event. We call these events
εq-events. Whether these εq-events are free for a k-max group G depends on the time and
the bitstring, or equivalently, which entities from p1, . . . , pk are in G.

The εq-event at a time t is free for a k-max group G if and only if the bitstring cor-
responding to time t is the same as the bitstring of G. Hence, (assuming that no earlier
ε-event ends G) G will end at the time of its bitstring, so a fraction before tmid + 1 +B. By
symmetry of pi and p′i, G will start a fraction after time 1 +B. In Figure 4, for example, at
time tmid + 4, the k-max group {p′1, p2, p3, q, q

′} ends.
The other ε-events of the trajectories are between two consecutive εq-events. These

ε-events involve the entities of p′1, . . . , p′k and the trajectories need three vertices between
εq-events. Their presence ensures that only one of pi or p′i is in a particular k-max group.
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Notice that these ε-events will also be the start or end ε-events of maximal groups that are
supersets of a k-max group.

Suppose p′i is an entity that creates a free ε-event α just before a k-max group G containing
pi ends at tmid + B. Obviously, p′i only needs to create such a free ε-event once and it
follows this is only necessary if the previous k-max group G′ that ends at tmid + B − 1 is
not containing pi. However, other k-max groups that will end after G might contain p′i.
Therefore, to prevent this ε-event becomes free in the duration of those k-max groups, we
make entities of p1, . . . , pk that are not in G to keep p′i ε-connected to all other entities. Still,
not all of them are needed to prevent α to become free, but only for each entity p′h where
h < i, because by the ordering of the bitstrings, k-max groups contain p′i and those entities
might end after α. See Figure 4: before ε-event α, only p1 prevents p′2 from creating a free
ε-event (but not p3). Two k-max groups contain p1,p′2 and one of p3 or p′3 end after α while
k-max group of {p′1, p′2, p3} ends before α.

I Claim 10. If a maximal group containing time tmid contains at least pi or p′i for all indices
i, and both pi and p′i for at least one index i, then its time interval cannot contain both time
h and tmid + h for any integer h.

Proof. Suppose for contradiction G is a maximal group which contains both pi and p′i, and
its time interval fully contains an interval [h, tmid + h] for some integer h; suppose further
that i is the smallest index for which this is the case. Let B be the bitstring that encodes
the entities with indices 1 . . . i− 1; let B− = B0111 . . . 1 be obtained from B by appending a
single 0 and k − i 1s and let B+ = B1000 . . . 0 be obtained from B by appending a single 1
and k − i 0s. Then G starts not earlier than some time between B− and B+, and ends not
later than some time between tmid +B− and tmid +B+. Refer to Figure 4. Hence, there is
no integer h such that both h and tmid + h are contained in the time interval of G. J

The claim directly implies that all k-max groups are maximal, because by Property 3
they start and end at some time h and tmid + h, but adding any other trajectories will cause
both pi and p′i to be in the group for some i.

Moreover, the ε-events created by entities of p′1, . . . , p′k are also the end ε-events of the
2k − 1 groups that have more entities than a k-max group. Let the maximal group contains
all entities end at free ε-event β at time tβ = tmid + 2k−1 + T (0 < T < 1) created by p′i.
By the simmetry of the construction and the ordering of the bitstrings, two groups of n− 1
entities not containing either p′i or pi will end at time tβ − 2k−2 and tβ + 2k−2, respectively.
Then, continuing the same process with the two groups recursively will results on other
maximal groups with different entities. Since the start and end ε-events of these groups are
always start later or end earlier than k-max groups, then these groups are maximal because
their interval will not contain interval of other maximal groups. Clearly, the number of
these maximal groups is fewer than k-max groups because their ε-events only occur between
two consecutive εq events. In Figure 4, p′1 defines β, the end ε-event for a maximal group
containing all entities. Then, maximal group that are not contain p1 or p′1 will end before or
after β, respectively.

To build the construction, all trajectories must have a constant times 2k vertices for
the ε-events of q and q′ and a constant number of vertices in between those ε-events. Each
trajectory in the construction has Θ(

√
2n) vertices. We conclude that the number of maximal

groups that contain time tmid in this construction is at least 2k = 2n/2−1 = Ω(
√

2n). J
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7 Conclusions and Future Work

In this paper we introduced a variation on the grouping structure definition [2] and argued
that it corresponds better to human intuition. The number of maximal groups that can arise
in a set of n moving entities is Θ(τn3) in the worst case. We have given an algorithm for
trajectories moving in R1 that computes all maximal groups and runs in O(τ2n4) time. In
Rd, our algorithm runs in O(τ2n5 logn) time. For the more general case where the input
trajectories do not have time-aligned vertices, the algorithm for trajectories in R1 can be
extended at the cost of an extra factor of α(n), while the same result still holds for trajectories
in Rd.

Furthermore, we presented an algorithm that has only linear dependence in τ , at the
expense of exponential dependence in n. Since collections of trajectories are often very large
in the number of time stamps and not necessarily in the number of trajectories, this algorithm
or a practical variation on it may still be useful. This algorithm is not affected by whether
or not the vertices of the trajectories are aligned in time.

The trade-off in the dependence on n and τ gives rise to interesting open problems. Most
importantly, is it possible to develop an algorithm whose running time is linear in τ and
polynomial in n? Similarly, can we realize subquadratic dependence on τ without having
exponential dependence on n? In general, what trade-offs are possible?

Future work includes implementing our algorithms and experimentally showing the
differences between the definition of groups in [2] and our refined definition, both qualitatively
and quantitatively. It would also be interesting to develop an output-sensitive algorithm
that uses considerably less time if the output is small, or under realistic input assumptions.
Finally, it would be interesting to investigate whether one can develop algorithms that take
geodesic distance into account to define direct ε-connectedness instead of the straight-line
distance, as was done for the previous definition of a group [10].
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Abstract
We present an algorithm for the k shortest simple path problem on weighted directed graphs
(kSSP) that is based on Eppstein’s algorithm for a similar problem in which paths are allowed
to contain cycles. In contrast to most other algorithms for kSSP, ours is not based on Yen’s
algorithm [19] and does not solve replacement path problems. Its worst-case running time is on
par with state-of-the-art algorithms for kSSP. Using our algorithm, one may find O(m) simple
paths with a single shortest path tree computation and O(n+m) additional time per path in well-
behaved cases, where n is the number of nodes and m is the number of edges. Our computational
results show that on random graphs and large road networks, these well-behaved cases are quite
common and our algorithm is faster than existing algorithms by an order of magnitude.
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1 Introduction

The k shortest path problem in weighted, directed graphs (kSP) asks for a set of k paths from
a source s to a target target t in a graph with n nodes and m edges. Every path that is not
output by an algorithm should be at least as long as any path in the output. Algorithms for
this problem can be useful tools when it is hard to specify constraints that a solution should
satisfy. Instead of computing only one shortest path, kSP algorithms generate k paths, and
the user can then pick the one that suits their needs best. The best known algorithm for this
problem runs in time O(m+n logn+ k log k) and is due to Eppstein [4]. In the initialization
phase, the algorithm builds a data structure that contains information about all s-t paths
and how they interrelate with each other, in time O(m+ n logn). This can be reduced to
O(m + n) if the shortest path tree (SP tree) can be computed in time O(m + n). In the
enumeration phase, a path graph is constructed. The path graph is a quaternary min-heap
where every path starting in the root correlates to an s-t path in the original graph. We
require O(k log k) time for the enumeration phase if we want the output paths to be ordered
by length. If the order in which the paths are output does not matter, Frederickson’s heap
selection algorithm [7] can be used to enumerate the paths after the initialization phase in
time O(k).

The k shortest simple path problem (kSSP), introduced in 1963 by Clarke, Krikorian and
Schwartz [2], seems to be more expensive, computationally. In contrast to kSP, the computed
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paths are required to be simple, i.e., they must not contain a cycle. The extra effort may be
well-invested if many of the k shortest paths are non-simple and we are only interested in
simple paths. The algorithm by Yen [19] used to have the best theoretical worst-case running
time of O(kn(m+ n logn)) for quite some time. Gotthilf and Lewenstein [9] improved upon
this bound recently. They observed that kSSP can be solved by solving O(k) all pairs
shortest path (APSP) instances. Using the APSP algorithm by Pettie [13], they obtain a
new upper bound of O(kn(m+ n log logn)). Vassilevska Williams and Williams [18] showed
that, for constant k, an algorithm for kSSP with running time O(n3−ε) for some positive
ε (truly subcubic) would also yield algorithms with truly subcubic running times for some
other problems, including APSP. A recent survey of the field is due to Eppstein [5]. The
kSSP on undirected graphs seems to be significantly easier. Katoh et al. [11] proposed an
algorithm that solves kSSP on undirected graphs in time O(k(m+ n logn)).

A subproblem occurring in Yen’s algorithm is the (restricted) replacement path problem.
Given a shortest s-t path p in a graph, it asks for a set of paths as follows. For each i < |p|,
the set has to include a shortest simple path that uses the first i − 1 edges of p, but not
the ith. This problem has to be solved O(k) times to find the k shortest simple paths using
Yen’s algorithm. In the original version of Yen’s algorithm, the replacement paths are found
using O(|p|) shortest path computations, resulting in time O(n(m+ n logn)). Hershberger
et al. [10] compute one SP tree rooted in s and one reversed SP tree rooted in t, respectively.
They use these two trees to find a replacement path in constant time per edge on p, cutting
down the time required to find all replacement paths to O(m + n logn) when Dijkstra’s
algorithm is used. However, the paths generated this way are not guaranteed to be simple.
Such non-simple paths can be detected in constant time and repaired by falling back to Yen’s
replacement path computation for the path edge in question. Since they do not provide an
upper bound for the number of non-simple paths that may occur using this method, the
worst-case running time is again O(n(m+ n logn)).

Some approaches reuse one fixed reversed SP tree T0 rooted in t and computed during
the initialization of their kSSP algorithm, in contrast to O(1) SP trees per replacement path
instance. Pascoal [12] noticed that the replacement path that deviates from p at node v
might be one that uses an edge (v, w) to an unused successor w of v and then follows the
path from w to t in T0. Therefore, they test whether the shortest such path is simple, and
fall back to a full shortest path computation if it is not. Although they do not describe in
detail how this check is done, it can be done in time O(m+n) per replacement path instance
by partitioning the nodes into blocks as described by Hershberger et al. [10]. Feng [6] uses
the reversed SP tree to partition V into three classes. For each edge (u, v) on p for which
we want to compute a replacement path, red nodes have already been used to reach v via
p. A yellow node v is a non-red upstream node of some red node in T0, i.e., the path from
v to t in T0 contains a red node. All other nodes are green. They then do shortest path
computations from v using Dijkstra’s algorithm like Yen. However, they are able to restrict
the search to yellow nodes, resulting in a significantly smaller search space. Feng does not
provide upper bounds on the size of this search space, resulting again in a worst-case running
time of O(n(m+ n logn)) for each replacement path instance.

The fact that the upper time bound for exact kSSP algorithms has not been improved for
a long time inspired research on inexact approaches. This line of research so far spans three
publications that all use the notion of a detour of a path, which is the (connected) subpath of a
replacement path that diverts from a reference path. It was started by Roditty and Zwick [15]
who proposed a Monte Carlo O(m

√
n logn) algorithm for the replacement path problem on

directed graphs with small integer weights. They also proposed a framework that solves
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kSSP by O(k) computations of second shortest simple paths in appropriate subgraphs, which
in turn is solved by their replacement path algorithms. Roditty [14] enhanced this framework
to allow for approximate kSSP algorithms when an approximation algorithm for the second
shortest path subproblem is used. They also provided such an 3

2 -approximation algorithm,
leading to a 3

2 -approximation algorithm for kSSP with running time in O(k
√
n(m+ n logn)).

An α-approximation algorithm guarantees that the i-th output path is at most α times
as long as an actual i-th shortest path. The algorithm for approximate second shortest
simple paths distinguishes between short and long detours. This approach was extended
by Bernstein [1] from two to O(logn) classes of detours, which are handled in increasing
order. This way, they were able to obtain an algorithm that gives (1 + ε) approximations
in O(ε−1 log2 n log(nC/c)(m + n logn) time, where c, C are the minimum and maximum
edge cost, respectively, giving the first (approximation) algorithm that breaks the O(m

√
n)

barrier. See Frieder and Roditty [8] for an experimental study of Bernstein’s algorithm.

Our contribution. We propose an algorithm that was derived from Eppstein’s notion of a
path graph [4]. Our algorithm achieves the same worst-case running time as Yen’s algorithm.
Like Yen, we rely on shortest path (tree) computations. In contrast to Yen-based algorithms,
however, our algorithm may draw O(m) simple paths from one SP tree computation. If
the underlying graph is acyclic, the revised algorithm at the end of this paper requires
O(n logn+ k(m+ n)) without further modifications. Alternatively, one could test whether
the graph is acyclic and then use Eppstein’s algorithm. However, this method fails if the
graph has just a single cycle, in which case our algorithm appears to be a good choice. As
most other kSSP algorithms, our algorithm works on multigraphs without modification.
After some definitions in Section 2, we propose a simplified version of our algorithm with
running time O(km(m+ n logn)) in Section 3. In Section 4, we show how this running time
can be reduced to O(kn(m+n logn)), and how to improve the running time in practice even
further. Finally, we present the results of our computational studies in Section 5 to prove
the efficiency of our algorithm.

2 Definitions

Let G = (V,E) be a directed graph with node set V and edge set E. Let s, t ∈ V be source
and target nodes, respectively. We assume an implicit edge weight function c : E → R+

0
throughout this paper. We denote the number of nodes |V | by n and the number of edges |E|
by m. A path connecting v to w in G, or v-w path, is an edge sequence p = (e1, e2, . . . , er),
ei = (vi, wi), with v = v1, w = wr and wi = vi+1 for 1 ≤ i < r. For the sake of simplicity, we
only consider combinations of G, s and t such that there exists an s-v path and a v-t path
in G for every v ∈ V . A node u is said to be on the path p, denoted by u ∈ p, if u = w or
u = vi for some i. If vi 6= vj 6= w for 1 ≤ i, j ≤ r, p is a simple path. The prefix (e1, . . . , ei)
is a v-wi path and denoted by pi. The length c(p) of the path p is the sum of edge weights of
its edges. If every v-w path is at least as long as p, it is called a shortest v-w path. We write
G− p to denote the induced subgraph G[{v ∈ V | v /∈ p}].

The k shortest simple path problem (kSSP) is an enumeration problem. Given a directed
graph G = (V,E) with source node s ∈ V , target node t ∈ V , edge weights c, and some
k ∈ N, we want to compute a set P comprising k simple paths from s to t in G such that
c(p) ≤ c(p′) for every pair p ∈ P , p′ /∈ P of simple paths. We obtain the k shortest path
problem (kSP) if we do not require the computed paths to be simple.

A shortest path tree (SP tree) T of G is a subtree of G with node set V such that each
v ∈ V has exactly one outgoing edge, which lies on a shortest v-t path, or no outgoing edges

ISAAC 2016



49:4 Sidetrack-Based Algorithm for Directed k Shortest Simple Paths

if no such edge exists. We denote the latter case by v /∈ T . Our algorithm will compute
several SP trees, the first of which we call initial SP tree T0. An edge e /∈ T is called sidetrack
w.r.t. T ; we will omit T in most cases. For a sidetrack e = (v, w), the sidetrack cost δT (e) is
defined as (c(e) + d(w))− d(v), where d(u) is the length of the unique u-t path in T . The
sidetrack cost is therefore the difference between the length of a shortest v-t path and the
length of a shortest v-t path that starts with e. The sidetrack set DT (v) of a node v ∈ V is
the set of all sidetracks w.r.t. T with tails on the unique v-t path in T . When sidetracks are
organized in heaps, we use sidetrack costs for comparison.

Let p = (e1, . . . , ek), p′ = (f1, . . . , fl) be two s-t paths, and i∗ = max{i | ej = fj for 1 ≤
j < i}. Then, with respect to p, i∗ is the deviation index, the tail of ei∗ is the deviation node
dev(p′), and ei∗ is the deviation edge of p′. As is usual for kSSP algorithms, we will discover
paths in a hierarchical fashion. We manage a candidate set, i.e., a set of candidate paths that
have been found, but have not been determined to be one of the k shortest simple paths.
Any path p that is extracted from the candidate set will be part of the solution; candidate
paths that are found not to be part of the solution are discarded. A range of new candidate
paths is derived from p. Any derived path p′ is added to the candidate set. We call p the
parent path of p′. When p is omitted, the terms deviation node and edge are w.r.t. the
parent path of p′. By removing the deviation edge of p from p, p is split into its prefix path
pref(p) := pi∗ starting in s, and its suffix path suff(p) ending in t. The initial s-t path p0 in
T0 has no parent path and thus no deviation edge. We define its suffix path to be p0 itself.

We generalize Eppstein’s representation [4] for paths. Eppstein represents paths as
sequences of sidetracks, all w.r.t. the same SP tree. In our representation, every sidetrack e
in a sidetrack sequence may be associated with a different SP tree Te. The path represented
by a sidetrack sequence (e1, . . . , er) can then be reconstructed as follows. Starting in s, we
follow the initial SP tree T0 until we reach the tail of e1. After reaching the tail of ei, we
traverse ei and follow Tei

until we reach the tail of ei+1, or, in case i = r, until we reach
t. Note that Eppstein’s representation is the special case where Te = T0 for each e in a
sidetrack sequence, and that both Eppstein’s sidetrack sequences and our generalized ones
may represent non-simple paths. The distance from a node v to t in a SP tree Te associated
with a sidetrack e is denoted by de(v).

3 Basic Algorithm

In this section, we propose a simplified way to enumerate the k shortest simple paths. We
describe in Section 4 some modifications to achieve our proclaimed running time guarantee.

We initialize an empty priority queue Q that is going to manage candidate paths. The
key of a path in Q is its length. We compute the initial SP tree T0 and push its unique s-t
path, represented by an empty sidetrack sequence, to Q. We now process the paths in Q
in order of increasing length until we found k simple paths. Let (e1, . . . , er) be a sidetrack
sequence extracted from Q, and p the path that is represented by this sequence. Although
the first path that is pushed to Q is always simple, we will eventually push non-simple paths
to Q, too. Therefore, we first have to determine whether p is simple in a pivot step. This
check can be done by simply walking p and marking every visited node.

We first describe how to handle the simple case. We start by outputting p. Let u be the
head of er, and T = Ter

. For every sidetrack e = (v, w) with v ∈ suff(p), we discover a new
path p′ represented by the sequence (e1, . . . , er, e). We set dev(p′) = v, and push p′ to Q. By
choosing Te = T , we simply reuse the SP tree that is also associated with the last sidetrack
in the sequence representing p. The length of p′ can easily be computed as c(p) + δT (e). If
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Figure 1 Example for the basic algorithm. In Figure 1a, the thick, solid edges belong to T0. In
Figure 1b, every sidetrack is associated with T0 except for c′, which is associated with the SP tree
T1 comprising the edges b and d. An arrow from sequence p to sequence p′ indicates that p is the
parent path of p′.

der
(w) is undefined because T does not contain a w-t path, we simply ignore e. Apart from

these dead ends, we add one path for each sidetrack in DT (u) to Q. Note that sidetracks
emanating from t can safely be ignored.

Consider the example in Figure 1. The sidetrack sequence (a) with Ta = T0 represents a
simple path p that passes the nodes s, v2, v1, v3, t in this order. The suffix of this path is its
v2-t subpath, and the sidetracks b, c have tails on this suffix. Therefore, when (a) is extracted
from Q, p is output and the sequences (a, b) and (a, c) with Ta = Tb = Tc are pushed to Q.

Now assume we extracted a non-simple path p represented by the sidetrack sequence
(e1, . . . , er). We try to extend the concatenation of pref(p) and er to a simple s-t path. Let
er = (v, w). Any valid extension avoids the nodes of pref(p) after v. We are only interested
in shortest extensions. Therefore, we compute a new SP tree T and distances d, but in
G− pref(p) instead of G to make sure that nodes of the prefix path of p are not used again.
If w /∈ T , pref(p) cannot be extended to a simple s-t path, and we discard p. Otherwise,
we push the sequence (e1, . . . , er) to Q again. In this new sequence, we associate T with
er instead of Ter

from the old sequence. The sequence represents a path p′ obtained by
concatenating the simple prefix path of p, the edge er, and the w-t path in T that, by
construction, avoids all nodes of pref(p). The suffix itself is simple because it is a shortest
path in a subgraph of G. Hence, p′ is simple. The length of p′ is c(pref(p)) + c(er) + d(w).

Consider again the example in Figure 1. The sidetrack sequence (a, c) with Ta = Tc = T0
represents a non-simple path p that visits the nodes s, v2, v1, v3, v2, v1, v3, t in this order.
The deviation node of p is v3, its deviation edge c, and its prefix path is (a, (v2, v1), (v1, v3)).
We compute a new SP tree T in G− pref(p), which only consists of the edge d. Therefore, T
does not contain a v2-t path, and p is discarded. In contrast, assume the sequence (c) with
Tc = T0 was just extracted from Q. It represents almost the same path as the sequence above,
but it skips the first visit of v2. Again, v3 is the deviation node and c the deviation edge.
The prefix path comprises the nodes s, v1 and v3. After removing them temporarily, a new
SP tree T1 is computed, consisting only of the edges b and d. The sequence (c) with Tc = T1
is pushed to Q. This new sequence represents the simple path ((s, v1), (v1, v3), c, b, d), where
c is the last sidetrack in the extracted sequence, and (b, d) is the unique v2-t path in T1.

Finally, when (c) with Tc = T1 is extracted, the represented path is output. The sidetracks
emanating from its prefix are (v2, v1) and (v4, v3). Since v1, v3 /∈ T1, these sidetracks are
ignored and no new path is pushed to Q.
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I Lemma 1. The above algorithm computes the k shortest simple s-t paths of a weighted,
directed graph G = (V,E).

Proof. The algorithm uses the same idea of shortest deviations as existing kSSP algorithms
or Eppstein’s kSP algorithm. We only have to show that a non-simple path p is processed
before its simple enhancement p′, resulting from the suffix repair in the non-simple case, is
actually needed. The set of nodes that are forbidden when the SP tree for p is computed is a
proper subset of the node set that the SP tree for p′ may not use. The suffix of p is therefore
not longer than that of p′, and p is extracted from Q (and subsequently, p′ is pushed) before
we need to extract p′. J

This basic form of our algorithm requires too many computations of SP trees:

I Lemma 2. The running time of the above algorithm is O(km(m+ n logn)).

Proof. While processing a non-simple path, at most one new path is pushed to Q, which is
always simple. Thus, the parent of a non-simple path is always simple. We have to process
at most k simple paths, each of which requires O(m + n) time. Every simple path may
have O(m) sidetracks extensions. In the worst case, all of them represent non-simple paths,
yielding O(km) SP tree computations with a total running time of O(km(m+ n logn)). The
running time for the non-simple cases clearly dominates. For every subset of E, there is
at most one permutation of this subset that represents a simple s-t path. The maximum
number of paths enumerated by the algorithm is therefore k′ := min{k, 2m}. We can limit
the size of Q efficiently to k′ using a double-ended priority queue [16]. We push O(k′m)
paths to Q and extract O(k′m) paths from it; both operations require O(log k′) time on
interval heaps. The total time spent on processing Q is O(k′m log k′) ⊂ O(km2). The pivot
step requires O(n) time for each of the O(k′m) extracted paths. J

Finally, we turn our attention to the space requirements of the above algorithm. We need
O(n) space for each SP tree that we compute. Since SP trees are never discarded and we
compute one for each non-simple extracted path, the total space for all SP trees is O(kmn).
For each simple extracted path p, we push a path to Q for each edge that has its tail on p.
These new paths are represented by an edge and a pointer to some SP tree, and therefore
require constant space. We extract up to k simple paths with O(m) sidetracks each, and
therefore require O(km) space for Q itself.

4 Improvements

We show how the number of SP tree computations can be reduced to O(kn) in the worst
case. Further, the space requirements are reduced by a factor of n.

So far, we were only able to bound the number of SP tree computations by O(m) for
each extracted simple path. This stems from the fact that there can be O(m) sidetracks
with tails on such a path, each of them requiring a subsequent SP tree computation in the
worst case. Consider two sidetrack sequences (e1, . . . , er, f1 = (u, v)), (e1, . . . , er, f2 = (u,w))
that were added when a path p represented by (e1, . . . , er) was processed. Let p1, p2 be the
paths represented by these sequences, respectively. Assume that both sequences represent
non-simple paths, and therefore both require a new SP tree. We assume w.l.o.g. that p1 is
extracted from Q before p2. When p1 is extracted from Q, we discover that it contains a cycle.
We then have to compute an SP tree T for the graph G − p′, where p′ is the shortest s-u
subpath of p. We push (e1, . . . , er, f1) back to Q, and update Tf1 = T . When p2 is extracted,
the basic algorithm computes an SP tree for the exact same graph. This computation can
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therefore be skipped. We check if an SP tree for this graph has already been computed,
and reuse it if it exists. In our case, we simply push (e1, . . . , er, f2) with Tf2 = T to Q. We
obtain the following result.

I Lemma 3. Excluding the time spent on Q, the algorithm proposed in Section 3 in con-
junction with SP tree reuse requires O(kn(m+ n logn)) time to process non-simple paths.

Proof. There are still O(km) many sequences in Q that represent non-simple paths, but
only O(kn) of them trigger an SP tree computation. Let p be a non-simple path extracted
from Q. The initial pivot step requires time O(n). We store in Q along with each path a
pointer to its parent path, as well as a pointer to the SP tree for G− p′ for every prefix path
p′. We can then check if an SP tree for some prefix path has already been computed, and
access it if it has, both in constant time. J

The total running time of O(km2) spent on Q is no longer dominated. Instead of using
a priority queue for the candidate paths, we organize all computed paths in a min-heap in
the following way. The shortest path is the root of the min-heap. Whenever a path p′ is
computed while a path p is processed, we insert p′ into the min-heap as a child of p. Figure 1b
shows an example of such a min-heap. We use Frederickson’s heap selection algorithm [7] to
extract the km smallest elements from this heap. The heap described above has maximum
degree m, again yielding a running time of O(km2). Let Pp be the set of paths found during
the processing of p. Instead of inserting every p′ ∈ Pp as a heap child of p, we heapify Pp to
obtain the heap Hp, using the lengths of the paths for keys again. The root of Hp is then
inserted into the global min-heap as a child of p. Note that the parent path of every path
in Hp is not its heap parent in Hp, but still p itself. Every simple path p in the min-heap
now has at most two heap successors with the same parent path as p, and at most one heap
successor whose parent is p itself. Every non-simple path has at most one simple path as
heap processor. The maximum degree of the global min-heap is therefore bounded by three
and Frederickson’s heap selection can be done in time O(km).

I Corollary 4. The algorithm proposed in Section 3 in conjunction with SP tree reuse and
Frederickson’s heap selection algorithm computes the k shortest simple s-t paths of a weighted,
directed graph G = (V,E), s, t ∈ V , in O(kn(m+ n logn)) time.

The first improvement above reduced the space required by the basic algorithm from
O(kmn) to O(kn2). We are not able to reduce the number of SP tree computations to o(kn).
However, it is not necessary to permanently store all these SP trees at the same time. Only
up to k of them can contain a simple path that eventually gets extracted from Q. We propose
to store the computed SP trees in a max priority queue S. The priority of an SP tree T in S
is max{c(p′) + c(e) + dT (w) | e = (v, e) ∈ E}, where p′ = (e1, . . . , er, f) is the path T was
computed for, and f = (u, v) for some u ∈ V . Whenever |S| exceeds k, S contains an SP
tree that will not contribute to the k shortest simple paths. This is always the SP tree with
the highest priority. It can be extracted from S in O(log k) time and therefore does not have
an impact on the worst-case running time. The space that was used to store the extracted
tree can later be used to store new SP trees. The number of SP trees stored at any point in
time never exceeds k + 1. The total space requirements are then dominated by the DT ’s,
and bounded by O(km).

Our final improvement does not change the worst-case running time or space consumption.
Instead, we will speed up an important part of the algorithm by a factor of n by using a rather
cheap test. Consider one of the k simple s-t paths p represented by sidetracks (e1, . . . , er)
with ei = (vi−1, vi), s = v0 and t = vr. When p is processed, we push the set Pp of paths
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to Q, with |Pp| ∈ O(m). The basic algorithm tests for each p′ ∈ Pp if p′ is simple in time
O(n), leading to a total time of O(kmn) for these tests. Let T = Ter

. By removing all ei

from T , the SP tree decomposes into a set of trees Ti such that Ti is rooted in vi. The block
i is the node set of Ti. Observe that the path p′ represented by a sequence (e1, . . . , er, e),
e = (vi, w), with vi, w in block i, j, respectively, is simple iff i < j. If i ≥ j, we follow p

until we reach vi, traverse e and follow T to reach vi again. Otherwise, the first node on p
we hit after deviating from it via e is vj . Since i < j, the vj-t subpath of p does not contain
vi, so p′ is simple. The partition of V into blocks is O(n)-time computable. We can then
collect all sidetracks deviating from p and check for each of them if their heads belong to
a smaller block than their tails in O(m) total time. We store this information along with
the corresponding sidetrack sequences in Q. The pivot turn is replaced by a constant time
lookup. All tests for simplicity then require time O(k(m+ n)) instead of O(kmn).

5 Experiments

To demonstrate the effectiveness of our algorithm, we conducted a series of experiments.
Feng [6] showed recently that their algorithm is the most efficient one in practice. We
therefore compare our sidetrack-based algorithm to Feng’s node classification algorithm.
For reference, we also include results for the most promising third contender, an algorithm
proposed by Sedeño-Noda [17]. We used all graph classes that Feng had used in their
experiments, including road graphs that are especially relevant in practice.

Sedeño-Noda kindly provided us with the implementation KCM of their algorithm.
We conducted our experiments on a desktop computer very similar to that of Feng. On
our computer, KCM was consistently slower than what is reported for KCM on Feng’s
computer [6]. On average, we required 10.4 seconds on NY and 15.94 seconds on BAY
(described in Section 5.2) using KCM; Feng reported 8.81 and 11.23 seconds, respectively. In
contrast, our implementation NC of Feng’s algorithm (without express edges) consistently
gives lower running times than those reported by Feng. We also implemented Feng’s algorithm
with express edges, which was always slower than NC. Note that Feng did not specify whether
express edges were used in their experiments. All improvements proposed in Section 4 were
used in the implementation SB of our sidetrack-based algorithm with the following exception:
Frederickson’s heap selection algorithm was used neither for NC nor for SB. This results in
an additional running time of O(km log k) for SB, but not for NC.

Shortest paths (NC) and SP trees (SB) are computed using a common implementation of
Dijkstra’s algorithm; tentative labels are managed by a pairing heap. Our implementation
of Dijkstra’s algorithm stops as soon as the label of the target node is made permanent if
only a single pair shortest path is needed, which is essential for NC. SP trees are computed
lazily. A tree is initialized without any edges, and the source node is pushed to a priority
queue that is permanently associated to the tree. Whenever a part of the tree is queried (i.e.
the distance or predecessor of some node) that has not yet been computed, we simulate the
Dijkstra algorithm using the associated priority queue until the queried part is settled. The
queue of candidate paths Q is implemented as an interval heap, a form of double-headed
priority queues, which allows us to limit its size efficiently to the number of simple paths
that have yet to be output. For SB, we use separate priority queues Qs and Qn for simple
and non-simple paths, respectively. Whenever a path has to be extracted, SB extracts from
Qn iff the shortest path in Qn is cheaper than the shortest path in Qs.

We implemented NC and SB in C++, using forward and reverse star representation for
directed graphs. The experiments ran on an Intel Core i7-3770 @ 3.40GHz with 16GB of
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RAM on a GNU/Gentoo Linux with kernel version 4.4.6 and TurboBoost turned off. Source
code was compiled using the GNU C++ compiler g++-4.9.3 and -O3 optimization.

5.1 Random Graphs
We first considered random graphs generated by the sprand generator provided on the website
of the Ninth DIMACS Implementation Challenge [3]. The generator draws at random a fixed
amount of edges, possibly resulting in a multigraph. For each combination of graph size
n ∈ {2000, 4000, 6000, 8000, 10 000} and linear density m/n ∈ {2, 3, 4, 7, 10, 20, 30, 40, 50},
we generated 20 random graphs, and enumerated k ∈ {200, 500, 1000, 2000} simple paths.
Edge weights were selected uniformly from {1, . . . , 10 000}. In Table 1, the median and 90%
quantile Q.9 of execution times for some densities and k = 2000 are summarized. Our results
confirm Feng’s claim that NC is usually faster than KCM on random graphs. NC seems to
struggle with very low densities of m = 2n and gets faster for graphs with densities up to
about m = 30n. On the other hand, KCM and SB display a more consistent growth. SB is
always the fastest of the three, with speedup factors ranging from 8 to 15 for lower densities,
and 7.5 to 25 for higher densities when compared to the second-fastest algorithm.

We now consider the dispersion of the three algorithms. For SB, 90% of the instances
finish within 160% of the corresponding median running times (the fastest 50%) for most
combinations of n and m. For KCM, this ratio stays below 106% for all but two combinations
of n and m. We could not find any correlation between n, m and k on the one side, and the
dispersion of running times on the other side, for KCM and SB. In contrast, NC regularly
requires more than thrice the median running time to answer 90% of the queries. Running
times are therefore much harder to predict when using NC instead of SB or KCM.

Table 2 shows the median number of Dijkstra calls. The numbers are relatively stable
across the various densities, but the Dijkstra counts for the SB algorithms is orders of
magnitudes smaller than the count for the NC algorithm. Note, however, that SB needs to
compute the complete SP tree every time. In contrast, NC only solves single pair shortest
path problems on rather small subgraphs. We also provide the number of polls, i.e., the total
number of nodes that were extracted from Dijkstra’s priority queue, for comparability. The
ratio of the number of polls of NC and SB ranges from 4.6 to 50, and suggests that saving
SP tree computations is much more beneficial than reducing the number of nodes visited to
answer single-pair shortest path queries.

Finally, the number of SP tree computations actually declines as n grows. Recall that, in
the worst case, we have to compute one SP tree for each node of each output simple path.
Table 2 shows results for k = 2000 and n ≥ 2000. Nevertheless, the median number of SP
tree computations does not exceed 65. Most simple paths therefore correspond to those
well-behaved cases where paths represented by sidetracks in already computed SP tree areas
are themselves simple most of the time.

5.2 Road Graphs
We consider road graphs of various areas in the USA called TIGER graphs, again provided
by the DIMACS website [3]. In particular, we use the road networks of New York (NY),
the San Francisco Bay Area (BAY), Colorado (COL), and Florida (FLA). For each of the
four areas, we drew 20 s-t pairs at random and enumerated k ∈ {100, 200, 300} paths. The
resulting running times are summarized in Table 3, along with the median number of polls.
With respect to the median running times, KCM is clearly dominated by NC on any input
class, which in turn is dominated by SB. SB achieves a minimum speedup of around 8 on
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Table 1 Median and 90% quantile Q.9 of running times in seconds for random graphs, k = 2000.

m = 2n m = 4n m = 10n m = 30n m = 50n

n Med. Q.9 Med. Q.9 Med. Q.9 Med. Q.9 Med. Q.9

2000
KCM 0.67 0.69 0.85 0.88 1.29 1.32 3.58 4.04 9.77 14.11
NC 0.99 2.51 0.48 1.25 0.39 1.25 0.47 1.50 2.15 3.84
SB 0.09 0.13 0.08 0.10 0.10 0.15 0.17 0.20 0.23 0.31

4000
KCM 1.39 1.46 1.79 1.87 2.96 3.06 15.64 16.03 32.88 33.17
NC 1.01 2.88 0.84 2.71 0.82 1.97 1.33 5.06 2.07 5.49
SB 0.11 0.12 0.09 0.13 0.12 0.19 0.19 0.22 0.26 0.36

6000
KCM 2.19 2.25 2.86 2.90 5.50 5.78 30.13 30.61 53.33 54.51
NC 3.28 6.44 0.53 1.67 0.71 3.36 2.05 7.92 2.22 9.07
SB 0.13 0.20 0.11 0.13 0.13 0.21 0.22 0.32 0.30 0.45

8000
KCM 3.04 3.06 4.08 4.14 12.37 12.60 43.36 45.31 73.11 75.00
NC 1.79 7.84 0.68 2.66 1.92 4.60 3.49 9.67 2.55 9.66
SB 0.12 0.28 0.10 0.14 0.16 0.21 0.24 0.34 0.32 0.38

10 000
KCM 3.96 3.98 5.48 5.53 15.71 15.84 55.95 57.76 92.81 94.79
NC 1.86 11.91 1.17 5.44 2.61 9.02 6.31 13.56 9.68 26.23
SB 0.13 0.18 0.14 0.24 0.17 0.21 0.25 0.30 0.36 0.48

Table 2 Median number of Dijkstra calls and polls (in millions) of NC and SB for random graphs,
k = 2000.

m = 4n m = 10n m = 30n m = 50n

n Dijkstras Polls Dijkstras Polls Dijkstras Polls Dijkstras Polls

2000 NC 16 272 1.08 14 533 0.60 13 939 0.43 14 510 2.09
SB 46 0.09 65 0.13 38 0.08 44 0.09

4000 NC 17 292 1.93 14 581 1.45 15 805 1.20 15 605 1.39
SB 25 0.10 20 0.08 21 0.08 29 0.11

6000 NC 17 499 0.86 16 652 0.70 16 544 1.52 16 444 1.13
SB 23 0.14 19 0.11 24 0.14 21 0.13

8000 NC 18 300 1.01 17 316 2.40 17 127 2.72 17 034 1.09
SB 16 0.12 17 0.13 17 0.14 17 0.14

10 000 NC 19 074 1.94 17 824 3.53 18 125 5.07 18 187 6.11
SB 16 0.15 15 0.15 10 0.10 14 0.13
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Table 3 Median and 90% quantile Q.9 of running times in seconds, and median number of polls
for large TIGER road graphs. KCM does not provide the number of polls and was not able to
compute the 300 shortest simple paths on FLA.

k = 100 k = 200 k = 300
Area Med. Q.9 Polls Med. Q.9 Polls Med. Q.9 Polls

NY
KCM 9.72 11.57 - 19.54 23.48 - 29.76 35.55 -
NC 2.09 12.38 3.90 3.80 24.30 6.91 5.43 36.18 9.76
SB 0.18 1.57 0.53 0.26 3.92 0.69 0.43 5.99 1.06

BAY
KCM 12.72 25.90 - 25.16 53.00 - 38.17 83.36 -
NC 5.32 17.88 15.21 9.49 34.57 28.77 14.14 51.11 38.72
SB 0.30 4.28 0.96 0.55 9.67 1.58 0.71 14.17 1.90

COL
KCM 17.13 32.99 - 34.56 71.66 - 56.77 117.12 -
NC 6.83 27.71 16.65 12.04 49.23 30.30 16.73 65.92 44.23
SB 0.17 11.80 0.44 0.22 17.43 0.44 0.29 26.64 0.44

FLA
KCM 48.51 99.06 - 95.69 215.48 - - - -
NC 29.86 70.10 54.21 58.07 132.73 106.02 85.70 193.30 157.40
SB 0.47 4.31 1.07 0.58 20.84 1.07 0.71 26.99 1.07
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Figure 2 Boxplots of running times in seconds for grid graphs. Plus signs represent outliers. A
red square marks the mean. The x-axis corresponds to different values of k and uses a logarithmic
scale.
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NY for k = 100 in comparison to NC. In 90% of the input classes, however, SB achieves a
speedup factor of more than 62, and even peaks at a speedup factor of 120. Running times
of KCM and SB are much more dispersed than in the random graph case. Still, SB answers
90% of the queries in about the same time the 50% fastest query times of NC, and sometimes
much faster. KCM was not able to finish all computations on all inputs.

5.3 Grid Graphs
We repeated Feng’s experiments on grid graphs generated by the spgrid generator pro-
vided on the DIMACS website [3]. The grids have sidelengths l, w ∈ {50, 100, 200, 400}
with l ≤ w, resulting in 10 different grids. For each grid, we generated 20 weight func-
tions by selecting uniformly from {1, . . . , 10 000} for each edge, and then enumerated
k ∈ {100, 200, 400, 800, 1600, 3200} paths. The results of our experiments on grid graphs are
summarized in Figure 2. KCM is again the slowest algorithm, but NC is not slower than
SB any more. Although NC and SB differ on some classes, there does not seem to be any
correlation to the shape or size of the grid. For example, NC is slightly faster on 50× 100
grids, but slower on 200× 400 grids although these two configurations share the same shape,
characterized by an aspect ratio of 2. On the other hand, NC loses its advantage over SB
when the grid grows from 50× 50 to 50× 200 (upper row of plots), but SB loses its advantage
over NC as it grows from 100× 400 to 400× 400 (lower row). In summary, none of the two
algorithms is clearly better than the other on grid graphs.

The algorithm proposed in this paper is not slower on any of the considered graph classes,
and even faster than state-of-the-art algorithms on random and TIGER road graphs by an
order of magnitude. Our algorithm shines on graphs where the length of shortest paths is
small in relation to the graph size because sidetrack heaps tend to be smaller.
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Abstract
In a graph, a matching cut is an edge cut that is a matching. Matching Cut is the problem of
deciding whether or not a given graph has a matching cut, which is known to be NP-complete
even when restricted to bipartite graphs. It has been proved that Matching Cut is polynomially
solvable for graphs of diameter two. In this paper, we show that, for any fixed integer d ≥ 4,
Matching Cut is NP-complete in the class of graphs of diameter d. This almost resolves an open
problem posed by Borowiecki and Jesse-Józefczyk in [Matching cutsets in graphs of diameter 2,
Theoretical Computer Science 407 (2008) 574–582].

We then show that, for any fixed integer d ≥ 5, Matching Cut is NP-complete even when
restricted to the class of bipartite graphs of diameter d. Complementing the hardness results,
we show that Matching Cut is in polynomial-time solvable in the class of bipartite graphs
of diameter at most three, and point out a new and simple polynomial-time algorithm solving
Matching Cut in graphs of diameter 2.

1998 ACM Subject Classification F.2.2 [Analysis of Algorithms and Problem Complexity] Non-
numerical Algorithms and Problems, G.2.2 [Discrete Mathematics] Graph Theory

Keywords and phrases matching cut, NP-hardness, graph algorithm, computational complexity,
decomposable graph

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2016.50

1 Introduction

In a graph G = (V, E), a cut is a partition V = X ∪̇Y of the vertex set into disjoint,
nonempty sets X and Y , written (X, Y ). The set of all edges in G having an endvertex in X

and the other endvertex in Y , also written (X, Y ), is called the edge cut of the cut (X, Y ). A
matching cut is an edge cut that is a (possibly empty) matching. Note that, by our definition,
a matching whose removal disconnects the graph need not be a matching cut.

Another way to define matching cuts is as follows ([13, 7]). A partition V = X ∪̇Y of
the vertex set of the graph G = (V, E) into disjoint, nonempty sets X and Y , is a matching
cut if and only if each vertex in X has at most one neighbor in Y and each vertex in Y has
at most one neighbor in X.

Graham [13] studied matching cuts in graphs in connection to a number theory problem
called cube-numbering. In [12], Farley and Proskurowski studied matching cuts in the context
of network applications. Patrignani and Pizzonia [17] pointed out an application of matching
cuts in graph drawing. Matching cuts have been used by Araújo et al. [1] in studying good
edge-labellings in the context of WDM (Wavelength Division Multiplexing) networks.

Not every graph has a matching cut; the Matching Cut problem is the problem of
deciding whether or not a given graph has a matching cut:
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Matching Cut
Instance: A graph G = (V, E).
Question: Does G have a matching cut?

This paper considers the computational complexity of the Matching Cut problem in graphs
of fixed diameter.

Previous results. Graphs admitting a matching cut were first discussed by Graham in
[13] under the name decomposable graphs. The first complexity and algorithmic results for
Matching Cut have been obtained by Chvátal, who proved in [7] that Matching Cut
is NP-complete, even when restricted to graphs of maximum degree four and polynomially
solvable for graphs of maximum degree at most three. These results triggered a lot of research
on the computational complexity of Matching Cut in graphs with additional structural
assumptions; see [5, 6, 14, 15, 16, 17]. In particular, the NP-hardness of Matching Cut
has been further strengthened for planar graphs of maximum degree four ([5]) and bipartite
graphs of maximum degree four ([15]).

On the positive side, among others, an important polynomially solvable case has been
established by Borowiecki and Jesse-Józefczyk, who proved in [6] that Matching Cut is
polynomially solvable for graphs of diameter 2. They also posed the problem of determining
the largest integer d such that Matching Cut is solvable in polynomial time for graphs of
diameter d.

Our contributions. We prove that Matching Cut is NP-complete, even when restricted
to graphs of diameter d, for any fixed integer d ≥ 4. Thus, unless NP = P, Matching Cut
cannot be solved in polynomial time for graphs of diameter d, for any fixed d ≥ 4. This
mostly resolves the open problem posed by Borowiecki and Jesse-Józefczyk mentioned above.
Actually, we show a little more: Matching Cut is NP-complete in graphs of diameter
4 and remains NP-complete in bipartite graphs of fixed diameter d ≥ 5. Complementing
our hardness results, we show that Matching Cut can be solved in polynomial time in
bipartite graphs of diameter at most 3. We also point out a new and simple approach solving
Matching Cut in diameter-2 graphs in polynomial time.

Notation and terminology. Let G = (V, E) be a graph with vertex set V (G) = V and edge
set E(G) = E. An independent set (a clique) in G is a set of pairwise non-adjacent (adjacent)
vertices. The neighborhood of a vertex v in G, denoted by NG(v), is the set of all vertices in
G adjacent to v; if the context is clear, we simply write N(v). For a subset W ⊆ V , G[W ] is
the subgraph of G induced by W , and G−W stands for G[V \W ]. The complete graph and
the path on n vertices is denoted by Kn and Pn, respectively; K3 is also called a triangle.
The complete bipartite graph with one color class of size p and the other of size q is denoted
by Kp,q. Observe that, for any matching cut (X, Y ) of G, any Kn with n ≥ 3, and any Kp,q

with p ≥ 2, q ≥ 3, in G is contained in G[X] or else in G[Y ].
Given a graph G = (V, E) and a partition V = X ∪̇Y , it can be decided in linear time if

(X, Y ) is a matching cut of G. This is because (X, Y ) is a matching cut of G if and only if
the bipartite subgraph BG(X, Y ) of G with the color classes X and Y and edge set (X, Y )
is P3-free. That is, (X, Y ) is a matching cut of G if and only if the non-trivial connected
components of the bipartite graph BG(X, Y ) are edges. A path P3 in BG(X, Y ), if any, is
called a bad P3.

A bridge in a graph is an edge whose deletion increases the number of the connected
components. Since disconnected graphs and graphs having a bridge have a matching cut, we
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Figure 1 The clause gadget G(Cj) (left) and the variable gadget G(vi) (right).

may assume that all graphs considered are connected and 2-edge connected. The distance
between two vertices u, v in a (connected) graph G, denoted dist(u, v), is the length of a
shortest path connecting u and v. The diameter of G, denoted diam(G), is the maximum
distance between all pairs of vertices in G.

The paper is organized as follows. In Section 2 we show that Matching Cut is NP-
complete when restricted to bipartite graphs of diameter d, for any fixed integer d ≥ 5.
In Section 3 we show that Matching Cut is NP-complete when restricted to graphs of
diameter 4. In section 4 we point out a new and simple polynomial time algorithm solving
Matching Cut in diameter 2 graphs, and show that Matching Cut can be solved in
polynomial time for bipartite graphs of diameter at most 3. We conclude the paper with
Section 5.

2 Matching Cut in bipartite graphs of diameter d ≥ 5

In this section we show that, for each fixed d ≥ 5, Matching Cut is NP-complete when
restricted to bipartite graphs of diameter d. We first prove this for diameter-5 bipartite
graphs by giving a polynomial time reduction from 1-IN-3 3SAT to our problem. The
NP-completeness of 1-IN-3 3SAT is proved in [18].

1-IN-3 3SAT (without negated literals)
Instance: m clauses C1, . . . , Cm over a set of n Boolean variables v1, . . . , vn such that

each clause has exactly three variables.
Question: Is there a truth assignment satisfying all clauses such that each clause has

exactly one true variable?

Suppose we are given a formula F with clauses Cj = (cj1, cj2, cj3), where cj`, 1 ≤ j ≤ m,
1 ≤ ` ≤ 3, are taken from the set of Boolean variables {v1, . . . , vn}. We will construct, in
polynomial time, a bipartite graph G(F ) of diameter 5 such that F ∈ 1-IN-3 3SAT if and
only if G(F ) has a matching cut.

For each clause Cj = (cj1, cj2, cj3) we create the 7-vertex graph G(Cj) as depicted on the
left-hand side of Figure 1.

The following property of the clause gadget G(Cj) will be used in the reduction.

I Observation 1. In any matching cut (X, Y ) of G(Cj), cj ∈ X and aj ∈ Y or vice versa.
Moreover, G(Cj) has exactly three matching cuts (X, Y ) with cj ∈ X as depicted in Figure 2.

Proof. By inspection. J

For each Boolean variable vi, 1 ≤ i ≤ n, let G(vi) be the 8-vertex graph depicted in
Figure 1, on the right-hand side.
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Figure 2 The three matching cuts of the clause gadget: black vertices in X, white vertices in Y .

Finally, the graph G(F ) is obtained by taking all G(Cj), 1 ≤ j ≤ m, all G(vi), 1 ≤ i ≤ n,
and four new vertices g1, g2, h1, h2, and by adding edges

between cj` and {vi, v′i}, whenever in clause Cj , cj` is the variable vi, 1 ≤ j ≤ m, 1 ≤ ` ≤ 3
and 1 ≤ i ≤ n,
between {g1, g2} and {cj | 1 ≤ j ≤ m} ∪ {ri, r′i | 1 ≤ i ≤ n} (thus, {g1, g2} and
{cj | 1 ≤ j ≤ m} ∪ {ri, r′i | 1 ≤ i ≤ n} induce a complete bipartite graph K2,m+2n in
G(F )),
between {h1, h2} and {aj | 1 ≤ j ≤ m} ∪ {qi, q′i | 1 ≤ i ≤ n} (thus, {h1, h2} and
{aj | 1 ≤ j ≤ m} ∪ {qi, q′i | 1 ≤ i ≤ n} induce a complete bipartite graph K2,m+2n in
G(F )),
g1h1 and g2h2.

I Lemma 2. G(F ) is a bipartite graph and has diameter 5.

Proof. By construction, the vertices of G(F ) are partitioned into two disjoint independent
sets I1, I2 as follows.

I1 = {g1, g2} ∪ {aj , cj1, cj2, cj3 | 1 ≤ j ≤ m} ∪ {pi, p′i, qi, q′i | 1 ≤ i ≤ n},
I2 = {h1, h2} ∪ {bj , cj , dj | 1 ≤ j ≤ m} ∪ {vi, v′i, ri, r′i | 1 ≤ i ≤ n}.

That is, G(F ) is bipartite.
We now show that diam(G) = 5. Observe first that any vertex x is contained in a 6-vertex

cycle Z(x) containing the edge g1h1. Indeed,
x ∈ {g2, h2}: (g1, c1, g2, h2, a1, h1) is such a cycle Z(x);
x ∈ G(Cj): g1, h1 and any 4-vertex path in G(Cj) connecting cj and aj containing x

form such a cycle Z(x);
x ∈ {vi, ri, pi, qi}: (g1, ri, pi, vi, qi, h1) is such a cycle Z(x);
x ∈ {v′i, r′i, p′i, q′i}: (g1, r′i, p′i, v′i, q′i, h1) is such a cycle Z(x).

Thus, any two vertices x, y of G(F ) with Z(x) 6= Z(y) belong to a cycle in Z(x) ∪ Z(y) \
{g1h1} of length at most 10, hence dist(x, y) ≤ 5. Finally, observe that dist(pi, vk) = 5 for
any i 6= k. J

I Lemma 3. Suppose F ∈ 1-IN-3 3SAT. Then G(F ) has a matching cut.

Proof. Let b be a truth assignment satisfying all Cj = (cj1, cj2, cj3) such that exactly one of
b(cj1), b(cj2), b(cj3) is true. Partition the vertex set of G(F ) as follows. Initially, set

X = {g1, g2} ∪ {ri, r′i | 1 ≤ i ≤ n} ∪ {cj | 1 ≤ j ≤ m}∪
{cj` | 1 ≤ j ≤ m, 1 ≤ ` ≤ 3, b(cj`) = false}.

Next, extend X to other vertices of G(Cj) as indicated in Figure 2. That is, for each
1 ≤ j ≤ m,
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if b(cj1) = b(cj2) = false, then X := X ∪ {bj},
if b(cj2) = b(cj3) = false, then X := X ∪ {dj}.

Finally, extend X to other vertices of G(vi) as follows. For each 1 ≤ i ≤ n,
if b(vi) = false, then X := X ∪ {vi, v′i, pi, p′i}.

Set Y := V (G(F )) \X, or explicitly in closed form,

Y = {h1, h2} ∪ {qi, q′i | 1 ≤ i ≤ n} ∪ {aj | 1 ≤ j ≤ m}∪
{cj` | 1 ≤ j ≤ m, 1 ≤ ` ≤ 3, b(cj`) = true}∪
{bj | 1 ≤ j ≤ m, b(cj1) = true} ∪ {bj , dj | 1 ≤ j ≤ m, b(cj2) = true}∪
{dj | 1 ≤ j ≤ m, b(cj3) = true} ∪ {vi, v′i, pi, p′i | 1 ≤ i ≤ n, b(vi) = true}.

By construction of G(F ) and by definition of X and Y , it is not difficult to see that
(X, Y ) is a matching cut of G(F ).

I Claim 4. (X, Y ) is a matching cut of G(F ).

Due to the space limitation, the proof of Claim 4 is omitted. J

I Lemma 5. Suppose G(F ) has a matching cut. Then F ∈ 1-IN-3 3SAT.

Proof. Let (X, Y ) be a matching cut of G(F ). Recall that each of

C = {g1, g2} ∪ {cj | 1 ≤ j ≤ m} ∪ {ri, r′i | 1 ≤ i ≤ n},
A = {h1, h2} ∪ {aj | 1 ≤ j ≤ m} ∪ {qi, q′i | 1 ≤ i ≤ n}

induces a K2,m+2n in G(F ), hence

C ⊂ X or C ⊂ Y, and A ⊂ X or A ⊂ Y.

We claim that all cj belong to X and all aj belong to Y , or vice versa. Suppose for a
contrary cj , aj ∈ X for some j. Then, by the facts above, C ∪A ⊂ X. (The case cj , aj ∈ Y

is completely similar.) Then, for all j, V (G(Cj)) ⊂ X (otherwise, V (G(Cj)) ∩ Y 6= ∅
and the restriction of (X, Y ) to G(Cj) would be a matching cut of G(Cj) with cj , aj ∈ X,
contradicting Observation 1.) This implies that all vi, v′i, pi, p′i, 1 ≤ i ≤ n, belong to X, too.
(This is because vi, v′i, pi, p′i and the (common) neighbor cj` of vi, v′i in G(Cj) for suitable j, `

induce a K2,3.) Therefore all vertices of G(F ) belong to X and, hence, Y = ∅, a contradiction.
Thus, all cj belong to X and all aj belong to Y , or vice versa, as claimed.

By symmetry we may assume that all cj ∈ X and all aj ∈ Y . Define a truth assignment
b as follows. For each 1 ≤ i ≤ n, b(vi) = false if vi ∈ X, and b(vi) = true if vi ∈ Y .
We claim that b satisfies all clauses Cj = (cj1, cj2, cj3) in such a way that exactly one
of b(cj1), b(cj2), b(cj3) is true: Consider an arbitrary clause Cj . By our assumption, in
G(Cj), cj ∈ X, aj ∈ Y , and thus the restriction of (X, Y ) to G(Cj) is a matching cut
of G(Cj). By Observation 1, exactly one of cj1, cj2, cj3 is in Y ; see also Figure 2. Thus,
F ∈ 1-IN-3 3SAT. J

By Lemmas 3, 5 and 2, we conclude

I Lemma 6. Matching Cut is NP-complete, even when restricted to bipartite graphs of
diameter 5.
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Figure 3 The bipartite chain Bd of d − 3 K2,2s.

Finally, let d ≥ 6 be a fixed integer, and let Bd be a bipartite chain of d − 3 complete
bipartite graphs K2,2 as depicted in Figure 3.

Let Gd be obtained by taking G(F ) in Lemma 2 and Bd by identifying the two vertices
g1 and s1, and the two vertices g2 and s′1.

Clearly, Gd is bipartite. Recall that dist(x, g1) ≤ 3 and dist(x, g2) ≤ 3 for all vertices
x of G(F ) (cf. the proof of Lemma 2). Hence dist(x, y) ≤ d for all vertices x, y of Gd, and
dist(x, y) = d for x = pi and y = sd−2. Thus, Gd has diameter d. Observe that each vertex
of Bd is contained in a K2,3, hence in any matching cut (X, Y ) of Gd, Bd is contained in
Gd[X] or else in Gd[Y ]. Thus, G(F ) has a matching cut if and only if Gd has a matching
cut. Hence, Lemma 6 implies

I Theorem 7. For each fixed d ≥ 5, Matching Cut is NP-complete, even when restricted
to bipartite graphs of diameter d.

3 Matching Cut in graphs of diameter 4

In this section we show that Matching Cut is NP-complete when restricted to graphs
of diameter 4. The reduction is again from 1-IN-3 3SAT and is quite similar to that in
Section 2. In particular we use the same clause gadget.

Suppose we are given a formula F with clauses Cj = (cj1, cj2, cj3), where cj` ∈ {v1, . . .,
vn}, 1 ≤ j ≤ m, 1 ≤ ` ≤ 3. We will construct, in polynomial time, a graph G(F ) of diameter
4 such that F ∈ 1-IN-3 3SAT if and only if G(F ) has a matching cut.

For each clause Cj = (cj1, cj2, cj3) we create the graph G(Cj) as depicted in Figure 1, on
the left-hand side.

For each Boolean variable vi ∈ {v1, . . . , vn}, let G(vi) be the 4-cycle with vertices
vi, v′i, qi, q′i and edges viv

′
i, v′iq

′
i, q′iqi, qivi.

Finally, the graph G(F ) is obtained by taking all G(Cj), 1 ≤ j ≤ m, all G(vi), 1 ≤ i ≤ n,
and by adding edges

between cj` and vi, v′i, whenever in clause Cj , cj` is the variable vi, 1 ≤ j ≤ m, 1 ≤ ` ≤ 3
and 1 ≤ i ≤ n,
between the vertices c1, . . . , cm (thus, {c1, . . . , cm} is a clique in G(F )),
between the vertices a1, . . . , am, q1, . . . , qn, q′1, . . . , q′n (thus, {aj | 1 ≤ j ≤ m} ∪ {qi | 1 ≤
i ≤ n} ∪ {q′i | 1 ≤ i ≤ n} is a clique in G(F )).

Informally, G(F ) is obtained from the bipartite graph constructed in Section 2 by deleting
the vertices g1, g2, h1, h2, pi, p′i, ri, r′i (1 ≤ i ≤ n) and adding an edge between vi and v′i (1 ≤
i ≤ n), and making {cj | 1 ≤ j ≤ m} to a clique, and {aj | 1 ≤ j ≤ m} ∪ {qi, q′i | 1 ≤ i ≤ n}
to a clique.

I Lemma 8. G(F ) has diameter 4.
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Proof. Let x, y be two distinct vertices of G(F ). We will see that the distance between x

and y is at most 4. First, note that G(Cj) has diameter 3, G(vi) has diameter 2, and recall
that {c1, . . . , cm}, as well as {a1, . . . , am} ∪ {qi, q′i | 1 ≤ i ≤ n} are two cliques in G(F ), and
that each vertex of {vi, v′i} is adjacent to a vertex in {qi, q′i}. Hence we need only to consider
three cases:
Case 1. x ∈ G(Cj) and y ∈ G(Ck) with j 6= k: In this case, x and y belong to a cycle of
length 8: a 4-vertex path in G(Cj) connecting cj and aj containing x and a 4-vertex path
in G(Ck) connecting ck and ak containing y form, with the edges cjck and ajak, a cycle of
length 8. Hence dist(x, y) ≤ 4.
Case 2. x ∈ G(vi) and y ∈ G(vt) with i 6= t: In this case, dist(x, y) ≤ 3 because qi, q′i, qt, q′t
are pairwise adjacent.
Case 3. x ∈ G(Cj) and y ∈ G(vi): If x 6= cj , then dist(x, aj) ≤ 2 and, as aj is adjacent
to qi, q′i, dist(aj , y) ≤ 2, hence dist(x, y) ≤ dist(x, aj) + dist(aj , y) ≤ 4. So, let x = cj . If
y ∈ {qi, q′i}, then, as y is adjacent to aj , dist(x, y) ≤ dist(cj , aj) + 1 = 4. So, it remains the
case x = cj , y ∈ {vi, v′i}. Let k and ` be such that vi = ck`. Then (y, ck`, ck, x) is a 4-vertex
path, hence dist(x, y) ≤ 3.

Finally, note that dist(b1, b2) = 4. J

I Lemma 9. Suppose F ∈ 1-IN-3 3SAT. Then G(F ) has a matching cut.

Proof. Let b be a truth assignment satisfying all Cj = (cj1, cj2, cj3) such that exactly one of
b(cj1), b(cj2), b(cj3) is true. Partition the vertex set of G(F ) as follows. Initially, set

X = {c1, . . . , cm} ∪ {cj` | 1 ≤ j ≤ m, 1 ≤ ` ≤ 3, b(cj`) = false}.

Next, extend X to other vertices of G(Cj) as indicated in Figure 2. That is, for each
1 ≤ j ≤ m,

if b(cj1) = b(cj2) = false, then X := X ∪ {bj},
if b(cj2) = b(cj3) = false, then X := X ∪ {dj}.

Finally, extend X to other vertices of G(vi) as follows. For each 1 ≤ i ≤ n,
if b(vi) = false, then X := X ∪ {vi, v′i}.

Then (X, Y ) is a matching cut of G(F ), where Y = V (G(F )) \X. We omit the proof
since it is similar to that of Lemma 3. J

I Lemma 10. Suppose G(F ) has a matching cut. Then F ∈ 1-IN-3 3SAT.

Proof. Let (X, Y ) be a matching cut of G(F ). Note that, as C = {cj | 1 ≤ j ≤ m} and
A = {aj , qj , q′j | 1 ≤ j ≤ m} are cliques in G(F ),

C ⊂ X or C ⊂ Y, and A ⊂ X or A ⊂ Y.

Similar to the proof of Lemma 5, we can show that all cj belong to X and all aj belong
to Y , or vice versa. Let C ⊂ X and A ⊂ Y , say. Then, the assignment b with b(vi) = false if
vi ∈ X, and b(vi) = true if vi ∈ Y satisfies all clauses Cj = (cj1, cj2, cj3) in such a way that
exactly one of b(cj1), b(cj2), b(cj3) is true. Hence, F ∈ 1-IN-3 3SAT. J

By Lemmas 9, 10 and 8, we conclude

I Theorem 11. Matching Cut is NP-complete when restricted to graphs of diameter 4.

With Theorem 7, Matching Cut is NP-complete when restricted to graphs of diameter
d for any fixed d ≥ 4.

ISAAC 2016



50:8 On the Complexity of Matching Cut in Graphs of Fixed Diameter

4 Matching Cut in bipartite graphs of diameter at most 3

In this section we prove that Matching Cut can be solved in polynomial time when
restricted to bipartite graphs of diameter at most 3. To do this, we first prove a lemma that
will be useful in many cases. In particular, we will drive from this lemma a new and simple
polynomial-time algorithm solving Matching Cut in graphs of diameter 2.

4.1 A useful lemma
Given a graph G = (V, E) and two disjoint, non-empty vertex sets A, B ⊂ V . We say a
matching cut of G is an A-B-matching cut if A is contained in one side and B is contained
in the other side of the matching cut.

In general, unless NP 6= P, we cannot decide in polynomial time if G admits an A-B-
matching cut for a given pair A, B. However, there are some rules that force certain vertices
some of which together with A must belong to one side and the other together with B muss
belong to the other side of such a matching cut (if any). We are going to describe such
forcing rules. Now assume that A, B are disjoint, non-empty subsets of V (G) such that each
vertex in A is adjacent to exactly one vertex of B and each vertex in B is adjacent to exactly
one vertex of A. Initially, set X := A, Y := B and write R = V (G) \ (X ∪ Y ).

(R1) Let v ∈ R be adjacent to a vertex in A. If v is
adjacent to a vertex in B, or
adjacent to (at least) two vertices in Y \B,

then G has no A-B-matching cut.
(R2) Let v ∈ R be adjacent to a vertex in B. If v is

adjacent to a vertex in A, or
adjacent to (at least) two vertices in X \A,

then G has no A-B-matching cut.
(R3) If v ∈ R is adjacent to (at least) two vertices in X \A and to (at least) two vertices in

Y \B, then G has no A-B-matching cut.
(R4) Let v ∈ R be adjacent to a vertex in A or to (at least) two vertices in X \ A, then

X := X ∪ {v}, R := R \ {v}. If v has a unique neighbor w ∈ Y \B then A := A ∪ {v},
B := B ∪ {w}.

(R5) Let v ∈ R be adjacent to a vertex in B or to (at least) two vertices in Y \ B, then
Y := Y ∪ {v}, R := R \ {v}. If v has a unique neighbor w ∈ X \ A then B := B ∪ {v},
A := A ∪ {w}.

It is obvious that the rules (R1)–(R5) are correct. If none of (R1), (R2) and (R3) is
applicable, then each vertex v ∈ R has no neighbor in A or has no neighbor in B, and v has
at most one neighbor in X \A or has at most one neighbor in Y \B. If (R4) is not applicable,
then each vertex v ∈ R has no neighbor in A and at most one neighbor in X \A. If (R5) is
not applicable, then each vertex v ∈ R has no neighbor in B and at most one neighbor in
Y \B. Thus, the following fact holds:

I Fact 12. Suppose none of (R1)–(R5) is applicable. Then
(X, Y ) is an A-B-matching cut of G[X ∪ Y ], and any A-B-matching cut of G must
contain X in one side and Y in other side;
for any vertex v ∈ R, N(v) ∩A = N(v) ∩B = ∅ and |N(v) ∩X| ≤ 1, |N(v) ∩ Y | ≤ 1.

We say that a subset S ⊆ R is monochromatic if, for any A-B-matching cut of G, all
vertices of S belong to the same side.



Hoang-Oanh Le and Van Bang Le 50:9

I Lemma 13. Suppose none of the rules (R1)–(R5) is applicable. Assuming each connected
component of G − (X ∪ Y ) is monochromatic, it can be decided in time O(|V |2|E|) if G

admits an A-B-matching cut.

Proof. Let Z be a connected component of G−(X∪Y ), and let (X ′, Y ′) be an A-B-matching
cut of G with A ⊆ X ′ and B ⊆ Y ′. Note, by Fact 12, then X ⊆ X ′ and Y ⊆ Y ′. Since Z is
monochromatic, we have

Z ⊆ X ′ whenever some vertex in X \A has at least two neighbors in Z.
Similarly, Z ⊆ Y ′ whenever some vertex in Y \B has at least two neighbors in Z.
If a vertex in X \A has neighbors in two connected components of G− (X ∪ Y ), then at
least one of these components is contained in X ′.
Similarly, if a vertex in Y \B has neighbors in two connected components of G− (X ∪Y ),
then at least one of these components is contained in Y ′.

Thus, we can decide if G admits a matching cut (X ′, Y ′) such that X ⊆ X ′, Y ⊆ Y ′, by
solving the following instance F (G) of the 2-SAT problem.

For each connected component C of G− (X ∪ Y ), create two Boolean variables xC , yC .
The intention is that xC is set to true if C must go to X and yC is set to true if C muss
go to Y . Then (xC ∨ yC) and (¬xC ∨ ¬yC) are two clauses of the formula F (G).
For each connected component C of G− (X ∪Y ) with |N(v)∩C| ≥ 2 for some v ∈ X \A,
(xC) is a clause of the formula F (G). This clause ensures that in this case, C must go to
X.
For each connected component C of G− (X ∪Y ) with |N(w)∩C| ≥ 2 for some w ∈ Y \B,
(yC) is a clause of the formula F (G). This clause ensures that in this case, C must go to
Y .
For each two connected components C 6= D of G− (X ∪ Y ) having a common neighbor
in X \A, (xC ∨xD) is a clause of the formula F (G). This clause ensures that in this case,
at least one of C and D must go to X.
For each two connected components C 6= D of G− (X ∪ Y ) having a common neighbor
in Y \B, (yC ∨ yD) is a clause of the formula F (G). This clause ensures that in this case,
at least one of C and D must go to Y .

I Claim 14. G admits a matching cut (X ′, Y ′) such that X ⊆ X ′, Y ⊆ Y ′ if and only if
F (G) is satisfiable.

Due to the space limitation, the proof of Claim 14 is omitted.
Note that F (G) has O(|V |) variables and O(|V |2) clauses and can be constructed in time

O(|V |2|E|). Since 2-SAT can be solved in linear time (cf. [3, 8, 11]), by Claim 14 we can
decide in time O(|V |2|E|) if G admits an A-B-matching cut. J

4.2 Diameter 2 graphs: A new, simple and faster polynomial-time
algorithm

Let G = (V, E) be a graph of diameter 2. Guess an edge ab of G, and apply rules (R1)–(R5)
for A := {a}, B := {b} as long as possible. If (R1) or (R2) or (R3) is applicable, then clearly
G has no A-B-matching cut. So let us assume that none of (R1), (R2) and (R3) was ever
applied and none of (R4) and (R5) is applicable. Then each connected component Z of
G− (X ∪ Y ) is monochromatic. To see this, let (X ′, Y ′) be an A-B-matching cut of G with
X ⊂ X ′, Y ⊂ Y ′. By Fact 12, any vertex in A ∪B is non-adjacent to any vertex in Z, any
vertex in A has neighbors only in X ∪B, any vertex in B has neighbors only in Y ∪A. Since
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G has diameter 2, therefore, N(v) ∩N(a) 6= ∅ for all v ∈ Z and a ∈ A. Thus, v must have
a neighbor in X \ A. Similarly, each vertex v ∈ Z must have a neighbor in Y \ B. Now,
suppose for a contrary that Z is not monochromatic. Then, by connectedness, there is an
edge uv in Z with u ∈ X ′ and v ∈ Y ′, say. But then u, v and a neighbor of v in X ⊆ X ′

induce a bad P3, contradicting the assumption that (X ′, Y ′) is a matching cut.
Thus, any connected component of G − (X ∪ Y ) is monochromatic. Therefore, by

Lemma 13, it can be decided in time O(|V |2|E|) if G has an A-B-matching cut. Since we
have at most |E| many choices for the edge ab, we conclude that Matching Cut can be
solved in time O(|V |2|E|2) for graphs of diameter two. We remark that the known algorithm
posed in [6] has slower running time O(|V |2|E|3). Moreover, in comparison to their algorithm,
our is much simpler.

4.3 Diameter 3 bipartite graphs
Given a connected bipartite graph G = (V, E) with a bipartition V = V1 ∪̇V2 into independent
sets V1, V2. We will use the following fact which is easy to see:

G has diameter at most 3 if and only if, for each i = 1, 2 (1)
and for every two vertices u, v ∈ Vi, N(u) ∩N(v) 6= ∅.

Let G have diameter at most 3. Since graphs having a bridge have a matching cut, we may
assume that G is 2-edge connected. Hence every matching cut of G, if any, must have at
least two edges. Our algorithm consists of two phases. In the phase 1, we will check if G has
a matching cut (X, Y ) containing two edges a1b1, a2b2 such that a1, a2 ∈ V1, b1, b2 ∈ V2 and
{a1, b2} ⊆ X and {a2, b1} ⊆ Y . In case phase 1 is unsuccessful, phase 2 will be started. In
the phase 2, we will check if G has a matching cut (X, Y ) containing two edges a1b1, a2b2
such that a1, a2 ∈ V1, b1, b2 ∈ V2 and {a1, a2} ⊆ X and {b1, b2} ⊆ Y . The fact that G has
diameter at most 3 will ensure that each of phase 1 and 2 can be performed in polynomial
time.

Phase 1. Guess two edges a1b1, a2b2 ∈ E such that a1, a2 ∈ V1 and b1, b2 ∈ V2. Set
X = A = {a1, b2}, Y = B = {a2, b1} and write R = V (G) \ (X ∪ Y ). Apply (R1)–(R5) as
long as possible, and let us assume that none of (R1), (R2) and (R3) was ever applied.

Then each connected component Z of G− (X ∪Y ) is monochromatic. Indeed, let (X ′, Y ′)
be an A-B-matching cut with X ⊆ X ′, Y ⊆ Y ′, and consider an arbitrary vertex v ∈ Z. If
v ∈ V1, then, since a1 ∈ A∩ V1 and a2 ∈ B ∩ V1, v must have, by (1), a neighbor in X and a
neighbor in Y . Similarly, if v ∈ V2, then, since b1 ∈ A ∩ V2 and b2 ∈ B ∩ V2, v must have
a neighbor in X and a neighbor in Y , too. Thus, every vertex in Z has a neighbor in X

and a neighbor in Y . Therefore, by the same argument explained in the diameter 2 case,
Z is monochromatic. Hence, by Lemma 13, we can decide in polynomial time if G has an
A-B-matching cut. Since there are at most |E|2 choices for A and B, we conclude that, in
polynomial time, phase 1 can decide if G has a matching cut (X, Y ) containing two edges
a1b1, a2b2 such that a1, a2 ∈ V1, b1, b2 ∈ V2 and {a1, b2} ⊆ X and {a2, b1} ⊆ Y .

Phase 2. In this second phase we assume that phase 1 is unsuccessful, that is, G has no
matching cut (X, Y ) containing two edges a1b1, a2b2 such that a1, a2 ∈ V1, b1, b2 ∈ V2 and
{a1, b2} ⊆ X and {a2, b1} ⊆ Y .

Guess an edge ab ∈ E such that a ∈ V1 and b ∈ V2. Set X = A = {a}, Y = B = {b} and
write R = V (G) \ (X ∪ Y ). Apply (R1)–(R5) as long as possible, and let us assume that
none of (R1), (R2) and (R3) was ever applied.



Hoang-Oanh Le and Van Bang Le 50:11

Then, by (1), every vertex v ∈ R1 = R ∩ V1 has a neighbor in X (as a ∈ A ∩ V1) and
every vertex w ∈ R2 = R ∩ V2 has a neighbor in Y (as b ∈ B ∩ V2). Thus, assuming G has
an A-B-matching cut (X ′, Y ′) with X ⊆ X ′, Y ⊆ Y ′, then R1 must belong to X ′ and R2
must belong to Y ′. For, if v ∈ R1 was in Y ′, then the A-B-matching cut (X ′, Y ′) would
contain the edges ab and uv, where u is the neighbor of v in X ⊆ X ′, with a, v ∈ V1 and
b, u ∈ V2, contradicting the assumption that phase 1 was unsuccessful. The case of R2 is
completely similar. Therefore, G has an A-B-matching cut (X ′, Y ′) with X ⊆ X ′, Y ⊆ Y ′ if
and only if (X ∪R1, Y ∪R2) is a matching cut. As the second property can be decided in
polynomial time, and there are at most |E| choices for A and B, we conclude that phase 2
can be performed in polynomial time. Putting all together we obtain:

I Theorem 15. Matching Cut can be solved in polynomial time when restricted to bipartite
graphs of diameter at most 3.

5 Concluding remarks

In this paper we have shown that Matching Cut is NP-complete when restricted to graphs
of diameter d, for fixed d ≥ 4, and to bipartite graphs of diameter d, for fixed diameter d ≥ 5.
We also have given a polynomial-time algorithm solving Matching Cut in bipartite graphs
of diameter at most 3. It is known that Matching Cut is polynomially solvable when
restricted to graphs of diameter 2 ([6]; cf. also Section 4). Thus, it would be very interesting
to close the gap, obtaining a dichotomy theorem:

What is the computational complexity of Matching Cut in graphs of diameter 3?
What is the the computational complexity of Matching Cut in bipartite graphs of
diameter 4?

Finally, we remark that Matching Cut can be solved in linear time in planar graphs (and
in graphs with fixed genus) of fixed diameter. This is because a planar graph with diameter
d has tree-width at most 3d− 2 ([9]). (More general, a graph with diameter d and genus g

has tree-width O(gd); see [10].) In [5], it is shown that Matching Cut can be expressed
in monadic second order logic (MSOL), and it is well-known ([2]) that all graph properties
definable in MSOL can be decided in linear time for classes of graphs with bounded tree-width,
when a tree-decomposition is given. It is also well-known ([4]) that a tree-decomposition
of bounded width of a given graph can be found in linear time. Combining these facts, it
follows that Matching Cut can be solved in linear time for planar graphs (and in graphs
with fixed genus) of fixed diameter.
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Abstract
The problem of merging sorted lists in the least number of pairwise comparisons has been solved
completely only for a few special cases. Graham and Karp [18] independently discovered that
the tape merge algorithm is optimal in the worst case when the two lists have the same size.
Stockmeyer and Yao[28], Murphy and Paull[24], and Christen[6] independently showed when
the lists to be merged are of size m and n satisfying m ≤ n ≤ b 3

2mc + 1, the tape merge
algorithm is optimal in the worst case. This paper extends this result by showing that the tape
merge algorithm is optimal in the worst case whenever the size of one list is no larger than 1.52
times the size of the other. The main tool we used to prove lower bounds is Knuth’s adversary
methods [18]. In addition, we show that the lower bound cannot be improved to 1.8 via Knuth’s
adversary methods. We also develop a new inequality about Knuth’s adversary methods, which
might be interesting in its own right. Moreover, we design a simple procedure to achieve constant
improvement of the upper bounds for 2m− 2 ≤ n ≤ 3m.
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1 Introduction

Suppose there are two disjoint linearly ordered lists A and B: a1 < a2 < · · · < am and
b1 < b2 < · · · < bn respectively, where the m + n elements are distinct. The problem of
merging them into one ordered list is one of the most fundamental algorithmic problems which
has many practical applications as well as important theoretical significance. This problem
has been extensively studied under different models, such as comparison-based model [18],
parallel model [9], in-place merging model [11], etc. In this paper we focus on the classical
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comparison-based model, where the algorithm is a sequence of pairwise comparisons. People
are interested in this model due to two reasons. Firstly, it is independent to the underlying
order relation used, no matter it is "<" in R or another abstract order relation. Secondly, it
is unnecessary to access the value of elements in this model. Such a restriction could come
from security or privacy concerns where the only operation available is a zero-knowledge
pairwise comparison which reveals only the order relation between elements.

The main theoretical question in this merge problem is to determine M(m,n), the
minimum number of comparisons which is always sufficient to merge the lists[18]. Given
any algorithm g1 to solve the (m,n) merging problem (i.e. where |A| = m and |B| = n), let
Mg(m,n) be the number of comparisons required by algorithm g in the worst case, then

M(m,n) = min
g
Mg(m,n).

An algorithm g is said to be optimal on (m,n) if Mg(m,n) = M(m,n). By symmetry, it
is clear that M(m,n) = M(n,m). To much surprise, this problem seems quite difficult in
general, and exact values are known for only a few special cases. Knuth determined the
value of M(m,n) for the case m,n ≤ 10 in his book [18]. Graham [18] and Hwang and
Lin [16] completely solved the case m = 2 independently. The case m = 3 is quite a bit
harder and was solved by Hwang [15] and Murphy [25]. Mönting solved the case m = 4 and
also obtained strong results about m = 5 [26]. In addition, Smith and Lang [27] devised a
computer program based on game solver techniques such as alpha beta search to compute
M(m,n). They uncovered many interesting facts including M(7, 12) = 17, while people used
to believe M(7, 12) = 18.

Several different algorithms have been developed for the merge problem, among them
tape merge or linear merge might be the simplest and the most commonly used one. In this
algorithm, two smallest elements (initially a1 and b1) are compared, and the smaller one will
be deleted from its list and placed on the end of the output list. Then repeat the process
until one list is exhausted. It’s easy to see that this algorithm requires m+n− 1 comparisons
in the worst case, hence M(m,n) ≤ m + n − 1. However, when m is much smaller than
n, it is obvious that this algorithm becomes quite inefficient. For example, when m = 1,
the merging problem is equivalent to an insertion problem and the rather different binary
insertion procedure is optimal, i.e. M(1, n) = dlg(n+ 1)e.

One nature question is "when is tape merge optimal?". By symmetry, we can assume
n ≥ m and define α(m) be the maximum integer n(≥ m) such that tape merge is optimal,
i.e.

α(m) = max{n ∈ N | M(m,n) = m+ n− 1, n ≥ m}.

Assume a conjecture proposed by Knuth [18], which asserts thatM(m,n+1) ≤M(m,n)+1 ≤
M(m + 1, n), for m ≤ n, is correct, it’s easy to see tape merge is optimal if and only if
n ≤ α(m), and α(m) is monotone increasing.

Graham and Karp [18] independently discovered that M(m,m) = 2m − 1 for m ≥ 1.
Then Knuth [18] proved α(m) ≥ 4 for m ≤ 6. Stockmeyer and Yao[28], Murphy and
Paull[24], and Christen[6] independently significantly improved the lower bounds by showing
α(m) ≥ b 3

2mc + 1, that is M(m,n) = m + n − 1, for m ≤ n ≤ b 3
2mc + 1. On the other

hand, Hwang[14] showed that M(m, 2m) ≤ 3m − 2, which implies α(m) ≤ 2m − 1. For

1 We only consider deterministic algorithms in this paper.
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m ≤ n ≤ 2m− 1, the best known merge algorithm is tape merge algorithm. It is conjectured
by Fernandez et al. [8] that α(m) = 1+

√
5

2 m± o(m).
For general n ≥ m, Hwang and Lin[14] proposed an in-between algorithm called binary

merge, which excellently compromised between binary insertion and tape merge in such a
way that the best features of both are retained. It reduces to tape merge when n ≤ 2m, and
reduces to binary insertion when m = 1. Let Mbm(m,n) be the worst-case complexity of
this algorithm. They showed that

Mbm(m,n) = m(1 + blg n

m
c) + b n

2blg n
m c
c − 1.

Hwang and Deutsch[13] designed an algorithm which is optimal over all insertive al-
gorithms including binary merge, where for each element of the smaller list, the comparisons
involving it are made consecutively. However, the improvement for fixed n/m over binary
merge increases more slowly than linearly in m[23]. Here we say that algorithm A1 with
complexity MA1(m,n) is significantly faster for some fixed ratio n/m than algorithm A2 with
complexity MA2(m,n), if MA2(m,n) −MA1(m,n) = Ω(m). The first significant improve-
ment over binary merge was proposed by Manacher[23], which can decrease the number of
comparisons by 31

336m for n/m ≥ 8, and Thanh and Bui[31] further improved this number to
13
84m. In 1978, Christen[5] proposed an elegant algorithm, called forward testing and backward
insertion, which is better than binary merge when n/m ≥ 3 and saves at least

∑k
j=1b

m−1
4j c

comparisons over binary merging, for n ≥ 4km. Thus it saves about m/3 comparisons
when n/m → ∞. Moreover, Christen’s procedure is optimal for 5m − 3 ≤ n ≤ 7m, i.e.
M(m,n) = b(11m+ n− 3)/4c.

On the lower bound side, there are two main techniques in proving lower bounds. The
first one is the information theoretic lower bound I(m,n) = dlg

(
m+n

m

)
e. Hwang and Lin[14]

have proved that

I(m,n) ≤M(m,n) ≤Mbm(m,n) ≤ I(m,n) +m.

The second one is called Knuth’s adversary methods [18]. The idea is that the optimal
merge problem can be viewed as a two-player game with perfect information, in which the
algorithm chooses the comparisons, while the adversary chooses (consistently) the results of
these comparisons. It is easy to observe that M(m,n) is actually the min-max value of this
game. Thus a given strategy of the adversary provides a lower bound for M(m,n). Mainly
because of the consistency condition on the answers, general strategies are rather tedious to
work with. Knuth proposed the idea of using of "disjunctive" strategies, in which a splitting
of the remaining problem into two disjoint problems is provided, in addition to the result
of the comparison. With this restricted adversary, he used term .M.(m,n) to represent the
minimum number of comparisons required in the algorithm, which is also a lower bound of
M(m,n). The detail will be specified in Section 2.

1.1 Our Results
In this paper, we first improve the lower bounds of α(m) from b 3

2mc+ 1 to b 38
25mc by using

Knuth’s adversary methods.

I Theorem 1. M(m,n) = m+ n− 1, if m ≤ n ≤ 38
25m.

We then show limitations of Knuth’s adversary methods.

I Theorem 2. .M.(m,n) < m+ n− 1, if n ≥ 9dm/5e.
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This means that by using Knuth’s adversary methods, it’s impossible to show α(m) ≥
9dm/5e ≈ 9

5m for any m.
When m ≤ n ≤ 3m, binary merge is the best known algorithm, which reduces to tape

merge for n ∈ [m, 2m] and gives Mbm(m, 2m+ k) = 3m+ bk/2c − 1 for k ∈ [0,m]. In this
paper, we give improved upper bounds for M(m,n) for 2m− 2 ≤ n ≤ 3m. In particular, it
also improves the upper bounds of α(m), that is, α(m) ≤ 2m− 3 for m ≥ 7.

I Theorem 3.
(a) M(m, 2m+ k) ≤ 3m+ bk/2c − 2 = Mbm(m, 2m+ k)− 1, if m ≥ 5 and k ≥ −1.
(b) M(m, 2m− 2) ≤ 3m− 4 = Mbm(m, 2m− 2)− 1, if m ≥ 7. That is α(m) ≤ 2m− 3 for

m ≥ 7.
(c) M(m, 2m) ≤ 3m− 3 = Mbm(m, 2m)− 2, if m ≥ 10.

1.2 Related work
Besides the worst-case complexity, the average-case complexity has also been investigated
for merge problems. Tanner [29] designed an algorithm which uses at most 1.06I(m,n)
comparisons on average. The average case complexity of insertive merging algorithms as well
as binary merge has also been investigated [7, 8].

Bui et al. [30] gave the optimal randomized algorithms for (2, n) and (3, n) merge problems
and discovered that the optimal expected value differs from the optimal worst-case value by
at most 1. Fernandez et al. [8] designed a randomized merging algorithm which performs well
for any ratio n/m and is significantly faster than binary merge for n/m > (

√
5+1)/2 ≈ 1.618.

More preciously, they showed that

MF (m,n) =
{
sn+ (1 + s)m, if 1 + s ≤ n/m ≤ 2 + s,

2
√
mn, if 2 + s ≤ n/m ≤ 2r,

(1)

where s = (
√

5− 1)/2 ≈ 0.618 and r = (
√

2− 1 +
√

2s)2 ≈ 1.659.
Nathan Linial [21] studied a more general problem where partial order relations are already

known. He showed the information-theoretic lower bound is good, that is, an algorithms
exists which merges A and B in no more than (lg(

√
5 + 1)/2)−1 lgN0 comparisons, where

N0 is the number of extensions of the partial order on A ∪B. They also pointed out that
this bound is tight, and the computation needed for finding the appropriate queries can be
done in time polynomial in m+ n.

Sorting, merging and searching are always closely related to each other. Manacher et
al. [22] used efficient merge algorithms to improve Ford-Johnson sorting algorithm, which
was conjectured to be optimal for almost twenty years. Linial and Saks [20] observed that
M(m,n) is equivalent to the minimum number of pairwise comparisons to determine whether
a given element is present in a m × n matrix in which distinct entries are known to be
increasingly ordered along rows and columns. They also studied the generalized problem in
monotone multi-dimensional arrays, and their result was further improved by Cheng et al. [4].
Ajtai et al. [1] considered the problem of sorting and selection with imprecise comparisons.
The non-uniform cost model has also been investigated [3, 10, 17, 12], for example, Huang et
al. [12] studied the sorting problem where only a subset of all possible pairwise comparisons
is allowed. For practical use, Brown and Tarjan [2] gave a merging procedure which runs in
O(I(m,n)) time on a real computer.

Organization. We introduce some notations and explain Knuth’s adversary methods in
Section 2. In Section 3 we provide some properties of Knuth’s adversary methods which will
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(a) Case 1, simple strategy (b) Case 2, complex strategy (c) Case 3, complex strategy

Figure 1 The Adversary’s Splitting Strategies.

be used. In Section 4 we improve the lower bounds for α(m) via Knuth’s adversary methods.
Then we show limitations of this method in Section 5. Section 6 improves the upper bounds
for M(m, 2m+ k). We conclude the paper with some open problems in Section 7.

2 Preliminaries

In this section, we introduce Knuth’s adversary methods and present some notations.
We use the notations λMρ proposed by Knuth in this paper. The detailed definitions

can be found in Knuth’s comprehensive monograph [18]. Yao et al. [28] gave an example to
illustrate the use of that. Here, we briefly introduce the idea.

The basic idea of Knuth’s adversary methods is to restrict the possible adversary strategies.
In general, the adversary can arbitrarily answer the comparison query from the algorithm as
long as there are no contradictions in his answer. But in Knuth’s adversary methods, after
each comparison query between ai and bj , the adversary is required to split each sorted list
into two parts A = A1 ∪ A2 and B = B1 ∪ B2 (Figure 1). The adversary guarantees that
each element in A1 or B1 is smaller than any element in A2 or B2. It is also guaranteed that
ai and bj are not in the same subproblem, i.e. neither ai ∈ A1, bj ∈ B1 nor ai ∈ A2, bj ∈ B2,
thus, the comparison result between ai and bj is determined after the splitting. Then the
merge problem will be reduced to two subproblems (A1, B1) and (A2, B2) with different left
or right constraints. For example, in case 2, the constraint for subproblem (A1, B1) is a right
constraint bl < ak since ak ∈ A2 while bl ∈ B1.

Knuth introduced notation λMρ to represent nine kinds of restrict adversaries, where
λ, ρ ∈ {., \, /} are the left and right constraint. In general, the constraint notation ′.′ means
no left (or right) constraint. Left constraint λ = \ or / means that outcomes must be
consistent with a1 < b1 or a1 > b1 respectively. Similarly, right constraint ρ = \(/) means
the outcomes must be consistent with am < bn (or am > bn respectively). Thus, merge
problem λMρ(A,B) will reduce to subproblem λM.(A1, B1) and .Mρ(A2, B2) in case 1, to
subproblem λM/(A1, B1) and \Mρ(A2, B2) in case 2, and to subproblem λM\(A1, B1) and
/Mρ(A2, B2) in case 3. For convenience, we say the adversary adopts a simple strategy if he
splits the lists in the way of case 1, otherwise the adversary adopts a complex strategy (case
2 or 3).

There are obvious symmetries, such as /M.(m,n) = .M\(m,n) = \M.(n,m) = .M/(n,m),
/M/(m,n) = \M\(m,n), and /M\(m,n) = \M/(n,m), which means we can deduce the
nine functions to four functions: .M., /M., /M\, and /M/. These functions can be calculated
by a computer rather quickly, and the values for all m,n ≤ 150 and the program are available
in [19].

Note M(m,n) ≥ .M.(m,n), but M(m,n) is not equal to .M(m,n). in general, since we
restrict the power of adversary in the decision tree model by assuming there is a (unknown)
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division of the lists after each comparison. But this restrict model still covers many interesting
cases. For example, when m ≤ n ≤ b 3

2mc + 1 [6, 24, 28] or 5m − 3 ≤ n ≤ 7m [5],
.M(m,n). = M(m,n).

Let λMi,jρ(m,n) denote the number of comparisons resulted from adversary’s best
strategy if the first comparison is ai and bj , thus λMρ(m,n) = mini,jλMi,jρ(m,n).

The following notation is also used in our paper.

I Definition 4. Let .M.(m,n) be the difference of the number of comparisons required by
tape merge in the worst case and .M.(m,n), i.e. .M.(m,n) , m+ n− 1− .M.(m,n).

3 Inequalities about Knuth’s adversary methods

In this section, we list several inequalities about λMρ, which will be used in Section 4 and
Section 5.

I Lemma 5. For any λ, ρ ∈ {., /, \}, we have
(a) .Mρ(m,n) ≥ λMρ(m,n);
(b) /Mρ(m,n) ≤ .Mρ(m,n− 1) + 1.

Proof. Part (a) is obvious, the adversary can perform at least as well on less restrictions.
In Part (b), if the first comparison is a1 and b1 for /Mρ(m,n), the adversary has to claim
a1 > b1, thus it reduces to .Mρ(m,n− 1). Therefore we have /Mρ(m,n) ≤ /M1,1ρ(m,n) =
1 + .Mρ(m,n− 1). J

The following lemma shows that if .M.(m,n) = m+ n− 1, then tape merge is optimal
for any (m′, n′) satisfying m′ ≥ m, n′ ≤ n and m′ ≤ n′. The proof is in Appendix A.

I Lemma 6. For any m,n ≥ 0, m + n ≥ 1 and m ≤ n, we have .M.(m + 1, n) ≥
.M.(m,n) + 1 ≥ .M.(m,n+ 1) or .M.(m+ 1, n) ≤ .M.(m,n) ≤ .M.(m,n+ 1).

We can show a similar statement about /M. function as well. The proof is very similar, and
we omit it here.

I Lemma 7. For any m,n ≥ 1, we have
(a) /M.(m+ 1, n+ 1) ≥ /M.(m,n) + 2 [28];
and for any m,n ≥ 1 and m ≤ n, we have
(b) /M.(m,n+ 1) ≤ /M.(m,n) + 1;
(c) /M.(m+ 1, n) ≥ /M.(m,n) + 1, except (m,n) = (1, 1), (2, 2) or (3, 3).

4 Lower bounds for α(m)

The key step is to show that .M.(m+ 25, n+ 38) ≥ .M.(m,n) + 63, which directly implies
Theorem 1. Since it’s unavoidable to show similar statements for other restricted adversaries
λMρ, we prove them by induction in parallel. In addition, by symmetry, we have /M.(m,n) =
.M\(m,n), \M.(m,n) = .M/(m,n), and /M/(m,n) = \M\(m,n) , so the following theorem
is enough for our goal.

I Theorem 8. For m,n ≥ 0 and m+ n ≥ 1, we have
(a) .M.(m+ 25, n+ 38) ≥ .M.(m,n) + 63;
and for m,n ≥ 1, we have
(b) /M.(m+ 25, n+ 38) ≥ /M.(m,n) + 63;
(c) \M.(m+ 25, n+ 38) ≥ \M.(m,n) + 63;
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(d) /M\(m+ 25, n+ 38) ≥ /M\(m,n) + 63;
(e) \M\(m+ 25, n+ 38) ≥ \M\(m,n) + 63, except (m,n) = (1, 1);
(f) \M/(m+ 25, n+ 38) ≥ \M/(m,n) + 63, except (m,n) = (2, 1).

Proof. The proof is by induction on m and n. The starting values for m,n ≤ 50 are given
in [19]. Now suppose the theorem holds for any m′, n′ satisfying m′ ≤ m, n′ ≤ n and
m′ + n′ < m+ n, we then prove the case (m,n) where m ≥ 51 or n ≥ 51. Recall that our
task is to design a strategy for the adversary for (m+ 25, n+ 38).

Part (a). Suppose an algorithm begins by comparing ai and bj , if i ≤ m and j ≥ n + 1,
then the adversary claims ai < bj and follows the simple strategy, yielding

.Mi,j .(m+ 25, n+ 38) ≥ 1 + .M.(m,n) + .M.(25, 38) = .M.(m,n) + 63.

If i ≥ m+ 1 and j ≤ n, the adversary claims ai > bj and uses the simple strategy. This
leads to

.Mi,j .(m+ 25, n+ 38) ≥ 1 + .M.(m,n) + .M.(25, 38) = .M.(m,n) + 63.

If i ≤ m and j ≤ n, assume if we compare ai and bj in .M.(m,n), the adversary’s best
strategy is 1 + .Mρ(p, q) + λM.(s, t) where λ, ρ ∈ {., /, \}, then adversary uses the same
strategy here, and we get

.Mi,j .(m+ 25, n+ 38) ≥1 + .Mρ(p, q) + λM.(s+ 25, t+ 38)
≥1 + .Mρ(p, q) + λM.(s, t) + 63 ≥ .M.(m,n) + 63

by using the induction hypothesis.
If i ≥ m+ 1 and j ≥ n+ 1, then i ≤ 25 and j ≤ 38 cannot happen simultaneously, thus

there are only three possible cases: (i ≥ 26, j ≤ 38), (i ≤ 25, j ≥ 39), or (i ≥ 26, j ≥ 39).
Reversing the order of the elements in A and B maps all these three cases to the above ones,
so we can handle these cases as well by symmetry.

Therefore no matter which two elements are chosen to compare at the first step, the
adversary can always find a strategy resulting the value not smaller than .M.(m,n) + 63.
This completes the proof of Part (a).

Part (b). The proof for cases where (i ≤ m, j ≤ n), (i ≥ m + 1, j ≤ n), and (i ≤ m,
j ≥ n+ 1) is similar with Part (a).

If i ≥ m+ 1 and j ≥ n+ 1, then i ≤ 25 and j ≤ 38 cannot happen simultaneously, so we
only need to consider the following cases:

If i ≤ 25 and j ≥ 39, or i ≥ 26 and j ≤ 38, the adversary uses the simple strategy,
yielding

/Mi,j .(m+25, n+38) ≥ 1+/M.(25, 38)+ .M.(m,n) ≥ 1+62+ .M.(m,n) ≥ /M.(m,n)+63.

If i ≥ 26 and j ≥ 39: assume if we compare ai−25 and bj−38 in /M.(m,n), the adversary’s
best strategy is 1 + /Mρ(p, q) + λM.(s, t). If (p, q, ρ) 6= (1, 1, /), the adversary uses the same
strategy, and we get

/Mi,j .(m+ 25, n+ 38) ≥1 + /Mρ(p+ 25, q + 38) + λM.(s, t)
≥1 + /Mρ(p, q) + 63 + λM.(s, t) ≥ /M.(m,n) + 63
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by the induction hypothesis. If (p, q, ρ) = (1, 1, /), then we know that i ≥ 27 and j = 39, and
the adversary can use the simple strategy, yielding

/Mi,j .(m+25, n+38) ≥ 1+/M.(25, 39)+.M.(m,n−1) = 1+63+.M.(m,n−1) ≥ 63+/M.(m,n).

The last inequality is due to Lemma 5.
Therefore the adversary can always find a strategy resulting the value not smaller than

/M.(m,n) + 63, no matter what the first comparison is. This completes the proof of Part (b).

Part (c). The proof for cases where (i ≤ m, j ≤ n), (i ≥ m + 1, j ≤ n), and (i ≤ m,
j ≥ n+ 1) is similar with Part (a).

Similar with the above argument, if i ≥ m+ 1 and j ≥ n+ 1, we only need to investigate
the following cases:

If i ≤ 25 and j ≥ 39, or i ≥ 27 and j ≤ 38, the adversary uses the complex strategy with
a26 in both subproblems. This leads to

\Mi,j .(m+25, n+38) ≥ 1+\M/(26, 38)+\M.(m,n) = 1+62+\M.(m,n) = \M.(m,n)+63.

If i = 26 and j ≤ 38, since i ≥ m+ 1 and j ≥ n+ 1, then m ≤ 25 and n ≤ 37 and these
cases have been checked as starting values.

If i ≥ 26 and j ≥ 39: assume if we compare ai−25 and bj−38 in \M.(m,n), the adversary’s
best strategy is 1 + \Mρ(p, q) + λM.(s, t). If (p, q, ρ) 6= (1, 1, \) or (2, 1, /), the adversary
uses the same strategy, yielding

\Mi,j .(m+ 25, n+ 38) ≥1 + \Mρ(p+ 25, q + 38) + λM.(s, t)
≥1 + \Mρ(p, q) + 63 + λM.(s, t) ≥ \M.(m,n) + 63

by the induction hypothesis. If (p, q, ρ) = (1, 1, \), we have i = 26 and j ≥ 40. The adversary
claims ai < bj and follows the simple strategy, yielding

\Mi,j .(m+25, n+38) ≥ 1+\M.(26, 38)+.M.(m−1, n) = 1+63+.M.(m−1, n) ≥ 63+\M.(m,n)

by using Lemma 5. If (p, q, ρ) = (2, 1, /), we have i ≥ 28 and j = 39 or i = 26 and j > 39,
since the case where i = 26 and j > 39 has already been considered, we only need to
investigate the case where i ≥ 28 and j = 39. Notice that j ≥ n + 1, i.e. n ≤ 38, hence
m ≥ 50. If i > 28, the adversary claims ai > bj and follows the complex strategy with a28 in
both subproblems. This leads to

\Mi,j .(m+ 25, n+ 38) ≥ 1 + \M/(28, 39) + \M.(m− 2, n− 1)
= 1 + 66 + \M.(m− 2, n− 1)
≥ 66 + \M.(m− 1, n− 1)
≥ 63 + 1 + \M/(2, 1) + \M.(m− 1, n− 1)
= 63 + \Mi−25,1.(m,n)
≥\M.(m,n) + 63.

The second inequality is according to Lemma 7 and the second equality is the assumption of
the best strategy for the adversary. If i = 28 and j = 39, we have m ≤ 27 and n ≤ 38, which
have been checked as starting values.

Therefore the adversary can always find a strategy resulting the value not smaller than
\M.(m,n) + 63. This completes the proof of Part (c).
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Part (d), (e), (f). Due to the space constraint, we put the proofs of Part (d), Part (e) and
Part (f) in Appendix B. J

Now, we are ready to prove Theorem 1.

Proof. The small cases 1 ≤ m ≤ 25 and 1 ≤ n ≤ 38 are given in [19]. Given any pair (m,n)
satisfying m ≤ n ≤ 38

25m, let m = 25p+ s, n = 38q + t where 0 < s ≤ 25, 0 < t ≤ 38, and
observe that m ≥ 25q + d 25

38 te, thus

.M.(m,n) = .M.(25p+ s, 38q + t) ≤ .M.(25q + d 25
38 te, 38q + t) ≤ .M.(d 25

38 te, t) = 0.

The first inequality is due to Lemma 6 and the second one is due to Theorem 8. J

5 Limitations of Knuth’s adversary methods

In this section, we prove Theorem 2, which shows Knuth’s adversary methods can not provide
lower bounds beyond α(m) ≥ 9dm/5e. Actually, we prove a stronger result:

I Theorem 9. .M.(5k, 9k + 12t) ≤ 14k + 11t− 2, for k, t ≥ 0 and t+ k ≥ 1.

With this theorem, Theorem 2 is obvious, since if n ≥ 9dm/5e, .M.(m,n) ≥ .M.(m, 9dm/5e) ≥
1.

Proof. The proof is by induction on k and t. We verify the case k ≤ 10 first: when
t ≥ k/10 + 2/5, we have

.M.(5k, 9k + 12t) ≤M(5k, 10k + 12t− k) ≤Mbm(5k, 10k + 12t− k) ≤ 14k + 11t− 2.

When t < k/10 + 2/5, these finite cases can be checked in [19].
Now suppose k ≥ 11 and we have already proven this theorem for any (k′, t′) satisfying

k′ < k, or k′ = k and t′ < t. Since .M.(m,n) = mini,j .Mi,j .(m,n) ≤ .M50,79.(m,n), thus
it’s enough to show .M50,79.(5k, 9k+ 12t) ≤ 14k+ 11t− 2. In other word, an algorithm which
begins by comparing a50 with b79 can "beat" the adversary. We’ll prove it by enumerating
the adversary’s best strategy.

Case(a). The adversary claims a50 < b79 and follows three possible strategies.
(i) The adversary uses the simple strategy, then

.M50,79.(5k, 9k+ 12t) = 1 + .M.(50 + x, 78− y) + .M.(5k− 50− x, 9k+ 12t− 78 + y),

where x, y ≥ 0. Thus it’s sufficient to show

.M.(50+x, 78−y)+.M.(5k−50−x, 9k+12t−78+y) ≥ .M.(5k−50, 9k−78+12t) ≥ t+2.

The first inequality is according to Lemma 6 and the second one is by the induction
hypothesis.

(ii) The adversary uses the complex strategy, with a51+x in both subproblems.

.M50,79.(5k, 9k + 12t)
= 1 + .M/(51 + x, 78− y) + \M.(5k − 50− x, 9k + 12t− 78 + y)
≤ 1 + .M.(51 + x, 78− y) + .M.(5k − 50− x, 9k + 12t− 78 + y),

where x, y ≥ 0. Thus it’s equivalent to show

.M.(51 + x, 78− y) + .M.(5k − 50, 9k + 12t− 78 + y)− 1
≥ .M.(5k − 50, 9k − 78 + 12t)− 1 ≥ t+ 1.
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(iii) The adversary uses the complex strategy with b78−y in both subproblems.

.M50,79.(5k,9k + 12t)
= 1 + .M\(50 + x, 78− y) + /M.(5k − 50− x, 9k + 12t− 77 + y)
≤ 1 + .M.(50 + x, 78− y) + .M.(5k − 50− x, 9k + 12t− 77 + y),

where x, y ≥ 0. Thus it’s equivalent to show

.M.(50 + x, 78− y) + .M.(5k − 50− x, 9k + 12t− 77 + y)− 1
≥ .M.(5k − 50, 9k − 78 + 12t)− 1 ≥ t+ 1.

Case(b). The adversary claims a50 > b79 and follows three possible strategies.
(i) The adversary uses the simple strategy, then

.M50,79.(5k, 9k+12t) = 1+ .M.(49−x, 79+y)+ .M.(5k−50+1+x, 9k+12t−79−y),

where x, y ≥ 0. Thus it’s sufficient to show

.M.(49− x, 79 + y) + .M.(5k − 50 + 1 + x, 9k + 12t− 79− y) ≥ t+ 2.

Let 5p ≤ x ≤ 5p+4 and 12q−10 ≤ y ≤ 12q+1, then we claim that .M.(49−x, 79+y) ≥
p+ q + 1. If q ≤ 2, these finite cases can be checked in [19]. Otherwise (q ≥ 3), then
79 +y > 2× (49−5p), and .M.(49−5p, 81 + 12(q−1)) ≤Mbm(49−5p, 81 + 12(q−1)) ≤
127+11(q−1)−6p. Therefore .M.(49−x, 79+y) ≥ .M.(49−5p, 81+12(q−1)) ≥ 1+p+q
due to Lemma 6.
Since .M.(49− x, 79 + y) ≥ p+ q+ 1, if p+ q ≥ t+ 1, we’ve done. If p+ q ≤ t, according
to Lemma 6 and the induction hypothesis, we have

.M.(5k − 50 + 1 + x, 9k + 12t− 79− y)
≥ .M.(5k − 50 + 5p+ 5, 9k − 90 + 9p+ 9 + 12(t− q − p))
≥ t− p− q + 1.

Thus .M.(49− x, 79 + y) + .M.(5k − 50 + 1 + x, 9k + 12t− 79− y) ≥ t+ 2.
(ii) The adversary uses the complex strategy with a49−x in both subproblems, then

.M50,79.(5k, 9k + 12t)
= 1 + .M/(49− x, 79 + y) + \M.(5k − 50 + 2 + x, 9k + 12t− 79− y)
≤ 2 + .M.(49− x, 79 + y) + 1 + .M.(5k − 50 + 1 + x, 9k + 12t− 79− y)
≤ 14k + 11t− 2,

where x, y ≥ 0.
(iii) The adversary uses the complex strategy with b80+y in both subproblems, then

.M50,79.(5k, 9k + 12t)
= 1 + .M\(49− x, 80 + y) + /M.(5k − 50 + 1 + x, 9k + 12t− 79− y)
≤ 2 + .M.(49− x, 79 + y) + .M.(5k − 50 + 1 + x, 9k + 12t− 79− y)
≤ 14k + 11t− 2,

where x, y ≥ 0.
J
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6 Upper bounds for α(m)

In this section, we give better upper bounds for α(m) by proposing a simple procedure. This
procedure only involves the first two elements in each A and B and can be viewed as a
modification of binary merge.

Algorithm 1 Modified Binary Merge
Compare a1 and b2
if a1 > b2 then
merge (m,n− 2).

else
compare a2 and b2
if a2 > b2 then
compare a1 and b1, then merge (m− 1, n− 2).

else
compare a2 and b1
if a2 > b1 then
compare a1 and b1, then merge (m− 2, n− 1) .

else
merge (m− 2, n).

end if
end if

end if

It is easy to see that this procedure induces the following recurrence relation:

M(m,n) ≤ max{M(m,n−2)+1,M(m−1, n−2)+3,M(m−2, n)+3,M(m−2, n−1)+4}.

In the following, we’ll use the induction to give better upper bounds for n ∈ [2m− 2, 3m].
The following proofs are very similar, but we give all the details for sake of completeness.

I Theorem 10. M(m, 2m+ 2k) ≤ 3m+ k − 2, for m ≥ 3 and k ≥ −1.

Proof. We induce on k and m. The case for k = −1 just follows tape merge algorithm. The
case for m = 3 are given by Hwang [15] and Murphy [25].

Now suppose that m ≥ 4 and k ≥ 0, and the claim has already been proven for any
(m′, k′) satisfying m′ + k′ ≤ m+ k − 1. According to the procedure, we have

M(m,2m+ 2k)
≤ max{M(m, 2m+ 2(k − 1)) + 1,M(m− 1, 2m+ 2k − 2) + 3,

M(m− 2, 2m+ 2k) + 3,M(m− 2, 2m+ 2k − 1) + 4}

≤ max{3m+k−2 (the induction hypothesis), 3(m−1)+k−2+3 (the induction hypothesis),
3(m− 2) + 1 + k + 3 (binary merge), 3(m− 2) + k + 4 (binary merge)} ≤ 3m+ k − 2. J

I Theorem 11. M(m, 2m+ 2k − 1) ≤ 3m+ k − 3, for m ≥ 5 and k ≥ −1.

Proof. We induce on k and m. The case for k = −1 just follows tape merge algorithm. The
case for m = 5 are given by Mönting [26].

ISAAC 2016
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Now suppose that m ≥ 6 and k ≥ 0, and the claim has already been proven for any
(m′, k′) satisfying m′ + k′ ≤ m+ k − 1. According to the procedure, we have

M(m,2m+ 2k − 1)
≤ max{M(m, 2m+ 2(k − 1)− 1) + 1,M(m− 1, 2m+ 2k − 1− 2) + 3,

M(m− 2, 2m+ 2k − 1) + 3,M(m− 2, 2m+ 2k − 2) + 4}

≤ max{3m+k−3 (the induction hypothesis), 3(m−1)+k−3+3 (the induction hypothesis),
3(m− 2) + k + 3 (binary merge), 3(m− 2) + k − 1 + 4 (Theorem 10)} ≤ 3m+ k − 3. J

I Theorem 12. M(m, 2m− 2) ≤ 3m− 4, for m ≥ 7.

Proof. We induce on m. The case for m = 7 has been verified by Smith and Lang[27]. Now
suppose that m ≥ 8 and the claim has already been proven for m− 1. According to S, we
have

M(m,2m− 2)
≤ max{M(m, 2m− 4) + 1,M(m− 1, 2m− 4) + 3,

M(m− 2, 2m− 2) + 3,M(m− 2, 2m− 3) + 4}

≤ max{3m− 4(tape merge), 3(m− 1)− 4 + 3 (the induction hypothesis), 3(m− 2)− 1 + 3
(Theorem 10), 3(m− 2)− 2 + 4 (Theorem 11)} ≤ 3m− 4. J

I Theorem 13. M(m, 2m) ≤ 3m− 3, for m ≥ 10.

Proof. We do the induction on m. Smith and Lang[27] have verified the case for m = 10.
Now suppose that m ≥ 11 and the claim has already been proven for m− 1. According to
the procedure, we have

M(m,2m)
≤ max{M(m, 2m− 2) + 1,M(m− 1, 2m− 2) + 3,

M(m− 2, 2m) + 3,M(m− 2, 2m− 1) + 4}

≤ max{3m − 3 (Theorem 12), 3(m − 1) − 3 + 3 (the induction hypothesis), 3(m − 2) + 3
(Theorem 10), 3(m− 2)− 1 + 4 (Theorem 11)} ≤ 3m− 3. J

Finally, we put together the above theorems to get Theorem 3.
As we can see in the proofs, if better basic cases can be provided, we can get better

upper bounds by using this procedure. However, there is a barrier of this approach: if we
want to show α(m) ≤ 2m − k or M(m, 2m − k + 1) < 3m − k, it’s necessary to obtain
α(m − 1) ≤ 2(m − 1) − k or M(m − 1, 2m − 2 − k + 1) < 3m − 3 − k at first, thus it is
impossible to show α(m) ≤ 2m− ω(1) via this approach.

7 Conclusion

In this paper we improve the lower bounds for α(m) from b 3
2mc+ 1 to b 38

25mc via Knuth’s
adversary methods. We also show that it is impossible to get α(m) ≥ 9dm/5e ≈ 9

5m for any
m by using this methods. We then design an algorithm which saves at least one comparison
compared to binary merge for 2m − 2 ≤ n ≤ 3m. Specially, for the case M(m, 2m − 2),
our algorithm uses one comparison less than tape merge or binary merge, which means we
can improve the upper bounds of α(m) by 1. We wonder whether there exists a universal
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efficient algorithm to give significantly better upper bounds for M(m,n) in the case n ≤ 2m,
or maybe it’s intrinsically hard to compute M functions since there doesn’t exist general
patterns or underlying structures in the corresponding decision trees.

Besides that, we are also curious about the following conjectures proposed by Knuth [18]:

I Conjecture 14. M(m+ 1, n+ 1) ≥ 2 +M(m,n).

Via a similar proof with Lemma 7, the above conjecture implies the following conjecture
which has been mentioned in Section 1.

I Conjecture 15. M(m+ 1, n) ≥ 1 +M(m,n) ≥M(m,n+ 1), for m ≤ n.

In the attempt to prove these two conjectures, we introduced the notation .M (k).(m,n).
Roughly speaking, .Mk.(m,n) is the adversary which can delay k steps to give the splitting
strategy, and .M.(m,n) = .M0.(m,n) ≤ .M1.(m,n) · · · ≤ .Mm+n−2.(m,n) = M(m,n). In
the case k = 0, it is exactly Lemma 16 in appendix A, but it becomes much harder even for
k = 1.
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A Proof of Lemma 6

We show the following lemma first:

I Lemma 16. .M.(m+ 1, n+ 1) ≥ .M.(m,n) + 2, for any m,n ≥ 0 and m+ n ≥ 1.

Proof. The proof is by induction on m and n. The starting values for m,n ≤ 3 can be easily
checked in [18]. Now suppose the theorem holds for any m′, n′ satisfying m′ ≤ m, n′ ≤ n and
m′ + n′ < m+ n, we then prove the case (m,n). Note that our task is to design a strategy
for the adversary for (m+ 1, n+ 1).

Suppose an algorithm begins by comparing ai and bj , where i ≤ m, j = n + 1. The
adversary claims that ai < bj , and follows the simple strategy, yielding

.Mi,j .(m+ 1, n+ 1) ≥ 1 + .M.(m,n) + .M.(1, 1) ≥ .M.(m,n) + 2 .

If i = m+ 1 and j ≤ n, the adversary claims that ai > bj , and uses the simple strategy.
This leads to

.Mi,j .(m+ 1, n+ 1) ≥ 1 + .M.(m,n) + .M.(1, 1) ≥ .M.(m,n) + 2 .

http://theory.ict.ac.cn/liqian
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If i ≤ m and j ≤ n, assume that if we compare ai and bj in .M.(m,n), the adversary’s
best strategy is 1 + .Mρ(p, q) + λM.(s, t), where ρ, λ ∈ {., /, \} and s + t ≥ 1 if λ = . and
s, t ≥ 1 if λ = {/, \}. Then the adversary uses the same strategy here, and we get

.Mi,j .(m+ 1, n+ 1) ≥ 1 + .Mρ(p, q) + λM.(s+ 1, t+ 1)
≥ 1 + .Mρ(p, q) + λM.(s, t) + 2 = .M.(m,n) + 2

by applying the induction hypothesis and Lemma 7.
If i = m+ 1 and j = n+ 1, we can handle this case as well by reversing the order of the

elements in A and B.
Therefore adversary can always find a strategy which is not smaller than .M.(m,n) + 2,

no matter what the first comparison is. This completes our proof. J

Now we can give the proof of Lemma 6

Proof. We induce on m and n. The case for 1 ≤ m + n ≤ 10 are given in [18]. Now
suppose that m+ n ≥ 11 and the lemma is already established for any (m′, n′) satisfying
m′ + n′ < m+ n.

Part (a).
Ifm = 1, we have .M.(1, n+1) ≤ .M1,n+1.(1, n+1) = max{1, 1+.M.(1, n)} = 1+.M.(1, n).

If m ≥ 2, then .Mm,n+1.(m,n + 1) = max{.M.(m − 1, n + 1), .M.(m,n)} + 1, and by the
induction we know .M.(m,n) ≥ .M.(m− 1, n) + 1 ≥ .M.(m− 1, n+ 1), thus

.M.(m,n+1) ≤ .Mm,n+1.(m,n+1) ≤ max{.M.(m−1, n+1), .M.(m,n)}+1 = .M.(m,n)+1.

Part (b).
When m = n, .M.(m + 1,m) ≥ .M.(m,m − 1) + 2 ≥ .M.(m − 1,m − 2) + 4 ≥ · · · ≥

.M.(2, 1) + 2m− 2 = 2m according to Lemma 16, thus .M.(m+ 1,m) ≥ .M.(m,m) + 1, since

.M.(m,m) ≤ 2m− 1. When m < n, we have

.M.(m+ 1, n) ≥ .M.(m,n− 1) + 2 ≥ .M.(m,n) + 1.

The first inequality is due to Lemma 16, and the second one is by the induction hypothesis. J

B Proof of Theorem 8

Proof.
Part (d). The proof for cases where i ≤ 25 and j > 38, i > 25 and j ≤ 38, and i > 25 and
j > 38 is similar with Part (b).

If i ≤ 25 and j ≤ 38, reserving the order of the elements maps this case to the above
cases, thus we can handle this case as well by symmetry.

Therefore the adversary can always find a strategy which is not smaller than /M\(m,n) +
63, no matter which the first comparison is. So Part (d) is true.

Part (e). The adversary’s strategies for cases where (i ≤ m, j ≤ n), (i > m, j ≤ n), and
(i ≤ m, j > n) are similar with Part (d).

If i ≥ m+ 1 and j ≥ n+ 1, then i ≤ 25 and j ≤ 38 cannot happen simultaneously, so we
only need to investigate the following cases:

If i ≤ 25 and j > 38, or i ≥ 27 and j ≤ 38, the adversary uses the complex strategy with
a26 in both subproblems. This leads to

\Mi,j\(m+ 25, n+ 38) ≥ 1 + \M/(26, 38) + \M\(m,n) = \M\(m,n) + 63.
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If i = 26 and j ≤ 38, then m ≤ 25 and n ≤ 38, which have been checked as starting
values.

If i ≥ 26 and j ≥ 39: assume if we compare ai−25 and bj−38 in \M\(m,n), the adversary’s
best strategy is 1 + \Mρ(p, q) + λM\(s, t). If (p, q, ρ) 6= (1, 1, \) or (2, 1, /), the adversary
uses the same strategy, yielding

\Mi,j\(m+ 25, n+ 38) ≥ 1 + \Mρ(p+ 25, q + 38) + λM\(s, t) ≥ \M\(m,n) + 63

by the induction hypothesis. If (p, q, ρ) = (1, 1, \), we have i = 26 and j > 39. The adversary
claims ai < bj and uses the simple strategy, leading to

\Mi,j\(m+25, n+38) ≥ 1+\M.(26, 38)+.M\(m−1, n) = 64+.M\(m−1, n) ≥ 63+\M\(m,n)

by using Lemma 5.
If (p, q, ρ) = (2, 1, /), the case where i ≥ 28 and j = 39 is the only unconsidered case.

If we compare a2 with b1 in \M\(m,n), and the adversary claims a2 > b1 , then the best
strategy must be 1 + \M.(1, 1) + .M\(m− 1, n− 1), otherwise the adversary claims a2 < b1 ,
and the best strategy must be 1 + .M\(m− 2, n). So we get \M\(m,n) ≤ \M2,1\(m,n) =
max{1+ .M\(m−2, n), 2+ .M\(m−1, n−1)}. If .M\(m−2, n) ≥ 1+ .M\(m−1, n−1), then
.M\(m− 2, n) + 1 ≥ \M\(m,n), and the adversary splits the problem \M\(m+ 25, n+ 38)
into two independent subproblems \M.(27, 38) and .M\(m − 2, n) before the algorithm
begins, and this leads to

\M\(m+ 25, n+ 38) ≥ \M.(27, 38) + .M\(m− 2, n) ≥ 63 + \M\(m,n)

Otherwise (.M\(m−2, n) < 1 + .M\(m−1, n−1)), then 2 + .M\(m−1, n−1) ≥ \M\(m,n)
and the adversary claims ai > bj and uses the simple strategy, yielding

\M\(m+ 25, n+ 38) ≥ \M.(26, 39) + .M\(m− 1, n− 1) + 1 ≥ \M\(m,n) + 63.

Therefore the adversary can always find a strategy resulting the value not smaller than
\M\(m,n) + 63. This completes the proof of Part (e).

Part (f). If n > 50, we can assume j ≥ b 38+n
2 c ≥ 44 by symmetry. If i ≤ 25, the adversary

claims ai < bj and uses the complex strategy with a26 in both subproblems. This leads to

\M/(m+ 25, n+ 38) ≥ 1 + \M/(26, 38) + \M/(m,n) = 63 + \M/(m,n).

If i ≥ 26: assume that if we compare ai−25 and bj−38 in \M\(m,n), the adversary’s best
strategy is 1 + \Mρ(p, q) + λM/(s, t). If (p, q, ρ) 6= (1, 1, \), (2, 1, /), adversary uses the same
strategy, yielding

\Mi,j/(m+ 25, n+ 38) ≥ 1 + \Mρ(p+ 25, q + 38) + λM/(s, t) ≥ \M/(m,n) + 63

by using the induction hypothesis. If (p, q, ρ) = (1, 1, \), we have i = 26 and j ≥ 40. The
adversary claims ai < bj and use the simple strategy, yielding

\Mi,j/(m+25, n+38) ≥ 1+\M.(26, 28)+.M/(m−1, n) = 64+.M/(m−1, n) ≥ 63+\M/(m,n)

by using Lemma 5. If (p, q, ρ) = (2, 1, /), we have i ≥ 28 and j = 39, violating the assumption
j ≥ 44.
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If n ≤ 50, then m > 50 and we can assume i ≥ b 25+m
2 c ≥ 38 by symmetry. If j ≤ 38,

the adversary claims ai > bj , and uses the complex strategy with a26 in both subproblems,
yielding

\M/(m+ 25, n+ 38) ≥ 1 + \M/(26, 38) + \M/(m,n) ≥ 63 + \M/(m,n).

If j ≥ 39: assume if we compare ai−25 and bj−38 in \M\(m,n), the adversary’s best
strategy is 1 + \Mρ(p, q) + λM/(s, t). If (p, q, ρ) 6= (1, 1, \) or (2, 1, /), then adversary uses
the same strategy, thus

\Mi,j/(m+ 25, n+ 38) ≥ 1 + \Mρ(p+ 25, q + 38) + λM/(s, t) ≥ \M/(m,n) + 63

by using the induction hypothesis. If (p, q, ρ) = (2, 1, /), we have j = 39. Similar with
the argument in Part (e), we get \M/(m,n) ≤ \M2,1/(m,n) = max{1 + .M/(m− 2, n), 2 +
.M/(m−1, n−1)}. If .M/(m−2, n) ≥ 1+ .M/(m−1, n−1), the adversary splits the problem
\M/(m+25, n+38) into two independent subproblems \M.(27, 38) and .M/(m−2, n) before
the first comparison begins, and this leads to

\M/(m+ 25, n+ 38) ≥ \M.(27, 38) + .M/(m− 2, n) ≥ 63 + \M/(m,n).

Otherwise (.M/(m− 2, n) < 1 + .M/(m− 1, n− 1)), then the adversary claims ai > bj , and
uses the simple strategy, yielding

\M/(m+ 25, n+ 38) ≥ \M.(26, 39) + .M/(m− 1, n− 1) + 1 ≥ 65 + .M/(m− 1, n− 1)
≥ \M/(m,n) + 63

If (p, q, ρ) = (1, 1, \), then i = 26, violating the assumption i ≥ 38.
Therefore the adversary can always find a strategy resulting the value not smaller than

\M/(m,n) + 63. This completes the proof of Part (f). J
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Abstract
We consider a problem of dispersing points on disjoint intervals on a line. Given n pairwise
disjoint intervals sorted on a line, we want to find a point in each interval such that the minimum
pairwise distance of these points is maximized. Based on a greedy strategy, we present a linear
time algorithm for the problem. Further, we also solve in linear time the cycle version of the
problem where the intervals are given on a cycle.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, I.1.2 Algorithms,
I.3.5 Computational Geometry and Object Modeling

Keywords and phrases dispersing points, intervals, min-max, algorithms, cycles

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2016.52

1 Introduction

The problems of dispersing points have been extensively studied and can be classified to
different categories by their different constraints and objectives, e.g., [6, 10, 13, 14, 15, 19].

In this paper, we consider problems of dispersing points on intervals in linear domains
including lines and cycles. Let I be a set of n intervals on a line `, and no two intervals
of I intersect. The problem is to find a point in each interval of I such that the minimum
distance of any pair of points is maximized. We assume the intervals of I are given sorted
on `. In this paper we present an O(n) time algorithm for the problem.

We also consider the cycle version of the problem where the intervals of I are given on
a cycle C. The intervals of I are also pairwise disjoint and are given sorted cyclically on
C. Note that the distance of two points on C is the length of the shorter arc of C between
the two points. By making use of our “line version” algorithm, we solve this cycle version
problem in linear time as well.

1.1 Related Work
To the best of our knowledge, we have not found any previous work on the two problems
studied in this paper. Our problems essentially belong to a family of geometric dispersion
problems, which are NP-hard in general in two and higher dimensional space. For example,
Baur and Fekete [1] studied the problems of distributing a number of points within a polygonal
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region such that the points are dispersed far away from each other, and they showed that
the problems cannot be approximated arbitrarily well in polynomial time, unless P=NP.

Wang and Kuo [19] considered the following two problems. Given a set S of points and
a value d, find a largest subset of S in which the distance of any two points is at least d.
Given a set S of points and an integer k, find a subset of k points of S to maximize the
minimum distance of all pairs of points in the subset. It was shown in [19] that both problems
in 2D are NP-hard but can be solved efficiently in 1D. Refer to [2, 5, 7, 8, 12] for other
geometric dispersion problems. Dispersion problems in various non-geometric settings were
also considered [6, 10, 13, 14, 15]. These problems are in general NP-hard; approximation
and heuristic algorithms were proposed for them.

On the other hand, problems on intervals usually have many applications. For example,
some problems on intervals are related to scheduling because the time period between the
release time and the deadline of a job or task in scheduling problems can be considered
as an interval on the line. From the interval point of view, Garey et al. [9] studied the
following problem on intervals: Given n intervals on a line, determine whether it is possible
to find a unit-length sub-interval in each input interval, such that these sub-intervals do not
intersect. An O(n log n) time algorithm was given in [9] for this problem. The optimization
version of the above problem was also studied [4, 17], where the goal is to find a maximum
number of intervals that contain non-intersecting unit-length sub-intervals. Chrobak et
al. [4] gave an O(n5) time algorithm for the problem, and later Vakhania [17] improved the
algorithm to O(n2 log n) time. The online version of the problem was also considered [3].
Other optimization problems on intervals have also been considered, e.g., see [9, 11, 16, 18].

1.2 Our Approaches
For the line version of the problem, our algorithm is based on a greedy strategy. We consider
the intervals of I incrementally from left to right, and for each interval, we will “temporarily”
determine a point in the interval. During the algorithm, we maintain a value dmin, which is
the minimum pairwise distance of the “temporary” points that so far have been computed.
Initially, we put a point at the left endpoint of the first interval and set dmin =∞. During
the algorithm, the value dmin will be monotonically decreasing. In general, when the next
interval is considered, if it is possible to put a point in the interval without decreasing dmin,
then we put such a point as far left as possible. Otherwise, we put a point on the right
endpoint of the interval. In the latter case, we also need to adjust the points that have been
determined temporarily in the previous intervals that have been considered. We adjust these
points in a greedy way such that dmin decreases the least. A straightforward implementation
of this approach can only give an O(n2) time algorithm. In order to achieve the O(n) time
performance, during the algorithm we maintain a “critical list” L of intervals, which is a
subset of intervals that have been considered. This list has some properties that help us
implement the algorithm in O(n) time.

We should point out that our algorithm is fairly simple and easy to implement. In
contrast, the rationale of the idea is quite involved and it is not an easy task to argue its
correctness. Indeed, discovering the critical list is the most challenging work and it is the
key idea for solving the problem in linear time.

To solve the cycle version, we convert it to a problem instance on a line and then apply
our line version algorithm. More specifically, we make two copies of the intervals of I to
a line and then apply our line version algorithm on these 2n intervals. The line version
algorithm will find 2n points in these intervals and we show that a particular subset of n

consecutive points of them correspond to an optimal solution for the original problem on C.
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In the following, we will present our algorithms for the line version in Section 2. The
cycle version is discussed in Section 3. Due to the space limit, some proofs are omitted but
can be found in the full version of the paper.

2 The Line Version

Let I = {I1, I2, . . . , In} be the set of intervals sorted from left to right on `. For any two
points of p and q on `, we use |pq| to denote their distance. Our goal is to find a point
pi in Ii for each 1 ≤ i ≤ n, such that the minimum pairwise distance of these points, i.e.,
min1≤i<j≤n |pipj |, is maximized.

For each interval Ii, 1 ≤ i ≤ n, we use li and ri to denote its left and right endpoints,
respectively. We assume ` is the x-axis. With a little abuse of notation, for any point
p ∈ `, depending on the context, p may also refer to its coordinate on `. Therefore, for each
1 ≤ i ≤ n, it is required that li ≤ pi ≤ ri.

For simplicity of discussion, we make a general position assumption that no two endpoints
of the intervals of I have the same location (our algorithm can be easily extended to the
general case). Note that this implies li < ri for any interval Ii.

The rest of this section is organized as follows. In Section 2.1, we discuss some observations.
In Section 2.2, we give an overview of our algorithm. The algorithm details are presented in
Section 2.3. Finally, we discuss the correctness and analyze the running time in Section 2.4.

2.1 Observations
Let P = {p1, p2, . . . , pn} be the set of sought points. Since all intervals are disjoint, p1 <

p2 < . . . < pn. Note that the minimum pairwise distance of the points of P is also the
minimum distance of all pairs of adjacent points.

Denote by dopt the minimum pairwise distance of P in an optimal solution, and dopt is
called the optimal objective value. We have the following lemma.

I Lemma 1. dopt ≤ rj−li

j−i for any 1 ≤ i < j ≤ n.

Proof. Assume to the contrary that this is not true. Then there exist i and j with i < j such
that dopt >

rj−li

j−i . Consider any optimal solution OPT. Note that in OPT, pi, pi+1, . . . , pj

are located in the intervals Ii, Ii+1, . . . , Ij , respectively, and |pipj | ≥ dopt · (j − i). Hence,
|pipj | > rj − li. On the other hand, since li ≤ pi and pj ≤ rj , it holds that |pipj | ≤ rj − li.
We thus obtain contradiction. J

The preceding lemma leads to the following corollary and our algorithm will find such a
solution as stated in the corollary.

I Corollary 2. Suppose we find a solution (i.e., a way to place the points of P ) in which the
minimum pairwise distance of P is equal to rj−li

j−i for some 1 ≤ i < j ≤ n. Then the solution
is an optimal solution.

2.2 The Algorithm Overview
Our algorithm will consider and process the intervals of I one by one from left to right.
Whenever an interval Ii is processed, we will “temporarily” determine pi in Ii. We say
“temporarily” because later the algorithm may change the location of pi. During the algorithm,
a value dmin and two indices i∗ and j∗ will be maintained such that dmin = (rj∗− li∗)/(j∗−i∗)
always holds.

ISAAC 2016
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︸ ︷︷ ︸
dmin

l1 l2 l3r1 r2 r3

p1 p2

Case 1: p2 + dmin ≤ l3

︸ ︷︷ ︸
dmin

l1 l2 l3r1 r2 r3

p1 p2

Case 2: l3 < p2 + dmin ≤ r3

︸ ︷︷ ︸
dmin

l1 l2 l3r1 r2 r3

p1 p2

Case 3: r3 < p2 + dmin

Figure 1 Illustrating the three cases when I3 is being processed.

Initially, we set p1 = l1 and dmin = ∞, with i∗ = j∗ = 1. In general, suppose the first
i − 1 intervals have been processed; then dmin is equal to the minimum pairwise distance
of the points p1, p2, . . . , pi−1, which have been temporarily determined. In fact, dmin is the
optimal objective value for the sub-problem on the first i− 1 intervals. During the execution
of algorithm, dmin will be monotonically decreasing. After all intervals are processed, dmin
is dopt. When we process the next interval Ii, we temporarily determine pi in a greedy
manner as follows. If pi−1 + dmin ≤ li, we put pi at li. If li < pi−1 + dmin ≤ ri, we put pi at
pi−1 + dmin. If pi−1 + dmin > ri, we put pi at ri. In the first two cases, dmin does not change.
In the third case, however, dmin will decrease. Further, in the third case, in order to make
the decrease of dmin as small as possible, we need to move some points of {p1, p2, . . . , pi−1}
leftwards. By a straightforward approach, this moving procedure can be done in O(n) time.
But this will make the entire algorithm run in O(n2) time.

To have any hope of obtaining an O(n) time algorithm, we need to perform the above
moving “implicitly” in O(1) amortized time. To this end, we need to find a way to answer
the following question: Which points of p1, p2, . . . , pi−1 should move leftwards and how far
should they move? To answer the question, the crux of our algorithm is to maintain a
“critical list” L of interval indices, which bears some important properties that eventually
help us implement our algorithm in O(n) time.

In fact, our algorithm is fairly simple. The most “complicated” part is to use a linked list
to store L so that the following three operations on L can be performed in constant time
each: remove the front element; remove the rear element; add a new element to the rear.
Refer to Algorithm 1 for the pseudocode.

Although the algorithm is simple, the rationale of the idea is rather involved and it is also
not obvious to see the correctness. Indeed, discovering the critical list is the most challenging
task and the key idea for designing our linear time algorithm. To help in understanding and
give some intuition, below we use an example of only three intervals to illustrate how the
algorithm works.

Initially, we set p1 = l1, dmin =∞, i∗ = j∗ = 1, and L = {1}.
To process I2, we first try to put p2 at p1 + dmin. Clearly, p1 + dmin > r2. Hence, we put

p2 at r2. Since p1 is already at l1, which is the leftmost point of I1, we do not need to move
it. We update j∗ = 2 and dmin = r2 − l1. Finally, we add 2 to the rear of L. This finishes
the processing of I2.

Next we process I3. We try to put p3 at p2 + dmin. Depending on whether p2 + dmin is to
the left of I3, in I3, or to the right of I3, there are three cases (e.g., see Fig. 1).

1. If p2 + dmin ≤ l3, we set p3 = l3. We reset L to {3}. None of dmin, i∗, and j∗ needs to be
changed in this case.

2. If l3 < p2 + dmin ≤ r3, we set p3 = p2 + dmin. None of dmin, i∗, and j∗ needs to be
changed. Further, the critical list L is updated as follows.
We first give some “motivation” on why we need to update L. Assume later in the
algorithm, say, when we process the next interval, we need to move both p2 and p3
leftwards simultaneously so that |p1p2| = |p2p3| during the moving (this is for making
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︸ ︷︷ ︸
dmin

︸ ︷︷ ︸
dmin

l1 l2 l3 l4 l5 l6r1 r2 r3 r4 r5 r6

p1 p2 p3 p4 p5 p6︸ ︷︷ ︸
dmin

︸ ︷︷ ︸
dmin

Figure 2 Illustrating the solution computed by our algorithm, with i∗ = 2 and j∗ = 5.

dmin as large as possible). The moving procedure stops once either p2 arrives at l2 or p3
arrives at l3. To determine which case happens first, it suffices to determine whether
l2 − l1 > l3−l1

2 .

a. If l2 − l1 > l3−l1
2 , then p2 will arrive at l2 first, after which p2 cannot move leftwards

any more in the rest of the algorithm but p3 can still move leftwards.
b. Otherwise, p3 will arrive at l3 first, after which p3 cannot move leftwards any more.

However, although p2 can still move leftwards, doing that would not help in making
dmin larger.

We therefore update L as follows. If l2− l1 > l3−l1
2 , we add 3 to the rear of L. Otherwise,

we first remove 2 from the rear of L and then add 3 to the rear.
3. If r3 < p2 + dmin, we set p3 = r3. Since |p2p3| < dmin, dmin needs to be decreased. To

make dmin as large as possible, we will move p2 leftwards until either |p1p2| becomes
equal to |p2p3| or p2 arrives at l2. To determine which event happens first, we only need
to check whether l2 − l1 > r3−l1

2 .

a. If l2−l1 > r3−l1
2 , the latter event happens first. We set p2 = l2 and update dmin = r3−l2

(= |p2p3|), i∗ = 2, and j∗ = 3. Finally, we remove 1 from the front of L and add 3 to
the rear of L, after which L = {2, 3}.

b. Otherwise, the former event happens first. We set p2 = l1 + r3−l1
2 and update

dmin = (r3 − l1)/2 (= |p1p2| = |p2p3|) and j∗ = 3 (i∗ is still 1). Finally, we update L

in the same way as the above second case. Namely, if l2 − l1 > l3−l1
2 , we add 3 to the

rear of L; otherwise, we remove 2 from L and add 3 to the rear.

One may verify that in any case the above obtained dmin is an optimal objective value
for the three intervals.

As another example, Fig. 2 illustrates the solution found by our algorithm on six intervals.

2.3 The Algorithm
We are ready to present the details of our algorithm. For any two indices i < j, let
P (i, j) = {pi, pi+1, . . . , pj}.

Initially we set p1 = l1, dmin =∞, i∗ = j∗ = 1, and L = {1}. Suppose interval i− 1 has
just been processed for some i > 1. Let the current critical list be L = {ks, ks+1, . . . kt} with
1 ≤ ks < ks+1 < · · · < kt ≤ i− 1, i.e., L consists of t− s + 1 sorted indices in [1, i− 1]. Our
algorithm maintains the following invariants.

1. The “temporary” location of pi−1 is known.
2. dmin = (rj∗ − li∗)/(j∗ − i∗) with 1 ≤ i∗ ≤ j∗ ≤ i− 1.
3. kt = i− 1.
4. pks

= lks
, i.e., pks

is at the left endpoint of the interval Iks
.

ISAAC 2016



52:6 Dispersing Points on Intervals

5. The locations of all points of P (1, ks) have been explicitly computed and finalized (i.e.,
they will never be changed in the later algorithm).

6. For each 1 ≤ j ≤ ks, pj is in Ij .
7. The distance of every pair of adjacent points of P (1, ks) is at least dmin.
8. For each j with ks + 1 ≤ j ≤ i− 1, pj is “implicitly” set to lks

+ dmin · (j−ks) and pj ∈ Ij .
In other words, the distance of every pair of adjacent points of P (ks, i − 1) is exactly
dmin.

9. The critical list L has the following priority property: If L has more than one element
(i.e., s < t), then for any h with s ≤ h ≤ t − 1, Inequality (1) holds for any j with
kh + 1 ≤ j ≤ i− 1 and j 6= kh+1.

lkh+1 − lkh

kh+1 − kh
>

lj − lkh

j − kh
. (1)

We give some intuition on what the priority property implies. Suppose we move all points
in P (ks + 1, i− 1) leftwards simultaneously such that the distances between all adjacent
pairs of points of P (ks, i− 1) keep the same (by the above eighth invariant, they are the
same before the moving). Then, Inequality (1) with h = s implies that pks+1 is the first
point of P (ks + 1, i− 1) that arrives at the left endpoint of its interval. Once pks+1 arrives
at the interval left endpoint, suppose we continue to move the points of P (ks+1 + 1, i− 1)
leftwards simultaneously such that the distances between all adjacent pairs of points of
P (ks+1, i− 1) are the same. Then, Inequality (1) with h = s + 1 makes sure that pks+2

is the first point of P (ks+1 + 1, i− 1) that arrives at the left endpoint of its interval.
Continuing the above can explain the inequality for h = s + 2, s + 3, . . . , t− 1.

The priority property further leads to the following observation.

I Observation 1. For any h with s ≤ h ≤ t− 2, the following holds:
lkh+1 − lkh

kh+1 − kh
>

lkh+2 − lkh+1

kh+2 − kh+1
.

Proof. Note that kh + 1 ≤ kh+1 < kh+2 ≤ i− 1. Let j = kh+2. By Inequality (1), we have

lkh+1 − lkh

kh+1 − kh
>

lkh+2 − lkh

kh+2 − kh
. (2)

Note that for any four positive numbers a, b, c, d such that a < c, b < d, and a
b > c

d , it
holds that a

b > c−a
d−b . Applying this to Inequality (2) will obtain the observation. J

I Remark. By Corollary 2, Invariants (2), (6), (7), and (8) together imply that dmin is the
optimal objective value for the sub-problem on the first i− 1 intervals.

One may verify that initially after I1 is processed, all invariants trivially hold (we finalize
p1 at l1). In the following we describe the general step of our algorithm to process the interval
Ii. We will also show that all algorithm invariants hold after Ii is processed.

Depending on whether pi−1 + dmin is to the left of Ii, in Ii, or to the right of Ii, there
are three cases.

2.3.1 The case pi−1 + dmin ≤ li

In this case, pi−1 + dmin is to the left of Ii. We set pi = li and finalize it. We do not change
dmin, i∗, or j∗. Further, for each j ∈ [ks+1, i−1], we explicitly compute pj = lks +dmin ·(j−ks)
and finalize it. Finally, we reset L = {i}. The proof of Lemma 3 is omitted.

I Lemma 3. In the case pi−1 + dmin ≤ li, all algorithm invariants hold after Ii is processed.
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2.3.2 The case li < pi−1 + dmin ≤ ri

In this case, pi−1 + dmin is in Ii. We set pi = pi−1 + dmin. We do not change dmin, i∗, or j∗.
We update the critical list L by the following rear-processing procedure (because the elements
of L are considered from the rear to the front).

If s = t, i.e., L only has one element, then we simply add i to the rear of L. Otherwise,
we first check whether the following inequality is true.

lkt − lkt−1

kt − kt−1
>

li − lkt−1

i− kt−1
. (3)

If it is true, then we add i to the end of L.
If it is not true, then we remove kt from L and decrease t by 1. Next, we continue to

check whether Inequality (3) (with the decreased t) is true and follow the same procedure
until either the inequality becomes true or s = t. In either case, we add i to the end of L.
Finally, we increase t by 1 to let kt refer to i.

This finishes the rear-processing procedure for updating L. The proof of Lemma 4 is
omitted.

I Lemma 4. In the case li < pi−1 + dmin ≤ ri, all algorithm invariants hold after Ii is
processed.

2.3.3 The case pi−1 + dmin > ri

In this case, pi−1 + dmin is to the right of Ii. We first set pi = ri. Then we perform the
following front-processing procedure (because it processes the elements of L from the front to
the rear).

If L has only one element (i.e., s = t), then we stop.
Otherwise, we check whether the following is true

lks+1 − lks

ks+1 − ks
>

ri − lks

i− ks
. (4)

If it is true, then we perform the following finalization step: for each j = ks + 1, ks +
2, . . . , ks+1, we explicitly compute pj = lks + lks+1−lks

ks+1−ks
· (j − ks) and finalize it. Further, we

remove ks from L and increase s by 1. Next, we continue the same procedure as above (with
the increased s), i.e., first check whether s = t, and if not, check whether Inequality (4) is
true. The front-processing procedure stops if either s = t (i.e., L only has one element) or
Inequality (4) is not true.

After the front-processing procedure, we update dmin = (ri − lks
)/(i− ks), i∗ = ks, and

j∗ = i. Finally, we update the critical list L using the rear-processing procedure, in the
same way as in the above second case where li < pi−1 + dmin ≤ ri. We also “implicitly” set
pj = lks

+ dmin · (j−ks) for each j ∈ [ks + 1, i] (this is only for the analysis and our algorithm
does not do so explicitly).

This finishes the processing of Ii. The proof of Lemma 5 is omitted.

I Lemma 5. In the case pi−1 + dmin > ri, all algorithm invariants hold after Ii is processed.

The above describes a general step of the algorithm for processing the interval Ii. In
addition, if i = n and ks < n, we also need to perform the following additional finalization
step: for each j ∈ [ks + 1, n], we explicitly compute pj = lks + dmin · (j − ks) and finalize it.
This finishes the algorithm. The pseudocode is given in Algorithm 1.
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52:8 Dispersing Points on Intervals

Algorithm 1: The algorithm for the line version of the problem
Input: n intervals I1, I2, . . . , In sorted from left to right on `

Output: n points p1, p2, . . . , pn with pi ∈ Ii for each 1 ≤ i ≤ n

1 p1 ← l1, i∗ ← 1, j∗ ← 1, dmin ←∞, L← {1};
2 for i← 2 to n do
3 if pi−1 + dmin ≤ li then
4 pi ← li, L← {i};
5 else
6 if li < pi−1 + dmin ≤ ri then
7 pi ← pi−1 + dmin;
8 else /* pi−1 + dmin > ri */
9 pi ← ri, ks ← the front element of L;

10 while |L| > 1 do /* the front-processing procedure */

11 if lks+1−lks

ks+1−ks
>

ri−lks

i−ks
then

12 for j ← ks + 1 to ks+1 do
13 pj ← lks + lks+1−lks

ks+1−ks
· (j − ks);

14 remove ks from L, ks ← the front element of L;
15 else
16 break;

17 i∗ ← ks, j∗ ← i, dmin ←
rj∗−li∗

j∗−i∗ ;

18 while |L| > 1 do /* the rear-processing procedure */
19 kt ← the rear element of L;
20 if lkt−lkt−1

kt−kt−1
>

li−lkt−1
i−kt−1

then break;
21 ;
22 remove kt from L;
23 add i to the rear of L;

24 ks ← the front element of L;
25 if ks < n then
26 for j ← ks + 1 to n do
27 pj ← lks

+ dmin · (j − ks);

2.4 The Correctness and the Time Analysis
Based on the algorithm invariants and Corollary 2, the following lemma proves the correctness
of the algorithm.

I Lemma 6. The algorithm correctly computes an optimal solution.

Proof. Suppose P = {p1, p2, . . . , pn} is the set of points computed by the algorithm. Let
dmin be the value and L = {ks, ks+1, . . . , kt} be the critical list after the algorithm finishes.

We first show that for each j ∈ [1, n], pj is in Ij . According to the sixth algorithm
invariant of L, for each j ∈ [1, ks], pj is in Ij . If ks = n, then we are done with the proof.
Otherwise, for each j ∈ [ks + 1, n], according to the additional finalization step after In is
processed, pj = lks

+ dmin · (j − ks), which is in Ij by the eighth algorithm invariant.
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Next we show that the distance of every pair of adjacent points of P is at least dmin. By
the seventh algorithm invariant, the distance of every pair of adjacent points of P (1, ks) is at
least dmin. If ks = n, then we are done with the proof. Otherwise, it is sufficient to show
that the distance of every pair of adjacent points of P (ks, n) is at least dmin, which is true
according to the additional finalization step after In is processed.

The above proves that P is a feasible solution with respect to dmin, i.e., all points of P

are in their corresponding intervals and the distance of every pair of adjacent points of P is
at least dmin.

To show that P is also an optimal solution, based on the second algorithm invariant, it
holds that dmin = rj∗−li∗

j∗−i∗ . By Corollary 2, dmin is an optimal objective value. Therefore, P

is an optimal solution. J

The running time of the algorithm is analyzed in the proof of Theorem 7.

I Theorem 7. Our algorithm computes an optimal solution of the line version of points
dispersion problem in O(n) time.

Proof. By Lemma 6, we only need to show that the running time of the algorithm is O(n).
To process an interval Ii, according to our algorithm, we only spend O(1) time in addition

to two possible procedures: a front-processing procedure and a rear-processing procedure.
Note that the front-processing procedure may contain several finalization steps. There may
also be an additional finalization step after In is processed. For the purpose of analyzing the
total running time of the algorithm, we exclude the finalization steps from the front-processing
procedures.

For processing Ii, the front-processing procedure (excluding the time of the finalization
steps) runs in O(k + 1) time where k is the number of elements removed from the front of
the critical list L. An easy observation is that any element can be removed from L at most
once in the entire algorithm. Hence, the total time of all front-processing procedures in the
entire algorithm is O(n).

Similarly, for processing Ii, the rear-processing procedure runs in O(k + 1) time where
k is the number of elements removed from the rear of L. Again, since any element can be
removed from L at most once in the entire algorithm, the total time of all rear-processing
procedures in the entire algorithm is O(n).

Clearly, each point is finalized exactly once in the entire algorithm. Hence, all finalization
steps in the entire algorithm together take O(n) time.

Therefore, the algorithm runs in O(n) time in total. J

3 The Cycle Version

In the cycle version, the intervals of I = {I1, I2, . . . , In} in their index order are sorted
cyclically on C. Recall that the intervals of I are pairwise disjoint.

For each i ∈ [1, n], let li and ri denote the two endpoints of Ii, respectively, such that if
we move from li to ri clockwise on C, we will always stay on Ii.

For any two points p and q on C, we use |−→pq| to denote the length of the arc of C from p

to q clockwise, and thus the distance of p and q on C is min{|−→pq|, |−→qp|}.
For each interval Ii ∈ I, we use |Ii| to denote its length; note that |Ii| = |

−→
liri|. We use

|C| to denote the total length of C.
Our goal is to find a point pi in Ii for each i ∈ [1, n] such that the minimum distance

between any pair of these points, i.e., min1≤i<j≤n |pipj |, is maximized.

ISAAC 2016
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Let P = {p1, p2, . . . , pn} and let dopt be the optimal objective value. It is obvious that
dopt ≤ |C|n . Again, for simplicity of discussion, we make a general position assumption that
no two endpoints of the intervals have the same location on C.

3.1 The Algorithm
The main idea is to convert the problem to a problem instance on a line and then apply our
line version algorithm. More specifically, we copy all intervals of I twice to a line ` and then
apply our line version algorithm on these 2n intervals. The line version algorithm will find
2n points in these intervals. We will show that a subset of n points in n consecutive intervals
correspond to an optimal solution for our original problem on C. The details are given below.

Let ` be the x-axis. For each 1 ≤ i ≤ n, we create an interval I ′i = [l′i, r′i] on ` with
l′i = |

−→
l1li| and r′i = l′i + |Ii|, which is actually a copy of Ii. In other words, we first put a

copy I ′1 of I1 at ` such that its left endpoint is at 0 and then we continuously copy other
intervals to ` in such a way that the pairwise distances of the intervals on ` are the same as
the corresponding clockwise distances of the intervals of I on C. The above only makes one
copy for each interval of I. Next, we make another copy for each interval of I in a similar
way: for each 1 ≤ i ≤ n, we create an interval I ′i+n = [l′i+n, r′i+n] on ` with l′i+n = l′i + |C|
and r′i+n = r′i + |C|. Let I ′ = {I ′1, I ′2, . . . , I ′2n}. Note that the intervals of I ′ in their index
order are sorted from left to right on `.

We apply our line version algorithm on the intervals of I ′. However, a subtle change
is that here we initially set dmin = |C|

n instead of dmin = ∞. The rest of the algorithm is
the same as before. We want to emphasize that this change on initializing dmin is necessary
to guarantee the correctness of our algorithm for the cycle version. A consequence of this
change is that after the algorithm finishes, if dmin is still equal to |C|n , then |C|n may not be the
optimal objective value for the above line version problem, but if dmin < |C|

n , then dmin must
be the optimal objective value. As will be clear later, this does not affect our final solution
for our original problem on the cycle C. Let P ′ = {p′1, . . . , p′2n} be the points computed by
the line version algorithm with p′i ∈ I ′i for each i ∈ [1, 2n].

Let k be the largest index in [1, n] such that p′k = l′k. Note that such an index k always
exists since p′1 = l′1. Due to that we initialize dmin = |C|

n in our line version algorithm, we
can prove the following lemma.

I Lemma 8. It holds that p′k+n = l′k+n.

Proof. We prove the lemma by contradiction. Assume to the contrary that p′k+n 6= l′k+n.
Since p′k+n ∈ I ′k+n, it must be that p′k+n > l′k+n. Let p′i be the rightmost point of P ′ to the
left of p′k+n such that p′i is at the left endpoint of its interval I ′i. Depending on whether
i ≤ n, there are two cases.

1. If i > n, then let j = i− n. Since i < k + n, j < k. We claim that |p′jp′k| < |p′j+np′n+k|.
Indeed, since p′j ≥ l′j and p′k = l′k, we have |p′jp′k| ≤ |l′j l′k|. Note that |l′j l′k| = |l′j+nl′k+n|. On
the other hand, since p′j+n = l′j+n and p′k+n > l′k+n, it holds that |p′j+np′k+n| > |l′j+nl′k+n|.
Therefore, the claim follows.
Let d be the value of dmin right before the algorithm processes I ′i. Since during the
execution of our line version algorithm dmin is monotonically decreasing, it holds that
|p′jp′k| ≥ d · (k − j). Further, by the definition of i, for any m ∈ [i + 1, k + n], p′m > l′m.
Thus, according to our line version algorithm, the distance of every adjacent pair of
points of p′i, p′i+1 . . . , p′k+n is at most d. Thus, |p′ip′k+n| ≤ d · (k + n− i). Since j = i− n,



S. Li and H. Wang 52:11

we have |p′j+np′k+n| ≤ d · (k − j). Hence, we obtain |p′jp′k| ≥ |p′j+np′k+n|. However, this
contradicts with our above claim.

2. If i ≤ n, then by the definition of k, we have i = k. Let d be the value of dmin right before
the algorithm processes I ′i. By the definition of i, the distance of every adjacent pair
of points of p′k, p′k+1 . . . , p′k+n is at most d. Hence, |p′kp′k+n| ≤ n · d. Since p′k = l′k and
p′n+k > l′n+k, we have |p′kp′n+k| > |l′kl′n+k| = |C|. Therefore, we obtain that n · d > |C|.
However, since we initially set dmin = |C|/n and the value dmin is monotonically decreasing
during the execution of the algorithm, it must hold that n · d ≤ |C|. We thus obtain
contradiction.

Therefore, it must hold that p′n+k = l′n+k. The lemma thus follows. J

We construct a solution set P for our cycle version problem by mapping the points
p′k, p′k+1, . . . , p′n+k−1 back to C. Specifically, for each i ∈ [k, n], we put pi at a point on C
with a distance p′i − l′i clockwise from li; for each i ∈ [1, k − 1], we put pi at a point on C
at a distance p′i+n − l′i+n clockwise from li. Clearly, pi is in Ii for each i ∈ [1, n]. Hence, P

is a “feasible” solution for our cycle version problem. Below we show that P is actually an
optimal solution.

Consider the value dmin returned by the line version algorithm after all intervals of I ′ are
processed. Since the distance of every pair of adjacent points of p′k, p′k+1, . . . , p′n+k is at least
dmin, p′k = l′k, p′n+k = l′n+k (by Lemma 8), and |l′kl′n+k| = |C|, by our way of constructing P ,
the distance of every pair of adjacent points of P on C is at least dmin.

Recall that dopt is the optimal object value of our cycle version problem. The following
lemma implies that P is an optimal solution.

I Lemma 9. dmin = dopt.

Proof. Since P is a feasible solution with respect to dmin, dmin ≤ dopt holds.
If dmin = |C|/n, since dopt ≤ |C|/n, we obtain dopt ≤ dmin. Therefore, dopt = dmin, which

leads to the lemma.
In the following, we assume dmin 6= |C|/n. Hence, dmin < |C|/n. According to our line

version algorithm, there must exist i∗ < j∗ such that dmin = r′j∗−l′i∗

j∗−i∗ . We assume there is no

i with i∗ < i < j∗ such that dmin = r′j∗−l′i
j∗−i since otherwise we could change i∗ to i. Since

dmin = r′j∗−l′i∗

j∗−i∗ , it is necessary that p′i∗ = l′i∗ and p′j∗ = r′j∗ . By the above assumption, there
is no i ∈ [i∗, j∗] such that p′i = l′i. Since p′k = l′k and p′k+n = l′k+n (by Lemma 8), one of the
following three cases must be true: j∗ < k, k ≤ i∗ < j∗ < n + k, or n + k ≤ i∗. In any case,
j∗ − i∗ < n. By our way of defining r′j∗ and l′i∗ , we have the following:

dmin =
r′j∗ − l′i∗

j∗ − i∗
=


|
−−−→
li∗rj∗ |/(j∗ − i∗), if j∗ ≤ n,

|
−−−−−→
li∗rj∗−n|/(j∗ − i∗), if i∗ ≤ n < j∗,

|
−−−−−−−→
li∗−nrj∗−n|/(j∗ − i∗) if n < i∗.

We claim that dopt ≤ dmin in all three cases: j∗ ≤ n, i∗ ≤ n < j∗, and n < i∗. In the
following we only prove the claim in the first case where j∗ ≤ n since the other two cases
can be proved analogously (e.g., by re-numbering the indices).

Our goal is to prove dopt ≤
|
−−−−→
li∗rj∗ |
j∗−i∗ . Consider any optimal solution in which the solution

set is P = {p1, p2, . . . , pn}. Consider the points pi∗ , pi∗+1, . . . , pj∗ , which are in the intervals
Ii∗ , Ii∗+1, . . . , Ij∗ . Clearly, |−−−−→pkpk+1| ≥ dopt for any k ∈ [i∗, j∗ − 1]. Therefore, we have
|−−−→pi∗pj∗ | ≥ dopt ·(j∗−i∗). Note that |−−−→pi∗pj∗ | ≤ |

−−−→
li∗rj∗ |. Consequently, we obtain dopt ≤

|
−−−−→
li∗rj∗ |
j∗−i∗ .

Since both dmin ≤ dopt and dopt ≤ dmin, dopt = dmin holds. The lemma thus follows. J
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The above shows that P is an optimal solution with dopt = dmin. The running time of
the algorithm is O(n) because the line version algorithm runs in O(n) time. As a summary,
we have the following theorem.
I Theorem 10. The cycle version of the points dispersion problem is solvable in O(n) time.

Acknowledgment. The authors would like to thank Minghui Jiang for suggesting the
problem to them.

References
1 C. Baur and S. P. Fekete. Approximation of geometric dispersion problems. Algorithmica,

30(3):451–470, 2001.
2 M. Benkert, J. Gudmundsson, C. Knauer, R. van Oostrum, and A. Wolff. A polynomial-

time approximation algorithm for a geometric dispersion problem. Int. J. Comput. Geo-
metry Appl., 19(3):267–288, 2009.

3 M. Chrobak, C. Dürr, W. Jawor, L. Kowalik, and M. Kurowski. A note on scheduling
equal-length jobs to maximize throughput. Journal of Scheduling, 9(1):71–73, 2006.

4 M. Chrobak, W. Jawor, J. Sgall, and T. Tichý. Online scheduling of equal-length jobs:
Randomization and restarts help. SIAM Journal of Computing, 36(6):1709–1728, 2007.

5 E. Erkut. The discrete p-dispersion problem. European Journal of Operational Research,
46:48–60, 1990.

6 E. Fernández, J. Kalcsics, and S. Nickel. The maximum dispersion problem. Omega,
41(4):721–730, 2013.

7 R. J. Fowler, M. S. Paterson, and S. L. Tanimoto. Optimal packing and covering in the
plane are NP-complete. Information Processing Letters, 12:133–137, 1981.

8 Z. Füredi. The densest packing of equal circles into a parallel strip. Discrete and Compu-
tational Geometry, 6:95–106, 1991.

9 M.R. Garey, D. S. Johnson, B.B. Simons, and R.E. Tarjan. Scheduling unit-time tasks
with arbitrary release times and deadlines. SIAM Journal of Computing, 10:256–269, 1981.

10 G. Jäger, A. Srivastav, and K. Wolf. Solving generalized maximum dispersion with linear
programming. In Proceedings of the 3rd International Conference on Algorithmic Aspects
in Information and Management, pages 1–10, 2007.

11 T. Lang and E.B. Fernández. Scheduling of unit-length independent tasks with execution
constraints. Information Processing Letters, 4:95–98, 1976.

12 C.D. Maranasa, C.A. Floudas, and P.M. Pardalosb. New results in the packing of equal
circles in a square. Discrete Mathematics, 142:287–293, 1995.

13 O.A. Prokopyev, N. Kong, and D. L. Martinez-Torres. The equitable dispersion problem.
European Journal of Operational Research, 197(1):59–67, 2009.

14 S. S. Ravi, D. J. Rosenkrantz, and G.K. Tayi. Facility dispersion problems: Heuristics and
special cases. Algorithms and Data Structures, 519:355–366, 1991.

15 S. S. Ravi, D. J. Rosenkrantz, and G.K. Tayi. Heuristic and special case algorithms for
dispersion problems. Operations Research, 42(2):299–310, 1994.

16 B. Simons. A fast algorithm for single processor scheduling. In Proceedings of the 19th
Annual Symposium on Foundations of Computer Science, pages 246–252, 1978. doi:10.
1109/SFCS.1978.4.

17 N. Vakhania. A study of single-machine scheduling problem to maximize throughput.
Journal of Scheduling, 16(4):395–403, 2013.

18 N. Vakhania and F. Werner. Minimizing maximum lateness of jobs with naturally bounded
job data on a single machine in polynomial time. Theor. Comp. Science, 501:72–81, 2013.

19 D.W. Wang and Y.-S. Kuo. A study on two geometric location problems. Information
Processing Letters, 28:281–286, 1988.

http://dx.doi.org/10.1109/SFCS.1978.4
http://dx.doi.org/10.1109/SFCS.1978.4


Optimal Nonpreemptive Scheduling in a Smart
Grid Model
Fu-Hong Liu1, Hsiang-Hsuan Liu2, and Prudence W. H. Wong3

1 Department of Computer Science, National Tsing Hua University, Taiwan
fhliu,hhliu@cs.nthu.edu.tw

2 Department of Computer Science, National Tsing Hua University, Taiwan; and
Department of Computer Science, University of Liverpool, UK
hhliu,pwong@liverpool.ac.uk

3 Department of Computer Science, University of Liverpool, UK
pwong@liverpool.ac.uk

Abstract
We study a scheduling problem arising in demand response management in smart grid. Con-
sumers send in power requests with a flexible feasible time interval during which their requests
can be served. The grid controller, upon receiving power requests, schedules each request within
the specified interval. The electricity cost is measured by a convex function of the load in each
timeslot. The objective is to schedule all requests with the minimum total electricity cost. Pre-
vious work has studied cases where jobs have unit power requirement and unit duration. We
extend the study to arbitrary power requirement and duration, which has been shown to be NP-
hard. We give the first online algorithm for the general problem, and prove that the worst case
competitive ratio is asymptotically optimal. We also prove that the problem is fixed parameter
tractable. Due to space limit, the missing proofs are presented in the full paper.

1998 ACM Subject Classification F. Theory of Computationm, F.2 Analysis of Algorithms and
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1 Introduction

We study a scheduling problem arising in “demand response management” in a smart
grid [15, 20, 28]. The electrical smart grid is one of the major challenges in the 21st century [25].
The smart grid [22] is a power grid system that makes power generation, distribution and
consumption more efficient through information and communication technologies. Peak
demand hours happen only for a short duration, yet makes existing electrical grid less
efficient. It has been noted in [7] that in the US power grid, 10% of all generation assets
and 25% of distribution infrastructure are required for less than 400 hours per year, roughly
5% of the time [25]. Demand response management1 attempts to overcome this problem by
shifting users’ demand to off-peak hours in order to reduce peak load.

It is demonstrated in [20] that demand response is of remarkable advantage to consumers,
utilities, and society. Effective demand load management brings down the cost of operating
the grid, energy generation and distribution [19]. It is not only advantageous to the supplier
but also to the consumers as well. It is common that electricity supplier charges according
to the generation cost. Therefore, it is to the consumers’ advantage to reduce electricity
consumption at high price and hence reduce the electricity bill [24].
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The operator and consumers communicate through smart metering devices [22]. A
consumer sends in a power request with the power requirement, required duration of service,
and the time interval that this request can be served (giving some flexibility). For example,
a consumer may want the dishwasher to operate for one hour during the periods from 8am
to 11am. The grid operator upon receiving requests has to schedule them in their respective
time intervals using the minimum energy cost. The load of the grid at each timeslot is the
sum of the power requirements of all requests allocated to that timeslot. The electricity cost
is modeled by a convex function on the load: we consider the cost to be the α-th power of
the load, where α > 1 is some constant. Typically, α is small, e.g., α = 2 [10].

Previous work. Koutsopoulos and Tassiulas [17] have formulated a similar problem to our
problem where the cost function is piecewise linear. They show that the problem is NP-hard,
and their proof can be adapted to show the NP-hardness of the general problem studied in
this paper [6]. Burcea et al. [6] gave polynomial time optimal algorithms for the case of unit
height (cf. unit power requirement) and unit width (cf. duration of request). Feng et al. [12]
have claimed that a simple greedy algorithm is 2-competitive for the unit case and α = 2.
However, in our full paper [18], we show a counter example that the greedy algorithm is at
least 3-competitive. This implies that it is still an open question to derive online algorithms
for the problem. Salinas et al. [24] considered a multi-objective problem to minimize energy
consumption cost and maximize some utility. A closely related problem is to manage the load
by changing the price of electricity over time [21, 11]. Reviews of smart grid can be found
in [15, 20, 28]. The combinatorial problem in this paper has analogy to the load balancing
problem [3] and machine minimization problem [8, 9, 23] but the main differences are the
objective being maximum load and jobs are unit height [8, 9, 23]. Minimizing maximum load
has also been looked at in the context of smart grid [1, 27], some of which further consider
allowing reshaping of the jobs [1]. As to be discussed in the full paper, our problem is more
difficult than minimizing the maximum load. Our problem also has resemblance to the
dynamic speed scaling problem [2, 26, 5] and our algorithm has employed some techniques
there.

Our contribution. We propose the first online algorithm for the general Grid problem with
competitive ratio polylogarithm in the max-min ratio of the duration of jobs (Section 4);
and show that the competitive ratio is asymptotically optimal. The algorithm is based on
an O(1)-competitive online algorithm for jobs with uniform duration (Section 3). We also
propose O(1)-competitive online algorithms for jobs with uniform power requirement and
agreeable deadlines (Section 5). Table 1 gives a summary. In addition, we show that the Grid
problem is fixed parameter tractable by proposing the first fixed parameter exact algorithms
for the problem; and derive lower bounds on the running time (Section 6). Interestingly,
both our online algorithm and exact algorithms depend on the variation of the job widths
but not the variation of the job heights.

Our online algorithms are based on identifying a relationship with the dynamic speed
(voltage) scaling (DVS) problem [26]. The main challenge, even when jobs have uniform
width or uniform height, is that in time intervals where the “workload” is low, the optimal
DVS schedule may have much lower cost than the optimal Grid schedule because jobs in DVS
schedules can effectively be stretched as flat as possible while jobs in Grid schedules have rigid
duration and cannot be stretched. In such case, it is insufficient to simply compare with the
optimal DVS schedule. Therefore, our analysis is divided into two parts: for high workload
intervals, we compare with the optimal DVS schedule; and for low workload intervals, we
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Table 1 Summary of online algorithms for different input instances.

Width Height Competitive Ratio

Uniform Arbitrary O(1)-competitive [Section 3]
Arbitrary Arbitrary Θ(logα(wmax

wmin
))-competitive [Section 4]

Arbitrary Uniform O(1)-competitive [input with agreeable deadlines] [Section 5]

directly compare with the optimal Grid schedule via a lower bound on the total workload
over these intervals (Lemmas 2 and 11). For jobs with arbitrary width, we adopt the natural
approach of classification based on job width. We then align the “feasible interval” of each
job in a more uniform way so that we can use the results on uniform width (Lemma 6).

In designing exact algorithms we use interval graphs to represent the jobs and the
important notion maximal cliques to partition the time horizon into disjoint windows. Such
partition usually leads to optimal substructures; however, non-preemption makes it trickier
and requires a smart way to handle jobs spanning multiple windows. We describe how to
handle such jobs without adding a lot of overhead. We remark that our approach can solve
other problems like minimizing peak load in Grid and the machine minimization problem.

2 Definitions and preliminaries

The input. The time is labeled from 0 to τ and we consider events (release time, deadlines)
occurring at integral time. We call the unit time [t, t+ 1) timeslot t. We denote by J a set
of input jobs in which each job J comes with release time r(J), deadline d(J), width w(J)
representing the duration required by J , and height h(J) representing the power required
by J . We assume r(J), d(J), w(J), and h(J) are integers. The feasible interval, denoted by
I(J), is defined as the interval [r(J), d(J)) and we say that J is available during I(J).

In Section 4, we consider an algorithm that classifies jobs according to their widths. To
ease discussion, we let wmax and wmin be the maximum and minimum width over all jobs,
respectively. We further define the max-min ratio of width, denoted by K, to be K = wmax

wmin
.

Without loss of generality, we assume that wmin = 1. We say that a job J is in class Cp
if and only if 2p−1 < w(J) ≤ 2p for any 0 ≤ p ≤ dlogKe.

Feasible schedule. A feasible schedule S assigns for each job J a start time st(S, J) ∈ Z
meaning that J runs during [st(S, J), et(S, J)), where the end time et(S, J) = st(S, J)+w(J).
Note that this means preemption is not allowed. The load of S at time t, denoted by
`(S, t) is the sum of the height (power request) of all jobs running at t, i.e., `(S, t) =∑
J:t∈[st(S,J),et(S,J)) h(J). We drop S and use `(t) when the context is clear. We use A(J )

to denote the schedule of an algorithm A on J . We denote by O the optimal algorithm.
The cost of a schedule S is the sum of the α-th power of the load over all time, for

a constant α > 1, i.e., cost(S) =
∑
t(`(S, t))α. For a set of timeslots I (not necessarily

contiguous), we denote by cost(S, I) =
∑
t∈I(`(S, t))α. The objective is to find a feasible

schedule with minimum cost. We call this the Grid problem.

Online algorithms. We consider online algorithms, where the job information is only
revealed at the time the job is released; the algorithm has to decide which jobs to run at the
current time without future information and decisions made cannot be changed later. Let A
be an online algorithm. We say that A is c-competitive if for all input job sets J , we have
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cost(A(J )) ≤ c · cost(O(J )). In particular, we consider non-preemptive algorithms where a
job cannot be preempted to resume/restart later.

Special input instances. A job J is said to be unit-width (resp. unit-height) if w(J) = 1
(resp. h(J) = 1). A job set is said to be uniform-width (resp. uniform-height) if the width
(resp. height) of all jobs are the same. A job set is said to have agreeable deadlines if for any
two jobs J1 and J2, r(J1) ≤ r(J2) implies d(J1) ≤ d(J2).

Relating to the speed scaling problem. The Grid problem resembles the dynamic speed
scaling (DVS) problem [26] and we are going to refer to three DVS algorithms, namely, the
optimal YDS algorithm, the online algorithms called BKP [4] and AVR [26], which are 8eα-
and (2α)α/2-competitive, respectively. In the DVS problem, jobs come with release time
r(J), deadline d(J), and a work requirement p(J). A processor can run at speed s ∈ [0,∞)
and consumes energy in a rate of sα, for some α > 1. The objective is to complete all jobs by
their deadlines using the minimum total energy. The main differences of the DVS problem to
the Grid problem include (i) jobs in DVS can be preempted while preemption is not allowed
in the Grid problem; (ii) as processor speed in DVS can scale, a job can be executed for
varying time duration as long as the total work is completed while in Grid a job must be
executed for a fixed duration given as input; (iii) the work requirement p(J) of a job J in
DVS can be seen as w(J)× h(J) for the corresponding job in Grid.

Let OD and OG be the optimal algorithm for the DVS and Grid problems, respectively.
Given a job set JG for Grid, we can convert it into a job set JD for DVS by keeping the
release time and deadline for each job and setting the work requirement of a job in JD to
the product of the width and height of the corresponding job in JG.

I Observation 1. Given a schedule SG for JG, we can convert SG into a feasible schedule SD
for JD such that cost(SD(JD)) ≤ cost(SG(JG)); implying cost(OD(JD)) ≤ cost(OG(JG)).

Note that it is not always possible to convert a feasible DVS schedule to a feasible Grid
schedule. The observation does not immediately solve the Grid problem but as to be shown
it provides a way to analyze algorithms for Grid.

3 Online algorithm for uniform width jobs

To handle jobs of arbitrary width and height, we first study the case when jobs have uniform
width (all jobs have the same width w ≥ 1). The proposed algorithm UV (Section 3.2) is
based on a further restricted case of unit width, i.e., w = 1 (Section 3.1).

3.1 Unit width and arbitrary height
We present an online algorithm V which makes reference to an arbitrary feasible online
algorithm for the DVS problem, denoted by R. We require that the speed of R remains
the same during any integral timeslot. When jobs have integral release times and deadlines,
many known DVS algorithms satisfy this criteria, including YDS, BKP, and AVR.

Recall in Section 2 how an input for the Grid problem is converted to an input for the
DVS problem. We simulate a copy of R on the converted input and denote the speed used by
R at t as `(R, t). Our algorithm makes reference to `(R, t) but not the jobs run by R at t.

Algorithm V. For each timeslot t, schedule jobs to start at t until `(V, t) is at least `(R, t)
or until all available jobs have been scheduled. Jobs are chosen in an EDF manner.
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Analysis. Since V makes decision at integral time and jobs have unit width, each job is
completed before any further scheduling decision is made. In other words, V is non-preemptive.
To analyze the performance of V, we note that V gives a feasible schedule (Lemma 2 (i)),
and then analyze its competitive ratio (Theorem 3).

Let hmax(V, t) be the maximum height of jobs scheduled at t by V . We first classify each
timeslot t into two types: (i) hmax(V, t) < `(R, t), and (ii) hmax(V, t) ≥ `(R, t). We denote
by I1 and I2 the union of all timeslots of Type (i) and (ii), respectively. Notice that I1
and I2 can be empty and the union of I1 and I2 covers the entire time line. Lemma 2 (ii)
and (iii) bound the cost of V in each type of timeslots. By Lemma 2 and Observation 1, we
obtain the competitive ratio of V in Theorem 3.

I Lemma 2. (i) V gives a feasible schedule; (ii) cost(V, I1) ≤ 2α ·cost(R); (iii) cost(V, I2) ≤
2α · cost(O); and (iv) cost(V) = cost(V, I1) + cost(V, I2).

I Theorem 3. Algorithm V is 2α · (R+ 1)-competitive, where R is the competitive ratio of
the reference DVS algorithm R. V is 2α · (8 · eα + 1)-competitive and 2α · 2-approximate when
the algorithm BKP and YDS are referenced, respectively.

3.2 Uniform width and arbitrary height
The idea of handling uniform width jobs is to treat them as if they were unit width, however,
this would mean that jobs may have non-integral release times or deadlines. To remedy this,
we define a procedure AlignFI to align the feasible intervals (precisely, release times and
deadlines) to the new time unit.

Let J be a set of uniform width jobs each of width w. A job J is said to be tight if
|I(J)| ≤ 2w; otherwise, it is loose. Let JT and JL be the disjoint subsets of tight and
loose jobs of J , respectively. We design different strategies for tight and loose jobs. We
observe that tight jobs can be handled easily by starting them at their release times. For
any loose job, we modify it via Procedure AlignFI such that its release time and deadline
is an integral multiple of w. With this alternation, we can treat the jobs as unit width and
make scheduling decisions at time multiple of w.

Procedure AlignFI. Given a loose job set JL in which w(J) = w and |I(J)| > 2 · w
∀J ∈ JL. We define the procedure AlignFI to transform each loose job J ∈ JL into a job
J ′ with release time and deadline “aligned” as follows: r(J ′)← mini≥0{i · w | i · w ≥ r(J)};
and d(J ′)← maxi≥0{i · w | i · w ≤ d(J)}. We denote the resulting job set by J ′.

After AlignFI, the release time and deadline of each loose job are aligned to timeslot
i1 · w and i2 · w for some integers i1 < i2. Hence, the job set J ′ can be treated as job set
with unit width, where each unit has duration w instead of 1. We further observe that a
feasible schedule of J ′ is also a feasible schedule of JL.

Online algorithm UV. The algorithm takes a job set J with uniform width w as input
and schedules the jobs in J as follows. Let JT be the set of tight jobs in J and JL be the
set of loose jobs in J . Note that the decisions of UV can be made online.
1. For any tight job J ∈ JT, schedule J to start at r(J).
2. Loose jobs in JL are converted to J ′ by AlignFI. For J ′, we run Algorithm V in

Section 3.1 with BKP. Jobs are chosen in an earliest deadline first (EDF) manner.

The “inflexibility” of tight jobs guarantees that the simple strategy (Step 1 of UV) gives
good enough ratio. That is, since tight jobs have short feasible intervals, even the optimal
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schedule has to have high cost if our strategy has high load. On the other hand, AlignFI
only increases the competitive factor of loose jobs by a constant factor because the feasible
interval duration is only decreased by at most two thirds. The overall performance is:
I Theorem 4. cost(UV(J )) ≤ 12α · (8eα + 1) · cost(O(J )).

4 Online algorithm for the general case

In this section, we present an algorithm G for jobs with arbitrary width and height. We
first transform job set J to a “nice” job set J ∗ (to be defined) and show that such a
transformation only increases the cost modestly. Furthermore, we show that for any nice
job set J ∗, we can bound cost(G(J ∗)) by cost(O(J ∗)) and in turn by cost(O(J )). Then we
can establish the competitive ratio of G.

4.1 Upper bound
A job J is said to be a nice job if w(J) = 2p, for some non-negative integer p and a job set
J ∗ is said to be a nice job set if all its jobs are nice. Note that the nice job J is in class Cp.

Procedure Convert. Given a job set J , we define the procedure Convert to transform
each job J ∈ J into a nice job J∗. We denote the resulting nice job set by J ∗ and the subset
in Cp by J ∗p . Suppose J is in class Cp. We modify it as follows: w(J∗)← 2p; r(J∗)← r(J);
and d(J∗)← r(J∗) + max{d(J)− r(J), 2p}.

We then define two procedures that transform schedules related to nice job sets.

Transformation RelaxSch. RelaxSch transforms a schedule S for a job set J into a
schedule S∗ for the corresponding nice job set J ∗ by moving the start and end time of every job
J such that st(S∗, J∗) = min{d(J∗)− w(J∗), st(S, J)}; and et(S∗, J∗) = st(S∗, J∗) + w(J∗).
I Observation 5. Consider any schedule S for J and the schedule S∗ constructed by
RelaxSch for the corresponding J ∗. We have [st(S∗, J∗), et(S∗, J∗)] ⊆ [r(J∗), d(J∗)]; in
other words, S∗ is a feasible schedule for J ∗.

Transformation ShrinkSch. ShrinkSch converts a schedule S∗ for a nice job set J ∗
to a schedule S for the corresponding J . We set st(S, J) ← st(S∗, J∗); and et(S, J) ←
st(S, J) + w(J), therefore, et(S, J) ≤ et(S∗, J∗). Let S∗p be the partial schedule for class Cp.

Online algorithm G. When a job J is released, it is converted to J∗ by Convert and
classified into one of the classes Cp. Jobs in the same class after Convert (being a uniform-
width job set) are scheduled by UV independently of other classes. We then modify the
execution time of J∗ in UV to the execution time of J in G by ShrinkSch. Note that all
these procedures can be done in an online fashion.

Using the results in Sections 3 and 4.1, we can compare the cost of G(Jp) with O(J ∗p )
and O(J ∗p ) with O(J ) for each class Cp. The most tricky part is in Lemma 6 (i). Intuitively,
one can show that for each class, the load of O(J ∗p ) at any time is bounded above by that of
O(Jp) at the current time and 2p−1 − 1 timeslots before and after the current time. This
allows us to bound cost(O(J ∗p )) by 3α times of cost(O(Jp)) (Lemma 6 (ii)).
I Lemma 6. Consider any class Cp. (i) At any time t, `(S∗p , t) ≤ `(Sp, t) + `(Sp, t− (2p−1−
1))+`(Sp, t+(2p−1−1)). (ii) cost(O(J ∗p )) ≤ 3α ·cost(O(Jp)); (iii) cost(O(Jp)) ≤ cost(O(J )).
I Theorem 7. For any job set J , cost(G(J )) ≤ (36dlog wmax

wmin
e)α · (8eα + 1) · cost(O(J )).
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4.2 Lower bound
We show a lower bound of competitive ratio for Grid problem with unit height and arbitrary
width by designing an adversary for the problem. This lower bound is immediately a lower
bound for the general case of Grid problem. Note that the lower bound in [23] may look
similar but it does not work in our case since that adversary only guarantees a high peak
load at a particular timeslot which is not sufficient for the total cost measurement.

Adversary Λ and job instance J . Given an online algorithm A, a constant α > 1 and a
large number x, adversary Λ outputs a set of jobs J with bαc+ 1 jobs. Let Ji be the ith
job of J . The adversary first computes a width for each job before running algorithm A. It
sets w(Jbαc) = x, w(Jbαc+1) = x− 1, and w(Ji) = 3w(Ji+1) + 1 for 1 ≤ i ≤ bαc − 1. Then
adversary Λ computes a release time and deadline for each job through a interaction with
algorithm A. For the first job J1, adversary Λ chooses any release time and deadline such
that d(J1)− r(J1) ≥ 3w(J1). For the ith job Ji ∈ J for 2 ≤ i ≤ bαc+ 1, adversary Λ sets
r(Ji) = st(A, Ji−1) + 1 and d(Ji) = et(A, Ji−1). This limits algorithm A to fewer choices of
start times for scheduling a new job. A job can only be scheduled in the execution interval of
the previous job by algorithm A. On the other hand, no two jobs have the same release time.
Algorithm A shall schedule the jobs accordingly from J1 to Jbαc+1 and one job at a time.

I Lemma 8. cost(O(J )) ≤ x · 3bαc.

I Theorem 9. For any deterministic online algorithm A for Grid problem with unit height and
arbitrary width, adversary Λ constructs an instance J such that cost(A(J ))

cost(O(J )) ≥
(

1
3 log wmax

wmin

)α
.

5 Online algorithm for uniform height jobs

We consider (i) jobs with uniform-height h and unit-width and (ii) jobs with uniform-height
h, arbitrary width and agreeable deadlines. To ease the discussion, we define the density of
J , denoted by den(J), to be h(J)∗w(J)

d(J)−r(J) . Roughly speaking, the density signifies the average
load required by the job over its feasible interval. We then define the “average” load at any
time t as avg(t) =

∑
J:t∈I(J) den(J).

Basically, at any time t, AVR runs the processor at a speed which is the sum of the
densities of jobs that are available at t. By Observation 1, we have the following corollary.

I Corollary 10. For any input JG and the corresponding input JD, cost(AVR(JD)) ≤
(2α)α

2 · cost(OG).

Main Ideas

The main idea is to make reference to the online algorithm AVR and consider two types
of intervals, I>h where the average load is higher than h and I≤h where the average load
is at most h. For the former, we show that we can base on the competitive ratio of AVR
directly; for the latter, our load could be much higher than that of AVR and in such case,
we compare directly to the optimal algorithm. Combining the two cases, we have Lemma 11,
which holds for any job set. We show how we can use this lemma to obtain algorithms for
the special cases. Notice that the number d avg(t)

h e is the minimum number of jobs needed to
make the load at t at least avg(t).

I Lemma 11. Suppose we have an algorithm A for any job set J such that (i) `(A, t) ≤
c · davg(t)e for all t ∈ I>h, and (ii) `(A, t) ≤ c′ for all t ∈ I≤h. Then we have cost(A(J )) ≤
( (4cα)α

2 + c′α) · cost(O(J )).
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Uniform-height and unit-width

We consider jobs with uniform-height and unit-width, i.e., w(J) = 1 and h(J) = h ∀J . Note
that such case is a subcase discussed in Section 3.1. Here we illustrate a different approach
using the ideas above and describe the algorithm UU for this case. The competitive ratio of
UU is better than that of Algorithm V in Section 3.1 when α < 3.22.

Algorithm UU . At any time t, choose d avg(t)
h e jobs according to the EDF rule and schedule

them to start at t. If there are fewer jobs available, schedule all available jobs.

I Theorem 12. Algorithm UU gives feasible schedules and it is ( (4α)α
2 + 1)-competitive.

Uniform-height, arbitrary width and agreeable deadlines

We then consider jobs with agreeable deadlines. We first note that simply scheduling d avg(t)
h e

number of jobs may not return a feasible schedule.
To schedule these jobs, we first observe that for a set of jobs with total densities at most h,

it is feasible to schedule them such that the load at any time is at most h. Roughly speaking,
we consider jobs in the order of release, and hence in EDF manner since the jobs have
agreeable deadlines. We keep the current ending time of all jobs that have been considered.
As a new job is released, if its release time is earlier than the current ending time, we set its
start time to the current ending time (and increase the current ending time by the width of
the new job); otherwise, we set its start time to be its release time.

Using this observation, we then partition the jobs into “queues” each of which has sum of
densities at most h. Each queue Qi is scheduled independently and the resulting schedule
is to “stack up” all these schedules. The queues are formed in a Next-Fit manner: (i) the
current queue Qq is kept “open” and a newly arrived job is added to the current queue if
including it makes the total densities stays at most 1; (ii) otherwise, the current queue is
“closed” and a new queue Qq+1 is created as open.

Algorithm AD. The algorithm consists of the following components: InsertQueue, Set-
StartTime and ScheduleQueue.
InsertQueue: We keep a counter q for the number of queues created. When a job J arrives,

if den(J) +
∑
J′∈Qq den(J ′) ≤ h, then job J is added to Qq; otherwise, job J is added to

a new queue Qq+1 and we set q ← q + 1.
SetStartTime: For the current queue, we keep a current ending time E, initially set to 0.

When a new job J is added to the queue, if r(J) ≤ E, we set st(J)← E; otherwise, we
set st(J)← r(J). We then update E to st(J) + w(J).

ScheduleQueue: At any time t, schedule all jobs in all queues with start time set at t.

I Lemma 13. (i) `(AD, t) ≤ 3 · h · davg(t)
h e for t ∈ I>h; (ii) `(AD, t) ≤ h for t ∈ I≤h.

By Lemmas 11 and 13, we have Theorem 14 by setting c = 3 and c′ = 1.

I Theorem 14. For jobs with uniform height, arbitrary width and agreeable deadlines, AD
is ( (12α)α

2 + 1)-competitive. For jobs with uniform height, arbitrary width and same release
time or same deadline, the competitive ratio can be improved to ( (8α)α

2 + 1) by using first-fit
instead of next-fit for InsertQueue.
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6 Exact Algorithms

We first present some key notions. An algorithm with parameters p1, p2, . . . is said to be a
fixed parameter algorithm if it runs in f(p1, p2, . . .) ·O(g(N)) time for any function f and any
polynomial function g, where N is the size of input. A problem is fixed-parameter tractable
(FPT) if it can be solved by a fixed parameter algorithm. In this section, we show that the
general case of the Grid problem is FPT with respect to a few parameters, and derive lower
bounds of it.

We design two fixed parameter algorithms that are based on dynamic programming.
Roughly speaking, we divide the timeline into k contiguous windows in a specific way, where
each window Wi represents a time interval [bi, bi+1) for 1 ≤ i ≤ k. The algorithm visits all
windows accordingly from left to right and maintains a candidate set of schedules for the
visited windows that no optimal solution is deleted from the set. The parameters of the
algorithms emerge if we interpret the input as an “interval graph”.

Interval graph. A graph G = (V,E) is an interval graph if it captures the intersection
relation for some set of intervals on the real line. Formally, for each v ∈ V , we can associate v
to an interval Iv such that (u, v) is in E if and only if Iu∩Iv 6= ∅. It has been shown in [13, 14]
that an interval graph has a “consecutive clique arrangement”, i.e., its maximal cliques can be
linearly ordered in a way that for every vertex v in the graph, the maximal cliques containing
v occur consecutively in the linear order. For any instance of the Grid problem, we can
transform it into an interval graph G = (V,E): For each job J with interval I(J), we create
a vertex v(J) ∈ V and an edge is added between v(J) and v(J ′) if and only if I(J) intersects
I(J ′). We can then obtain a set of maximal cliques in linear order, C1, C2, · · · , Ck, by
sweeping a vertical line from left to right, where k denotes the number of maximal cliques
thus obtained. Our parameter, the maximum number of overlapped feasible intervals, is the
maximum size of these maximal cliques.

Boundaries and windows. Based on the maximal cliques described above, we define some
“windows” W1, W2, · · · , Wk with “boundaries” b1, b2, · · · , bk+1 as follows. We first give
the definition of boundaries for the first algorithm. This definition will be generalized
in Section 6.1 for the second algorithm. For 1 ≤ i ≤ k, the i-th boundary bi is defined
as the earliest release time of jobs in clique Ci but not in cliques before Ci, precisely,
bi = min{t | t = r(J) and J ∈ Ci \ (∪i−1

s=1Cs)}. The rightmost boundary bk+1 is defined as
the latest deadline among all jobs. With the boundaries, we partition the timeslots into
contiguous intervals called windows. Figure 1 is an example of a set of jobs, its corresponding
interval graph and maximal cliques.

6.1 Fixed parameter algorithms
Framework of the algorithms

We propose two exact algorithms, both run in k stages one for each of the k windows. We
maintain a table Tleft storing all “valid configurations” of jobs in all windows that have been
considered so far. A row in the table consists of the configurations of all jobs. In addition, for
each window Wi, we compute a table Trighti to store all possible configurations of start and
end time of jobs available in Wi. The configurations in Trighti is then “concatenated” to some
configurations in Tleft that are “compatible” with each other. These merged configurations
will be filtered to remove non-optimal ones. The remaining configurations become the new
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Figure 1 (Left) A set of jobs, where the horizontal line segments are the feasible time intervals of
jobs and the vertical lines are boundaries of windows. (Right) An interval graph of the corresponding
job set. (Bottom) A set of all the maximal cliques in the interval graph.

Tleft for the next window. We denote by Wleft the union of the windows corresponding to
Tleft. We drop the subscript i in Trighti when the context is clear.

Configurations, validity, compatibility, concatenation. A configuration of job J in win-
dow Wi is an execution segment [sti(J), eti(J)). It is valid if [sti(J), eti(J)) ⊆ [r(J), d(J)).
The cost of a windowWi with respect to some configurations is

∑
t∈Wi

(
∑
J:t∈[sti(J),eti(J)) h(J))α.

Two configurations of the same job J are compatible if the union of the two configurations
is a valid and contiguous execution segment with length exactly w(J). To concatenate two
configurations from two different windows, we make a union of the two configurations, and
the corresponding cost is to add the costs of the two windows.

An algorithm with three parameters

Algorithm E. We first transform the input job set J to an interval graph, and obtain the
maximal cliques Ci for 1 ≤ i ≤ k and the corresponding windows Wi. We start with Tleft
containing the only configuration, which sets all the jobs to be not yet executed. Then we visit
the windows from left to right with three procedures: ListConfigurations, ConcatenateTables
and FilterTable.
ListConfigurations: For window Wi and jobs in Ci, we construct Tright storing all config-

urations of J ∈ Ci with their cost in a brute force manner. We also delete the invalid
configurations.

ConcatenateTables: We then concatenate compatible configurations in Tleft and Tright. The
resulting table is the new Tleft. We also delete the invalid configurations in the new Tleft.

FilterTable: After concatenation, we filter non-optimal configurations. We leave the config-
uration with the lowest cost among the configurations with the same execution segment.

After processing all the windows, the configuration with the lowest cost in the final Tleft
is returned as the solution. Note that a configuration is deleted only when it is invalid or
its cost is higher than another configuration with the same execution segment for each job.
Thus the algorithm outputs an optimal solution.

Let n to be the number of jobs, wmax to be the maximum width of jobs, m to be the
maximum size of cliques, and Wmax to be the maximum length of windows. Through a detail
analysis, the running time of the three procedures depend mainly on wmax, m and Wmax. So
we have:
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I Theorem 15. Algorithm E computes an optimal solution in f(wmax,m,Wmax) ·O(n2) time
for some function f , i.e., the problem is FPT with respect to wmax, m, and Wmax.

An algorithm with two parameters

Algorithm E+. This algorithm is similar to algorithm E except the definitions of boundaries
and ListConfigurations. Given a set of jobs J , the algorithm uses the set of boundaries
{r(J) | J ∈ J } ∪ {d(J) | J ∈ J } to construct the windows and obtain the corresponding
cliques. For ListConfigurations, the number of timeslots we are considering for each window
is at most a constant times the total width of all jobs in the window, i.e., when the window
length is relatively larger than the total width of all jobs in the window, we consider much
fewer than the window length. Let n to be the number of jobs, wmax to be the maximum
width of jobs, and m to be the maximum size of cliques. We observed that the running time
of the three procedures depend only on wmax and m. So we have:

I Theorem 16. Algorithm E+ computes an optimal solution in f(wmax,m) ·O(n2) time for
some function f . Hence, the Grid problem is FPT with respect to wmax and m.

6.2 Exact algorithm without parameter
For the case with unit width and arbitrary height of Grid problem, we can use Algorithm E to
design an exact algorithm that its time complexity is only measured in the size of the input.
In the case with unit width and arbitrary height, one may observe that the functionalities of
the components of Algorithm E are not affected by the length of the windows. Without loss
of generality, we assume that the number of timeslots τ is even. And we enforce all windows
to have length 2. By this setting, the new algorithm runs in O((τ/2) · 42n ·n) time where n is
the number of jobs. Note that the input size N of the problem is 3n log τ + n log hmax where
hmax is the maximum height over all jobs. Since log τ = O(N), the running time becomes
2O(N). Thus we have the following theorem.

I Theorem 17. There is an exact algorithm running in 2O(N) time for the Grid problem
with unit width and arbitrary height where N is the length of the input.

Jansen et al. [16] derived several lower bounds for scheduling and packing problems
which can be used to develop lower bounds for our problem. Their lower bounds assume
Exponential Time Hypothesis (ETH) holds, which conjectures that there is a positive real
ε such that 3-Sat cannot be decided in time 2εnNO(1) where n is the number of variables
in the formula and N is the length of the input. A lower bound for other problems can be
shown by making use of strong reductions, i.e. reductions that increase the parameter at
most linearly. Through a sequence of strong reductions, they obtain two lower bounds for
Partition, 2o(n)NO(1) and 2o(

√
N) where n is the cardinality of the given set and N is the

length of the input. We design a strong reduction from Partition to the decision version of
Grid problem with unit width and arbitrary height. For each integer s in an integer set S,
we convert it to a job J with r(J) = 0, d(J) = 2, w(J) = 1 and h(J) = 2s. We claim that S
is a partition if and only if the set of jobs can be scheduled with cost at most 2(

∑
s∈S s)α.

By setting the length of the input or the number of jobs as the parameter, we have:

I Theorem 18. There is a lower bound of 2o(
√
N) and a lower bound of 2o(n)NO(1) on the

running time for the Grid problem unless ETH fails, where n is the number of jobs and N is
the length of the input.
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7 Conclusion

We develop the first online algorithm with polylogarithm-competitive ratio and the first
FPT algorithms for non-preemptive smart grid scheduling problem for the general case. Our
algorithm in Section 4 relies on a classification into powers of 2. In the full paper, we show
that one can classify into powers of 1 + λ, for λ > 0, and the competitive ratio only changes
by a constant factor. We also discuss in the full paper why we base on the preemptive instead
of non-preemptive DVS problem.

There are many future directions: different cost functions to capture varying electricity
cost over time or measuring the maximum cost instead of the total [27]; jobs with varying
power requests during its execution (it is a constant value in this paper); other objectives
like response time. A preliminary result is that we can extend our online algorithm to the
case where a job may have varying power requests during its execution, in other words, a
job can be viewed as having rectilinear shape instead of being rectangular. In such case,
the competitive ratio is increased by a factor which measures the maximum height to the
minimum height ratio of a job (see the full paper for more details).
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Abstract
In this paper, we consider the distributed version of Support Vector Machine (SVM) under
the coordinator model, where all input data (i.e., points in Rd space) of SVM are arbitrarily
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to explicitly remove the influence of outliers. Our algorithm is based on a deterministic distributed
top t selection algorithm with communication complexity of O(k log (t)) in the coordinator model.
Experimental results on benchmark datasets confirm the theoretical guarantees of our algorithms.
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rate. For instance, one type of extensively studied algorithms in recent years are the family
of incremental construction algorithms [9, 3].

Such algorithms often have good performance in practice and some other nice features
related to robustness and decentralization; but they generally do not have theoretical
guarantee on the communication complexity, and some of them even have no quality guarantee
on their solutions. Another type of popular algorithms are those which parallelize existing
centralized algorithms ([12, 14, 4]). These algorithms typically focus on enhancing the ability
of dealing with extremely large size data sets, but in general have no quality guarantee on
communication complexity. There are also another family of algorithms called distributed
stochastic gradient descent algorithms [20]; the main issue of such algorithms is that their
running time (or number of iteration) is mostly sub-optimal, and they do not have a guarantee
on communication cost. Very recently, there is an interesting result [2] which presents a
similar lower bound on communication cost. However their lower bound applies only to those
coreset-based algorithms, not the general algorithms, whereas the lower bound result in this
paper is applicable to any distributed SVM algorithm.

From a geometric point of view, training an SVM can be interpreted as finding a
hyperplane that separates two classes of points while maximizing the separating margin. It
is also well known to be equivalent to computing the polytope distance of the two point
sets. Recent research [10] shows that we can find an (1− ε)-approximation of the polytope
distance using Gilbert algorithm with a running time linearly depending on the input size.
Roughly speaking, Gilbert algorithm is a gradient descent procedure that in each step greedily
computes an optimal direction along which the primal solution should improve.

In this paper we present a distributed SVM algorithm that is theoretically guaranteed to
have the lowest possible communication cost together with a guaranteed near-optimal solution,
based on the classical Gilbert algorithm [11]. Comparing to previous distributed SVM
algorithms, our algorithm has several advantages. (1) Our algorithm has a communication
complexity which is theoretically guaranteed to reach the lower bound; (2) it does not make
any assumption on the input data and its distribution; (3) its running time is only linearly
dependent on the input size; and (4) it produces a (1− ε)-approximation for the problem
which is sparse (i.e., the number of support vectors is small).

Since SVM is well known to be sensitive to outliers, we also consider the case of distributed
SVM with outliers. We show that it is possible to explicitly avoid the influence of outliers
in distributed settings by using a combinatorial tool called Random Gradient Descent
(RGD) tree [7] to achieve a (1− ε)-approximation on the quality of solution and meanwhile
significantly reduce the communication cost. An underlying technique used for reducing the
communication cost is an algorithm for the distributed selection problem (i.e., finding the
t-th smallest number from a set of numbers distributed in k sites). This problem has been
extensively studied in the past ([17, 21, 13]). The best result (in terms of communication
cost) is a randomized algorithm [13] which has a communication complexity of O(k log (t)).
The best deterministic algorithm has a communication complexity of O(k log2 (t)). In this
paper we give a deterministic algorithm with communication complexity O(k log (t)) in the
coordinator model.

In this paper We will concentrate on one-class SVM first since it captures the main
difficulty of the problem, and then extend the results to two-class SVM (in the full version
of this paper). We also performed experiments on benchmark datasets to evaluate the
performance of the algorithms (in the full version of the paper).
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conv(P)

H

o
ρ

Figure 1 One-class SVM is equivalent to
the polytope distance problem. ρ is the poly-
tope distance, H is the separating hyperplane,
with distance to o exactly ρ.

xi

xi+1

pi

o

Figure 2 One step of the Gilbert Al-
gorithm, updating xi to xi+1.

2 Preliminaries

2.1 Equivalence between SVM and Polytope Distance
In this section, we give several definitions which will be used throughout the paper.

I Definition 1. (One-class SVM): Given a point set P ⊆ Rd, find a hyperplane H separating
the origin o and P such that the separating margin (i.e., the distance between o and H) is
maximized.

It is well known that this problem is equivalent to the following problem of computing the
polytope distance:

I Definition 2. (Polytope distance): Given a point set P ⊆ Rd, compute the shortest
distance between the origin o and a point p in the polytope conv(P ) (i.e., the convex hull of
P ).

I Lemma 3 ([10]). Given a point x which realizes the polytope distance of P ⊆ Rd, the
hyperplane H passing x and orthogonal to ox is the maximum separating hyperplane of P .
In other words, the polytope distance problem is equivalent to the one-class SVM problem.

Figure 1 provides an intuitive explanation of the equivalence between one-class SVM
and polytope distance. Notice that the polytope distance problem can be formulated as
a standard convex quadratic optimization problem, thus can be solved optimally using
standard techniques in O(n3) time. However this approach is mostly impractical because
of the high time complexity. Actually in many applications, a near-optimal approximate
solution is sufficient. Thus it is desirable to design efficient approximation algorithms. A
(1− ε)-approximation of the polytope distance can be defined as follows.

I Definition 4. ((1 − ε)-approximation of polytope distance): x ∈ conv(P ) achieves a
(1− ε)-approximation of the polytope distance problem, if

‖x‖ − p|x ≤ ε‖x‖,∀p ∈ P

where p|x := 〈p,x〉
‖x‖ is the signed length of the projection of p onto vector ox.

In the rest of this paper, we also call the point x, rather its distance to o, as the approximation.
This is only for ease of discussion, and does not affect the solution at all (since we can get
the actual distance by simply computing the distance between x and o).

ISAAC 2016
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2.2 Gilbert Algorithm
Gilbert algorithm can be used to find a (1 − ε)-approximation of the polytope distance
problem. Roughly speaking, Gilbert algorithm starts with an initial solution x1 being the
closest point of P to the origin. In step i, the algorithm finds the point pi ∈ P that has the
smallest projection distance to vector oxi, and picks the point on the line segment [pi, xi]
that is closest to the origin as xi+1. Figure 2 illustrates one step of Gilbert algorithm.

Algorithm 1 Gilbert Algorithm
1: INPUT : A d dimensional point set P , the origin o.
2: OUTPUT : A (1− ε)-approximation of the polytope distance of P to o.
3: Initialize i to be 1. Find the point p1 that is closest to o, let x1 = p1
4: In step i, let pi+1 be the point that has the smallest p|xi , let xi+1 be the point that is

closest to o on line segment [xi, pi+1].
5: Return xi+1 when it is a (1− ε)-approximation. Otherwise goto Line 4 with i = i+ 1.

Despite its simplicity, it has been shown [10] that Gilbert algorithm can actually find
such a (1− ε)-approximation in O( 1

ε ) steps. Formally, we have the following theorem.

I Theorem 5 ([10]). Gilbert algorithm succeeds after at most O( 1
ε ) steps.

Since each step of the algorithm involves only computing the projection of all points in
P to a specific direction, which can be done in linear time, Gilbert algorithm has a total
running time linearly depending on n = |P | which is the number of input points.

Besides the fast running time, Gilbert Algorithm (and its variants) has also many other
properties that make it a good SVM solver.
1. The algorithm works for arbitrary kernels. Since the algorithm only requires the compu-

tation of projection distance, which can be obtained by scalar product, we only need one
kernel evaluation at each time when a projection distance is computed. This also implies
that our proposed algorithms can be trivially kernelized.

2. The result is sparse, or in other words, the number of support vectors is small. In the
kernelized version, the solution xi is a linear combination of input points, and we can
easily observe that xi involves at most one more point in each step, so the total number
of support vectors is O( 1

ε ).

3 Communication Complexity of Distributed SVM

In a distributed setting, the point set P is arbitrarily distributed among k nodes. Based on
different modes of communication, there are different models to be considered. In this paper
we mainly study the widely used coordinator model which contains an extra coordinator
node, and all other nodes are only allowed to communicate with the coordinator. The
algorithm itself can be easily modified for a more general communication model, e.g., network
of general topology. Such generalization will at most induce an additional O(D) (where D is
the diameter of the network) [1] increase on the communication complexity.

We are interested in determining the minimum amount of communication that is needed to
find a (1− ε)-approximation of the polytope distance problem. We define the communication
cost as the number of points needed to be transfered between nodes, where transferring one
d-dimensional point (together with an optional O(d) constants) takes O(1) communication.
This way of defining the communication cost simplifies the proof of Theorem 6. Below is our
lower bound result.
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I Theorem 6. A (1− ε)-approximation of the distributed polytope distance problem requires
Ω(kd) communication for any ε <

√
17−4
16d .

We prove Theorem 6 by giving a reduction from the following k-OR problem.

I Definition 7 (k-OR). Given k players with each holding an n-bit binary vector, find the
bitwise OR of all k vectors.

An example of the k-OR problem can be like the following: Player 1 holds vector
(1, 0, 0, 1, 0), Player 2 holds (0, 0, 0, 1, 1), and Player 3 holds (1, 1, 0, 0, 1). Then the output
should be the vector (1, 1, 0, 1, 1), where each bit is just the OR of the same bit of all players’
vectors. For the communication complexity of this problem we have the following result.

I Lemma 8 ([19]). k-OR problem requires Ω(nk) communication in the coordinator model.

Proof of Theorem 6. We prove Theorem 6 by reducing the k-OR problem to the problem
of finding an ε-approximation of distributed polytope distance.

Given an instance of the k-OR problem with k players each holding an n-bit binary
vector, construct an instance of distributed polytope distance in d = n dimensional space
with k nodes as follows:

For player i, for j = 1, · · · , d, if the j’th bit of his vector is 0, add point ej to node i’s
point set; otherwise add point λej to its point set, where ej = (0, · · · , 0︸ ︷︷ ︸

j-1

, 1, 0, · · · , 0︸ ︷︷ ︸
d-j

) is the

d-dimensional point whose only non-zero entry is the j’th coordinate with value 1, and λ is a
constant smaller than 1 to be determined later.

In this construction, each node holds exactly d points, and there are kd points in total.
Since for the j’th point there are only two possible positions to place it, i.e., ej or λej , there
will be points from different nodes sharing the same position. This does not affect the proof,
since we can add a small enough perturbation to points sharing the same location.

I Definition 9 (Configuration). A configuration C of an instance of the polytope distance
problem constructed as above is a size d point set, where the i’th point is λei if there is
at least one λei in the point sets of all nodes; otherwise the i’th point is set to be ei. The
order of a configuration C is the number of λe it contains.

It is easy to see that a configuration encodes the solution of the corresponding k-OR problem.
So if we can find out the configuration based on an ε-approximation solution of the distributed
polytope distance problem, we can solve the k-OR problem, thus proving Theorem 6. The
following lemma ensures that we can indeed achieve that.

I Lemma 10. If ε <
√

17−4
16d , it is possible to determine the configuration purely based on an

ε-approximation of the distributed polytope distance problem with λ satisfying 1
2−
√

1
4 −

εd
1−ε <

λ < min{
√

1− d(1− (1− ε)2), ( 1
2 +

√
1
4 −

εd
1−ε )}.

Notice that ε <
√

17−4
16d guarantees that 1

4 −
εd

1−ε > 0, 1 − d(1 − (1 − ε)2) > 0, as well as
1
2 −

√
1
4 −

εd
1−ε <

√
1− d(1− (1− ε)2). Thus such a λ always exists. Denote the polytope

distance of a configuration C as ρ(C), the order of C as order(C). We call the set of
configurations with the same order d′ as an order-d′ layer of configurations. We prove
Lemma 10 in two steps:

Claim 1: order(Ci) = order(Cj) =⇒ ρ(Ci) = ρ(Cj); order(Ci) > order(Cj) =⇒
ρ(Ci) < (1− ε)ρ(Cj).

ISAAC 2016
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Claim 2: a solution x can’t be an ε-approximation for more than one configuration in
the same layer.

Proof of Claim 1. Consider a configuration C = {p1, p2, · · · , pd} with order d′. This means
that there are d− d′ points with their only non-zero coordinate as 1, and d′ points with their
non-zero coordinate as λ. Suppose that the point x = α1p1 + α2p2 + · · ·+ αdpd on conv(C)
is the closest point to the origin. We observe that for i ∈ [1, d], we have 0 < αi < 1. This
can be proved by contradiction as follows. First of all, since x is on conv(C), we naturally
have 0 ≤ αi ≤ 1 and

∑
i αi = 1. Suppose that there exists an αl = 0. This means that the

l’th coordinate of x is 0, and thus x is on the simplex spanned by C − {pl}. Notice that in
this case, we have opl perpendicular to the simplex spanned by C − {pl}. Thus, ∠oxpl < π

2
and ∠oplx < π

2 , which means that the projection of o onto xpl is within the line segment
xpl, resulting in a point closer to o than x, contradicting the fact that x is the closest point
to o. Then α < 1 follows immediately.

The above observation guarantees that the closest point to o is always within conv(C),
instead of on the boundary. Now let us compute ρ(C).

We partition the points of C into two subsets based on their non-zero coordinates. C1
contains points whose non-zero coordinates are 1, and Cλ contains the rest. By the symmetry
of the dimensions, we can safely assume that C1 contains the first d − d′ points, and Cλ
contains the latter d′ points without loss of generality. Now let a = 1

(d−d′)λ+d′ 1
λ

, and consider

the point x = (λa · 1, · · · , λa · 1︸ ︷︷ ︸
d−d′

,
a

λ
· λ, · · · , a

λ
· λ︸ ︷︷ ︸

d′

). It is clear that (1) x is within the boundary

of conv(C), since (d−d′)λa+d′ aλ = 1; and (2) the projection distance of any point in C onto
ox is λa

‖x‖ . Thus ox is perpendicular to the subspace spanned by C. Combining the above two
facts, we know that x is the closest point to o on conv(C), and ρ(C) = ‖ox‖ =

√
1

(d−d′)+ d′
λ2

.
Since ρ(C) depends only on the order of the configuration, we have proved the first half of
Claim 1.

Since each layer of configuration has the same polytope distance, we let ρd′ denote the
polytope distance for order-d′ layer. Now for the second half of Claim 1, let us consider two
consecutive layers with order d′ and d′ + 1. Then we have

ρd′+1

ρd′
=

√
d+ ( 1

λ2 − 1)d′

d+ ( 1
λ2 − 1)(d′ + 1)

≤
√
d− (1− λ2)

d
(1)

<

√
d− (1−

√
1− d(1− (1− ε)2)2)

d

= 1− ε (2)

in which inequality (1) holds because of 1
λ2 − 1 > 0. Using (2), we immediately have

ρd′+t
ρd′

< (1− ε)t < 1− ε. Thus the second part of Claim 1 is proved. J

Proof of Claim 2. In order to prove Claim 2, we first make another observation of the ε-
approximation x of configuration C = {p1, · · · , pd} of order d′. Since x is an ε-approximation,
by definition it has to be on conv(C). So x takes the form of x =

∑
αipi, and

∑
αi = 1.

Also by definition, we have pi|x > (1− ε)‖x‖. Together with the definition of pi|x, we have

αi ≥
{

(1− ε)‖x‖2 , if pi = ei
1−ε
λ2 ‖x‖2 , otherwise.
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Then we have for pi = ei,

αi = 1−
∑
j 6=i

αj

≤ 1− (
∑

j 6=i,pj=ej

(1− ε)‖x‖2 +
∑

j 6=i,pj=λej

(1− ε)
λ2 ‖x‖2)

= 1− ((d− d′ − 1)(1− ε)‖x‖2 + d′
1− ε
λ2 ‖x‖

2)

= ( 1
‖x‖2 − ((d− d′ − 1)(1− ε) + d′

1− ε
λ2 ))‖x‖2. (3)

Now, suppose that x is an ε-approximation for two configurations C1 and C2 in the same
layer. Since all configurations in the same layer have the same order, this indicates that they
have the same number of points whose non-zero coordinate is 1 and the same number of
points whose non-zero coordinate is λ. This means that C1 and C2 differs by at least two
points, with different non-zero coordinate. Denote the index of such pair of points as i and j.
W.O.L.G., assume that in C1 the i’th point p(1)

i = ei, and the j’th point p(1)
j = λej . Then in

C2, the i’th point p(2)
i = λei, and the j’th point p(2)

j = ej . Since x is an ε-approximation of
C1, it has to take the form of x =

∑
αip

(1)
i „ and p(1)

i = ei, following (3) we have

αi ≤ ( 1
‖x‖2 − ((d− d′ − 1)(1− ε) + d′

1− ε
λ2 ))‖x‖2.

Since x is also an ε-approximation of C2, it has to satisfy

λαi
‖x‖

= p
(2)
i |x ≥ (1− ε)‖x‖.

Together we have

1− ε
λ
‖x‖2 ≤ αi ≤ ( 1

‖x‖2 − ((d− d′ − 1)(1− ε) + d′
1− ε
λ2 ))‖x‖2,

which means that

1− ε
λ
≤ 1
‖x‖2 − ((d− d′ − 1)(1− ε) + d′

1− ε
λ2 ).

However, since 1
2 −

√
1
4 −

εd
1−ε < λ < 1

2 +
√

1
4 −

εd
1−ε , and ‖x‖

2 ≥ ρ2
d′ = 1

(d−d′)+ d′
λ2

, we always
have

1
‖x‖2 − ((d− d′ − 1)(1− ε) + d′

1− ε
λ2 ) ≤ (d− d′) + d′

λ2 − ((d− d′ − 1)(1− ε) + d′
1− ε
λ2 )

= d− (d− 1)(1− ε) + ε( 1
λ2 − 1)d′

≤ d− (d− 1)(1− ε) + ε( 1
λ2 − 1)d

= 1− ε+ εd

λ2

<
1− ε
λ

,

which is a contradiction. Therefore x cannot be an ε-approximation for two configurations of
the same layer. J

ISAAC 2016



54:8 Distributed and Robust Support Vector Machine

Now we are ready to prove Lemma 10. At the coordinator, pre-compute all possible
ρd′ , with d′ = (0, 1, · · · , d). Compare the polytope distance of the ε-approximation x to
every segment [ρ, 1

1−ερ]. If ‖ox‖ falls within the segment corresponding to ρd′ , then Claim 1
guarantees that the configuration that we want is in the layer with order d′; Then for all
configurations C in that layer, check if x is an ε-approximation for C by testing whether
for all p ∈ C, p|x ≥ (1 − ε)‖x‖. Since x is an ε-approximation, so there is at least one
configuration C that will pass the test; and Claim 2 guarantees that there is only one such
C. Return C as the desired configuration. This completes the proof for Lemma 10

Lemma 10 means that if we solve the approximate version of the distributed polytope
distance problem, we can solve the k-OR problem. Hence the communication complexity of
the approximate distributed SVM is Ω(kd), proving Theorem 6. J

Now we are ready to give the distributed version of Gilbert Algorithm (i.e., Algorithm 2)
in the coordinator model.

Algorithm 2 Distributed Gilbert Algorithm
1: INPUT : A d dimensional point set P arbitrarily distributed among k nodes.
2: OUTPUT(by the coordinator) : A (1− ε)-approximation of the polytope distance of P

to o.
3: Initialize i = 1; All nodes send to the coordinator its closest point to o; The coordinator

picks the global closest point to o as p1;
4: In step i, the coordinator sends xi to all nodes; upon receiving xi, each node picks one

of its points that has the smallest p|xi and send back to the coordinator; the coordinator
picks the point that has the smallest p|xi based on the points it received; Denote this
point as pi+1 and find xi+1 as in non-distributed version.

5: Return xi+1 when it is a (1− ε)-approximation. Otherwise go to Line 4 with i = i+ 1.

In each step of Algorithm 2, the coordinator sends the current solution xi to all k nodes.
Upon receiving xi, each node computes the smallest projection distance onto vector oxi
based on its own share of points, and return it to the coordinator. The coordinator picks the
point that has the smallest projection distance onto vector xi among all returned points, and
uses it as pi+1. Each step of the algorithm involves one round of communication between the
coordinator and all k nodes. Thus the communication of each step is O(k). By Theorem 5,
we have the following theorem.

I Theorem 11. The communication complexity of Algorithm 2 is O(kε ) in the coordinator
model.

In the construction of the proof of Theorem 6 we can take ε = Θ( 1
d ), resulting in a

communication cost of Θ(kd) for Algorithm 2. Suppose that there exists an algorithm with
asymptotically smaller communication cost than Algorithm 2, it will also solve k-OR problem
using o(kd) communication, contradicting Lemma 8. So there doesn’t exist an algorithm
that computes a (1 − ε) approximation with asymptotically smaller communication than
Algorithm 2.

4 Robust Distributed SVM

In this section we present an algorithm for explicitly avoiding the influence of outliers in the
distributed SVM problem. We first consider the following problem.
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I Definition 12 (Distributed One-class SVM with Outliers). Given P as a point set of size n
in d dimensional space that is arbitrarily distributed among k nodes, and γ as the fraction
of outliers in P , find the subset P ′ ⊆ P of size (1− γ)n so that the margin separating the
origin and P ′ is maximized.

Notice that in this problem setting, there are two factors that need to be considered when
evaluating the quality of the approximation result: the width of the margin, and the number
of outliers accurately pruned out. Thus we need a new definition of approximation.

I Definition 13. For two constants ε, δ > 0, a margin M is an (ε, δ)-approximation, if the
width of M is larger than or equal to (1− ε)ρ, and the number of outliers identified by M is
no more than (1 + δ)γ|P |.

In this problem, we aim to prune out exactly γn points (as outliers) so that the rest
of the points can be separated from the origin by the largest possible margin. In this
scenario, Gilbert algorithm may perform arbitrarily bad. This is because in each step, Gilbert
algorithm finds the point that has the minimum projection distance and there is a possibility
that this point happens to be an outlier. As a gradient descent procedure, Gilbert algorithm
does not have the ability to recover from the negative impact of picking an outlier. To avoid
this problem, a key observation is that Gilbert algorithm does not need to always identify
the point with the minimum projection distance; it is actually sufficient to find one point (to
maintain a fast convergence rate) as long as its projection distance is one of the w smallest for
some w to be determined later. Based on this observation, Ding and Xu [7] has developed a
new framework, called Random Gradient Descent (RGD) tree, to explicitly deal with outliers
using Gilbert algorithm.

4.1 RGD Tree: Explicitly Avoiding the Influence of Outliers in SVM
Roughly speaking, RGD tree is a modified version of Gilbert algorithm. In each step, it
randomly samples w points from the t > 1 points which have the smallest projection distances,
and considers each of the w points as if it is the point with smallest projection distance. This
results in a computation tree with a branching factor of w. The value w is chosen to have
the property that there is a high probability that the w chosen points contain at least one
point that is not an outlier. Together with the fast convergence rate of Gilbert algorithm, we
can have a node in the RGD tree whose path to the root contains only points that are not
outliers with high probability. Then this path is the desired computation path of Gilbert
algorithm in an outlier-free environment.

The following theorem from [7] guarantees the performance of the RGD tree:

I Theorem 14. With high probability (larger than 1− µ), there exists at least one node in
the resulting RGD tree which yields an (ε, δ)-approximation, with running time linear in n
and d.

4.2 Extending RGD Tree to Distributed Settings
Given the fact that RGD tree is a variant of Gilbert algorithm, it can be naturally extended
to distributed settings. One simple solution is to let the coordinator send the current
solution (xi) to each distributed node for them to compute and return its own t points
with the smallest projection distance to oxi. However such a naive approach will incur
large communication cost, because now each step will need O(kt) communication, instead
of O(k) communication as in the no-outlier case. Actually the problem of finding the t-th

ISAAC 2016
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smallest number in a distributed setting has been extensively studied ([17, 21, 13]). [13]
gives a randomized algorithm that has communication complexity of O(k log (t)), and a
deterministic algorithm with communication complexity O(k log2 (t)). In this paper we give
a deterministic algorithm with communication complexity O(k log (t)) in the coordinator
model. Formally, consider the following problem.
I Definition 15. (Distributed t-selection): Given n distinct numbers distributed among k
nodes, find the t-th smallest number.
In this problem, we only consider distinct numbers, since we can use any tie-breaker to
distinguish duplicated numbers. Then we have the following result.
I Lemma 16. Distributed t-selection can be solved deterministically with O(k log (t)) transfers
of numbers in the coordinator model.

To prove Lemma 16, we give an algorithm (Algorithm 3) with the claimed communication
complexity.

Before analyzing the communication complexity of Algorithm 3, we first show its Correct-
ness. The algorithm acts like the classical linear-time selection algorithm. The coordinator
computes two “weighted” medians of medians (ml̂h

and ml̂h+1
) for all distributed nodes,

and tell them to discard certain portion of its numbers based on the location of the t-th
smallest number. In Line 11, case 1 means that the t-th smallest number is smaller than the
first “weighted” median ml̂h

, so it is safe to discard all numbers no smaller than ml̂h
; case 2

means that the t-th smallest number is between ml̂h
and ml̂h+1

, so it is safe to discard all
numbers no larger than ml̂h

and all numbers no smaller than ml̂h+1
; Similarly, we can show

for Case 3. We also update the value of t if numbers smaller than the t-th smallest number
are discarded. The algorithm either finds the t-th smallest number during the loop of Lines
6 to 12, or finds it by the coordinator in a non-distributed fashion (when there are fewer
numbers left). Thus we have the correctness of Algorithm 3.

For communication complexity, we have the following lemma (proof of Lemma 16 is left
in the appendix due to space limit).
I Lemma 17. Each iteration of Lines 6 to 12 will discard at least a fraction of 1

4 of the
current numbers holden by all nodes.

Now we are ready to present the distributed version of the RGD tree algorithm (i.e.,
Algorithm 4), and the analysis of its communication complexity.

The RGD tree has O(wh) nodes (which is constant w.r.t. n and d). To generate one node,
we need O(k log (t)) communication. Notice that each time we draw the sample Sv, there are
O(w) extra communication. Thus on average each node in the sample (i.e., its associated
point belongs to the sample) is only charged O(1) extra communication, which does not
change asymptotically the O(k log (t)) communication incurred by applying Algorithm 3.
This leads to the following theorem.
I Theorem 18. The communication complexity of Algorithm 4 is O(whk log (t)).

4.3 Extension to Two-Class SVM
We will briefly explain the reasons why an extension to two-class SVM is straight forward.
More details are left to the full version of the paper. Finding the polytope distance between
two point sets is equivalent to finding the polytope distance between the Minkowski difference
of the two point sets and the origin. Taking the Minkowski difference will increase the size of
the problem from O(n) to O(n2), however using the tricks in [7] and [10] we can achieve the
same running time and communication performance as the one-class case.



Y. Liu, H. Ding, Z. Huang, and J. Xu 54:11

Algorithm 3 Deterministic distributed t-selection algorithm
1: INPUT : n distinct numbers arbitrarily distributed among k nodes, a natural number t.

2: OUTPUT(by the coordinator) : the t-th smallest number of the n numbers.
3: (Pre-process:) For each node, if it holds more than t numbers, do a local sorting and

keep the smallest t numbers and discard the rest.
4: (Pre-process:) The coordinator sends a distinct number l ∈ [1, k] to each node as their

label.
5: repeat
6: For each node, send to the coordinator a message containing a triple (ml, nl, l), where

ml is the median of the numbers stored in the node, nl is the # of numbers in the
node, and l is its label.

7: Upon receiving messages from all nodes, the coordinator first sorts the messages in
ascending order of their ml. Suppose in the new order we have ml̂1

< ml̂2
< · · · < ml̂k

.

8: Let ml̂0
= −∞. The coordinator computes a value h such that

∑
l:ml≤ml̂h

nl <
1
2
∑
l nl

and
∑
l:ml≤ml̂h+1

nl ≥ 1
2
∑
l nl

9: The coordinator sends a pair (ml̂h
,ml̂h+1

) to all nodes.
10: Upon receiving (ml̂h

,ml̂h+1
) from the coordinator, each node sends to the coordinator

a triple (al, bl, l), where al is the # of its numbers smaller than ml̂h
, bl is the # of its

numbers smaller than ml̂h+1
, l is its label.

11: After receiving all (a, b, l) messages from all nodes, the coordinator checks which of the
following cases will happen (notice that since ml̂h

< ml̂h+1
we always have

∑
a <

∑
b):

1. t− 1 <
∑
a;

2.
∑
a < t− 1 <

∑
b;

3. t− 1 >
∑
b;

4. t− 1 =
∑
a;

5. t− 1 =
∑
b.

For case 4, output ml̂h
and halt; for case 5, output ml̂h+1

and halt; otherwise, send i
to all nodes for cases i. For case 2, update t to be t−

∑
a; for case 3, update t to be

t−
∑
b.

12: For each node, if it receives a “1” from the coordinator, discard all numbers larger
than ml̂h

; if it receives a “2”, discard all numbers smaller than ml̂h
and numbers larger

than ml̂h+1
; otherwise discard all numbers smaller than ml̂h+1

13: until
∑
nl = O(k)

14: All nodes send their numbers to the coordinator.
15: Now the numbers are no longer distributed, and the coordinator simply outputs the t-th

smallest number.
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Algorithm 4 Distributed RGD tree
1: INPUT : A d dimensional point set P arbitrarily distributed among k nodes, with a

fraction γ of it being outliers; three parameters 0 < µ, δ < 1, h = 2( 1
ε (Dρ +1))2 ln (Dρ + 1).

2: OUTPUT(by the coordinator) : An RGD tree with each node associated with a
candidate for an approximation solution to the One-class SVM with outliers problem.

3: The coordinator randomly select a point from P as x. Initialize the tree at root x.
4: Recursively grow the tree in the following manner:
5: For a node v associated with point xv, if its height is h, it becomes a leaf; Otherwise, do

the following:
1. Let t = (1 + δ)γ|P |. The coordinator finds the point pt whose projection distances to

oxv are the t’th smallest using Algorithm 3;
2. Take a random sample Sv of size w = (1 + 1

δ ) ln µ
h in the following manner: the

coordinator randomly take a label of the nodes, and ask the node with this label for a
random point of its holdings whose projection distance is smaller than the projection
distance of pt. Repeat until the coordinator has a sample Sv of size w. For each point
s ∈ Sv, create a child of v in the RGD tree and associate it with point xsv which is
the point on line segment [sxv] closest to o.
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Abstract
We consider the single machine scheduling problem with job-dependent machine deterioration.
In the problem, we are given a single machine with an initial non-negative maintenance level, and
a set of jobs each with a non-preemptive processing time and a machine deterioration. Such a
machine deterioration quantifies the decrement in the machine maintenance level after processing
the job. To avoid machine breakdown, one should guarantee a non-negative maintenance level at
any time point; and whenever necessary, a maintenance activity must be allocated for restoring
the machine maintenance level. The goal of the problem is to schedule the jobs and the mainten-
ance activities such that the total completion time of jobs is minimized. There are two variants of
maintenance activities: in the partial maintenance case each activity can be allocated to increase
the machine maintenance level to any level not exceeding the maximum; in the full maintenance
case every activity must be allocated to increase the machine maintenance level to the maximum.
In a recent work, the problem in the full maintenance case has been proven NP-hard; several
special cases of the problem in the partial maintenance case were shown solvable in polynomial
time, but the complexity of the general problem is left open. In this paper we first prove that
the problem in the partial maintenance case is NP-hard, thus settling the open problem; we then
design a 2-approximation algorithm.
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1 Introduction

In many scheduling problems, processing a job on a machine causes the machine to deteriorate
to some extent, and consequently maintenance activities need to be executed in order to
restore the machine capacity. Scheduling problems with maintenance activities have been
extensively investigated since the work of Lee and Liman [7].

A maintenance activity is normally described by two parameters, the starting time and
the duration. If these two parameters are given beforehand, a maintenance activity is
referred to as fixed; otherwise it is called flexible. Various scheduling models with fixed
maintenance activities, on different machine environments and job characteristics, have been
comprehensively surveyed by Schmidt [14], Lee [5], and Ma et al. [10].

A number of researchers initiated the work with flexible maintenance activities. Qi et
al. [13] considered a single machine scheduling problem to simultaneously schedule jobs and
maintenance activities, with the objective to minimize the total completion time of jobs.
They showed that the problem is NP-hard in the strong sense and proposed heuristics and a
branch-and-bound exact algorithm. (Qi [12] later analyzed the worst-case performance ratio
for one of the heuristics, the shortest processing time first or SPT.) Lee and Chen [6] studied
the multiple parallel machines scheduling problem where each machine must be maintained
exactly once, with the objective to minimize the total weighted completion time of jobs.
They proved the NP-hardness for some special cases and proposed a branch-and-bound exact
algorithm based on column generation; the NP-hardness for the general problem is implied.
Kubzin and Strusevich [4] considered a two-machine open shop and a two-machine flow
shop scheduling problems in which each machine has to be maintained exactly once and the
duration of each maintenance depends on its starting time. The objective is to minimize
the maximum completion time of all jobs and all maintenance activities. Among others, the
authors showed that the open shop problem is polynomial time solvable for quite general
functions defining the duration of maintenance in its starting time; they also proved that the
flow shop problem is binary NP-hard and presented a fully polynomial time approximation
scheme (FPTAS) [4].

Returning to a single machine scheduling problem, Chen [2] studied the periodic mainten-
ance activities of a constant duration not exceeding the available period, with the objective to
minimize the maximum completion time of jobs (that is, the makespan). The author presen-
ted two mixed integer programs and heuristics and conducted computational experiments
to examine their performance. Mosheiov and Sarig [11] considered the problem where the
machine needs to be maintained prior to a given deadline, with the objective to minimize the
total weighted completion time of jobs. They showed the binary NP-hardness and presented
a pseudo-polynomial time dynamic programming algorithm and an efficient heuristic. Luo
et al. [8] investigated a similar variant (to [11]) in which the jobs are weighted and the
duration of the maintenance is a nondecreasing function of the starting time (which must
be prior to a given deadline). Their objective is to minimize the total weighted completion
time of jobs; the authors showed the weak NP-hardness, and for the special case of concave
duration function they proposed a (1 +

√
2/2 + ε)-approximation algorithm. Yang and

Yang [17] considered a position-dependent aging effect described by a power function under
maintenance activities and variable maintenance duration considerations simultaneously;
they examined two models with the objective to minimize the makespan, and for each of
them they presented a polynomial time algorithm.

Scheduling on two identical parallel machines with periodic maintenance activities was
examined by Sun and Li [15], where the authors presented approximation algorithms with
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constant performance ratios for minimizing the makespan or minimizing the total completion
time of jobs. Xu et al. [16] considered the case where the length of time between two
consecutive maintenances is bounded; they presented an approximation algorithm for the
multiple parallel machines scheduling problem to minimize the completion time of the last
maintenance, and for the single machine scheduling problem to minimize the makespan,
respectively.

1.1 Problem definition

Considering the machine deterioration in the real world, in a recent work by Bock et al. [1], a
new scheduling model subject to job-dependent machine deterioration is introduced. In this
model, the single machine must have a non-negative maintenance level (ML) at any time
point, specifying its current maintenance state. (A negative maintenance level indicates the
machine breakdown, which is prohibited.) We are given a set of jobs J = {Ji, i = 1, 2, . . . , n},
where each job Ji = (pi, δi) is specified by its non-preemptive processing time pi and machine
deterioration δi. The machine deterioration δi quantifies the decrement in the machine
maintenance level after processing the job Ji. (That is, if before processing the job Ji
the maintenance level is ML, then afterwards the maintenance level reduces to ML−δi —
suggesting that ML has to be at least δi in order for the machine to process the job Ji.)

Clearly, to process all the jobs, maintenance activities (MAs) need to be allocated inside
a schedule to restore the maintenance level, preventing machine breakdown. Given that the
machine can have a maximum maintenance level of MLmax, and assuming a unit maintenance
speed, an MA of a duration D would increase the maintenance level by min{D,MLmax−ML},
where ML is the maintenance level before the MA.

With an initial machine maintenance level ML0, 0 ≤ ML0 ≤ MLmax, the goal of the
problem is to schedule the jobs and necessary MAs such that all jobs can be processed
without machine breakdown, and that the total completion time of jobs is minimized.

There are two variants of the problem depending on whether or not one has the freedom
to choose the duration of an MA: in the partial maintenance case, the duration of each
MA can be anywhere in between 0 and (MLmax−ML), where ML is the maintenance level
before the MA; in the full maintenance case, however, the duration of every MA must be
exactly (MLmax−ML), consequently increasing the maintenance level to the maximum value
MLmax. Let Ci denote the completion time of the job Ji, for i = 1, 2, . . . , n. In the three
field notation, the two problems discussed in this paper are denoted as (1|pMA |

∑
i Ci)

and (1|f MA |
∑
i Ci), respectively, where pMA and f MA refer to the partial and the full

maintenance, respectively.

1.2 Prior work and our contribution

Bock et al. [1] proved that (1|f MA |
∑
i Ci) is NP-hard, even when pi = p for all i or when

pi = δi for all i, both by a reduction from the Partition problem [3]; while all the jobs have
the same deterioration, i.e. δi = δ for all i, the problem can be solved in O(n logn) time.
For the partial maintenance case, Bock et al. [1] showed that the SPT rule gives an optimal
schedule for (1|pMA |

∑
i Ci) when pi < pj implies pi + δi ≤ pj + δj for each pair of i and j

(which includes the special cases where pi = p for all i, or δi = δ for all i, or pi = δi for all i).
The complexity of the general problem (1|pMA |

∑
i Ci) was left as an open problem. Also,

to the best of our knowledge, no approximation algorithms have been designed for either
problem.
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Our main contribution in this paper is to settle the NP-hardness of the general problem
(1|pMA |

∑
i Ci). Such an NP-hardness might appear a bit surprising at the first glance

since one has so much freedom in choosing the starting time and the duration of each
MA. Our reduction is from the Partition problem too, using a kind of job swapping
argument. This reduction is presented in Section 3, following some preliminary properties we
observe for the problem in Section 2. In Section 4, we propose a 2-approximation algorithm
for (1|pMA |

∑
i Ci). We conclude the paper in Section 5 with some discussion on the

(in-)approximability.
Lastly, we would like to point out that when the objective is to minimize the makespan

Cmax, i.e. the maximum completion time of jobs, (1|pMA |Cmax) can be trivially solved in
O(n) time and (1|f MA |Cmax) is NP-hard but admits an O

(
n2(MLmax)2 log (

∑n
i=1(pi + δi))

)
time algorithm based on dynamic programming (and thus admits an FPTAS) [1].

2 Preliminaries

Given a feasible schedule π to the problem (1|pMA |
∑
i Ci), which specifies the start pro-

cessing time for each job and the starting time and the duration of each MA, we abuse
slightly π to also denote the permutation of the job indices (1, 2, . . . , n) in which the jobs are
processed in order: π = (π1, π2, . . . , πn). The following lemma is proved in [1].

I Lemma 1 ([1]). There is an optimal schedule π to (1|pMA |
∑
i Ci) such that the total

maintenance duration before processing the job Jπi
equals max

{
0,
∑i
j=1 δπj

−ML0

}
, for

each i = 1, 2, . . . , n.

Lemma 1 essentially states that each MA should be pushed later in the schedule as
much as possible until absolutely necessary, and its duration should be minimized just for
processing the succeeding job. In the sequel, we limit our discussion on the feasible schedules
satisfying these two properties. We define the separation job in such a schedule π as the first
job that requires an MA (of a positive duration).

I Lemma 2. Suppose Jπk
is the separation job in an optimal schedule π to (1|pMA |

∑
i Ci).

Then,
the jobs before the separation job Jπk

are scheduled in the SPT order;
the jobs after the separation job Jπk

are scheduled in the shortest sum-of-processing-time-
and-deterioration first (SSF) order;
the jobs adjacent to the separation job Jπk

satisfy

pπk−1 + min{δπk−1 , δπk
− δ} ≤ pπk

+ (δπk
− δ) ≤ pπk+1 + max{0, δπk+1 − δ},

where δ = ML0−
∑k−1
i=1 δπi

is the remaining maintenance level before the first MA.

Proof. Starting with an optimal schedule satisfying the properties stated in Lemma 1, one
may apply a simple job swapping procedure if the job order is violated either in the prefix or
in the suffix of job order separated by the separation job Jπk

. This procedure would decrease
the value of the objective, contradicting to the optimality. That is, we have (see Figure 1 for
an illustration)

pπ1 ≤ pπ2 ≤ . . . ≤ pπk−1 , and (1)
pπk+1 + δπk+1 ≤ pπk+2 + δπk+2 ≤ . . . ≤ pπn + δπn . (2)

Let δ = ML0−
∑k−1
i=1 δπi denote the remaining maintenance level before the first MA.

Because δ < δπk
, an (the first) MA of duration δπk

− δ needs to be performed for processing
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-π1 π2 . . . πk−1 MA πk

6
separation

?
1st

MA πk+1 MA πk+2 . . . MA πn

Figure 1 An illustration of the optimal schedule π stated in Lemma 2, where the separation
job is Jπk ; the width of a framebox does not necessarily equal the processing time of a job or the
duration of an MA.

the separation job Jπk
. From the optimality of π, swapping the two jobs Jπk

and Jπk+1

should not decrease the objective, that is,{
pπk

+ (δπk
− δ) ≤ pπk+1 + (δπk+1 − δ), if δπk+1 > δ;

pπk
+ (δπk

− δ) ≤ pπk+1 , otherwise.

Similarly, swapping the two jobs Jπk−1 and Jπk
should not decrease the objective, that is,{

pπk−1 ≤ pπk
, if δπk−1 ≥ δπk

− δ;
pπk−1 + δπk−1 ≤ pπk

+ (δπk
− δ), otherwise.

These together give

pπk−1 + min{δπk−1 , δπk
− δ} ≤ pπk

+ (δπk
− δ) ≤ pπk+1 + max{0, δπk+1 − δ}. (3)

This proves the lemma. J

From Lemma 2, one sees that the separation job in an optimal schedule is unique, in the
sense that it cannot always be “appended” to either the prefix SPT order or the suffix SSF
order. This is reflected in our NP-completeness reduction in Section 3, where we force a
certain scenario to happen.

3 NP-hardness of the problem (1|p MA |∑i Ci)

Our reduction is from the classic NP-complete problem Partition [3], formally defined as
follows:

Partition
Instance: A set X of n positive integers X = {x1, x2, . . . , xn}, with

∑n
i=1 xi = 2B.

Query: Is there a subset X1 ⊂ X such that
∑
x∈X1

x =
∑
x∈X−X1

x = B?

We abuse X to denote the instance of Partition with the set X = {x1, x2, . . . , xn} and∑n
i=1 xi = 2B. The corresponding instance I of the problem (1|pMA |

∑
i Ci) is constructed

in polynomial time, as follows:

Number of jobs: 2n+ 3;
Job processing time: pn+1+i = pi =

∑i

j=1 xj , for i = 0, 1, 2, . . . , n,
p2n+2 = M − 2B;

Machine deterioration: δn+1+i = δi = M − 2pi, for i = 0, 1, 2, . . . , n,
δ2n+2 = 0;

Initial maintenance level: ML0 =
∑n

i=0 δi − 2B;
Maximum maintenance level: MLmax =

∑n

i=0 δi;
Objective threshold: Q = Q0 +B,
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-J0 J1 J2 . . . Jn 2B J2n+2

6
separation

?
1st MA

δ2n+1J2n+1 δ2n J2n . . . δn+1
?
Jn+1

Figure 2 The initial infeasible schedule π0 for the instance I with the separation job J2n+2; π0

satisfies all properties stated in Lemma 2. All MAs are indicated by their respective durations (for
the first MA, its duration is δ2n+2 − δ = 2B).

(note that pn+1 = p0 =
∑0
j=1 xj = 0 due to the empty range for j) where M is a big integer:

M > (4n+ 8)B, (4)

and Q0 is the total completion time of jobs for an initial infeasible schedule π0 (see Figure 2):

Q0 =
n∑
j=0

(n−j+1)pj +(n+2)

 n∑
j=0

pj + 2B + p2n+2

+
n∑
j=0

(j+1)(pn+1+j +δn+1+j). (5)

The job order in this initial schedule π0 is (J0, J1, . . . , Jn, J2n+2, J2n+1, J2n, . . . , Jn+1),
and the first MA precedes the job J2n+2, which is regarded as the separation job (see
Figure 2). Before the separation job J2n+2, the machine maintenance level is allowed to go
into negative, but has to be restored to zero just for processing J2n+2; afterwards, machine
breakdown is no longer tolerated. From ML0 =

∑n
i=0 δi − 2B, we know that π0 is infeasible

due to machine breakdown before the first MA; we will convert it to a feasible schedule
later. The Query of the decision version of the problem (1|pMA |

∑
i Ci) is whether or not

there exists a feasible schedule π such that the total completion time of jobs is no more than
Q = Q0 +B.

Despite the infeasibility, the initial schedule π0 has all the properties stated in Lemma 2,
with the separation job J2n+2 at the center position. The first (n+ 1) jobs are in the SPT
order and the last (n + 1) jobs are in the SSF order; since δ = −2B, pn = p2n+1 = 2B,
δn = δ2n+1 = M − 4B, p2n+2 = M − 2B, δ2n+2 = 0, Eq. (3) is also satisfied due to the big
M in Eq. (4):

pn + min{δn, δ2n+2 − δ} < p2n+2 + (δ2n+2 − δ) = p2n+1 + max{0, δ2n+1 − δ}.

In the rest of the section, we will show that there is a subset X1 ⊂ X of sum exactly B
if and only if the initial schedule π0 can be converted into a feasible schedule π with the
total completion time of jobs no more than Q = Q0 +B, through a repeated job swapping
procedure.

Notice that the two jobs Ji and Jn+1+i are identical, for i = 0, 1, . . . , n. In any schedule
with the job J2n+2 at the center position, if exactly one of Ji and Jn+1+i is scheduled before
J2n+2, then we always say Ji is scheduled before J2n+2 while Jn+1+i is scheduled after J2n+2.
Also, when the two jobs Ji and Jn+1+i are both scheduled before J2n+2, then Jn+1+i precedes
Ji; when the two jobs Ji and Jn+1+i are both scheduled after J2n+2, then Ji precedes Jn+1+i.

3.1 Proof of “only if”
In this subsection, we show that if there is a subset X1 ⊂ X of sum exactly B, then the initial
infeasible schedule π0 can be converted into a feasible schedule π with the total completion
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time no more than Q = Q0 +B. We also demonstrate the repeated job swapping procedure
leading to this successful schedule π.

Suppose the indices of the elements in the subset X1 are {i1, i2, . . . , im}, satisfying
1 ≤ i1 < i2 < . . . < im ≤ n. Starting with the initial schedule π0, we sequentially swap the
job Ji`−1 with the job Jn+1+i` , for ` = 1, 2, . . . ,m. Let π` denote the schedule after the `-th
job swapping.

I Lemma 3. For each 1 ≤ ` ≤ m,
the schedule π` with the separation job J2n+2 satisfies the properties in Lemma 2;
the `-th job swapping decreases the total machine deterioration before the separation job
J2n+2 by 2xi` ;
the `-th job swapping increases the total completion time by xi` .

Proof. Recall that the two jobs Ji` and Jn+1+i` are identical. Before the `-th job swapping
between Ji`−1 and Jn+1+i` (in the schedule π`−1), the jobs in between Ji`−1 and Jn+1+i` are

(Ji`−1, Ji` , Ji`+1, . . . , Jn, J2n+2, J2n+1, J2n, . . . , Jn+1+i`+1, Jn+1+i`).

After the swapping (in the schedule π`) this sub-schedule becomes

(Jn+1+i` , Ji` , Ji`+1, . . . , Jn, J2n+2, J2n+1, J2n, . . . , Jn+1+i`+1, Ji`−1).

By a simple induction, all jobs before Jn+1+i` have their processing times less than pi` , and
thus the jobs before the separation job J2n+2 are in the SPT order; for a similar reason, the
jobs after the separation job J2n+2 are in the SSF order.

By the `-th job swapping, the change in the total machine deterioration before the
separation job J2n+2 is δi` − δi`−1 = −2(pi` − pi`−1) = −2xi` , that is, decreases by 2xi` .
Therefore the duration of the first MA also decreases by 2xi` . Since Jn always directly
precedes J2n+2 and pn < p2n+2, the first half of Eq. (3) holds; since p2n+2 + δ2n+2 is the
smallest among all jobs, the second half of Eq. (3) holds. That is, the schedule π` satisfies
all properties in Lemma 2.

For ease of presentation, let Ci denote the completion time of the job Ji in the schedule
π`, and let C ′i denote the completion time of the job Ji in the schedule π`−1. Comparing to
the schedule π`−1 (` ≥ 1), after the `-th job swapping between Ji`−1 and Jn+1+i` ,

the completion time of jobs preceding Jn+1+i` is unchanged;
Cn+1+i` − C ′i`−1 = pi` − pi`−1 = xi` ;
the completion time of each job in between Ji` and Jn (inclusive, n − i` + 1 of them)
increases by xi` ;
the duration of the first MA decreases by 2xi` ;
the completion time of each job in between J2n+2 and Jn+1+i`+1 (inclusive, n− i` + 1 of
them) decreases by xi` ;
Ci`−1 − C ′n+1+i` = −xi` + (δi`−1 + pi`−1)− (δi` + pi`) = 0;
from the last item, the completion time of jobs succeeding Ji`−1 is unchanged.

In summary, there are (n− i` + 2) jobs of which the completion time increases by xi` and
(n − i` + 1) jobs of which the completion time decreases by xi` . Therefore, the `-th job
swapping between Ji`−1 and Jn+1+i` increases the total completion time by xi` . This finishes
the proof. J

I Theorem 4. If there is a subset X1 ⊂ X of sum exactly B, then there is a feasible schedule
π to the instance I with the total completion time no more than Q = Q0 +B.
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Proof. Let the indices of the elements in the subset X1 be {i1, i2, . . . , im}, such that 1 ≤
i1 < i2 < . . . < im ≤ n. Starting with the initial schedule π0, we sequentially swap the job
Ji`−1 with the job Jn+1+i` , for ` = 1, 2, . . . ,m. Let π` denote the schedule after the `-th job
swapping, and let Q` denote the total completion time of jobs in π`.

From Lemma 3 we know that the ending schedule πm satisfies all the properties in
Lemma 2. Also, the total machine deterioration before the separation job J2n+2 in πm is

n∑
i=0

δi − 2
m∑
`=1

xi` =
n∑
i=0

δi − 2B = ML0,

suggesting that πm is a feasible schedule. (The first MA has zero duration and thus becomes
unnecessary.)

Moreover, the total completion time of jobs in πm is Qm = Q0 +
∑m
`=1 xi` = Q0 + B.

Therefore, the schedule πm obtained from the initial schedule π0 through the repeated job
swapping procedure is a desired one. J

3.2 Proof of “if”
In this subsection, we show that if there is a feasible schedule π to the constructed instance I
with the total completion time no more than Q = Q0 +B, then there is a subset X1 ⊂ X of
sum exactly B. Assume without loss of generality that the schedule π satisfies the properties
in Lemma 2. We start with some structure properties which the schedule π must have; the
interested readers may refer to [9] for detailed proofs.

I Lemma 5 ([9]). Excluding the job J2n+2, there are at least n and at most (n + 1) jobs
scheduled before the first MA in the schedule π.

I Lemma 6 ([9]). There are at most (n+ 1) jobs scheduled after J2n+2 in the schedule π.

Combining Lemmas 5 and 6, we have the following lemma regarding the position of J2n+2
in the schedule π.

I Lemma 7 ([9]). In the schedule π, the position of the job J2n+2 has three possibilities:
Case 1: There are (n + 2) jobs before the first MA with πn+2 = 2n + 2, and Jπn+3 is the

separation job.
Case 2: There are (n+ 1) jobs before the first MA, Jπn+2 is the separation job, and πn+3 =

2n+ 2.
Case 3: There are n jobs before the first MA, Jπn+1 is the separation job, and πn+2 = 2n+2.

Recall that the job order in the initial infeasible schedule π0 is (J0, J1, . . . , Jn, J2n+2, J2n+1,

J2n, . . . , Jn+2, Jn+1), and the first MA is executed before processing the job J2n+2, which is
regarded as the separation job (see Figure 2). In the sequel, we will again convert π0 into
our target schedule π through a repeated job swapping procedure. During such a procedure,
the job J2n+2 is kept at the center position, and a job swapping always involves a job before
J2n+2 and a job after J2n+2.

In Cases 1 and 3 of the schedule π, the job J2n+2 is at the center position (recall that
there are in total 2n+ 3 jobs), and therefore the target schedule is well set. In Case 2, J2n+2
is at position n + 3, not the center position; we first exchange J2n+2 and Jπn+2 to obtain
a schedule π′, which becomes our target schedule. That is, we will first convert π0 into π′
through a repeated job swapping procedure, and at the end exchange J2n+2 back to the
position n+ 3 to obtain the final schedule π. In summary, our primary goal is to convert
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the schedule π0 through a repeated job swapping procedure, keeping the job J2n+2 at the
center position and keeping the first MA right before the job J2n+2 (to be detailed next).
At the end, to obtain the target schedule π, in Case 1, we swap the job J2n+2 and the first
MA (i.e., moving the first MA one position backward); in Case 2, we swap J2n+2 and the
immediate succeeding MA and the following job (with the MA merged with the first MA);
in Case 3, we swap the first MA and its immediate preceding job (i.e., moving the first MA
one position forward).

In the target schedule (π in Cases 1 and 3, or π′ in Case 2), let R = {r1, r2, . . . , rm}
denote the subset of indices such that both Jrj

and Jn+1+rj
are among the first (n+ 1) jobs,

where 0 ≤ r1 < r2 < . . . < rm ≤ n, and L = {`1, `2, . . . , `m} denote the subset of indices such
that both J`j and Jn+1+`j are among the last (n+1) jobs, where 0 ≤ `1 < `2 < . . . < `m ≤ n.
Note that J2n+2 is at the center position in the target schedule, and thus it has to be |R| = |L|
and we let m = |R|. Clearly, all these `j ’s and rj ’s are distinct from each other.

In the repeated job swapping procedure leading the initial infeasible schedule π0 to the
target feasible schedule, the j-th job swapping is to swap the two jobs J`j and Jn+1+rj . The
resultant schedule after the j-th job swapping is denoted as πj , for j = 1, 2, . . . ,m. In Section
3.1, the job swapping is “regular” in the sense that `j = rj − 1 for all j, but now `j and rj
do not necessarily relate to each other. We remark that immediately after the swapping, a
job sorting is needed to restore the SPT order for the prefix and the SSF order for the suffix
(see the last paragraph before Section 3.1 for possible re-indexing the jobs).

The following Lemma 8 on the j-th job swapping, when `j < rj , is an extension of
Lemma 3.

I Lemma 8 ([9]). For each 1 ≤ j ≤ m, if the schedule πj−1 satisfies the first two properties
in Lemma 2 and `j < rj, then

the schedule πj satisfies the first two properties in Lemma 2;
the j-th job swapping decreases the total machine deterioration before the center job J2n+2
by δ`j

− δrj
= 2

∑rj

k=`j+1 xk;
the j-th job swapping increases the total completion time by at least

∑rj

k=`j+1 xk; and the
increment equals

∑rj

k=`j+1 xk if and only if `j > rj−1.

I Lemma 9 ([9]). For each 1 ≤ j ≤ m, if the schedule πj−1 satisfies the first two properties
in Lemma 2 and `j > rj, then

the schedule πj satisfies the first two properties in Lemma 2;
the j-th job swapping increases the total machine deterioration before the center job J2n+2
by δrj

− δ`j
= 2

∑`j

k=rj+1 xk;
the j-th job swapping increases the total completion time by at least

∑`j

k=rj+1 xk.

I Theorem 10. If there is a feasible schedule π to the instance I with the total completion
time no more than Q = Q0 +B, then there is a subset X1 ⊂ X of sum exactly B.

Proof. We start with a feasible schedule π, which has the first two properties stated in
Lemma 2 and for which the total completion time is no more than Q = Q0 +B. Excluding
the job J2n+2, using the first n+ 1 jobs and the last n+ 1 job in π, we determine the two
subsets of indices R = {r1, r2, . . . , rm} and L = {`1, `2, . . . , `m}, and define the corresponding
m job swappings. We then repeatedly apply the job swapping to convert the initial infeasible
schedule π0 into π.

In Case 1, the total machine deterioration of the first (n+ 1) jobs in π is
n∑
i=0

δi − 2
∑
`j<rj

rj∑
k=`j+1

xk + 2
∑
`j>rj

`j∑
k=rj+1

xk = ML0−δ,
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implying that

∑
`j<rj

rj∑
k=`j+1

xk −
∑
`j>rj

`j∑
k=rj+1

xk = B + 1
2δ, (6)

where δ ≥ 0 is the remaining machine maintenance level before the first MA.
On the other hand, the total completion time of jobs in the schedule π is at least

Q0 +
∑
`j<rj

rj∑
k=`j+1

xk +
∑
`j>rj

`j∑
k=rj+1

xk = Q0 +B + 1
2δ + 2

∑
`j>rj

`j∑
k=rj+1

xk.

It follows that 1) δ = 0; 2) there is no pair of swapping jobs J`j
and Jn+1+rj

such that
`j > rj ; and 3) `1 < r1 < `2 < r2 < . . . < `m < rm (from the third item of Lemma 8).
Therefore, from Eq. (6), for the subset X1 = ∪mj=1{x`j+1, x`j+2, . . . , xrj

},
∑
x∈X1

x = B.
That is, the instance X of the Partition problem is a yes-instance.

In the other two cases, one can similarly, though a bit more complex, show that the
instance X is a yes-instance. The detailed proofs are in [9]. J

The following theorem follows immediately from Theorems 4 and 10.

I Theorem 11. The general problem (1|pMA |
∑
j Cj) is NP-hard.

4 A 2-approximation algorithm for (1|p MA |∑j Cj)

Recall that in the problem (1|pMA |
∑
j Cj), we are given a set of jobs J = {Ji, i =

1, 2, . . . , n}, where each job Ji = (pi, δi) is specified by its non-preemptive processing time pi
and machine deterioration δi. The machine deterioration δi quantifies the decrement in the
machine maintenance level after processing the job Ji. The machine has an initial machine
maintenance level ML0, 0 ≤ ML0 ≤ MLmax, where MLmax is the maximum maintenance
level. The goal is to schedule the jobs and necessary MAs of any duration such that all jobs
can be processed without machine breakdown, and that the total completion time of jobs is
minimized.

In this section, we present a 2-approximation algorithm, denoted as A1, for the problem.
Furthermore, the algorithm A1 produces a feasible schedule π satisfying the first two
properties stated in Lemma 2, suggesting that if the third property is violated then a local
job swapping can further decrease the total completion time.

In the algorithm A1, the first step is to sort the jobs in SSF order (and thus we
assume without loss of generality that) p1 + δ1 ≤ p2 + δ2 ≤ . . . ≤ pn + δn. In the second
step, the separation job is determined to be Jk, where k is the maximum index such that∑k−1
i=1 δi ≤ ML0. In the last step, the jobs preceding the separation job Jk are re-sorted in

the SPT order, denoted by (Ji1 , Ji2 , . . . , Jik−1), and the jobs succeeding the separation job
are (Jk+1, Jk+2, . . . , Jn). That is, the solution schedule is

π = (Ji1 , Ji2 , . . . , Jik−1 ; MA1, Jk; MA2, Jk+1,MA3, Jk+2, . . . ,MAn−k+1, Jn),

where MA1 =
∑k
j=1 δj −ML0 and MAi = δk−1+i for i = 2, 3, . . . , n− k + 1.

Let π∗ denote an optimal schedule satisfying all properties stated in Lemma 2, and its
separation job is Jπ∗

k∗ :

π∗ = (Jπ∗
1
, Jπ∗

2
, . . . , Jπ∗

k∗−1
; MA∗1, Jπ∗

k∗ ; MA∗2, Jπ∗
k∗+1

,MA∗3, Jπ∗
k∗+2

, . . . ,MA∗n−k∗+1, Jπ∗
n
).
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Let Ci (C∗i , respectively) denote the completion time of the job Jπi (Jπ∗
i
, respectively) in the

schedule π (π∗, respectively); the makespans of π and π∗ are Cmax and C∗max, respectively,
and (recall that ML0 <

∑n
i=1 δi)

Cmax = C∗max =
n∑
i=1

(pi + δi)−ML0 . (7)

I Lemma 12. For every i ≥ k we have

n∑
j=i

(pj + δj) ≥
n∑
j=i

(pπ∗
j

+ δπ∗
j
).

Proof. Since p1 + δ1 ≤ p2 + δ2 ≤ . . . ≤ pn + δn,
∑n
j=i(pj + δj) is the maximum sum of

processing times and machine deterioration, over all possible subsets of (n− i+ 1) jobs. The
lemma thus holds. J

I Theorem 13. The algorithm A1 is an O(n logn)-time 2-approximation algorithm for the
problem (1|pMA |

∑
j Cj).

Proof. We compare the two schedules π obtained by the algorithm A1 and π∗ an optimal
schedule satisfying the properties stated in Lemma 2. Using Eq. (7) and Lemma 12, it is
clear that Ci ≤ C∗i for each i = n, n− 1, . . . ,max{k, k∗}.

Suppose k < k∗, then for each i such that k ≤ i < k∗, we have

Ci = Cn −
∑n
j=i+1(pj + δj) ≤ C∗n −

∑n
j=i+1(pπ∗

j
+ δπ∗

j
)

=
∑i
j=1(pπ∗

j
+ δπ∗

j
)−ML0 =

∑i
j=1 pπ∗

j
−
(

ML0−
∑i
j=1 δπ∗

j

)
≤

∑i
j=1 pπ∗

j
= C∗i .

Therefore, we have Ci ≤ C∗i for each i = n, n− 1, . . . , k. It follows that

n∑
i=k

Ci ≤
n∑
i=k

C∗i ≤ OPT. (8)

On the other hand, by the SPT order, the algorithm A1 achieves the minimum total
completion time of jobs of {J1, J2, . . . , Jk−1}. One clearly sees that in the optimal schedule
π∗, the sub-total completion time of {J1, J2, . . . , Jk−1} is upper-bounded by OPT. Therefore,

k−1∑
i=1

Ci ≤ OPT. (9)

Merging Eqs. (8) and (9), we conclude that the total completion time of schedule π is

k−1∑
i=1

Ci +
n∑
i=k

Ci ≤ 2 ·OPT.

This proves the performance ratio of 2 (which can also be shown tight on a trivial 2-job
instance I = {J1 = (1, λ), J2 = (λ− 1, 1),ML0 = MLmax = λ}, with a large λ). The running
time of the algorithm A1 is dominated by two times of sorting, each takes O(n logn) time. J
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5 Concluding remarks

We investigated the single machine scheduling with job-dependent machine deterioration,
recently introduced by Bock et al. [1], with the objective to minimize the total completion
time of jobs. In the partial maintenance case, we proved the NP-hardness for the general
problem, thus addressing the open problem left in the previous work. From the approximation
perspective, we designed a 2-approximation, for which the ratio 2 is tight on a trivial two-job
instance.

The 2-approximation algorithm is simple, but it is the first such work. Our major
contribution is the non-trivial NP-hardness proof, which might appear surprising at the first
glance since one has so much freedom in choosing the starting time and the duration of the
maintenance activities. It would be interesting to further study the (in-)approximability for
the problem. It would also be interesting to study the problem in the full maintenance case,
which was shown NP-hard, from the approximation algorithm perspective. Approximating
the problem in the full maintenance case seems more challenging, where we need to deal
with multiple bin-packing sub-problems, while the inter-relationship among them is much
complex.
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Abstract
We study variants of the capacitated vehicle routing problem. In the multiple depot capacitated
k-travelling repairmen problem (MD-CkTRP), we have a collection of clients to be served by one
vehicle in a fleet of k identical vehicles based at given depots. Each client has a given demand that
must be satisfied, and each vehicle can carry a total of at most Q demand before it must resupply
at its original depot. We wish to route the vehicles in a way that obeys the constraints while
minimizing the average time (latency) required to serve a client. This generalizes the Multi-depot
k-Travelling Repairman Problem (MD-kTRP) [9, 15] to the capacitated vehicle setting, and while
it has been previously studied [14, 16], no approximation algorithm with a proven ratio is known.

We give a 42.49-approximation to this general problem, and refine this constant to 25.49
when clients have unit demands. As far as we are aware, these are the first constant-factor
approximations for capacitated vehicle routing problems with a latency objective. We achieve
these results by developing a framework allowing us to solve a wider range of latency problems,
and crafting various orienteering-style oracles for use in this framework. We also show a simple
LP rounding algorithm has a better approximation ratio for the maximum coverage problem
with groups (MCG), first studied by Chekuri and Kumar [10], and use it as a subroutine in our
framework. Our approximation ratio for MD-CkTRP when restricted to uncapacitated setting
matches the best known bound for it [15]. With our framework, any improvements to our oracles
or our MCG approximation will result in improved approximations to the corresponding k-TRP
problem.
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1 Introduction

In many vehicle routing scenarios, minimizing response time is a much more important
objective than minimizing the distances vehicles travel. Minimizing response time is commonly
required in emergency response management, routing package delivery vehicles, school-bus
routing, and repairman routing, and is broadly referred to as the travelling repairman problem
(TRP).

Many variations of this problem have been studied in both the Operations Research and
approximation algorithms community. In this paper (like [10]), we consider the following
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version (and some interesting special cases), which we call the multiple-depot capacitated
k-travelling repairmen problem (MD-CkTRP). It has also been referred to as the multiple
depot cumulative capacitated vehicle routing problem with multiple trips [14, 16].

We are given a collection of k identical vehicles with capacity Q, that are initially located
at k depots (roots) R = {r1, r2, . . . , rk}, a set of clients C = {c1, c2, . . . , cn}, a function
w : C → Z>0 specifying the demand of each client, and an undirected metric d(u, v) over
the vertices u, v ∈ R ∪ C. We must find a routing for the vehicles to serve all clients in C,
minimizing the average service time (or latency) over all clients in C, subject to the following
constraints:
1. Each client must be completely served in one trip (called unsplit delivery).
2. Each vehicle can serve a total of at most Q demand, before it must return to its depot to

resupply.
We define a walk to be a sequence of distinct nodes traversed in a given order, and possibly
ending back at the starting node (when a walk does end back at its starting node, we call
this a tour1). A capacitated walk is a sequence of 0 or more tours rooted at ri, followed by
an additional walk from ri, where each tour/walk contains at most Q demand. A sequence
of only tours rooted at the same node form a flower.

A feasible solution to MD-CkTRP is a collection Fi (1 ≤ i ≤ k) of capacitated walks, one
for each vehicle that starts at a depot ri, and where each client c belongs to exactly one Fi.
The latency of a client c that belongs to a walk rooted at ri is the sum of the lengths of the
edges traversed by the i’th vehicle before visiting c.

This general problem models many scenarios in package delivery management, where
serving clients requires carrying a specific-sized package in a vehicle with limited space. One
can further generalize the model to the case where vehicles have non-uniform capacities, and
where each client c has a service delay δ(c), which is added to the latency of c and every client
served after c by that vehicle. We call this latter version MD-kTRP with service delays.

Another problem for which we propose a new (improved) approximation algorithm is the
Maximum Coverage Problem with Groups (MCG). The MCG appears as a key subroutine
in various approximation algorithms, including the framework we develop. The problem
is the following: suppose we are given a collection of elements I, a collection of subsets
S = {S1, S2, . . . , Sm} of I, and a partition of S into groups G1, G2, . . . G`. The objective is
to pick a collection of subsets from S maximizing the size of their union, such that at most
one subset from each group is picked.

This problem can be approximated directly via LP-rounding if |S| is polynomially
bounded in I (e.g. with pipage rounding [1]). It is special case of submodular function
optimization subject to matroid constraints [6], but in those settings the algorithm has a
running time that is polynomial in |S| while the version we consider can have |S| exponentially
large in |I|; in this case we are instead given an implicit representation of S. In such
settings, suppose we were given an oracle A(i, θ) that takes as input a group index i and
a weight function θ : I → {0, 1}, and returns some subset Sj ∈ Gi such that

∑
e∈Sj θ(e)

is maximized. Call A a (1/ρ)-approximate oracle if it returns a subset Sj ∈ Gi such that∑
e∈Sj θ(e) ≥

1
ρ maxS′∈Gi

∑
e∈S′ θ(e) (i.e. the returned subset covers at least a 1

ρ -fraction of
the optimal number of elements). In this paper, we focus on approximating MCG for which
|S| can be exponential in |I| and we have access to an oracle A as above; this version will
be useful in our approximation algorithms for MD-CkTRP. We will therefore never state S
explicitly, instead only giving the oracle A and the groups Gi defining the input instance.

1 This differs slightly from the typical definition of a tour, since a tour here must be composed of exactly
one cycle.
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For the approximation we develop, we will require a weighted version of A; that is, the
input θ will instead be a function returning any non-negative value. Many oracles (including
the ones we present) can be converted to this form with only a small loss in approximation
using standard techniques, such as scaling weights and duplicating elements.

1.1 Related Work
The special case of k = 1 and Q = ∞ for the MD-CkTRP is the Minimum Latency or
Travelling Repairman problem, which has been studied extensively [4, 3, 9, 13, 18]. This case
is known to be APX-hard in general metrics [5], and the 3.59-approximation of Chaudhuri et
al. [9] is the best known for this case. The special case where the metric is an edge-weighted
tree is also known to be NP-hard [17], and a PTAS for this was only recently found [18].

For the uncapacitated k-vehicle situation where r1 = r2 = · · · = rk and Q = ∞, an
8.497-approximation was known [11]; this was recently improved to 7.183 [15]. For the
multi-depot uncapacitated case, Chekuri and Kumar [10] proved a 24-approximation.2 This
was recently improved to 8.497 by Post and Swamy [15]. This improvement came from using
a time-index configuration LP that was introduced in [8] for the single vehicle case, while
extending it to the multi-vehicle setting and introducing an LP rounding algorithm.

The MCG was first considered by Chekuri and Kumar [10] in the context of their
approximation for the MD-kTRP. They developed the first approximation for the problem
given a (1/ρ)-approximate oracle, obtaining a simple greedy 1/(ρ+ 1)-approximation. The
submodular maximization problem with matroid constraints generalizes MCG: the instance
can be represented by a monotone submodular function f(S) denoting the number of elements
covered by the set S, and a partition matroidM over the sets in S that define the groups.
It was shown in [6] how to obtain a (1− 1/e)-approximation for this problem with running
time polynomial in |S| and |I|. When S is not given explicitly and |S| is exponentially large
in |I|, the result of Chekuri and Kumar [10] is currently the best known.

To the best of our knowledge, no approximation algorithm for any capacitated variant
of the travelling repairmen problem has been developed. Our specific problem has been
studied in the operations research community, but only heuristic solutions are currently
known [14, 16].

1.2 Our Results
We solve the capacitated variant of the travelling repairmen problem by building off of and
extending the techniques used previously for the multi-depot travelling repairmen problem
and for capacitated vehicle routing. Our algorithm uses ideas from both [10] and [15],
in particular the greedy combinatorial algorithm of [10], coupled with a new LP-based
approximation algorithm for the MCG inspired by [15]. One feature of our algorithm is
that if we restrict it to the case of Q = ∞ (i.e. the uncapacitated setting), we obtain an
approximation ratio matching the best known bound for that setting [15].

To achieve this, we develop a modular framework (Theorem 5) that uses a user-provided
oracle as a subroutine to solve different versions of the multi-depot travelling repairmen
problem. The exact problem we solve is captured by a collection of feasible walks, which are
separated over using the provided oracle as a black-box. Given such an oracle, we can build

2 The approximation ratio was stated in [10] to be 12, but due to a technical issue in their analysis, they
were off by a factor of 2.
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O(1)-approximation algorithms for the various latency problems we consider. We obtain the
following results with this approach:

I Theorem 1. There is a 25.49-approximation to the unit-demand capacitated multi-depot
k-TRP.

I Theorem 2. There is a 42.49-approximation to the unsplit-delivery capacitated multi-depot
k-TRP.

We show a simple LP-rounding gives an improved approximation for MCG, which we use
as a subroutine in our framework:

I Theorem 3. There is a (1− e−1/ρ)-approximation to the MCG given a (1/ρ)-approximate
oracle.

Theorems 1 and 2 are the first (constant) approximations for the MD-CkTRP, and
also extend to more general cases where we have non-uniform vehicles capacities. We may
additionally add service delays δ(c) at each client with an extra +0.5 loss in the ratio. These
extensions are covered in Section 5. The framework we develop to prove Theorems 1 and 2
is presented as Theorem 5. The algorithm we give to prove that theorem finds progressively
longer rooted flowers from each depot that cover a large number of clients, where the length
of these flowers is bounded against a rooted walk. Suppose that C is the set of clients to
be served/covered by a walk from ri, and B is a given budget on the length of the walk
(depending on our problem, walks might be capacitated). The single-depot orienteering
problem (SD-OP) is to find such a walk with total cost at most B starting at ri that covers
as many (distinct) clients of C as possible.

We can generalize the notion of capacitated walks/tours by giving a set Wi that contains
all ri-rooted walks vehicle i is allowed to traverse for the given problem. A capacitated
walk/tour is then a walk/flower built using only walks from Wi. We call these Wi-restricted
walks/flowers. Our approach centres around a black-box algorithm to (approximately) solve
the SD-OP problem over the set of walksWi; that is, only walks inWi are considered feasible
for vehicle i.

IDefinition 4. A (1/ρ, γ)-approximation to theWi-restricted SD-OP problem is an algorithm
that finds a walk of cost ≤ γB covering at least a 1/ρ-fraction of the number of clients on an
optimal walk.

If this black-box returns a flower rather than a walk, but with cost still bounded by the
optimal walk, then we call this a (1/ρ, γ)-flower approximation. We use this algorithm as an
oracle to find interesting walks/flowers over the sets Wi defined by the problem. With this,
we obtain the following result:

I Theorem 5. Let Wi be the set of all ri-rooted walks that can be feasibly traversed by
vehicle i. Then for constants ρ, γ, there is an O(1)-approximation algorithm to the Wi-
restricted multi-depot k-TRP, if we have a Wi-restricted (1/ρ, γ)-flower approximation to the
Wi-restricted SD-OP.

When Wi is the set of all possible walks from depot ri, we are solving the uncapacitated
multi-depot k-TRP (MD-kTRP), studied in [10, 15]. If we restrict Wi to only capacitated
walks (with capacity Q), we are solving the unsplit MD-CkTRP variant. Using Theorem 5,
we can find a constant-factor approximation to the MD-CkTRP given an oracle satisfying
definition 4 that returns flowers. We give oracles for the unit-demand and unsplit-delivery
cases in Section 4, which when combined with Theorem 5 yields Theorems 1 and 2.
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We start by proving Theorem 3 in Section 2. We then proceed to prove Theorem 5 in
Section 3, by showing how to combine ideas from [10], [9], and [15] to create a combinatorial
approximation algorithm for the problem, which requires solving an MCG instance as a
subroutine. Many of the proofs omitted in this extended abstract appear in the full version
of the paper.

An alternative approach for approximating latency problems that avoids explicitly solving
an MCG instance was introduced and expanded in [8, 15]. They solve a time-indexed
configuration LP directly for the multi-depot latency problem, and use randomized rounding
to obtain the final collection of tours. Our approach is in fact equivalent to theirs for
that specific problem; the combination of our greedy algorithm and MCG LP yields their
time-indexed LP. By writing the configuration LP for a more general covering problem
(namely MCG) and using that as a subroutine in our latency algorithm we feel that the
approach becomes more easily adaptable to different problems beyond latency. In a sense,
we unify and generalize the combinatorial algorithm of [10] and the LP rounding algorithm
of [15] in a framework using MCG rounding.

2 A (1 − e−1/ρ)-Approximation for MCG

We can express an instance of the MCG as an integer configuration program. For item e ∈ I
and group Gi, let xie be a binary variable indicating whether item e is being covered by a set
from group Gi or not. For a set S ∈ S, let zS be a binary variable indicating whether set S
is chosen to form a part of the solution. The linear relaxation of the configuration program
is given as (LP) (and its dual as (DP)).

max
∑
e,i

xie (LP)

s.t.
∑
i

xie ≤ 1 ∀e (αe) (1)∑
S∈Gi

zS ≤ 1 ∀i (βi) (2)

∑
S∈Gi:S3e

zS ≥ xie ∀e, i (θie) (3)

x, z ≥ 0.

min
∑
e

αe +
∑
i

βi (DP)

s.t. αe + θie ≥ 1 ∀e, i (4)∑
e∈S

θie ≤ βi ∀i, S ∈ Gi (5)

α, β, θ ≥ 0.

For every set S ∈ Gi we use θi(S) to denote
∑
e∈S θ

i
e. As stated before, we assume we are

given a approximate weighted oracle A(i, θ); that is, for each group i, given θie on elements it
will find a set S in group Gi such that θi(S) ≥ 1/ρmaxS′∈Gi θi(S′).
A will become our approximate separation oracle for the dual. Solving an exponential

size LP approximately using such an oracle is a standard technique following from the work
of Carr and Vempala [7]. We briefly describe how to obtain a good solution following the
more recent presentation in [12].

Define the polytope P(υ, a) = {(α, β, θ) : (4), (5),
∑
e αe + a

∑
i βi ≤ υ}. With our ρ-

approximate (weighted) oracle A, given some υ and point (α, β, θ), we can certify that either
(α, ρβ, θ) ∈ P(υ, 1), or give a hyperplane certifying that (α, β, θ) /∈ P(υ, ρ), as follows. For
each i, run A with element weights θie. If the returned set S has weight θ(S) > βi, then
since θi(S) ≥ (1/ρ) maxS′∈Gi θi(S′), we return the constraint (5) corresponding to i, S as
the separating hyperplane. The other constraints can be checked trivially. If no constraint
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is violated, we must have (α, ρβ, θ) ∈ P(υ, 1), and so the ellipsoid algorithm will certify
in polynomial time that either P(υ, ρ) = ∅, or give a point (α, ρβ, θ) ∈ P(υ, 1). Note that
P(OPTLP , 1) defines the collection of optimum solutions for (DP), and so OPTLP is the
smallest υ such that P(υ, 1) 6= ∅; we can determine this value by binary search on υ.

Suppose we run the ellipsoid algorithm with input OPTLP − ε for any ε > 0. This yields
a certificate showing P(OPTLP − ε, ρ) = ∅, consisting of polynomially-many separating
hyperplanes, including the inequality

∑
e αe + ρ

∑
i βi ≤ OPTLP − ε. Consider the dual

polytope of P(υ, a): Q(υ, a) = {(x, z) : (1),
∑
S∈Gi zS ≥ a, (3),

∑
e,i x

i
e ≥ υ}. By duality, the

certificate corresponds to a point (x, z) ∈ Q(OPTLP − ε, ρ) with polynomially-many non-zero
variables. Note that (x/ρ, z/ρ) is a feasible (approximate) solution to (LP); further, (x, z)
is almost a feasible solution with objective value OPTLP − ε that only violates (2).3 This
property will be crucial to our rounding scheme.

2.1 Rounding a Solution

To round the solution (x/ρ, z/ρ), we adapt the ideas used by Ageev and Svirendenko [1] for
proving an integrality gap for the standard Maximum Coverage problem. Observe that (LP)
is equivalent to the following linear program:

max
∑
e

min
(

1,
∑
S3e

zS

)
(LP2)

s.t.
∑
S∈Gi

zS ≤ 1 ∀i (6)

zS ∈ [0, 1].

Constraints (1) and (3) have been rewritten as the minimum in the objective, and so given
a fractional solution (x/ρ, z/ρ) to (LP), we can obtain a solution z/ρ to (LP2) of equal
objective value (i.e. at least OPTLP /ρ). (LP2) is now in pipage rounding form as defined
by [1], and so we can apply their pipage rounding algorithm to obtain an integer solution z̄.
We now just need to bound the integrality gap.

Let L(z) =
∑
e min(1,

∑
S3e zS). We will define a function F (z) that is both ε-convex

on the input z/ρ (as defined in [1]) and satisfies the following F/L lower bound condition.
Suppose that, for an optimal (fractional) solution ž, our sub-optimal solution z/ρ has the
property that F (z/ρ) ≥ L(ž)/α for some α. Let F ∗ be the value of an optimal integer
solution to (LP2); if L and F are coincident on binary inputs, then L(ž) ≥ F ∗, and so this
new condition would imply we have an α-approximation after pipage rounding. We claim
that the function F (z) =

∑
e(1−

∏
S3e(1− zS)) satisfies these conditions.

I Lemma 6. F (z) satisfies the F/L lower bound condition.

I Lemma 7. F (z/ρ) is ε-convex.

We can therefore apply pipage rounding on the fractional solution z/ρ, using the function
F to guide the algorithm. This yields a deterministic (1− e−1/ρ)-approximation to the MCG
problem.

3 We omit the ε for the remainder of this discussion for clarity.
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3 Proof of Theorem 5

We present the framework by generalizing and modifying the combinatorial algorithm of
Chekuri and Kumar [10] to suit our redefined problem. The key subroutine of their algorithm
is an approximation for the MCG, which they use to determine a set of tours to “stitch”
together for routing vehicles from each depot. Their algorithm uses an oracle as a black-box
to solve an orienteering-style problem in order to find “good” tours to use in their MCG
instance. In [10] these tours are built from an `-MST, using the algorithm from [9]; we will
instead use the user-provided black-box oracle for this task and show that we still obtain a
good approximation.

Recall we are given as input a set of clients C, a set of k depots R, a vehicle initially
located at each depot, and a metric distance function d. We wish to find Wi-restricted walks
for each vehicle i starting at their respective depots that collectively visit all clients, and
minimize the total latency of all walks. The latency of a walk W that starts at root r and
visits clients c1, c2, . . . cm is given by

∑m
i=1 dW (r, ci), where dW is the distance along the walk

between two points.
The computation is split up into phases, with each phase given a budget with which to

cover as many clients as possible. The latency of the clients we cover in this phase can then
be bounded by the total budget we have spent in this phase and all prior phases. Let j ≥ 1
be the current phase, and let Cuj be the set of uncovered clients at the start of phase j. Let
τ > 1 be some global constant to be chosen later, U ∈ [0, 1) be a number chosen uniform
randomly, and b = τU .

We define the multi-depot group orienteering problem (MD-GOP) as follows: given a
subset of clients C ′ to be visited and a hard budget B, find for each depot ri ∈ R a walk of
total length at most B such that all walks returned collectively cover as many (distinct) clients
in C ′ as possible. We define C(C ′, B) to be some algorithm that solves the Wi-restricted
version of this problem approximately. C is a Wi-restricted (1/ρ, γ)-flower approximation if
it finds a collection of k flowers rooted at the depots ri, such that each costs at most γB and
together they cover at least a 1

ρ -fraction of the vertices covered by an optimum MD-GOP
(walk) solution. Note that for the case of uncapacitated vehicles, a flower is simply a single
tour. Given this subroutine, the algorithm for phase j is as follows:

function Do-Phase(j)
Run C(Cuj , bτ j) with clients Cuj and budget bτ j .
Traverse the returned flower for each ri in either direction, chosen uniformly at random.
Remove all covered clients from Cuj .

end function

We build a bi-criteria (1− e−1/ρ, γ)-flower approximation algorithm C, given a user-provided
oracle A as per the Theorem, using our MCG approximation (Theorem 3). Let SW be the
set of vertices contained in the walk W . Let WB

i be the set of walks in Wi of length at most
B. Let Gi = {SW : W ∈ WB

i } be the group of all Wi-restricted walks of total length at most
B. This forms a valid MCG instance, whose solution yields a collection of k walks, each of
cost at most B that collectively cover as many clients as possible.

This instance can be approximately solved as follows. Using A, we can find flowers in Gi
covering as many new clients as possible, relative to the optimal walk. Since A finds a flower
covering at least a 1/ρ-fraction of the optimal number of new clients, by Theorem 3 the final
solution covers a (1− e−1/ρ)-fraction of the optimal number of clients, exceeding the budget
for each flower by a factor of γ. Thus, C is a (1− e−1/ρ, γ)-flower approximation.
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3.1 Analysis
We now prove that we have a constant-factor approximation to the Wi-restricted multi-depot
k-TRP, thus completing the proof of Theorem 5. Fix an optimal solution OPT , and let Oj
denote the set of clients in OPT that have latency ≤ bτ j . Let Cvj be the clients we have
visited by the end of phase j. We define Cv0 to be the empty set.

I Lemma 8. At the end of phase j, we have covered at least (1− e−1/ρ)|Oj − Cvj−1| clients.

Let nOPTj be the number of clients in OPT whose latency is more than bτ j , and let nj
be the number of clients that were left uncovered at the end of phase j. For j ≤ 0, we define
nOPTj and nj to be n. Let Bj be the budget of phase j; for j ≥ 1 this is bτ j , and for j ≤ 0
we define it to be 0. For notational convenience, define ∆j = Bj −Bj−1.

I Lemma 9. For all j, nj ≤ e−1/ρnj−1 + (1− e−1/ρ)nOPTj .

I Lemma 10. In expectation, the latency of our solution is at most:

γ(τ + 1)
2(τ − 1)

∑
j≥1

Bj(nj−1 − nj) = γ(τ + 1)
2(τ − 1)

∑
j≥1

nj−1∆j . (OUR-UB)

I Lemma 11. In expectation, the latency of OPT is at least:

ln τ
τ − 1

∑
j≥1

nOPTj−1 ∆j . (OPT-LB)

Proof of Theorem 5. By summing Lemma 9 over all j, we see that

∑
j≥1

∆jnj−1 ≤ e−1/ρ

∑
j≥1

∆jnj−2 + (e1/ρ − 1)
∑
j≥1

∆jn
OPT
j−1


= τe−1/ρ

∑
j≥1

∆jnj−1 + (1− e−1/ρ)(τ − 1)
ln τ

ln τ
τ − 1

∑
j≥1

∆jn
OPT
j−1

=⇒ (OUR-UB) ≤ γ(τ + 1)(1− e−1/ρ)
2 ln(τ)(1− τe−1/ρ)

(OPT-LB).

Our algorithm is therefore a γ(τ+1)(1−e−1/ρ)
2 ln(τ)(1−τe−1/ρ) -approximation for any constant 1 < τ < e1/ρ,

satisfying the requirements of the theorem. J

3.2 An Uncapacitated Oracle
We now give a (1, 2 + ε)-approximate oracle A for the uncapacitated multi-depot k-TRP
(i.e. Wi is all possible walks from ri). This oracle is used in [10] and earlier works for
single-depot latency problems. First we describe an unweighted oracle (i.e. each node is
assigned θie ∈ {0, 1}); we later describe how to extend it to the weighted version.

Using the algorithm in [9] for finding an `-MST, we find a tree that covers at least as
many clients as the optimal ri-rooted walk with budget B, and costs at most (1 + ε) times
the optimal walk (see Theorem 1 in [9]). Since the optimal walk costs at most B, we find
the largest ` such that the returned `-MST has cost at most (1 + ε)B. Such a tree will cover
at least as many clients as the optimal walk. Double the edges of this tree, and convert to a
tour by shortcutting past repeated vertices.
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For the case that we have weights on the nodes, at a loss of at most 1− ε′ on the total
weight of nodes we can cover, we can reduce the problem to the unweighted case by scaling
and discarding nodes with very small weight (so that maxe θie

mine′ θie′
∈ O(n2)) and then duplicating

vertices. This gives a (1− ε′, 2 + ε)-approximate (weighted) oracle A (for any ε, ε′ > 0).
This leads to the following result for the uncapacitated MD-kTRP, which matches the

current-best given in [15].

I Corollary 12. There is an 8.497-approximation to the uncapacitated multiple depot k-TRP
(τ ≈ 1.405).

4 Capacitated Oracles and Proofs of Thms. 1 and 2

Previously, we showed that to solve the MD-CkTRP, we can use Theorem 5 and restrict Wi

to only capacitated ri-rooted walks. We thus need to find an oracle that can solve the related
orienteering problem over this set of walks. Using standard techniques as before, we can
reduce the weighted version of the problem (with weights on the nodes) to the unweighted
version, which we present below.

The problem the oracle must solve is the following, which we call the unsplit capacitated
orienteering problem (U-COP). We are given a collection of clients C, a root node r, a budget
B, a vehicle capacity Q, a client demand function w : C → Z>0, and an undirected distance
metric d. We wish to find an r-rooted capacitated walk of total length at most B, where
r must be re-visited after serving at most Q client demand, and we wish to cover as many
clients as possible. Call the optimal number of clients `OPT , and let d(W ) denote the length
of the walk W with respect to the metric d, and similarly for flowers and tours.

We give a (1, 10 + ε)-flower approximation algorithm, where the flower we find has total
cost at most (10+ ε)B and collectively covers `OPT clients, respecting the capacity constraint.
We also consider a special case where w(c) = 1 for all c ∈ C ′; we call this the unit-demand
capacitated orienteering problem (1-COP). With this demand constraint, we can improve the
above ratio to (1, 6 + ε).

An optimum solution to either problem consists of a sequence of tours (each visiting at
most Q demands) followed by at most one walk of total demand at most Q. If we convert
that last walk to a tour by returning to the root, we obtain a capacitated flower of cost at
most 2B. We will restrict our attention to finding such flowers.

The algorithms for 1-COP and U-COP are very similar, so we describe both simultaneously.
If there is a difference between the two algorithms, we place the difference for U-COP in
(parentheses). It will be useful to consider the input metric as the complete graph G = (V,E)
with V = C ∪ {r} and edge costs cG(uv) = d(u, v) for all uv ∈ E.
1. Let G∗ be a new graph obtained from G by adding a “terminal” client c′ to each c ∈ C

and edge cc′ between client c and its new terminal client; the cost of these new edges will
be 1

Qd(r, c)w(c) (for U-COP, use 2
Qd(r, c)w(c)). Let GT be the “terminal” graph obtained

from the metric completion of G∗, with all non-terminal client vertices removed.
2. Using the `-MST approximation of Chaudhuri et al. [9], find a tree of cost at most 3B+ ε

(5B + ε) in GT that covers as many terminals as possible. Doubling this tree produces a
tour; call this tour O.

3. Convert O back into a tour in G∗ that visits the same number of terminal clients of no
greater cost (always possible since GT is the metric completion of G∗). Prune away the
terminals and short-cut to obtain a new tour O′ in G.

4. Let G′ be a unit-weighted complete graph containing r and w(c) copies of each client
c ∈ C; let Ωc denote the copies of c in G′ (so |Ωc| = w(c)). If clients u, v were distance
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cG(uv) apart in G, then for all vertices i ∈ Ωu, j ∈ Ωv, cG′(ij) = cG(uv). Define edge
costs to r similarly. For each i, j ∈ Ωc, let cG′(ij) = 0.4

5. Convert O′ into a split-delivery, capacitated flower as follows. Map O′ onto G′ without
increasing the cost while covering

∑
c∈O′ w(c) clients (possible by construction). Number

the vertices of this tour in the order they are visited, and pick a random offset R in the
range [1, Q]. Walk along the tour starting at R, and cut away a strip of the tour every Q
vertices (short-cutting past r). Add an edge at each end of a strip back to r, to make
each strip an r-rooted tour. 5

6. For the 1-COP, return this capacitated flower. For the U-COP, we can “unsplit” our
solution as follows. Note that if some client’s delivery is split, it will be covered by at
most two tours; remove any such c from both tours and place it in its own separate tour.
Return the resulting capacitated flower.

We now prove the above procedure is in fact a good approximation for both problems.
Consider a fixed optimal capacitated walk WOPT of cost OPT which covers a set of clients
COPT ; let `OPT = |COPT |. Let TSPOPT be an optimal TSP tour that covers the clients
COPT , and let FOPT be an optimal capacitated flower; one must exist with cost at most
2OPT .

We utilize two classic results in capacitated vehicle routing.

I Lemma 13. The following inequalities hold for the 1-COP and U-COP:

d(TSPOPT ) ≤ d(FOPT ) ≤ 2OPT (7)
2
Q

∑
c∈COPT

d(c, r) ≤ d(FOPT ) ≤ 2OPT. (8)

(8) can be strengthened for the case where w(c) is any integer ≥ 1:

I Lemma 14. We have the following additional inequality for the U-COP:
2
Q

∑
c∈COPT

d(r, c)w(c) ≤ d(FOPT ) ≤ 2OPT. (9)

For each set of clients H define SH = 1
Q

∑
c∈H d(r, c)w(c); by (9), SCOPT ≤ B. Note that

WOPT can be converted into a walk in G∗ of cost at most B + 2SCOPT ≤ 3B (for U-COP,
B + 4SCOPT ≤ 5B) that visits COPT and the corresponding terminal clients. We can further
convert WOPT into a walk that visits only terminal clients (and so a walk in GT ), of no
greater cost, that covers `OPT terminals. Thus, the `-MST approximation of Chaudhuri et
al. [9] will find a tree of cost at most 3B + ε (5B + ε) in GT that covers `OPT terminals.6
From this and by construction, the tour O′ must have cost at most 6B − 2SO′ (10B − 4SO′).

The expected cost of the extra edges added in step 5 is 2SO′ , so some offset R exists
such that we pay at most this amount. Thus, we can cut up O′ into smaller tours covering
at most Q demand, with total cost 6B (10B − 2SO′), yielding a (1, 6 + ε)-approximation
to the 1-COP. For the U-COP, the cost of the extra tours in step 6 is also 2SO′ , yielding
a (1, 10 + ε)-approximation. Extending these results to the weighted case, we obtain a
(1− ε′, 6 + ε)-approximation for 1-COP and (1− ε′, 10 + ε)-approximation for U-COP for any
ε′, ε > 0.

4 This construction was first described in [2], and can be used to prove Inequality 9.
5 If Q is not poly-bounded, note there is a simple poly-time algorithm to do this that avoids explicitly
building the graph and trying more than |V | values of R.

6 We omit the ε from the rest of the discussion for clarity.
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Proof of Theorems 1 and 2. Combining Theorem 5 with the (1−ε′, 6+ε)-approximation for
1-COP yields a 25.49-approximation to the unit-demand MD-CkTRP; similarly, combining
Theorem 5 with the (1− ε′, 10 + ε)-approximation for U-COP yields a 42.49-approximation
to the MD-CkTRP (τ ≈ 1.616). J

5 Extensions to MD-CkTRP

We briefly consider two extensions to our problem - non-uniform vehicle capacities, and
service delays. In the first case, suppose vehicle i has capacity Qi. Adjust the definition of
Wi to be all walks of capacity ≤ Qi instead of Q; note that the approximation guarantees of
our oracles do not depend on the capacity of the vehicle. Thus, our results extend to vehicles
with non-uniform capacities.

To handle service delays, suppose each client c has a service time δ(c) ≥ 0, which adds
to the time a vehicle must spend traversing its walk (we assume δ(ri) = 0 for each root
ri). We still wish to minimize the total latency of all clients visited. Define a new metric
d′(u, v) = d(u, v) + δ(u)+δ(v)

2 . Solve the MD-CkTRP for the new instance (with metric d′).
The latency of each node u in the solution returned will be the sum of the edge-lengths, plus
the sum of the delays of all the nodes visited before u, plus δ(u)/2. Thus, at an extra loss
of +0.5 in the approximation, the solution will be a solution for the corresponding problem
with service delays.

6 Concluding Remarks

We presented a general framework to obtain a constant approximation algorithm for the
capacitated multi-depot k-TRP, using bi-criteria approximation algorithms for orienteering
style problems, giving the first constant approximations for MD-CkTRP. A consequence of
this approach is if our oracles for single-depot (or multi-depot) orienteering are improved,
we would have improved approximations for multi-depot (capacitated and uncapacitated)
k-TRP.
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Abstract
In discrete convex analysis, the scaling and proximity properties for the class of L\-convex func-
tions were established more than a decade ago and have been used to design efficient minimization
algorithms. For the larger class of integrally convex functions of n variables, we show here that
the scaling property only holds when n ≤ 2, while a proximity theorem can be established for
any n, but only with an exponential bound. This is, however, sufficient to extend the classical
logarithmic complexity result for minimizing a discretely convex function in one dimension to
the case of integrally convex functions in two dimensions. Furthermore, we identified a new
class of discrete convex functions, called directed integrally convex functions, which is strictly
between the classes of L\-convex and integrally convex functions but enjoys the same scaling and
proximity properties that hold for L\-convex functions.
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1 Introduction

The proximity-scaling approach is a fundamental technique in designing efficient algorithms
for discrete or combinatorial optimization. For a function f : Zn → R ∪ {+∞} in integer
variables and a positive integer α, called scaling unit, the α-scaling of f is the function
fα defined by fα(x) = f(αx) (x ∈ Zn). A proximity theorem is a result guaranteeing
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the quality of the obtained minimizer of fα as an approximation to the minimizer of f is
guaranteed by a proximity theorem. The proximity-scaling approach consists in applying
this idea for a decreasing sequence of α, often by halving the scale unit α. A generic form of
a proximity-scaling algorithm may be described as follows, where K∞ denotes the `∞-size of
the effective domain of f , and B(n, α) denotes the proximity bound in `∞-distance.

S0: Find an initial vector x with f(x) < +∞, and set α := 2dlog2 K∞e.
S1: Find a vector y with ‖αy‖∞ ≤ B(n, α) that is a (local) minimizer of f̃(y) = f(x+ αy),

and set x := x+ αy.
S2: If α = 1, then stop (x is a minimizer of f).
S3: Set α := α/2, and go to S1.

The algorithm consists of O(logK∞) scaling phases. This approach has been particularly
successful for resource allocation problems [6, 7, 8, 13] and for convex network flow problems
(under the name of “capacity scaling”) [1, 11, 12]. Different types of proximity theorems have
also been investigated: proximity between integral and real optimal solutions, among others.

In discrete convex analysis [15], a variety of discrete convex functions are considered.
A function f : Zn → R ∪ {+∞} is called integrally convex if its local convex extension
f̃ : Rn → R ∪ {+∞} is (globally) convex in the ordinary sense, where f̃ is defined as the
collection of convex extensions of f in each unit hypercube [a,a + 1]R with a ∈ Zn; see
Section 2 for precise statements.

For a function f : Zn → R∪{+∞}, dom f = {x ∈ Zn | f(x) < +∞} is called the effective
domain of f . Discrete midpoint convexity of f for x, y ∈ Zn means

f(x) + f(y) ≥ f
(⌈

x+ y

2

⌉)
+ f

(⌊
x+ y

2

⌋)
, (1.1)

where d·e and b·c denote the integer vectors obtained by componentwise rounding-up and
rounding-down to the nearest integers, respectively. For x, y ∈ Zn, x ∨ y and x ∧ y denote
the vectors of componentwise maximum and minimum of x and y, respectively.

A function f : Zn → R ∪ {+∞} is called L\-convex if it satisfies one of the equivalent
conditions (a) to (d) below:
(a) f is integrally convex and submodular: f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y) (x, y ∈ Zn).
(b) f satisfies discrete midpoint convexity (1.1) for all x, y ∈ Zn.
(c) f satisfies discrete midpoint convexity (1.1) for all x, y ∈ Zn with ‖x− y‖∞ ≤ 2, and the

effective domain has the property: x, y ∈ dom f ⇒ d(x+ y)/2e , b(x+ y)/2c ∈ dom f .
(d) f satisfies translation-submodularity: f(x) + f(y) ≥ f((x− µ1) ∨ y) + f(x ∧ (y + µ1))

(µ ∈ Z+, x, y ∈ Zn), where 1 = (1, 1, . . . , 1).
A function f : Zn → R ∪ {+∞} is called M\-convex if it has the exchange property:

For any x, y ∈ dom f and any i ∈ supp+(x − y), there exists j ∈ supp−(x − y) ∪ {0} such
that f(x) + f(y) ≥ f(x − 1i + 1j) + f(y + 1i − 1j), where supp+(z) = {i | zi > 0} and
supp−(z) = {j | zj < 0} for z ∈ Zn, 1i denotes the i-th unit vector (0, . . . , 0, 1, 0, . . . , 0) if
1 ≤ i ≤ n, and 1i = 0 if i = 0.

Integrally convex functions constitute a common framework for discrete convex functions,
including separable convex, L\-convex and M\-convex functions as well as L\2-convex and
M\

2-convex functions [15], and BS-convex and UJ-convex functions [3]. The concept of integral
convexity is used in formulating discrete fixed point theorems [9, 19], and designing solution
algorithms for discrete systems of nonlinear equations [17, 18]. In game theory the integral
concavity of payoff functions guarantees the existence of a pure strategy equilibrium in finite
symmetric games [10].
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The scaling operation preserves L\-convexity, that is, if f is L\-convex, then fα is L\-
convex. M\-convexity is subtle in this respect: for an M\-convex function f , fα remains
M\-convex if n ≤ 2, while this is not always the case if n ≥ 3. However, nothing is known
about scaling of integrally convex functions.

As for proximity theorems, the following facts are known for L\-convex and M\-convex
functions.

I Theorem 1.1 ([12, 14, 15]). Let f : Zn → R ∪ {+∞}, α ∈ Z++ (positive integer), and
xα ∈ dom f .
(1) Suppose that f is an L\-convex function. If f(xα) ≤ f(xα + αd) for all d ∈ {0, 1}n ∪
{0,−1}n, then there exists a minimizer x∗ of f with ‖xα − x∗‖∞ ≤ n(α− 1).
(2) Suppose that f is an M\-convex function. If f(xα) ≤ f(xα+αd) for all d ∈ {1i,−1i (1 ≤
i ≤ n), 1i − 1j (i 6= j)}, then there exists a minimizer x∗ of f with ‖xα − x∗‖∞ ≤ n(α− 1).

Based on the above results, efficient algorithms for minimizing L\-convex and M\-convex
functions have been successfully designed with the proximity-scaling approach (see [15]).
Proximity theorems are also available for L\2-convex and M\

2-convex functions [16] and L-
convex functions on graphs [5]. However, no proximity theorem is proved for integrally
convex functions.

The following are the new findings of this paper about integrally convex functions:
A “box-barrier property” (Theorem 2.3), which allows us to restrict the search for a
global minimum.
Integral convexity is preserved under scaling if n = 2 (Theorem 3.1), but not when n ≥ 3
(Example 3.3).
A proximity theorem with an exponential bound [(n + 1)!/2n−1](α − 1) holds for all
n (Theorem 4.3), but does not hold with the smaller bound n(α − 1) when n ≥ 3
(Examples 4.1, 4.2).

Thus, to extend the known proximity and scaling results for L\-convex functions to a wider
class of functions, a novel concept of “directed integrally convex functions” is defined. For
this new class of functions the following properties hold:

The new class coincides with the class of integrally convex functions for n ≤ 2, and is a
proper subclass of this for n ≥ 3 (Proposition 5.1 (1)).
The new class is a proper superclass of L\-convex functions for all n ≥ 2 (Proposition 5.1
(2)).
Directed integral convexity is preserved under scaling for all n (Theorem 5.6).
A proximity theorem with bound n(α− 1) holds for all n (Theorem 5.7).

As a consequence of our proximity and scaling results, we derive that:
When n is fixed, a (directed) integrally convex function can be minimized in O(logK∞)
time by standard proximity-scaling algorithms, where K∞ denotes the `∞-size of dom f .

2 Integrally Convex Functions

For x ∈ Rn the integer neighborhood of x is defined as N(x) = {z ∈ Zn | |xi − zi| < 1 (i =
1, . . . , n)}. For a function f : Zn → R∪{+∞} the local convex extension f̃ : Rn → R∪{+∞}
of f is defined as the union of all convex envelopes of f on N(x) as follows:

f̃(x) = min{
∑

y∈N(x)

λyf(y) |
∑

y∈N(x)

λyy = x,
∑

y∈N(x)

λy = 1, λy ≥ 0 (∀y ∈ N(x))} (x ∈ Rn).

(2.1)

ISAAC 2016



57:4 Scaling and Proximity Properties of Integrally Convex Functions

If f̃ is convex on Rn, then f is said to be integrally convex. A set S ⊆ Zn is said to be
integrally convex if, for any x ∈ Rn, x ∈ S implies x ∈ S ∩N(x), i.e., if the convex hull of S
coincides with the union of the convex hulls of S ∩N(x) for x ∈ Rn.

Integral convexity can be characterized by a local condition. The following theorem is
proved in [2] when the effective domain is an integer interval (discrete rectangle).

I Theorem 2.1 ([2, Proposition 3.3]). Let f : Zn → R∪{+∞} be a function with an integrally
convex effective domain. Then the following properties, (a) and (b), are equivalent: (a) f is
integrally convex. (b) For every x, y ∈ dom f with ‖x− y‖∞ = 2 we have

f̃

(
x+ y

2

)
≤ f(x) + f(y)

2 . (2.2)

I Theorem 2.2 ([2, Proposition 3.1]; see also [15, Theorem 3.21]). Let f : Zn → R ∪ {+∞}
be an integrally convex function and x∗ ∈ dom f . Then x∗ is a minimizer of f if and only if
f(x∗) ≤ f(x∗ + d) for all d ∈ {−1, 0,+1}n.

The local characterization of global minima stated in Theorem 2.2 can be generalized to
the following form, which we use in Section 5.4.

I Theorem 2.3 (Box-barrier property). Let f : Zn → R ∪ {+∞} be an integrally convex
function, and let p ∈ (Z ∪ {+∞})n and q ∈ (Z ∪ {−∞})n, where q ≤ p. Let S = {x ∈ Zn |
qi < x < pi (∀i)}, W+

i = {x ∈ Zn | xi = pi, qj ≤ xj ≤ pj (j 6= i)}, W−i = {x ∈ Zn | xi =
qi, qj ≤ xj ≤ pj (j 6= i)} (i = 1, . . . , n), W =

⋃n
i=1(W+

i ∪W
−
i ), and x̂ ∈ S ∩ dom f . If

f(x̂) ≤ f(y) for all y ∈W , then f(x̂) ≤ f(z) for all z ∈ Zn \ S.

Proof. Let U =
⋃n
i=1{x ∈ Rn | xi ∈ {pi, qi}, qj ≤ xj ≤ pj (j 6= i)}, for which we have

U ∩ Zn = W . For z ∈ Zn \ S, the line segment connecting x̂ and z intersects U at a point,
say, u ∈ Rn. Then N(u) is contained in W . Since the local convex extension f̃(u) is a convex
combination of f(y)’s with y ∈ N(u) and f(y) ≥ f(x̂) for every y ∈W , we have f̃(u) ≥ f(x̂).
On the other hand, it follows from integral convexity that f̃(u) ≤ (1−λ)f(x̂)+λf(z) for some
λ with 0 < λ ≤ 1. Hence f(x̂) ≤ f̃(u) ≤ (1−λ)f(x̂) +λf(z), and therefore, f(x̂) ≤ f(z). J

3 Scaling Operation for Integrally Convex Functions

For f : Zn → R∪{+∞} and α ∈ Z++, the α-scaling of f is the function fα : Zn → R∪{+∞}
defined by fα(x) = f(αx) (x ∈ Zn). When n = 2, integral convexity is preserved under
scaling.

I Theorem 3.1. Let f : Z2 → R ∪ {+∞} be an integrally convex function and α ∈ Z++.
Then the scaled function fα is integrally convex.

Proof. First note that a set S ⊆ Z2 is an integrally convex set if and only if it can be
represented as S = {(x1, x2) ∈ Z2 | aix1+bix2 ≤ ci (i = 1, . . . ,m)} for some ai, bi ∈ {−1, 0, 1}
and ci ∈ Z (i = 1, . . . ,m). Hence,

dom fα = (dom f ∩ (αZ)2)/α is an integrally convex set. By Theorem 2.1 we only have
to check condition (2.2) for fα with x = (0, 0) and y = (2, 0), (2, 1), (2, 2), i.e.,

f(0, 0) + f(2α, 0) ≥ 2f(α, 0),
f(0, 0) + f(2α, 2α) ≥ 2f(α, α),
f(0, 0) + f(2α, α) ≥ f(α, α) + f(α, 0).

The first two inequalities follow easily from integral convexity of f , whereas the third inequality
is a special case of “basic parallelogram inequality” (3.1) below with a = b = α. J
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I Proposition 3.2. For an integrally convex function f : Z2 → R ∪ {+∞} we have

f(0, 0) + f(a+ b, a) ≥ f(a, a) + f(b, 0) (a, b ∈ Z+). (3.1)

Proof. We may assume a, b ≥ 1 and {(0, 0), (a + b, a)} ⊆ dom f , which implies k(1, 1) +
l(1, 0) ∈ dom f for all (k, l) with 0 ≤ k ≤ a, 0 ≤ l ≤ b. We use notation fx(z) = f(x + z).
For each x ∈ dom f we have fx(0, 0) + fx(2, 1) ≥ fx(1, 1) + fx(1, 0) by integral convexity of
f . By adding these inequalities for x = k(1, 1) + l(1, 0) with 0 ≤ k ≤ a− 1 and 0 ≤ l ≤ b− 1,
we obtain (3.1). Note that all terms involved in these inequalities are finite. J

If n ≥ 3, fα is not always integrally convex, as is demonstrated by the following example.

I Example 3.3. Consider the integrally convex function f : Z3 → R ∪ {+∞} defined on
dom f = [(0, 0, 0), (4, 2, 2)]Z by

x2 f(x1, x2, 0)
2 3 1 1 1 3
1 1 0 0 0 0
0 0 0 0 0 3

0 1 2 3 4 x1

x2 f(x1, x2, 1)
2 2 1 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0

0 1 2 3 4 x1

x2 f(x1, x2, 2)
2 3 2 1 0 0
1 2 1 0 0 0
0 3 0 0 0 3

0 1 2 3 4 x1

For the scaling with α = 2, we have a failure of integral convexity: f(0, 0, 0) + f(4, 2, 2) <
min[f(2, 2, 2) + f(2, 0, 0), f(2, 2, 0) + f(2, 0, 2)]. The set S = argmin f = {x | f(x) = 0} is
an integrally convex set, and Sα = {x | αx ∈ S} = {(0, 0, 0), (1, 0, 0), (1, 0, 1), (2, 1, 1)} is
not. J

Seeing that the class of L\-convex functions is stable under scaling, while this is not true
for the superclass of integrally convex functions, naturally leads to the question of finding an
intermediate class of functions that is stable under scaling. An answer to this question will
be given in Section 5.3.

4 Proximity Results for Integrally Convex Functions

In this section we show that a proximity theorem holds for integrally convex functions. More
precisely, we show that if xα is an α-local minimizer of an integrally convex function f , i.e.,
f(xα) ≤ f(xα + αd) for all d ∈ {−1, 0,+1}n, then there exists a global minimizer x∗ of f for
which the `∞-distance from xα is bounded by an appropriate function B(n, α). However,
we first show that the bounding function B(n, α) must be at least quadratic in n, so that
B(n, α) = n(α− 1), which applies to L\-convex functions, is not valid in this case.

4.1 Lower bounds for proximity distance
For integrally convex functions with n ≥ 3, the bound n(α− 1) is not valid.

I Example 4.1. Consider the integrally convex function f : Z3 → R ∪ {+∞} defined on
dom f = [(0, 0, 0), (4, 2, 2)]Z by

x2 f(x1, x2, 0)
2 5 1 0 0 4
1 2 −1 −2 0 3
0 0 −1 0 1 6

0 1 2 3 4 x1

x2 f(x1, x2, 1)
2 4 1 −2 −3 −1
1 2 −1 −2 −3 −1
0 2 −1 −2 0 5

0 1 2 3 4 x1

x2 f(x1, x2, 2)
2 6 3 0 −3 −4
1 6 1 −2 −3 1
0 6 2 0 3 6

0 1 2 3 4 x1
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Figure 1 Example for O(n2) lower bound for proximity distance (m = 3).

and let α = 2. For xα = (0, 0, 0) we have f(xα) = 0, f(xα) ≤ f(xα + 2d) for d =
(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1). Hence xα = (0, 0, 0) is α-local
minimal. A unique minimizer of f is located at x∗ = (4, 2, 2) with f(x∗) = −4 and
‖xα−x∗‖∞ = 4. The `∞-distance between xα and x∗ is strictly larger than n(α−1) = 3. J

I Example 4.2. For a positive integer m ≥ 1, we consider two bipartite graphs G1 and
G2 on vertex bipartition ({0+, 1+, . . . ,m+}, {0−, 1−, . . . ,m−}); see Fig. 1. The edge sets
of G1 and G2 are defined respectively as E1 = {(0+, 0−)} ∪ {(i+, j−) | i, j = 1, . . . ,m}
and E2 = {(0+, j−) | j = 1, . . . ,m} ∪ {(i+, 0−) | i = 1, . . . ,m}. Let V + = {1+, . . . ,m+},
V − = {1−, . . . ,m−}, and n = 2m+ 2. Consider X1, X2 ⊆ Zn defined by

X1 =


m∑
i=1

m∑
j=1

λij(1i+−1j−) + λ0(10+−10−) λij ∈ [0, α− 1]Z (i, j = 1, . . . ,m)
λ0 ∈ [0,m2(α− 1)]Z

 ,

X2 =


m∑
i=1

µi(1i+−10−) +
m∑
j=1

νj(10+−1j−) µi ∈ [0,m(α− 1)]Z (i = 1, . . . ,m)
νj ∈ [0,m(α− 1)]Z (j = 1, . . . ,m)

 ,

where X1 and X2 represent the sets of boundaries of flows in G1 and G2, respectively. We
define functions f1, f2 : Zn → R ∪ {+∞} with dom f1 = X1 and dom f2 = X2 by

f1(x) =
{
x(V −) (x ∈ X1)
+∞ (x 6∈ X1), f2(x) =

{
x(V −) (x ∈ X2)
+∞ (x 6∈ X2) (x ∈ Zn),

where x(U) =
∑
u∈U xu for any set U of vertices. Both f1 and f2 are M-convex, and hence

f = f1 + f2 is an M2-convex function, which is integrally convex (see [15, Section 8.3.1]).
We have dom f = X1 ∩X2 and f is linear on dom f . As is easily verified, f has a unique
minimizer at x∗ defined by

x∗u =m(α− 1) (u ∈ V +),
= −m(α− 1) (u ∈ V −),
=m2(α− 1) (u = 0+),
= −m2(α− 1) (u = 0−),

which corresponds to λ0 = m2(α− 1), λij = α− 1, µi = νj = m(α− 1) (i, j = 1, . . . ,m).
Let xα = 0. This is α-local minimal, since dom f ∩ {−α, 0, α}n = {0}, which can be

verified easily. With ‖x∗−xα‖∞ = m2(α−1) = (n−2)2(α−1)/4, this example demonstrates
a quadratic lower bound (n− 2)2(α− 1)/4 for the proximity distance for integrally convex
functions. J

We have seen that the proximity theorem with linear bound B(n, α) = n(α− 1), which is
valid for L\-convex functions, does not hold for all integrally convex functions. Thus, we may
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ask if there is a subclass of integrally convex functions, including L\-convex functions, that
admits such a linear proximity bound. An answer to this question will be given in Section 5.4.
Another question is whether we can establish a proximity theorem at all by enlarging the
proximity bound. This question is answered next.

4.2 Theorem
I Theorem 4.3. Let f : Zn → R ∪ {+∞} be an integrally convex function, α ∈ Z++, and
xα ∈ dom f .
(1) If f(xα) ≤ f(xα + αd) (∀ d ∈ {−1, 0,+1}n), then argmin f 6= ∅ and there exists

x∗ ∈ argmin f with ‖xα−x∗‖∞ ≤ βn(α−1), where β1 = 1, β2 = 2; βn = n+ 1
2 βn−1 + 1

(n = 3, 4, . . .).

(2) βn ≤
(n+ 1)!

2n−1 (n = 3, 4, . . .).

To prove Theorem 4.3(1) we first note that it follows from its special case where xα = 0
and f is defined on a bounded set in the nonnegative orthant Zn+. That is, the proof of
Theorem 4.3(1) is reduced to proving the following proposition. We use notation V =
{1, 2, . . . , n} and the characteristic vector of A ⊆ V is denoted by 1A.

I Proposition 4.4. Let f : Zn → R∪{+∞} be an integrally convex function such that dom f

is a bounded subset of Zn+ containing the origin 0. If

f(0) ≤ f(α1A) (∀A ⊆ V ), (4.1)

then there exists x∗ ∈ argmin f with ‖x∗‖∞ ≤ βn(α− 1).

4.3 Tools for the proof: f -minimality
In this section we introduce some technical tools that we use in the proof of Proposition 4.4.

For two nonnegative integer vectors x, y ∈ Zn+, we write y �f x if y ≤ x and f(y) ≤ f(x).
Note that y �f x if and only if (y, f(y)) ≤ (x, f(x)) in Rn+1. We say that x ∈ Zn+ is
f-minimal if there exists no y ∈ Zn+ such that y �f x and y 6= x. That is, x is f -minimal
if and only if it is the unique minimizer of the function f restricted to the integer interval
[0, x]Z.

I Lemma 4.5. Assume (4.1). For any A ( 6= ∅) ⊆ V and λ ∈ Z+ we have (α − 1)1A �f
(α− 1)1A + λ1A.

Proof. First note that (α− 1)1A ≤ (α− 1)1A +λ1A for all λ ∈ Z+. By integral convexity of
f , g(t) = f(t1A) is convex in t ∈ Z+, and therefore, g(α−1) ≤ [(α−1)g(α)+g(0)]/α. On the
other hand, g(0) ≤ g(α) by α-local minimality (4.1). Hence g(α− 1) ≤ g(α). By convexity of
g, this implies g(α−1) ≤ g((α−1)+λ) for all λ ∈ Z+, i.e., f((α−1)1A) ≤ f((α−1)1A+λ1A)
for all λ ∈ Z+. J

I Lemma 4.6. Let x ∈ Zn+ and A (6= ∅) ⊆ V , and assume x �f x+ 1A.
(1) For any i ∈ V and λ ∈ Z+ we have x+ 1A + 1i �f (x+ 1A + 1i) + λ1A.
(2) For any i ∈ A and λ ∈ Z+ we have x+ 1A − 1i �f (x+ 1A − 1i) + λ1A.

Proof. (1) First note that x + 1A + 1i ≤ (x + 1A + 1i) + λ1A for all λ ∈ Z+. Define
g(λ) = f((x+ 1A + 1i) +λ1A), which is a convex function in λ ∈ Z+ by integral convexity of
f . We are to show g(0) ≤ g(λ) for all λ ∈ Z+, which is equivalent to g(0) ≤ g(1) by convexity
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of g. By integral convexity of f we have f(x+ 21A+ 1i) +f(x) ≥ f(x+ 1A) +f(x+ 1A+ 1i),
whereas f(x) ≤ f(x+ 1A) by the assumption. Hence f(x+ 1A + 1i) ≤ f(x+ 21A + 1i), i.e.,
g(0) ≤ g(1). (2) Similarly. J

Repeated application of (1) and (2) of Lemma 4.6 yields the following general form.

I Lemma 4.7. Let x ∈ Zn+ and A ( 6= ∅) ⊆ V , and assume x �f x+ 1A. For any λ ∈ Z+,
µ+
i , µ

−
i ∈ Z+ (i ∈ A) and µ◦i ∈ Z+ (i 6∈ A), we have

x+
∑
i∈A

µ+
i (1A + 1i) +

∑
i∈A

µ−i (1A − 1i) +
∑
i 6∈A

µ◦i (1A + 1i)

�f x+
∑
i∈A

µ+
i (1A + 1i) +

∑
i∈A

µ−i (1A − 1i) +
∑
i6∈A

µ◦i (1A + 1i) + λ1A. (4.2)

For A ( 6= ∅) ⊆ V , let BA denote the set of the generating vectors in (4.2) and CA the set
of their nonnegative integer combinations1:

BA = {1A} ∪
⋃
i∈A
{1A + 1i,1A − 1i} ∪

⋃
i 6∈A

{1A + 1i}, (4.3)

CA = {λ1A +
∑
i∈A

µ+
i (1A + 1i) +

∑
i∈A

µ−i (1A − 1i) +
∑
i 6∈A

µ◦i (1A + 1i) | λ, µ+
i , µ

−
i , µ

◦
i ∈ Z+}.

(4.4)

I Lemma 4.8. Assume (4.1). If y ∈ Zn+ is f-minimal, then y 6∈ α1A + CA for any
A(6= ∅) ⊆ V .

Proof. To prove the contraposition, suppose that y ∈ α1A + CA for some A. Then

y = α1A +

µ1A +
∑
i∈A

µ+
i (1A + 1i) +

∑
i∈A

µ−i (1A − 1i) +
∑
i6∈A

µ◦i (1A + 1i)


for some µ, µ+

i , µ
−
i , µ

◦
i ∈ Z+. Or equivalently,

y = (α− 1)1A +
∑
i∈A

µ+
i (1A + 1i) +

∑
i∈A

µ−i (1A − 1i) +
∑
i 6∈A

µ◦i (1A + 1i) + (µ+ 1)1A,

which is of the form of (4.2) with x = (α − 1)1A and λ = µ + 1. Since x = (α − 1)1A �f
α1A = x+ 1A by Lemma 4.5, Lemma 4.7 shows that y is not f -minimal. J

4.4 Proof of Proposition 4.4 for n = 2
We prove Proposition 4.4 for n = 2. Take x∗ = (x∗1, x∗2) ∈ argmin f that is f -minimal. We
may assume x∗1 ≥ x∗2. Since x∗ is f -minimal, Lemma 4.8 shows that x∗ belongs to X∗ =
{(x1, x2) ∈ Z2

+ | x1 ≥ x2}\ ((α1A + CA) ∪ (α1V + CV )), where A = {1} and V = {1, 2}. On
noting CA = {µ1(1, 0) + µ12(1, 1) | µ1, µ12 ∈ Z+}, CV = {µ1(1, 0) + µ2(0, 1) | µ1, µ2 ∈ Z+},
we see that X∗ consists of all integer points contained in the parallelogram with vertices (0, 0),
(α− 1, 0), (2α− 2, α− 1), (α− 1, α− 1). Therefore, ‖x∗‖∞ ≤ 2(α− 1). Thus Proposition 4.4
for n = 2 is proved.

1 It can be shown that BA is a Hilbert basis of the convex cone generated by BA.
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4.5 Proof of Proposition 4.4 for n ≥ 3
In this section we prove Proposition 4.4 for n ≥ 3 by induction on n. Accordingly we assume
that Proposition 4.4 is true for every integrally convex function in n− 1 variables.

Let f : Zn → R ∪ {+∞} be an integrally convex function such that dom f is a bounded
subset of Zn+ containing the origin 0. Take x∗ = (x∗1, x∗2, . . . , x∗n) ∈ argmin f that is f -minimal.
Then

[0, x∗]Z ∩ argmin f = {x∗}. (4.5)

We may assume x∗1 ≥ x∗2 ≥ · · · ≥ x∗n. For any x ∈ Zn+ let f[0,x] : Zn → R ∪ {+∞} denote
the restriction of f to the interval [0, x]Z, that is, f[0,x](y) = f(y) if y ∈ [0, x]Z, and = +∞
otherwise.

The following lemma reveals a key fact that will be used for induction on n. Note that,
by (4.5), x∗ satisfies the condition imposed on x•.

I Lemma 4.9. Let x• ∈ dom f and assume argmin f[0,x•] = {x•}. Then for any i ∈ V there
exists x◦ ∈ dom f such that

0 ≤ x◦ ≤ x•, ‖x◦ − x•‖∞ = 1, x◦i = x•i − 1, argmin f[0,x◦] = {x◦}.

Proof. Let x◦ be a minimizer of f(x) among those x which satisfy the conditions: 0 ≤ x ≤ x•,
‖x−x•‖∞ = 1, and xi = x•i−1; in case of multiple minimizers, we choose a minimal minimizer.
Then we can show argmin f[0,x◦] = {x◦}. J

Lemma 4.9 can be applied repeatedly, since the resulting point x◦ satisfies the condition
imposed on the initial point x•. Starting with x• = x∗ we apply Lemma 4.9 repeatedly
with i = n. After x∗n applications, we arrive at a point x̂ = (x̂1, x̂2, . . . , x̂n−1, 0). We have
argmin f[0,x̂] = {x̂} and

x∗j − x∗n ≤ x̂j (j = 1, 2, . . . , n− 1). (4.6)

We now consider a function f̂ : Zn−1 → R ∪ {+∞} defined by

f̂(x1, x2, . . . , xn−1) =
{
f(x1, x2, . . . , xn−1, 0) (0 ≤ xj ≤ x̂j (j = 1, 2, . . . , n− 1)),
+∞ (otherwise).

This function f̂ is an integrally convex function in n− 1 variables, and the origin 0 is α-local
minimal for f̂ and x̂ is the unique minimizer of f̂ . By the induction hypothesis, we can apply
Proposition 4.4 to f̂ to obtain ‖x̂‖∞ ≤ βn−1(α− 1). Combining this with (4.6) we obtain

x∗1 − x∗n ≤ βn−1(α− 1). (4.7)

We can also show

x∗n ≤
n− 1
n+ 1x

∗
1 + 2(α− 1)

n+ 1 (4.8)

from the f -minimality of x∗. It follows from (4.7) and (4.8) that

x∗1 ≤
(
n+ 1

2 βn−1 + 1
)

(α− 1) = βn(α− 1).

This completes the proof of Proposition 4.4, and hence that of Theorem 4.3 (1). The
bound for βn in Theorem 4.3 (2) is a simple calculus from the recurrence.
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5 Directed Integrally Convex Functions

In this section we introduce a novel class of integrally convex functions, which admits the
scaling operation and the proximity theorem with the linear bound n(α− 1).

5.1 Definition
We call a function f : Zn → R ∪ {+∞} directed integrally convex if dom f is an integer
interval and discrete midpoint convexity (1.1) is satisfied by every pair (x, y) ∈ Zn ×Zn with
‖x− y‖∞ = 2 (exactly equal to two).

I Proposition 5.1.
(1) A directed integrally convex function is integrally convex.
(2) An L\-convex function (defined on an integer interval) is directed integrally convex.

Proof. (1) Let f be a directed integrally convex function. To use Theorem 2.1, take integer
points x, y ∈ dom f with ‖x − y‖∞ = 2. For u = (x + y)/2 , both due and buc belong to
N(u), and therefore 2f̃(u) ≤ f(due) + f(buc) ≤ f(x) + f(y), where the second inequality is
midpoint convexity.

(2) By the characterizations of L\-convex functions in Section 1. J

5.2 Parallelogram inequality
For directed integrally convex functions two special direction vectors play a crucial role:

d1 = (1m1 ,1m2 ,−1m3 ,0m4 ,0m5), d2 = (1m1 ,0m2 ,−1m3 ,−1m4 ,0m5),

where m1,m2,m3,m4,m5 ≥ 0, m1 +m2 +m3 +m4 +m5 = n, and 1m = (1, 1, . . . , 1) ∈ Zm
and 0m = (0, 0, . . . , 0) ∈ Zm for m ∈ Z+ (m = 0 is allowed). For integers a and b we define

z(a, b) = ad1 + bd2 =
(

(a+ b)1m1 , a1m2 ,−(a+ b)1m3 ,−b1m4 ,0m5
)
. (5.1)

I Lemma 5.2. Let a and b be integers.
(1) ‖z(a+ 1, b+ 1)− z(a, b)‖∞ = 2 if m1 +m3 ≥ 1.

(2)
⌈
z(a, b) + z(a+ 1, b+ 1)

2

⌉
= z(a+ 1, b),

⌊
z(a, b) + z(a+ 1, b+ 1)

2

⌋
= z(a, b+ 1).

I Proposition 5.3 (Parallelogram inequality). Let f : Zn → R∪{+∞} be a directed integrally
convex function. For x ∈ dom f define fx(z) = f(x+ z). If m1 +m3 ≥ 1, then

fx( 0m1 ,0m2 ,0m3 ,0m4 ,0m5 ) + fx( (a+ b)1m1 , a1m2 ,−(a+ b)1m3 ,−b1m4 ,0m5 )
≥ fx( a1m1 , a1m2 ,−a1m3 ,0m4 ,0m5 ) + fx( b1m1 ,0m2 ,−b1m3 ,−b1m4 ,0m5 ) (a, b ∈ Z+).

(5.2)

Proof. Using notation (5.1) we can rewrite (5.2) as

fx(z(0, 0)) + fx(z(a, b)) ≥ fx(z(a, 0)) + fx(z(0, b)). (5.3)

We may assume a, b ≥ 1 and {z(0, 0), z(a, b)} ⊆ dom fx, since otherwise the inequality (5.3)
is trivially true. By directed integral convexity of f , we have

fx(z(k, l)) + fx(z(k + 1, l + 1)) ≥ fx(z(k + 1, l)) + fx(z(k, l + 1)) (5.4)

for k, l ∈ Z+. By adding these inequalities for (k, l) with 0 ≤ k ≤ a− 1, 0 ≤ l ≤ b− 1, we
obtain (5.3). Note that all terms appearing in the above inequalities are finite. J
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The parallelogram inequality with permutations of coordinates can be stated in an altern-
ative form. Using notation di = (di1, . . . , din) and ∆ = {(−1,−1), (0, 0), (1, 1), (0,−1), (1, 0)}
we define

D = {(d1, d2) | (d1j , d2j) ∈ ∆ (j = 1, . . . , n), ‖d1 + d2‖∞ = 2}. (5.5)

For d1 = (1m1 ,1m2 ,−1m3 ,0m4 ,0m5) and d2 = (1m1 ,0m2 ,−1m3 ,−1m4 ,0m5) we have (d1, d2) ∈
D as long as m1 +m3 ≥ 1, and any (d1, d2) ∈ D can be put in this form through a suitable
simultaneous permutation of coordinates of d1 and d2. Therefore, Proposition 5.3 can be reph-
rased as follows: If (d1, d2) ∈ D, then f(x)+f(x+ad1 +bd2) ≥ f(x+ad1)+f(x+bd2) (a, b ∈
Z+).

A generalized form of parallelogram inequality is given in the following proposition, where
D> = {(d2, d1) | (d1, d2) ∈ D}.

I Proposition 5.4. Let f : Zn → R ∪ {+∞} be a directed integrally convex function,
x ∈ dom f , and d1

1, . . . , d
K
1 , d

1
2, . . . , d

L
2 ∈ {−1, 0,+1}n, where K ≥ 1 and L ≥ 1. If

(dk1 , dl2) ∈ D ∪ D> (k = 1, . . . ,K; l = 1, . . . , L), (5.6)

supp+(dk1) ∩ supp−(dk
′

1 ) = ∅ (k 6= k′), supp+(dl2) ∩ supp−(dl
′

2 ) = ∅ (l 6= l′), (5.7)

then

f(x) + f(x+
K∑
k=1

akdk1 +
L∑
l=1

bldl2) ≥ f(x+
K∑
k=1

akdk1) + f(x+
L∑
l=1

bldl2) (ak, bl ∈ Z+).

(5.8)

Proof. With notation x(k, l) = x+
k∑
i=1

aidi1 +
l∑

j=1
bjdj2, the inequality (5.8) is rewritten as

f(x(0, 0)) + f(x(K,L)) ≥ f(x(K, 0)) + f(x(0, L)). (5.9)

We may assume K,L ≥ 1 and {x(0, 0), x(K,L)} ⊆ dom f , since otherwise (5.9) is trivially
true. Since x(k, l) = x(k − 1, l − 1) + akdk1 + bldl2 and (dk1 , dl2) ∈ D ∪ D> by assumption, we
can apply the parallelogram inequality (5.2) to obtain

f(x(k − 1, l − 1)) + f(x(k, l)) ≥ f(x(k, l − 1)) + f(x(k − 1, l)).

By adding these inequalities for (k, l) with 1 ≤ k ≤ K and 1 ≤ l ≤ L, we obtain (5.9). Note
that all terms appearing in the above inequalities are finite by (5.6) and (5.7). J

The assumptions in Proposition 5.4 are met in the following case.

I Lemma 5.5. Conditions (5.6) and (5.7) are satisfied if {d1
1, . . . , d

K
1 , d

1
2, . . . , d

L
2 } ⊆ {1A1 −

1B1 ,1A2 − 1B2 , . . . ,1As − 1Bs} for nested families A1 ⊆ A2 ⊆ · · · ⊆ As and B1 ⊇ B2 ⊇
· · · ⊇ Bs of subsets of {1, . . . , n} such that As ∩B1 = ∅ and A1 ∪Bs 6= ∅.

5.3 Scaling operation
Directed integrally convex functions are stable under scaling for arbitrary n, just as L\-convex
functions. Recall that the scaling operation preserves (general) integral convexity only when
n ≤ 2.
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I Theorem 5.6. Let f : Zn → R ∪ {+∞} be a directed integrally convex function and
α ∈ Z++. Then the scaled function fα is directed integrally convex.

Proof. To show (1.1) for fα, it suffices to consider the inequality for f with x = 0 and
y = (2α1m1 , α1m2 ,−2α1m3 ,−α1m4 ,0m5) ∈ Zn, where m1 + m3 ≥ 1. That is, we are to
prove

f( 0m1 ,0m2 ,0m3 ,0m4 ,0m5 ) + f( 2α1m1 , α1m2 ,−2α1m3 ,−α1m4 ,0m5 )
≥ f( α1m1 , α1m2 ,−α1m3 ,0m4 ,0m5 ) + f( α1m1 ,0m2 ,−α1m3 ,−α1m4 ,0m5 ),

which holds since it is a special case of the parallelogram inequality (5.2) with a = b = α. J

5.4 Proximity theorem
The α-local proximity theorem with linear bound n(α−1) holds for directed integrally convex
functions in n variables for all n. Recall that for (general) integrally convex functions the
bound n(α− 1) is valid only when n ≤ 2, whereas it is valid for L\-convex functions for all n.

I Theorem 5.7. Let f : Zn → R ∪ {+∞} be a directed integrally convex function, α ∈ Z++,
and xα ∈ dom f . If f(xα) ≤ f(xα + αd) for all d ∈ {−1, 0,+1}n, then there exists a
minimizer x∗ ∈ Zn of f with ‖xα − x∗‖∞ ≤ n(α− 1).

To prove Theorem 5.7 we may assume xα = 0. Define S = {x ∈ Zn | ‖x‖∞ ≤ n(α − 1)},
W = {x ∈ Zn | ‖x‖∞ = n(α − 1) + 1}, and let µ be the minimum of f(x) taken over
x ∈ S and x̂ be a point in S with f(x̂) = µ. We shall show f(y) ≥ µ for all y ∈ W . Then
Theorem 2.3 (box-barrier property) implies that f(z) ≥ µ for all z ∈ Zn.

I Lemma 5.8. Each vector y ∈W can be represented as y = (d1
1+d2

1+· · ·+d(n−1)(α−1)
1 )+αd2

with (dk1 , d2) ∈ D ∪ D> for k = 1, 2, . . . , (n− 1)(α− 1).

Proof. Fix y = (y1, . . . yn) ∈ W and put m = ‖y‖∞, which is equal to n(α− 1) + 1. With
Ak = {i | yi ≥ m + 1 − k}, Bk = {i | yi ≤ −k} (k = 1, . . . ,m), we can represent y as
y =

∑m
k=1(1Ak −1Bk). We have A1 ⊆ A2 ⊆ · · · ⊆ Am, B1 ⊇ B2 ⊇ · · · ⊇ Bm, Am ∩B1 = ∅,

and A1 ∪Bm 6= ∅.

Claim 1: ∃ k0 ∈ {1, 2, . . . ,m−α+1} s.t. (Ak0 , Bk0) = (Ak0+j , Bk0+j) for j = 1, 2, . . . , α−1.

Proof of Claim 1. We may assume A1 6= ∅. Define (ak, bk) = (|Ak|, n − |Bk|) for k =
1, 2, . . . ,m and s = |supp+(y)|. The sequence (ak, bk)k=1,2,...,m is nondecreasing in Z2,
satisfying (1, s) ≤ (a1, b1) ≤ (a2, b2) ≤ · · · ≤ (am, bm) ≤ (s, n). Since m = n(α − 1) + 1
and the length of a strictly increasing chain contained in the interval [(1, s), (s, n)] in Z2

is bounded by n, the sequence {(ak, bk)}k=1,2,...,m must contain a constant subsequence of
length ≥ α. Hence follows the claim. J

With reference to the index k0 in Claim 1 we define

d2 = 1Ak0
− 1Bk0

, dk1 =
{

1Ak − 1Bk (1 ≤ k ≤ k0 − 1),
1Ak+α − 1Bk+α (k0 ≤ k ≤ m− α = (n− 1)(α− 1)).

Then we have y =
∑m
k=1(1Ak − 1Bk) = (d1

1 + d2
1 + · · ·+ d

(n−1)(α−1)
1 ) + αd2. Moreover, we

have (dk1 , d2) ∈ D ∪ D> (k = 1, 2, . . . , (n− 1)(α− 1)) by Lemma 5.5. J
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By Lemma 5.8 and inequality (5.8) with K = (n− 1)(α− 1) and L = 1 we obtain

f(0) + f(y) ≥ f(d1
1 + d2

1 + · · ·+ d
(n−1)(α−1)
1 ) + f(αd2).

Here we have d1
1 + d2

1 + · · ·+ d
(n−1)(α−1)
1 ∈ S and hence f(d1

1 + d2
1 + · · ·+ d

(n−1)(α−1)
1 ) ≥ µ

by the definition of µ. We also have f(αd2) ≥ f(0) by α-local minimality of 0. Therefore,

f(y) ≥ f(d1
1 + d2

1 + · · ·+ d
(n−1)(α−1)
1 ) + [f(αd2)− f(0)] ≥ µ+ 0 = µ.

This completes the proof of Theorem 5.7.
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Abstract
Given a set P of n points in the plane and a multiset W of k weights with k ≤ n, we assign
a weight in W to a point in P to minimize the maximum weighted distance from the weighted
center of P to any point in P . In this paper, we give two algorithms which take O(k2n2 log4 n)
time and O(k5n log4 k + kn log3 n) time, respectively. For a constant k, the second algorithm
takes only O(n log3 n) time, which is near-linear.
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Keywords and phrases Weighted center, facility location, weight assignment, combinatorial op-
timization, computational geometry

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2016.58

1 Introduction

Consider a set of robots lying at different locations in the plane. Each robot is equipped
with a locomotion module so that it can move to a nearby facility to recharge its battery and
return to its original location. We want to place a recharging facility for the robots such that
the maximum travel time of them to reach the recharging facility is minimized. Then the
Euclidean center of the robot locations may not be a good location for the recharging facility
if the robots have huge differences in their speeds. For instance, consider three robots, each
lying on a different corner of an equilateral triangle. If one of them has a much smaller speed
compared to the speeds of the other two robots, the best location is very close to the corner
where the low-speed robot lies. Hence, the recharging facility must be located at a weighted
center of the robots by considering their speeds as weights of their placements.

In the weighted center problem, each input point p ∈ P is associated with a positive
weight and the weighted distance between an input point and a point of the plane is defined
to be their distance divided by the associated weight of p. Then the point of the plane that
minimizes the maximum weighted distance to input points is the center of the weighted input
points, which we call the weighted center.

Dyer [8] studied the weighted center problem for a set of weighted points in the plane and
gave a linear-time algorithm to compute their weighted center. Clearly, the weighted center
coincides with the (unweighted) center if the associate weight is 1 for every input point.
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Imagine now that we are allowed to reassign the locomotion modules of the robots. Or,
if the mobile robots are identical, except their speeds, we are allowed to relocate the robots.
A relocation of robots (or a reassignment of locomotion modules) may change the weighted
center and the maximum travel time for mobile robots to reach the weighted center. In other
words, a clever assignment of robots (or their locomotion modules) to given locations may
decrease the minimum of the objective function.

In this paper, we formally define this relocation problem and present algorithms for it.
The weight assignment problem is defined as follows: given an input consisting of a set P of
n points in the plane and a multiset W = {w1, . . . , wk} of k weights of positive real values
with k ≤ n, find an assignment of the weights in W to input points such that the maximum
weighted distance from the weighted center to input points is minimized. We assume that
every input point of P has the default weight 1. We assign the k weights to k points of P
such that every weight is assigned to a point and each point gets one weight in W or the
default weight 1, which we call an assignment of weights of W to P .

We regard an assignment of weights as a function. To be specific, for an assignment f of
weights, f(p) denotes the weight of W assigned to point p ∈ P . We use c(f) to denote the
weighted center of P with the assignment f , and call the maximum weighted distance from
c(f) to input points the covering radius of the assignment f and denote it by r(f).

Obviously, there are
(
n
k

)
different combinations of selecting k points from P and k!

different ways of assigning the k weights to a combination, and therefore there are Θ(nk)
different assignments of weights. Our goal is to find an assignment f of weights of W to the
points of P that minimizes the covering radius r(f) over all possible assignments of weights.

Related Work. As mentioned earlier, Dyer [8] studied the weighted center problem for a
set of weighted points in the plane. He reformulated the problem as an optimization problem
with linear inequalities and one quadratic inequality. Then he gave a linear-time algorithm
to compute their weighted center using the technique by Megiddo [12]. Later, Megiddo [13]
gave a linear-time algorithm for the same problem using a different technique.

In contrast, to our best knowledge, no algorithm is known for the weight assignment
problem while there are works on several related problems. In the inverse 1-center problem
on graphs, we are given a graph and a target vertex, and we are to increase or decrease the
lengths of edges of the graph so that the target vertex becomes a center of the modified
graph. The goal is to minimize the modification of the lengths. This means that we give
additive weights to edges of the graph. Cai et al. [6] showed that this problem is NP-hard on
a general directed graph. Recently, Alizadeh and Burkard [3] gave an O(n2r)-time algorithm
for this problem on a tree, where r is the compressed depth of the tree. A variant of this
problem is the reverse 1-center problem, in which we are to decrease the lengths of edges
of the graph under a given budget. This problem is also known to be NP-hard even on a
bipartite graph [5], and there is an O(n2 logn)-time algorithm on a tree by Zhang et al. [15].

Our weight assignment problem is closely related to the weight balancing problem which
was studied by Barba et al. [4]. The input consists of a simple polygon, a target point inside
the polygon, and a set of weights. The goal is to put the weights on the boundary of the
polygon so that the barycenter (center of mass) of the weights coincides with the target
point. They showed the existence of such a placement of weights under the condition that
no input weight exceeds the sum of the other input weights. They also gave an algorithm to
find such a placement in O(k + n logn) time, where k is the number of the weights and n is
the number of the vertices of P . Our problem can be considered as a discrete version of this
problem, but with a different criteria (minimizing the covering radius), in the sense that we
place the weights on predetermined positions.
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Our Result. In this paper, we present two algorithms that compute an assignment f of
weights minimizing r(f). The first algorithm returns an optimal assignment in O(k2n2 log4 n)
time using O(kn) space. The second algorithm assumes that all weights in W are at most
1, and returns an optimal assignment in O(k5n log4 k + kn log3 n) time using O(kn) space,
which is faster than the first algorithm when k is sufficiently small (k = o(n1/3)). Moreover,
it takes only O(n log3 n) time when k is a constant.

Another merit of our algorithms is that they are based on useful geometric intuition and are
easy to implement though they use parametric search, the optimization technique developed
by Megiddo [10]. The technique is an important tool for solving many geometric optimization
problems efficiently, but algorithms based on it are often not easily implemented [2]. A main
difficulty lies in computing the roots of the polynomials exactly whose signs determine the
outcome of the comparisons made by the algorithm. However, as we will see later, in our
algorithms, such a root is a covering radius of at most three weighted points and it can be
computed without resorting to complicated methods.

2 Preliminaries

One way to deal with our problem is to find the weighted centers for all possible assignments
of weights and choose the one with the minimum radius. Although there are Θ(nk) different
assignments of weights, there are only O(k3n3) different weighted centers. This is because a
weighted center is determined by at most three weighted points. That is, given an assignment
of weights, there always exist at most three weighted points of P whose center coincides with
the center of the whole weighted points. Thus the number of all possible weighted centers
is at most the number of all possible 6-tuples (p1, p2, p3, w1, w2, w3) such that pi ∈ P and
wi ∈W ∪ {1} for i = 1, 2, 3, which is O(k3n3). Moreover, this bound is asymptotically tight
by the following lemma. A proof of the following lemma can be found in the full version of
this paper.

I Lemma 1. There exist a set of n points and a set of k weights such that the number of all
possible weighted centers is Ω(k3n3).

2.1 Deciding Feasibility for a Weighted Center of Three Points
As noted above, the weighted center and the covering radius of a weight assignment are
determined by at most three weighted points. But not every three weighted points define
such a center and its covering radius. Here we show how to test this for three weighted points
efficiently.

Let W ′ be the union of W and the multiset consisting of n− k − 3 numbers of weight 1.
Consider three points from P and an assignment of three weights from W ′ to the points. We
first test whether the three weighted points define a point in the plane at the same weighted
distance from them. If such a point does not exist, there is no weighted center of the three
weighted points. Otherwise, there is only one such point which is the weighted center of them.
Let c denote the weighted center and r denote the covering radius of the three weighted
points. Let 〈p1, . . . , pn−3〉 be the sequence of the points in P , except the three points, in the
increasing order with respect to the Euclidean distance from c. Let 〈w1, . . . , wn−3〉 be the
sequence of the weights inW ′, except the three weights, in the increasing order, The following
lemma directly gives us an O(n)-time algorithm to decide whether the three weighted points
determine the weighted center and the covering radius of an assignment of weights. A proof
of the following lemma can be found in the full version of this paper.
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I Lemma 2. There exists an assignment f of weights such that c(f) = c and r(f) = r if
and only if d(pi, c)/wi ≤ r for 1 ≤ i ≤ n− 3.

It is possible that two weighted points p and q determine the weighted center of the whole
weighted points. In this case, the weighted center lies in the line passing through p and q. To
handle this case, we consider two points from P and an assignment of two weights from W

to the points. We compute the weighted center and decide whether the two weighted points
determine the weighted center and the covering radius using Lemma 2.

We need to sort the points in P repeatedly for each weighted center determined by a
combination of three points (or two points) from P and three weights (or two weights) from
W while it suffices to sort the weights in W just once. Thus, the total running time is
O(k3n4 logn).

Note that this algorithm returns all possible weighted centers. Thus it can be used for
the problem with some different optimization criteria other than the minimization of the
covering radius. For example, we can find the assignment f of weights such that the center
c(f) is the closest to a given point in the same time.

3 A Fast Algorithm using O(kn) Space

In this section, we give an O(k2n2 log4 n)-time algorithm for finding an assignment f of
weights that minimizes r(f). This algorithm does not consider all possible weighted centers.
Instead, it uses parametric search due to Megiddo [10]. To apply this technique, we need to
devise a decision algorithm which is used as a subprocedure of the main algorithm.

3.1 A Decision Algorithm
Let r be an input of the decision algorithm. The decision algorithm decides whether there is
an assignment f of weights with r(f) ≤ r. In other words, it decides whether there are a
point c and an assignment f of weights such that d(p, c)/f(p) ≤ r for all points p ∈ P . If
this is the case, we call such a point c an r-center with respect to f .

Instead of considering all Θ(k3n3) combinations of three points in P and three weights
in W , this algorithm considers all O(kn) point-weight pairs. Our algorithm is based on the
following lemma. A proof of the following lemma can be found in the full version of this
paper.

I Lemma 3. For an assignment f of weights with r(f) ≤ r, there is an r-center c with
respect to f satisfying d(p′, c)/f(p′) = r for some point p′ ∈ P .

By the above lemma, there is a point p ∈ P and a weight w ∈ W ∪ {1} such that the
circle centered at p with radius wr contains an r-center c with respect to some assignment f
of weights if r(f) ≤ r. Thus our strategy is to find an r-center, if it exists, lying on such a
circle with respect to some weight assignment f satisfying that f(p) = w.

For each pair of a point p ∈ P and a weight w ∈ W ∪ {1}, we consider the circle C
centered at p with radius wr. For a point c ∈ C, we check whether there exists an assignment
f of weights such that the disk centered at q with radius f(q)r contains c for all points
q ∈ P \ {p}.

To this end, for each point q ∈ P\{p}, we compute k+1 concentric circles centered at q with
radius w1r, w2r, . . . , wk+1r, where w1, w2, . . . , wk+1 are weights inW ∪{1}. Then we compute
the intersections of these circles with C and sort them along C in O(kn log(kn)) = O(kn logn)
time. (In a degenerate case, there can be more than one circle passing through the same
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w1r w2r

Figure 1 We compute the points marked with squares for all points in q ∈ P \ {p} and sort them
along C.

intersection point and we treat their intersection points as distinct points lying in the same
position. Details can be found in the full version of this paper. In the following, we assume
that exactly one circle passes through one intersection point.) See Figure 1 for an illustration.

Now, we have O(kn) intersection points sorted along C. These intersection points
subdivide the circle C into O(kn) pieces, which we call intervals on C. We say an assignment
f of weights is feasible for an interval if for a point c in the interval, d(q, c)/f(q) is at most
r for all points q ∈ P . Note that f is feasible for any point in the interval if f is feasible
for a point in the interval. Therefore, for any point c lying in an interval, the set of feasible
assignments of weights remains the same. We can test in O(n logn) time whether there
exists a feasible assignment for an interval on C by slightly modifying Lemma 2.

Instead of applying this test repeatedly for each interval on C, which takes O(kn2 logn)
time in total, we can do this in O(kn logn) time in total for all intervals on C as follows.
Consider the intervals one by one in clockwise order along C. Note that for any two
consecutive intervals, there is only one disk centered at a point in P with radius rw for some
w ∈W that contains one interval but does not contain the other interval. We use this fact
in the following lemma.

I Lemma 4. We can decide whether there is a feasible assignment of weights or not for
every interval on C in O(kn logn) time in total.

Proof. We first show how to check the existence of a feasible assignment for an interval µ in
O(kn) time. Then we show how we do this for all intervals on C efficiently.

We sort the weights in W ∪ {1} in the increasing order and denote the sorted list by
〈w1, . . . , wk+1〉. Let `0 be the smallest index with w`0 = 1, and c be a point in µ. For each
point q in P \ {p}, let π(q) be the smallest index such that d(q, c)/wπ(q) ≤ r and let π(p)
be the index indicating w. The indices π(q) for all points q in P can be computed in O(kn)
time in total. Then, we sort the points in P in the increasing order with respect to π(·) and
denote the sorted list by 〈q1, . . . , qn〉.

Consider the simple case that k = n. Then there exists a feasible assignment for µ if and
only if π(q`) ≤ ` for all indices 1 ≤ ` ≤ n − 1. This is because for every point q in P , we
have d(q, c)/wj ≤ r for all indices j ≥ π(q). Thus, we can check the existence of a feasible
assignment for µ by comparing π(q`) and ` for all indices 1 ≤ ` ≤ n, which can be done in
O(n) time.

ISAAC 2016
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For the case that k < n, a similar property holds: there exists a feasible assignment for µ
if and only if

π(q`) ≤ ` for all indices 1 ≤ ` ≤ `0 − 1,
π(q`) ≤ `0 for all indices `0 ≤ ` ≤ `0 + n− k − 1, and
π(q`) ≤ `− n+ k + 1 for all indices `0 + n− k ≤ ` ≤ n.

Thus, we can check the existence of a feasible assignment for µ in O(kn) time.
To check the existence of a feasible assignment for the interval µ′ next to µ in clockwise

order along C, we do not need to compute all such indices and compare them again. Recall
that there is exactly one disk C ′ centered at a point q ∈ P \ {p} with radius rw for some
w ∈W that contains either µ or µ′. If C ′ contains µ but does not contain µ′, π(q) increases
by one. If C ′ contains µ′ but does not contain µ, π(q) decreases by one. Note that π(q`)
remains the same for all points q` ∈ P \ {q} for both cases.

To use this property, we maintain 2(k + 1) pointers U1, . . . , Uk+1 and L1, . . . , Lk+1. For
an index 1 ≤ i ≤ k+ 1, the pointer Ui points to q` with the largest index ` among the points
such that π(q`) is equal to i. Similarly, for an index 1 ≤ i ≤ k + 1, the pointer Li points to
q` with the smallest index ` among the points such that π(q`) is equal to i.

Note that we already know whether π(q) increases or decreases by one when we move
from µ to µ′. Here, we have to update not only π(q) but also the pointers. Moreover, we
have to reorder 〈q1, . . . , qn〉 in the increasing order with respect to π(·).

We show how to do this for the case that π(q) increases by one. The other case can
be handled analogously. We first find the point qu that the pointer Uπ(q) points to. Then
we swap the positions for q and qu on the sequence 〈q1, . . . , qn〉 and let Uπ(q) point to q.
This does not violate the property that π(q`) ≤ π(q`+1) for all indices 1 ≤ ` < n since
π(q) = π(qu). Then we update π(q) to π(q) + 1 and update the pointers accordingly.

Here, we do not need to compare π(q`) and the index again for a point q` in P \ {q, qu}.
Thus to check the existence of a feasible assignment for µ′, it suffices to compare π(q`) and
the index for q` = q, qu. This can be done in constant time, which implies that each update
can be done in the same time. Since there are O(kn) intervals on C, updating the information
takes O(kn) time. Therefore, the running time of the procedure is dominated by the time for
sorting the intersection points along C and computing the intervals, which is O(kn logn). J

With the argument in this section, the following lemma holds.

I Lemma 5. Given a radius r > 0, we can decide in O(k2n2 logn) time using O(kn) space
whether there exists an assignment f of weights with r(f) ≤ r or not.

3.2 An Overall Algorithm
For ease of presentation, we first show how to compute an optimal solution in O(k2n2 log3 n)
time using O(k2n2) space. At the end of this section, we show how to reduce the space into
O(kn) at the expense of increased time complexity by an O(logn) factor.

To obtain an optimal solution, we apply parametric search [10] using the decision algorithm
in Section 3.1. Let r∗ be the minimum of r(f) over all possible assignments f of weights.

We consider the arrangement A(r) of the circles Cp,w(r) for all point-weight pairs (p, w),
where Cp,w(r) is the circle centered at p with radius rw. Let C(r) be the set of such circles
Cp,w(r) over all point-weight pairs (p, w). Here, r > 0 is a variable.

As r becomes larger, the combinatorial structure of A(r) changes. To be specific, the
combinatorial structure of A(r) changes O(k3n3) times. To see this, we observe that there
exists a vertex of A(r) which is an intersection of three circles Cpi,wi(r) (or two circles) in
C(r) for i = 1, 2, 3 when A(r) changes. Moreover, for any three point-weight pairs (pi, wi) for
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i = 1, 2, 3 (or i = 1, 2), there exist at most two radii r such that the common intersection
of Cpi,wi

(r) is not empty. This is because the trajectory of the intersections between two
increasing circles forms a hyperbolic curve, and two hyperbolic curves cross at most twice.
(Note that Cpi,wi is a circle, not a disk.)

These radii partition the real value space R into intervals such that for any value r in
the same interval the combinatorial structure of A(r) remains the same. We search the
interval where r∗ lies using the decision algorithm in Section 3.1. There are Θ(k3n3) such
radii, but we do not consider all of them. Instead, we search for the interval containing r∗
in O(logn) iterations. In each iteration, we consider O(k2n2) radii and reduce the search
space (intervals). Moreover, in each iteration, we apply the decision algorithm O(logn) times,
which leads to the running time of O(k2n2 log3 n). Details are described in the following
lemma and its proof.

I Lemma 6. The combinatorial structure of A(r∗) can be computed in O(k2n2 log3 n) time
using (k2n2) space.

Proof. Given a radius r > 0, we first introduce a simple way to compute the arrangement
A(r). Later, this will be used for computing A(r∗) efficiently. For a point p ∈ P and a
weight w ∈W ∪ {1}, we compute the intersections of Cp,w(r) and Cpi,wi

(r) for all points pi
in P \ {p} and all weights wi ∈ W \ {w} ∪ {1}. Each circle Cpi,wi(r) intersects Cp,w(r) at
most twice for any fixed radius r > 0. Let Ip,w(r) be the set of all such intersection points.
We sort the points in Ip,w(r) along Cp,w(r). Once this is done for all points p and all weights
w ∈W ∪ {1}, we can construct A(r).

Here, computing the combinatorial structure of A(r) is equivalent to sorting the points in
Ip,w(r) along Cp,w(r) for all point-weight pairs (p, w). We apply this procedure to compute
the combinatorial structure of A(r∗) without computing r∗ explicitly. To sort the points
in Ip,w(r∗) along Cp,w(r∗), we compare the relative positions for two points in the set
O(kn logn) times since the number of points in the set is O(kn).

Suppose that we want to compare the relative positions for two points u1(r∗), u2(r∗) in
the set along Cp,w(r). As r increases, the relative positions between u1(r) and u2(r) change
at most once. Moreover, they change when Cp,w(r) and the two circles defining u1(r) and
u2(r) meet at exactly one point. This happens at most twice. Let r1 and r2 be such two
radii with r1 ≤ r2. Then we decide whether r∗ ≤ r1, r1 ≤ r∗ ≤ r2, or r2 ≤ r∗ using the
decision algorithm in Section 3.1. With this, we can decide the relative positions between
u1(r∗) and u2(r∗) without computing r∗ explicitly. Thus, we can compare two points in
Ip,w(r∗) in O(k2n2 logn) time. Since we do this O(kn logn) times, we can sort the points in
O(k3n3 log2 n) time. Since there are O(kn) point-weight pairs (p, w), the total running time
is O(k4n4 log2 n).

Here, we apply the decision algorithm in Section 3.1 twice for each comparison, once
with r = r1 and once with r = r2. We reduce the running time of the overall algorithm by
reducing the number of executions of the decision algorithm. Suppose that we want to do
m comparisons which are independent to each other. As we did in the previous procedure,
we compute at most two radii from each comparison where the relative positions of the two
points change. Then we have at most 2m radii. We sort them and apply binary search to
compute the smallest interval containing r∗. After applying the decision algorithm O(logm)
times, we can complete m comparisons.

In our problem, comparisons performed on two different circles are independent to
each other. In each circle Cp,w(r), we have O(logn) sets each of which consists of O(kn)
comparisons that are independent to each other. Indeed, Cole [7] gave a parallel algorithm to
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sort m elements in O(logm) time using O(m) processors. Note that comparisons performed
in different processors are independent to each other.

Thus, we sort the points in Ip,w(r∗) in O(log(kn)) = O(logn) iterations and in each
iteration we apply O(kn) comparisons. We compute the whole combinatorial structure of
A(r∗) in O(logn) iterations and in each iteration we apply O(k2n2) comparisons. This can
be done in O(T (k, n) log2 n + k2n2 log2 n) time, where T (k, n) is the running time of the
decision algorithm. J

Now, we have the combinatorial structure of A(r∗) while r∗ is not known yet. The
following lemma gives us a procedure to compute r∗ in O(k2n2 log2 n) time.

I Lemma 7. Given the combinatorial structure of A(r∗), an optimal weight assignment and
its covering radius r∗ can be computed in O(k2n2 log2 n) time.

Proof. In this proof, we use the notation defined in Lemma 6. We say that three circles
Cpi,wi(r) for i = 1, 2, 3 define a radius r′ if they intersect at one point for r = r′. We already
showed that there are at most three circles Cpi,wi

(r) for i = 1, 2, 3 that define r∗. Thus, in
the set Ip1,w1(r∗) sorted along Cp1,w1(r∗), a point corresponding to Cp2,w2(r∗) and a point
corresponding to Cp3,w3(r∗) are consecutive. Note that when we sort the points in Ip1,w1(r∗),
we cannot decide whether two points coincide or not. Instead, we give an arbitrary order for
such points.

Let R be the set of radii r defined by three circles Cpi,wi
(r∗) for i = 1, 2, 3 such that the

point corresponding to Cp2,w2(r∗) and the point corresponding to Cp3,w3(r∗) are consecutive
in the set Ip1,w1(r∗). Since there are O(k2n2) edges in the arrangement A(r∗), there are the
same number of such radii.

We sort the radii on R and apply binary search on it using the decision algorithm in
Section 3.1 and find the smallest radius of R for which the decision algorithm returns “yes”.
Then the smallest radius is r∗. J

Since we maintain the whole combinatorial structure of the arrangement A(r), we use
O(k2n2) space in the previous algorithm. We can reduce the space complexity to O(kn) by
computing only some partial information about the combinatorial structure of A(r). However,
this increases the running time of the algorithm by an O(logn) factor.

I Lemma 8. We can compute an interval containing r∗ such that the combinatorial structure
of A(r) remains the same for any r in the interval in O(k2n2 log4 n) time using O(kn) space.

Proof. Here, we modify the algorithm in Lemma 6 as follows. Recall that in each iteration
of the previous algorithm, we consider all point-weight pairs (p, w) and perform O(kn)
comparisons for sorting the intersection points in each Ip,w. In this algorithm, we do this in
O(logn) subiterations of an iteration as follows.

We maintain an interval u containing r∗. Initially, u is set to [−∞,+∞]. As we apply
the algorithm, the interval becomes a smaller subinterval. In each subiteration, we consider
O(kn) radii corresponding to each comparison for a point-weight pair (p, w) and discard the
radii which lie outside the interval u. Then we choose the median of them. We do this for all
point-weight pairs (p, w), and we have O(kn) medians in total. Then we sort the medians
and apply binary search to compute the interval between two consecutive medians containing
r∗ in O(T (n, k) logn) time, where T (n, k) is the running time of the decision algorithm. In
total, each subiteration takes O(T (n, k) logn+ k2n2) time using O(kn) space.

Now, we show that in O(logn) subiterations, we complete O(k2n2) comparisons. In the
ith subiteration, we discard (1/2 + 1/4 + . . .+ 1/2i)|R| radii in total, where |R| = O(k2n2) is
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the number of radii. Note that we discard the radius corresponding to some comparison once
we complete the comparison. In O(logn) subiterations, we discard all radii, which means
that we complete O(k2n2) comparisons.

In this algorithm, each iteration takes O(T (n, k) log2 n) time. Since we have O(logn)
iterations in total as the algorithm in Lemma 6, the running time of this algorithm is
O(T (n, k) log3 n). J

Once we have an interval u containing r∗ such that the combinatorial structure of A(r)
remains the same for any r in the interval, the procedure described in the proof of Lemma 7
can also be improved.

I Lemma 9. Given an interval containing r∗ such that the combinatorial structure of A(r)
remains the same for any r in the interval, an optimal assignment and its covering radius r∗
can be found in O(k2n2 logn) time.

Proof. We consider a point-weight pair (p, w) first. Instead of computing the whole arrange-
ment, we compute the edges and the vertices lying on Cp,w(r∗). This takes O(kn logn) time
because we already have the smallest interval u containing r∗. Then we apply the algorithm
in Lemma 7 on the edges and vertices lying on Cp,w(r∗). The algorithm returns the minimum
radius r in u such that the decision algorithm with input r answers “yes”. We do this for all
point-weight pairs (p, w). Then we have O(kn) radii one of which is exactly r∗. We again
apply binary search on these radii to find the minimum radius r over such radii that make
the decision algorithm return “yes”. Clearly, the minimum radius is exactly r∗. J

I Theorem 10. Given a set P of n points in the plane and a multiset W of k weights with
k ≤ n, an assignment f of weights that minimizes r(f) can be found in O(k2n2 log4 n) time
using O(kn) space.

4 A Faster Algorithm for a Small Set of Weights

We can improve the algorithm in Section 3 for the case that k is sufficiently small compared
to n. In this algorithm, we restrict input weights to be at most 1.

Let f∗ be an optimal assignment of weights, that is, r(f∗) = r∗, and let c∗ be the weighted
center of P with respect to f∗. A point p in P is called a determinator if d(p, c∗)/f∗(p) = r∗.
We already observed that there exist two or three determinators for any point set P . Moreover,
if there exist exactly two determinators, then the two determinators and c∗ are collinear.

The algorithm in this section is based on the observation that if f∗(p) = 1 for a
determinator p, then d(p, c∗) ≥ d(p′, c∗) for any point p′ in P . The following lemma provides
a more general observation. A proof of the following lemma can be found in the full version
of this paper.

I Lemma 11. Let f∗ be an optimal assignment of weights with minimum number of de-
terminators. If a determinator p is the ith closest point of P from c∗, it is assigned the ith
smallest element in W ′, where W ′ is the union of W and the multiset consisting of n− k
numbers of weight 1.

Combining this with Lemma 2, we have the following corollary.

I Corollary 12. There exists an optimal assignment f∗ of weights that maps the ith closest
point of P from c(f∗) to the ith smallest element in W ′, where W ′ is the union of W and
the multiset consisting of n− k numbers of weight 1.
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Lemma 11 reduces the number of candidates for a determinator with its weight compared
to the algorithm in Section 3. Recall that the algorithm considers each of O(kn) point-weight
pairs as a determinator and its weight.

We consider three different cases. The first case is that every determinator is assigned
weight 1. The second case is that every determinator is assigned a weight strictly less than 1.
The third case deals with all remaining situations.

Case 1: Every determinator is assigned weight 1. By Lemma 11, the determinators are
the farthest points of c∗ among all points in P in this case. This means that the (unweighted)
center of P coincides with the weighted center c(f∗) with the assignment f∗. After computing
the (unweighted) center of P in O(n) time [11], it suffices to check whether the center is
valid or not by using the procedure by Lemma 2. Therefore, this case can be handled in
O(n) time in total, excluding the time for sorting the weights in W .

Case 2: Every determinator is assigned a weight smaller than 1. By Lemma 11, a
determinator is one of the k closest points from c∗. This is related to the concept of the
order-k Voronoi diagram. The order-k Voronoi diagram is a generalization of the standard
Voronoi diagram. It partitions the plane into regions such that every point in the same region
has the same k closest sites. The complexity of the order-k Voronoi diagram of n point sites
is O(kn) [9]. There are a number of algorithms to compute the order-k Voronoi diagram
with different running times [1, 14]. Among them we use the algorithm in [14], which runs in
O(n logn+ nk2c log∗ k) ≤ O(n logn+ nk log k) time using O(kn) space.

In terms of the order-k Voronoi diagram, Lemma 11 can be interpreted as follows. All
determinators are sites corresponding to the cell of the order-k Voronoi diagram of P
containing c∗. To use this observation, we consider each cell of the order-k Voronoi diagram
of P . For each cell, we assign the k weights in W to the k sites corresponding to the cell
by applying the algorithm in Section 3 to the sites. This takes O(k4 log4 k) time. Then
we check whether the weighted center is valid or not. To this end, it suffices to check the
distance from the center to the farthest point of the center by Lemma 2. This can be done
in O(logn) time once we have the farthest-point Voronoi diagram of P . In total, this takes
O(k5n log4 k + T (n, k) + kn logn) time, where T (n, k) is the running time for computing the
order-k Voronoi diagram of P .

Case 3: The remaining cases. Here, we apply parametric search. We first apply the
procedures that deal with Case 1 and Case 2. Let rU be the minimum radius of the results of
the two procedures. To handle Case 3, we give a decision algorithm that returns “yes” with
input 0 < r ≤ rU if and only if there exist an assignment f of weights and a point c ∈ R2

such that d(p, c)/f(p) ≤ r for all points p ∈ P and d(q, c) = r for some point in q ∈ P . In
other words, the decision algorithm returns “yes” if and only if there is an assignment with
covering radius r one of whose determinators is assigned weight 1. For a radius r, we call
such a point c a center with radius r.

The following lemma enables us to apply parametric search. A proof of this lemma can
be found in the full version of this paper.

I Lemma 13. If an optimal solution belongs to Case 3, then the decision problem for any
input r with r∗ ≤ r ≤ rU returns “yes.”

Decision Algorithm for Case 3. Given a covering radius r, the decision algorithm first
computes the intersection I of the disks D(p, r) for all points p ∈ P , where D(p, r) is the disk
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centered at p with radius r. If the answer for the decision problem is “yes”, then a center
with r lies in the intersection I. Moreover, a center with r lies on the boundary of I by the
definition.

Thus the decision algorithm searches the boundary of I and checks whether there exists
a center on the boundary of I. Here, we follow the framework of the algorithm in Section 3.
That is, we consider O(kn) circles Cp,w(r) for all points p ∈ P and all weights w ∈W ∪ {1},
where Cp,w(r) is the circle centered at p with radius rw. Then we compute O(kn) intersection
points of each of the circles with the boundary of I and sort them along the boundary of I
in O(kn logn) time. We apply the procedure in the proof of Lemma 4, which checks whether
there exists a center with radius r lying on the boundary of I in O(kn) time. Thus the
decision algorithm takes O(kn logn) time.

Overall Algorithm for Case 3. As we did in the decision algorithm, we first compute the
intersection I(r∗) of the disks D(p, r∗) for all points p ∈ P . Here, we are not given r∗.
Instead of computing the intersection explicitly, we compute its combinatorial structure.

I Lemma 14. The combinatorial structure of the intersection of the disks D(p, r∗) for all
points p ∈ P can be computed in O(n logn + T (n) logn) time, where T (n) is the running
time of the decision algorithm.

Proof. As we increase the radius r from 0 to rU , the combinatorial structure of the intersection
of the disks D(p, r) may change. We have two types of events where the combinatorial
structure changes: an arc of a disk starts to appear in the structure or an existing arc of a
disk disappears from the structure. At both types of events, such an arc becomes a point
which is a degenerate arc. Moreover, this point is a vertex of the farthest-point Voronoi
diagram of P .

To use this fact, we compute the farthest-point Voronoi diagram of P in O(n logn) time.
Then for each vertex v of the diagram, we compute the Euclidean distance between v and its
farthest point in P . There are O(n) distances, and we sort them in the increasing order.

Then we apply binary search on the distances using the decision algorithm to find the
smallest interval containing r∗. This can be done in O(T (n) logn) time.

Therefore, for any radius on the interval, the combinatorial structure of the intersection
of the disks remains the same. J

Now we have the combinatorial structure of the intersection I(r∗). As we did in the
algorithm of Section 3, we sort the intersections of O(kn) circles Cp,w(r∗) for all point p ∈ P
and all weight w ∈W with the boundary of I(r∗) without explicitly computing r∗. This can
be done in O(kn logn+ T (n) log2 n) time, where T (n) = O(kn logn) is the running time of
the decision algorithm, in a way similar to Lemma 6. Then we find an optimal solution in a
way similar to Lemma 7 in O(kn) time if it belongs to Case 3. In total, Case 3 can be dealt
in O(kn log3 n) time using O(kn) space.

Combining the three cases, we have the following theorem.

I Theorem 15. Given a set P of n points in the plane and a multiset W of k weights smaller
than or equal to 1 with k ≤ n, we can compute an assignment f of weights that minimizes
r(f) in O(k5n log4 k + kn log3 n) time using O(kn) space.

5 Concluding Remarks

We would like to mention that the approach in this paper also works under any convex
distance function, including the Lp metric for p ≥ 1. For the L1 or the L∞ metric, the
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optimal weighted center is not necessarily unique though. If the weight assigned to an input
point p is subtracted from the distance between p and a point of the plane, the running times
of the algorithms can be improved by an O(logn) factor.
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Abstract
We consider the problem of finding a shortcut connecting two vertices of a graph that minimizes
the diameter of the resulting graph. We present an O(n2 log3 n)-time algorithm using linear space
for the case that the input graph is a tree consisting of n vertices. Additionally, we present an
O(n2 log3 n)-time algorithm using linear space for a continuous version of this problem.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Network Augmentation, Shortcuts, Diameter, Trees

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2016.59

1 Introduction

Consider a graph G = (V,E) with n vertices whose edges are assigned positive weights. The
length of a path in G is the sum of the weights of the edges in the path. For any two vertices
u and v in V , the distance between u and v in G is the length of the shortest path in G
connecting u and v. We denote the distance between u and v by dG(u, v), or simply by
d(u, v) when it is understood in the context. The diameter of G is the maximum distance
between any two vertices in G, that is, maxu,v∈V dG(u, v).

In this paper, we consider the diameter-optimal augmentation problem for trees. We are
to find a shortcut st that connects two vertices s and t of an input tree G and minimizes the
diameter of G+ st = (V,E ∪ {st}). Here, the weight of a shortcut connecting two vertices is
given in advance as an input. We assume that the weight of any shortcut can be determined
in O(1) time.

Related Work. For the case that the input graph is a path embedded in a metric space,
Große et al. [6] gave an O(n log3 n)-time algorithm that computes an optimal shortcut by
using parametric search [10]. Their decision algorithm uses the fact that for a fixed s ∈ V ,
the diameter of T + st is the maximum of four monotone functions of vertex t moving along
the path from s to an endpoint of the path.

Very recently, De Carufel et al. [4] studied the continuous version of this problem in
which the input graph G is embedded in the Euclidean plane, the weight of an edge or a
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shortcut is the Euclidean distance between its endpoints, and shortcuts are allowed to have
their endpoints on any points of edges of G. Their goal is, by adding a shortcut to G, to
minimize the continuous diameter of the resulting graph which is the maximum distance
between any two points lying on edges and vertices. In this setting, they gave a linear-time
algorithm for this problem when G is a path. They also studied the case that G is a cycle
and showed that a single shortcut cannot decrease the continuous diameter. They gave a
linear-time algorithm for computing an optimal pair of shortcuts when G is a convex cycle.

In graphs which are not necessarily embedded in a metric space, a similar problem was
also studied. For the case that we are allowed to add more than one shortcut to an input
graph, the problem of finding a diameter-optimal set of shortcuts becomes NP-hard [11].
For a path and a cycle, an upper and a lower bounds of the achievable diameter of the
resulting graph were given by [2, 3]. For an outerplanar graph, Ishii [7] gave a constant-factor
approximation algorithm for this problem.

Another variant of this problem is to find a shortcut that minimizes the dilation of a
graph, and it was considered for graphs embedded in the Euclidean space [1, 5, 8] and in a
metric space [9].

Our Results. We consider the problem of computing an optimal (discrete) shortcut of a tree
and present an O(n2 log3 n)-time algorithm for the problem. This problem is a generalization
of the metric shortcut problem for paths [6] in the sense that the input graph is a tree and it
is not necessarily embedded in a metric space. To achieve this running time, we traverse the
tree in an Euler tour and efficiently compute the diameter of the tree with a shortcut using a
data structure. As a byproduct, we present an O(n logn)-time algorithm for computing the
diameter of an edge-weighted graph containing exactly one cycle.

In addition, we consider its continuous version and present an algorithm for computing
an optimal continuous shortcut when the input graph is a tree. Again the input graph is not
necessarily embedded in a metric space, and therefore this problem is a generalization of
the continuous Euclidean diameter problem [4]. Our algorithm takes O(n2 log3 n) time using
O(n) space.

A Lower Bound for Computation. In the discrete version, consider a path with n vertices
whose diameter is λ ∈ R. There are at most

(
n
2
)
shortcuts1 in the input graph. Consider the

case that only one shortcut has a sufficiently small weight ε > 0 and the other shortcuts have
the weight larger than λ. In this case, the shortcuts with larger weights do not decrease the
diameter while the shortcut with weight ε decreases the diameter. Thus an optimal shortcut
is the one with weight ε. However, there is no way to find the optimal shortcut unless we
check the weights of all shortcuts. So it is inevitable to spend Ω(n2) time to compute an
optimal shortcut even in a path. A similar argument also holds in the continuous diameter
problem.

Note that the algorithms in [4] and [6] assume that an input graph is embedded in a
metric space. This allows them to achieve a near-linear or a linear running time.

2 Computing the Diameter of a Unicyclic Graph

We say a graph is unicyclic if the graph contains exactly one cycle. Consider a unicyclic
graph G, where each edge e is assigned a positive weight `(e). Let γ denote the unique cycle
of G.

1 Precisely speaking, there are
(
n
2

)
− (n− 1) shortcuts for a tree.



E. Oh and H.-K. Ahn 59:3

S(v)

(a)

f(v)

v

(b)

v

u

γ
γ

f(u)

f(v)π

π′

Figure 1 (a) The gray region indicates the tree S(v) rooted at v in G\γ . (b) For any two vertices
u and v on γ, the clockwise vertex-weighted distance is δcw(u, v) = w(u) +

∑
e∈π `(e) + w(v) and

the counterclockwise vertex-weighted distance is δccw(u, v) = w(u) +
∑

e∈π′ `(e) + w(v).

In this section, we present an O(n logn)-time algorithm for computing the diameter of a
unicyclic graph. Recall that the diameter of a graph is the maximum distance between any
two vertices of the graph.

We can compute an optimal shortcut in O(n3 logn) time by applying this algorithm for
every possible shortcut. In Section 3.1 and 3.2, we give a faster algorithm for computing
an optimal shortcut. Although the faster algorithm does not directly use the algorithm in
this section, we first introduce this algorithm because the faster algorithm uses a technique
similar to the one used in this algorithm.

2.1 Computing the Weights of Cycle Vertices

Consider the subgraph G\γ of G obtained by removing the edges on γ. Each connected
component of G\γ forms a tree and contains exactly one vertex on γ. We treat each connected
component as a tree rooted at the vertex on γ. For each vertex v on γ, we use S(v) to denote
the connected component rooted at v in G\γ . See Figure 1(a). Note that S(v) may consist
of only one vertex v. In addition, we use f(v) to denote the vertex in S(v) farthest from v.
The vertex f(v) for every vertex v on γ can be computed in O(n) total time.

Now we annotate a weight w(v) to each vertex v on γ, where w(v) = dG(v, f(v)). If S(v)
consists of v alone, we set dG(v, f(v)) = 0.

Vertex-Weighted Distances for Cycle Vertices. There are two simple paths connecting
two vertices on γ. To make the description easier, we assign an arbitrary orientation to γ
and treat it as a clockwise orientation. Then the opposite orientation is a counterclockwise
orientation.

We define three vertex-weighted distances from u to v for any two distinct vertices u and
v in γ as follows. (For an illustration, see Figure 1(b).)
1. The clockwise vertex-weighted distance : δcw(u, v) = w(u) +

∑
e∈π `(e) + w(v), where π

is the simple path from u to v in the clockwise orientation along γ.
2. The counterclockwise vertex-weighted distance : δccw(u, v) = w(u) +

∑
e∈π′ `(e) + w(v),

where π′ is the simple path from u to v in the counterclockwise orientation along γ.
3. The vertex-weighted distance : δ(u, v) = min{δcw(u, v), δccw(u, v)}.

For any vertex u in γ, let δ(u, u) = δcw(u, u) = δccw(u, u) = 0.
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2.2 Computing the Diameter of a Unicyclic Graph
In this section we give an O(n logn)-time algorithm to compute the diameter of G. A
diametral pair of a graph is a pair (x, y) of vertices of the graph such that the distance
between x and y is the same as the diameter of the graph. There are two possible cases for a
diametral pair (x, y) of the unicyclic graph G:
1. Both x and y are contained in S(v) for some vertex v on γ.
2. Vertex x is contained in S(u) and vertex y is contained in S(v) for two distinct vertices u

and v on γ.
For the first case, a simple path connecting x and y is unique. And it is contained in S(v).
Therefore we can handle this case by computing the diameter and the diametral pair of S(v).
For all vertices v on γ, the diameter of S(v) can be computed in total linear time.

For the second case, there are two simple paths connecting x and y, one through the
clockwise path from u to v and one through the counterclockwise path from u to v, and we
observe that dG(x, y) = δ(u, v). Therefore, it suffices to find the vertex-weighted diameter of
γ, that is, maxu,v∈γ δ(u, v).

To handle the second case, we first compute the weight w(v) of every vertex v in γ and
annotate it to v, which takes O(n) time in total for all vertices in γ. To compute the vertex-
weighted diameter of γ, we find the maximum vertex-weighted distance λv = maxu∈γ δ(v, u)
for each vertex v in γ. By definition, the vertex-weighted diameter of γ is the maximum of
λv over all vertices v in γ.

Computing λv for a vertex v in γ. Let λ > 0 be any real number. For a vertex v in
γ, let Uλ(v) be the set of all vertices u in γ with δcw(v, u) > λ. Note that the vertices in
Uλ(v) are not necessarily consecutive along γ. Let gλ(v) be the vertex of γ with the largest
counterclockwise distance δccw(v, gλ(v)) among all vertices in Uλ(v). If Uλ(v) = ∅, we let
gλ(v) be v. Then the following observation holds as δcw(v, u) > λ for any u ∈ Uλ(v).

I Observation 1. We have δccw(v, gλ(v)) ≤ λ if and only if λv ≤ λ.

To use this observation, we map each vertex u in γ to the point pv(u) with x-coordinate
δcw(v, u) and y-coordinate δccw(v, u) in the xy-plane. Let Pv be the set of points pv(u) for
all vertices u in γ. For an illustration, see Figure 2(a). To check if λv ≤ λ, it is sufficient
to find the point with largest y-coordinate among all points of Pv lying to the right of the
vertical line x = λ. By definition, the point is pv(gλ(v)) if it exists. Otherwise, gλ(v) = v.

We use a 1-dimensional range tree on (the x-coordinates of) Pv to compute gλ(v) efficiently
for any λ > 0. To be specific, we construct the range tree on Pv with respect to the x-
coordinates of the points of Pv. Each node in the range tree corresponds to an interval on R.
For each node z, we store the largest y-coordinate of the points in Pv whose x-coordinate is
in the interval corresponding to z. We denote the value stored at node z by yz. Once we
have this range tree, we can check in O(logn) time whether λv ≤ λ.

In addition, we compute λv using the range tree on Pv. Starting from the root of the
range tree, we traverse the range tree to some leaf. Suppose that we reach an internal node
z in the range tree. The interval corresponding to z is subdivided into two subintervals
corresponding to its two children. Let λ ∈ R be a value separating the two subintervals. We
check whether λv ≤ λ or not in constant time by using the value, yz, stored in z: λv ≤ λ if
and only if yz ≤ λ. If λv ≤ λ, we move to its left child. Otherwise, we move to its right child.
In each node, we spend O(1) time. Thus in O(logn) time, we can compute two consecutive
points p1 and p2 in Pv such that λ1 ≤ λv ≤ λ2, where λ1 and λ2 are the x-coordinates of p1
and p2, respectively. See Figure 2(a).
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δccw
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(b)

λ1

gλ1(v) = gλ2(v)
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λv

gλ1(v
′)δccw

δcw

~tv,v′

pv(v)
pv′(v)

pv(v
′)

pv′(v
′)

Figure 2 (a) The point set Pv obtained from the mapping of δcw(v, u) and δccw(v, u) for each u

in γ. We have λ1 < λv < λ2 because λ1 < δccw(v, gλ1 (v)) and δccw(v, gλ2 (v)) < λ2. Moreover, we
have λv = δccw(v, gλ1 (v)). (b) The point set Pv′ is a translated copy of Pv by ~tv,v′ , with exceptions
of pv′ (v′) ∈ Pv′ and pv(v′) ∈ Pv.

Here, we have gλ1(v) = gλ2(v). Moreover, λv is the y-coordinate of gλ1(v). Therefore, we
can compute λv in O(logn) time once we have the range tree on Pv.

I Lemma 2. Once we have the 1-dimensional range tree on the x-coordinates of Pv for a
vertex v in γ, the distance λv can be computed in O(logn) time.

Computing λv for all vertices v in γ. Instead of computing the 1-dimensional range trees
of Pv for all vertices v in γ repeatedly, we consider the vertices one by one in clockwise order
along γ and make use of the 1-dimensional range tree on Pv in computing the 1-dimensional
range tree on Pv′ , where v′ is the clockwise neighbor of v along γ.

Suppose that we have the 1-dimensional range tree on Pv. We show how to compute Pv′

using Pv for the clockwise neighbor v′ of v. Consider a vertex u 6= v, v′ in γ. Recall that
pv(u) is the point in the xy-plane with x-coordinate δcw(v, u) and y-coordinate δccw(v, u).
Let (x, y) be the x- and y-coordinates of pv(u). Then we have

pv′(u) = (x− w(v) + w(v′)− `(vv′), y − w(v) + w(v′) + `(vv′)).

Note that w(v), w(v′) and `(vv′) are independent to vertex u. This means that the point
set Pv′ \ {pv′(v), pv′(v′)} is a translated copy of the point set Pv \ {pv(v), pv(v′)} by the
translation vector ~tv,v′ = (−w(v) + w(v′)− `(vv′),−w(v) + w(v′) + `(vv′)). See Figure 2(b).

Thus, to compute Pv′ , we remove pv(v′) and pv(v) from Pv, translate the remaining
points in Pv by ~tv,v′ , and add pv′(v′) and pv′(v) to the point set. The resulting point set is
exactly Pv′ . Both removing and adding the two points can be done in O(logn) time. The
translation can be done in O(1) time by moving the x-axis and the y-axis by −~tv,v′ , instead
of translating the points.

The 1-dimensional range tree on Pv′ remains the same, except for the nodes for pv′(v′), pv′(v)
and the value each node stores. We first remove two points pv′(v′), pv′(v) from the range
tree on Pv. Then we update the values stored in the nodes of the range tree. These values
increase or decrease by the same amount in the range tree of Pv′ , and therefore we simply
maintain a global value for the range tree, the offset of the values, instead of updating each
value. We apply this offset to each value when it is used. After updating the offset, we add
two points for v and v′ to the 1-dimensional range tree in O(logn) time. The resulting tree
is the range tree on Pv′ .
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Now, we have the 1-dimensional range tree on Pv′ . By Lemma 2, we can compute λv′ in
O(logn) time. By applying this procedure for all vertices one by one along γ, we have the
following lemma.

I Lemma 3. The distances λv for all vertices v in γ can be computed in O(n logn) time.

Therefore, the following theorem holds.

I Theorem 4. The diameter of a unicyclic graph G can be computed in O(n logn) time.

3 The Diameter-Optimal Augmentation for a Tree

Let T = (V,E) be an input tree, where each edge e ∈ E is assigned a positive weight `(e). In
this section, we find a shortcut st connecting two vertices of T that minimizes the diameter
of T + st = (V,E ∪{st}). We use λ∗ to denote the diameter of T + st for an optimal shortcut
st. We assume that the weight of any shortcut can be determined in O(1) time.

3.1 A Decision Algorithm for Computing a Shortcut
We first consider a decision problem and give an algorithm to decide whether λ ≥ λ∗ or not in
O(n2 logn) time for a real number λ > 0. This decision algorithm is used as a subprocedure
in the overall algorithm, which we will describe in Section 3.2.

Basically, we consider all possible shortcuts st and check whether the diameter of the
unicyclic graph T + st is at least λ. We spend O(logn) time for each shortcut.

3.1.1 The Euler Tour of the Input Tree
We fix a vertex s of T and consider it as an endpoint of a shortcut. In addition, we treat
it as the root of T . An Euler tour of a graph is a path traversing each edge exactly once.
For trees, we assume that each edge is bidirectional, so the Euler tour of a tree is the path
through the tree that begins and ends at the root, traversing each edge exactly twice. In the
Euler tour, we visit each vertex t of T exactly deg(t) times, where deg(t) is the degree of t in
T .

Whenever we visit a vertex t in T , we compute the cycle of T + st together with the
weight w(v) for each vertex v of the cycle, and check whether the diameter of T + st is at
least λ. Let γ(s, t) be the cycle of T + st for a vertex t in T .

When we move from a vertex t to one of its children t′ in the Euler tour, the cycle
changes locally. To be specific, assume that we already have γ(s, t) and the weight w(v) of
each vertex v of γ(s, t). As depicted in Figure 3, we construct γ(s, t′) by appending tt′ and
replacing st with st′ to γ(s, t). Then the weight of t may change and we need to compute
w(t′) with respect to γ(s, t′), while the other vertices of γ(s, t′) have their weights unchanged.
The weights, w(t) and w(t′) with respect to γ(s, t′), can be computed in O(1) time once we
compute two distance values for every vertex in linear time in advance as follows.

For a vertex v of T rooted at s, let h1(v) be the distance between v and the descendant
of v farthest from v. Let h2(v) denote the second largest value among values h1(u) + `(vu)
for all children u of v. If v has exactly one child, we let h2(v) = 0. We consider the vertices
from the leaves one by one with respect to their depths, and compute h1(v) for all vertices v
in total linear time. Then, we compute the distance h2(v) in O(deg(v)) time by checking the
values h1(u) for all children u of v.

The weight w(t′) with respect to γ(s, t′) is exactly h1(t′), which can be found in constant
time. For the weight w(t) with respect to γ(s, t′), we have two cases: w(t) = h1(t) if
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δcw(s, g(x))
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g(x)
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′)
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Figure 3 When we move from vertex t to its neighbor vertex t′, tt′ is appended to the cycle
γ(s, t) and the weight w(t) = d(t, f(t)) of t with respect to the new cycle γ(s, t′) changes accordingly.
(a) h(x) = δcw(x, t) + δcw(s, g(x)) with respect to γ(s, t). (b) h(x) = δcw(x, t′) + δcw(s, g(x)) with
respect to γ(s, t′).

h1(t) > h1(t′) + `(tt′), and w(t) = h2(t) otherwise. In either case, we can compute w(t) in
constant time.

When we move from a vertex t to its parent t′′, we can obtain γ(s, t′′) and the weights of
the vertices on γ(s, t′′) in constant time analogously.

I Lemma 5. The cycle γ(s, t′) and the weights w(v) of vertices v of γ(s, t′) can be updated
in O(1) time for a traversal of edge tt′ in the Euler tour once we compute h1(v) and h2(v)
for every vertex v of T in linear time.

3.1.2 Deciding the diameter of T + st for λ
Without loss of generality, we assume that t is the counterclockwise neighbor of s in γ(s, t).
We show how to decide whether the diameter of T + st is at least λ in O(logn) time. To do
this efficiently, we maintain a list of distance values sorted in the increasing order.

The Sorted List H of distance values. For each vertex x in γ(s, t), let g(x) denote the
vertex with largest δcw(s, y) among vertices y lying in between s and x in clockwise direction
from s and satisfying δccw(x, y) > λ. If no such vertex exists, we let g(x) be null. Note
that we have δcw(x, g(x)) = w(x) + dT (x, t) + `(st) + dT (s, g(x)) + w(g(x)). Moreover, if
δcw(x, g(x)) is at most λ or g(x) is null, then we have δ(x, y) ≤ λ for every vertex y in between
s and x in clockwise direction from s. Let h(x) = w(x) + dT (x, t) + dT (s, g(x)) +w(g(x)) for
a vertex x in γ(s, t) such that g(x) is not null. We maintain h(x) for all vertices x in γ(s, t)
such that g(x) is not null and sort them in decreasing order. We denote this sorted list by H.

Once we have the sorted list H, we can check whether the diameter of T + st is at least
λ in constant time. We choose the first element of H, say h(x). Then the answer for the
decision problem is “yes” if and only if `(st) + h(x) ≤ λ. This can be checked in constant
time.

Now we show how to update the sorted list H in O(logn) time when we move from a
vertex t to a vertex t′ in the Euler tour in three phases: (1) update H, except for h(t′) and
h(t), (2) remove h(t) from H, and (3) compute h(t′) and h(t), and insert them to H. We
compute h(t) again because the value h(t) changes. Let H be the sorted list which is already
computed for the vertex t. We are to update H, that is, to construct the sorted list for t′.
Recall that in γ(s, t′), only one vertex is added to or removed from γ(s, t). Here, we consider
the case that one vertex, which is t′, is added to γ(s, t). The other case is analogous to this
case.
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First observe that h(x) increases by the same amount for all vertices x in γ(s, t′) \ {t, t′}.
Moreover, this amount is exactly `(tt′) − w(t) + w′(t′), where w(t) and w′(t′) denote the
weights of t and t′ in γ(s, t) and γ(s, t′), respectively. This means that the order for the
elements in H remains the same, except for h(t) and h(t′). Thus, we can update H, except
for h(t′) and h(t), in constant time by maintaining the offset.

For computing h(t), we observe that g(t) remains the same. However, since the weight of
t changes, the value h(t) changes accordingly. With the new weight w(t), we can update h(t)
in constant time and insert it to H in O(logn) time.

The remaining procedure is to compute h(t′). This procedure is similar to the procedure
for computing the diameter of a unicyclic graph in Section 2. To this end, we maintain a
point set and its range tree in addition to the sorted list H.

The Point Set P and Its Range Tree. We map each vertex x in γ(s, t′) to the point
p(x) ∈ R2 with p(x) = (δccw(t′, x), δcw(s, x)). Let P denote the set of p(x)’s for every vertex
x in γ(s, t′). We construct a 1-dimensional range tree on P with respect to the x-coordinates
of the points in the set. This range tree can be updated in O(logn) time as we did in
Section 2.

Once we have the range tree, we can compute h(t′) in O(logn) time as follows. We find
the point with largest y-coordinate in P among all points of P lying to the right of the
vertical line x = λ. Note that the point with largest y-coordinate is g(t′) by definition. Thus,
h(t′) is the y-coordinate of p(g(t′)) since h(t′) = w(t′) + dT (t′, t′) + dT (s, g(t′)) + w(g(t′)).
By adding h(t′) to its proper position in H, we have the sorted list H for t′.

This completes the procedure for checking if the diameter of T + st is at least λ, which
takes O(logn) time. With these arguments, the following lemma holds.

I Lemma 6. Given a tree T and a real number λ > 0, we can decide in O(n2 logn) time
whether λ∗ ≤ λ or not.

3.2 An Algorithm for Computing the Optimal Shortcut
The optimal diameter λ∗ is either the distance d(u, v) of two vertices u, v ∈ T or the sum of
two distances d(u, t) and d(s, v) of u, v, s, t ∈ T and the weight of shortcut st. We first apply
binary search on the lengths of all paths in T and find an interval of distance as described in
Section 3.2.1. Then we consider the second case in Section 3.2.2.

3.2.1 Binary Search on Distances of Two Vertices
We can compute the set D1 of distances of every two vertices in T in O(n2) time and apply
binary search on the distances using the decision algorithm in Section 3.1. This procedure
gives us an interval containing no value of D1 in its interior but containing λ∗ in O(n2 log2 n)
time. However, this procedure requires Ω(n2) space.

We show how to do this in O(n2 log3 n) time using O(n) space. We apply binary search in
O(logn) rounds. In the first round, we do the following: for each vertex v of T , we compute
the median of the distances of v to all other vertices in T . This gives us n medians in O(n2)
time using O(n) space. Then we sort these medians and apply binary search on them. Let η
be the interval obtained from the binary search. Note that η contains λ∗.

In the next rounds, we repeat the following and refine the interval containing λ∗. For
each vertex v of T , we consider the distances of v to all other vertices of T that lie in the
interval η and choose the median of them. Then we apply binary search again on these
medians and reduce η into the subinterval that contains λ∗.
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In every round, for each vertex v of T , the number of distances of D1 lying in η decreases
by a constant fraction. Therefore, after O(logn) rounds, the interval η contains no distance
of D1 in its interior. This takes O(n2 log3 n) time using O(n) space.

3.2.2 Computing the Diameter with the Optimal Shortcut

Now we consider the case that λ∗ is the sum of two distances d(u, t) and d(s, v) of u, v, s, t ∈ T
and the weight of shortcut st. We observe that u and v are contained in two different subtrees
of T \γ(s,t) rooted at x and y on γ(s, t), respectively, such that y = g(x). Therefore, we have
λ∗ = h(x) + `(st). Based on this observation, we consider O(n2) candidate values one of
which is exactly λ∗ and find λ∗ among them. We use a technique similar to parametric
search [10].

We simulate the decision algorithm with λ∗ without explicitly knowing λ∗. Let D2 be
the set of candidate values that we consider. Initially, D2 is empty. We fix a vertex s in T
and traverse the vertices in an Euler tour of T as we did in the decision algorithm. Assume
that we move from t to the next vertex t′. We compute the cycle γ(s, t′) and the weights of
vertices in γ(s, t′) in constant time once we have two distance values, h1(v) and h2(v), for
every vertex v of T by Lemma 5.

Then we update the sorted list H in three phases. In the first phase, we update the
elements in H, except for h(t′) and h(t). In the second phase, we remove h(t′) from H. These
two phases are independent of input λ, so the first phase can be done even though we do not
have the explicit value of λ∗.

In the third phase, we first update the element for h(t). This update is independent
of λ because we already have g(t), thus it can be done in O(logn) time. Then we update
the element for h(t′). To do this, we maintain a point set and its range tree. Since these
structures are independent of input λ, we can update them as we did in the decision algorithm
without the explicit value of λ∗. To compute h(t′), we find the point with largest y-coordinate
in P among all points lying to the right of x = λ. This procedure is dependent of an input λ.

However, we already have the interval η from Section 3.2.1 that contains λ∗ but does
not contain any value of D1 in its interior. Moreover, the x-coordinate of each point in P
is the distance between two vertices of T . Therefore, we can find the point with largest
y-coordinate in P among all points lying to the right of x = λ∗ by choosing any distance
λ ∈ η. The third phase of the update can be done in O(logn) time.

The next step in the decision algorithm is to check whether λ ≥ `(st′) + h(x) or not for
the first element h(x) of H. This means that the value `(st′) + h(x) is a critical point in a
sense that the answer for the decision problem with input λ depends on whether λ is at least
this value or not. Thus, we add `(st′) + h(x) to D2.

We do this for all vertices s in T , and then we have O(n2) critical points one of which is
exactly λ∗. The running time of this procedure is the same as the decision algorithm, which
is O(n2 logn). Then we apply binary search on D2 and we compute λ∗.

Since we have O(n2) distances, this requires Ω(n2) space. Instead of computing the
distances in D2 simultaneously, we apply binary search in O(logn) rounds as we did in
Section 3.2.1. Then we can compute λ∗ in O(n2 log3 n) time using O(n) space.

I Theorem 7. Given a tree T , an optimal shortcut can be computed in O(n2 log3 n) time
using O(n) space.
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Figure 4 The points marked with disks are vertices of T while the points marked with squares
are not necessarily vertices of T . (a), (b) Vertex-vertex pairs for a continuous diameter of a unicycle
graph T + st. (c) A point-point pair (x, y).

4 The Continuous Diameter-Optimal Augmentation for a Tree

In this section, we consider a continuous version of the problem. We are given a tree
T = (V,E) with positive edge-weight `(e) for each edge e ∈ E. In this problem, a subedge
e′ ⊂ e also has its weights. For a point x in e = ab, the weight of the subedge ax is represented
as an algebraic function with variable x, which is given as an input. Similarly, the weight of
the subedge bx is given as an input. Since every edge has such two functions, we have 2n
algebraic functions in total. With this weight, the length of the path between any two points
of T is defined.

In addition, for two points p ∈ e and p′ ∈ e′, the weight of the shortcut pp′ is also given
as an input. We assume that for any two edges e and e′, the weight of a shortcut pp′ can be
represented as an algebraic function with two variables p ∈ e and p′ ∈ e′. Since every pair of
edges has such a function, we have at most

(
n
2
)
algebraic functions representing the weight

of a shortcut. In the following, we assume that we can compute the minimum of the upper
envelope of any two algebraic functions with constant degree in constant time.

The continuous diameter is the maximum distance between any two points of T . Note
that if (p, p′) is a diametral pair for two points p, p′ 6∈ V then there are two simple paths
connecting p and p′ with the same length. The goal of this problem is to find two points s, t
of T such that the continuous diameter of T + st = (V,E ∪ st) is minimized.

4.1 Characterization of the Continuous Optimal Shortcut
Let st be a continuous shortcut. Let γ(s, t) be the unique cycle of T +st. For any vertex v on
γ(s, t), let f(v) be the vertex of S(v) farthest from v, where S(v) is the connected component
of T \γ(s,t) containing v. Then there are two possible cases for a continuous diametral pair of
the unicyclic graph T + st: (For an illustration, see Figure 4.)

vertex-vertex pair: (f(u), f(v)) for two vertices u, v ∈ γ(s, t) including s and t, and
point-point pair: (x, y) for two points x, y ∈ γ(s, t) \ V .

For a point-point pair (x, y), there are two simple paths connecting x and y. Moreover,
the two paths have the same length, which is half of the length of the cycle γ(s, t).

4.2 A Decision Algorithm
We consider every pair (es, et) of edges of T and check whether there exists a shortcut st
with s ∈ es and t ∈ et such that the diameter of T + st is at most µ for a real number µ. If
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such a shortcut exists, we say that (es, et) is feasible. We say that a shortcut st is in (es, et)
if s ∈ es and t ∈ et. To solve the decision problem efficiently, we fix an edge es and treat an
endpoint of es as the root of the tree. Then we compute an Euler tour of T from the root
and visit every edge twice along the tour. Whenever we visit an edge et, we check whether
(es, et) is feasible.

Checking Whether an Edge Pair is Feasible. Let us and ut be the endpoints of es and et,
respectively, that do not lie on the cycle γ(s, t) for some shortcut st in (es, et). Assume that
us is the clockwise neighbor of ut in T + usut. See Figure 4(a).

Let f(v) be the vertex of S(v) farthest from v, where S(v) is the connected component
of T \γ(us,ut) containing v for a vertex v on γ(us, ut). The weight w(v) of v on the cycle is
the distance between f(v) and v.

Assume that we have the followings:
dT (us, ut), and
for every vertex v in γ(us, ut), the value h(v) which is the maximum w(u) + dT (u, us) +
dT (ut, v) +w(v) over all vertices u lying in the path between us and v in clockwise order
from v on T with dT (u, v) + w(v) + w(u) > µ.

Then we can check whether (es, et) is feasible or not in constant time as follows. Let
f(s, t) be the weight of the shortcut st in (es, et), which is an algebraic function with variables
s and t. Let fs(s) be the weight of the subedge uss, which is an algebraic function. Similarly,
let ft(t) be the weight of the subedge utt. The continuous diameter of the cycle γ(s, t) is
(dT (us, ut)−fs(s)−ft(t)+f(s, t))/2, which is half of the length of the cycle and the diameter
is an algebraic function with variables s and t.

For a vertex-vertex diametral pair, we consider h(v) value of a vertex v in γ(us, ut). We
find the maximum of h(v)’s over all vertices v in γ(us, ut). Once h(v)’s are sorted in decreasing
order, we can choose the maximum h in constant time. If h − fs(s) − ft(t) + f(s, t) ≤ µ

for some shortcut st in (es, et), then the diameter is at most µ if a diametral pair is a
vertex-vertex pair.

Thus, we check whether there is a shortcut st such that the maximum of (dT (us, ut)−
fs(s)− ft(t) + f(s, t))/2 and h− fs(s)− ft(t) + f(s, t) is at most µ. If so, we conclude that
st is feasible. Otherwise, st is not feasible. With the argument in this section, we have the
following lemma.

I Lemma 8. Once we have dT (us, ut) and h(v) for every vertex v in γ(us, ut), we can check
whether (es, et) is feasible or not in constant time.

The distance dT (us, ut) can be updated in constant time if we consider the edge et along
the Euler tour. For the values h(v)’s, we can use the algorithm in Section 3.1. The algorithm
in Section 3.1 computes exactly these values by maintaining a point set and a range tree.
Therefore, we have the following.

I Lemma 9. Given a tree T and a real number µ > 0, we can decide in O(n2 logn) time
whether µ is at most the optimal solution or not.

4.3 An Overall Algorithm
Let D1 be the set of distances between every pair of vertices in T . As we did in the algorithm
for the discrete version, we compute the interval µ containing the optimal solution µ∗ but
containing no value of D1 in O(n2 log3 n) time.
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Then we simulate the decision algorithm in Section 4.2 with an optimal solution. This
can be done as follows without explicitly knowing an optimal solution. Since we have the
interval µ, we can apply the procedures in Section 4.2, except for the last one that compares
the maximum of the two algebraic functions with an input. Instead of applying the last
procedure, we compute the maximum and put it into the set D2, which is set to be empty
initially. Then one of the values in D1 ∪ D2 is the optimal solution. Thus, we again apply
binary search on the set D1 ∪ D2. This is similar to the algorithm for the discrete version.
This algorithm can also be analyzed analogously. Thus, we have the following theorem.

I Theorem 10. Given a tree T , the continuous optimal shortcut can be computed in
O(n2 log3 n) time using O(n) space.
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Abstract
We consider the classic all-pairs-shortest-paths (APSP) problem in a three-dimensional envir-
onment where paths have to avoid a set of smooth obstacles whose surfaces are represented
by discrete point sets with n sample points in total. We show that if the point sets represent
ε-samples of the underlying surfaces, (1 ± O(

√
ε))-approximations of the distances between all

pairs of sample points can be computed in O(n5/2 log2 n) time.
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1 Introduction

Computing shortest distances between pairs of points is one of the classic problems in
Computational Geometry. The problem is well-understood in (geometric) graphs and in the
Euclidean plane [11]. Computing exact shortest paths among obstacles in three-dimensional
Euclidean space, however, was shown to be NP-hard [7]. Subsequently, authors have
considered special cases such as exact distances on a convex polyhedron [16] or approximate
distances on a general, possible weighted polyhedron [2], see also the survey by Bose et al. [6].

We consider a set of smooth obstacles in R3 given as an ε-sample, i.e., a point set on the
union of the obstacles’ boundaries locally dense enough to faithfully capture curvature and
folding. As usual, ε is a sampling parameter unknown to the algorithm [4, 14]. In line with
previous approaches (see [15] and the references therein), we assume that ε is upper-bounded
by a constant ε0 > 0 which only depends on the algorithm but neither on the input size nor
on the curvature or folding of the underlying surface. We obtain the following result:

I Theorem 1. There is a global and shape-independent constant ε0 > 0 such that it holds
for ε ≤ ε0: Given an ε-sample S of a set of smooth obstacles in R3, we can compute
(1±O(

√
ε))-approximations of all

(
n
2
)
distances in O(n5/2 log2 n) time, where n := |S|.

In general, shortest paths among obstacles alternate between geodesic subpaths on
obstacles and straight-line segments in free space. The standard approach to computing such
free-space geodesics would be to compute both geodesic distances and visibility edges between
each pair of points, model these distances by a weighted graph G with vertices corresponding
to the sample points on the obstacles, and then to combine the results using an all-pairs
shortest path algorithm on G. Due to the complexity of visibility maps in three-dimensional
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space, this approach would lead to an at least cubic runtime. We will alleviate this problem
by simultaneously restricting the degree of G and locally bounding the length of the edges.

Related Work

A free-space geodesic is modeled by two types of edges in G that correspond to either
geodesics on obstacles or straight-line segments in free space. For the geodesics on obstacles,
we note that exact shortest path computations on general polyhedra are considered complex
and challenging. We refer to recent surveys [3, 6, 11] for a detailed discussion and focus on
two approximation algorithms: the best algorithm currently known for weighted polyhedra is
the algorithm by Aleksandrov et al. [3], while the algorithm by Scheffer and Vahrenhold [14]
works on (unweighted) 2-manifolds in IR3. The efficiency of the algorithm by Aleksandrov
et al. depends on the triangles obeying a “fatness” condition. In general, however, the
aspect ratio and, hence, the runtime can be arbitrarily large. Both algorithms result in a
shortest-path graph of quadratic size. Exploring this structure in combination with a visibility
graph (see below) as part of a shortest-path algorithm leads to at least cubic runtime.

The second type of edges of a free-space geodesic corresponds to straight-line segments
connecting points on obstacles by crossing the free space; these bridge edges are obtained by
computing visibility information between points on the obstacles. Despite recent advances
in algorithms for “realistic terrains” [12], the complexity of the visibility map of a three-
dimensional surface is quadratic in the worst case—see [12] and the references therein. As
discussed above, a visibility map of quadratic size leads to a cubic overall running time.
A subquadratic complexity currently can be obtained only under standard assumptions
about the fatness of the triangles and the (bounded) ratio of shortest and longest edges; in
particular the latter assumption is infeasible in the case we are considering.

2 Outline of the Algorithm

To simplify the exposition, we will assume that the obstacles’ boundary consists of exactly
one surface Γ. Since even in that case straight-line segments, i.e., bridge edges, may be
needed on a free-space geodesic to bridge cavities in the manifold z bounded by Γ, it is easy
to see that our algorithm easily generalizes to multiple non-intersecting obstacles.

From a high-level perspective, our algorithm proceeds by first constructing a weighted
graph G :=

(
Ssub, Eloc ∪ Ebri

)
on a subset Ssub ⊆ S of sample points where the edges in Eloc,

called local edges, represent approximate free-space geodesic distances between points on Γ
and the edges in Ebri represent straight-line segments avoiding Γ; in either case, the weight
of an edge denotes the length of the respective connection. The algorithm then approximates
the free-space geodesic distances L?Γ (s1, s2) for all s1, s2 ∈ Ssub by computing exact all-pairs
shortest paths in G and extends these results to compute approximate distances L (·, ·)
between all points in S. The algorithm is given below and will be discussed in the following.

As sketched above, the main challenge in obtaining an algorithm with subcubic running
time lies in working with a shortest-path graph with bounded or at least sublinear degree. As
we will detail below, we can obtain such a graph by first avoiding to compute approximate
free-space geodesic distances between all pairs of points. Instead, we will compute such
distances only for points within a locally bounded distance of each other. These distances
will be represented by the set Eloc of local edges connecting points in a carefully coarsened
subsample Ssub ⊆ S. We then compute a set Ebri of bridge edges such that Ebri is a
superset of the visibility graph of Ssub w.r.t. (the sample points of) Γ. In both cases, we can
simultaneously guarantee a sublinear node degree and a good approximation quality.
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Algorithm 1 Approximating Geodesic Distances.
1: function APX3DGeodesicDistances(S)
2: ψ(·)← ControlFunction(S); . Setup approximation using Lemma 4 [9, 14]. . .
3: afs(·)← APXLocalFeatureSize(S); . . . . and algorithm by Aichholzer et al. [1]
4: δ ← maxs∈S ψ(s)

afs(s) ; . Lower-bound local feature size
5: Ssub ← CoarsenSample(S, δ, afs(·)); . Use Algorithm 2
6: Eloc ← ComputeLocalEdges(Ssub, δ, afs(·)); . Use Algorithm 3
7: Ebri ← ComputeBridgeEdges(Ssub, S, δ, afs(·)); . Use Algorithm 5
8: G←

(
Ssub, Eloc ∪ Ebri

)
; . Assemble graph G

9: return APXDistancesFromGraph(S, G); . Expand result from Ssub to S

In the remainder of this section, we consider both types of edges in turn and show how
to efficiently compute them. We then discuss how to combine local and bridge edges into a
graph G that is sparse enough to be traversed efficiently. Finally, we analyze the resulting
algorithm w.r.t. to its running time and approximation quality.

2.1 Computing Local Edges
The situation we are facing is similar to the construction of spanner graphs approximating
the full Euclidean graph. One way of constructing a spanner graph is by means of the
well-separated pair decomposition [10]. Informally, this approach connects (representative
points of) clusters that are “far away” from each other, where the notion of “far away”
depends on the radius of the clusters. Doing so, the intra-cluster distances are approximated
by the length of the edge connecting the representatives.

We proceed along similar lines: we consider only edges between points that are at bounded
distance from each other where the notion of “bounded” depends on the sampling density and
the curvature and folding of Γ at the points in question. This allows us to relate Euclidean
and geodesic distances and thus to upper-bound the approximation quality of the geodesic
distances computed. A naive implementation of this approach, however, might lead to a linear
number of edges per point. To avoid such situations, we need to ensure that only few “short”
edges are constructed per point; this will be done by applying a standard preprocessing step
in which the sample is coarsened appropriately without affecting the sampling quality [14].

In contrast to the construction of the spanner graph, the construction steps sketched
do not guarantee a linear number of edges to be sufficient to obtain a good approximation
quality. What we can show, however, is that by considering only edges for points whose
Euclidean distance is upper-bounded as sketched above, we obtain a graph with O(n3/2)
edges which still results in the desired approximation quality.

2.1.1 Characterizing and Approximating the Sampling Density
To measure the density of a point sample, it is customary to consider the local feature size
lfs(·) that is defined as the distance function to the medial axis of Γ [4]. To formalize notation,
a discrete subset S of Γ ⊂ R3 is an ε-sample of Γ if for every point x ∈ Γ there is a sample
point s ∈ S such that its distance |xs| to s is upper-bounded by ε · lfs(x). The local feature
size lfs(·) is c-Lipschitz for c = 1, i.e., lfs(x) ≤ lfs(y) + c|xy| = lfs(y) + |xy|, x, y ∈ R3.

In [14], we show that |x1x2| for x1, x2 ∈ Γ is an (1 +O(ε))-approximation of the geodesic
distance LΓ (x1, x2) on Γ between x1 and x2 if |x1x2| ≤

√
ε · min{lfs(x1), lfs(x2)}. Put

differently, if points are “close enough” to each other, their Euclidean distance approximates
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their geodesic distance. While we use this upper bound in [14] to prove the approximation
quality of the geodesic distances computed, the discussion above suggests that our algorithm
needs to actually evaluate these expressions to compute the radii of the locally bounded
neighborhoods mentioned above and thus to be able to exclude points at larger distance from
comparison. Unfortunately, neither ε nor lfs(·) can be computed exactly as Γ is unknown.

What we can do, however, is to compute an approximate upper bound afs(·), the
approximate local feature size, for lfs(·) such that lfs(s) ≤ O(1) · afs(s) for all s ∈ S.
Furthermore, we compute a so-called control function ψ (·) such that ψ (s) ≤ O(ε) · lfs(s) for
all s ∈ S. Finally, we compute an approximate lower bound δ := maxs∈S(ψ (s) /afs(s)) for ε.

We follow Aichholzer et al. [1] and apply the distance from s ∈ S to the closest pole.

I Definition 2 ([4]). The poles of some s ∈ S are the two vertices of the Voronoi cell VorS (s)
of s in the Voronoi diagram of S which are farthest from s, one on either side of Γ (note that
Γ is the boundary of a 2-manifold, hence the inside and outside are well-defined). A pole ps
of s is called an outer pole if it lies outside Γ, and an inner pole otherwise.

Aichholzer et al. observed that this distance is the desired approximate upper bound
afs(s) for the local feature size lfs(s), i.e., that lfs(s) ≤ 1.2802 · afs(s) holds. Obviously, we
can compute the (Voronoi diagram and the) poles and, hence, afs(·) in quadratic time. While
the algorithm only needs to know the values of afs(·) for all points in S, the analysis will use
a version of this function lifted to Γ ⊂ IR3. For this analysis, we can assume that we can
extend the domain of afs(·) to Γ– if needed, pointwise – such that lfs(x) ≤ 1.2802 · afs(x)
holds for all x ∈ Γ (note that lfs(·) is defined for each point x ∈ Γ).

I Observation 3. afs(·) is 1-Lipschitz and can be computed in O(n2) time.

We then obtain the approximate lower bound δ for ε using a control function:

I Lemma 4 ([14]). We can compute in time O(n2) a control function ψ : S −→ R+ such
that: (1) ∀s ∈ S : ψ (s) ≤ 1.19 · ε · lfs(s), (2) ∀s ∈ S : ∀x ∈ Vor (s) ∩ Γ : |xs| ≤ ψ (s), and (3)
ψ is 1

18 -Lipschitz.

In line with the above argumentation, for s1, s2 ∈ S we show |s1s2| ≤ (1 + O(
√
ε)) ·

L?Γ (s1, s2) if |s1s2| ≤ 1
3 ·
√
δ ·min {afs(s1), afs(s2)} holds, i.e., the above approximation scheme

still yields meaningful results for sample points s1, s2 ∈ S “close enough” to each other.
In our previous work [15], we proved:

I Lemma 5 ([15, Lemma 23]). There is a global and shape-independent constant ε0 such
that for all ε ≤ ε0, the approximate lower bound δ for ε satisfies 1

δ ∈ O(
√
n).

2.1.2 Coarsening the Sample

It remains to discuss how to avoid high-degree nodes in the distance graph, or, equivalently,
to avoid connecting points to “too many” other points that fulfill the above distance criterion.
For this, we use the control function implied by Lemma 4 to compute a coarsened subsample
Ssub ⊆ S in which the following two conditions hold:
1. For each point x ∈ Γ, there is a sample point s ∈ Ssub, such that |xs| ≤ O(δ) · afs(s).
2. For any two sample points s 6= s′ ∈ Ssub, |ss′| ≥ O(δ) · afs(s) holds.
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Algorithm 2 Compute a coarsened subsample Ssub ⊆ S (see [9, 14]).
1: function CoarsenSample(S, δ, afs(·))
2: Ssub ← ∅; β ← 0.1; . Fix constant in “big-oh”-notation for later analysis
3: while S 6= ∅ do
4: s← arbitrary point in S;
5: Ssub ← Ssub ∪ {s};
6: S ← S\Bβ·δ·afs(s)(s); . Br(x): ball with radius r centered at x
7: return Ssub;

Algorithm 3 Compute the set Eloc of local edges.
1: function ComputeLocalEdges(Ssub, δ, afs(·))
2: Eloc ← ∅;
3: for all (s1, s2) ∈ Ssub × Ssub do
4: if |s1s2| ≤ 1

3 ·
√
δ ·min {afs(s1), afs(s2)} then

5: e← (s1, s2); weight(e)← |s1s2|; Eloc ← Eloc ∪ {e};
6: return Eloc;

2.1.3 Intermediate Summary: Computing Local Edges
Summarizing the above discussion, we first coarsen the subsample using Algorithm 2 and
then construct local edges between all points that are close enough—see Algorithm 3.

I Lemma 6. Let S be an ε-sample and Eloc the set of local edges computed for a coarsened
subsample Ssub ⊆ S according to Algorithm 2 and 3. Then, the following properties hold:
(LE1) The length of a local edge is a (1±O(

√
ε))-approximation of the geodesic distance of its

endpoints. More precisely, for all s1, s2 ∈ S such that |s1s2| ≤ 1
3 ·
√
δ ·min {afs(s1), afs(s2)}

holds, we have L?Γ (s1, s2) ≤ (1 +O(δ)) · |s1s2| ≤ (1 +O(
√
ε)) · |s1s2|.

(LE2) Local edges can be asymptotically longer than the sampling density (described in terms
of afs(·) and δ) by a factor of Θ(

√
δ), i.e., they connect points that are relatively “far

away” from each other similar to cluster centers in a well-separated pair decomposition.
(LE3) Each sample point s ∈ Ssub is incident to at most O(

√
n) local edges.

Proof.
(LE1) (Omitted due to space constraints.)
(LE2) Fix a point s ∈ Ssub and let x be any point in VorSsub(s). By Lemma 7 there is

some s′ ∈ Ssub such that |xs′| ≤ 1.17 · δ · afs(s′). Since afs(·) is Lipschitz, it follows that
|xs′| ≤ 1.2 · δ · afs(x). Since x ∈ VorSsub(s), we have |xs| ≤ |xs′| ≤ 1.2 · δ · afs(x). Again,
since afs(·) is Lipschitz, we conclude that |xs| ≤ Θ(δ) · afs(s). Now, consider any local
edge (s1, s2) ∈ Ssub × Ssub. By construction, the maximum length νmax of any such
edge is νmax := 1

3 ·
√
δ ·min{afs(s1), afs(s2)}. Even if afs(s1) = max{afs(s1), afs(s2)}, the

fact that afs(·) is Lipschitz, together with the small distance of s1 and s2, implies that
νmax ≥ afs(s1) ·Θ(

√
δ). Thus, νmax ·Θ(

√
δ) ≥ |xs1|. The same argument applies to s2.

(LE3) [Sketch] As afs(·) is 1-Lipschitz, we can show afs(s′) ≥ (1− 1
3 · δ) · afs(s) ≥ 1

2 · afs(s)
for s′ ∈ B 1

3 ·
√
δ·afs(s)(s). Algorithm 2 guarantees |ss′| ≥ 0.1 · δ · afs(s) for all s, s′ ∈ Ssub,

s 6= s′. A standard packing argument yields |B 1
3 ·
√
δ·afs(s)(s) ∩ Ssub| ≤ 1

δ . As all sample
points connected to s by local edges lie inside B 1

3 ·
√
δ·afs(s)(s), we can upper-bound the

number of local edges incident to s by 1
δ ∈ O(

√
n); see Lemma 5. J
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I Lemma 7. For each x ∈ Γ, there is a s′ ∈ Ssub with |xs′| ≤ 1.17 · δ · afs(s′).

Proof. Let q ∈ S be the sample point closest to x. We distinguish between two cases:

1. q ∈ Ssub: We define s′ := q. By definition, δ = maxp∈S ψ(p)
afs(p) ≥

ψ(s′)
afs(s′) . Since, by

Lemma 4, |xs′| ≤ ψ (s′), we have |xs′| ≤ ψ(s′)
afs(s′) · afs(s′) ≤ δ · afs(s′).

2. q ∈ S \ Ssub: Define s′ ∈ Ssub to be the sample point that was processed by Algorithm 2
when q was excluded from further consideration (Line 6). With β = 0.1, this implies
that |s′q| ≤ 0.1 · δ · afs(s′). As afs(·) is 1-Lipschitz, we get afs(q) ≤ (1 + 0.1 · δ) · afs(s′).
Since q is the sample point closest to x, we have |xq| ≤ δ · afs(q) (see above). The
triangle inequality implies then |xs′| ≤ |xq| + |qs′| ≤ δ · afs(q) + 0.1 · δ · afs(s′) ≤
0.1 · (1 + 0.1 · δ) · δ · afs(s′) + δ · afs(s′) ≤ 1.17 · δ · afs(s′) (since δ2 < δ). J

2.2 Computing Bridge Edges
The second type of edges used in our construction is the set Ebri of bridge edges. While we
would ideally compute the visibility graph of Ssub w.r.t. Γ, we cannot do so as the exact
geometry of Γ is unknown. We thus compute Ebri as a superset of the edges in the visibility
graph making sure that the additional edges that may intersect the interior of Γ do so not
too deep; this will enable us to bound the approximation error.

2.2.1 Computing Approximate Visibility Information
As the exact nature of Γ is unknown, we cannot compute the visibility map of s′ ∈ Ssub w.r.t.
Γ. Neither can we use a polyhedral reconstruction of Γ as the visibility map of s′ w.r.t. such a
reconstruction may have quadratic complexity [12, Sec. 2.1]. To circumvent this problem, we
refrain from reconstructing Γ at all. Instead, we discretize Γ by a set of carefully constructed
cubes corresponding to all points in S and compute the visibility maps w.r.t. theses cubes.

For this, we require that the visibility information obtained in this way approximates
the true visibility information. First, we require that the cubes indeed cover Γ (recall that
Γ is the boundary of a manifold z, not z itself) such that no obstacles are ignored or
holes appear, and, second, we require that the cubes do not cover too much of the space
outside Γ in the sense that they block visibility rays that Γ does not block. To fulfill these
requirements, we compute, for each s′′ ∈ Ssub, a cube that is centered at s′′ and contains a
ball of radius 2 · δ · afs(s′′) (intuitively, this means that the cubes are large enough to overlap
with “neighboring” cubes and thus cover Γ). We then push all cubes towards the interior of
z such that they do not protrude from z and thus block visibility rays that z would not
block. Based upon Amenta and Bern’s [4] observation that for any point s ∈ S the vector
from s towards one of its poles approximates the respective surface normals in s, we push
the cubes along the vector from s towards its inner pole—see Algorithm 4.

Algorithm 4 Compute centers of the cubes pushed towards the interior of the manifold z.
1: function ComputeCubeCenters(S, δ, afs(·))
2: for all s ∈ S do
3: ps ← inner pole of s;
4: s↓ ← s+ 15 · δ · afs(s) ·

−→sps

|sps| ;
5: S↓ ← S↓ ∪

{
s↓
}
;

6: return S↓;



C. Scheffer and J. Vahrenhold 60:7

s′

π

c

s↓

C

Figure 1 Left: Construction of a skewed cube c ∈ C(π, s′) inside a pyramid. The base of c is the
ball with center in s and a radius of 2 · δ · lfs(s) w.r.t. the `∞-metric. Thus B2·δ·lfs(s)(s) ⊂ c. The
sides of c are slanted outwards from the back face by the same angle as the aperture of π, see cube
c. Finally, c is pushed in the interior of the solid z bounded by Γ by pushing s′ into the direction of
ps by 15 · δ · afs(s) where ps is the inner pole that corresponds to s. Middle: Cross-section of the
pyramid during the sweep. Right: Projection of the cubes.

For technical reasons, when computing the visibility information of a point s′ ∈ Ssub, we
cover the space with a constant number of pyramids with apex at s′ and compute the visibility
information for each pyramid separately. After we have identified all cubes intersecting a
pyramid π with apex s′ (this takes linear time per each of the O(1) pyramids), we perform
a top-down sweep (in decreasing z-order) over all cubes crossing π and all sample points
in Ssub inside the cone and maintain only the cross-section of the sweeping plane with the
scene. Whenever we encounter a sample point, we locate this point in the cross-section and
check its visibility from s′. To ensure that maintaining the cross-section is not too costly, we
do not work with the axis-aligned cubes we just computed. Instead, we approximate the
scene by a set of carefully skewed cubes such that their cross-section with the sweeping plane
can be maintained efficiently and their geometry does not induce too many events where the
combinatorial nature of the cross-section changes.

More precisely, for a a pyramid π with apex s′, we construct for each sample point
s ∈ Ssub \ {s′} a skewed cube c := cs such that the following properties hold—see Figure 1:
1. The front and back face of the cube c are parallel to the base of π.
2. The sides of c are slanted outwards from the back face by the same angle as π’s aperture.

(Here, we need that we are working with a constant number of pyramids per point.)
3. The cube c is centered at s↓.

For fixed s′ ∈ Ssub and π, we denote the set of all skewed cubes intersecting π by C(π, s′).
We define the visible neighborhood V (π, s′) of s′ w.r.t. π as the union of all points from
Ssub ∩ π that are visible from s′ w.r.t. C(π, s′).

I Lemma 8. For fixed s′ ∈ Ssub and π, we can compute V (π, s′) in O(n log2 n) time.

Proof. We perform a standard space-sweep in which we process the points and the skewed
cubes’ front faces in radial order from the top to the bottom face of the pyramid—see
Figure 1 (middle). The important fact to note is that, by construction, the visible silhouette
of the set of these cubes is exactly the projection of the set of their front faces onto the base
of the pyramid–see Figure 1 (right). The sweep-line structure maintained by the algorithm
is a segment tree T over the x-coordinates of the projections of these front faces. Whenever
we encounter the top edge of a front face f , we add f to the set of obstacles currently active
but inserting its x-interval into the sweep-line structure. At each node of T whose extent is
covered by f , we insert f into a list of faces sorted by their distance to s′. Analogously, we
remove a face from T once we encounter its bottom edge. Because of the way the skewed
cubes have been constructed, i.e., because the aperture of the pyramid and the slanting angle
of the cube coincide, the intersection of the sweeping plane and the skewed cubes changes
only at the top and bottom edges of the cubes. Whenever we encounter a sample point s, we
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query T with the x-coordinate of s. At each node of T visited, we check the sorted list of
faces to see whether there is any face currently stored in T that blocks s from s′. If no such
face is found along the root-to-leaf path in T , s can be seen from s′, otherwise s is blocked.
The running time is easily seen to be O(n log2 n), as preprocessing takes O(n logn) time and
all update and query operations take at most O(logn) time per node visited. J

Finally, we define the visibility neighborhood of s as V (s′) :=
⋃
π∈Π V (π, s′).

I Corollary 9. For each s′ ∈ Ssub, we can compute V (s′) in O(n log2 n) time.

2.2.2 Bounding the Degree of the Approximate Visibility Graph
Summarizing the above, we would like to connect each s′ ∈ Ssub with all s ∈ V (s′) by bridge
edges. This approach can result in |V (s′)| ∈ Θ(n). The final challenge thus is to compute an
approximation of V (s′) that results in sublinear-degree vertices in the visibility graph.

I Definition 10 ([13]). Let X ⊂ R3 be a discrete point set and let x be an arbitrary point
in X. An approximate neighborhood AH (x) := AH ζ (x) of x w.r.t. X is defined as a subset
of X \ {x}, such that there exists a set of cones C(x) := Cζ (x), with apex at x and an
angular radius of ζ that covers R3, such that a point x′ ∈ X \{x} belongs to the approximate
neighborhood AH (x) := AH ζ(x) iff there is a cone C ∈ C (x) such that x′ is the point in
C ∩X minimizing the distance from its orthogonal projection onto the axis of C to x.

I Lemma 11 ([13]). For ζ > 0, approximate neighborhoods, each one of size Θ
(
ζ−2), for

all points from X can be computed in overall time O
(
|X|/ζ2 · log2 (|X|)

)
Stated in terms of Lemma 11, we compute the set Ebri of bridge edges (see Section 2.2) in

the weighted graph G = (Ssub, Eloc ∪ Ebri) as follows: we iterate over all s′ ∈ Ssub, compute
V (s′) and then, for ζ :=

√
δ > 0, approximate neighborhoods for the points in V (s′).

As a technicality, we wish to guarantee that bridge edges are not of local nature. Hence,
we just consider edges that are longer than local edges (see Section 2.1.3). Thus, for s′ ∈ Ssub,
we define A(s′) as the

√
δ-approximate neighborhood of s′ w.r.t. V (s′) \B 1

3 ·
√
δ·afs(s′)(s′).

I Corollary 12. For s′ ∈ Ssub, we can compute A(s′) in O(max{n log2 n, n/δ log2 n}) time.

Algorithm 5 Compute the set Ebri of bridge edges.
1: function ComputeBridgeEdges(Ssub, S, δ, afs(·))
2: Ebri ← ∅;
3: S↓ ← ComputeCubeCenters(S, δ, afs(·)); . Use Algorithm 4
4: for s′ ∈ Ssub do
5: Π← ComputePyramids(s′, S↓); . See Figure 1
6: V (s′)← ComputeVisibleNeighborhood(s′, π, Ssub, S↓); . Use Corollary 9
7: A(s′)← APXVisibleNeighborhood(s′, δ,V (s′)); . Use Lemma 11
8: for x ∈ A(s′) do
9: e← (s′, x); weight(e)← |s′x|; Ebri ← Ebri ∪ {e};

10: return Ebri ;

We show that Ebri fulfils the requirements outlined at the beginning of Section 2.2.1:

I Lemma 13. Let S be an ε-sample and Ebri the set of edges computed for a coarsened
subsample Ssub ⊆ S according to Algorithm 2 and 5. Then, the following properties hold:
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(BE1) Ebri is a superset of the visibility edges of Ssub w.r.t. Γ: for s ∈ Ssub, Ebri contains
all edges (s, s′) such that s′ ∈ Ssub and ss′ ∩z◦ = ∅ (z is the solid bounded by Γ).

(BE2) Let (s, s′) ∈ Ebri such that ss′ ∩z◦ 6= ∅. The intersection is not too deep, hence, the
shortcut taken not too short. More formally, for each edge (s, s′) ∈ Ebri and for any point
x ∈ ss′ ∩z, there is a sample point sx ∈ Ssub such that |xs| ≤ 18 · δ ·min{afs(x), afs(sx)}.

(BE3) Each sample point s ∈ Ssub is incident to at most O(
√
n) bridge edges.

Proof.
(BE1) We guarantee that each skewed cube cs lies inside the solid z bounded by Γ. In

order to do this, we first show that c lies inside a ball with radius 3.82 · δ · afs(s) and
centered in s↓, where s denotes the sample point corresponding to c. Furthermore, we
show s↓ ∈ z and that the distance between s↓ and Γ is lower-bounded by 9 · δ · afs(s↓).
Finally, the triangle inequality implies (BE1). We omit the details due to space constraints.

(BE2) See Section 3.1.2 for the proof.
(BE3) For each s′ ∈ Ssub, i.e., for each node of G, we use the algorithm by Ruppert and

Seidel [13], to compute an approximate
√
δ-neighborhood for s′ w.r.t. V (s′) and connect

s′ to one representative per cone. With ζ :=
√
δ, the nodes of G thus are incident to

O(ζ−2) = O(δ−1) edges. Using again Lemma 5, we observe that δ−1 ∈ O(
√
n). J

Combining Lemma 6 and Lemma 13, we see that the weighted graph G = (Ssub, Eloc∪Ebri)
has a sublinear node degree and is well-suited to approximate the sought geodesic distances
since the edges are either bridge edges, i.e., (approximate) visibility edges, or local edges,
whose lengths are approximations of the geodesic distances of their endpoints.

2.3 Approximating All Distances / Runtime Analysis
We have described how to construct a weighted graph G :=

(
Ssub, Eloc ∪ Ebri

)
on the

coarsened set of sample points. While we can now use Dijkstra’s algorithm to compute
shortest distances in this graph, i.e., between points in Ssub, we also need to discuss how to
compute distances between all sample points in S and not only between those in Ssub.

The main idea is borrowed from the construction of spanner graphs based upon well-
separated pair decompositions [10]. If a sample point s has been excluded from Ssub because
it was found to lie inside a ball Bβ·δ·afs(s′)(s′) of some sample point s′ ∈ Ssub, the distances
to/from s′ are good enough approximations of the distances to/from s as long as the
destination is “far away”; otherwise, we use the Euclidean distance as an approximation.

Algorithm 6 Deriving an approximation L (·, ·) of L?Γ (·, ·) from G.
1: function APXDistancesFromGraph(S, G)
2: Compute shortest path distances LG(s1, s2) for all s1, s2 ∈ Ssub.

. Use Dijkstra’s algorithm from each point in Ssub;
3: for all s ∈ S do
4: νs ← sample point in Ssub closest to s; . νs = s for all s ∈ Ssub

5: for all s1, s2 ∈ S do
6: if |s1s2| ≤ 1

3 ·
√
δ ·min{afs(s1), afs(s2)} then

7: L (s1, s2)← |s1s2|; . Approximate by Euclidean distance
8: else
9: L (s1, s2)← LG(νs1 , νs2); . Approximate using closest points in Ssub

10: return L (·, ·);
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We now have collected all ingredients needed to analyze the running time of Algorithm 1.

I Lemma 14. Algorithm 1 has a running time of O(n5/2 log2 n).

Proof. To recall Algorithm 1: we first compute a control function (Lemma 4) and approximate
the local feature size (Observation 3). Based upon these results, we can (asymptotically)
lower-bound the local feature size. Since we need the poles for this, we construct the Voronoi
diagram of all points, which can be done in O(n2) time. In the next phase of the algorithm,
we work with a coarsened subsample Ssub which can be constructed in O(n2) time as well
(Algorithm 2). Since we compute the set of local edges by iterating over all pairs of points in
Ssub (Algorithm 3), this step takes O(n2) time as well. Computing the set of bridge edges
takes O(n ·max{n log2 n, n/δ log2 n}) ≤ O(n5/2 log2 n) time (Corollary 12, Lemma 5). The
running time of the final step (Algorithm 6) is dominated by the Θ(n)-fold invocation of
Dijkstra’s algorithm on a graph with O(n) vertices and O(n3/2) edges (Lemma 6 (LE3),
Lemma 13 (BE3)). Using an efficient priority queue implementation, the running time for this
step is O(n5/2 logn). Hence, the overall running time of Algorithm 1 is O(n5/2 log2 n). J

3 Analysis of the Approximation Quality

I Lemma 15. L (·, ·) is an (1±O(
√
ε))-approximation of L?Γ (·, ·).

To prove Lemma 15, we first relate the value of δ to ε (Lemma 16). In Subsection 3.1, we
then show L (·, ·) ≥ (1−O(

√
ε)) · L?Γ (·, ·). Finally, we show L (·, ·) ≤ (1 +O(

√
ε)) · L?Γ (·, ·)

(see Subsection 3.2). This concludes the proof of Lemma 15 and, hence, of Theorem 1.

I Lemma 16. δ ∈ O(ε).

Proof. We combine Lemma 4 and Aichholzer et al.’s observation that lfs(s) ≤ 1.2802 · afs(s)
holds for all s ∈ S [1, Lemma 5.1]: δ = maxs∈S ψ(s)

afs(s) ≤ maxs∈S ε/(1−ε)·lfs(s)
1.2802−1·lfs(s) ≤ O(ε). J

3.1 Lower-Bounding the Approximation Quality
To ensure L (s1, s2) ≥ (1−O(

√
ε))L?Γ (s1, s2) for all s1, s2 ∈ S, we consider a shortest path φ

in the distance graph G between νs1 and νs2 . We then construct a curve γ between s1

and s2 in the free space Λ := IR3 \z such that |γ| ≤ (1 + O(
√
ε)) · |φ|, or, equivalently,

(1 − O(
√
ε)) · |γ| ≤ |φ| holds. To show that |γ| ≤ (1 + O(

√
ε)) · |φ| holds, we separately

consider the local edges and the bridges edges on φ.

3.1.1 Lower-Bounding the Approximation Quality of Local Edges
Lemma 19 gives the lower bound for the length of local edges. In a previous paper [14], we
proved a corresponding lower bound for edges whose lengths are related to ε and lfs(·):

I Lemma 17 ([14, Lemma 20]). For x, y ∈ Γ with |xy| ≤
√
ε ·min{lfs(x), lfs(y)}, we have

LΓ (x, y) ≤ (1 +O(ε)) · |xy|, where LΓ (x, y) is the geodesic distance of x and y on Γ.

Lemma 17 cannot be applied directly to a local edge (p, q) ∈ Eloc, since |pq| depends on
δ and afs(·) instead of ε and lfs(·). To extend this result to local edges, we can show that a
similar statement also applies to free-space geodesic distances in our case:

I Lemma 18. For x, y ∈ Λ with |xy| ≤
√
ε · min{lfs(x), lfs(y)}, we have L?Γ (x, y) ≤ (1 +

O(ε)) · |xy|.
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Lemma 18 allows us to iteratively construct the curve γ discussed above by connecting
points on Γ and in Λ. We use γ to prove Lemma 19 (proof omitted due to space constraints):

I Lemma 19. For s1, s2 ∈ S with |s1s2| ≤ 1
3 ·
√
δ ·min{afs(s1), afs(s2)}, we have L?Γ (s1, s2) ≤

(1 +O(
√
ε)) · |s1s2|, i.e., L (s1, s2) ≥ (1−O(

√
ε)) · L?Γ (s1, s2).

3.1.2 Lower-Bounding the Approximation Quality of Bridge Edges
Lemma 26 gives the lower bound for the length of bridge edges. In a nutshell, we ensure that,
given some (s, q) ∈ Ebri , for each x ∈ sq ∩ z there is a sx ∈ Ssub such that |xsx| ≤ O(ε) ·
min{afs(s), afs(q)}. Applying Lemma 19 multiple times yields L?Γ (s, q) ≤ (1 +O(

√
ε)) · |sq|.

To ensure the existence of sx for x ∈ sq∩z, we ensure that x lies not “too deep” inside z,
see (BE2). For this, we consider the restricted Delaunay triangulation of S w.r.t. Γ.

I Definition 20 ([5]). Let t be the triangle induced by three sample points s1, s2, s3 ∈ S. t is
an element of the restricted Delaunay triangulation T iff VorS(s1)∩VorS(s2)∩VorS(s3)∩Γ 6= ∅.

I Theorem 21 ([5, Theorem 19]). T is homeomorphic to Γ for ε < 0.06.

I Definition 22. For t ∈ T with corners s1, s2, s3 ∈ S let t↓ be the triangle that is induced
by s↓1, s

↓
2, and s

↓
3 (see Algorithm 4 for a definition of ·↓). We define T↓ := {t↓ | t ∈ T}.

For each constructed visibility edge, we can show that the skewed cubes cover T↓:

I Lemma 23. For each s ∈ S and π ∈ Π, we have T↓ ⊂
⋃
c∈C(π,s) c.

We formalize the space ∆ “between” T↓ and Γ as follows: For each t = 4(s1, s2, s3) ∈ T
with s1, s2, s3 ∈ S and ζ ∈ [0, 1], we define tζ := 4(s1+ζ(s↓1−s1), s2+ζ(s↓2−s2), s3+ζ(s↓3−s3)).
Also, for x ∈ Γ and ζ ∈ [0, 1], we define xζ := x + ζ(µ1(x) − x). Finally, we denote
∆ :=

(⋃
t∈T,ζ∈[0,1] tζ

)
∪
(⋃

x∈Γ,ζ∈[0,1] xζ

)
.

Assume now that there were some x ∈ sq ∩ z not “between” T↓ and Γ, i.e., sq were
penetrating z “too deeply”. Theorem 21 and the construction of T↓ then would imply the
existence of some intersection point y of sq and some t ∈ T↓. Lemma 23 would then imply y
to lie in one of the skewed cubes used during the construction of the visibility edge between
s and q—a contradiction to the correctness of the space-sweep algorithm.

More formally, Theorem 21 implies there is a homeomorphism µ1 : Γ → T . By con-
struction, there is a continuous and surjective function µ2 : T → T ↓. Thus, µ := µ2 ◦ µ1 is
surjective and continuous. This construction of µ implies that T ↓ has the same genus as Γ,
i.e., has no extra holes. Note that it is not guaranteed that triangles from T ↓ are intersection
free. Using elementary manipulations, we can show:

I Lemma 24. For each x ∈ ∆, there is an sx ∈ Ssub such that |xsx| ≤ 18 · δ · afs(sx).

As µ is surjective and continuous, z \∆ is bounded by a subset of T↓. Combining this
with Lemmas 24 and 23 implies that sq does not penetrate z “too deeply”:

I Lemma 25. For each x ∈ sq ∩z there is a sx ∈ Ssub with |xsx| ≤ 18 · δ · afs(x).

Proof. Assume that there is some x ∈ sq ∩z such that there is no sx ∈ Ssub with |xsx| ≤
18 ·δ ·afs(sx). The contraposition of Lemma 24 implies x ∈ z\∆. As µ : Γ→ T↓ is surjective
and continuous, T↓ has the same genus as Γ, i.e., has no holes. Thus, there exists some
y ∈ sq ∩ T↓. This implies for all π ∈ Π, there is some cube c ∈ C(π, s) such that sq ∩ c 6= ∅.
Analogously, we obtain for all π ∈ Π, there is some cube c ∈ C(π, q) such that sq ∩ c 6= ∅. As
(s, q) ∈ Ebri , this is a contradiction to the correctness of the space-sweep algorithm. J
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I Lemma 26. For (s, q) ∈ Ebri, we have L?Γ (s, q) ≤ (1 +O(
√
ε)) · |sq|.

Combining Lemmas 19 and 26 yields the lower bound for all edges.

3.2 Upper-Bounding the Approximation Quality
To ensure L (s1, s2) ≤ (1+O(

√
ε)) ·L?Γ (s1, s2) for all s1, s2 ∈ S, we again distinguish whether

|s1s2| ≤ 1
3 ·
√
δ ·min{afs(s1), afs(s2)} holds. If this is the case, we have L (s1, s2) = |s1s2|,

which is trivially upper-bounded by (1 +O(
√
ε)) · L?Γ (s1, s2).

If |s1s2| > 1
3 ·
√
δ · min{afs(s1), afs(s2)}, Lemma 7 yields |s1νs1 | ≤ O(δ) · afs(νs1) and

|s2νs2 | ≤ O(δ) · afs(νs2). This implies L?Γ (νs1 , νs2) ≤ (1 +O(
√
δ)) · L?Γ (s1, s2). As νs1 , νs2 ∈

Ssub, we can show the required upper bound for L (s1, s2) by applying Lemma 25.

I Lemma 27. For all s1, s2 ∈ Ssub, L (s1, s2) ≤ (1 +O(
√
ε)) · L?Γ (s1, s2).

Thus, L (s1, s2) ≤ (1 +O(
√
ε)) · (1 +O(

√
δ)) · L?Γ (s1, s2) ≤ (1 +O(

√
ε)) · L?Γ (s1, s2).

I Corollary 28. For all s1, s2 ∈ S, L (s1, s2) ≤ (1 +O(
√
ε)) · L?Γ (s1, s2).

In conclusion, the discussion in this section consitutes a proof of Lemma 15, i.e., we have
shown that L (·, ·) is a (1 ± O(

√
ε))-approximation of L?Γ (·, ·). Together with Lemma 14,

where we showed the running time of our algorithm to be in O(n5/2 log2 n), this constitutes
a proof of our main result (Theorem 1).
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Abstract
We study the problem of routing traffic for independent selfish users in a congested network to
minimize the total latency. The inefficiency of selfish routing motivates regulating the flow of the
system to lower the total latency of the Nash Equilibrium by economic incentives or penalties.
When applying tax to the routes, we follow the definition of [8] to define ePoA as the Nash total
cost including tax in the taxed network over the optimal cost in the original network. We propose
a simple tax scheme consisting of step functions imposed on the links. The tax scheme can be
applied to routing games with parallel links, affine cost functions and single-commodity networks
to lower the ePoA to at most 4

3 − ε, where ε only depends on the discrepancy between the links.
We show that there exists a tax scheme in the two link case with an ePoA upperbound less than
1.192 which is almost tight. Moreover, we design another tax scheme that lowers ePoA down to
1.281 for routing games with groups of links such that links in the same group are similar to each
other and groups are sufficiently different.
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1 Introduction

We study the problem of routing traffic for independent selfish users in a congested network
to minimize the total cost (latency). In many settings, it is very expensive or impossible
to regulate the traffic precisely. In the absence of regulation, users usually only focus on
minimizing his own cost measured by the total time needed to traverse his chosen route.
Many works focus on the degradation in network performance measured by comparing
the cost of the Nash equilibrium flow and the cost of the optimal setting. The ratio of
total cost of Nash Equilibria to the minimum possible cost is defined to be the Price of
Anarchy (PoA). Therefore one could consider PoA as an index of the inefficiency of the lack
of regulation in a network of selfish behavior. In [25], it is proven that the PoA is ≤ 4

3 for
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affine latency functions, and the upper bound 4
3 is tight in a well-known example called the

Pigue’s example [20]. There are many well-known works on the selfish routing game, such as
[22, 23, 24, 21, 6, 18].

The inefficiency of selfish routing motivates regulating the flow of the system to lower the
total latency of the Nash Equilibria by economic incentives or penalties. Marginal cost pricing
is an ancient idea proposed in [20]. Marginal cost taxes may induce the minimum-latency flow
as a flow at a Nash equilibrium, assuming all network users choose the routes to minimize
the sum of latency and tax [2]. One major research is to lower price of anarchy to 1 for users
having different sensitivity to tax in a single-commodity network [10], with an upper bound
of tax with complexity O(n3). Several further researches improved the result above, such as
generalizing the result for single commodity to multi-commodity [12, 15] and generalizing
the result for giving an tax upperbound with complexity O(n) [11]. In [4], optimal tax
with constraints can be derived in certain circumstances. Another similar concept is the
coordination mechanisms introduced in [7]. Coordination Mechanisms have been used to
improve the PoA in scheduling problems for parallel and related machines [7, 14, 17] as well
as for unrelated machines [1, 5].

In the above researches, the system is efficient only if the tax is returned to the users,
otherwise dis-utility for users due to large tax may exist. In [16], an PoA upperbound of 2 is
given if tax is included as a part of the cost. The bound becomes 5/4 particularly for affine
latency case. On the other hand, it has been proven [9] that marginal tax could not help
reduce total cost if tax is considered as a part of the cost for affine cost functions. It is also
proven [8] that continuous tax functions yield no improvement to the total latency.

In the above modelings, the total flow r is specified as a part of the game. However,
there are situations that the total flow is unknown beforehand, thus finding a good tax
scheme becomes more difficult. Christodoulou et al. [8] studied this type of problem for
single-commodity routing games with affine cost functions. They designed a tax scheme such
that the PoA is at most 4

3 − ε over all possible amount of flow, where ε is a constant that
approaches 0 when the number of links go to infinity. In this work, arbitrary tax function
is allowed as along as the sum of tax and the original cost (latency) function is monotone
increasing.

In our work, we focus on step-function congestion tolls. This type of tax scheme has
been studied by transport economists to model the effects of the traffic lights on traffic
regulations [13, 19]. Compared to arbitrary tax schemes, the step-function congestion tolls is
more feasible in transportation regulations. This motivates us to investigate the possibility
of improving ePoA using only step-function congestion tolls in settings similar to [8].

Our Result: We provide a simple tax scheme consisting of step functions imposed on the
links. The tax scheme is applied to routing games with parallel links, affine cost function,
single-commodity networks to lower the ePoA below 4

3−ε, where ε depends on the discrepancy
between the links but not the number of links. Moreover, we consider a special case in which
all links can be clustered into several groups. The latency function is similar among links in
the same group and are sufficiently different between links in different groups. Each group
could be seen as different transportation methods. For example, all freeway may belong to
one group, and all local roads and railroad may each belong to another group. In this case,
we propose a tax scheme which reduces ePoA to 1.281.

The rest of the paper is organized as follows. In Section 2 we describe the basic routing
game model and the type of tax scheme that we will use. In Section 3 we define the parameters
in the tax scheme more formally and prove some essential results on the relationship between
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the ePoA and the imposed tax. In Section 4 we show that step function tolls perform equally
well to previous optimal (arbitrary) tax scheme for networks with two parallel links. In
Section 5 we propose a tax scheme for 4

3 − ε ePoA. In Section 6 we give an 1.281 upperbound
of ePoA for networks with groups of similar links.

2 Model

We consider single-commodity congestion games on networks, defined by a directed traffic
network G = (V,E, l), with vertex set V , edge set E, and cost function (or latency function
such as [25]) set l. l is the set of cost function le for each link e ∈ E. There is only a start
node and an end node in V , while each link e ∈ E connects the start node directly to the
end node, and we denote all links E = {e1, e2, . . . , em}. r is defined to be the rate of traffic
or the total flow, which is independent of the network G. Unlike some previous works, r is
not part of the game. We aim to lower the ePoA for any value of r, instead of choosing a
different tax scheme for different value at r. A flow is a function that maps every link e ∈ E
to a non-negative real number. Given G and r, we call a flow feasible if Σe∈Efe = r.

le is the cost function of link e ∈ E, which is non-decreasing, non-negative and affine.
Therefore we order the links by an increasing order of the constant of the latency of the links.
Without loss of generality, we let lei(f) = ai · f + bi and bi ≤ bj for any i, j > 0 such that
i < j.

The concept of User Equlibrium [3] is adopted as Nash Equilibrium in this work. Formally,
a flow f feasible for traffic network G and total rate r, is at User Equilibrium if and only
if for every e1, e2 ∈ E with fe1 > 0, le1(f) ≤ lim

ε→0
le2(f + ε1e2 − ε1e1). It has been proven

that for the case where all discontinuity is lower semicontinuous, the User Equilibrium
exists as a theorem in [3]. The definition follows an equivalent definition in [25] when the
latency function is continuous. We call the flow at Nash Equilibrium, or User equilibrium
simply the Nash flow in the rest of the paper. The cost of flow f in traffic network G is
C(f,G) = Σe∈Efe · le(fe). We use Copt(r,G) to denote the minimum cost of any flow feasible
at rate r, or the cost of the optimal flow. Therefore the optimal flow is the flow that minimizes
the cost of flow for given (G, r), which would be referred to as OPT. Moreover, we say that a
flow uses j links when there are j links with non-zero flow-value. We use CN (r,G) to denote
the cost of the Nash flow at rate r, while the uniqueness of the Nash equilibrium is guaranteed
in theorem in [3]. When the context is clear, we may omit G, using C(f) for C(f,G), Copt(r)
for Copt(r,G), CN (r) for CN (r,G). The Price of Anarchy is defined as PoA(r) = CN (r)

Copt(r) ,
and PoA = maxr>0PoA(r). It should be noted that the PoA defined here is not a function
of r as in most previous works. The PoA in our work is the worst case of PoA(r) among
any r-value for a particular network G. In the remainder of the paper, we focus on single
commodity, parallel-link networks G = (V,E, l), where E consists of m links {e1, · · · , em},
and cost function of link ei is of the form lei(f) = ai · f + bi.

2.1 Tax
On each edge, the original cost function before imposing the tax is lei

(f) = ai · f + bi, the
tax-modified cost function becomes l̂ei(f) = âi · f + b̂i, and â = a. The tax scheme used in
our work adds tax b̂j − bj to the cost for users using link j, where b̂j is a function of total
flow r.

b̂j = bj +
∑
i>j

(bi − bi−1) · hi · u(r − wi), (1)

ISAAC 2016



61:4 An Improved Tax Scheme for Selfish Routing

where hi < 1 and wi are constants to be chosen, and u is the unit step function. Note
that to guarantee the existence of User Equilibrium, the unit step function is defined to be
lower-semicontinuity. One point to be noted is that under this form of tax, the Nash flow
accounting tax on any link is non-decreasing while total rate r increases. This is a desired
property, which makes taxing feasible and efficient, since rerouting existing traffic when total
traffic increases may be very costly if at all possible.

For the taxed network, we consider adding tax to be a modification to the original network.
Therefore, we call Ĝ the tax-modified network obtained by imposing tax on G. All notations
for the taxed network Ĝ is denoted with a hat, such as the expression b̂j defined above. We
specify that the ĈN (r) is the total cost of the Nash equilibrium flow of the tax modified
network at rate r, where the cost of each edge and the Nash flow are both affected by the
tax. We formally define ePoA = maxr>0ePoA(r) = maxr>0 ˆPoA(r) = maxr>0

ĈN (r)
Copt(r) .

3 Useful Inequalities on the PoA and Tax

Before proving the main results, we need to prove some lemmas on the cost of the Nash
equilibrium and OPT.

I Definition 1. We follow notations in previous works. Given a traffic network G, let
λj = 1/aj , γj = bj/aj , Λj = Σj

i=1λi, Γj = Σj
i=1γj and rj = Σj−1

i=1 (bi+1 − bi)Λi. We also
define uj = rj/rj−1 and vj = Λj/Λj−1.

Intuitively, rj is the amount of flow at which the (j + 1)-th edge starts to have non-zero
Nash flow. PoA is locally maximized at each rj . The tax schemes we design also seeks to
reduce PoA near these values.

Cost of the Nash flow and the OPT on this type of traffic network has been well studied,
and closed-form expressions were given [8]. We restate some essential results in Lemma 2.

I Lemma 2 ([8]). The Nash flow uses link j for r > rj and the OPT uses link j for r > rj/2.
If the OPT uses exactly j links at rate r then

Copt(r) = 1
Λj

(r2 + Γjr)− Cj , where Cj =
( j∑
h=1

h∑
i=1

(bh − bi)2λhλi

)
/(4Λj).

If the Nash flow uses exactly j links at rate r then

CN (r) = 1
Λj

(r2 + Γjr).

If s < r and OPT uses exactly j links at s and r then

Copt(r) = Copt(s) + 1
Λj

((r − s)2 + (Γj + 2s)(r − s)).

If s < r and the Nash flow uses exactly j links at s and r then

CN (r) = CN (s) + 1
Λj

((r − s)2 + (Γj + 2s)(r − s)).

Directly from Lemma 2, we know that both the OPT and the Nash flow start to use links
with the same b-value simultaneously because ri = rj if bi = bj .
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I Lemma 3. Given a traffic network G, if there exists an index i such that bi = bi+1, we can
find a network G′ having one less link than G such that CN (r,G) = CN (r,G′), Copt(r,G) =
Copt(r,G′) for all r.

Using Lemma 3, given a traffic network G, we can replace all links with the same b values
by one link and let the cost of the Nash and the OPT remain the same. Furthermore, if we
apply tax in the new game, we can apply the same tax on every corresponding links in the
old game, as a result, we only consider traffic networks such that bi 6= bj ,∀i 6= j in the rest
of the paper.

Informally, the tax scheme we design works in the following way. For every flow value ri
which corresponds to a local maximum in the PoA-r curve, we add a set of step functions
which reduces the tax in the flow range [αri, βri] if the original PoA at flow ri is greater
than a certain threshold. This set of step functions has no effect on PoA when the total
flow is less than αri but increases PoA marginally when the total flow is greater than βri.
A tax scheme can be described by a set of parameters (T,A,B), where T is the threshold,
A = {α1, · · · , αm}, B = {β1, · · · , βm} describes the range of flow in which PoA is supressed.
When the tax is imposed on a flow value ri, a step function are added onto the original
cost functions for the first i links, where the heights and positions of those step functions
are chosen such that the Nash flow on these i links stop increasing when the total flow r is
between [αri, βri], causing the Nash flow to use new links. The detailed definition of the tax
scheme being used is the following:

I Definition 4. Given a traffic network G, let Gj be an identical network of G with links e1
to ej−1 removed. Let fj be the Nash flow on a given a network Gj and rate r, let CNj(r) be
the cost of fj on Gj .

I Definition 5. Given a traffic network G, constants T , αi and βi such that αi < 1, βi > 1
for 1 ≤ i ≤ m, Let A = {α1, · · · , αm}, B = {β1, · · · , βm}, S(T ) be the set of all index i such
that PoA(ri) > T and Ĝ be the network obtained from applying tax(T,A,B) to G. The
parameters hj and wj in equation (1) (Section 2.1), which correspond to the heights and the
locations of the step functions are chosen as following,

hj =
{ (

CNj((βj−αj)·rj)
(βj−αj)·rj

− ĈN (αj ·rj)
αj ·rj

)
/(bj − bj−1), if j ∈ S(T )

0, otherwise.
wj =αj · rj .

We also set two parameters, hmax = maxihi, vmin = mini∈S(T )vi.

Follow the definition, we can describe the cost of the Nash flow on Ĝ with Lemma 6.

I Lemma 6. Given a traffic network G, constants T , αi and βi such that αi < 1, βi > 1 for
1 ≤ i ≤ m, and tax(T,A,B) imposed on G,

ĈN (r) = ĈN (αj · rj) + CNj(r − αj · rj) for r ∈ [αj · rj , βj · rj ] and j ∈ S(T ).

If the Nash flow uses j links on Ĝ at rate r,

ĈN (r) = 1
Λj

(r2 + r · Γ̂j(r)) for r /∈ (αj · rj , βj · rj)∀j ∈ S(T ),

where Γ̂j(r) = Σj
i=1b̂i(r)/âi = Σj

i=1b̂i(r)/ai. If the Nash flow uses exactly n links on Gj at
rate r,

CNj(r) = 1
Λj+n−1 − Λj−1

(r2 + (Γj+n−1 − Γj−1) · r).
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Proof. Equations can be derive directly from Lemma 2. J

In this paper, all tax schemes are designed in a way that after the tax is being applied,
the ePoA is determined by the Nash/OPT costs at total flow αiri or βiri for some i. In
order to have a good estimate of the ePoA, we first derive Theorem 7 which gives us a good
estimate of the original PoA at total flow αiri and βiri. In this theorem, the first inequality
gives a good upper bound on PoA at βiri and the second inequality gives a good upper
bound on the PoA at αiri. All upper bounds are described using parameters Λj since these
values play an important role in determining the PoA [8].

I Theorem 7. If the Nash flow uses exactly j links and the OPT uses exactly h links at rate
r then

PoA(r) ≤ max
{ 4r

4r − rj−1
,

r2Λ−1
j + r · rj(Λ−1

j−1 − Λ−1
j )

r2Λ−1
j−1 − Σhi=j(r − ri/2)2 · (Λ−1

i−1 − Λ−1
i )

}
.

If the Nash flow uses exactly j-1 links and the OPT uses exactly h links at rate r then

PoA(r) ≤ max
{ 4r

4r − rj−1
,

r2Λ−1
j−1

r2Λ−1
j−1 − Σhi=j(r − ri/2)2 · (Λ−1

i−1 − Λ−1
i )

}
.

The proof is omitted due to space constraints.
In the PoA-r curve, local maximum only exists at r = rj . The following lemma gives an

upper bound on PoA which will be used to show that PoA in the region [βiri, αi+1ri+1] is
bounded by the PoA of this region’s two endpoints.

I Lemma 8. Given a traffic network G, if the Nash flow uses exactly j links at rate s and t
for s < t, then

PoA(r) ≤ max{PoA(s),PoA(t)},∀r ∈ [s, t] .

Most of our proof relies on Theorem 7 and Lemma 8, first with Lemma 8 to bound the
PoA for total flow far away from the peak values ri, then with Theorem 7 to provide a good
bound for total flow close to these peak values.

As previously mentioned, the step functions that decrease PoA near ri will increase PoA
when the total flow is greater than βiri. Lemma 9 shows that our tax will only increase the
total cost by a constant factor.

I Lemma 9. Given a traffic network G, constants T , αi and βi such that αi < 1, βi > 1 for
1 ≤ i ≤ m, let Ĝ be the traffic network obtained by imposing tax(T,A,B) on G, then

ĈN (r)
CN (r) ≤ 1 + hmax

vmin
, for r such that r /∈ (αj · rj , βj · rj) for all j ∈ S(T ).

Proof. For total flow r ∈ [rj−1, rj ] and r /∈ (α · ri, β · ri) for all i ∈ S(T ), let k be the largest
i ∈ S(T ) such that i < j, from Lemma 2,

ĈN (r)
CN (r) ≤

r + Γ̂j−1(r)
r + Γj−1

= 1 +
∑j−1
i=1 (b̂i(r)− bi)λi
r + Γj−1

.

The largest possible tax added to a link when r ∈ [rj−1, rj ] is hmax · bk, and only link 1 to
k-1 have non-zero tax added rate r,

ĈN (r)
CN (r) ≤ 1 +

∑k−1
i=1 hmax · bkλi
r + Γj−1

≤ 1 + hmax · bkΛk−1

rj−1 + Γj−1
= 1 + hmax · bkΛk−1

bj−1Λj−1
.
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Since k < j, bk ≤ bj−1 and Λk ≤ Λj−1,

ĈN (r)
CN (r) ≤ 1 + hmax

Λk/Λk−1
= 1 + hmax

vk
≤ 1 + hmax

vmin
. J

4 The ePoA for Two-Link Networks

In this section, we study the networks with two parallel links. In this special case, we give
an upperbound of ePoA for the step function tolls which is 1.192. This result shows that
applying step function tolls is as powerful as arbitrary tax scheme proposed in [8]. In fact,
when the total flow is between 0 and βr1, our step function tax is exactly identical to the
tax scheme in [8]. When the total flow is greater than βr1, the previous tax scheme remove
the previously added step-function tax and does not impose tax on any link. In this paper,
removing the step functions is not allowed. We prove that even though these step functions
only increase PoA when the total flow is greater than βr1, the influence is marginal and
the maximum value always happen at total flow βr1. The proof is omitted due to space
constraints.

I Theorem 10. Given a two link traffic network G, there always exist a pair of α ∈ ( 1
2 , 1), β ∈

(1,∞) such that if tax(T = 1.192, {α}, {β}) is imposed, then ePoA ≤ 1.192.

5 Upperbound of the ePoA for Multiple Parallel-Link Networks

In this section we consider parallel-link networks. Given a traffic netowrk G, we con-
sider that ratio between two adjacent peak values ri

ri−1
. Let ε = min(mini>1ui, 2) − 1 =

min(mini>1
ri

ri−1
, 2)− 1. We prove that the ePoA has an upper bound less than 4

3 −
1
3 ( ε3 )3.

Notice that in this case, ε only depends on the discrepancy between the links and is independ-
ent of the number of links in the network. The main result of this section is the following
theorem.

I Theorem 11. Given a traffic network G, and tax(T = 4
3 − ( ε3 )3, {α1 = · · · = αm =

1− 2( ε3 )3}, {β1 = · · · = βm = 1 + 3( ε3 )3}) is imposed. Then

ePoA <
4
3 −

1
3( ε3)3.

Notice that rj

rj−1
is less than bj

bj−1
and increases when the difference between aj and aj−1

increases, and thus is a good indicator of the discrepancy between the links.
In order to prove Theorem 11, we need the following lemmas. Intuitively, we first use

Lemma 14 and 15 to prove that the PoA of the original network is at most T when the total
flow is αrj of βrj . Combining with Lemma 8 and 9, we know that ePoA≤ T (1 + hmax

vmin
) for

all r /∈ (αrj , βrj). Lemma 16 shows that when the total flow is between αrj and βrj , the
ePoA is also bounded. Plug in the value of hmax and vmin from Lemma 12 and 13 to finish
the proof. For the constants T , αi, βi chosen, we can bound all related parameters needed in
Theorem 11 with some straightforward calculations.

I Lemma 12. Given a traffic network G, a constant T such that T > 4+4ε
3+4ε .

vmin = mini∈S(T )vi = mini∈S(T )
Λi

Λi−1
>

(2ε− ε2)T
4− 3T .
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Proof. By definition of set S, PoA(ri) > T for all i ∈ S(T ). From Theorem 7,

PoA(rj) ≤ max
{ 4rj

4rj − rj−1
,

r2
jΛ−1

j−1

r2
jΛ
−1
j−1 − Σj≤i≤h(rj − ri/2)2 · (Λ−1

i−1 − Λ−1
i )

}
.

Since rh > rh−1 > · · · > rj+1 ≥ (1 + ε)rj ≥ (1 + ε)2rj−1 and Λ−1
h > 0,

PoA(rj) ≤ max
{4 + 4ε

3 + 4ε ,
4

3 + (2ε− ε2)Λj−1/Λj

}
.

From condition of T,

T < PoA(rj) ≤
4

3 + (2ε− ε2)Λj−1/Λj
∀j ∈ S(T ). J

I Lemma 13. hj ≤
(

1
vj−1 (βj − αj) + (1− αj)

)
· rj

rj−rj−1
.

I Lemma 14. Given a traffic network G, constants T and α such that α ≤ T+(T 2−T )
1
2

2 ,
4α·rj

4α·rj−rj−1
≤ T and 1 < T < 4

3 , then PoA(α · rj) ≤ T .

I Lemma 15. Given a traffic network G, constants T and β such that 2 > β ≥ T
4(T−1) and

1 < T < 4
3 , then PoA(β · rj) ≤ T .

I Lemma 16. Given a traffic network G, constants T , αi and βi such that αi < 1, βi > 1
for 1 ≤ i ≤ m, and tax(T,A,B) imposed on G,

ePoA(r) ≤max
{
ePoA(αj · rj), (βj − αj)

Λj
Λj − Λj−1

+ (1− βj + αj)
}

for r ∈ [αj · rj , βj · rj ] and j ∈ S(T ).

The Proof of Lemma 13 to 16 are omitted due to space constraints.

Proof of Theorem 11. Let α = α1 = · · · = αm = 1− 2( ε3 )3, β = β1 = · · · = βm = 1 + 3( ε3 )3.
First consider the case when total flow r /∈ (α·rj , β ·rj) ∀j ∈ S(T ). Since β ·rj < α·rj+1 ∀j,
we can apply the result of Lemma 8,

PoA(r) ≤ max
{
maxi/∈S(T )PoA(ri),maxi∈S(T )PoA(α · ri),maxi∈S(T )PoA(β · ri)

}
.

From Lemma 14, 15 and the definition of S(T ), all terms above are bounded by the threshold
T,

PoA(r) ≤ T for r /∈ (α · rj , β · rj) ∀j ∈ S(T ).

ePoA(r) is bounded by PoA(r) times the ratio between cost of the Nash flow on Ĝ and G,
From Lemma 9,

ePoA(r) = PoA(r) · ĈN (r)
CN (r) ≤ T (1 + hmax

vmin
) for r /∈ (α · rj , β · rj) ∀j ∈ S(T ). (2)

We then consider ePoA(r) when total flow r ∈ [α · rj , β · rj ], and j ∈ S(T ). From Lemma 16,

ePoA(r) ≤ max
{
ePoA(α · rj), (β − α) Λj

Λj − Λj−1
+ (1− β + α)

}
.
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For the second term above, since j ∈ S(T ), the ratio of Λj and Λj−1 is bounded, from
Lemma 12,

(β − α) Λj
Λj − Λj−1

+ (1− β + α)

≤ (β − α) vmin
vmin − 1 + (1− β + α)

≤ (5( ε3)3) ·
(2ε− ε2)( 4

3 − ( ε3 )3)
(2ε− ε2)( 4

3 − ( ε3 )3)− 3( ε3 )3)
+ (1− 5( ε3)3)

<
4
3 − ( ε3)3 = T.

From previous case, we know that ePoA(α · rj) ≤ T (1 + hmax

vmin
), therefore

ePoA(r) ≤ T (1 + hmax
vmin

) for r ∈ [α · rj , β · rj ] if j ∈ S(T ). (3)

Combine (2) and (3), we have an upperbound of ePoA(r) for all r > 0,

ePoA ≤ T (1 + hmax
vmin

).

From Lemma 12 and 13,

ePoA <
4
3 −

ε3

27

(
1− (

2(2ε− ε2)( 4
3 −

ε3

27 ) + 3ε3/9
(2ε− ε2)( 4

3 −
ε3

27 )− ε3/9
) · ε+ ε2

9(2− ε)

)
<

4
3 −

ε3

81 . J

6 Networks with Groups of Similar Links

In previous sections, we have given an upperbound of ePoA when it is strictly less than 4
3 .

In this section, we study a special case in which the links can be classified int many groups.
Links in the same group all have similar ri and thus similar cost functions. This special case
is closely related to the case in which there are many types of transportation methods, or
just many types of roads (such as freeways and local roads). We give an upper bound of
ePoA for a specific case of groups of similar link defined below.

I Definition 17. A traffic network Gc is a network with clustered latencies if and only if
there exists N intervals [L1, R1], . . . , [LN , RN ], and Ri

Li
<= 1.05 for i ∈ [1, 2, . . . , N ], and

Li+1
Ri
≥ 20 and any rj for j ≥ 2 is in one of the intervals [Li, Ri].

The main result of this section is ePoA≤ 1.281 for a traffic network Gc with clustered
latencies. Before proving the main result, we introduce the following transformation, and
several lemmas.

I Definition 18. Given any traffic network Gc with clustered latencies, we define the
aggregated network of Gc, Ga as the following. For all ri inGc, inside a certain interval [Lk, Rk],
we re-label the index i to be k1, k2, . . . , knk

so that Lk ≤ rk1 ≤ rk2 ≤ · · · ≤ rknk
≤ Rk. An

intermediate network Gtemp is obtained by increasing the constant of the cost functions
bki

to b̃ki
= bknk

for all i < nk. Now all links ei with ri in the same interval in Gc has
the same b-value, which is bknk

. Thus, by Lemma 3, these links can be merged through a
transformation of graph without changing either the Nash flow or the OPT. After the merge,
the resulting network is Ga. The transformation Tr is the combination of increasing the
constants of links in Gc to get Gtemp, and merging edges of Gtemp to get Ga.
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I Lemma 19. In a traffic networks G1 with rj−1 and rj where , bj−1 is increased to bj , and
the two links are merged to index inew, as stated in Definition 18 then the position of rinew

is betweeen (rj−1, rj).

Proof. By the basic equation in Definition 1, rj = Σj−1
i=1 (bi+1 − bi)Λi.

rj − rinew = (bj − bj−1)(Λj−1 − Λj−2) > 0
rinew − rj−1 = (bj − bj−1)(Λj−1) > 0

Thus, rj−1 ≤ rinew
≤ rj . J

Following Definition 18, with Lemma 19 used recursively, we see that the resulting rk
after merging all links in section k lies in [Lk, Rk]. Therefore, after the transformation, the
resulting traffic network Ga has min rj+1

rj
≥ 20, which is directly from the fact that Li+1

Ri
≥ 20.

The ratio of the optimal cost between the network after the transformation and before the
transformation is less than the ratio of the largest b̂i

bi
≤ 1.05. The formal lemma and proof

are below.

I Lemma 20. For any traffic network Gc with clustered latencies and its corresponding
aggregated network Ga, Copt(r,Ga)

Copt(r,Gc) ≤ 1.05.

The following lemma is similar to Lemma 9, for a slightly different situation.

I Lemma 21. In a traffic network G with rate r and ri+1
ri
≥ 20, where constants T , αi < 1,

βi > 1. When tax(T,A,B) is imposed on the network G. We have

ĈN (r)
CN (r) ≤ 1 + hmax

20× s (4)

for any s satisfying αj × rj ≥ r ≥ s× rj, and s× rj ≥ βj−1rj−1, s ≤ 1. Similarly, we have

ĈN (r)
CN (r) ≤ 1 + hmax

vj
(5)

for αj+1 × rj+1 ≥ r ≥ βj × rj.

We now introduce the tax scheme and upper bound the corresponding ePoA for an
aggregated network. The tax scheme chooses different values of αi, βi, with different regions
of vi.

I Lemma 22. For any traffic network Gc with clustered latencies and its corresponding
aggregated network Ga, there exists a tax scheme Ga such that ePoA of Ga ≤ 1.22 when the
tax is applied to Ga.

Proof. The tax scheme tax(1.198, A, B), where αj , βj are decided according to the value
of v in Table 1 satisfies the requirement.

The proof is omitted due to space constraints. J

With Lemma 20 and 22 we prove the main theorem in this section by simply multiplying
1.22 and 1.05.

I Theorem 23. The ePoA is at most 1.281 for a traffic network with clustered latencies.
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Table 1 Corresponding α, β with different values of v, note that tax is not imposed in case 0.

cases vj αj βj

0 [0, 2.95] any any
1 [2.95, 3] 0.985 1.51
2 [3.0, 3.2] 0.981 1.51
3 [3.2, 3.5] 0.964 1.51
4 [3.5, 4.0] 0.9428 1.5108
5 [4.0, 4.8] 0.9175 1.524
6 [4.8, 7.0] 0.89 1.55
7 [7.0, 11.0] 0.87 1.79
8 [11.0,∞] 0.83 1.90

Proof. For any traffic network Gc with clustered latencies and its corresponding aggregated
network Ga, with Lemma 20 and 22 we know that ePoA of Ga ≤ 1.22, and Copt(r,Ga)

Copt(r,Gc) ≤ 1.05.
We view the transformation Tr on Gc as tax T1, and the tax imposed on Ga as tax T2. The
final tax scheme imposed on Gc is T1 + T2. While the tax scheme imposed on Ga is T2. Now
we prove the theorem

ePoA = ĈN (r,Gc)
Copt(r,Gc)

= ĈN (r,Ga)
Copt(r,Ga) ·

Copt(r,Ga)
Copt(r,Gc)

≤ 1.22 · 1.05 = 1.281 J

A point to be noted is that the lower bound of PoA is proved in [8] to be 1.191 for two
edge network, therefore that proving ePoA ≤ 1.22 is clearly close to optimal since additional
tax is further accounted while in [8] the tax could be retrieved and that rj+1

rj
is ∞, where in

Lemma 22 the restriction is much stricter, while only increasing the ePoA by less than 3
percent.

7 Open Problems

The goal of this work is to design a taxing scheme with unit step function which is able to be
applied to general networks. In the case of parallel links in our study, we have demonstrated
different possible approaches to bound the ePoA. We have proved a tight upperbound of
the two link case in Section 4, given an upperbound of ePoA less than 4

3 depending on the
discrepancy between links in Section 5, and give an upperbound when the links are clustered
while the discrepancy between links in each cluster are not limited in Section 6. However, it
remains an open question whether there is a upperbound less that 4

3 independent of both
the discrepancy between the links and the number of links in the network. A combination of
the previous methods could be a possible approach.
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Abstract
In this paper, we study the problem of finding an integral multiflow which maximizes the sum
of flow values between every two terminals in an undirected tree with a nonnegative integer
edge capacity and a set of terminals. In general, it is known that the flow value of an integral
multiflow is bounded by the cut value of a cut-system which consists of disjoint subsets each of
which contains exactly one terminal or has an odd cut value, and there exists a pair of an integral
multiflow and a cut-system whose flow value and cut value are equal; i.e., a pair of a maximum
integral multiflow and a minimum cut. In this paper, we propose an O(n)-time algorithm that
finds such a pair of an integral multiflow and a cut-system in a given tree instance with n vertices.
This improves the best previous results by a factor of Ω(n). Regarding a given tree in an instance
as a rooted tree, we define O(n) rooted tree instances taking each vertex as a root, and establish
a recursive formula on maximum integral multiflow values of these instances to design a dynamic
programming that computes the maximum integral multiflow values of all O(n) rooted instances
in linear time. We can prove that the algorithm implicitly maintains a cut-system so that not
only a maximum integral multiflow but also a minimum cut-system can be constructed in linear
time for any rooted instance whenever it is necessary. The resulting algorithm is rather compact
and succinct.
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algorithms
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1 Introduction

The min-cut max-flow theorem by Ford and Fulkerson [5] is one of the most important
theorems in graph theory. It catches a min-max relation between two fundamental graph
problems. This theorem leads to many effective algorithms and much theory for flow problems
as well as graph cut problems. Due to the great applications of it, researchers have interests
to seek more similar min-max formulas in various kinds of flow and cut problems. In this
paper, we consider the maximum multiterminal flow problem, a generalization of the basic
maximum flow problem.
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In the maximum flow problem, we are given two terminals (source and sink) and asked to
find a maximum flow between the two terminals. A natural generalization of the maximum
flow problem is the famous maximum multicommodity flow problem, in which, a list of pairs
of source and sink for the commodities is given and the objective is to maximize the sum
of the simultaneous flows in all the source-sink pairs subject to the standard capacity and
flow conservation requirements. The maximum multiterminal flow problem is one of the
most important special cases of the maximum multicommodity flow problem. In it, a set T
of more than one terminal is given and the list of source-sink pairs is given by all pairs of
terminals in T . The extensions of the maximum flow problem have been extensively studied
in the history. Readers are referred to a survey [2].

A dual problem of the maximum multiterminal flow problem is the minimum multiter-
minal cut problem, in which we are asked to find a minimum set of edges whose removal
disconnects each pair of terminals in the graph. The minimum multiterminal cut problem
is a generalization of the minimum cut problem. When there are only two terminals, the
min-cut max-flow theorem shows that the value of the maximum flow equals to the value
of the minimum cut in the graph. However, when there are more than two terminals, the
equivalence may not hold. Consider a star with three leaves. Each leaf is a terminal and
each of the three edges has capacity 1. The flow value of a maximum multiterminal flow is
1.5 (a flow of size 0.5 routed between every pair of the three terminal pairs), whereas the size
of a minimum multiterminal cut is 2. In fact, Cunningham [4] has proved a min-max theory
for the pair of problems: The size of a minimum multiterminal cut is at most (2 − 2/|T |)
times of the flow value of a maximum multiterminal flow. A similar min-max theory for the
maximum multicommodity flow problem and its dual problem is presented in [6].

In the maximum multiterminal flow problem, each edge is assigned a nonnegative capacity
and a flow routed between a terminal pair is allowed to take any feasible fraction, whereas in
the integral multiterminal flow problem, a flow is allowed to take a nonnegative integer and we
are asked to find a maximum flow under this restriction. Clearly, we can simply assume that
all edge capacities of the integral multiterminal flow problem are nonnegative integers. The
integral multiterminal flow problem is different from the maximum multiterminal flow problem.
We can see in the above example, the flow value of a maximum integral multiterminal flow
is 1. The special case of the integral multiterminal flow problem where all edges have unit
capacities is also known as the T -path problem, in which we are asked to find the maximum
number of edge-disjointed paths between different terminal pairs.

In this paper, we study the maximum multiterminal flow problem in trees and give linear-
time algorithms for both fractional and integer versions, which improve the best previous
algorithms by a factor of Ω(n) [3]. Note that the maximum (integral) multicommodity flow
problem in trees is NP-hard and there is a 1

2 -approximation algorithm for it [7].
The rest of the paper is organized as follows. Section 2 introduces basic notations on

flows and cuts, and reviews important min-max theorems for fractional and integer versions
of maximum multiterminal flow problem. Section 3 discusses instances with rooted trees,
and introduces notations necessary to build a dynamic programming method over the set
of O(n) instances of rooted subtrees of a given instance. Informally “a blocking flow” in
a rooted tree instance is defined to be a flow in the tree currently pushing maximal flows
among terminals except for the terminal designated as the root. Section 4 shows several
properties of blocking flows, and presents a representation of flow values of blocking flows.
Section 5 provides a main technical lemma that tells how to compute the representation of
flow values of blocking flows and how to construct a maximum flow from the representations.
Based on the lemma, Section 6 gives a description of a linear-time algorithm for computing
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the representations of flow values of blocking flows and constructing a maximum flow from
the representations. Finally Section 7 makes some concluding remarks. The proofs of some
lemmas are omitted due to the space limitation.

2 Preliminaries

This section introduces basic notations on flows and cuts, and reviews important min-max
theorems for fractional and integer versions of maximum multiterminal flow problem. Let
<+ denote the set of nonnegative reals, and Z+ denote the set of nonnegative integers.

Graphs and Instances

We may denote by V (G) and E(G) the sets of vertices and edges of an undirected graph G,
respectively. Let G = (V,E) denote a simple undirected graph with a vertex set V and an
edge set E, and let n and m denote the number of vertices and edges in a given graph. Let
X ⊆ V be a subset of vertices in G. Let E(X) denote the set of edges with one end-vertex in
X and the other in V −X, where E({v}) for a vertex v ∈ V is denoted by E(v). Let G−X
denote the graph obtained from G by removing the vertices in X together with the edges in
∪v∈XE(v). For a vertex subset T , let P(T ) be the set of all paths Pt,t′ with end-vertices
t, t′ ∈ T with t 6= t′.

An instance I of a maximum flow problem consists of a graph G, a set T of vertices called
terminals, and a capacity function c : E → <+.

Flows

For a function h : E → <+,
∑

e∈E(X) h(e) for a subset X ⊆ V is denoted by h(X). A function
f : E → Z+ is called a flow in an instance (G,T, c) if there is a function g : P(T )→ Z+ such
that

f(e) =
∑
{g(P ) | e ∈ E(P ), P ∈ P(T )} for all edges e ∈ E,

where g(P ) is the flow value sent along path P , and such a function g is called a decomposition
of a flow f . A flow f is called integer if it admits a decomposition g such that g(P ) ∈ Z+ for
all paths P ∈ P(T ) (note that f may not be integer even if f(e) ∈ Z+ for all edges e ∈ E).

A flow f is called feasible if f(e) ≤ c(e) for all edges e ∈ E. The flow value α(f) is defined
to be 1

2
∑

t∈T f({t}), and a feasible flow f that maximizes α(f) is called maximum.

Cut-Systems

A subset X of vertices is called a terminal set (or a t-set) if X ∩ T = {t} and X induces a
connected subgraph from G. A cut-system of T is defined to be a collection X of disjoint |T |
terminal sets Xt, t ∈ T , where X is not required to be a partition of V . For a cut-system X
of T , let γ(X ) =

∑
X∈X c(X). For any pair of a feasible flow f and a cut-system X of T in

(G,T, c), it holds

α(f) ≤ 1
2γ(X ). (1)

Cherkasskii [1] proved the next result.

I Theorem 1. A feasible flow f in (G,T, c) is maximum if and only if there is a cut-system
X such that α(f) = 1

2γ(X ).

ISAAC 2016
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Ibaraki et al. [9] proposed an O(nm logn)-time algorithm for computing a maximum flow
f in a graph G with n vertices and m edges. Hagerup et al. [8] proved a characterization
of the maximum multiterminal flow problem and gave an O(ex(|T |)n)-time algorithm for
the maximum multiterminal flow problem in bounded treewidth graphs, where ex(|T |) is an
exponential function of the number |T | of terminals. This algorithm runs in linear time only
when |T | is restricted to a constant.

An integer version of the multiterminal flow problem is defined as follows. Let I = (G =
(V,E), T, c) have integer capacities c(e) ∈ Z+, e ∈ E. Recall that an integral flow f is a
flow which can be decomposed into integer individual flows g, i.e., g : P(T ) → Z+. An
instance (G,T, c) is called inner-eulerian if all edge capacities c(e), e ∈ E are integers and
c(E(v)) is an even integer for each non-terminal vertex v ∈ V − T . It is known that any
inner-eulerian instance admits a pair of a maximum integral flow f and a cut-system X with
α(f) = 1

2γ(X ) [1]. In general, there is no pair of an integral flow f and a cut-system X
with α(f) = 1

2γ(X ) even for trees. We review a min-max theorem on the integer version as
follows.

Assume that c(e) ∈ Z+, e ∈ E. A component W ⊆ V in the graph G−∪X∈XX is called
an odd set in X if c(W ) is odd. Let κ(X ) denote the number of odd sets in G − ∪X∈XX.
For each odd set W , at least one unit of capacity from c(W ) cannot be used by any feasible
integral flow f : E → Z+. Hence since each path in P(T ) goes through edges in E(Xt) of a
t-set for exactly two terminals t ∈ T , we see that, for any decomposition g of f ,

2α(f) =
∑

P∈P(T )

g(P ) ≤
∑

X∈X
c(X)− κ(X ) = γ(X )− κ(X ). (2)

Mader [10] proved the next result.

I Theorem 2. A feasible integral flow f in (G,T, c) is maximum if and only if there is a
cut-system X such that α(f) = 1

2 [γ(X )− κ(X )].

For trees with n vertices, an O(n2)-time algorithm for computing a maximum integral
flow f is proposed [3], while no strongly-polynomial time algorithm is known to general
graphs (e.g., see [2]).

3 Tree Instances

In the rest of this paper, we assume that a given instance I = (G,T, c) consists of a tree
G = (V,E), a terminal set T and an integer capacity c(e) ∈ Z+ for each e ∈ E. We simply
call an integral flow a flow.

This section discusses instances with rooted trees, and introduces notations necessary to
build a dynamic programming method over the set of O(n) instances of rooted subtrees of a
given instance.

If a vertex v ∈ T is not a leaf of G, i.e., v is of degree d ≥ 2, then we can split the instance
at the cut-vertex v into d instances, and it suffices to find a maximum flow in each of these
instances. Also we can split a vertex v ∈ V −T of degree d ≥ 4 into d−2 vertices that induce
a tree with edges of capacity sufficiently larger without losing the feasibility and optimality
of the instance. In the rest of paper, we assume that T is the set of leaves of G, and the
degree of each non-leaf is 3, and c(e) ≥ 1 for all edges e ∈ E, as shown in Fig. 1.

For a leaf v ∈ V in G, let ev denote the edge incidenet to v. For two vertices u, v ∈ V ,
let Pu,v denote the path connecting u and v in the tree G. For a subset S ⊆ V of vertices,
let P(S) denote the set of all paths Ps,s′ with s, s′ ∈ S.
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c(v5t5)=5 c(v6v7)=20

c(v9t8)=7
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: terminals

Figure 1 An example of a tree instance I = (G,T, c) such that the degree of each internal vertex
is 3 and all capacities are positive integers, where terminal r is chosen as the root.

In a tree instance (G,T, c), a flow admits a function g :
(

T
2
)
→ Z+ such that

f(e) =
∑
{g(t, t′) | e ∈ E(Pt,t′), t, t′ ∈ T} for all edges e ∈ E,

where g(t, t′) is the flow value sent along path Pt,t′ . For a flow f , a path P ∈ P(T ) is called
a positive-path if f admits a decomposition g such that g(t, t′) > 0.

For a path P in G, and an integer δ ≥ −mine′∈E h(e′) (possibly δ < 0), the function
h′ : E → Z+ obtained from h by setting h′(e) = h(e) + δ for all edges e ∈ E(P ) and
h′(e) = h(e) for all edges e ∈ E − E(P ) is denoted by h+ (P, δ).

Rooted Tree

Choose a terminal r ∈ T , and regard G as a tree rooted at r, which defines a parent-child
relationship among the vertices in G. In a rooted tree G, we write an edge e = uv such that
u is the parent of v by an ordered pair (u, v). For an edge e = (u, v), any edge e′ = (v, w) is
called a child-edge of e, and e is called the parent-edge of e′.

Let Y be a subset of vertices in V − {r} such that Y induces a connected subgraph from
G. Then there is exactly one edge (u, v) ∈ E(Y ) such that v ∈ Y and u is the parent of
v, and we call the edge uv the parent-edge of Y while any other edge in E(Y ) is called a
child-edge of Y .

For an edge e = (u, v) ∈ E, let Ve ⊆ V denote the set of vertex u and all the descendants
of v including v itself, Ge = (Ve, Ee) denote the graph induced from G by Ve, and let
Te = (T∩Ve)−{u}, where we remark that u 6∈ Te. Let I(e) denote an instance (Ge, Te∪{u}, c)
induced from (G,T, c) by the vertex subset Ve, where we remark that u is included as a
terminal in the instance I(e).

Blocking Flows

Informally “a blocking flow” in a rooted tree instance is defined to be a flow in the tree
currently pushing maximal flows among terminals except for the terminal designated as

ISAAC 2016
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: cuts

: odd sets

: parent edges of odd sets

Xt

W2

W1 t

: terminals

r

eW1

eW2

W3

Figure 2 Illustration of a cut-system X and the family odd(Xt) = {W1,W2} for a terminal set
Xt ∈ X .

the root. Let X be a cut-system of Te in I(e) for some edge e = (u, v). An odd set W in
Ge − ∪X∈XX is called an odd set of a terminal set X ∈ X if the parent-edge of W is a
child-edge of X, where u 6∈ X implies r, u 6∈ W . For each terminal set X ∈ X , let odd(X)
denote the family of odd sets of X, i.e., W of X whose parent-edge eW is a child-edge of X.
Fig. 2 illustrates a cut-system X and the family odd(Xt) = {W1,W2}.

For a function h : E → <+, let E[h; k] denote the set of edges e ∈ E such that h(e) ≥ k.
Let f be a feasible flow of I(e) for an edge e = (u, v). We call a terminal set X ∈ X with

t ∈ X ∩ T blocked (or blocked by f) if

f(et) = f(X) = c(X)− |odd(X)|,

and call X blocked (or blocked by f) if all terminal sets in it are blocked by f .
For each vertex s ∈ Ve, we define Vf (s) to be the set of vertices w ∈ Ve reachable from s

by a path Ps,w′ from s to the common ancestor w′ of s and w using edges in E[c− f ; 1] and
by a path Pw′,w from w′ to w using edges in E[c− f ; 2]. In other words, we travel an edge e′
upward if c(e′)− f(e′) ≥ 1 and downward if c(e′)− f(e′) ≥ 2 from s to w. By the definition
of Vf (s), we can see that Vf (s) induces a connected subgraph, the parent-edge e′ of Vf (s)
satisfies f(e′) = c(e′), and any child-edge e′ of Vf (s) satisfies f(e′) ∈ {c(e′)− 1, c(e′)}.

We call f blocking if {Vf (t) | t ∈ Te} is a cut-system of Te blocked by f . Let Ψ(e) denote
the set of integers x such that I(e) has a blocking flow f(e) = x.

Interval Computation

Our dynamic programming approach to compute the maximum flow value updates the set of
flow values of blocking flows recursively. As it will be shown in Section 4, such a set of flow
values always is given by an interval that consists of consecutive odd or even integers, and
we here introduce a special operation on such types of intervals.

For two reals a, b with a ≤ b, let [a, b] denote the set of reals s with a ≤ s ≤ b.
For two integers k, a ∈ Z+, the set {a+ 2i | i = 0, 1, . . . , k} of consecutive odd or even

integers is denoted by 〈a, b〉, where b = 2k + a. For two sets A,B ⊆ Z+ of nonnegative
integers, let A⊗B denote the set of nonnegative integers {a+ b− 2i | i = 0, 1, . . . ,min{a, b}}
over all a ∈ A and b ∈ B. In particular, for sets A1 = 〈a1, b1〉 and A2 = 〈a2, b2〉, we observe
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that

A1 ⊗A2 =


〈0, b1 + b2〉 if A1 ∩A2 6= ∅
〈1, b1 + b2〉 if a2 ≤ b1, a1 ≤ b2 and A1 ∩A2 = ∅
〈a1 − b2, b1 + b2〉 if b2 < a1
〈a2 − b1, b1 + b2〉 if b1 < a2.

Given an integer x ∈ A1 ⊗ A2, we can find in O(1) time three integers xi ∈ 〈ai, bi〉,
i = 1, 2 and y ∈ [0,min{x1, x2}] such that x = x1 +x2− 2y. To see this, assume that b1 ≤ b2
without loss of generality, and let a′2 be the minimum element in 〈a2, b2〉 with b1 ≤ a′2, where
a′2 ∈ {b1, b1−1, a2}. Observe that {x ∈ A1⊗A2 | x ≤ b2−b1} = {b1 +x2−2b1 | x2 ∈ 〈a′2, b2〉}
and {x ∈ A1 ⊗A2 | x > b2 − b1} = {b1 + b2 − 2y | y = 0, 1, . . . , b1 − 1}. Hence if x ≤ b2 − b1
then let x1 = y = b1 and x2 = x+ b1; otherwise x1 = b1, x2 = b2 and y = (x− b1 − b2)/2.

4 Basic Properties on Blocking Flows

This section shows several properties of blocking flows, and presents a representation of flow
values of blocking flows. We first observe two lemmas on some properties of blocking flows.

I Lemma 3. Let f be a feasible flow in I(e) for an edge e ∈ E.
(i) For a terminal t ∈ Te, let Xt be a t-cut such that f(Xt) = f(et) and Ps,s′ be a positive-

path of f with s, s′ ∈ Te ∪ {u}. If t ∈ {s, s′} then Ps,s′ contains exactly one edge in
E(Xt), and otherwise Ps,s′ is disjoint with Xt.

(ii) Assume that Vf (t) ∩ Vf (t′) = ∅ for any two t, t′ ∈ Te. Then Vf (u) is disjoint with Vf (t)
of any terminal t ∈ Te, and the following holds:
(1) For each edge e′ ∈ E(Vf (t)) with t ∈ Te ∪ {u},

f(e′) =
{
c(e′)− 1 if e′ is the parent-edge of an odd set W ∈ odd(Vf (t))
c(e′) otherwise.

(2) f(Vf (t)) = c(Vf (t))− |odd(Vf (t))| for each t ∈ Te ∪ {u}.
(iii) Flow f is blocking if Vf (t) ∩ Vf (t′) = ∅ for any two t, t′ ∈ Te, and f(et) = f(Vf (t)) for

each t ∈ Te.
(iv) When f is blocking, any edge e′ ∈ Ee with f(e′) = c(e′) satisfies c(e′) ∈ Ψ(e′).
(v) When f is blocking, the parent-edge eW of any odd set W ∈ odd(Vf (t)) for a terminal

t ∈ Te satisfies c(eW )− 1 ∈ Ψ(e′).

A proof of this lemma can be found in the full version of this paper.

The next lemma tells how to obtain a maximum flow and a minimum cut-system in an
instance I(e).

I Lemma 4. For an edge e = (u, v) ∈ E, let f be a blocking flow in I(e) such that f(e) is
the maximum in Ψ(e). Then X = {Vf (t) | t ∈ Te ∪ {u}} is a cut-system in I(e) satisfying
2α(f) = f(e) +

∑
t∈Te

f(et) = γ(X )− κ(X ) (hence f is a maximum flow in I(e) by (2)).

Proof. Since f is a blocking flow in I(e), the family {Vf (t) | t ∈ Te} is a cut-system of Te

blocked by f by definition, and we know that f(et) = f(Vf (t)) = c(Vf (t))− |odd(Vf (t))| for
all terminals t ∈ Te. First we see that Vf (u) is disjoint with Vf (t) of any terminal t ∈ Te,
since the vertices in Vf (u) are spanned with edges in E[c− f ; 2] and the parent-edge of Vf (t)
is saturated by f . By Lemma 3(ii), we have f(Vf (u)) = c(Vf (u))− |odd(Vf (u))|.

ISAAC 2016



62:8 A Linear-Time Algorithm for Integral Multiterminal Flows in Trees

We now show that f(e) = f(Vf (u)). If f(e) ∈ {c(e), c(e)− 1}, then we have Vf (u) = {u}
and f(e) = f(Vf (u)). Consider the case where c(e)− f(e) ≥ 2. We claim that any positive-
path Pt1,t2 for t1, t2 ∈ Te is disjoint with Vf (u). Assume indirectly that a positive-path
Pt1,t2 contains a vertex in Vf (u). Let w be the branch vertex of Pt1,u and Pt2,u. The
function f ′ := f + (Pt1,t2 ,−1) + (Pt1,u, 1) + (Pt2,u, 1) is a feasible flow in I(e), since Vf (u) is
spanned with edges in E[c− f ; 2]. Since f ′(e′) = f(e′) for all edges e′ ∈ E − E(Pu,w), the
cut-system X is blocked also by the flow f ′, and thereby f ′ is a blocking flow in I(e) with
f ′(e) > f(e) = max{x ∈ Ψ(e)}, which contradicts the definition of Ψ(e). Hence any positive-
path Pt1,t2 with t1, t2 ∈ Te is disjoint with Vf (u). This proves that f(e) = f(Vf (u)) even if
c(e)−f(e) ≥ 2. It always holds that f(e) = f(Vf (u)) = c(Vf (u))−|odd(Vf (u))|. Therefore we
have 2α(f) = f(e)+

∑
t∈Te

f(et) =
∑

t∈Te
(c(Vf (t))−|odd(Vf (t))|)+c(Vf (u))−|odd(Vf (u))| =

γ(X )− κ(X ), as required. J

We prove that all edges e ∈ E satisfies the following conditions (a) and (b) by an induction
of depth of edges.
(a) Ψ(e) is given by 〈a(e), b(e)〉 with some integers a(e) and b(e) such that

(i) For each leaf-edge e, it holds Ψ(e) = 〈a(e) = c(e), b(e) = c(e)〉;
(ii) For each non-leaf-edge e with two child-edges e1 and e2, it holds

Ψ(e) = 〈a(e), b(e)〉 = ((Ψ(e1)⊗Ψ(e2)) ∩ [0, c(e)]) ∪ {c(e)}.

That is, for 〈ã(e), b̃(e)〉 = Ψ(e1)⊗Ψ(e2), where b̃(e) = b(e1) + b(e2) and

ã(e) =


0 if “a(e2) < b(e1) or a(e1) < b(e2)” and a(e1) + a(e2) is even,
1 if “a(e2) < b(e1) or a(e1) < b(e2)” and a(e1) + a(e2) is odd,

a(ei)− b(ej) if b(ej) + 2 ≤ a(ei) with {i, j} = {1, 2},
(3)

where edge e1 (resp., e2) is called dominating if b(e2) + 2 ≤ a(e1) (resp., b(e1) + 2 ≤
a(e2)), it holds that

〈a(e), b(e)〉 =


〈ã(e), b̃(e)〉 if b̃(e) ≤ c(e),
〈ã(e), c(e)〉 if ã(e) ≤ c(e) < b̃(e) and ã(e) + c(e) is even,
〈ã(e), c(e)−1〉 if ã(e) ≤ c(e) < b̃(e) and ã(e) + c(e) is odd,
〈c(e), c(e)〉 if c(e) < ã(e).

(4)

(b) If e = (u, v) has a dominating child-edge e′ = (v, w), then there is a terminal t ∈ Te′

such that g(u, t) ≥ a(e) holds for any decomposition g of a blocking flow f to I(e) and
Pv,t consists of dominating edges.

A path consisting of dominating edges is called a dominating path. Fig. 3 shows the pairs
{ã(e), b̃(e)} and {a(e), b(e)} for all edges e ∈ E in the instance I in Fig. 1 computed according
to (3) and (4).

Assuming that each edge with depth at least d satisfies conditions (a) and (b), we prove
that any edge e with depth d− 1 satisfies the statements in the next lemma, which indicates
not only conditions (a) and (b) for the edge e but also how to construct a blocking flow in
I(e) from blocking flows in I(e1) and I(e2) of the child-edges e1 and e2 of e.
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Figure 3 A pair of integers ã(e) and b̃(e) in (3) and Ψ(e) = 〈a(e), b(e)〉 in (4) for each edge e ∈ E
in the instance I in Fig. 1, where each pair of a(e) and b(e) is depicted in bold while that of ã(e)
and b̃(e) in gray. The dominating edges are depicted in thick lines.

5 Main Lemma

This section provides a main technical lemma that tells how to compute the representation
of flow values of blocking flows given by conditions (a) and (b), and how to construct a
maximum flow from the representations.

I Lemma 5. Let e = (u, v) be a non-leaf-edge with depth d− 1 (≥ 1). Assume that all edges
with depth at least d satisfy conditions (a) and (b). For the two children w1 and w2 of v, let
〈ã, b̃〉 = Ψ(vw1)⊗Ψ(vw2) = 〈a(vw1), b(vw1)〉 ⊗ 〈a(vw2), b(vw2)〉.
(i) For a blocking flow of I(e), if e ∈ E(Vf (t)) for some terminal t ∈ Te, then the path Pv,t

from v to t is a dominating path, the path Pu,t from u′ to t satisfies g(u, t) ≥ c(e) for
any decomposition g of a blocking flow of I(e), and it holds c(e) < ã.

(ii) One of the child-edges of e is dominating if c(e) < ã. Edge e = (u, v) satisfies condition
(b); if vw1 or vw2, say vw1 is dominating, then there is a terminal t∗ ∈ Tvw1 such that
g(u, t∗) ≥ min{ã, c(e)} holds for any decomposition g of a blocking flow of I(e) and
Pv,t∗ is a dominating path.

(iii) For any integers x1, x2 and x such that xi ∈ Ψ(vwi), i = 1, 2 and x = x1 + x2 − 2y
for some integer y ∈ [0,min{x1, x2}], let fi, i = 1, 2 be a blocking flow of I(vwi) with
fi(vwi) = xi. Then x ≥ ã holds. When ã ≤ c(e), any function f = (x, f1, f2) with
x ≤ c(e) is a blocking flow of I(e).

(iv) If I(e) admits a blocking flow f with f(e) < c(e), then f(e) ∈ 〈ã, b̃〉.
(v) Assume that c(e) < ã and vw1 is dominating. Let Pv,t∗ be the dominating path in (iii)

and let δe = ã− c(e). There is a blocking flow f of I(e) with f(e) = c(e), which can be
constructed as

f = (c(e), f1 + (Pv,t∗ ,−δe), f2)
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Figure 4 A blocking flow f with f(er) = b(er) in the instance I in Fig. 1 such that 2α(f) =∑
t∈T

f(et) = 1 + 8 + 2 + 1 + 15 + 5 + 8 + 10 + 7 + 3 + 14 = 74, where the pair of flow value f(e)
and capacity c(e) for each edge is indicated by f/c beside the line segment for edge e. The non-zero
values for δe and σ(e) are indicated beside the corresponding edge e.

by choosing a blocking flow f1 of I(vw1) with f1(vw1) = a(vw1) and a blocking flow f2
of I(vw2) with f2(vw2) = b(vw2).

(vi) Edge e = (u, v) satisfies condition (a); i.e., Ψ(e) = (〈ã, b̃〉 ∩ [0, c(e)]) ∪ {c(e)}.

A proof of this lemma can be found in the full version of this paper.

6 Algorithm Description

Based on Lemma 5, this section gives a description of a linear-time algorithm for computing
the representations of flow values of blocking flows and constructing a maximum flow from
the representations.

By Lemma 5(ii) and (iv), we see by induction that every edge in E satisfies conditions (a)
and (b). By Lemma 5(iii) and (v), we know how to construct a blocking flow in I(e) for some
edge e from blocking flows in I(e1) and I(e2) of the child-edges e1 and e2 of e. By Lemma 4,
it suffices to construct a blocking flow in I = I(er) with f(er) = b(er). For this, we first
compute the integers ã(e), b̃(e), a(e) and b(e) for each edge e ∈ E according to (3) and (4)
selecting edges in E in a non-increasing order of depth, and identify all the dominating edges
in E. Next we apply Lemma 5(iii) and (v) repeatedly from edge er to descendants of the
edge in a top-down manner to construct a blocking flow in I = I(er) with f(er) = b(er).
To implement the algorithm to run in linear time, we avoid reducing flow values repeatedly
along part of a dominating path. We let σ(e) to store the total amount of decrements over
each dominating edge e, i.e., σ(e) is the summation of δe′ in Lemma 5(v) over all dominating
edges e′ that are ancestors of e. An entire algorithm is given by the following compact and
succinct description.

The algorithm runs in linear time, because it executes an O(1)-time procedure to each
edge in E in constant time. Fig. 4 illustrates a result obtained from the instance I in Fig. 1
by applying the algorithm.
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Algorithm 1 BlockFlow
Input: An instance I = (G = (V,E), T, c) rooted at a terminal r ∈ T .
Output: A maximum flow f in I.
Compute the integers ã(e), b̃(e), a(e) and b(e) for each edge e ∈ E according to (3) and
(4) selecting edges in E in a non-increasing order of depth;
x(er) := b(er); σ(er) := 0;
for each edge e ∈ E selected in a non-decreasing order of depth do
f(e) := x(e)− σ(e);
if e is not a leaf edge then
/* Denote by e1 and e2 the child-edges of e */
if ã(e) ≤ c(e) then
Choose integers x1 ∈ 〈a(e1), b(e1)〉 and x2 ∈ 〈a(e2), b(e2)〉 such that
x(e) = x1 + x2 − 2y for some integer and y ∈ [0,min{x1, x2}];
x(e1) = x1; x(e2) = x2;
if ei is dominating for i = 1 or 2 then
σ(ei) := σ(e) and σ(ej) := 0 for j ∈ {1, 2} − {i}

else
σ(e1) := σ(e2) := 0

end if
else
/* c(e0) < ã(e0), where e0 is dominating, and exactly one of e1 and e2 is
dominating; assume that e1 is dominating without loss of generality. */
x(e1) = a(e1); x(e2) = b(e2); δe1 := a(e1)− c(e);
σ(e1) := σ(e) + δe1 ; σ(e2) := 0

end if
end if

end for

After a maximum flow f is constructed, a minimum cut-system X to a given instance can be
constructed in linear time by Lemma 4. Fig. 5 illustrates the cut-system X = {Vf (t) | t ∈ T}
for the blocking flow f in Fig. 4, which indicates that the flow f is maximum because
2α(f) =

∑
t∈T f(et) = 74 = γ(X )− κ(X ) holds.

From the above argument, the next theorem is established.

I Theorem 6. Given a tree instance (G,T, c), a feasible integral multiflow f and a cut-system
X with α(f) = (γ(X )−κ(X ))/2 can be found in O(n) time and space, where f is a maximum
integral multiflow.

7 Concluding Remarks

In this paper, we revealed a recursive formula among flow values of blocking flows in rooted
instances and designed a linear-time dynamic programming algorithm for computing a
maximum integral flow in a tree instance. The optimality of flows is ensured by the property
of the formula, by which we can always construct the corresponding dual object, i.e., a
minimum cut-system that satisfies (2) by equality.

It would be interesting to characterize similar recursive properties and design fast al-
gorithms for the maximum integral multiterminal flows in more general classes of graphs.
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Figure 5 The cut-system X = {Vf (t) | t ∈ T} for the blocking flow f in Fig. 4, where the set
V −∪X∈XX induces from G two odd setsW1 ∈ odd(Vf (r)) andW2 ∈ odd(Vf (t10)), and it holds that
γ(X )−κ(X ) =

∑
t∈T

c(Vf (t))−2 = 2+(2+1+5)+2+1+15+5+8+10+7+3+(5+10)−2 = 74.
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Abstract
Mader’s disjoint S-paths problem unifies two generalizations of bipartite matching: (a) non-
bipartite matching and (b) disjoint s–t paths. Lovász (1980, 1981) first proposed an efficient
algorithm for this problem via a reduction to matroid matching, which also unifies two general-
izations of bipartite matching: (a) non-bipartite matching and (c) matroid intersection. While
the weighted versions of the problems (a)–(c) in which we aim to minimize the total weight of a
designated-size feasible solution are known to be solvable in polynomial time, the tractability of
such a weighted version of Mader’s problem has been open for a long while.

In this paper, we present the first solution to this problem with the aid of a linear representa-
tion for Lovász’ reduction (which leads to a reduction to linear matroid parity) due to Schrijver
(2003) and polynomial-time algorithms for a weighted version of linear matroid parity announced
by Iwata (2013) and by Pap (2013). Specifically, we give a reduction of the weighted version
of Mader’s problem to weighted linear matroid parity, which leads to an O(n5)-time algorithm
for the former problem, where n denotes the number of vertices in the input graph. Our reduc-
tion technique is also applicable to a further generalized framework, packing non-zero A-paths
in group-labeled graphs, introduced by Chudnovsky, Geelen, Gerards, Goddyn, Lohman, and
Seymour (2006). The extension leads to the tractability of a broader class of weighted problems
not restricted to Mader’s setting.
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1 Introduction

1.1 Mader’s S-paths

Let G = (V,E) be an undirected graph. For a prescribed vertex set A ⊆ V with its partition
S (i.e., S is a family of disjoint nonempty subsets of A whose union is A), an A-path is a
path between distinct vertices in A that does not intersect A in between, and an S-path is
an A-path whose end vertices belong to distinct elements of S. Each vertex in A is called a
terminal.

Mader’s disjoint S-paths problem is to find a maximum number of vertex-disjoint S-paths
in a given undirected graph with a terminal set partitioned as S. This problem can formulate
(a) the non-bipartite matching problem (finding a maximum matching in a given undirected
graph) and (b) the disjoint s–t paths problem (finding a maximum number of openly disjoint
paths between two specified vertices s and t in a given undirected graph), which are both
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fundamental problems generalizing the bipartite matching problem (finding a maximum
matching in a given bipartite graph).

Mader’s problem was first mentioned by Gallai [8], and Mader [19] gave a good character-
ization by a min-max duality theorem. Lovász [16, 17] proposed the first polynomial-time
algorithm via a reduction to the matroid matching problem, and later Schrijver [23, Section
73.1a] pointed out that Lovász’ reduction enjoys a linear representation, which leads to a
reduction of Mader’s problem to the linear matroid parity problem (see Section 1.2 for the
definitions). Chudnovsky, Geelen, Gerards, Goddyn, Lohman, and Seymour [5] recently
introduced a further generalized framework, called packing non-zero A-paths in group-labeled
graphs (see Section 3.1 for the definition). They provided a min-max duality theorem
extending Mader’s theorem, and Chudnovsky, Cunningham, and Geelen [4] developed a
direct combinatorial polynomial-time algorithm for that generalized problem.

In this paper, we focus on the following weighted version of Mader’s problem, whose
tractability has been open for a long while: for a given nonnegative length of each edge, to
minimize the total length of a designated number of disjoint S-paths. For a family P of
disjoint paths, we denote by E(P) the set of edges traversed by some path in P.

Shortest Disjoint S-paths Problem

Input: An undirected graph G = (V,E), a terminal set A ⊆ V with its partition S, a
nonnegative edge length ` ∈ RE

≥0, and a positive integer k ∈ Z>0.
Goal: Find a family P of k vertex-disjoint S-paths in G with `(P) :=

∑
e∈E(P) `e minimum.

Related work

Karzanov [13] presented a polynomial-time algorithm for a similar weighted problem in the
edge-disjoint A-paths setting (which is a special case of Mader’s setting), whose full proof was
left to an unpublished paper [12]. Karzanov’s problem can be solved by finding shortest k
vertex-disjoint S-paths for all possible k, where the number of iterations is at most |A|/2 and
can be reduced to O(log |A|) by binary search. Hirai and Pap [10] discussed the tractability
of a generalization of Karzanov’s setting, in which each pair of two terminals has weight.
Pap [21] dealt with another weighted version of Mader’s problem, in which weight is defined
only on terminal pairs (no edge length or cost).

Björklund and Husfeldt [1] recently devised a randomized algorithm for the shortest
2-disjoint paths problem (minimizing the total length of two vertex-disjoint paths between
two pairs (s1, t1) and (s2, t2) of specified vertices in a given undirected graph), which is the
first polynomial-time one. Inspired by their work, Kobayashi and Toyooka [14] developed
one for finding a shortest non-zero s–t path in a group-labeled graph, and so did Hirai and
Namba [9] for finding shortest disjoint (A+B)-paths in an undirected graph that cover all
the vertices in A∪B when |A|+ |B| is fixed, where an (A+B)-path is an A-path or a B-path
for disjoint vertex sets A and B. The weighted version of packing non-zero A-paths includes
finding a shortest non-zero s–t path (see Section 3.5).

1.2 Matroid Matching
The matroid matching problem introduced by Lawler [15] also unifies two fundamental
generalizations of bipartite matching: (a) the non-bipartite matching problem and (c) the
matroid intersection problem (finding a maximum-cardinality common independent set in
given two matroids on the same ground set). This problem cannot be solved in polynomial
time in general, but is known to be tractable as well as to admit a good characterization
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when the matroid in question is linearly represented (or in a more general situation) due to
Lovász [16, 17] and Dress and Lovász [6].

We here describe the problem formulation. A 2-polymatroid is a pair (S, f) of a finite set
S (called the ground set) and an integer-valued set function f : 2S → Z such that

0 ≤ f(X) ≤ 2|X| for each X ⊆ S,
f(X) ≤ f(Y ) for each X ⊆ Y ⊆ S, and
f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) for each X,Y ⊆ S.

A subset X ⊆ S is called a matching in a 2-polymatroid (S, f) if f(X) = 2|X|, and a parity
base if f(X) = 2|X| = f(S).

The matroid matching problem is to find a maximum matching in a given 2-polymatroid.
In this paper, we utilize the following weighted version of this problem: for a given weight on
the ground set, to minimize the total weight of a parity base.

Weighted Matroid Matching Problem

Input: A 2-polymatroid (S, f) and a weight w ∈ RS .
Goal: Find a parity base B ⊆ S in (S, f) with w(B) :=

∑
e∈B we minimum.

A 2-polymatroid (S, f) is said to be linearly represented over a field F if we are given a
matrix Z = (Ze)e∈S ∈ Fr×2S obtained by concatenating r×2 matrices Ze ∈ Fr×2 (e ∈ S) such
that f(X) = rankZ(X) for every X ⊆ S, where r is a positive integer and Z(X) = (Ze)e∈X

denotes the submatrix of Z obtained by extracting the corresponding columns. A subset
X ⊆ S is called a matching or parity base for Z if it is a matching or parity base, respectively,
in the corresponding 2-polymatroid.

When the input 2-polymatroid is linearly represented, the matroid matching problem
is called the linear matroid parity problem, for which various efficient algorithms have been
developed originated by Lovász [17], e.g., by Gabow and Stallmann [7], Orlin [20], and
Cheung, Lau, and Leung [3]. The same weighted version is formulated as follows.

Weighted Linear Matroid Parity Problem

Input: A finite set S, a matrix Z ∈ Fr×2S over a field F, and a weight w ∈ RS .
Goal: Find a parity base B ⊆ S for Z with w(B) minimum.

Camerini, Galbiati, and Maffioli [2] first showed that the weighted linear matroid parity
problem can be solved in pseudopolynomial time, and later Cheung et al. [3] devised a
faster pseudopolynomial-time algorithm. As announced by Iwata [11], this problem is solved
in O(r3|S|) time, which is strongly polynomial. Independently, Pap [22] also announced
a strongly polynomial-time algorithm for an equivalent weighted problem, for which no
estimate of the running time was given.

1.3 Results
We present a reduction of the shortest disjoint S-paths problem to the weighted linear
matroid parity problem.

I Theorem 1. The shortest disjoint S-paths problem reduces to the weighted linear matroid
parity problem.

Our reduction leads to the first polynomial-time algorithm for the shortest disjoint S-
paths problem with the aid of weighted linear matroid parity algorithms due to Iwata [11]
and Pap [22]. This is also the first successful application of weighted linear matroid parity.
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As seen in Section 2, when |V | = n, our reduction results in an O(n)×O(n2) matrix and
requires O(n3) time in addition to solving weighted linear matroid parity, and hence we
obtain the following running time bound by using Iwata’s algorithm.

I Corollary 2. One can solve the shortest disjoint S-paths problem in O(|V |5) time.

Moreover, our reduction technique can be extended to the same weighted version of
packing non-zero A-paths. With the aid of reductions of packing non-zero A-paths to matroid
matching and to linear matroid parity due to Tanigawa and the author [24] and the author
[25], respectively, we obtain reductions between the weighted versions. While we can see
the tractability via a reasonable reduction to weighted linear matroid parity only when the
group in question satisfies some representability condition (see Theorem 11), it holds for
a variety of groups including one for formulating Mader’s setting. We refer the readers to
Section 3 for the details.

The rest of this paper is organized as follows. Section 2 is devoted to presenting our
reduction of the shortest disjoint S-paths problem to the weighted linear matroid parity
problem. In Section 3, we show that our reduction technique can be utilized to reduce the
same weighted version of packing non-zero A-paths to weighted matroid matching and to
weighted linear matroid parity. Finally, in Section 4, we conclude this paper with some open
problems related to our work.

2 Reduction

In this section, we give a reduction of the shortest disjoint S-paths problem to the weighted
linear matroid parity problem. We first review Schrijver’s linear representation for Lovász’
reduction in Section 2.1, and then present our reduction. For the sake of convenience, we
restate the two problems.

Shortest Disjoint S-paths Problem

Input: An undirected graph G = (V,E) with |V | = n and |E| = m, a terminal set A ⊆ V

with its partition S, a nonnegative edge length ` ∈ RE
≥0, and a positive integer k ∈ Z>0.

Goal: Find a family P of k vertex-disjoint S-paths in G with `(P) minimum.

Weighted Linear Matroid Parity Problem

Input: A finite set S, a matrix Z ∈ Fr×2S over a field F, and a weight w ∈ RS .
Goal: Find a parity base B ⊆ S for Z with w(B) minimum.

Our reduction procedure is summarized as follows. We first construct an auxiliary
graph G′ from a given undirected graph G (see Section 2.2), which is the most important
contribution of this paper. This step requires O(n2) time. Next, following Schrijver’s linear
representation, we make a matrix Z over the field Q of rationals associated with the auxiliary
graph G′, and define a weight w from the edge length ` in a natural way (see Section 2.3).
This step takes O(n3) time. Finally, we show that the following two facts (see Claim 5),
which complete the reduction within O(n3) time in total:

for any family P of k vertex-disjoint S-paths in G, there exists a parity base B for Z
with w(B) = `(P);
for any parity base B for Z, there exists a family P of k vertex-disjoint S-paths in G
with `(P) ≤ w(B), which can be found easily, in O(n) time.
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2.1 Associated Matrix for Mader’s S-paths
In this section, we review Schrijver’s linear representation [23, Section 73.1a] for Lovász’
reduction of Mader’s problem to matroid matching. For a given undirected graph G = (V,E)
with a terminal set A ⊆ V partitioned as S = {A1, A2, . . . , At}, we construct an associated
matrix Z ∈ Q2V×2E , where a 2× 2 submatrix corresponds to each vertex v ∈ V and each
edge e ∈ E. We assume that every connected component of G has at least one S-path.

Associate each edge e = uw ∈ E with a 2-dimensional linear subspace of (Q2)V ,

Le := {x ∈ (Q2)V | x(u) + x(w) = 0, x(v) = 0 (v ∈ V \ {u,w}) }. (1)

For each terminal a ∈ Ai (i = 1, 2, . . . , t), define a 1-dimensional linear subspace

Qa := {x ∈ (Q2)V | x(a) ∈
〈(1

i

)〉
, x(v) = 0 (v ∈ V \ {a}) }, (2)

where 〈y〉 := { py | p ∈ F } for a vector y ∈ Fr over a field F.
Let Q :=

∑
a∈A Qa and E := {Le/Q | e ∈ E }. Let us construct a matrix Z ∈ Q2V×2E

associated with E so that rankZ(F ) = dim(LF /Q) for every F ⊆ E, where LF :=
∑

e∈F Le.
This can be done by arranging an appropriate basis of Le/Q ∈ E (which is regarded as taken
from the original space (Q2)V ) for each edge e ∈ E (see also Remark at the end of this
section). Then, the matchings for Z are characterized as follows, from which we can derive a
useful characterization of the parity bases for Z (Lemma 4).

I Lemma 3 (Schrijver [23, (73.18)]). An edge set F ⊆ E is a matching for Z if and only
if F forms a forest such that every connected component has at most two terminals in A,
which belong to distinct elements of S if there are two.

I Lemma 4. An edge set F ⊆ E is a parity base for Z if and only if F forms a spanning
forest of G such that every connected component has exactly two terminals in A, which belong
to distinct elements of S.

Proof. We first see that rankZ = 2|V | − |A|. By the above construction, it suffices to
show the equality for each connected component, and assume that G itself is connected.
Fix an S-path in G (recall the existence assumption), and let a, b ∈ A be its end vertices.
Then, by Lemma 3, dim(LE/(Qa +Qb)) ≥ 2(|V | − 1) (consider a spanning tree of G with
a restricted terminal set {a, b} instead of A). Since LE/(Qa + Qb) is a linear subspace of
the (2|V | − 2)-dimensional quotient space (Q2)V /(Qa +Qb), these two spaces are identified.
Hence, rankZ = dim(LE/Q) = dim((Q2)V /Q) = dim(Q2)V − dimQ = 2|V | − |A|.

[“If” part] Suppose that F ⊆ E forms such a spanning forest of G. Then it immediately
follows from Lemma 3 that F is a matching for Z. Since every connected component
has exactly two terminals in A, the spanning forest formed by F consists of exactly |A|/2
connected components, which implies |F | = |V | − 1

2 |A| =
1
2 rankZ.

[“Only if” part] Suppose that F ⊆ E is a parity base for Z. We then have |F | = 1
2 rankZ =

|V | − 1
2 |A|. Since F forms a forest by Lemma 3, the subgraph (V, F ) is also a forest, which

consists of |A|/2 connected components including isolated vertices if exist. Then, by Lemma 3
and the pigeonhole principle, every connected component of (V, F ) has exactly two terminals
in A (which belong to distinct elements of S), and hence F must be spanning. J

I Remark. The above construction does not define a unique associated matrix Z ∈ Q2V×2E ,
and one is obtained as follows. We first compute the Kronecker product BG ⊗ I2 ∈ Q2V×2E

of the incidence matrix BG ∈ {−1, 0, 1}V×E ⊆ QV×E of G (where each edge in G is assumed
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to be arbitrarily oriented) and the 2× 2 identity matrix I2 ∈ Q2×2. Note that BG ⊗ I2 is a
matrix obtained by arranging a basis of Le for each edge e ∈ E. We then obtain Z by adding
to each column of BG ⊗ I2 a multiple of a vector x ∈ (Q2)V with 〈x〉 = Qa for each terminal
a ∈ A (e.g., x is defined by x(a) :=

(1
i

)
and x(v) := 0 (v ∈ V \ {a}) when a ∈ Ai) so that the

first row of the corresponding submatrix Za ∈ Q2×2E has only zero. This procedure takes
O(|V | · |E|) time in total.

2.2 Construction of Auxiliary Graph
As the first step of our reduction, we construct an auxiliary undirected graph G′ = (V ′, E′)
with a terminal set A′ ⊆ V ′ partitioned as S ′ from a given undirected graph G = (V,E) with
a terminal set A ⊆ V partitioned as S. We assume that there exists a feasible solution, i.e.,
G has k vertex-disjoint S-paths, and then we have |A| ≥ 2k.

The construction is summarized as follows (see also Fig. 1). Add (|A|−2k) extra terminals
so that each extra terminal is adjacent to all the original terminals in A, and let A0 be the
set of those extra terminals. Besides, add two other extra terminals b1, b2 so that b1 and
b2 are adjacent and b1 is adjacent to all the non-terminal vertices in V \A. Finally, define
S ′ := S ∪ {A0, {b1}, {b2}}.

Formally, for the vertex set, let a′i (i = 1, 2, . . . , |A| − 2k) and bj (j = 1, 2) be distinct
new vertices not in V , and define

A0 := { a′i | i = 1, 2, . . . , |A| − 2k },

V ′ := V ∪A0 ∪ {b1, b2},

A′ := A ∪A0 ∪ {b1, b2},

S ′ := S ∪ {A0, {b1}, {b2}}.

For the edge set, define

E1 := { eia = a′ia | a′i ∈ A0, a ∈ A },

E2 := { ev = b1v | v ∈ V \A },

E′ := E ∪ E1 ∪ E2 ∪ {e′ = b1b2}.

Note that, since |A0| ≤ |A| = O(n) and we may assume that G has no parallel edges, we
have |V ′| = O(n) and |E′| = O(m+ n2) = O(n2).

2.3 Completion of Reduction
For the auxiliary graph G′ = (V ′, E′) with a terminal set A′ ⊆ V ′ partitioned as S ′ obtained
in Section 2.2, we construct an associated matrix Z ∈ Q2V ′×2E′ defined in Section 2.1. Note
that the construction requires O(n3) time, because |V ′| = O(n) and |E′| = O(n2). Define a
weight w ∈ RE′ as follows: for each e ∈ E′,

we :=
{
`e (e ∈ E),
0 (e ∈ E′ \ E).

(3)

Note that w(F ) = w(F ∩E) =
∑

e∈F∩E `e for every F ⊆ E′, and w(F1) ≤ w(F2) for every
F1 ⊆ F2 ⊆ E′ (recall that ` is nonnegative).

Our reduction is completed by the following claim, which implies that one can efficiently
transform any minimum-weight parity base for Z into an optimal solution to the shortest
disjoint S-paths problem.
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Figure 1 How to construct the auxiliary graph (the original edges are omitted).

I Claim 5. The following relations hold between feasible solutions of the two problems.
(i) For any family P of k vertex-disjoint S-paths in G, there exists a parity base BP ⊆ E′

for Z with BP ∩ E = E(P) (hence w(BP) = `(P)).
(ii) For any parity base B ⊆ E′ for Z, there exists a family PB of k vertex-disjoint S-paths

in G with E(PB) ⊆ B ∩ E (hence `(PB) ≤ w(B)), which can be found in O(n) time.

Proof. (i) Let P be a family of k vertex-disjoint S-paths in G, which are also S ′-paths in G′.
Then, exactly (|A| − 2k) terminals in A are exposed by P. By the definition of A0 ⊆ A′ \A
and E1 ⊆ E′ \ E, there exist a perfect matching in G′ between those exposed terminals and
A0, which form (|A| − 2k) vertex-disjoint S ′-paths in G′. Besides, G′ has one more S ′-path
consisting of the single edge e′ = b1b2 ∈ E′ \ E. We can obtain a family P ′ of (|A| − k + 1)
vertex-disjoint S ′-paths in G′ by adding these paths to P.

Let U ⊆ V \A be the set of non-terminal vertices that are not intersected by any path in
P ′. By the definition of E2 ⊆ E′ \ E, there exists an edge ev = b1v ∈ E2 for every v ∈ U .
Let BP := E(P ′) ∪ { ev | v ∈ U }. Then, obviously BP ∩ E = E(P), and BP is indeed a
parity base for Z by Lemma 4.

(ii) Let B ⊆ E′ be a parity base for Z. Then, by Lemma 4, B forms a spanning forest of
G such that every connected component has exactly two terminals in A′, which belong to
distinct elements of S ′.

By the construction of G′, the terminal b2 can be connected only to the terminal b1,
and hence e′ ∈ B. In addition, every terminal in A0 can be connected only to the original
terminals in A, and hence every connected component containing a terminal in A0 has an
original terminal in A. This implies that 2k original terminals in A are distributed to k
connected components in the spanning forest so that every connected component has two
terminals belonging to distinct elements of S. Since every additional edge in E′ \ E incident
to at least one extra terminal in A′ \A, the restriction B∩E forms a forest in G that contains
k vertex-disjoint S-paths. Those S-paths can be extracted in O(n) time by the breadth first
search in the forest from each terminal in A. J
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3 Extension to Non-zero A-paths

In this section, we discuss a possible extension of our reduction technique to a further
generalized framework, packing non-zero A-paths in group-labeled graphs. We first describe
necessary definitions and the background in Section 3.1, and next show how to adjust our
reduction to this framework in Section 3.2. In Sections 3.3 and 3.4, we discuss reductions
to weighted matroid matching in general and to weighted linear matroid parity under some
representability condition for the group in question, respectively. Finally, in Section 3.5, we
briefly describe several special cases solvable via weighted linear matroid parity.

3.1 Packing Non-zero A-paths

Let Γ be a group. A Γ-labeled graph is a directed graph G = (V,E) with each edge labeled
by an element of Γ, i.e., with a mapping ψG : E → Γ called a label function. The label of
a walk W = (v0, e1, v1, e2, v2, . . . , el, vl) in the underlying graph of G (i.e., vi ∈ V for each
i = 0, 1, . . . , l and either ei = vi−1vi ∈ E or ei = vivi−1 ∈ E for each i = 1, 2, . . . , l) is
defined as ψG(W ) := ψG(el) · · ·ψG(e2) · ψG(e1) if ei = vi−1vi for every i = 1, 2, . . . , l, and
otherwise by replacing the corresponding label ψG(ei) with its inverse ψG(ei)−1 for each i
with ei = vivi−1. A walk is called balanced (or a zero walk) if its label is the identity element
1Γ of Γ, and unbalanced (or a non-zero walk) otherwise.

The problem of packing non-zero A-paths, introduced by Chudnovsky et al. [5], is to
find a maximum number of vertex-disjoint non-zero A-paths in a given Γ-labeled graph. It
generalizes Mader’s disjoint S-paths problem as well as several interesting problems such as
ones in topological graph theory (see [5, Section 2] for more details). For this problem, a
min-max duality theorem and a polynomial-time algorithm were given by Chudnovsky et
al. [5] and Chudnovsky et al. [4], respectively. Extending Lovász’ reduction [16] of Mader’s
problem to tractable matroid matching, Tanigawa and the author [24] gave a reduction of
this problem to tractable matroid matching. Furthermore, the author [25] clarified when
Schrijver’s reduction [23, Section 73.1a] (cf. Section 2.1) of Mader’s problem to linear matroid
parity can be extended to this problem.

The weighted version of packing non-zero A-paths is similarly formulated as follows.

Shortest Disjoint Non-zero A-paths Problem

Input: A Γ-labeled graph G = (V,E), a terminal set A ⊆ V , a nonnegative edge length
` ∈ RE

≥0, and a positive integer k ∈ Z>0.
Goal: Find a family P of k vertex-disjoint non-zero A-paths in G with `(P) minimum.

3.2 Adjustment for Non-zero A-paths

Similarly to Section 2.2, we construct an auxiliary Γ-labeled graph G′ = (V ′, E′) with a
terminal set A′ ⊆ V ′ from a given Γ-labeled graph G = (V,E) with a terminal set A ⊆ V .
The underlying graph and terminal set are defined in the same way, and only the difference
is that we have to define a label for each additional edge in E′ \ E instead of defining a
partition S ′ of the terminal set A′.

It in fact works well to define the labels of additional edges in E′ \E so that each S ′-path
consisting of a single additional edge in the auxiliary graph constructed in Section 2.2 is
replaced by a non-zero A′-path. Formally, we extend ψG : E → Γ to ψG′ : E′ → Γ as follows:
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for each edge e ∈ E′,

ψG′(e) :=
{
ψG(e) (e ∈ E),
α (e ∈ E′ \ E),

where α ∈ Γ \ {1Γ} is an arbitrary nonidentity element.

3.3 Reduction to Weighted Matroid Matching
Tanigawa and the author [24] gave a reduction of packing non-zero A-paths to tractable
matroid matching by constructing a 2-polymatroid (E, f) associated with a given Γ-labeled
graph G = (V,E) with a terminal set A ⊆ V , which extends Lovász’ idea [16] for Mader’s
problem. The associated 2-polymatroid (E, f) is defined as follows (cf. [24, Lemma 3.1]): for
each F ⊆ E,

f(F ) :=
∑

F ′∈comp(F )

(
2|V (F ′)| − 2 + ρ(F ′)− |V (F ′) ∩A|

)
,

where comp(F ) denotes the partition of F according to the connected components, and
ρ : 2E → Z≥0 is defined as

ρ(F ′) :=


2 (|V (F ′) ∩A| ≥ 1 and F ′ has a non-zero A-path or a non-zero cycle),

1
(
|V (F ′) ∩A| ≥ 1 and F ′ has no non-zero A-path and no non-zero cycle, or
|V (F ′) ∩A| = 0 and F ′ has a non-zero cycle,

)
,

0 (otherwise).

The matchings and parity bases in this associated 2-polymatroid (E, f) are characterized
analogously to Lemmas 3 and 4, respectively, as follows.

I Lemma 6 (Tanigawa–Yamaguchi [24, Lemma 3.2]). An edge set F ⊆ E is a matching in
(E, f) if and only if F forms a forest such that every connected component has at most one
A-path in G, which is non-zero if exists.

I Lemma 7. An edge set F ⊆ E is a parity base in (E, f) if and only if F forms a spanning
forest of G such that every connected component has exactly one A-path in G, which is
non-zero.

Thus, by the same argument as Section 2.3, we can complete an analogous reduction of
the shortest disjoint non-zero A-paths problem to weighted matroid matching, in which we
construct the associated 2-polymatroid for the auxiliary Γ-labeled graph G′ = (V ′, E′) with
the terminal set A′ ⊆ V ′ obtained in Section 3.2, and define a weight w ∈ RE′ as (3).

I Theorem 8. The shortest disjoint non-zero A-paths problem reduces to the weighted
matroid matching problem.

3.4 Reduction to Weighted Linear Matroid Parity
The author [25] showed that, under some representability condition for the group Γ, Schrijver’s
linear representation can be extended to the non-zero A-paths setting. We define PGL2(F) :=
GL2(F)/{ pI2 | p ∈ F \ {0} }, where GL2(F) denotes the general linear group of degree 2 over
a field F (i.e., the set of all nonsingular 2×2 matrices over F with the ordinary multiplication)
and I2 ∈ GL2(F) the 2× 2 identity matrix. Recall that we denote by 〈y〉 the 1-dimensional
linear subspace spanned by a vector y.
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I Theorem 9 (Yamaguchi [25, Theorem 1]). Let Γ be a group and F a field. If there exists
a homomorphism ρ : Γ → PGL2(F) such that ρ(α)

(1
0
)
6∈
〈(1

0
)〉

for every α ∈ Γ \ {1Γ}, then
packing non-zero A-paths in Γ-labeled graphs reduces to linear matroid parity over F.

For a given Γ-labeled graph G = (V,E) with a terminal set A ⊆ V , an associated matrix
Z ∈ F2V×2E is constructed in a similar way to Section 2.1. In the construction, we just
modify the definitions (1) and (2) of the linear subspaces Le and Qa, respectively, as follows
(cf. [25, Section 2.2]):

Le := {x ∈ (F2)V | ρ(ψG(e))x(u) + x(w) = 0, x(v) = 0 (v ∈ V \ {u,w}) } (e = uw ∈ E),

Qa := {x ∈ (F2)V | x(a) ∈
〈(1

0
)〉
, x(v) = 0 (v ∈ V \ {a}) } (a ∈ A).

While Lemmas 3 and 4 are not extended straightforward, the parity bases for this associ-
ated matrix Z are characterized as follows by a similar argument based on a characterization
[25, Lemmas 9 and 10] of the matchings for Z.

I Lemma 10. An edge set F ⊆ E is a parity base for Z
if F forms a spanning forest of G such that every connected component has exactly one

A-path in G, which is non-zero;
only if F forms a spanning subgraph of G such that every connected component has either

no cycle and exactly one A-path in G, which is non-zero, or no terminal in A and exactly
one cycle.

We here show the correctness of an analogous reduction of the shortest disjoint non-zero
A-paths problem to the weighted linear matroid parity problem under the representability
condition of Γ in Theorem 9. We construct the associated matrix Z ∈ F2V ′×2E′ for the
auxiliary Γ-labeled graph G′ = (V ′, E′) with the terminal set A′ ⊆ V ′ obtained in Section 3.2,
and define a weight w ∈ RE′ as (3).

The key observation is that any cycle in G′ intersecting no terminal in A′ is contained
in G. Hence, for any parity base B ⊆ E′ for Z that has some cycles (at most one in each
connected component by the “only if” part of Lemma 10), there exists a parity base B′ ⊆ E′
for Z with w(B′) ≤ w(B) that has no cycle (obtained by replacing edges in the cycles with
edges in E2 ⊆ E′ \ E). Thus we can show an analogous statement to Claim 5 (in particular
the part (ii)) in Section 2.3, which suffices to complete the reduction. Note that, even if a
minimum-weight parity base for Z with some cycles is obtained by solving weighted linear
matroid parity, we can ignore the cycles, whose length must be totally zero.

I Theorem 11. Let Γ be a group and F a field. If there exists a homomorphism ρ : Γ →
PGL2(F) such that ρ(α)

(1
0
)
6∈
〈(1

0
)〉

for every α ∈ Γ\{1Γ}, then the shortest disjoint non-zero
A-paths problem on Γ-labeled graphs reduces to the weighted linear matroid parity problem
over F, which can be solved in O(|V |5) time.

3.5 Applications
As shown in [25, Section 3], a variety of groups enjoy such projective representations ρ in
Theorems 9 and 11, called coherent representations. We here describe several examples with
its applications (see [25, Section 3] for more details).

Mader’s S-paths. Mader’s S-paths are formulated as non-zero A-paths in Z-labeled graphs
as follows, where Z denotes the additive group on the integers. For an undirected graph
G = (V,E) with a terminal set A ⊆ V partitioned as S := {A1, A2, . . . , At}, let A0 := V \A.
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Orient each edge in E arbitrarily, and define a label function ψ on the set of oriented edges
as follows: for each edge uw with u ∈ Ai and w ∈ Aj , let ψ(uw) := i − j ∈ Z. Then, a
non-zero A-path in the resulting Z-labeled graph is indeed an S-path in G, and vice versa.

The group Z admits a coherent representation over Q in general, and hence our reduction
to weighted linear matroid parity works well for any Z-labeled graph.

Odd A-paths. A parity constraint is formulated by using the cyclic group Z2 = Z/2Z =
{0, 1}, which enjoys a coherent representation over an arbitrary field. Let G = (V,E) be a
Z2-labeled graph with a terminal set A ⊆ V , and define E1 := { e ∈ E | ψG(e) = 1 }, where
the direction of each edge has no meaning since −0 = 0 and −1 = 1 in Z2. Then, each
non-zero A-path in G is an A-path traversing an odd number of edges in E1, and vice versa.

Extending the well-known fact that one can find a shortest odd s–t path via the minimum-
weight perfect matching problem, one can see that shortest disjoint odd A-paths in an
undirected graph can be obtained by finding a minimum-weight perfect matching in an
appropriate auxiliary graph. Our reduction exaggerates the problem in a sense, but provides
a unified view through the matroid matching framework.

Shortest non-zero s–t path. In general, not only Z and Z2, all cyclic groups admit coherent
representations. Hence, by the fundamental theorem of finitely generated abelian groups,
when k = 1 and Γ is a finitely generated abelian group given with its decomposition into q
cyclic groups, one can find a shortest non-zero A-path in a Γ-labeled graph by solving the
weighted linear matroid parity problem repeatedly q times. When A = {s, t} for distinct
vertices s, t ∈ V in particular, one can find a shortest non-zero s–t path in O(q|V |5) time. In
contrast with an algebraic, randomized algorithm due to Kobayashi and Toyooka [14], which
is restricted to the case when Γ is a “finite” abelian group, our result leads to a combinatorial,
deterministic solution to a more general case.

Dihedral groups. Even when Γ is non-abelian, there exists a solvable case admitting a
coherent representation. A simple example is the dihedral group Dn of degree n ≥ 3, i.e.,
Dn = 〈 r,R | rn = R2 = id, rR = Rrn−1 〉.

4 Concluding Remarks

In this paper, we have presented a reduction of a weighted version of Mader’s disjoint S-paths
problem to weighted linear matroid parity, which leads to the first polynomial-time algorithm
for the former problem with the aid of weighted linear matroid parity algorithms due to
Iwata [11] and Pap [22]. It should be emphasized that this is not only a solution to a
longstanding open problem but also essentially the first successful application of weighted
linear matroid parity. We have also discussed a possible extension of our reduction to a
generalized framework, packing non-zero A-paths in group-labeled graphs. The shortest
disjoint non-zero A-paths problem always reduces to weighted matroid matching, and to
weighted linear matroid parity under some representability condition for the group in question.

There remain two open problems related to this work. One is whether the shortest
disjoint non-zero A-paths problem is tractable in general or not. While Chudnovsky et al. [4]
developed a direct combinatorial algorithm for packing non-zero A-paths, it is quite nontrivial
whether their algorithm can be extended to the weighted version. The other is on weighted
matroid matching. In Lovász’ matroid matching algorithm [17], a linear representation of the
input 2-polymatroid is not necessarily required, and it is sufficient to be able to compute an
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appropriate projection whenever we encounter a nontrivial double circuit (see also [16, 18]).
This fact enables us to solve packing non-zero A-paths efficiently via matroid matching in
general. While strongly polynomial-time weighted linear matroid parity algorithms were
developed by Iwata [11] and Pap [22], these algorithms rely on the linearity. If one can
extend Lovász’ matroid matching algorithm to the weighted case, then it is expected that a
broader class of the weighted matroid matching problem turns out to be tractable, which
also leads to a positive answer to the first open problem.

Acknowledgments. I am deeply grateful to Satoru Iwata for giving a large number of
helpful comments and suggestions. I also appreciate insightful and instructive comments of
the anonymous referees.
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Abstract
In 1982, Drezner proposed the (1|1)-centroid problem on the plane, in which two players, called
the leader and the follower, open facilities to provide service to customers in a competitive manner.
The leader opens the first facility, and then the follower opens the second. Each customer will
patronize the facility closest to him (ties broken in favor of the leader’s one), thereby decides the
market share of the two players. The goal is to find the best position for the leader’s facility so
that his market share is maximized. The best algorithm for this problem is an O(n2 logn)-time
parametric search approach, which searches over the space of possible market share values.

In the same paper, Drezner also proposed a general version of (1|1)-centroid problem by
introducing a minimal distance constraint R, such that the follower’s facility is not allowed to
be located within a distance R from the leader’s. He proposed an O(n5 logn)-time algorithm for
this general version by identifying O(n4) points as the candidates of the optimal solution and
checking the market share for each of them. In this paper, we develop a new parametric search
approach searching over the O(n4) candidate points, and present an O(n2 logn)-time algorithm
for the general version, thereby closing the O(n3) gap between the two bounds.
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1 Introduction

In 1929, economist Hotelling introduced the first competitive location problem in his seminal
paper [13]. Since then, the subject of competitive facility location has been extensively
studied by researchers in the fields of spatial economics, social and political sciences, and
operations research, and spawned hundreds of contributions in the literature. The interested
reader is referred to the following survey papers [1, 4, 8, 9, 10, 12, 17, 19].

Hakimi [11] and Drezner [6] independently proposed a series of competitive location
problems in a leader-follower framework. The framework is briefly described as follows.
There are n customers in the market, and each is endowed with a certain buying power.
Two players, called the leader and the follower, sequentially open facilities to attract the
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buying power of customers. At first, the leader opens his p facilities, and then the follower
opens another r facilities. Each customer will patronize the closest facility with all buying
power (ties broken in favor of the leader’s ones), thereby deciding the market share of the
two players. Since both players ask for market share maximization, two competitive facility
location problems are defined. Given that the leader locates his p facilities at the set Xp

of p points, the follower wants to locate his r facilities in order to attract the most buying
power, called the (r|Xp)-medianoid problem. On the other hand, knowing that the follower
will react with maximization strategy, the leader wants to locate his p facilities in order to
retain the most buying power against the competition, called the (r|p)-centroid problem.

Drezner [6] first proposed to study the two competitive facility location problems on
the Euclidean plane. Since then, several related results [5, 7, 12, 14] have been obtained
for different values of r and p. Due to page limit, here we introduce only previous results
about the case r = p = 1. For the (1|X1)-medianoid problem, Drezner [6] showed that there
exists an optimal solution arbitrarily close to X1, and solved the problem in O(n logn) time
by a sweeping technique. Later, Lee and Wu [14] obtained an Ω(n logn) lower bound for
the (1|X1)-medianoid problem, and thus proved the optimality of Drezner’s result. For the
(1|1)-centroid problem, Drezner [6] developed a parametric search approach that searches over
the space of O(n2) possible market share values, along with an O(n4)-time test procedure
constructing and solving a linear program of O(n2) constraints, and gave an O(n4 logn)-time
algorithm. Then, by improving the test procedure via Megiddo’s linear-time result [16] for
solving linear programs, Hakimi [12] reduced the time complexity to O(n2 logn).

In [6], Drezner also proposed a more general setting for the leader-follower framework
by introducing a minimal distance constraint R ≥ 0 into the (1|X1)-medianoid problem
and the (1|1)-centroid problem, such that the follower’s facility is not allowed to be located
within a distance R from the leader’s. The augmented problems are respectively called the
(1|X1)R-medianoid problem and (1|1)R-centroid problem in this paper. Drezner showed that
the (1|X1)R-medianoid problem can also be solved in O(n logn) time by using nearly the same
proof and technique as for the (1|X1)-medianoid problem. However, for the (1|1)R-centroid
problem, he argued that it is hard to generalize the parametric approach approach for the
(1|1)-centroid problem to solve this general version, due to the change of problem properties.
Then, he gave an O(n5 logn)-time algorithm by identifying O(n4) candidate points on the
plane, which contain at least one optimal solution, and performing medianoid computation
on each of them. So far, the O(n3) gap between the two centroid problems remains open.

In this paper, we propose an O(n2 logn)-time algorithm for the (1|1)R-centroid problem
on the Euclidean plane, thereby closing the gap that has existed for decades. Instead of
searching over market share values, we develop a new approach based on a different parametric
search technique by searching over the O(n4) candidate points mentioned in [6]. This is
made possible by making a critical observation on the distribution of optimal solutions for
the (1|X1)R-medianoid problem given X1, which provides us a useful tool to prune candidate
points with respect to X1. We then extend the usage of this tool to design a key procedure
to prune candidates with respect to a given vertical line. Due to page limits, most of the
proofs are omitted.

The rest of this paper is organized as follows. Section 2 gives formal problem definitions
and describes previous results in [6, 12]. In Section 3, we make the observation on the
(1|X1)R-medianoid problem, and use it to find a “local” centroid on a given line. This result
is then extended as a new pruning procedure with respect to any given line in Section 4,
and utilized in our parametric search approach for the (1|1)R-centroid problem. Finally, in
Section 5, we give some concluding remarks.
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2 Notations and Preliminary Results

Let V = {v1, v2, · · · , vn} be a set of n points on the Euclidean plane R2, as the representatives
of the n customers. Each point vi ∈ V is assigned a positive weight w(vi), representing
its buying power. To simplify the presentation, we assume that the points in V are in
general position, that is, no three points are collinear and no two points share a common x
or y-coordinate.

Let d(u,w) denote the Euclidean distance between any two points u,w ∈ R2. For any set
Z of points on the plane, we define W (Z) =

∑
{w(v)|v ∈ V

⋂
Z}. Suppose that the leader

has located his facility at X1 = {x}, which is shortened as x for simplicity. Due to the minimal
distance constraint R mentioned in [6], any point y′ ∈ R2 with d(y′, x) < R is infeasible to
be the follower’s choice. If the follower locates his facility at some feasible point y, the set of
customers patronizing y instead of x is defined as V (y|x) = {v ∈ V |d(v, y) < d(v, x)}, with
their total buying power W (y|x) = W (V (y|x)). Then, the largest market share that the
follower can capture is denoted by the function W ∗(x) = maxy∈R2,d(y,x)≥RW (y|x), which is
called the weight loss of x. Given a point x ∈ R2, the (1|x)R-medianoid problem is to find a
(1|x)R-medianoid, which is a feasible point y∗ ∈ R2 such that W (y∗|x) = W ∗(x).

In contrast, the leader tries to minimize the weight loss of his own facility by finding
a point x∗ ∈ R2 such that W ∗(x∗) ≤ W ∗(x) for any point x ∈ R2. The (1|1)R-centroid
problem is to find a (1|1)R-centroid, which is a point x∗ minimizing its own weight loss.
Note that, when R = 0, the two problems degenerate to the (1|x)-medianoid problem and
(1|1)-centroid problem.

2.1 Previous approaches
In this subsection, we briefly review previous results for the (1|x)R-medianoid, (1|1)-centroid,
and (1|1)R-centroid problems in [6, 12], so as to derive properties essential to our approach.

Let L be an arbitrary line, which partitions the Euclidean plane into two half-planes. For
any point y /∈ L, we define H(L, y) as the closed half-plane including L and y, and H−(L, y)
as the open half-plane H(L, y)\L. For any two distinct points x, y ∈ R2, let B(y|x) denote
the perpendicular bisector of xy, the line segment connecting x and y.

Given an arbitrary point x ∈ R2, we first describe the algorithm for finding a (1|x)R-
medianoid in [6]. Let y be a feasible point other than x, and y′ be some point on the open
line segment xy\{x, y}. We can see that H−(B(y|x), y) ⊂ H−(B(y′|x), y′), which implies
the fact that W (y′|x) = W (H−(B(y′|x), y′)) ≥W (H−(B(y|x), y)) = W (y|x), It shows that
moving y toward x does not diminish its weight capture, thereby follows the lemma.

I Lemma 1 ([6]). There exists a (1|x)R-medianoid in {y | y ∈ R2, d(x, y) = R}.

For any point z ∈ R2, let CR(z) and Cγ(z) be the circles centered at z with radii R
and γ = R/2, respectively. By Lemma 1, finding a (1|x)R-medianoid can be reduced to
searching a point y on CR(x) maximizing W (y|x). Since the perpendicular bisector B(y|x)
of each point y on CR(x) is a tangent line to the circle Cγ(x), the searching of y on CR(x) is
equivalent to finding a tangent line to Cγ(x) that partitions the most weight from x. The
latter problem can be solved in O(n logn) time as follows. For each v ∈ V outside Cγ(x), we
calculate its two tangent lines to Cγ(x). Then, by sorting these tangent lines according to
the polar angles of their corresponding tangent points with respect to x, we can use an angle
sweeping technique to check how much weight they partition.

I Theorem 2 ([6]). Given a point x ∈ R2, the (1|x)R-medianoid problem can be solved in
O(n logn) time.
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Next, we describe the algorithm of the (1|1)R-centroid problem in [6]. Let S be a subset
of V . We define C(S) to be the set of all circles Cγ(v), v ∈ S, and CH(C(S)) to be the
convex hull of these circles. For any positive number W0, let I(W0) be the intersection of
all convex hulls CH(C(S)), where S ⊆ V and W (S) ≥W0. Drezner [6] argued that the set
of all (1|1)R-centroids is equivalent to the intersection I(W0) for the smallest possible W0.
We slightly clarify his argument below. Let W = {W (y|x) | x, y ∈ R2, d(x, y) ≥ R}. The
following lemma can be obtained.

I Lemma 3. Let W ∗0 be the smallest number in W such that I(W ∗0 ) is not null. A point x
is a (1|1)R-centroid if and only if x ∈ I(W ∗0 ).

Although it is hard to compute I(W ∗0 ) itself, we can find its vertices as solutions to the
(1|1)R-centroid problem. Let T be the set of outer tangent lines of all pairs of circles in
C(V ). For any subset S ⊆ V , the boundary of CH(C(S)) is formed by segments of lines in
T and arcs of circles in C(V ). Since I(W0) is an intersection of such convex hulls, its vertices
must fall within the set of intersection points between lines in T , between circles in C(V ),
and between one line in T and one circle in C(V ). Let T × T , C(V )× C(V ), and T × C(V )
denote the three sets of intersection points, respectively. We have the lemma below.

I Lemma 4 ([6]). There exists a (1|1)R-centroid in T × T , C(V )× C(V ), and T × C(V ).

Obviously, there are at most O(n4) intersection points, which can be viewed as the
candidates of being (1|1)R-centroids. Drezner thus gave an algorithm by evaluating the
weight loss of each candidate by Theorem 2.

I Theorem 5 ([6]). The (1|1)R-centroid problem can be solved in O(n5 logn) time.

We remark that, when R = 0, CH(C(S)) for any S ⊆ V degenerates to a convex polygon,
so does I(W0) for any given W0, if not null. Drezner [6] proved that in this case I(W0) is
equivalent to the intersection of all half-planes H with W (H) ≥W0. Thus, whether I(W0)
is null can be determined by constructing and solving a linear program of O(n2) constraints,
which takes O(n2) time by Megiddo’s result [16]. Since |W| = O(n2), according to Lemma 3
the (1|1)-centroid problem can be solved in O(n2 logn) time [12], by applying parametric
search over W for W ∗0 . Unfortunately, it is hard to generalize this idea to the case R > 0.

3 Local (1|1)R-Centroid within a Line

In this section, we analyze the properties of (1|x)R-medianoids of a given point x in Subsec-
tion 3.1, and derive a procedure that prunes candidate points with respect to x. Applying
this procedure, we study a restricted version of the (1|1)R-centroid problem in Subsection 3.2,
in which the leader’s choice is limited to a given line L, and obtain an O(n log2 n)-time
algorithm. The algorithm is then extended as the basis of the vertical-line test procedure for
the parametric search approach in Section 4.

3.1 Pruning with Respect to a Point
Given a point x ∈ R2 and an angle θ between 0 and 2π, let y(θ|x) be the point on CR(x) with
polar angle θ with respect to x.1 We defineMA(x) = {θ |W (y(θ|x)|x) = W ∗(x), 0 ≤ θ < 2π},
that is, the set of angles θ maximizing W (y(θ|x)|x). It can be observed that, for any

1 We assume that a polar angle is measured counterclockwise from the positive x-axis.
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θ ∈ MA(x) and sufficiently small ε, both θ + ε and θ − ε belong to MA(x), because each
v ∈ V (y(θ|x)|x) does not intersect B(y(θ|x)|x) by definition. This implies that angles in
MA(x) form open angle interval(s) of non-zero length.

To simplify the terms, let W (θ|x) = W (y(θ|x)|x) and B(θ|x) = B(y(θ|x)|x) in the
remaining parts. Also, let F (θ|x) be the line passing through x and parallel to B(θ|x). The
following lemma provides the basis for pruning candidates.

I Lemma 6. Let x ∈ R2 be an arbitrary point, and θ be an angle in MA(x). For any point
x′ /∈ H−(F (θ|x), y(θ|x)), W ∗(x′) ≥W ∗(x).

This lemma tells us that, given a point x and an angle θ ∈ MA(x), all points not in
H−(F (θ|x), y(θ|x)) can be ignored while finding (1|1)R-centroids, as their weight losses are
no less than that of x. Besides, the distribution of angles in MA(x) is also meaningful. Let
CA(x) be the minimum angle interval covering all angles in MA(x), and δ(CA(x)) be its
angle span in radians. Since MA(x) consists of open angle interval(s) of non-zero length,
CA(x) is also an open interval and δ(CA(x)) > 0. Moreover, we can derive the following.

I Lemma 7. If δ(CA(x)) > π, x is a (1|1)R-centroid.

We call a point x satisfying Lemma 7 a strong (1|1)R-centroid, since its discovery gives
an immediate solution to the (1|1)R-centroid problem. Note that there are problem instances
in which no strong (1|1)R-centroids exist.

Suppose that δ(CA(x)) ≤ π for some point x ∈ R2. Let Wedge(x) denote the wedge of x,
defined as the intersection of the two half-planes H(F (θb|x), y(θb|x)) and H(F (θe|x), y(θe|x)),
where θb and θe are the beginning and ending angles of CA(x), respectively. Wedge(x)
consists of the two half-lines extending from x, defined by F (θe|x) and F (θb|x), and the
infinite region lying between them. The counterclockwise (CCW) angle between the two
half-lines is denoted by δ(Wedge(x)). Since 0 < δ(CA(x)) ≤ π, we have that Wedge(x) 6= ∅
and 0 ≤ δ(Wedge(x)) < π.

It should be emphasized that Wedge(x) is a computational byproduct of CA(x) when x
is not a strong (1|1)R-centroid. In other words, not every point has its wedge. Therefore, we
make the following assumption (or restriction) in order to avoid the misuse of Wedge(x).

I Assumption 8. Whenever Wedge(x) is mentioned, the point x has been found not to be a
strong (1|1)R-centroid, either by computation or by properties. Equivalently, δ(CA(x)) ≤ π.

The following lemma makes Wedge(x) our main tool for prune-and-search. (Note that
its proof is not trivial, since by definition θb and θe do not belong to CA(x) and MA(x).)

I Lemma 9. Let x ∈ R2 be an arbitrary point. For any point x′ /∈ Wedge(x), W ∗(x′) ≥
W ∗(x).

The computation of Wedge(x) is simple. We first compute W ∗(x) in O(n logn) time by
Theorem 2. Then, by reusing the sweeping technique, we can obtain MA(x) and CA(x) in
O(n) time and, if x is not a strong (1|1)R-centroid, Wedge(x) in O(1) time.

I Lemma 10. Given a point x ∈ R2, MA(x), CA(x), and Wedge(x) can be computed in
O(n logn) time.

3.2 Searching on a Line
Although wedges can be used to prune candidate points, the performance is not stable, since
wedges of different points have distinct angle intervals and spans. However, they work fine
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with lines by Assumption 8. Here we show how to use the wedges to compute a local optimal
point on a given line, i.e. a point x with W ∗(x) ≤W ∗(x′) for any point x′ on the line.

Let L be an arbitrary line, which is assumed to be non-horizontal for ease of discussion.
For any point x on L, we can compute Wedge(x) and make use of it for pruning purposes
by defining its direction with respect to L. Since δ(Wedge(x)) < π by definition, there are
only three categories of directions according to the intersection of Wedge(x) and L:
Upward – the intersection is the half-line of L above and including x;
Downward – the intersection is the half-line of L below and including x;
Sideward – the intersection is x itself.
If Wedge(x) is sideward, x is a local optimal point on L, since by Lemma 9 W ∗(x) ≤
W ∗(x′) ∀ x′ ∈ L. Otherwise, either Wedge(x) is upward or downward, the points on the
opposite half of L can be pruned by Lemma 9. It shows that computing wedges acts as a
predictable tool for pruning points on L.

Next, we list sets of breakpoints on L in which a local optimal point exists. Recall that T
is the set of outer tangent lines of all pairs of circles in C(V ). We define the T -breakpoints as
the set L× T of intersection points between L and lines in T , and the C-breakpoints as the
set L× C(V ) of intersection points between L and circles in C(V ). (Note that outer tangent
lines parallel to L can be ignored while defining breakpoints.) We have the following lemma
for breakpoints.

I Lemma 11. There exists a local optimal point x∗L which is also a breakpoint.

Since |L × T | = O(n2) and |L × C(V )| = O(n), we can sort all breakpoints on L in
O(n2 logn) time according to the decreasing order of their y-coordinates, and, by Lemma 11,
perform binary search via wedges to find a local optimal point x∗L among them in O(n logn×
logn) = O(n log2 n) time. Thus, the restricted problem is trivially solved in O(n2 logn) time.
In the following, we however give a more complicated algorithm to deal with the case that
the line L is given as a query. The algorithm consists of an O(n2 logn)-time preprocessing
and an O(n log2 n)-time procedure to find x∗L on L.

The preprocessing itself is very simple. For each point v ∈ V , we compute a sequence
P (v), consisting of points in V \{v} sorted in increasing order of their polar angles with
respect to v. The computation for all v ∈ V takes O(n2 logn) time in total. We will show
that, for any given line L, O(n) sorted sequences of breakpoints can be obtained from these
pre-computed sequences in O(n logn) time, and can be used to replace the role of the sorted
sequence of all breakpoints while performing binary search on L.

For any two points v ∈ V and z ∈ R2, let T r(z|v) be the outer tangent line of Cγ(v) and
Cγ(z) to the right of the line from v to z. Similarly, let T l(z|v) be the outer tangent line
to the left. Moreover, let trL(z|v) and tlL(z|v) be the points at which T r(z|v) and T l(z|v)
intersect with L, respectively. We partition T into O(n) sets T r(v) = {T r(vi|v)|vi ∈ V \{v}}
and T l(v) = {T l(vi|v)|vi ∈ V \{v}} for v ∈ V , and for each set consider its corresponding
T -breakpoints independently.

We discuss the set of T -breakpoints L× T r(v) first. Let v be an arbitrary point in V .
By general position assumption, we can observe that, in some consecutive subsequences
of P (v), points vi are listed in the same order as their corresponding breakpoints trL(vi|v)
in decreasing y-coordinates, whereas the order of points in other consecutive subsequences
correspond to that of breakpoints in increasing y-coordinates. Thus, we can partition P (v)
into O(1) consecutive subsequences to represent L× T r(v), as shown in the following.

I Lemma 12. For each v ∈ V , we can construct O(1) sequences of T -breakpoints on L in
O(logn) time, which satisfy the following statements:
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(a) Each sequence is of length O(n).
(b) Breakpoints in each sequence are sorted in decreasing y-coordinates.
(c) The union of breakpoints in all sequences form L× T r(v).

By Lemma 12, the O(1) sorted sequences can replace the role of L×T r(v). Symmetrically,
we can also obtain a similar lemma constructing another O(1) sorted sequences of breakpoints
to replace L×T l(v). By applying such a construction to all v ∈ V , in O(n logn) time we can
construct total O(n) sorted sequences of length O(n), whose union is equivalent to L× T .
Moreover, since |L × C(V )| = O(n), we can directly arrange them into a sorted sequence
in O(n logn) time. Consequently, all breakpoints on L are partitioned into N0 = O(n)
sequences, each of length O(n) and sorted in decreasing y-coordinates.

The searching of x∗L in the N0 sorted sequences is done by parametric search technique
for parallel binary searches, introduced in [2]. For each sorted sequence, we obtain its middle
element, and associate it with a weight. Then, we compute the weighted median x of the
N0 middle elements [18]. Finally, we apply Lemma 10 on x, and prune breakpoints not
in Wedge(x) for every sequence. By proper weighting scheme (details omitted), the total
number of breakpoints in all sequences will be reduced by a constant factor. By repeating
the above process, we can find x∗L in at most O(logn) iterations.

The running time is analyzed as follows. As discussed above, constructing the N0 sorted
sequences takes O(n logn) time. The pruning process requires at most O(logn) iterations.
At each iteration, we compute the weighted median x in O(N0) = O(n) time by [18], and
Wedge(x) in O(n logn) time by Lemma 10. Finally, pruning every sequences takes O(n)
time. Thus, the total running time is O(n logn) +O(logn)×O(n logn) = O(n log2 n) time.

I Lemma 13. With an O(n2 logn)-time preprocessing, given an arbitrary line L, a local
optimal point x∗L on L can be computed in O(n log2 n) time.

4 (1|1)R-Centroid on the Plane

In this section, we study the (1|1)R-centroid problem and propose an improved algorithm of
time complexity O(n2 logn). This algorithm is as efficient as the best-so-far algorithm for
the (1|1)-centroid problem in [12], but based on a completely different approach.

In Subsection 4.1, we extend the algorithm of Lemma 13 to develop a procedure allowing
us to prune candidate points on the plane with respect to a given vertical line. Then, in
Subsection 4.2, we show how to compute a (1|1)R-centroid in O(n2 logn) time based on this
newly-developed pruning procedure.

4.1 Pruning with Respect to a Vertical Line
Let L be an arbitrary vertical line on the plane. We call the half-plane strictly to the left of
L the left plane of L and the one strictly to its right the right plane of L. A sideward wedge
of some point on L is said to be rightward (resp. leftward) if it intersects the right (resp.
left) plane of L. We can observe that, if there is some point x ∈ L such that Wedge(x) is
rightward, every point x′ on the left plane of L can be pruned, since W ∗(x′) ≥ W ∗(x) by
Lemma 9. Similarly, if Wedge(x) is leftward, points on the right plane of L can be pruned.
Although the power of wedges is not fully exerted in this way, pruning via vertical lines and
sideward wedges is superior than directly via wedges due to predictable pruning regions.

Therefore, in this subsection we describe how to design a procedure that enables us to
prune either the left or the right plane of a given vertical line L. As mentioned above, the
key point is the searching of sideward wedges on L. It is achieved by carrying out three
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conditional phases. In the first phase, we try to find some proper breakpoints with sideward
wedges. If failed, we pick some representative point in the second phase and check its wedge
to determine whether or not sideward wedges exist. Finally, in case of their nonexistence,
we show that their functional alternative can be computed, called the pseudo wedge, that
still allows us to prune the left or right plane of L. In the following, we develop a series of
lemmas to demonstrate the details of the three phases.

I Lemma 14. Let x be an arbitrary point on L. If Wedge(x) is either upward or downward,
for any point x′ ∈ L\Wedge(x), Wedge(x′) has the same direction as Wedge(x).

Following from this lemma, if there exist two arbitrary points x1 and x2 on L with
their wedges downward and upward, respectively, we can derive that x1 must be strictly
above x2, and that points with sideward wedges or even strong (1|1)R-centroids can lie only
between x1 and x2. Thus, we can find sideward wedges between some specified downward
and upward wedges. Let xD be the lowermost breakpoint on L with its wedge downward,
xU the uppermost breakpoint on L with its wedge upward, and GDU the open segment
xDxU\{xD, xU}. (For ease of discussion, we assume that both xD and xU exist on L, and
show how to resolve this assumption later by constructing a bounding box.) Again, xD is
strictly above xU . Also, we have the following corollary by their definitions.

I Corollary 15. If there exist breakpoints in the segment GDU , for any such breakpoint x,
either x is a strong (1|1)R-centroid or Wedge(x) is sideward.

Given xD and xU , the first phase can thus be done by checking whether there exist
breakpoints in GDU and picking any of them if exist. Supposing that the picked one is
not a strong (1|1)R-centroid, a sideward wedge is found by Corollary 15 and can be used
for pruning. Notice that, when there are two or more such breakpoints, one may question
whether their wedges are of the same direction, as different directions result in inconsistent
pruning results. The following lemma answers the question in the positive.

I Lemma 16. Let x1, x2 be two distinct points on L, where x1 is strictly above x2 and none
of them is a strong (1|1)R-centroid. If Wedge(x1) and Wedge(x2) are both sideward, they
are either both rightward or both leftward.

The second phase deals with the case that no breakpoint exists between xD and xU by
determining the wedge direction of a representative point of all inner points in GDU . The
following lemma enables us to pick an arbitrary point in GDU as the representative.

I Lemma 17. When there is no breakpoint between xD and xU , any two distinct points
x1, x2 in GDU have the same wedge direction, if they are not strong (1|1)R-centroids.

We choose the bisector point xB of xD and xU as the representative. If xB is not a strong
(1|1)R-centroid and Wedge(xB) is sideward, the second phase finishes with a sideward wedge
found. Otherwise, if Wedge(xB) is downward or upward, we can derive the following and
have to invoke the third phase.

I Lemma 18. If there is no breakpoint between xD and xU and Wedge(xB) is not sideward,
there exist neither strong (1|1)R-centroids nor points with sideward wedges on L.

When L satisfies Lemma 18, it consists of only points with downward or upward wedges,
and is said to be non-leaning. Obviously, our pruning strategy via sideward wedges could
not apply to such non-leaning lines. The third phase overcomes this obstacle by constructing
a functional alternative of sideward wedges, called the pseudo wedge, on either xD or xU , so
that pruning with respect to L is still achievable. We start with auxiliary lemmas.
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I Lemma 19. If L is non-leaning, W ∗(xD) 6= W ∗(xU ).

Let W1 = max{W ∗(xD),W ∗(xU )}. We are going to define the pseudo wedge on either
xU or xD, depending on which one has the smaller weight loss. We consider first the case
that W ∗(xD) > W ∗(xU ), and obtain the following.

I Lemma 20. If L is non-leaning and W ∗(xD) > W ∗(xU ), there exists one angle θ for xU ,
where π ≤ θ ≤ 2π, such that W (H(B(θ|xU ), y(θ|xU ))) ≥W1.

Let θU be an arbitrary angle satisfying the conditions of Lemma 20. We apply the
line F (θU |xU ) for trimming the region of Wedge(xU ), so that a sideward wedge can be
obtained. Let PW (xU ), called the pseudo wedge of xU , denote the intersection of Wedge(xU )
and H(F (θU |xU ), y(θU |xU )). Deriving from the three facts that Wedge(xU ) is upward,
δ(Wedge(xU )) < π, and π ≤ θU ≤ 2π, we can observe that either PW (xU ) is xU itself, or it
intersects only one of the right and left planes of L. In the two circumstances, PW (xU ) is
said to be closed or sideward, respectively. The pseudo wedge has similar functionality as
wedges, as shown in the following corollary.

I Corollary 21. For any point x′ /∈ PW (xU ), W ∗(x′) ≥W ∗(xU ).

By this lemma, if PW (xU ) is found to be sideward, points on the opposite half-plane
with respect to L can be pruned. If PW (xU ) is closed, xU becomes another kind of strong
(1|1)R-centroids, in the meaning that it is also an immediate solution to the (1|1)R-centroid
problem. Without confusion, we call xU a conditional (1|1)R-centroid in the latter case.

On the other hand, considering the opposite case that W ∗(xD) < W ∗(xU ), we can also
obtain an angle θD and a pseudo wedge PW (xD) for xD by symmetric arguments. Then,
either PW (xD) is sideward and the opposite side of L can be pruned, or xD itself is a
conditional (1|1)R-centroid. Thus, the third phase overcomes the obstacle of the nonexistence
of sideward wedges.

Recall that the three phases of searching sideward wedges is based on the existence of
xD and xU on L, which was not guaranteed before. Here we show that, by constructing
appropriate border lines, we can guarantee the existence of xD and xU while searching between
these border lines. The bounding box is defined as the smallest axis-aligned rectangle that
encloses all circles in C(V ). Clearly, any point x outside the box satisfies that W ∗(x) = W (V )
and must not be a (1|1)R-centroid. Thus, given a vertical line not intersecting the box, the
half-plane to be pruned is trivially decided. Moreover, let Ttop and Tbtm be two arbitrary
horizontal lines strictly above and below the box, respectively. We can obtain the following.

I Lemma 22. Let L be an arbitrary vertical line intersecting the bounding box, and x′D and
x′U denote its intersection points with Ttop and Tbtm, respectively. Wedge(x′D) is downward
and Wedge(x′U ) is upward.

According to this lemma, by inserting Ttop and Tbtm into T , the existence of xD and xU
is enforced for any vertical line intersecting the bounding box. Besides, the insertion does
not affect the correctness of all lemmas developed so far.

Summarizing the above discussion, the whole picture of our desired pruning procedure
can be described as follows. In the beginning, we perform a preprocessing to obtain the
bounding box and then add Ttop and Tbtm into T . Now, given a vertical line L, whether to
prune its left or right plane can be determined by the following steps.
1. If L does not intersect the bounding box, prune the half-plane not containing the box.
2. Compute xD and xU on L.
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3. Find a sideward wedge or pseudo wedge via three forementioned phases. (Terminate
whenever a strong or conditional (1|1)R-centroid is found.)
a. If breakpoints exist between xD and xU , pick any of them and check it.
b. If no such breakpoint, decide whether L is non-leaning by checking xB .
c. If L is non-leaning, compute PW (xU ) or PW (xD) depending on which of xU and xD

has smaller weight loss.
4. Prune the right or left plane of L according to the direction of the sideward wedge or

pseudo wedge.

The correctness of this procedure follows from the developed lemmas. Any vertical line
not intersecting the bounding box is trivially dealt with in Step 1, due to the property of
the box. When L intersects the box, by Lemma 22, xD and xU can certainly be found in
Step 2. The three sub-steps of Step 3 correspond to the three searching phases. When L is
not non-leaning, a sideward wedge is found, either at some breakpoint between xD and xU
in Step 3(a) by Corollary 15, or at xB in Step 3(b) by Lemma 17. Otherwise, according to
Lemma 20 or its symmetric version, a pseudo wedge can be built in Step 3(c) for xU or xD,
respectively. In Step 4, whether to prune the left or right plane of L can be determined via
the just-found sideward wedge or pseudo wedge, by respectively Lemma 9 or Corollary 21.

The time complexity of this procedure is analyzed as follows. Computing the bounding
box takes O(n) time. In Step 2, xD and xU can be found by using the binary-search discussed
in 3.2. Although the algorithm is not designed for this purpose, a slightly modification to its
objective satisfies our need, and Step 2 can be done in O(n log2 n) time by Lemma 13.

In Step 3(a), all breakpoints between xD and xU can be obtained in O(n logn) time as
follows. As done in Lemma 13, we list all breakpoints on L as O(n) sorted sequences, and
prune breakpoints not in GDU from each sequence by binary search. In Step 3(a) or 3(b),
checking a picked point is done in O(n logn) time by invoking Lemma 10. The pseudo wedge
PW (xU ) or PW (xD) in Step 3(c) can be computed in O(n logn) time by using a sweeping
technique to find the angle θU satisfying Lemma 20, or symmetrically θD, in O(n logn) time.
Summarizing the above, these steps require O(n log2 n) time in total. Since the invocation of
Lemma 13 needs an additional O(n2 logn)-time preprocessing, we have the following result.

I Lemma 23. With an O(n2 logn)-time preprocessing, whether to prune the right or left
plane of a given vertical line L can be determined in O(n log2 n) time.

4.2 Searching on the Euclidean Plane
In this subsection, we come back to the (1|1)R-centroid problem. Recall that, by Lemma 4,
at least one (1|1)R-centroid can be found in the three sets of intersection points T × T ,
C(V )× T , and C(V )× C(V ), which consist of total O(n4) points. Let L denote the set of
all vertical lines passing through these O(n4) intersection points. By definition, there exists
a vertical line L∗ ∈ L such that its local optimal point is a (1|1)R-centroid. Conceptually,
with the help of Lemma 23, L∗ can be derived by applying prune-and-search approach to
L. However, it costs too much to explicitly generate and maintain the O(n4) lines. In the
following, we show how to implicitly maintain these lines, by dealing with each of the above
three sets separately, so that prune-and-search approaches can be applied.

Let LT , LM, and LC be the sets of all vertical lines passing through the intersection
points in T × T , C(V ) × T , and C(V ) × C(V ), respectively. A local optimal line of LT is
a vertical line L∗t ∈ LT , such that its local optimal point has weight loss no larger than
those of other lines in LT . The local optimal lines L∗m and L∗c can be similarly defined for
LM and LC , respectively. We will adopt different prune-and-search techniques to find the
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local optimal lines of the three sets, so that a (1|1)R-centroid can be found on one of them.
Since some of the algorithms are fairly complicated, due to page limit, we provide only the
overview of our approaches in the following.

To deal with up to O(n4) vertical lines in LT , we apply the ingenious idea of parametric
search via parallel sorting algorithms, proposed by Megiddo [15]. In this approach, the
process of pruning vertical lines in LT to find L∗t is reduced to the problem of sorting the
O(n2) lines of T according to their intersection points on the undetermined vertical line L∗t ,
in which each comparison between two lines of T can be resolved by deciding whether L∗t
is to the right or left of their intersection point. Obviously, the decision can be done by
invoking Lemma 23 on the vertical line passing through the point.

Given a batch of k such comparisons, Megiddo showed how to resolve them in O(k+τ log k)
time, where τ is the time required to resolve one comparison. Then, he found that executing
parallel sorting algorithms in a sequential way serves as good batching schemes. For example,
the parallel merge sort algorithm [3] sorts N1 items in O(logN1) parallel steps on O(N1)
processors. Executing this algorithm sequentially forms a sorting framework that takes
O(logN1) iterations, in each of which a batch of k = O(N1) comparisons has to be resolved.
Thus, by letting N1 = |T | and τ = O(n log2 n), our sorting problem can be solved in
O((k + τ log k)× logN1) = O(n2 logn) time.

I Lemma 24. A local optimal line L∗t of LT can be found in O(n2 logn) time.

By similar observation as made in Lemma 12, for any two points u, v ∈ V , Cγ(u)×T r(v)
and Cγ(u)× T l(v) can be represented by O(1) consecutive subsequences of P (v) in O(logn)
time. Thus, for C(V ) × T we can construct in O(n2 logn) time O(n2) sequences of O(n)
breakpoints, each sorted in increasing x-coordinates. Correspondingly, LM can be represented
by O(n2) sorted sequences of vertical lines. Then, finding L∗m can be done by applying
prune-and-search to the O(n2) sequences of vertical lines via parallel binary searches, like in
Lemma 13, which takes O(logn) iterations and O(n2 + n log2 n) time per iteration.

I Lemma 25. A local optimal line L∗m of LM can be found in O(n2 logn) time.

Since |C(V ) × C(V )| = O(n2), a sorted sequence of LC can be obtained in O(n2 logn)
time. Then, L∗c can be easily found by binary search with Lemma 23 in O(n log3 n) time.

I Lemma 26. A local optimal line L∗c of LC can be found in O(n2 logn) time.

By definition, L∗ can be found among L∗t , L∗m, and L∗c , which can be computed in
O(n2 logn) time by Lemmas 24, 25, and 26, respectively. Then, a (1|1)R-centroid can be
computed as the local optimal point of L∗ in O(n log2 n) time by Lemma 13. Combining
with the O(n2 logn)-time preprocessing for computing the angular sorted sequence P (v)s
and the bounding box enclosing C(V ), we have the following theorem.

I Theorem 27. The (1|1)R-centroid problem can be solved in O(n2 logn) time.

5 Concluding Remarks

In this paper, we revisited the (1|1)-centroid problem on the Euclidean plane under the
consideration of minimal distance constraint between facilities, and proposed an O(n2 logn)-
time algorithm, which closes the bound gap between this problem and its unconstrained
version. Starting from a critical observation on the medianoid solutions, we developed a
pruning tool with indefinite region remained after pruning, and made use of it via multi-level
structured parametric search approach, which is different to the previous approach in [6, 12].
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Considering distance constraint between facilities in various competitive facility location
models is both of theoretical interest and of practical importance. However, similar constraints
are rarely seen in the literature. It would be good starting points by introducing the constraint
to the facilities between players in the (r|Xp)-medianoid and (r|p)-centroid problems, maybe
even to the facilities between the same player.
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