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Abstract
This report documents the programme and outcomes of Dagstuhl Seminar 16381 “SAT and
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Brief Introduction to the Topic
Propositional satisfiability (or Boolean satisfiability) is the problem of determining whether
the variables of a Boolean formula can be assigned truth values in such a way as to make the
formula true. This satisfiability problem, SAT for short, stands at the crossroads of logic,
graph theory, computer science, computer engineering and computational physics. Indeed,
many problems originating from one of these fields typically have multiple translations to
satisfiability. Unsurprisingly, SAT is of central importance in various areas of computer science
including algorithmics, verification, planning, hardware design and artificial intelligence. It
can express a wide range of combinatorial problems as well as many real-world ones.

SAT is very significant from a theoretical point of view. Since the Cook-Levin theorem,
which identified SAT as the first NP-complete problem, it has become a reference for an
enormous variety of complexity statements. The most prominent one is the question “is
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P equal to NP?” Proving that SAT is not in P would answer this question negatively.
Restrictions and generalizations of the propositional satisfiability problem play a similar rôle
in the examination of other complexity classes and relations among them. In particular,
quantified versions of SAT (QSAT, in which Boolean variables are universally or existentially
quantified) as well as variants of SAT in which some notion of minimality is involved, provide
prototypical complete problems for every level of the polynomial hierarchy.

During the past three decades, an impressive array of diverse techniques from mathematical
fields, such as propositional and first-order logic, model theory, Boolean function theory,
complexity, combinatorics and probability, has contributed to a better understanding of the
SAT problem. Although significant progress has been made on several fronts, most of the
central questions remain unsolved so far.

One of the main aims of the Dagstuhl seminar was to bring together researchers from
different areas of activity in SAT so that they can communicate state-of-the-art advances
and embark on a systematic interaction that will enhance the synergy between the different
areas.

Concluding Remarks and Future Plans
The organizers regard the seminar as a great success. Bringing together researchers from
different areas of theoretical computer science fostered valuable interactions and led to fruitful
discussions. Feedback from the participants was very positive as well. Many attendants
expressed their wish for a continuation.

Finally, the organizers wish to express their gratitude toward the Scientific Directorate
of the Center for its support of this seminar, and hope to be able to continue this series of
seminars on SAT and Interactions in the future.
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3 Organization of the Seminar and Activities

The seminar brought together 39 researchers with complementary expertise from different
areas of theoretical computer science and mathematics, such as logic, complexity theory,
algorithms and proof complexity. The participants consisted of both senior and junior
researchers, including a number of postdocs and a few advanced graduate students.

Participants were invited to present their work and to communicate state-of-the-art
advances. Twenty-three talks of various lengths took place over the five days of the seminar.
Introductory and tutorial talks of 60 minutes, introducing one particular aspect of the
satisfiability problem, were scheduled to open the first four days of the seminar. The rest of
the days were filled mostly with shorter talks picking up the topic of the morning talk. The
organizers considered it important to leave ample free time for discussion.

In this way, the following topics evolved:
1. Proof complexity

Sam Buss: Satisfiability Testing and Proof Complexity (Tutorial)
Barnaby Martin: Resolution and the Binary Encoding of Weak Pigeonhole Principles
Jakob Nordström: Supercritical Space-Width Trade-offs for Resolution
Jan Johannsen: On Linear Resolution – an Update
Ilario Bonacina: Strong Size Lower bounds in Regular Resolution via Games

2. Quantified Boolean Formulas: Solvers and Proof Complexity
Florian Lonsing: QBF Solving (Tutorial)
Marijn Heule: Practical Proof Systems for SAT and QBF
Meena Mahajan: QBF Proof Complexity (Tutorial)
Joshua Blinkhorn: On Soundness of QBF Calculi Parameterized by Dependency
Schemes
Anil Shukla: Understanding Cutting Planes for QBFs
Leroy Chew: A Class of Hard Formulas for QBF Resolution

3. Exact Algorithms for SAT
Rahul Santhanam: Exact Algorithms for SAT – an Overview (Tutorial)
Dominik Scheder: The PPSZ Algorithm: Making Hertli’s Analysis Simpler and 3-SAT
Faster
Uwe Schöning: Classroom Analysis of RandomWalk Algorithm for 3-SAT and Practical
Extension to ProbSAT
Victor Lagerkvist: Partial Polymorphisms and the Time Complexity of SAT Problems

4. Knowledge Compilation
Stefan Mengel: An Introduction to Knowledge Compilation (Tutorial)
Florent Capelli: Compilation of CNF-formulas: Lower and Upper Bounds

There were additionally a few shorter talks covering further topics related to satisfiability.

Jacobo Torán: Isomorphism of Solution Graphs
Arne Meier, Irena Schindler: Approaching Backdoors in Two Non-Classical Logics
Christoph Wintersteiger: Lifting SAT to Richer Theories: Bit-vectors, Finite Bases, and
Theory Combination
Oliver Kullmann: Look-ahead for Solving Hard SAT Problems
Miki Hermann: Minimal Distance of Propositional Models
John Franco: Adding Unsafe Constraints to Improve Satisfiability Performance (Redux)
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Thursday afternoon was closed with an open problem session (see later in this report).
Wednesday afternoon was devoted to the usual hike. The day ended with a musical event

that was highly appreciated by the seminar participants. The programme can be found in
this report.

The above classification of topics and talks is necessarily rough, as several talks crossed the
boundaries between these areas, in keeping with the theme of the seminar. The broad scope
of the talks extended even to areas not anticipated by the organizers, such as dependence
logic. The seminar thus achieved its aim of bringing together researchers from various related
communities to share state-of-the-art research.

4 Overview of Talks

4.1 On Soundness in QBF Calculi Parameterized by Dependency
Schemes

Joshua Blinkhorn (University of Leeds, GB)

License Creative Commons BY 3.0 Unported license
© Joshua Blinkhorn

Joint work of Olaf Beyersdorff, Joshua Blinkhorn
Main reference O. Beyersdorff, J. Blinkhorn, “Dependency Schemes in QBF Calculi: Semantics and Soundness”, in

Proc. of the 22nd Int’l Conf. Principles and Practice of Constraint Programming (CP’16), LNCS,
Vol. 9892, pp. 96–112, Springer, 2016.

URL http://dx.doi.org/10.1007/978-3-319-44953-1_7

In the talk, we consider the parameterization of QBF resolution calculi by dependency
schemes. One of the main problems in this area is to understand for which dependency
schemes the resulting calculi are sound. It is known that a property called full exhibition is
sufficient for soundness in Q-resolution [2]. We demonstrate that this approach generalizes
to the dependency versions of all CDCL-based QBF calculi. Moreover, we show that the
most important schemes in the literature possess this property; in particular, the reflexive
resolution path dependency scheme is fully exhibited.

The talk also presents some new work, exposing similarities between the two currently
disparate fields of QBF dependency schemes and dependency quantified Boolean formulas
(DQBF). In particular, using results from [1] we show that the DQBF interpretation of
dependency schemes leads to a complete characterisation of soundness for expansion-based
QBF calculi. The new interpretation also provides a fresh insight for Q-resolution. We show
that the phenomenon of incompleteness in the DQBF calculi, observed by [3], is directly
related to the characterization of soundness for the dependency QBF systems.

References
1 Beyersdorff, O., Chew, L,. Schmidt, R.A., Suda, M.: Lifting QBF Resolution Calculi

to DQBF. International Conference on Theory and Applications of Satisfiability Testing
(SAT). pp. 490–499 (2016).

2 Slivovsky, F.: Structure in #SAT and QBF. Ph. D. Thesis, Vienna University of Technology
(2015).

3 Balabanov, V., Chiang, H.K., Jiang, J. R.: Henkin quantifiers and Boolean formulae: A
certification perspective of DQBF. Theoretical Computer Science 523, pp. 86–100 (2014).
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4.2 Strong Size Lower Bounds in Regular Resolution via Games
Ilario Bonacina (KTH Royal Institute of Technology – Stockholm, SE)

License Creative Commons BY 3.0 Unported license
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Joint work of Ilario Bonacina, Navid Talebanfard
Main reference I. Bonacina, N. Talebanfard, “Strong ETH and Resolution via Games and the Multiplicity of

Strategies”, Algorithmica, pp. 1–13, Springer, 2016.
URL http://dx.doi.org/10.1007/s00453-016-0228-6

The Strong Exponential Time Hypothesis (SETH) says that solving the SAT problem on
formulas that are k-CNFs in n variables requires running time 2n(1−ck), where ck goes to
0 as k goes to infinity. Beck and Impagliazzo (2013) proved that regular resolution cannot
disprove SETH; that is, there are unsatisfiable k-CNF formulas in n variables such that
each regular resolution refutation has size at least 2n(1−ck), where ck goes to 0 as k goes
to infinity. We give a different/simpler proof of such a lower bound based on the known
characterisations of width and size in resolution, and our technique indeed works for a proof
system stronger than regular resolution. The problem of finding k-CNF formulas for which
we can prove such strong size lower bounds in general resolution is still open.

4.3 SAT Solvers and Proof Complexity
Sam Buss (University of California – San Diego, US)

License Creative Commons BY 3.0 Unported license
© Sam Buss

This talk is a survey about proof complexity and Satisfiability (SAT) solvers. We first cover
the exponential time hypothesis (ETH) and the strong exponential time hypothesis (SETH),
abstract proof systems, and the Frege and extended Frege proof systems. We then discuss
different resolution proof systems including tree-like and regular, and their relationships
with the SAT algorithms DPLL and CDCL as well as pool resolution and regWRTI. It
concludes with a discussion of the D-RAT verification method and its relationship with
extended resolution.

4.4 Compilation of CNF-formulas: Lower and Upper Bounds
Florent Capelli (University Paris-Diderot, FR)

License Creative Commons BY 3.0 Unported license
© Florent Capelli

Joint work of Simone Bova, Florent Capelli, Stefan Mengel, Friedrich Slivovsky
Main reference S. Bova, F. Capelli, S. Mengel, F. Slivovsky, “Knowledge Compilation Meets Communication

Complexity”, in Proc. of the 25th Int’l Joint Conf. on Art. Intelligence (IJCAI’16), pp. 1008–1014,
AAAI Press, 2016.

URL http://www.ijcai.org/Abstract/16/147

In this talk, we review recent results obtained in collaboration with Simone Bova, Stefan
Mengel and Friedrich Slivovsky on compilation of CNF-formulas. The aim of knowledge
compilation in this case is to transform the input CNF-formula into a succinct data structure
that can be queried efficiently to solve various problems such as decision, counting or
enumeration.
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We start by showing how we can use tools from communication complexity to prove
that CNF-formulas cannot always be compiled into succinct DNNF, a family of restricted
boolean circuits that will be presented in Stefan Mengel’s talk. Our result does not rely on
complexity hypotheses such as P 6= NP. Having established this negative result, we then
explain how the structure of the formula can be used to compile it succinctly in many cases.

4.5 A Class of Hard Formulas for QBF Resolution
Leroy Chew (University of Leeds, GB)

License Creative Commons BY 3.0 Unported license
© Leroy Chew

Joint work of Leroy Chew, Olaf Beyersdorff, Mikolás Janota
Main reference O. Beyersdorff, L. Chew, M. Janota, “Proof Complexity of Resolution-based QBF Calculi”, in Proc.

of the 32nd Int’l Symposium on Theoretical Aspects of Computer Science (STACS’15), LIPIcs,
Vol. 30, pp. 76–89, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2015.

URL http://dx.doi.org/10.4230/LIPIcs.STACS.2015.76

Proof systems for quantified Boolean formulas (QBFs) provide a theoretical underpinning
for the performance of important QBF solvers. However, the proof complexity of these
proof systems is currently not well understood and lower bound techniques in particular are
missing. We show the hardness of the prominent formulas of Kleine Büning et al. [1] for the
strong expansion-based calculus IR-calc. This, along with the strategy extraction technique,
allows us to show all strict separations for the known QBF resolution calculi.

References
1 Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for Quantified Boolean Formulas.

Information and Computation, Vol. 117(1), pp. 12–18 (1995).

4.6 Adding Unsafe Constraints to Improve the Performance of SAT
Algorithms

John Franco (University of Cincinnati, US)

License Creative Commons BY 3.0 Unported license
© John Franco

For many families of SAT formulas, the difficulty in solving an instance escalates exponentially
with increasing instance size. A possible reason for this is that inferred contraints that reduce
search space significantly are learned too late in the search to be effective. One attempt to
control this is to add safe, uninformed constraints that are obtained from an analysis of the
problem or the structure of the formula: symmetry breaking constraints, for example. This
approach proves effective in some but not all cases. We propose an alternative approach
which is to add unsafe, uninformed constraints early on to reduce search space breadth
at shallow depth and then retract those constraints when the search breadth is still small
and will not get much bigger as the search continues. By ‘unsafe constraint’ we mean a
constraint that may eliminate one or more satisfying assignments – hence there is a risk that
all assignments of a satisfiable instance may be eliminated.

We show, for example that in the case of formulas for solving van der Waerden number
W (2, 6), adding unsafe constraints produces a bound that turns out to beW (2, 6). Knowledge
of this bound and the conjecture that it was W (2, 6) was eventually used by Kouril to custom
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design a solver that could prove definitively the value of W (2, 6). Notable is the fact that the
unsafe constraints are obtained from an analysis of solutions to smaller instances of the van
der Waerden family and not from an analysis of the structure of the formulas or problem
properties.

4.7 Minimal Distance of Propositional Models
Miki Hermann (Ecole Polytechnique – Palaiseau, FR)

License Creative Commons BY 3.0 Unported license
© Miki Hermann

Joint work of Mike Behrisch, Miki Hermann, Stefan Mengel, Gernot Salzer
Main reference M. Behrisch, M. Hermann, S. Mengel, and G. Salzer, “Minimal Distance of Propositional Models”,

arXiv:1502.06761v1 [cs.CC], 2015.
URL https://arxiv.org/abs/1502.06761v1

We investigate the complexity of three optimisation problems in Boolean propositional logic
related to information theory: Given a conjunctive formula over a set of relations, find a
satisfying assignment with minimal Hamming distance to a given assignment that satisfies the
formula (Next Other Solution, NOSol) or that does not need to satisfy it (Nearest Solution,
NSol). The third problem asks for two satisfying assignments with a minimal Hamming
distance among all such assignments (Minimal Solution Distance, MSD).

For all three problems we give complete classifications with respect to the relations
admitted in the formula. We give polynomial time algorithms for several classes of constraint
languages. For all other cases we prove hardness or completeness regarding APX, polyAPX,
or equivalence to well-known hard optimisation problems.

4.8 Practical Proof Sytems for SAT and QBF
Marijn J.H. Heule (University of Texas – Austin, US)

License Creative Commons BY 3.0 Unported license
© Marijn J.H. Heule

Several proof systems have been proposed to verify results produced by satisfiability (SAT)
and quantified Boolean formula (QBF) solvers. However, existing proof systems are not very
suitable for validation purposes: It is either hard to express the actions of solvers in those
systems or the resulting proofs are expensive to validate. We present two new proof systems
(one for SAT and one for QBF) which facilitate validation of results in a time similar to
proof discovery time. Proofs for SAT solvers can be produced by making only minor changes
to existing conflict-driven clause-learning solvers and their preprocessors. For QBF, we show
that all preprocessing techniques can be easily expressed using the rules of our proof system
and that the corresponding proofs can be validated efficiently.
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4.9 Linear Resolution – an Update
Jan Johannsen (LMU München, DE)

License Creative Commons BY 3.0 Unported license
© Jan Johannsen

Joint work of Sam Buss, Jan Johannsen

Linear Resolution is a refinement of propositional resolution that is notoriously difficult to
understand. We report on the state of our knowledge about its complexity, providing some
new upper bounds and some structural properties of the system. In particular, we show that
it is preserved under restrictions if and only if it is equivalent to full resolution.

4.10 Look-ahead for Solving Hard SAT Problems
Oliver Kullmann (University of Swansea, GB)

License Creative Commons BY 3.0 Unported license
© Oliver Kullmann

Joint work of Marijn J.H. Heule, Oliver Kullmann, Victor W. Marek

The boolean Pythagorean Triples problem has been a longstanding open problem in Ramsey
Theory: Can the set N = 1, 2, . . . of natural numbers be divided into two parts, such that no
part contains a triple (a, b, c) with a2+b2 = c2 ? A prize for the solution was offered by Ronald
Graham over two decades ago. We solve this problem, proving in fact the impossibility, by
using the Cube-and-Conquer paradigm, a hybrid SAT method for hard problems, employing
both look-ahead and CDCL solvers. An important role is played by dedicated look-ahead
heuristics, which indeed allowed to solve the problem on a cluster with 800 cores in about 2
days. Due to the general interest in this mathematical problem, our result requires a formal
proof. Exploiting recent progress in unsatisfiability proofs of SAT solvers, we produced and
verified a proof in the DRAT format, which is almost 200 terabytes in size. From this we
extracted and made available a compressed certificate of 68 gigabytes, that allows anyone to
reconstruct the DRAT proof for checking.

4.11 Partial Polymorphisms and the Time Complexity of SAT Problems
Victor Lagerqvist (TU Dresden, DE)

License Creative Commons BY 3.0 Unported license
© Victor Lagerqvist

Joint work of Peter Jonsson, Gustav Nordh, Magnus Wahlström, Bruno Zanuttini
Main reference P. Jonsson, V. Lagerkvist, G. Nordh, and B. Zanuttini, “Strong Partial Clones and the Time

Complexity of SAT Problems”, J. of Computer and System Sciences, Vol. 84, pp. 52–78, 2017.
URL http://dx.doi.org/10.1016/j.jcss.2016.07.008

The generalized SAT(S) problem is the computational decision problem of determining
whether a conjunctive formula over the constraint language S is satisfiable. Even though all
NP-complete SAT(S) problems are polynomial-time interreducible, there appears to be a
vast difference in their worst-case time complexity. The question that we will concentrate on
is how to explain this phenomenon using the language of universal algebra. For this purpose
it is possible to associate each constraint language to a set of partial functions, so-called
partial polymorphisms, satisfying certain closure properties. It has been proven that the
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partial polymorphisms of a constraint language S determine the complexity of SAT(S) up
to O(cn) time complexity, where n denotes the number of variables in a given instance.
Unfortunately, the resulting theory is highly complex, and we will look at some unavoidable
theoretical limitations of this approach. Despite this, non-trivial results can be obtained. We
will give a brief survey of some of these results, and then look at how partial polymorphisms
can be used to obtain kernelization procedures for SAT(S). In particular we will concentrate
on SAT(S) problems admitting kernels with a linear number of constraints, and see how
partial polymorphisms can be used to characterize such languages.

4.12 An Overview of QBF Reasoning Techniques
Florian Lonsing (TU Wien, AT)

License Creative Commons BY 3.0 Unported license
© Florian Lonsing

We give an overview of techniques to solve quantified Boolean formulas (QBFs). At the
beginning of QBF solving in the late 1990s, two main solving approaches emerged: backtrack-
ing search and expansion of variables. Backtracking search is a QBF-specific variant of the
DPLL algorithm for propositional logic (SAT), called QDPLL. Variable expansion relies on
the successive elimination of variables from a QBF until the formula reduces to true or false.
Conflict-driven clause learning (CDCL) has been successfully adapted from SAT to QBF,
resulting in the QCDCL algorithm. Analogously to resolution in CDCL, Q-resolution is the
theoretical foundation of QCDCL. Unlike in SAT solving, where CDCL is the dominating
approach, in QBF solving QCDCL is complemented by variable expansion. Modern imple-
mentations of expansion-based QBF solvers apply the principle of counterexample guided
abstraction refinement (CEGAR). Recently, it has been shown that, from a proof complexity
point of view, Q-resolution and expansion are orthogonal approaches. This theoretical result
confirms related experimental observations and motivates further research in QBF proof
complexity and its implications on the design of QBF solvers in practice.

4.13 QBF Proof Complexity – an Overview
Meena Mahajan (The Institute of Mathematical Sciences, India, IN)

License Creative Commons BY 3.0 Unported license
© Meena Mahajan

How do we prove that a false QBF is indeed false? How big a proof is needed? The special
case when all quantifiers are existential is the well-studied setting of propositional proof
complexity. Expectedly, universal quantifiers change the game significantly. Several proof
systems have been designed in the last couple of decades to handle QBFs, starting from the
most basic Q-Resolution and Expansion+∀-Reduction and going up to Frege+∀-Reduction.
Lower-bound paradigms from propositional proof complexity cannot always be extended –
in most cases feasible interpolation and consequent transfer of circuit lower bounds works,
but obtaining lower bounds on size by providing lower bounds on width fails dramatically.
A new paradigm with no analogue in the propositional world has emerged in the form of
strategy extraction, again allowing for transfer of circuit lower bounds. This talk will provide
a broad overview of some of these developments.
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4.14 Resolution and the Binary Encoding of Weak Pigeonhole
Principles

Barnaby Martin (Durham University, GB) and Stefan Dantchev

License Creative Commons BY 3.0 Unported license
© Barnaby Martin and Stefan Dantchev

We study the Resolution refutations of exponentially weak Pigeonhole Principles under both
the normal and binary encodings of the stipulation that each pigeon must go in some hole.
We prove that the minimal size of a Resolution refutation is 2Ω(n/log n) in the binary encoding,
contrasting with 2O(

√
n log n) in the normal encoding. This is remarkable, since in tree-like

Resolution the binary encoding is the easier to refute.

4.15 Approaching Backdoors in Two Non-Classical Logics
Arne Meier (Leibniz Universität Hannover, DE) and Irena Schindler (Leibniz Universität
Hannover, DE)

License Creative Commons BY 3.0 Unported license
© Arne Meier and Irena Schindler

Joint work of Johannes Fichte, Arne Meier, Sebastian Ordyniak, M. S. Ramanujan, Irena Schindler
Main reference J.K. Fichte, A. Meier, and I. Schindler, “Strong Backdoors for Default Logic”, in Proc. of the 19th

Int’l Conf. on Theory and Applications of Satisfiability Testing (SAT’16), LNCS, Vol. 9710,
pp. 45–59, Springer, 2016.

URL http://dx.doi.org/10.1007/978-3-319-40970-2_4

In this talk, we investigate the applicability of the notion of backdoors to two non-classical
logics: Reiter’s propositional default logic and the global fragment of linear temporal logic.
For default logic, we will see that backdoors have to incorporate the ternary character of
reasoning in this logic. By a slight technical obstacle, called extended literals, we show that
our provided notion is well-chosen. Then, we show parameterized complexity results for
backdoor set detection and evaluation in default logic which yield upper bounds of FPT,
paraNP, and paraDeltaP2. Concerning linear temporal logic, the definition of backdoors
here requires the incorporation of consistency of assignments. In the next step, we will see
that the parameterized complexity of backdoor set evaluation behaves rather unsatisfactorily:
most fragments are intractable. However, we identify a novel tractable fragment of LTL
which is expressive enough to express ‘safety’ properties of a reactive system. The problem
of backdoor set detection stays in all investigated cases fixed-parameter tractable.

4.16 An Introduction to Knowledge Compilation
Stefan Mengel (Artois University – Lens, FR)

License Creative Commons BY 3.0 Unported license
© Stefan Mengel

In this talk we will give an introduction to knowledge compilation. We will give motivations,
show how conditional lower bounds are shown and present some representations used in
practical knowledge compilation and the knowledge compilation map. Throughout the talk
we will present open questions and current challenges in the field.

16381

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-40970-2_4
http://dx.doi.org/10.1007/978-3-319-40970-2_4
http://dx.doi.org/10.1007/978-3-319-40970-2_4
http://dx.doi.org/10.1007/978-3-319-40970-2_4
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


86 16381 – SAT and Interactions

4.17 Supercritical Space-Width Trade-offs for Resolution
Jakob Nordström (KTH Royal Institute of Technology – Stockholm, SE)

License Creative Commons BY 3.0 Unported license
© Jakob Nordström

Joint work of Christoph Berkholz, Jakob Nordström

We show that there are CNF formulas which can be refuted in resolution in both small
space and small width, but for which any small-width resolution proof must have space
exceeding by far the linear worst-case upper bound. This significantly strengthens the
space-width trade-offs in [Ben-Sasson ’09], and provides one more example of trade-offs in the
‘supercritical’ regime above worst case recently identified by [Razborov ’16]. We obtain our
results by using Razborov’s new hardness condensation technique and combining it with the
space lower bounds in [Ben-Sasson and Nordström ’08]. This is joint work with Christoph
Berkholz.

4.18 Exact Algorithms for Satisfiability – an Overview
Rahul Santhanam (University of Oxford, GB)

License Creative Commons BY 3.0 Unported license
© Rahul Santhanam

We survey recent work on exact algorithms for Satisfiability, as well as popular hardness
hypotheses such as the Exponential-Time Hypothesis and its variants.

4.19 The PPSZ Algorithm: Making Hertli’s Analysis Simpler and
3-SAT Faster

Dominik Scheder (Shanghai Jiao Tong University, CN)

License Creative Commons BY 3.0 Unported license
© Dominik Scheder

Joint work of Dominik Scheder, John Steinberger

The currently fastest known algorithm for k-SAT is PPSZ, named after its inventors Paturi,
Pudlak, Saks, and Zane. It is simple to state but challenging to analyse. Paturi et al. give
an elegant analysis for Unique-k-SAT, i.e., the case where the input formula has a unique
satisfying assignment. Their analysis for the general case of multiple satisfying assignments
is difficult and incurs an exponential loss in running time. In a breakthrough result in 2011,
Timon Hertli showed that the Unique-k-SAT bound holds in the general case, too. His proof,
though ingenious, is quite difficult and technical.

In this work we achieve two goals. Firstly, we greatly simplify Hertli’s analysis, also
making clear why it works and why simpler approaches are most likely bound to fail. We
replace Hertli’s involved inductive proof by one that uses basic tools from information
complexity and simple coupling arguments.

Secondly, a simple consequence of our analysis is that if you can improve the PPSZ
algorithm for Unique-k-SAT, then you can improve it for general k-SAT.
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Combining this with a result by Hertli from 2014, in which he gives an algorithm for
Unique-3-SAT slightly beating PPSZ, we obtain an algorithm beating PPSZ for general
3-SAT, thus obtaining the so far best known worst-case bounds for 3-SAT.

4.20 A Classroom Proof of the Random Walk 3-SAT Algorithm and its
Practical Extension to ProbSAT

Uwe Schöning (Universität Ulm, DE)

License Creative Commons BY 3.0 Unported license
© Uwe Schöning

The random walk 3-SAT algorithm (FOCS 99) has become part of textbooks and is taught
in many classrooms. The purpose of this talk is to present an easier analysis of the algorithm.
It is based on the fact that P (X ≤ a · n) is equal to [( p

a )a( 1−p
1−a )1−a]n, up to polynomial

factors. Here, X is a binomially distributed random variable with parameters n and p.
Now let X be Bin(n, 1/2), and let Y be Bin(n, 2/3). The random walk algorithm randomly
guesses an initial assignment, and then, it performs n random walk steps by selecting a
clause not being satisfied under the current assignment and flipping the value of a randomly
selected literal in this clause. The success probability of this algorithm (in case of a satisfiable
input formula) can be lower bounded by P (X ≤ 1/3) · P (Y ≤ 1/3) which is, by the
above equality, (3/4)n. The algorithm was extended to ProbSAT (with Adrian Balint) for
to participate in (and win) the SAT competition. For this purpose the flip probability
distribution (1/3, 1/3, 1/3) regarding the selected clause {x, y, z} had to be changed to be
proportional to (f(x), f(y), f(z)) where the function f(x) is defined in terms of make(x) and
break(x). By experiments it turns out that the make-value can be completely ignored, so
that, in the case of 3-SAT, f(x) = 2.5−break(x) is a good choice.

4.21 Understanding Cutting Planes for QBF
Anil Shukla (The Institute of Mathematical Sciences, India, IN)

License Creative Commons BY 3.0 Unported license
© Anil Shukla

Joint work of Olaf Beyersdorff, Leroy Chew, Meena Mahajan, Anil Shukla

We define a new complete and sound cutting plane proof system for false quantified Boolean
formulas. We analyse the proof-theoretic strength of the new system. We show that it
can p-simulate QU-resolution (and therefore Q-resolution), and indeed is exponentially
stronger than these systems. However, it is incomparable (under a natural circuit complexity
assumption) to even the core expansion-based QBF proof systems. On the other hand, we
show that it is exponentially weaker than the QBF proof system based on Frege (introduced
by Beyersdorff et al. ITCS’16). We also establish two lower bound techniques for our new
system: strategy extraction and feasible interpolation.
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4.22 Isomorphism of Solution Graphs.
Jacobo Torán (Universität Ulm, DE) and Patrick Scharpfenecker

License Creative Commons BY 3.0 Unported license
© Jacobo Torán and Patrick Scharpfenecker

Main reference P. Scharpfenecker, J. Torán, “Solution Graphs of Boolean Formulas and Isomorphism”, in Proc. of
the 19th Int’l Conf. on Theory and Applications of Satisfiability Testing (SAT’16), LNCS,
Vol. 9710, pp. 29–44, Springer, 2016.

URL http://dx.doi.org/10.1007/10.1007/978-3-319-40970-2_3

The solution graph of a Boolean formula on n variables is the subgraph of the hypercube Hn

induced by the satisfying assignments of the formula. The structure of solution graphs has
been the object of much research in recent years, since it is important for the performance of
SAT-solving procedures based on local search. In this talk we concentrate on the complexity of
the isomorphism problem of solution graphs of Boolean formulas and on how this complexity
depends on the formula type. We observe that for general formulas the solution graph
isomorphism problem can be solved in exponential time while in the cases of 2-CNF formulas
as well as for CPSS formulas, the problem is in the counting complexity class C=P, a subclass
of PSPACE. In addition we prove that for 2-CNF as well as for CPSS formulas the solution
graph isomorphism problem is hard for C=P under polynomial time many one reductions,
thus matching the given upper bound.

4.23 Lifting SAT to Richer Theories: Bit-vectors, Finite Bases and
Theory Combination

Christoph M. Wintersteiger (Microsoft Research UK – Cambridge, GB)

License Creative Commons BY 3.0 Unported license
© Christoph M. Wintersteiger

In this talk we take a look at lifting SAT solver technology up to higher levels of abstraction
and complexity in the form of Satisfiability Modulo Theories (SMT) problems. After an
overview of current conceptual work and abstract solver frameworks in the area, we discuss
the example of a recently developed bit-vector solver based on the model-construction
satisfiability calculus (mcSAT) and how it interfaces with other theories and solvers. Finally,
we touch upon future work and open problems in this area.

5 Open problems

We give a brief account of the open problem session, and describe each of the four contributions
in turn.

Meena Mahajan

This open problem relates to hardness measures for resolution proofs. Given a tree-like
resolution proof, and an internal node u, let f(u) denote the minimum, over all parents v
of u, of the width of the clause at node v. The asymmetric width width(π) of a resolution
proof π is the maximum f(u) over all internal nodes u of π. It is shown in [1] that

width(F ` ∅) ≤ awidth(F ` ∅) + max{awidth(F ` ∅),width(F )} − 1 ,
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shaving +1 off the upper bound given by [2]. It remains open whether the following upper
bound holds:

width(F ` ∅) ≤ awidth(F ` ∅) + width(F )− 1 .

The relation was originally conjectured in [3].

References
1 Krebs, A., Mahajan, M., Shukla, A.: Relating Two Width Measures for Resolution Proofs.

Electronic Colloquium on Computational Complexity (ECCC) (2016).
2 Beyersdorff, O., Kullmann, O.: Unified Characterisations of Resolution Hardness Meas-

ures. International Conference on Theory and Applications of Satisfiability Testing (SAT),
pp. 170–187. Springer (2014).

3 Beyersdorff, O., Kullmann, O.: Hardness Measures and Resolution Lower Bounds. Com-
puting Research Repository (CoRR) (2014).

Nicola Galesi

Cutting Planes (CP) is a refutational calculus for propositional CNF formulas. The space
complexity of a proof, roughly speaking, can be viewed as the amount of memory required
to produce the proof.

A memory configuration M is a set of linear inqualities. A CP proof of I from F is a
sequence M0, . . . ,Mk of memory configurations, satisfying (1) M0 is empty, (2) I ∈ Mk,
and (3) Mi+1 is obtained from Mi by an axiom download, by inference, or by erasure. The
inequality space of a CP refutation Π is the maximum size of memory configuration in Π.

It was shown in [1] that every unsatisfiable CNF has a CP refutation with inequality
space ≤ 5, but the proof uses coefficients of exponential size. This leads naturally to the
following open problem: Can every unsatisfiable CNF be refuted in CP in constant inequality
space, if the coeffecients are polynomially bounded?

The next open problem concerns locality lemmas. The Locality Lemma for resolution,
whose proof is trivial, states that, for any partial assignment α satisfying F , there exists a
partial assignment α′ ⊆ α satisfying F such that |α′| is less than the space of F . A version
of the Locality Lemma exists for the polynomial calculus [2, 3], and can be stated as follows.
Let P be a set of polynomials, and let M be a disjoint 2-CNF with M � P . Then there exists
another disjoint 2-CNF M ′ such that (1) M ′ ⊆ M , (2) M ′ � P , and (3) |M ′| ≤ 4 · Sp(P ).
We arrive at the second open problem: If we interpret P instead as a set of configurations,
can we prove a version of the Locality Lemma for CP?

References
1 Galesi, N., Pudlák, P., Thapen, N.: The Space Complexity of Cutting Planes Refutations.

Conference on Computational Complexity (CCC), pp. 433–447, LIPIcs (2015).
2 Alekhnovich, M., Ben-Sasson, E., Razborov, A.A., Wigderson, A.: Space Complexity in

Propositional Calculus. Symposium on Theory of Computing (STOC), pp. 358–367 (2000).
3 Bonacina, I., Galesi, N.: Pseudo-partitions, Transversality and Locality: A Combinatorial

Characterisation for the Space Measure in Algebraic Proof Systems. Innovations in Theor-
etical Computer Science (ITCS), pp. 455–472 (2013).

Oliver Kullmann

Both open problems concern the class SED of Boolean clause sets. The deficiency δ(F ) ∈ Z
of a Boolean clause set F is equal to the number of clauses minus the number of variables.
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The first open problem asks, simply, what is the decision complexity of SED? For the second
open problem, let degF (v) be equal to the number of clauses in F containing variable v,
and let nM(k) be the kth non-Mersenne number. It was stated that, for a Boolean clause
set F ∈ SED, if δ(F ) ≥ 1 and degF (v) ≥ nM(δ(F )) for every variable v in F , then F is
satisfiable. The open problem asks whether, under these circumstances, an assignment for F
can be found in polynomial time.

Stefan Mengel

Let f be the function that maps an arbitrary collection Φ of n propositional CNF formulas
φ1, . . . , φn to a string of bits a1 · · · an, such that ai = 1 if φi is satisfiable, and ai = 0
otherwise. Can f be computed in polynomial time with o(n) calls to a SAT-solver? It was
noted by several participants that this topic bears a close relationship to the computation of
maximal autarkies.

6 Social Activities

6.1 Hike
Arne Meier (Leibniz Universität Hannover, DE)

On Wednesday at 13:45 p.m., twenty-one of the seminar participants enjoyed the great
weather and friendly atmosphere during the hike. The group walked a circular route of
9.6 km in the direction of hill Schafkopf, crossed the stream Prims, passed the rise junger
Hirschkopf on roughly our half-way point and reached after a long curve at Buttnicher Straße
to eventually finish back at Schloss Dagstuhl. The net walking time was two hours and 22
minutes and we had an elevation gain of 140m. However, we were not in a hurry. Including
breaks we arrived back at approximately 16:00 p.m. – perfectly timed to enjoy the deserved
cake!



Olaf Beyersdorff, Nadia Creignou, Uwe Egly, and Heribert Vollmer 91

10.12.16, 17)22Dagstuhl Hike 2 - Wanderung | Komoot - Fahrrad- & Wander-App

Seite 1 von 1https://www.komoot.de/tour/12522111/print

www.komoot.de/tour/12522111

 Dagstuhl Hike 2

 02:11  9,65 km  4,4 km/h  140 m  140 m

Gemacht von dir

21.09.2016











A
+

-

500 m Leaflet | © Komoot | Map data © OpenStreetMap-Mitwirkende

6.2 Musical Evening
Joshua Blinkhorn (University of Leeds, UK)

On Wednesday evening, beginning at 8:00 p.m., all seminar participants were welcome to
attend the musical evening, which took place in the castle’s music room. Prior to the event,
any and all participants with musical tendencies were invited to contribute a performance to
the programme, either as a solo act, or – in the spirit of collaboration – as a group.

In total, seven musicians took to the stage in an eclectic collection of performances,
presenting music from the Baroque and Classical eras, some well-known jazz standards, and
a handful of popular songs and instrumental pieces. Making use of the instruments and
sheet music provided at Dagtuhl, the concert hosted several solo performances, featured an
instrumental duo, and was closed by a jazz quartet.

Being a well-attended event, the hour-or-so of music was well-received by the audience,
with warm applause for each contribution. The evening was organized and compèred by Jan
Johannsen (LMU München). The programme is reproduced below.

Johannes Schmidt (piano) Goldberg Variation (J. S. Bach)
Türkischer Marsch (Mozart)

Dominic Scheder (piano) and Suite for Flute and Piano (J. S. Bach)
Ilario Bonacina (flute) Vieilles Danses (B. Bartók)

Jacobo Torán (guitar) Milonga (J. Buscaglia)

Florent Capelli (guitar and voice) La Javanaise (S. Gainsbourg)
Paris 42 (L. Aragon, L. Leonardi)
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Joshua Blinkhorn (guitar and voice) Kid Charlemagne (W. Becker, D. Fagen)

Joshua Blinkhorn (guitar), Summertime (G. Gershwin)
Florent Capelli (voice), Watermelon Man (H. Hancock)
Jan Johannsen (saxophone) and
Dominik Scheder (piano)
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