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—— Abstract

Many combinatorial problems involve determining whether a universe of n elements contains a
witness consisting of k elements which have some specified property. In this paper we investig-
ate the relationship between the decision and enumeration versions of such problems: efficient
methods are known for transforming a decision algorithm into a search procedure that finds a
single witness, but even finding a second witness is not so straightforward in general. In this
paper we show that, if the decision version of the problem belongs to FPT, there is a randomised
algorithm which enumerates all witnesses in time f(k) - poly(n) - N, where N is the total number
of witnesses and f is a computable function. This also gives rise to an efficient algorithm to count
the total number of witnesses when this number is small.
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1 Introduction

Many well-known combinatorial decision problems involve determining whether a universe U
of n elements contains a witness W consisting of ezactly k elements which have some specified
property. Specifically, we are concerned with problems for which any decision algorithm can
be called with input universe X C U in order to determine whether there is a witness W for
the original problem (i.e. with universe U) such that W C X; we will call such problems
self-contained k-witness problems. Thus the well-studied problems k-CLIQUE, k-CYCLE and
k-PATH are all self-contained k-witness problems, but others such as k-VERTEX COVER and
k-DOMINATING SET are not (as we need to preserve information about the relationship of
any potential witness to the entire universe U).

While the basic decision versions of self-contained k-witness problems are of interest, it is
often not sufficient for applications to output simply “yes” or “no”: we need to find a witness.
The issue of finding a single witness using an oracle for the decision problem has previously
been investigated by Bjorklund, Kaski, and Kowalik [5], motivated by the fact that the
fastest known parameterised algorithms for a number of widely studied problems (such as
graph motif [4] and k-path [3]) are non-constructive in nature. Moreover, for some problems
(such as k-CLIQUE OR INDEPENDENT SET [2] and p-EVEN SUBGRAPH [15]) the only known
FPT decision algorithm relies on a Ramsey theoretic argument which says the answer must
be “yes” provided that the input graph avoids certain easily recognisable structures.

Following the first approach used in [5], we assume the existence of a deterministic “oracle”
(a black-box decision procedure), as follows.
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ORA(X)
Input: X CU
Output: 1 if some witness is entirely contained in X; 0 otherwise.

A naive approach easily finds a single witness using ©(n) calls to ORA: we successively
delete elements of the universe, following each deletion with an oracle call, and if the oracle
answers “no” we reinsert the last deleted element and continue. Assuming we start with a
yes-instance, this process will terminate when only k£ elements remain, and these k elements
must form a witness. In [5], ideas from combinatorial group testing are used to make a
substantial improvement on this strategy for the extraction of a single witness: rather than
deleting a single element at a time, large subsets are discarded (if possible) at each stage.
This gives an algorithm that extracts a witness with only 2k (log2 (%) + 2) oracle queries.

However, neither of these approaches for finding a single witness can immediately be
extended to find all witnesses, a problem which is of interest even if an efficient decision
algorithm does output a single witness; indeed, it is not even obvious how to find a second
witness. Both approaches for finding a first witness rely on the fact that we can safely delete
some subset of elements from our universe provided we know that what is left still contains
at least one witness; if we need to look for a second witness, the knowledge that at least
one witness will remain is no longer sufficient to guarantee we can delete a given subset. Of
course, for any self-contained k-witness problem we can check all possible subsets of size k,
and hence enumerate all witnesses, in time O(n*); indeed, if every set of k vertices is in fact
a witness then we will require this amount of time simply to list them all. However, we can
seek to do much better than this when the number of witnesses is small by making use of a
decision oracle.

The enumeration problem becomes straightforward if we have an extension oracle,
defined as follows.

EXT-ORA(X,Y)
Input: X CUandY C X
Output: 1 if there exists a witness W with Y C W C X; 0 otherwise.

The existence of an efficient procedure EXT-ORA (X,Y) for a given self-contained k-witness
problem allows us to use standard backtracking techniques to devise an efficient enumeration
algorithm. We explore a binary search tree of depth O(n), branching at level i of the tree
on whether the i*" element of U belongs to the solution. Each node in the search tree then
corresponds to a specific pair (X,Y) with Y C X C U; we can call EXT-ORA(X,Y) to
determine whether any descendant of a given node corresponds to a witness. Pruning the
search tree in this way ensures that no more than O(n - N) oracle calls are required, where
N is the total number of witnesses.

Note that, with only the basic decision oracle, we can determine whether there is a
witness that does not contain some element z (we simply call ORA(U \ {z})), but we
cannot determine whether there is a witness which does contain x. However, as we will
show in Section 3, there are natural self-contained k-witness problems for which there is
no fpt-algorithm for the extension decision problem unless FPT=WT|1]. This motivates the
development of enumeration algorithms that do not rely on such an oracle.

The main result of this paper is just such an algorithm; specifically, we prove the following
theorem.

1 Such an oracle is sometimes called an interval oracle, as in the enumeration procedure described by
Bjorklund, Kaski, Kowalik and Lauri [6] which builds on earlier work by Lawler [19].
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» Theorem 1.1. There is a randomised algorithm to enumerate all witnesses of size k
in a self-contained k-witness problem exactly once, whose expected number of calls to a
deterministic decision oracle is at most 2°F) log®n - N, where N is the total number of
witnesses. Moreover, if an oracle call can be executed in time g(k) -nPW) for some computable
function g, then the expected total running time of the algorithm is

90(k) -g(k) .n0M N

The key tool we use to obtain this algorithm is a colour coding method, using a family of
k-perfect hash functions. This technique was introduced by Alon, Yuster and Zwick in [1] and
has been widely used in the design of parameterised algorithms for decision and approximate
counting (see for example [14, Chapters 13 and 14] and [11, Chapter 8]), but to the best of
the author’s knowledge has not yet been applied to enumeration problems.

Theorem 1.1 is proved in Section 4, before some implications of our enumeration algorithm
for the complexity of related counting problems are discussed in Section 5. We begin in
Section 2 with some background on relevant complexity theoretic notions, before discussing
the hardness of the extension version of some self-contained k-witness problems in Section 3.

2 Parameterised enumeration

There are two natural measures of the size of a self-contained k-witness problem, namely
the number of elements n in the universe and the number of elements k in each witness, so
the running time of algorithms is most naturally discussed in the setting of parameterised
complexity. There are two main complexity issues to consider in the present setting: first of
all, as usual, the running time, and secondly the number of oracle calls required.

For general background on the theory of parameterised complexity, we refer the reader to
[11, 14]. The theory of parameterised enumeration has been developed relatively recently
[12, 8, 7], and we refer the reader to [8] for the formal definitions of the different classes
of parameterised enumeration algorithms. To the best of the author’s knowledge, this is
the first occurrence of a randomised parameterised enumeration algorithm in the literature,
and so we introduce randomised analogues of the four types of parameterised enumeration
algorithms introduced in [8] (for a problem with total input size n and parameter k, and
with f: N — N assumed to be a computable function throughout):

an expected-total-fpt algorithm enumerates all solutions and terminates in expected time
f(k) - W)
an expected-delay-fpt algorithm enumerates all solutions with expected delay at most
f(k)-n®®) between the times at which one solution and the next are output (and the same
bound applies to the time before outputting the first solution, and between outputting
the final solution and terminating);
an expected-incremental-fpt algorithm enumerates all solutions with expected delay at
most f(k) - (n +i)°M) between outputting the i*" and (i + 1)** solution;
an expected-output-fpt algorithm enumerates all solutions and terminates in expected
time f(k) - (n 4 N)°M) | where N is the total number of solutions enumerated.
Under these definitions, Theorem 1.1 says that, if the decision version of a self-contained
k-witness problem belongs to FPT, then there is an expected-output-fpt algorithm for the
corresponding enumeration problem.
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3 Hardness of the extension problem

Many combinatorial problems have a very useful property, often referred to as self-reducibility,
which allows a search or enumeration problem to be reduced to (smaller instances of) the
corresponding decision problem in a very natural way (see [8, 18, 21]). A problem is self-
reducible in this sense if the existence of an efficient decision procedure (equivalent to
ORA (X)) implies that there is an efficient algorithm to solve the extension decision problem
(equivalent to EXT-ORA (X)). While many self-contained k-witness problems do have this
property, we will demonstrate that there exist self-contained k-witness problems that do not
(unless FPT=W][1]), and so an enumeration procedure that makes use only of ORA (X) and
not EXT-ORA(X) is desirable.

In order to demonstrate this, we show that there exist self-contained k-witness problems
whose decision versions belong to FPT, but for which the corresponding extension decision
problem is W[1]-hard. We will consider the following problem, which is clearly a self-contained
k-witness problem.

p-CLIQUE OR INDEPENDENT SET

Input: A graph G = (V, E) and k € N.

Parameter: k.

Question: Is there a k-vertex subset of V' that induces either a clique or an independent
set?

This problem is known to belong to FPT [2]: all sufficiently large input graphs are yes-
instances by Ramsey’s Theorem. We now turn our attention to the extension version of the
problem, defined as follows.

p-EXTENSION CLIQUE OR INDEPENDENT SET

Input: A graph G = (V,E), asubset U CV and k € N.

Parameter: k.

Question: Is there a k-vertex subset S of V', with U C S, that induces either a clique or
an independent set?

It is straightforward to adapt the hardness proof for p-MULTICOLOUR CLIQUE OR INDE-
PENDENT SET [20, Proposition 3.7] to show that p-EXTENSION CLIQUE OR INDEPENDENT
SET is W[1]-hard.

» Proposition 3.1. p-EXTENSION CLIQUE OR INDEPENDENT SET is W[1]-hard.

Proof. We prove this result by means of a reduction from the W[1]-complete problem p-
CLIQUE. Let (G, k) be the input to an instance of p-CLIQUE. We now define a new graph G,
obtained from G by adding one new vertex v, and an edge from v to every vertex u € V(QG).
It is then straightforward to verify that (G’,{v},k + 1) is a yes-instance for p-EXTENSION
CLIQUE OR INDEPENDENT SET if and only if G contains a clique of size k. <

This demonstrates that p-EXTENSION CLIQUE OR INDEPENDENT SET is a problem for
which there exists an efficient decision procedure but no efficient algorithm for the extension
version of the decision problem (unless FPT=W][1]). The reduction given here can easily be
adapted to demonstrate that the following problem has the same property.

p-INDUCED REGULAR SUBGRAPH

Input: A graph G = (V,E) and k € N.

Parameter: k.

Question: Is there a k-vertex subset of V' that induces a subgraph in which every vertex
has the same degree?
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Indeed, the same method can be applied to any problem in which putting a restriction on
the degree of one of the vertices in the witness guarantees that the witness induces a clique
(or some other induced subgraph for which it is W[1]-hard to decide inclusion in an arbitrary
input graph).

4 The randomised enumeration algorithm

In this section we describe and analyse our randomised witness enumeration algorithm, thus
proving Theorem 1.1.

As mentioned above, our algorithm relies on a colour coding technique. A family F of
hash functions from [n] to [k] is said to be k-perfect if, for every subset A C [n] of size k,
there exists f € F such that the restriction of f to A is injective. We will use the following
bound on the size of such a family of hash functions, proved in [1].

» Theorem 4.1. For all n,k € N there is a k-perfect family F,, i of hash functions from [n]
to [k] of cardinality 20(K) .logn. Furthermore, given n and k, a representation of the family
Fn,k can be computed in time 20(K) . nlogn.

Our strategy is to solve a collection of 20%) . logn colourful enumeration problems, one
corresponding to each element of a family F of k-perfect hash functions. In each of these
problems, our goal is to enumerate all witnesses that are colourful with respect to the relevant
element f of F (those in which each element is assigned a distinct colour by f). Of course, we
may discover the same witness more than once if it is colourful with respect to two distinct
elements in F, but it is straightforward to check for repeats of this kind and omit duplicate
witnesses from the output. It is essential in the algorithm that we use a deterministic
construction of a k-perfect family of hash functions rather than the randomised construction
also described in [1], as the latter method would allow the possibility of witnesses being
omitted (with some small probability).

The advantage of solving a number of colourful enumeration problems is that we can
split the problem into a number of sub-problems with the only requirement being that we
preserve witnesses in which every element has a different colour (rather than all witnesses).
This makes it possible to construct a number of instances, each (roughly) half the size of the
original instance, such that every colourful witness survives in at least one of the smaller
instances. More specifically, for each k-perfect hash function we explore a search tree: at
each node, we split every colour-class randomly into (almost) equal-sized parts, and then
branch to consider each of the 2¥ combinations that includes one (nonempty) subset of
each colour, provided that the union of these subsets still contains at least one witness (as
determined by the decision oracle). This simple pruning of the search tree will not prevent
us exploring “dead-ends” (where we pursue a particular branch due to the presence of a
non-colourful witness), but turns out to be sufficient to make it unlikely that we explore very
many branches that do not lead to colourful witnesses.

We describe the algorithm in pseudocode (Algorithm 1), making use of two subroutines.
In addition to our oracle ORA(X), we also define a procedure RANDPART(X) which we
use, while exploring the search tree, to obtain a random partition of a subset of the universe.

RANDPART(X)
Input: X CU
Output: A partition (X7, X5) of X with ||X;| — | X2|| < 1, chosen uniformly at random
from all such partitions of X.

22:5
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Algorithm 1: Randomised algorithm to enumerate all k-element witnesses in the
universe U, using a decision oracle.

1 Construct a family F = {f1, f2,..., fi7|} of k-perfect hash functions from U to [k];
2 for 1 <r <|F| do

3 Initialise an empty FIFO queue Q;

a if ORA(U) =1 then

5 ‘ Insert U into Q;

6 end if

7 while Q is not empty do

8 Remove the first element A from Q;

9 if |A| = k then

10 if A is not colourful with respect to fs for any s € {1,...,r — 1} then
11 ‘ Output A4;

12 end if

13 else

14 for1 <i<kdo

15 Set A; to be the set of elements in A coloured ¢ by f,;
16 Set (A1), A?) = RANDPART(4,);

17 end for

18 for each j = (ji,---,j%) € {1,2}* do

19 if |A§j2)| > 0 for each 1 < ¢ <k then

20 Set A; = AV U...u AP,

21 if ORA(4;) =1 then

22 | Add 4; to Q;

23 end if

24 end if

25 end for

26 end if

27 end while

28 end for

We prove the correctness of the algorithm in Section 4.1, and bound the expected running
time in Section 4.2.

4.1 Correctness of the algorithm

In order to prove that our algorithm does indeed output every witness exactly once, we
begin by showing that we will identify a given k-element subset X during the iteration
corresponding to the hash-function f € F if and only if X is a colourful witness with respect

to f.

» Lemma 4.2. Let X be a set of k vertices in the universe U. In the iteration of Algorithm 1
corresponding to f € F, we will execute 10 to 12 with A = X if and only if:

1. X is a witness, and

2. X is colourful with respect to f.

Proof. We first argue that we only execute lines 10 to 12 with A = X if X is a witness
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and is colourful with respect to f. We claim that, throughout the execution of the iteration
corresponding to f, every subset B in the queue @ has the following properties:
1. there is some witness W such that W C B, and
2. B contains at least one vertex receiving each colour under f.
Notice that we check the first condition before adding any subset A to @ (lines 4 and 27),
and we check the second condition for any A # U in line 25 (U necessarily satisfies condition
2 by construction of F), so these two conditions are always satisfied. Thus, if we execute
lines 10 to 12 with A = X, these conditions hold for X; note also that we only execute these
lines with A = X if | X| = k. Hence, as there is a witness W C X where |W| = | X| = k,
we must have X = W and hence X is a witness. Moreover, as X must contain at least one
vertex of each colour, and contains exactly k elements, it must be colourful.

Conversely, suppose that W = {w1,...,wg} is a witness such that f(w;) = ¢ for each

1 <i < k; we need to show that we will at some stage execute lines 10 to 12 with A = W.

We argue that at the start of each execution of the while loop, if W has not yet been output,
there must be some subset B in the queue such that W C B. This invariant clearly holds
before the first execution of the loop (U will have been inserted into @), as U contains at
least one witness W). Now suppose that the invariant holds before starting some execution
of the while loop. Either we execute lines 10 to 12 with A = W on this iteration (in which
case we are done), or else we proceed to line 19. Now, for 1 <i < k, set j; to be either 1 or 2
in such a way that w; € Agji). The subset Aj, where j = (j1,. .., ji) will then pass both tests
for insertion into @, and W C A; by construction, so the invariant holds when we exit the
while loop. Since the algorithm only terminates when @ is empty, it follows that we must
eventually execute lines 10 to 12 with A =W. |

The key property of k-perfect families of hash functions then implies that the algorithm
will identify every witness; it remains only to ensure that we avoid outputting any witness
more than once. This is the purpose of lines 10 to 12 in the pseudocode. We know from
Lemma 4.2 that we find a given witness W while considering the hash-function f if and only
if W is colourful with respect to f: thus, in order to determine whether we have found the
witness in question before, it suffices to verify whether it is colourful with respect to any of
the colourings previously considered. (The most obvious strategy for avoiding repeats would
be to maintain a list of all the witnesses we have output so far, and check for membership of
this list; however, in general there might be as many as (Z) witnesses, so both storing this
list and searching it would be costly.) Hence we see that every witness is output exactly
once, as required.

4.2 Expected running time

We know from Theorem 4.1 that a family F of k-perfect hash functions from U to [k], with
| F| = 29®) log n, can be computed in time 2°*)nlogn; thus line 1 can be executed in time
20 log n and the total number of iterations of the outer for-loop (lines 2 to 34) is at most
20(%) Jog n.

Moreover, it is clear that each iteration of the while loop (lines 7 to 33) makes at most
2F oracle calls. If an oracle call can be executed in time g(k) - n°() for some computable
function g, then the total time required to perform each iteration of the while loop is at most
max{|F|, kn + 2% - g(k) - nOM} = 20(0) . (k) . nOM),

Thus it remains to bound the expected number of iterations of the while loop in any
iteration of the outer for-loop; we do this in the next lemma.

22:7
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» Lemma 4.3. The expected number of iterations of the while-loop in any given iteration of
the outer for-loop is at most N (1 + [logn]), where N is the total number of witnesses in the
instance.

Proof. We fix an arbitrary f € F, and for the remainder of the proof restrict our attention
to the iteration of the outer for-loop corresponding to f.

We can regard this iteration of the outer for-loop as the exploration of a search tree, with
each node of the search tree indexed by some subset of U. The root is indexed by U itself,
and every node has up to 2 children, each child corresponding to a different way of selecting
one of the two randomly constructed subsets for each colour. A node may have strictly
fewer than 2% children, as we use the oracle to prune the search tree (line 27), omitting
the exploration of branches indexed by a subset of U that does not contain any witness
(colourful or otherwise). Note that the search tree defined in this way has depth at most
[logn]: at each level, the size of each colour-class in the indexing subset is halved (up to
integer rounding).

In this search tree model of the algorithm, each node of the search tree corresponds to an
iteration of the while-loop, and vice versa. Thus, in order to bound the expected number of
iterations of the while-loop, it suffices to bound the expected number of nodes in the search
tree.

Our oracle-based pruning method means that we can associate with every node v of
the search tree some representative witness W, (not necessarily colourful), such that W, is
entirely contained in the subset of U which indexes v. (Note that the choice of representative
witness for a given node need not be unique.) We know that in total there are N witnesses;
our strategy is to bound the expected number of nodes, at each level of the search tree, for
which any given witness can be the representative.

For a given witness W, we define a random variable Xy 4 to be the number of nodes at
depth d (where the root has depth 0, and children of the root have depth 1, etc.) for which
W could be the representative witness. Since every node has some representative witness, it
follows that the total number of nodes in the search tree is at most

[logn]

2 ) Kwa

W a witness

Hence, by linearity of expectation, the expected number of nodes in the search tree is at most

[logn] [logn]

Z Z E XWd < N Z max [XW,d]~

W a witness
W a witness

In the remainder of the proof, we argue that E[Xy 4] < 1 for all W and d, which will
give the required result.

Observe first that, if W is in fact a colourful witness with respect to f, then Xy q =1
for every d: given a node whose indexing set contains W, exactly one of its children will
be indexed by a set that contains W. So we will assume from now on that W intersects
precisely ¢ colour classes, where £ < k.

If a given node is indexed by a set that contains W, we claim that the probability that
W is contained in the set indexing at least one of its children is at most %k_e. For this to
happen, it must be that for each colour 7, all elements of W having colour 4 are assigned to
the same set in the random partition. If ¢; elements in W have colour 4, the probability of
this happening for colour ¢ is at most (%) (the first vertex of colour ¢ can be assigned to
either set, and each subsequent vertex has probability at most % of being assigned to this

Ci—l
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same set). Since the random partitions for each colour class are independent, the probability
that the witness W survives is at most

H 1 cr1_ 1 k—\{i:Wﬁf‘l(i);é@}\_ 1 k—t
2 S\ 2 \2 '

Wnf-1(i)#0

Moreover, if W is contained in the set indexing at least one of the child nodes, it will be
contained in the indexing sets for exactly 2*~* child nodes: we must select the correct subset
for each colour-class that intersects W, and can choose arbitrarily for the remaining k — ¢
colour classes. Hence, for each node indexed by a set that contains W, the ezpected number
of children which are also indexed by sets containing W is at most (%)kil Skt =1,

We now prove by induction on d that E [Xy 4] <1 (in the case that W is not colourful).

The base case for d = 0 is trivial (as there can only be one node at depth 0), so suppose that
d > 0 and that the result holds for smaller values. Then, if E[Y'|Z = s] is the conditional
expectation of Y given that Z = s,

E[Xw.d =Y _ E[Xw.alXwa-1 =t P[Xw,4_1 =1

t>0

<Y tPXwa =1]
t>0

=E[Xw,q—1]

<1,

by the inductive hypothesis, as required. Hence E[X 4] < 1 for any witness W, which
completes the proof. <

By linearity of expectation, it then follows that the expected total number of executions
of the while loop will be at most |F|- N (14 [logn]), and hence that the expected number of
oracle calls made during the execution of the algorithm is at most 2°*) log? n - N. Moreover,
if an oracle call can be executed in time g(k) - n®™") for some computable function g, then
the expected total running time of the algorithm is

90(k) - g(k) PN,

as required.

5 Application to counting

There is a close relationship between the problems of counting and enumerating all witnesses
in a self-contained k-witness problem, since any enumeration algorithm can very easily be
adapted into an algorithm that simply counts the witnesses. However, in the case that the
number N of witnesses is large, an enumeration algorithm necessarily takes time at least
O(N), whereas we might hope for much better if our goal is simply to determine the total
number of witnesses.

The family of self-contained k-witness problems studied here includes subgraph problems,
whose parameterised complexity from the point of view of counting has been a rich topic for
research in recent years [13, 16, 17, 9, 10, 20, 15]. Many such counting problems, including
those whose decision problem belongs to FPT, are known to be #W/[1]-complete (see [14]
for background on the theory of parameterised counting complexity). In this section we
demonstrate how our enumeration algorithm can be adapted to give an efficient (randomised)

22:9
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algorithm to solve the counting version of a self-contained k-witness problem when the total
number of witnesses is small. This complements the fact that a simple random sampling
algorithm can be used for approzrimate counting when the number of witnesses is very large
[20, Lemma 3.4], although there remain many situations which are not covered by either
result.

» Theorem 5.1. Let 11 be a self-contained k-witness problem, and suppose that 0 <
0 < % and M € N. Then there exists a randomised algorithm which makes at most

200 log® n. M log(6~1) calls to a deterministic decision oracle for II, and

1. if the number of witnesses in the instance of 11 is at most M, outputs with probability at
least 1 — 0 the exact number of witnesses in the instance;

2. if the number of witnesses in the instance of 11 is strictly greater than M, always outputs
“More than M.”

Moreover, if there is an algorithm solving the decision version of 11 in time g(k) - n®M) for

some computable function g, then the expected running time of the randomised algorithm is

bounded by 2°%) . g(k) - n°M . M -log(6~1).

Proof. Note that our randomised enumeration algorithm can very easily be adapted to give
a randomised counting algorithm which runs in the same time as the enumeration algorithm
but, instead of listing all witnesses, simply outputs the total number of witnesses when
it terminates. We may compute explicitly the expected running time of our randomised
enumeration algorithm (and hence its adaptation to a counting algorithm) for a given self-
contained k-witness problem II in terms of n, k and the total number of witnesses, N. We
will write T'(TI, n, k, N) for this expected running time.

Now consider an algorithm A, in which we run our randomised counting algorithm for at
most 27(I1, n, k, M) steps; if the algorithm has terminated within this many steps, A outputs
the value returned, otherwise A outputs “FAIL”. Since our randomised counting algorithm
is always correct (but may take much longer than the expected time), we know that if A
outputs a numerical value then this is precisely the number of witnesses in our problem
instance. If the number of witnesses is in fact at most M, then the expected running time of
the randomised counting algorithm is bounded by T'(IT, n, k, M), so by Markov’s inequality
the probability that it terminates within 27'(II, n, k, M) steps is at least 1/2. Thus, if we run
A on an instance in which the number of witnesses is at most M, it will output the exact
number of witnesses with probability at least 1/2.

To obtain the desired probability of outputting the correct answer, we repeat A a total of
[log(6=1)] times. If any of these executions of A terminates with a numerical answer that is
at most M, we output this answer (which must be the exact number of witnesses by the
argument above); otherwise we output “More than M.”

If the total number of witnesses is in fact less than or equal to M, we will output the
exact number of witnesses unless A outputs “FAIL” every time it is run. Since in this case
A outputs “FAIL” independently with probability at most 1/2 each time we run it, the
probability that we output “FAIL” on every one of the [log(671)] repetitions is at most
(1/2)M0s(6"1)1 < 2loed — 5 Finally, note that if the number of witnesses is strictly greater
than M, we will always output “More than M” since every execution of A must in this case
return either “FAIL” or a numerical answer greater than M.

The total running time is at most O (log(6') - T(I,n, k, M)) and hence, using the
bound on the running time of our enumeration algorithm from Theorem 1.1, is bounded by
2000 . g(k) - n®M . M -log(6~1), as required. <
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6 Conclusions and open problems

Many well-known combinatorial problems satisfy the definition of the self-contained k-witness
problems considered in this paper. We have shown that, given access to a deterministic oracle
for the decision version of a self-contained k-witness problem (answering the question “does
this subset of the universe contain at least one witness?”), there is a randomised algorithm
which is guaranteed to enumerate all witnesses and whose expected number of oracle calls is
at most 20 log;2 n - N, where N is the total number of witnesses. Moreover, if the decision
problem belongs to FPT (as is the case for many self-contained k-witness problems), our
enumeration algorithm is an expected-output-fpt algorithm.

This result also has implications for counting the number of witnesses. In particular, if
the total number of witnesses is small (at most f(k)-n®® for some computable function
f) then our enumeration algorithm can easily be adapted to give an fpt-algorithm that
will, with high probability, determine exactly the number of witnesses in an instance of a
self-contained k-witness problem. This in fact satisfies the conditions for a FPTRAS (Fixed
Parameter Tractable Randomised Approximation Scheme, as defined in [2]), but without
requiring the full flexibility that this definition requires: with probability 1 — ¢ we will output
the exact number of witnesses, rather than just an answer that is within a factor of 1 4 € of
this quantity.

While the enumeration problem can be solved in a more straightforward fashion for self-
contained k-witness problems that have certain additional properties, we demonstrated that
several self-contained k-witness problems do not have these properties, unless FPT=W]1].
A natural line of enquiry arising from this work would be the characterisation of those
self-contained k-witness problems that do have the additional properties, namely those for
which an fpt-algorithm for the decision version gives rise to an fpt-algorithm for the extension
version of the decision problem.

Another key question that remains open after this work is whether the existence of an
fpt-algorithm for the decision version of a self-contained k-witness problem is sufficient to
guarantee the existence of an (expected-)delay-fpt or (expected-)incremental-fpt algorithm
for the enumeration problem. Finally, it would be interesting to investigate whether the
randomised algorithm given here can be derandomised.

—— References

1 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal of the ACM, 42(4):844—
856, 1995.

2 V. Arvind and Venkatesh Raman. Approximation algorithms for some parameterized count-
ing problems. In ISAAC 2002, volume 2518 of LNCS, pages 453-464. Springer-Verlag Berlin
Heidelberg, 2002.

3 Andreas Bjorklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Narrow sieves for
parameterized paths and packings. arXiv:1007.1161 [cs.DS], 2010.

4 Andreas Bjorklund, Petteri Kaski, and f.ukasz Kowalik. Probably Optimal Graph Motifs.
In 30th International Symposium on Theoretical Aspects of Computer Science (STACS
2013), volume 20 of LIPIcs, pages 20-31. Schloss Dagstuhl-Leibniz-Zentrum fuer Inform-
atik, Dagstuhl, Germany, 2013. doi:10.4230/LIPIcs.STACS.2013.20.

5 Andreas Bjorklund, Petteri Kaski, and Lukasz Kowalik. Fast witness extraction using a
decision oracle. In Algorithms — ESA 201/, volume 8737 of LNCS, pages 149-160. Springer
Berlin Heidelberg, 2014. doi:10.1007/978-3-662-44777-2_13.

6  Andreas Bjorklund, Petteri Kaski, f.ukasz Kowalik, and Juho Lauri. Engineering mo-
tif search for large graphs. In 2015 Proc. of the Seventeenth Workshop on Algorithm

22:11

IPEC 2016


http://dx.doi.org/10.4230/LIPIcs.STACS.2013.20
http://dx.doi.org/10.1007/978-3-662-44777-2_13

22:12

Randomised Enumeration of Small Witnesses Using a Decision Oracle

10

11

12

13

14

15

16

17

18

19

20

21

Engineering and Ezperiments (ALENEX), pages 104-118. SIAM, 2015. doi:10.1137/1.
9781611973754 .10.

Nadia Creignou, Raida Ktari, Arne Meier, Julian-Steffen Miiller, Frédéric Olive, and
Heribert Vollmer. Parameterized enumeration for modification problems. In Language
and Automata Theory and Applications, volume 8977 of LNCS, pages 524-536. Springer
International Publishing, 2015. doi:10.1007/978-3-319-15579-1_41.

Nadia Creignou, Arne Meier, Julian-Steffen Miiller, Johannes Schmidt, and Heribert
Vollmer. Paradigms for parameterized enumeration. In Mathematical Foundations of Com-
puter Science 2013, volume 8087 of LNCS, pages 290-301. Springer Berlin Heidelberg, 2013.
doi:10.1007/978-3-642-40313-2_27.

Radu Curticapean. Counting matchings of size k is #W[1]-hard. In Automata, Languages,
and Programming, volume 7965 of LNCS, pages 352-363. Springer Berlin Heidelberg, 2013.
Radu Curticapean and Déniel Marx. Complexity of counting subgraphs: Only the bounded-
ness of the vertex-cover number counts. In 55th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 201/, 2014.

Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Springer London, 2013.

Henning Fernau. On parameterized enumeration. In Computing and Combinatorics,
volume 2387 of LNCS, pages 564-573. Springer Berlin Heidelberg, 2002. doi:10.1007/
3-540-45655-4_60.

Jorg Flum and Martin Grohe. The parameterized complexity of counting problems. SIAM
Journal on Computing, 33(4):892-922, 2004.

Jorg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006.

Mark Jerrum and Kitty Meeks. The parameterised complexity of counting even and odd
induced subgraphs. arXiv:1410.3375 [math.CO], to appear in Combinatorica, 2014.

Mark Jerrum and Kitty Meeks. The parameterised complexity of counting connected sub-
graphs and graph motifs. Journal of Computer and System Sciences, 81(4):702-716, 2015.
doi:10.1016/j.jcss.2014.11.015.

Mark Jerrum and Kitty Meeks. Some hard families of parameterised counting problems.
ACM Transactions on Computation Theory, 7(3), June 2015. doi:10.1145/2786017.
Samir Khuller and Vijay V. Vazirani. Planar graph coloring is not self-reducible, assuming P
# NP. Theoretical Computer Science, 88(1):183-189, 1991. doi:10.1016/0304-3975(91)
90081-C.

FEugene L. Lawler. A procedure for computing the k best solutions to discrete optimization
problems and its application to the shortest path problem. Management Science, 18(7):401—
405, 1972. doi:10.1287/mnsc.18.7.401.

Kitty Meeks. The challenges of unbounded treewidth in parameterised subgraph counting
problems. Discrete Applied Mathematics, 198:170-194, 2016. doi:10.1016/j.dam.2015.
06.019.

C.P. Schnorr. Optimal algorithms for self-reducible problems. In Proc. of the 3rd ICALP,
pages 322-337. Edinburgh University Press, 1976.


http://dx.doi.org/10.1137/1.9781611973754.10
http://dx.doi.org/10.1137/1.9781611973754.10
http://dx.doi.org/10.1007/978-3-319-15579-1_41
http://dx.doi.org/10.1007/978-3-642-40313-2_27
http://dx.doi.org/10.1007/3-540-45655-4_60
http://dx.doi.org/10.1007/3-540-45655-4_60
http://dx.doi.org/10.1016/j.jcss.2014.11.015
http://dx.doi.org/10.1145/2786017
http://dx.doi.org/10.1016/0304-3975(91)90081-C
http://dx.doi.org/10.1016/0304-3975(91)90081-C
http://dx.doi.org/10.1287/mnsc.18.7.401
http://dx.doi.org/10.1016/j.dam.2015.06.019
http://dx.doi.org/10.1016/j.dam.2015.06.019

	Introduction
	Parameterised enumeration
	Hardness of the extension problem
	The randomised enumeration algorithm
	Correctness of the algorithm
	Expected running time

	Application to counting
	Conclusions and open problems

