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—— Abstract

We study feedback vertex sets (FVS) in tournaments, which are orientations of complete graphs.
As our main result, we show that any tournament on n nodes has at most 1.5949™ minimal FVS.
This significantly improves the previously best upper bound of 1.6667" by Fomin et al. (STOC
2016). Our new upper bound almost matches the best known lower bound of 217/7 ~ 1.5448",
due to Gaspers and Mnich (ESA 2010). Our proof is algorithmic, and shows that all minimal
FVS of tournaments can be enumerated in time O(1.5949™).
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1 Introduction

The MINIMUM FEEDBACK VERTEX SET (FVS) problem in directed graphs is a fundamental
problem in combinatorial optimization: given a directed graph G, find a smallest set of
vertices in G whose removal yields an acyclic digraph. This problem belongs to Karp’s
original list of 21 NP-complete problems [8].

The MiNiMUM FVS problem remains NP-complete even in tournaments [13], which are
orientations of complete undirected graphs. In other words, a tournament 7" is a digraph with
exactly one arc between any two of its vertices. Various approaches have been suggested to
solve the MINIMUM FV'S problem on tournaments, including approximation algorithms [3, 10],
fixed-parameter algorithms [4, 9] as well as exact exponential-time algorithms [4, 5, 6]. In
particular, one approach that was used to find a minimum FVS is to list all inclusion-minimal
FVS of a given tournament using a polynomial-delay enumeration algorithm [6, 12]. The run
time of this approach is within a polynomial factor of the number M (T') of minimal FVS
in T. Therefore, the complexity of the MINIMUM FVS problem is within a polynomial factor
of the maximum of M (T) over all n-vertex tournaments, which we denote by M (n).

The first one to provide non-trivial bounds on M (n) was Moon [11], who in 1971 established
that 1.4757™ < M(n) < 1.7170™. This was improved by Gaspers and Mnich [6] in 2010 to
1.5448™ < M(n) < 1.6740™. Very recently, an improvement on the upper bound was made
by Fomin et al. [5], who show that M (n) < 1.6667". The problem of exactly determining
M (n) was explicitly posed by Woeginger [15].

* Supported by ERC Starting Grant 306465 (BeyondWorstCase).

© Matthias Mnich and Eva-Lotta Teutrine;

37 licensed under Creative Commons License CC-BY
11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin; Article No. 24; pp. 24:1-24:10

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.24
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

24:2

Improved Bounds for Minimal Feedback Vertex Sets in Tournaments

Table 1 State of the art for lower and upper bounds on the number of minimal FVS in tournaments.

M(n) lower bound upper bound
Moon (1971) 1.4757" 1.7170™
Gaspers and Mnich (ESA 2010)  21™/7 ~ 1.5448" 1.6740™
Fomin et al. (STOC 2016) 1.6667™
This paper 1.5949™
This paper, reqular tournaments: 21™/7 ~ 1.5448™

Our Contributions

In this paper we make significant progress on establishing better bounds for M (n). Our main
combinatorial result is as follows:

» Theorem 1. Any tournament of order n has at most M(n) < 1.5949™ minimal FVS.

We also consider regular tournaments (in which all vertices have the same out-degree),
because the best known lower bound on M (n) is attained by regular tournaments. For regular
tournaments, we show an upper bound on M (n) that matches the lower bound:

» Theorem 2. Any regular tournament of order n has at most 21™/7 minimal FVS, and this
is sharp: some reqular tournament of order n has exactly 217 minimal FVS.

Table 1 provides an overview on lower and upper bounds on M (n).

Our proof of Theorem 1 is inspired by the one of Gaspers and Mnich [6] for their
weaker upper bound. Their proof works by induction on the number n of nodes in the input
tournament 7. Starting with T, they consider a vertex v with maximum out-degree A, and
depending on the value of A and neighbors of v, they construct subtournaments by deleting
distinct vertices, such that each maximal transitive vertex set of T' is contained in at least
one subtournament. Applying the induction hypothesis to the subtournaments then implies
their upper bound.

Here, we use a refined technique, that yields upper bounds on the number of inclusion-
maximal vertex sets with certain properties. Namely, in addition to deleting vertices to
generate subtournaments, we also keep fixed vertex sets. Within these subtournaments we only
consider maximal transitive vertex sets that contain all the fixed vertices. We introduce a new
function M (n, k) for the maximum number of maximal transitive vertex sets in a tournament
of order n containing a fixed set of k vertices, and we will show that M (n, k) < 1.59497—*
for all 0 < k < n. A similar approach has been used by Gupta et al. [7] to bound the number
of maximal r-regular induced subgraphs in undirected graphs.

Our combinatorial result has algorithmic consequences. First, our proof of Theorem 1 is
algorithmic, and shows that all minimal FVS of any tournament of order n can be listed in
time 0(1.5949™). Second, using an algorithm by Gaspers and Mnich [6] to list all minimal
FVS of a tournament with polynomial delay and in polynomial space, we directly obtain the
following:

» Corollary 3. Given any tournament T of order n, all its minimal FVS can be listed in
time M(T) - n®®) = O(1.5949™) with polynomial delay and in polynomial space.

Enumerating the minimal FVS in tournaments has several interesting applications. For
example, Banks [1] introduced the notion “Banks winner” in a social choice context, which
is a vertex v with in-degree 0 in a subtournament induced by a maximal transitive vertex
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set. Brandt et al. [2] consider the problem of determining the “Banks set”, which is the set
of all Banks winners. As Woeginger [14] showed that deciding whether a vertex is a Banks
winner is NP-complete, a feasible approach to determine the Banks set is to enumerate all
minimal FVS. For this purpose, Brandt et al. [2] implemented the algorithm of Gaspers and
Mnich. Thus, our new algorithm in this paper can be used to compute the Banks set of a
tournament asymptotically faster.

2 Preliminaries

A tournament T = (V, A) is a directed graph with exactly one edge between each pair of
vertices. We denote the set of all tournaments with n vertices by 7,. A feedback vertex set
(FVS) of T is a set F' C V(T') such that T — F is free of (directed) cycles, where T'— F is
the induced subgraph of T' after removing all vertices in F. An FVS is minimal if none of its
proper subsets is an FVS.

Denote by M(T') the number of minimal FVS in a tournament 7', and define

M(n) = mmax M(T)
to be the maximum number of minimal FVS in tournaments of order n.

Let T = (V, A) be a tournament. For a set V' C V| let T[V’] be the subtournament of T
induced by V'. For each v € V, let N~ (v) = {u € V | (u,v) € A} and let N*(v) = {u €
V| (v,u) € A}. We write v — w if u € NT(v) and call v a predecessor of u and u a successor
of v. For each v € V, its in-degree is d~ (v) = [N~ (v)| and its out-degree is d* (v) = |[NT(v)];
call T regular if all its vertices have the same out-degree. Let A*(7T') denote the maximum
out-degree over all vertices of T'. Further, T is strong if there is a directed path from v to u for
each pair of vertices v,u € V; let 7,F denote the set of strong tournaments of order n. Note
that any tournament can uniquely be decomposed into strong subtournaments Si, ..., S,
such that v — u for all v € V(S;), u € V(S;) for all i < j.

» Observation 4. For any tournament T, we obtain M(T) = M(S1) ... - M(S,).

Therefore, we can bound M (n) from above by 8™ for some § by considering strong tourna-
ments of every order n.
Our proofs will use the following well-known observation about cycles in tournaments:

» Lemma 5. In a tournament, any vertex contained in a cycle is contained in a triangle.

Proof. Let vy,...,vp be a shortest cycle containing v; with ¢ > 3, v; — v;41 for all i €
{1,...,£—1} and vy — v1. Depending on the orientation of the arc between v; and vs, either
v1, Vg, v3 form a triangle or v1,vs, vy, ..., v is a shorter cycle containing v;. |

We call a vertex set transitive if its induced subtournament is acyclic. Thus, a vertex set
is a maximal transitive vertex set if and only if its complement is a minimal FVS. Instead
of counting minimal FVS, we count maximal transitive vertex sets. The next property of
maximal transitive vertex sets was already used by Moon [11] and Gaspers and Mnich [6]:

» Lemma 6. For any tournament T', M(T) < 3, cy () M(d*(v)).

Proof. Any maximal transitive vertex set W of T has a vertex v with in-degree 0 in T[W].
Hence, W is also a maximal transitive vertex set in T[N+ (v)U{v}]; this yields the bound. <«

Lemma 6 allows us to effectively bound M (T') in terms of a recurrence relation, in particular
in combination with the next lemma that extends Lemma 3 by Gaspers and Mnich [6]:
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» Lemma 7. Let n € N and let T € T,F. Then either T is regular, or for any d € N at
most 2d vertices in T have out-degree at least n —d — 1.

Proof. Let V be the set of vertices in T with out-degree at least n — d — 1. Then any vertex
in V has in-degree at most d. Hence,

Y INT@I<V]-d. (1)

veV

We may suppose that V # (), for otherwise the statement of the lemma holds. We
distinguish two cases.

Consider first the case that V # V(T). Then, since T is strong and V # (), there
is some arc from V(T)\ V to V. There are (l‘gl) arcs between vertices in V. Therefore,

dvev IN"(v)[ 2 (l‘z/‘) + 1. Combining this inequality with (1) and solving for d € N yields
V| < 2d.

Second, consider the case that V = V(T). We may suppose that T is not regular, for
otherwise the statement of the lemma holds. Note that not every vertex of V = V(T') can
have in-degree exactly d, since T is not regular. Hence, some vertex in V has in-degree at

most d — 1. Consequently,

DINT@I (V[ -1)-d+(d-1) .

veV

There are (I‘;I) arcs between vertices in V. Thus, Y owei INT(v)] > (I‘;/\). Combining these
two inequalities and solving for d € N yields |V| < 2d. <

We remark that a regular tournament may have more than 2d vertices of out-degree at least
n —d — 1, as witnessed for instance by the triangle and d = 1.

3 Improved Upper Bound on the Maximum Number of Minimal FVS

In this section we show that the maximum number M (n) of minimal FVS in any tournament
of order n is bounded from above by 1.5949". For this purpose, for a tournament 7" and
V' CV(T) let M(T,V’) be the number of maximal transitive vertex sets in T that contain
all vertices in V'. Also, let

M(n, k) = M(T, V') .

max
TeTn, V' CV(T),|V'|=k

Note that M(n) = M(n,0).

Example. To clarify the definition, we compute M (3, 1). Precisely, we show that M (3,1) = 2.
There are two non-isomorphic tournaments for n = 3:

The tournament T} is acyclic and thus has only a single maximal transitive vertex set, V(T}).
Thus, M (T1,{v}) =1 for all v € V(T3). The tournament T has three maximal transitive
vertex sets, each consisting of exactly two vertices. Thus, each vertex of 75 is contained in
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exactly two maximal transitive vertex sets. This yields M (75, {v}) = 2 for all v € V(T3).
Summarizing, we get M (3,1) = 2. <

Henceforth, fix 8 = 1.5949. We will show that M(n,k) < "% for all n € N and
k € {0,...,n}. To this end, ideally we would like to prove the following statements:
(1) It holds M(n,k) < B"~* for alln >k > 0.
(1) 1t holds M(n,0) < 5™
Unfortunately, we are unable to do prove these directly. The reason is that our proof of
Statement (I) for a fixed pair (n, k) with n > k > 0 depends on the validity of Statement (II)
for values 7 < n. Vice-versa, our proof of the validity of Statement (II) for fixed n € N
depends on the validity of Statement (I).

We will therefore establish the following two lemmas:

» Lemma 8. Let n € N. If M(i1) < 8% and M(ii, k) < B~ holds for all0 < k < 7 < n,
then M(n,k) < "% for0 < k <n.

The proof of Lemma 8 is given in Sect. 4.

» Lemma 9. Let n € N. If M(#) < %, M(i, k) < B F and M(n, k) < B F for all
0 <k <@ <n, then M(n) < ",

The proof of Lemma 9 consists of a lengthy case analysis; we thus defer it to the full version
of this paper.
We are ready to prove Theorem 1.

Proof of Theorem 1. We show that for all n € N, it holds M(n) < 1.5949". Clearly,
M(1) <1<1.5949 and M(1,k) <1 < 1.59491~F for all k € {0,1}. This yields our induction
hypothesis. Lemma 8 and Lemma 9 yield our inductive step and prove the desired bound on
M(n) for all n € N. <

4 Proof of Lemma 8

In this section we prove Lemma 8. For sake of contradiction, suppose that the statement
of the lemma does not hold. Let (T, V') be a minimum counterexample, that is, T is a

tournament and V/ C V(7)) such that |V (T')| — [V’| is minimum and M (T, V') > gIVDI=IV'I,

Throughout this section, write n = |V(T')| and k = |V'| > 0.

We will distinguish several cases and show that M (T,V’) < B"~* for each of them; this
yields the desired contradiction (and hence the truth of the statement of the lemma). In each
case, we will use the minimality of (T, V') to bound M (T, V’) from above.

Case 1: Three vertices in V' form a triangle. Then, as no transitive vertex set contains all
of these three vertices, M (T, V') =0 < gn~F.

Case 2: Two vertices in V’ form a triangle with some vertex v € V(T') \ V'. Any transitive
vertex set that contains all vertices in V' does not contain v. Hence,

M(T,V') = M(T —{v},V') < M(n—1,k) < g * 1 < pnF .

24:5
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Case 3: There is a vertex v € V' that is not contained in any cycle of T. Then, a set
W D V' is a maximal transitive vertex set of T' if and only if W\ {v} 2 V’/\ {v} is a maximal
transitive vertex set of T'— v. This yields

M(T, V') = M(T — {v},V'\ {v}) < M(n—1,k—1) < g% .

» Remark. We remark that it is this case where we rely on the wvalidity of
Lemma 9, namely that M (7)) < 8™ for 7 < n. The reason is that possibly V' \ {v} =0, in
which case k — 1 = 0 and we need that M(n —1,0) < g7~1.

Henceforth, consider pairs (T, V') to which Cases 1-3 do not apply.

» Observation 10. If Cases 1-3 do not apply to (T, V'), then (i) any vertex of V' is contained
in at least one triangle (by Lemma 5), and (ii) any triangle contains at most one vertex
of V'.

» Remark. We remark that with Case 1-3 we can already show a bound of M (T, V") < g5—*
for By = 1.6181 (under the conditions imposed by the lemma). By Observation 10, there is a
vertex v € V'’ that forms a triangle with two vertices wy, wy ¢ V/. Any maximal transitive
vertex set W 2 V' (and thus containing v) cannot contain both w; and wq. Therefore,
wy € W implies wy ¢ W and we get

M(T, V") M(T —{uw }, V") + M(T — {wz}, V' U {w})

<
< Mn—1,k) +Mn-1,k+1)<pprtypp 2,

which is bounded by Sy for 5y = 1.6181.
The subsequent cases allow us to improve Sy = 1.6181 to § = 1.5949.

Case 4: There is a vertex w ¢ V' that is contained in two distinct triangles, both of which
contain a vertex from V' (possibly shared by both triangles). Then we are in one of two
cases, where vertices in V' are circled:

I RA

— W — U1

Let (w,uq,v1), (w,us,ve) be distinct triangles containing w, such that v,vy € V' where
possibly v; = vy. Let W be a maximal transitive vertex set of T' containing V’. Then either
w ¢ W orw e W. Clearly, if w € W then uy,us ¢ W. We therefore have

M(Ta V/) M(T - {w}a V/) + M(T - {ula u2}7 V' {’LU})

<
< Mn—1LK)+Mn—-2k+1)< 5n—k—1 + Bn—k—g.

The last expression on the right-hand side is at most 7%, since 3 > 1.4656.

Case 5: There are vertices v € V'’ and wy,wy € V(T)\ V' that form a triangle, such that w;
also belongs to triangles (w1, u1,us), (w1, us, us) for some uy,us,uz € V(T) \ {v,ws}.
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Then we can assume that uy,ug,us € V(T) \ V', as otherwise Case 2 or Case 4 would apply.
Any transitive vertex set W 2 V' either contains wy or not. If wy € W then wy ¢ W.
Moreover, w; € W implies that either us ¢ W, or us € W but uy,uz ¢ W. Thus,

MLV < MT — {wn}, V') + M(T — fun}, V' U {un})
< M(T —A{wi}, V') + M(T — {wa,uz}, V' U {w})
+M(T — {wa, ur,us}, V' U{wy,uz})
< Mn—1k+Mmn-2k+1)+M(n—3,k+2)

< ankfl + ﬂnfkf?) + /8717]{)75 .
The last expression on the right-hand side is at most "%, since 3 > 1.5702.

Henceforth, we assume that Cases 1-5 do not apply to (7, V’). Then some vertex vy € V'
forms a triangle with some wy,ws € V(T')\ V', as Cases 1-3 do not apply. For i = 1,2, let A;
be the set of triangles ¢; = (u;, v;, w;) that are disjoint from ws_,; and for which T'[{u;,v;,v'}]
is acyclic for all ' € V'. Consequently, all triangles in A; U A, are disjoint from V’, as Case 4
does not apply. Further, all triangles in A; are pairwise edge-disjoint (as Case 5 does not
apply), and therefore intersect only in w;.

To prove an upper bound on M (T, V'), we again distinguish the maximal transitive
vertex sets that contain wy or ws, from those that do not contain either of them. Let W be
a maximal transitive vertex set of T' containing V.

First consider that wy,ws ¢ W. Then, T[W U {w;}] contains a cycle for i = 1,2, by
maximality of W. Thus, by Lemma 5, there is a triangle ¢ = (w;, 21, 22) for some 21, 20 € W.
We have that t € A;, since z1, z3 do not form a triangle with any v € V' as 21,29 € W.
Thus, those W with w;,ws ¢ W can be partitioned into |A;| classes, where the r-th class
contains the sets W that contain the two vertices of the r-th triangle in A;.

To use this argument effectively, we need some further observations about the relation
among triangles in A; U Ag. Consider two triangles t7 = (ul, o], w;), t7 = (ui, vf,w;) € A;:

(RE 1) Y

S ”
u; v;

L
N

Since all triangles that contain w; are pairwise edge-disjoint (as Case 5 does not apply),

o5

the edge between u] and v] has to be directed from v to u; else, w;, u;,v; would form a

17 7
triangle that is not edge-disjoint from the triangle w;, u},v]. Likewise, the edge between u;
and v has to be directed from v] to u;. Ignoring symmetries obtained by swapping the roles
of ¢7 and t{, there are only two possibilities how the two remaining edges (between ul, uf

and v}, vf) can be oriented:

17 7
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ug
v % uy v? ur

2 1 3

'
Ui i

Al

/N

We refer to the situation in the left figure as Case A, and to the situation in the right figure
as Case B. Note that in Case A, (ul,u?,v?) and (v}, uf,v) form triangles; while in Case B,
triangles are formed by (u],uf,v?) and (ul, o], v?).

1?7 (A )

» Observation 11. In Case A, uf,vf € W implies that ul,v] ¢ W. In Case B, ul,vf € W

17 7 (R

implies that vi ¢ W; and uf,vf € W implies that ul ¢ W.

17 7

29 V1

those W with uj,v; € W due to Observation 11.

In Lemma 12, we will show that any two triangles in A; and A, are vertex-disjoint.
Therefore, for each i € A;, every vertex in Vi is not contained in any triangle of Az_;. This
implies that for any pair of triangles ¢t1 € Ay, %2 € Ag the sets Vi, , V4, are disjoint. Altogether,
this means that we can bound the number of maximal transitive vertex sets W 2 V' not
containing w1, wy from above by

Z Z M(T—{wl,wg}—‘/t—W/,VIU{Ul,'LLQ,ull,UIQ})

t=(w1,u1,u2) €A t'=(wa,u],u,)EA2

< Y g VillVul=Gert) < gnoke6 §° golVil § gVl )

tEA] t'EAg teEA, t'EAs

()

Thus, for each t7 = (ul, o], w;) € A; let V;g be the set of vertices that are excluded from

Thus, our goal is now to bound (*). Fix i € {1,2}. Let t%,...,tliAi‘ be an ordering
of the triangles in A; such that |Vir[ < |Vis] for 1 < r < s < |A;|. Then for any pair

r,s € {1,...,A;} with r # s, Observation 11 implies

[Vee 0 {ui, o7} + [Vir 0 {ud, i} =2 .

Thus, for any r < s, since 8 > 1, we get

ﬂ*\Vtgl_i_ﬁfth;‘I < Bf(thgU{ufvvf}l)_~_ﬂ*(\‘4§\{u;ﬁvf}\) .

Thus, we can bound (%) by the case where for any r < s,

[Vie N {ug, o7 } = 2 A [Vir 0 {u,vi}[ =0 .

79 Y1 17 71

Hence, we can assume that |Vir| = 2(r — 1) for all 7 = 1,...,|A;]. We obtain

[A;]-1 00

2
> pvil< ; B*”STZ;;B*”: ﬁf—1 .

teA,

2 4

Consequently, (%) is bounded by (52Bi1) . (Bf_l) = (625—1)2'
Let us now prove that indeed any triangle in A; is disjoint from every triangle in As.

» Lemma 12. Let vy, w1, ws, Ay and Ay be defined as before. Then any triangle in Ay is
vertex-disjoint from every triangle in As.
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Proof. First note that V' is a transitive set, as Case 1 does not apply. Thus, the vertices
in V' admit a topological order such that v, — vy for all v, v, € V' with x > y. Second,
for each vertex z € V(T') \ V' the set V' U {z} is a transitive set, as Case 2 does not apply.
Therefore, the vertices of V(T') \ V' can be partitioned into layers Zi, ..., Z; such that for
each z € Z,, z — v, if and only if s < r.

We claim that for ¢ = 1,2, the vertices of any triangle (ul,v],w;) € A; all belong to the
same layer. This implies in particular that for ¢ = 1,2, all vertices in triangles of A; belong
to the same layer. Since w; and ws are in different layers (as vg — w1, ws — vg), this shows
that any triangle in A; is vertex-disjoint from any triangle in A,.

To show the claim, let ¢ € {1,2} and let (u},v},w;) € A; be a triangle with w; —

ul,ul — vl vl — w;. Suppose that u] € Z,, vl € Z,,w; € Z, for some u,v,w € {1,...,1}.
So we must show that u = v = w to prove the claim.

If w < w then w;,ul, v, form a triangle, contradicting that Case 4 does not apply. If
v > w then w;, v}, v) form a triangle, again contradicting that Case 4 does not apply. Hence,
v <w < wu holds. If v < u then ul,vl,v] form a triangle, contradicting the definition of A,.

s Ui

So indeed u = v = w, and the claim holds. <

To complete the proof of Lemma 8, we must also consider those W 2 V' that contain
exactly one of wq,ws (recall that at most one of wy,ws belongs to W as vg € W, so w; € W
implies ws_; ¢ W for i = 1,2). Overall, if Cases 1-5 do not apply, with the obtained bound
on (%), by (2) we have

4
MV < M= V' U fwa)) £ M(T = {unh. VU () + 570
6—k el heo , BTN
< 2-Mmnh-1,k+1 TR 2./
e ()
The last expression on the right-hand side is at most 5" ~*, since 3 > 1.5703.
This completes the proof of Lemma 8. <

5 Discussion

In this paper we narrowed the gap between the lower and upper bounds for the maximum
number M (n) of minimal FVS in n-vertex tournaments, to 1.5448™ < M (n) < 1.5949™. It
remains to determine the growth of M (n) exactly—Gaspers and Mnich [6] conjectured that
M(n) < 21"/7 ~ 1.5448" for all n € N, and we re-pose this conjecture here.

In a different direction, it would be interesting to prove non-trivial upper bounds of the
form ¢" for some constant ¢ < 2, on the number of minimal FVS in general directed graphs.
As far as we know, currently only a bound of 2™ /y/n is known, implied by Sperner’s Lemma.

Acknowledgements. We thank the anonymous reviewers of an earlier version for helpful
remarks how we could improve the presentation of these results.
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