
Cutwidth: Obstructions and Algorithmic Aspects∗†

Archontia C. Giannopoulou1, Michał Pilipczuk2,
Jean-Florent Raymond3, Dimitrios M. Thilikos4, and
Marcin Wrochna5

1 Technische Universität Berlin, Berlin, Germany
archontia.giannopoulou@tu-berlin.de

2 Institute of Informatics, University of Warsaw, Poland
michal.pilipczuk@mimuw.edu.pl

3 Institute of Informatics, University of Warsaw, Poland; and
AlGCo project team, CNRS, LIRMM, Montpellier, France
jean-florent.raymond@mimuw.edu.pl

4 AlGCo project team, CNRS, LIRMM, Montpellier, France; and
Department of Mathematics, National and Kapodistrian University of Athens,
Greece
sedthilk@thilikos.info

5 Institute of Informatics, University of Warsaw, Poland
m.wrochna@mimuw.edu.pl

Abstract
Cutwidth is one of the classic layout parameters for graphs. It measures how well one can order
the vertices of a graph in a linear manner, so that the maximum number of edges between any
prefix and its complement suffix is minimized. As graphs of cutwidth at most k are closed under
taking immersions, the results of Robertson and Seymour imply that there is a finite list of
minimal immersion obstructions for admitting a cut layout of width at most k. We prove that
every minimal immersion obstruction for cutwidth at most k has size at most 2O(k3 log k).

As an interesting algorithmic byproduct, we design a new fixed-parameter algorithm for
computing the cutwidth of a graph that runs in time 2O(k2 log k) · n, where k is the optimum
width and n is the number of vertices. While being slower by a log k-factor in the exponent than
the fastest known algorithm, due to Thilikos, Bodlaender, and Serna [17, 18], our algorithm has
the advantage of being simpler and self-contained; arguably, it explains better the combinatorics
of optimum-width layouts.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases cutwidth, obstructions, immersions, fixed-parameter tractability

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.15

∗ A full version of the paper is available at http://arxiv.org/abs/1606.05975.
† This work was partially done while A.C. Giannopoulou was holding a post-doc position at Warsaw

Center of Mathematics and Computer Science. The research of A.C. Giannopoulou has been supported
by the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (ERC consolidator grant DISTRUCT, agreement No 648527). The research of
Mi. Pilipczuk and M. Wrochna is supported by the Polish National Science Center grant SONATA
UMO-2013/11/D/ST6/03073. The research of J.-F. Raymond is supported by the Polish National
Science Center grant PRELUDIUM UMO-2013/11/N/ST6/02706. Mi. Pilipczuk is supported by the
Foundation for Polish Science (FNP) via the START stipend programme.

© Archontia C. Giannopoulou, Michał Pilipczuk, Jean-Florent Raymond, Dimitrios M. Thilikos,
and Marcin Wrochna;
licensed under Creative Commons License CC-BY

11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin; Article No. 15; pp. 15:1–15:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.15
http://arxiv.org/abs/1606.05975
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2 Cutwidth: Obstructions and Algorithmic Aspects

1 Introduction

The cutwidth of a graph is defined as the minimum possible width of a linear ordering of its
vertices, where the width of an ordering σ is the maximum, among all the prefixes of σ, of
the number of edges that have exactly one vertex in a prefix. Due to its natural definition,
cutwidth has various applications in a range of practical fields of computer science: whenever
data is expected to be roughly linearly ordered and dependencies or connections are local,
one can expect the cutwidth of the corresponding graph to be small. These applications
include circuit design, graph drawing, bioinformatics, and text information retrieval; we refer
to the survey of layout parameters of Díaz, Petit, and Serna [5] for a broader discussion.

As finding a layout of optimum width is NP-hard [7], the algorithmic and combinatorial
aspects of cutwidth were intensively studied. There is a broad range of polynomial-time
algorithms for special graph classes [10, 11, 21], approximation algorithms [14], and fixed-
parameter algorithms [17, 18]. In particular, Thilikos, Bodlaender, and Serna [17, 18]
proposed a fixed-parameter algorithm for computing the cutwidth of a graph that runs1
in time 2O(k2) · n, where k is the optimum width and n is the number of vertices. Their
approach is to first compute the pathwidth of the input graph, which is never larger than
the cutwidth. Then, the optimum layout can be constructed by an elaborate dynamic
programming procedure on the obtained path decomposition. To upper bound the number
of relevant states, the authors had to understand how an optimum layout can look in a given
path decomposition. For this, they borrow the technique of typical sequences of Bodlaender
and Kloks [3], which was introduced for a similar reason, but for pathwidth and treewidth
instead of cutwidth.

Since the class of graphs of cutwidth at most k is closed under immersions, and the
immersion order is a well-quasi ordering of graphs2 [15], it follows that for each k there exists
a finite obstruction set Lk of graphs such that a graph has cutwidth at most k if and only if
it does not admit any graph from Lk as an immersion. However, this existential result does
not give any hint on how to generate, or at least estimate the sizes of the obstructions. The
sizes of obstructions are important for efficient treatment of graphs of small cutwidth; this
applies also in practice, as indicated by Booth et al. [4] in the context of VLSI design.

The estimation of sizes of minimal obstructions for several graph parameters has been
studied before. For minor-closed parameters pathwidth and treewidth, Lagergren [13] showed
that any minimal minor obstruction to admitting a path decomposition of width k has size at
most single-exponential in O(k4), whereas for treewidth he showed an upper bound double-
exponential in O(k5). Less is known about immersion-closed parameters, like cutwidth.
Govindan and Ramachandramurthi [9] showed that the number of minimal immersion
obstructions for the class of graphs of cutwidth at most k is at least 3k−7+1. The construction
in [9] exemplifies minimal obstructions for cutwidth at most k with (3k−5 − 1)/2 vertices.
To the best of our knowledge, nothing was known about upper bounds for the cutwidth case.

Results on obstructions. Our main result concerns the sizes of obstructions for cutwidth.

I Theorem 1. Suppose a graph G has cutwidth larger than k, but every graph with fewer
vertices or edges (strongly) immersed in G has cutwidth at most k. Then G has at most
2O(k3 log k) vertices and edges.

1 Thilikos, Bodlaender, and Serna [17, 18] do not specify the parametric dependence of the running time
of their algorithm. A careful analysis of their algorithm yields the above claimed running time bound.

2 All graphs considered in this paper may have parallel edges, but no loops.

A.C. Giannopoulou, Mi. Pilipczuk, J.-F. Raymond, D.M. Thilikos, and M. Wrochna 15:3

The above result immediately gives the same upper bound on the sizes of graphs from the
minimal obstruction sets Lk as they satisfy the prerequisites of Theorem 1. This somewhat
matches the (3k−5 − 1)/2 lower bound of Govindan and Ramachandramurthi [9].

Our approach for Theorem 1 follows the technique used by Lagergren [13] to prove
that minimal minor obstructions for pathwidth at most k have sizes single-exponential in
O(k4). Intuitively, the idea of Lagergren is to take an optimum decomposition for a minimal
obstruction, which must have width k + 1, and to assign to each prefix of the decomposition
one of finitely many “types”, so that two prefixes with the same type “behave” in the same
manner. If there were two prefixes, one being shorter than the other, with the same type,
then one could replace one with the other, thus obtaining a smaller obstruction. Hence, the
upper bound on the number of types, being double-exponential in O(k4), gives some upper
bound on the size of a minimal obstruction. This upper bound can be further improved
to single-exponential by observing that types are ordered by a natural domination relation,
and the shorter a prefix is, the weaker is its type. An important detail is that one needs to
make sure that the replacement can be modeled by minor operations. For this, Lagergren
uses the notion of linked path decompositions (a weaker variant of lean path decompositions;
cf. [19, 1]).

To prove Theorem 1, we perform a similar analysis of prefixes of an optimum ordering of
a minimal obstruction. We show that prefixes can be categorized into a bounded number of
types, depending on their “behavior”. Provided two prefixes with equally strong type appear
one after the other, we can “unpump” the part of the graph in their difference.

To make sure that unpumping is modeled by taking an immersion, we define linked
orderings for cutwidth and reprove the analogue of the result of Thomas [19] (see [1] for
simplified proofs): there is always an optimum-width ordering that is linked. We remark
this already follows from more general results on submodular functions: the same is true
for parameters like linear rank-width, as observed by Kanté and Kwon [12], which in turns
follows from the proof of an analogous theorem of Geelen et al. [8] that applies to branch-
decompositions, and thus, e.g., to parameters known as branch-width and carving-width.

The proof of the upper bound on the number of types essentially boils down to the
following setting. We are given a graph G and a subset X of vertices, such that at most `
edges have exactly one endpoint in X. The question is how X can look like in an optimum-
width ordering of G. We prove that there is always an ordering where X is split into at most
O(k`) blocks, where k is the optimum width. This allows us to store the relevant information
on the whole X in one of a constant number of types (called bucket interfaces). The swapping
argument used in this proof holds the essence of the typical sequences technique of Bodlaender
and Kloks [3], while being, in our opinion, more natural and easier to understand.

As an interesting byproduct, we can also use our understanding to treat the problem
of removing edges to get a graph of small cutwidth. More precisely, for parameters w, k,
we consider the class of all graphs G, such that w edges can be removed from G to obtain
a graph of cutwidth at most k. We prove that for every constant k, the minimal (strong)
immersion obstructions for this class have sizes bounded linearly in w. Moreover we give an
exponential lower bound to the number of these obstructions. Due to the auxiliary character
of these results, we defer the precise statement and discussion to the full version of this paper.

Algorithmic results. Consider the following “compression” problem: given a graph G and
its ordering σ of width `, we would like to construct, if possible, a new ordering of the vertices
of G of width at most k, where k < `. Then the types defined above essentially match states
that would be associated with prefixes of σ in a dynamic programming algorithm solving this

IPEC 2016

15:4 Cutwidth: Obstructions and Algorithmic Aspects

problem. Alternatively, one can think of building an automaton that traverses the ordering
σ of width ` while constructing an ordering of G of width at most k. Hence, our upper
bound on the number of types can be directly used to limit the state space in such a dynamic
programming procedure/automaton, yielding an FPT algorithm for the above problem.

With this result in hand, it is not hard to design of an exact FPT algorithm for cutwidth.
One could introduce vertices one by one to the graph, while maintaining an ordering of
optimum width. Each time a new vertex is introduced, we put it anywhere into the ordering,
and it can be argued that the new ordering has width at most three times larger than
the optimum. Then, the dynamic programming algorithm sketched above can be used to
“compress” this approximate ordering to an optimum one in linear FPT time.

The above approach yields a quadratic algorithm. To match the optimum, linear running
time, we use a similar trick as Bodlaender in his linear-time algorithm for computing the
treewidth of the graph [2]. Namely, we show that instead of processing vertices one by one,
we can proceed recursively by removing a significant fraction of all the edges at each step,
so that their reintroduction increases the width by a factor of at most two. We then run
the compression algorithm on the obtained 2-approximate ordering to get an optimum one.
Since we remove a large portion of the graph at each step, the recursive equation on the
running time solves to a linear function, instead of quadratic. This gives the following.

I Theorem 2. There exists an algorithm that, given an n-vertex graph G and an integer
k, runs in time 2O(k2 log k) · n and either correctly concludes that the cutwidth of G is larger
than k, or outputs an ordering of G of width at most k.

The algorithm of Theorem 2 has running time slightly larger than that of Thilikos,
Bodlaender, and Serna [17, 18]. The difference is the log k factor in the exponent, the
reason for which is that we use a simpler bucketing approach to bound the number of
states, instead of the more entangled, but finer, machinery of typical sequences. We believe
the main strength of our approach lies in its explanatory character. Instead of relying
on algorithms for computing tree or path decompositions, which are already difficult by
themselves, and then designing a dynamic programming algorithm on a path decomposition,
we directly approach cutwidth “via cutwidth”, and not “via pathwidth”. That is, the dynamic
programming procedure for computing the optimum cutwidth ordering on an approximate
cutwidth ordering is technically far simpler and conceptually more insightful than performing
the same on a general path decomposition. We also show that the reduction-by-a-large-
fraction trick of Bodlaender [2] can be performed also in the cutwidth setting, yielding a
self-contained, natural, and understandable algorithm.

2 Preliminaries

We denote the set of non-negative integers by N and the set of positive integers by N+. For
r, s ∈ N with r ≤ s, we denote [r] = {1, . . . , r} and [r, s] = {r, . . . , s}. Notice that [0] = ∅.

Graphs. All graphs considered in this paper are undirected, without loops, and may have
multiple edges. The vertex and edge sets of a graph G are denoted by V (G) and E(G),
respectively. For disjoint X,Y ⊆ V (G), by EG(X,Y) we denote the set of edges of G with
one endpoint in X and one in Y . If S ⊆ V (G), then we denote δG(S) = |EG(S, V (G) \ S)|.
We drop the subscript if it is clear from the context. Every partition (A,B) of V (G) is called
a cut of G; the size of the cut (A,B) is δ(A).

A.C. Giannopoulou, Mi. Pilipczuk, J.-F. Raymond, D.M. Thilikos, and M. Wrochna 15:5

Cutwidth. Let G be a graph and σ be an ordering of V (G). For u, v ∈ V (G), we write
u <σ v if u appears before v in σ. Given two disjoint sequences σ1 = 〈x1, . . . , xr1〉
and σ2 = 〈y1, . . . , yr2〉 of vertices in V (G), we define their concatenation as σ1 ◦ σ2 =
〈x1, . . . , xr1 , y1, . . . , yr2〉. For X ⊆ V (G), let σX be the ordering of X induced by σ, i.e., the
ordering obtained from σ if we remove the vertices that do not belong in X. For a vertex v we
denote by V σv the set {u ∈ V (G) | u ≤σ v}. A σ-cut is any cut of the form (V σv , V (G) \ V σv)
for v ∈ V (G). The cutwidth of an ordering σ of G is defined as cwσ(G) = maxv∈V (G) δ(V σv).
The cutwidth of G, cw(G), is the minimum of cwσ(G) over all possible orderings of V (G).

Obstructions. Let ≤ be a partial order on graphs. We say that G′ � G if G′ ≤ G and G′ is
not isomorphic to G. A graph class G is closed under ≤ if whenever G′ ≤ G and G ∈ G, we
also have that G′ ∈ G. Given a partial order ≤ and a graph class G closed under ≤, we define
the (minimal) obstruction set of G w.r.t. ≤, denoted by obs≤(G), as the set containing all
graphs where the following two conditions hold: O1: G 6∈ G, i.e., G is not a member of G,
and O2: for each G′ with G′ � G, we have that G′ ∈ G.

We say that a set of graphs H is a ≤-antichain if it does not contain any pair of
comparable elements wrt. ≤. By definition, for any class G closed under ≤, the set obs≤(G)
is an antichain.

Immersions. Let H and G be graphs. We say that G contains H as an immersion if there
is a pair of functions (φ, ψ), called an H-immersion model of G, such that φ is an injection
from V (H) to V (G) and ψ maps every edge uv of H to a path of G between φ(u) and φ(v)
so that different edges are mapped to edge-disjoint paths. Every vertex in the image of φ
is called a branch vertex. If we additionally demand that no internal vertex of a path in
ψ(E(H)) is a branch vertex, then we say that (φ, ψ) is a strong H-immersion model and H is
a strong immersion of G. We denote by H ≤i G (H ≤si G) the fact that H is an immersion
(strong immersion) of G; these are partial orders. Clearly, for any two graphs H and G, if
H ≤si G then H ≤i G. This implies the following observation:

I Observation 3. If G is a graph class closed under ≤i, then obs≤i(G) ⊆ obs≤si(G).

Robertson and Seymour proved in [15] that every ≤i-antichain is finite and conjectured
the same for ≤si. It is well-known that for every k ∈ N, the class Ck of graphs of cutwidth at
most k is closed under immersions. It follows from the results of [15] that obs≤i(Ck) is finite;
the goal of this paper is to provide good estimates on the sizes of graphs in obs≤si(Ck). As
the cutwidth of a graphs is the maximum cutwidth of its connected components, it follows
that graphs in obs≤si(Ck) are connected. Moreover, every graph in obs≤si(Ck) has cutwidth
exactly k + 1, because the removal of any of its edges decreases its cutwidth to at most k.

3 Bucket interfaces

Let G be a graph and σ be an ordering of V (G). For a set X ⊆ V (G), the X-blocks in σ are
the maximal subsequences of consecutive vertices of σ that belong to X. Suppose (A,B) is a
cut of G. Then we can write σ = b1 ◦ . . . ◦ bp, where b1, . . . , bp are the A- and B-blocks in σ;
these will be called jointly (A,B)-blocks. The next lemma is the cornerstone of our approach:
we prove that given a graph G and a cut (A,B) of G, there exists an optimum cutwidth
ordering of G where number of blocks depends only on the cutwidth and the size of (A,B).

I Lemma 4. Let ` ∈ N+ and G be a graph. If (A,B) is a cut of G of size `, then there is an
optimum cutwidth ordering σ of V (G) with at most (2`+ 1) · (2cw(G) + 3) + 2` (A,B)-blocks.

IPEC 2016

15:6 Cutwidth: Obstructions and Algorithmic Aspects

Proof. Let σ be an optimum cutwidth ordering such that, subject to the width being
minimum, the number of (A,B)-blocks it defines is also minimized. Let σ = b1 ◦ b2 ◦ · · · ◦ br,
where b1, b2, . . . , br are the (A,B)-blocks of σ. If σ defines less than three blocks, then the
claim already follows, so let us assume r ≥ 3.

Consider any ordering σ′ obtained by swapping two blocks, i.e., σ′ = b1 ◦ · · · ◦ bj−1 ◦ bj+1 ◦
bj ◦ bj+2 . . . br, for some j ∈ [r − 1]. Observe that since the blocks b1, . . . , br alternate as
A-blocks and B-blocks, the ordering σ′ has a strictly smaller number of blocks; indeed, either
j − 1 ≥ 1, in which case bj−1 ◦ bj+1 defines a single block of σ′, or j = 1 and hence j + 2 ≤ r,
in which case bj ◦ bj+2 does. Therefore, by choice of σ, for each j ∈ [r − 1], swapping bj and
bj+1 in σ must yield an ordering with strictly larger cutwidth.

We call a block free if it does not contain any endpoint of the cut edges EG(A,B). We
now prove that any sequence of consecutive free blocks in σ has at most 2cw(G) + 3 blocks.
Since the cut (A,B) has size `, there are at most 2` blocks that are not free. This implies
the claimed bound on the total number of all blocks in σ.

Suppose, to the contrary, that there exists a sequence of q > 2cw(G) + 3 consecutive free
blocks in σ. Let these blocks be br, br+1, . . . , bs, where s− r + 1 = q. For j ∈ [r, s− 1], we
define µ(j) to be the size of the cut between all vertices inside or preceding the vertices of
block bj and all vertices inside or following the vertices of block bj+1 in σ; see Figure 1.

I Claim 5. For all j ∈ [r + 1, . . . , s− 2], we have that µ(j − 1) > µ(j) or µ(j) < µ(j + 1).

Proof. Suppose that for some j ∈ [r+ 1, s− 2], µ(j) ≥ max(µ(j− 1), µ(j+ 1)). We will then
show that the ordering σ′ obtained by swapping the blocks bj and bj+1 still has optimum
cutwidth, a contradiction to the choice of σ. Notice that for every vertex v preceding all
vertices of bj or succeeding all vertices of bj+1, δ(V σ

′

v) = δ(V σv). Thus, it remains to show
that for any vertex v belonging to the block bj or to the block bj+1, also δ(V σ

′

v) ≤ δ(V σv).
Let pj be the number of edges of G with one endpoint in the block bj and the other

endpoint preceding (in σ) all vertices of bj . Let also sj be the number of edges of G with one
endpoint in bj and the other endpoint succeeding (in σ) all vertices of bj (and hence succeeding
all vertices of block bj+1, since both bj and bj+1 are free). Notice that µ(j) = µ(j−1)−pj+sj
and recall that µ(j) ≥ µ(j − 1). This yields that sj ≥ pj .

Similarly, let pj+1 be the number of edges of G with one endpoint in bj+1 and the other
endpoint preceding all vertices of the block bj+1 (and, in particular, all vertices of block bj).
Let also sj+1 be the number of edges of G with one endpoint in bj+1 and the other endpoint
succeeding all vertices of block bj+1. Again, we have µ(j + 1) = µ(j) − pj+1 + sj+1 and
µ(j) ≥ µ(j + 1). This yields that pj+1 ≥ sj+1.

Let v be a vertex of the block bj . Recall that the blocks bj and bj+1 are free and thus,
there are no edges between them. Observe then that δ(V σ′v) = δ(V σv) + sj+1 − pj+1 ≤ δ(V σv).
Symmetrically, for any vertex v in bj+1, observe that δ(V σ′v) = δ(V σv) + pj − sj ≤ δ(V σv).
Thus, cwσ′(G) ≤ cwσ(G) = cw(G), a contradiction. J

Claim 5 shows that for all j ∈ [r + 1, s− 2], we have µ(j − 1) > µ(j) or µ(j) < µ(j + 1).
It follows that any non-decreasing pair µ(j − 1) ≤ µ(j) must be followed by an increasing
pair µ(j) < µ(j + 1). Hence, if jmin is the minimum index such that µ(jmin) ≤ µ(jmin + 1),
then the sequence µ(j) has to be strictly decreasing up to jmin and strictly increasing from
jmin + 1 onward. Since µ(j) ≤ cw(G) for all j, the length q of the sequence of consecutive
free blocks cannot be longer than 2cw(G) + 3 in total, concluding the proof. J

We use the above lemma to bound the number of “types” of prefixes in graph orderings.
To describe such a prefix, i.e., one side of a cut in a graph, we use the following definition.

A.C. Giannopoulou, Mi. Pilipczuk, J.-F. Raymond, D.M. Thilikos, and M. Wrochna 15:7

· · · · · ·
block j − 1

µ(j − 1)

block j

µ(j)

block j + 1

µ(j + 1)

block j + 2

Figure 1 A cut (A, B) is highlighted (blue, red), with the corresponding blocks underlined and
cuts between them marked with dashed lines. Edges counted as pj and sj are thickened.

I Definition 6. A k-boundaried graph is a pair G = (G, x̄) where G is a graph and
x̄ = (x1, . . . , xk) is a k-tuple of the graph’s boundary vertices (ordered, not necessarily distinct).
The extension of G is the graph G∗ obtained from G by adding k new vertices x′1, . . . , x′k and
edges x1x

′
1, . . . , xkx

′
k. The join A⊕B of two k-boundaried graphs A = (A, x̄),B = (B, ȳ) is

the graph obtained from the disjoint union of A and B by adding an edge xiyi for i ∈ [k].

From Lemma 4 we derive that for any given cut (A,B) of size ` of a graph G with
cw(G) ≤ k, there is an optimum cutwidth ordering in which the vertices of A occur in O(k`)
blocks. Our next goal is to show that the only information about A that can affect the
cutwidth of G is: the placing of the endpoints of each cutedge (xi and x′i) into blocks, and
the cutwidth of each block (as an induced subgraph of A or A∗). Recall that for an ordering
σ of V (G), σ-cuts are cuts of the form (V σv , V (G) \ V σv), for v ∈ V (G).

I Definition 7. Let G be a graph and σ be an ordering of its vertices. An `-bucketing of σ
is a function T : V (G)→ [`] such that T (u) ≤ T (v) for any u appearing before v in σ. For
every i ∈ [`], the set T−1(i) will be called a bucket; a bucket is naturally ordered by σ. For
every bucket T−1(i), i ∈ [`], let cuts(G, σ, T, i) be the family of σ-cuts containing on one
side all vertices of buckets appearing before i and a prefix (in σ) of the i-th bucket. For
an ordering σ of the vertices of a graph G, define the width of the bucket i, i ∈ [`], as the
maximum width of any cut in the family cuts(G, σ, T, i). Formally,

cuts(G, σ, T, i) =
{(
T−1([1, i− 1]) ∪ L, R ∪ T−1([i+ 1, `])

)
:

(L,R) is a σ-cut of T−1(i)
}
,

width(G, σ, T, i) = max { |EG(L,R)| : (L,R) ∈ cuts(G, σ, T, i) } .

Notice that every σ-cut of G is in cuts(G, σ, T, i) for at least one bucket i ∈ [`]; since cwσ(G)
is the maximum of |EG(L,R)| over σ-cuts (L,R), we have

cwσ(G) = max
i∈[`]

width(G, σ, T, i). (1)

For two k-boundaried graphs A = (A, x̄),B = (B, ȳ), we slightly abuse notation and
understand the edges x1x

′
1, . . . , xkx

′
k in A∗ to be the same as y′1y1, . . . , y

′
kyk in B∗ and as

x1y1, . . . , xkyk in A⊕B. That is, for an ordering σ of A⊕B with `-bucketing T , we define
T |A∗(v) to be T (v) for v ∈ V (A) and T (yi) for v = x′i. We define σ|A∗ as an ordering that
orders x′i just as σ orders yi, with the order between x′i and x′j chosen arbitrarily when
yi = yj . The following lemma shows that if an `-bucketing respects the sides of a cut, then
the width of any bucket can be computed as the sum of contributions of the sides.

IPEC 2016

15:8 Cutwidth: Obstructions and Algorithmic Aspects

I Lemma 8 (♠3). Let k, ` be positive integers and A = (A, x̄),B = (B, ȳ) be two k-boundaried
graphs. Let also σ be a vertex ordering of A ⊕ B with `-bucketing T . If T−1(i) does not
contain any vertex of A, for some i ∈ [`], that is, T−1(i) ∩ V (A) = ∅, then it holds that
width(A⊕B, σ, T, i) = width(A, σ|A, T |A, i) + width(B∗, σ|B∗ , T |B∗ , i).

Replacing the roles of A and B above, we obtain that if T−1(i) does not contain any
vertex of B, then width(A ⊕ B, σ, T, i) = width(A∗, σ|A∗ , T |A∗ , i) + width(B, σ|B , T |B , i).
Intuitively, this implies that the cutwidth of A⊕B depends on A only in the widths of each
block relative to A and A∗ (in any bucketing where buckets are either A-blocks or B-blocks).
Therefore, replacing A with another boundaried graph whose extension has an ordering and
bucketing with the same widths preserves cutwidth (as long as endpoints of the cut edges
are placed in the same buckets too). This is formalized in the next definition.

I Definition 9. For k, ` ∈ N, a (k,`)-bucket interface consists of functions:
b, b′ : [k]→ [`] identifying the buckets which contain xi and x′i, respectively and
µ, µ∗ : [`]→ [0, k] corresponding to the widths of buckets.

A k-boundaried graph G conforms with a (k, `)-bucket interface if there exists an ordering σ
of the vertices of G∗ and an `-bucketing T of G∗ such that:

T (v) is odd for v ∈ V (G) and even for v ∈ {x′1, . . . , x′k},
T (xi) = b(i) and T (x′i) = b′(i), for each i ∈ [k],
width(G, σ|G, T |G, j) ≤ µ(j), for each j ∈ [`],
width(G∗, σ, T, j) ≤ µ∗(j), for each j ∈ [`].

I Observation 10. For all k, ` ∈ N+ there are ≤ 22(k log `+` log(k+1)) (k, `)-bucket interfaces.

We call two k-boundaried graphs G1,G2 (k,`)-similar if the sets of (k, `)-bucket interfaces
they conform with are equal. The following lemma subsumes the above ideas. The proof
follows easily from Lemma 8 and the fact that cwσ(G) = maxi∈[`] width(G, σ, T, i) (Eq. (1)).

I Theorem 11 (♠). Let k, r be two positive integers. Let also A1 and A2 be two k-boundaried
graphs that are (k, `)-similar, where ` = (2k + 1) · (2r + 4). Then for any k-boundaried graph
B where cw(A1 ⊕B) ≤ r, it holds that cw(A2 ⊕B) = cw(A1 ⊕B).

4 Obstruction sizes and linked orderings

In this section we establish the main result on sizes of obstructions for cutwidth. We first
define linked orderings and prove that there is always an optimum ordering that is linked.

I Definition 12 (linked ordering). An ordering σ of V (G) is linked if for any two vertices u ≤σ
u′, there are min{δ(V σv) | u ≤σ v ≤σ u′} edge-disjoint paths between V σu and V (G)\V σu′ in G.

I Lemma 13 ([8, 12]). For every graph G, there is a linked ordering σ of V (G) with
cwσ(G) = cw(G).

Proof. Without loss of generality, we may assume that the graph is connected. Let σ be an
optimum cutwidth ordering of V = V (G). Subject to the optimality of σ, we choose σ so
that

∑
v∈V δ(V σv) is minimized. We prove that σ defined in this manner is in fact linked.

Assume the contrary. Then by Menger’s theorem, there exist vertices u <σ u′ in V and
i ∈ N such that δ(V σv) > i for every u ≤σ v ≤σ u′, but a minimum cut (A,B) of G with

3 Proofs of statements marked with ♠ are ommited from this extended abstract. The full version of the
paper is available in http://arxiv.org/abs/1606.05975.

http://arxiv.org/abs/1606.05975

A.C. Giannopoulou, Mi. Pilipczuk, J.-F. Raymond, D.M. Thilikos, and M. Wrochna 15:9

u u′A1 A2 ∪B1 B2

u u′A1 A2 B1 B2

Figure 2 An ordering of vertices with the minimum cut (A, B) between A1 and B2 of size i high-
lighted in blue and red. Below, the modified ordering, with cutwidth bounded using submodularity.

V σu ⊆ A and V \ V σu′ ⊆ B has size δ(A) ≤ i. We partition A into sets A1 and A2, where
A1 = V σu and A2 = A \ A1, and we partition B into sets B1 and B2, where B2 = V \ V σu′
and B1 = B \ B2 (see Figure 2). Notice that A2 = A \ V σu = {v | u <σ v ≤σ u′} ∩ A and
that B1 = B \ (V \ V σu′) = {v | u <σ v ≤σ u′} ∩B. Let σ′ be the ordering of V obtained by
concatenating σ|A1 , σ|A2 , σ|B1 , and σ|B2 .

We prove that δ(V σ′v) ≤ δ(V σv), for every v ∈ V . Observe first that for every vertex
v ∈ A1∪B2 it holds that V σ′v = V σv and thus, δ(V σ′v) = δ(V σv). Let now v ∈ A2. Then V σ

′

v =
V σv ∩A. By the submodularity of cuts it follows that δ(V σv ∪A) + δ(V σv ∩A) ≤ δ(A) + δ(V σv).
Notice that (V σv ∪A, V \ (V σv ∪A)) is also a cut separating A1 = V σu and B2 = V \V σu′ . From
the minimality of (A,B) it follows that δ(A) ≤ δ(V σv ∪ A). Therefore, δ(V σv ∩ A) ≤ δ(V σv).
As V σ′v = V σv ∩A, we obtain that δ(V σ′v) ≤ δ(V σv).

Symmetrically, let now v ∈ B1. Then V σ
′

v = V σv ∪A. By the submodularity of cuts we
have δ(V σv ∪ A) + δ(V σv ∩ A) ≤ δ(A) + δ(V σv). Notice that (V σv ∩ A, V \ (V σv ∩ A)) is a cut
separating A1 and B2. From the minimality of (A,B) it follows that δ(A) ≤ δ(V σv ∩ A).
Therefore, δ(V σv ∪A) ≤ δ(V σv). As V σ′v = V σv ∪A, we obtain that δ(V σ′v) ≤ δ(V σv).

Thus, δ(V σ′v) ≤ δ(V σv) ≤ cw(G) for every v ∈ V , and hence cwσ′(G) = cw(G). Finally,
note that δ(V σ′v) = δ(A) ≤ i < δ(V σv) for the last vertex v in A. Thus

∑
v δ(V σ

′

v) <∑
v δ(V σv), contradicting the choice of σ. Therefore, σ is a linked ordering of V with

cwσ(G) = cw(G). J

The following theorem is the technical counterpart of Theorem 1. Its proof is based
on Theorem 11, Lemma 13, Observation 10 and the idea of “unpumping” repeating types,
presented in the introduction. The linkedness is used to make sure that within the unpumped
segment of the ordering, one can find the maximum possible number of edge-disjoint paths
between the parts of the graph on the left side and on the right side of the segment. This
ensures that the graph obtained from unpumping can be immersed in the original one.

I Theorem 14 (♠). Let k be a positive integer. If G ∈ obs≤si(Ck), then |V (G)| ≤ Nk+1,
where N = 22((k+1) log `+` log(k+2)) + 2 and ` = (2k + 3) · (2k + 6).

Theorem 14 provides an upper bound on the number of vertices of a graph in obs≤si(Ck).
Observe that since such a graph has cutwidth k + 1, each of its vertices has degree at
most 2(k + 1). It follows that any graph from obs≤si

(Ck) has 2O(k3 log k) vertices and edges.
Finally, by Observation 3 we have obs≤i(Cq) ⊆ obs≤si(Cq), so the same bound holds also for
immersions instead of strong immersions. This concludes the proof of Theorem 1.

5 An algorithm for computing cutwidth

In this section we present an exact FPT algorithm for computing the cutwidth of the graph.
First, we need to give a dynamic programming algorithm that given an approximate ordering
σ of width r, finds, if possible, an ordering of width at most k, where k ≤ r is given.

IPEC 2016

15:10 Cutwidth: Obstructions and Algorithmic Aspects

I Lemma 15 (♠). Let r ∈ N+. Given a graph G and an ordering σ of its vertices with
cwσ(G) ≤ r, an ordering τ of the vertices of G with cwτ (G) = cw(G) can be computed in
time 2O(r2 log r) · |V (G)|.

The main ingredient in the proof of Lemma 15 is the insight given by Lemma 4: any
set X with δ(X) ≤ r, in particular any prefix of σ, can be assumed to be split into at
most O(kr) blocks in some optimum ordering τ . A closer look into the proof of Lemma 4
shows that a stronger statement is true: there is some optimum ordering τ such that for
every prefix X of σ, there are at most O(kr) X-blocks in σ. This shows that an optimum
ordering τ can be constructed by a dynamic programming procedure that scans σ from left
to right while constructing an optimum ordering, maintained as a mapping of the already
scanned vertices into at most ` blocks. The description of such a partial ordering is an
enrichment of a (k, `)-bucket interface that we call a (k, `)-bucket profile. In such a profile, we
additionally store some information about the sizes of cuts which is needed to make sure that
the constructed ordering has width at most k. With this understanding, the construction of
the dynamic programming algorithm is a routine, though technical task.

Having the algorithm of Lemma 15, a standard application of the iterative compression
technique immediately yields a 2O(k2 log k) · n2 time algorithm for computing cutwidth, as
sketched in Section 1. Simply add the vertices of G one by one, and apply the algorithm of
Lemma 15 at each step. However, we can make the dependence on n linear by adapting the
approach of Bodlaender [2]; more precisely, we make bigger steps. Such a big step consists of
finding a graph H that can be immersed in the input graph G, which is smaller by a constant
fraction, but whose cutwidth is not much smaller. This is formalized in the next lemma.

I Lemma 16 (♠). There is an algorithm that given a positive integer k and a graph G, works
in time O(k2 · |V (G)|) and either concludes that cw(G) > k, or finds a graph H immersed in
G such that |E(H)| ≤ |E(G)| · (1− 1/(2k+ 1)4(k+1)+3) and cw(G) ≤ 2cw(H). Furthermore,
in the latter case, given an ordering σ of the vertices of H, an ordering τ of the vertices of
G with cwτ (G) ≤ 2cwσ(H) can be computed in O(|V (G)|) time.

The proof starts by iteratively dissolving vertices of degree two with both incident edges
going to different neighbors; this operation preserves the cutwidth of the graph. Then, if a
constant fraction (depending on k) of vertices has degree equal to one, we can find a large
matching of edges incident to degree-1 vertices. If we remove them, the size of the graph
drops by a constant fraction, but reintroducing them increases the cutwidth by at most one.

Otherwise, we arrive at the situation when there are no vertices of degree 2, apart from
the ones with only one neighbor, and there is only a very small fraction of vertices of degree
one. Our goal now is to find a large (constant fraction of |E(G)|, where the constant depends
on k) packing of edge-disjoint cycles in G. If we succeed in this, then an easy charging
argument shows that removing one edge from each of these cycles yields a graph H with
cw(H) ≥ cw(G)/2, whereas the size of H is smaller than G by a constant fraction. Now, if
there are many vertices of degree 2 with both incident edges going to the same neighbor,
then we have a large packing of 2-cycles and we are done. So we can assume that the total
number of vertices of degree 1 and 2 is only a small fraction of the total size of the graph.

At this point, we greedily find a large family of disjoint balls of radius 2(k + 1) (sets of
vertices at distance at most 2(k + 1) from some central vertex), each containing no vertex of
degree 1 or 2. If any of these balls induced a tree in G, it would contain a full binary tree of
height 2(k + 1); but such a binary tree is known to have cutwidth larger than k by itself,
allowing us to conclude that cw(G) > k. Finally, if every ball contains a cycle, then we have
found a large packing of vertex-disjoint, hence also edge-disjoint cycles.

A.C. Giannopoulou, Mi. Pilipczuk, J.-F. Raymond, D.M. Thilikos, and M. Wrochna 15:11

We are now ready to put all the pieces together and prove Theorem 2: given an n-vertex
graph G and an integer k, one can in time 2O(k2 log k) · n either conclude that cw(G) > k,
or output an ordering of G of width at most k. The proof follows the same recursive
Reduction&Compression scheme as the algorithm of Bodlaender [2]. By applying Lemma 16,
we obtain a significantly smaller immersion H, and we recurse on H. This recursive call
either concludes that cw(H) > k, which implies cw(G) > k, or it produces an ordering of
H of optimum width cw(H) ≤ k. This ordering can be lifted, using Lemma 16 again, to
an ordering of G of width ≤ 2k. Given this ordering, we apply the dynamic programming
procedure of Lemma 15 to construct an optimum ordering of G in time 2O(k2 log k) · |V (G)|.

Since at each recursion step the number of edges of the graph drops by a multiplicative
factor of at least 1/(2k + 1)4(k+1)+3, we see that the graph Gi at level i of the recursion will
have at most (1 − 1/(2k + 1)4(k+1)+3)i · |E(G)| edges. Hence, the total work used by the
algorithm is bounded by the sum of a geometric series:

∞∑
i=0

2O(k2 log k) · |E(Gi)| ≤ 2O(k2 log k) · |E(G)| ·
∞∑
i=0

(1− 1/(2k + 1)4k+7)i

= 2O(k2 log k) · |E(G)| · (2k + 1)4k+7 = 2O(k2 log k) · |E(G)|.

6 Conclusions

In this paper we have proved that the immersion obstructions for admitting a layout of
cutwidth at most k have sizes single-exponential in O(k3 log k). The core of the proof can be
interpreted as bounding the number of different behavior types for a part of the graph that
has only a small number of edges connecting it to the rest. This, in turn, gives an upper
bound on the number of states for a dynamic programming algorithm that computes the
optimum cutwidth ordering on an approximate one. This last result, complemented with
an adaptation of the reduction scheme of Bodlaender [2] to the setting of cutwidth, yields
a direct and self-contained FPT algorithm for computing the cutwidth of a graph. In fact,
we believe that our algorithm can be thought of “Bodlaender’s algorithm for treewidth in a
nutshell”. It consists of the same two components, namely a recursive reduction scheme and
dynamic programming on an approximate decomposition, but the less challenging setting of
cutwidth makes both components simpler, thus making the key ideas easier to understand.
For an alternative attempt of simplification of the algorithm of Bodlaender and Kloks [3],
applied for the case of pathwidth, see [6].

In our proof of the upper bound on the number of types/states, we used a somewhat new
bucketing approach. This approach holds the essence of the typical sequences of Bodlaender
and Kloks [3], but we find it more natural and conceptually simpler. The drawback is that
we lose a log k factor in the exponent. It is conceivable that we could refine our results by
removing this factor provided we applied typical sequences directly, but this is a price that
we are willing to pay for the sake of simplicity and being self-contained.

An important ingredient of our approach is the observation that there is always an
optimum cutwidth ordering that is linked: the cutsizes along the ordering precisely govern
the edge connectivity between prefixes and suffixes. Recently, there is a growing interest in
parameters that are tree-like analogues of cutwidth: tree-cut width [20] and carving-width [16].
In future work, we aim to explore and use linkedness for tree-cut decompositions and carving
decompositions in a similar manner as presented here.

IPEC 2016

15:12 Cutwidth: Obstructions and Algorithmic Aspects

Acknowledgements. The second author thanks Mikołaj Bojańczyk for the common work on
understanding and reinterpreting the Bodlaender-Kloks dynamic programming algorithm [3],
which influenced the bucketing approach presented in this paper. We also thank O-joung
Kwon for pointing us to [8, 12], as well as an anonymous referee for noting that the running
time in Lemma 16 can be reduced to polynomial by amortization.

References
1 Patrick Bellenbaum and Reinhard Diestel. Two short proofs concerning tree-decompositions.

Combinatorics, Probability & Computing, 11(6):541–547, 2002.
2 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small

treewidth. SIAM J. Comput., 25(6):1305–1317, 1996.
3 Hans L. Bodlaender and Ton Kloks. Efficient and constructive algorithms for the pathwidth

and treewidth of graphs. J. Algorithms, 21(2):358–402, 1996.
4 Heather Booth, Rajeev Govindan, Michael A. Langston, and Siddharthan Ramachandra-

murthi. Cutwidth approximation in linear time. In Proceedings of the Second Great Lakes
Symposium on VLSI, pages 70–73. IEEE, 1992.

5 Josep Díaz, Jordi Petit, and Maria J. Serna. A survey of graph layout problems. ACM
Comput. Surv., 34(3):313–356, 2002.

6 Martin Fürer. Faster computation of path-width. In Veli Mäkinen, J. Simon Puglisi, and
Leena Salmela, editors, Combinatorial Algorithms: 27th International Workshop, IWOCA
2016, Helsinki, Finland, August 17-19, 2016, Proceedings, pages 385–396, Cham, 2016.
Springer International Publishing.

7 Michael R. Garey and David S. Johnson. Computers and intractability, volume 174. Free-
man New York, 1979.

8 James F. Geelen, A.M.H. Gerards, and Geoff Whittle. Branch-width and well-quasi-
ordering in matroids and graphs. J. Comb. Theory, Ser. B, 84(2):270–290, 2002. A correc-
tion is available at http://www.math.uwaterloo.ca/~jfgeelen/Publications/bn-corr.
pdf.

9 Rajeev Govindan and Siddharthan Ramachandramurthi. A weak immersion relation on
graphs and its applications. Discrete Mathematics, 230(1):189–206, 2001.

10 Pinar Heggernes, Daniel Lokshtanov, Rodica Mihai, and Charis Papadopoulos. Cutwidth
of split graphs and threshold graphs. SIAM J. Discrete Math., 25(3):1418–1437, 2011.

11 Pinar Heggernes, Pim van ’t Hof, Daniel Lokshtanov, and Jesper Nederlof. Computing
the cutwidth of bipartite permutation graphs in linear time. SIAM J. Discrete Math.,
26(3):1008–1021, 2012.

12 Mamadou Moustapha Kanté and O-joung Kwon. An upper bound on the size of obstruc-
tions for bounded linear rank-width. CoRR, arXiv:1412.6201, 2014.

13 Jens Lagergren. Upper bounds on the size of obstructions and intertwines. J. Comb. Theory,
Ser. B, 73(1):7–40, 1998.

14 Frank Thomson Leighton and Satish Rao. Multicommodity max-flow min-cut theorems
and their use in designing approximation algorithms. J. ACM, 46(6):787–832, 1999.

15 Neil Robertson and Paul D. Seymour. Graph minors XXIII. Nash-Williams’ immersion
conjecture. J. Comb. Theory, Ser. B, 100(2):181–205, 2010.

16 Paul D. Seymour and Robin Thomas. Call routing and the ratcatcher. Combinatorica,
14(2):217–241, 1994.

17 Dimitrios M. Thilikos, Maria J. Serna, and Hans L. Bodlaender. Cutwidth I: A linear time
fixed parameter algorithm. J. Algorithms, 56(1):1–24, 2005.

18 Dimitrios M. Thilikos, Maria J. Serna, and Hans L. Bodlaender. Cutwidth II: Algorithms
for partial w-trees of bounded degree. J. Algorithms, 56(1):25–49, 2005.

http://www.math.uwaterloo.ca/~jfgeelen/Publications/bn-corr.pdf
http://www.math.uwaterloo.ca/~jfgeelen/Publications/bn-corr.pdf

A.C. Giannopoulou, Mi. Pilipczuk, J.-F. Raymond, D.M. Thilikos, and M. Wrochna 15:13

19 Robin Thomas. A Menger-like property of tree-width: The finite case. J. Comb. Theory,
Ser. B, 48(1):67–76, 1990.

20 Paul Wollan. The structure of graphs not admitting a fixed immersion. J. Comb. Theory,
Ser. B, 110:47–66, 2015.

21 Mihalis Yannakakis. A polynomial algorithm for the min-cut linear arrangement of trees.
J. ACM, 32(4):950–988, 1985.

IPEC 2016

	Introduction
	Preliminaries
	Bucket interfaces
	Obstruction sizes and linked orderings
	An algorithm for computing cutwidth
	Conclusions

