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—— Abstract

To solve hard graph problems from the parameterized perspective, structural parameters have
commonly been used. In particular, vertexr cover number is frequently used in this context. In
this paper, we study the problem of computing the treedepth of a given graph G. We show that
there are an O(7(G)?) vertex kernel and an O(47(@)7(G)n) time fixed-parameter algorithm for
this problem, where 7(G) is the size of a minimum vertex cover of G and n is the number of
vertices of G.
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1 Introduction

Treedepth is an important graph invariant which attracts a lot of attentions in several
communities. One of the most important results related to treedepth is the work of Nesetfil
and Ossona de Mendez [27, 28]. Roughly speaking, they showed that graphs in a sparse graph
classes, called graphs of bounded expansion, can be decomposed into graphs of bounded
treedepth. An important consequence of this result is a linear time algorithm for deciding
first-order logic properties in graphs of bounded expansion [13].

The treedepth td(G) of an undirected graph G is defined to be the minimum height of a
rooted tree T such that G can be embedded into T in such a way that the end vertices of
each edge in G has an ancestor-descendant relationship in 7. A formal definition of treedepth
is given in Section 2. Treedepth has been studied in literature with different names such as
vertex ranking numbers [4] and the minimum height of elimination trees [29]. This invariant
has applications in solving linear systems [25] and VLSI layouts [24, 31]. Moreover, treedepth
has a deep relation with other well-known graph invariants treewidth and pathwidth. Let
tw(G) and pw(G) be the treewidth and the pathwidth of a graph G, respectively. Then, we
have tw(G) < pw(G) < td(G) — 1 = O(tw(G) logn) [28], where n is the number of vertices
of G. When these three invariants are bounded, we can develop efficient algorithms for
many graph problems. More precisely, if the one of the above three invariants of the input
graph is at most k, many NP-hard graph problems are fized-parameter tractable, that is,
there is an algorithm (called a fized-parameter algorithm) that solves the target problem
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in f(k)n°® time, where n is the number of vertices and the function f depends only on k
(see, for example [3]). On the other hand, Gutin et al. [21] recently showed that the mixed
Chinese postman problem is W[1]-hard parameterized by the pathwidth of the input graph
and is fixed-parameter tractable parameterized by its treedepth.

Based on the above facts, it is natural to seek an efficient algorithm for computing the
treedepth of graphs. Unfortunately, the problem of computing treedepth is known to be NP-
hard [29] even when the input graphs are restricted to bipartite graphs [4] or chordal graphs
[11]. On the other hand, there are polynomial time algorithms for some classes of graphs
[1, 10]. This problem is studied from the perspective of parameterized complexity. In this
context, we are asked whether the treedepth of the input graph is at most k. Since treedepth
is monotone under taking minor operations, this problem is fixed-parameter tractable when
k is given as a parameter. This follows from the celebrated work of Robertson and Seymour
which proves, for every minor closed graph class G, there is a fixed-parameter algorithm that
deciding whether the input graph belongs to G in f(G)n®™ time. Recently, Reidl et al. [30]
gave an algorithm for the problem whose running time is 20(k*) . Their algorithm in fact
runs in time 2°* ) where ¢ is the treewidth of the input graph.

As we have already noted, many graph problems can be efficiently solved on graphs of
bounded treewidth. However, there are some exceptions. For example, the BANDWIDTH
problem is known to be NP-hard for graphs of pathwidth at most three [26]. Motivated
by this hardness result [26], Fellows et al. [16] showed that the BANDWIDTH problem is
fixed-parameter tractable when parameterized by the size 7(G) of a minimum vertezx cover of
the input graph G. Since, for every graph G with n vertices, tw(G) < 7(G) = O(tw(G) logn),
the parameterization of the size of a minimum vertex cover to the input graph is more
restricted than that of treewidth. Therefore, this parameterization were often used to
develop algorithms for various hard graph problems [9, 15, 18]. In particular, Chapelle
et al. [8] gave algorithms for computing treewidth and pathwidth whose running time is
37(@npOM - Although this parameterization is rather restrictive, their algorithms improve
the running time of the best known exact exponential algorithms for treewidth [19, 20]
and for pathwidth [23] on bipartite graphs. Moreover, this parameterization is used in the
context of kernelizations. Here, a kernelization is a polynomial time algorithm that, given
a pair of an instance I and a parameter k, computes a pair (I’,k’) such that (I, k) is a
YES-instance if and only if (I’, k') is a YES-instance for the same problem and the size of I’
and k' are upper bounded by some function in k. An output of a kernelization is called a
kernel. A kernelization is polynomial if the size of I’ is upper bounded by a polynomial in
k. Bodlaender et al. [7, 6] showed that the TREEWIDTH and PATHWIDTH problem admit
polynomial kernelizations when parameterized by the size of a minimum vertex cover, in
contrast to the lower bound results of polynomial kernelizations [5, 12]. when parameterized
by the solution size. Subsequently, Jansen [22] improved the size of kernel to O(|7(G)|?) for
treewidth.

In this paper, we give counterparts for treedepth to the results of kernelizations [7, 6]
and fixed-parameter algorithms [8] for treewidth and pathwidth. Our results are as follows.

» Theorem 1. There is a polynomial time algorithm that, given a graph G, a vertex cover C
of G, and an integer k, computes a graph H with |V (H)| = O(|C|®) such that the treedepth
of G is at most k if and only if that of H is at most k. Moreover, V(H) N C is a vertex
cover of H.

» Theorem 2. The treedepth of G can be computed in O(47(E) 7 (G)n) time, where 7(G) is
the size of a minimum vertex cover of G and n is the number of vertices of G.
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Theorem 1 implies together with a well-known 2-approximation algorithm for vertex
cover that the treedepth problem admits a kernel with O(7(G)?) vertices. Let us note that,
for the problem deciding whether td(G) < k with parameter k, there is no polynomial
kernelization [5, 12] unless NP C coNP /poly and the running time of the fastest known
fixed-parameter algorithm is 20+, time [30]. Our kernelization and algorithm are useful for
the case 7(G) = td(G)°M and 7(G) = o(td(G)?), respectively. In contrast to treewidth and
pathwidth, our result does not improve the running time of the best known exact exponential
algorithm for treedepth [17] even on bipartite graphs. However, we believe that our approach
is relevant for improving the bipartite case.

The technique behind our algorithm in Theorem 2 is as follows. We are given a graph G
and a vertex cover C of G. Our algorithm constructs an optimal elimination tree, defined
in Section 2, of G by a bottom-up dynamic programming. To this end, we need to define
subproblems. The first attempt to define subproblems is that for each X C C, construct an
optimal elimination tree of an induced subgraph H of G with V(H)NC = X. However, this
strategy does not work since we cannot know which vertex in the independent set V(G)\ C is
in V(H)\ X. The second attempt is that for each X C C and each P C C'\ X, construct an
optimal elimination tree of H such that V(H) N C = X and every vertex in P is committed
to be an ancestor of the vertices of H in an optimal elimination tree of the whole graph
G. Using this pair X and P, we can identify the vertices of H and therefore a subproblem
on (X, P) for each X C C and P C C\ X is well-defined. For each subproblem (X, P),
the remaining task is to compute an optimal elimination tree T' of a graph corresponding
to (X, P) from optimal elimination trees of graphs corresponding to smaller subproblems
(X', P") for X C X and P C C'\ X'. To do this, we will exploit some nontrivial property
of an optimal elimination tree (See Section 4).

This paper is organized as follows. The next section describes some notations and
terminologies we use. In Section 3, we design a polynomial kernelization for proving
Theorem 1. In Section 4, we show Theorem 2 by giving a fixed-parameter algorithm for
treedepth. Finally, in Section 5, we conclude this paper.

2 Preliminaries

For an undirected graph G, V(G) denotes the set of vertices of G and E(G) denotes the set
of edges of G. For v € V(G), the set of neighbors of v is denoted by N¢(v). For X C V(G),
we set Ng(X) = U,ecx Na(z) \ X. We may drop the reference to G when it is clear from
the context. For disjoint sets X,Y C V(G), we use E(X,Y’) to denote the set of all edges
with one end in X and the other end in Y. The induced subgraph by X C V(G) of G is
denoted by G[X]. For two graphs G and H, H C G means that H is a subgraph of G.

Let T be a rooted tree. For v € V(T'), the subtree rooted at v is denoted by T, and
the unique path between v and the root of T' is denoted by P,. A branching point of T is
a vertex that has at least two children in T. For two vertices u,v € V(T), we say u is an
ancestor of v (v is a descendant of u) if u € V(P,). A set of disjoint rooted trees is called a
rooted forest. For a rooted forest F', we use V(F') to denote Uy p V(T). The depth of v in
T is defined by the number of vertices of P,. The height of T is the maximum depth among
the vertices in T" and the height of rooted forest F' is the maximum depth of a rooted tree
that belongs to F. The height of rooted tree T and rooted forest F' are denoted by height(T)
and height(F), respectively.

Let F be a rooted forest. The closure of F is a graph with vertex set V(F) such that
the graph contains an edge {u,v} if and only if w is an ancestor of v in F or vice versa. We
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denote by clos(F') the closure of F. In particular, when F' consists of a single rooted tree T,
we may write clos(T) instead of clos({T'}). For a (not necessary connected) graph G, the
treedepth td(G) of G is the minimum integer k such that there is a rooted forest F' with
height(F') = k and G C clos(F).

As mentioned before, the notion of treedepth has equivalent definitions. In this paper,
we frequently use the notion of elimination trees. For a rooted forest F' and a vertex v not in
V(F), we use the notation Fov to denote the rooted tree with root v obtained from F by
adding an edge between v and the root of T for each T' € F. In particular, if F' consists of a
single rooted tree T, we write Tov instead of {T'}ow.

» Definition 3. An elimination tree of a connected graph G is recursively defined as follows.

1. If G consists of a single vertex then the elimination tree of G is itself.

2. Otherwise, choose v € V(G) arbitrary. Let F' = {T1,T5,...,T;} be elimination trees of
the connected components of G[V(G) \ {v}]. Then, Fov is an elimination tree of G.

We say that an elimination tree T of G is optimal if there is no elimination trees of G
whose height is smaller than the height of T'. It is easy to see that, for every elimination tree
T of G, the closure of T contains G as a subgraph. The following proposition shows that the
converse also holds when G is connected.

» Proposition 4 ([27]). Let G be a connected graph and let T be a rooted tree. Then, T is
an elimination tree of G if and only if G C clos(T'). In particular, the height of an optimal
elimination tree of G is td(G).

When we refer to an elimination tree T of G, we use the fact G C clos(T) without the
reference to Proposition 4 and vice versa.

3 Kernelization

The aim of this section is to develop a polynomial kernelization for treedepth for proving
Theorem 1. The technique that we use is very similar to the kernelization result for
pathwidth [6].

Fix a vertex cover C of G. Let I = V(G) \ C and let k be a positive integer. We consider
the problem of deciding whether td(G) < k. We assume that C' is not empty since otherwise
the problem is trivial.

We will describle three reduction rules. The following rule trivially does not change the
treedepth of G.

» Rule 5. Let u € I be an isolated vertex. Then, delete u from G.
» Lemma 6. Suppose td(G) < k. Let u,v be vertices with |[Ng(u) N Ng(v)| > k and let G’
be the graph obtained by adding an edge {u,v} to G. Then, td(G) = td(G").

Proof. Since G is a subgraph of G/, td(G) < td(G’). For the inverse direction, let T' be an
optimal elimination tree of G. When T, and T, are not disjoint, T is also an elimination
tree of G’ and hence td(G) > td(G’). Here, we assume otherwise. This assumption implies

the vertices Ng(u) N Ng(v) are common ancestors of u and v. This contradicts the fact that
height(T') < k and |Ng(u) N Ng(v)| > k. <

This lemma verifies the following rule does not change the treedepth of G.

» Rule 7. Let u,v be vertices with |[N(u) N N(v)| > k. Suppose at least one of u € C and
v € C holds. Then, add an edge {u,v} to G.
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Let us note that C is also a vertex cover of the result of an application of Rule 7 to G.
For the next rule, we need the following observation, which is clear from the definition of
closure.

» Observation 8. Let K be a clique in G and let T be an elimination tree of G. Then, there
isve K with K CV(PR,).

A vertex v is simplicial in G if Ng(v) forms a clique.

» Lemma 9. Suppose td(G) < k. Let u be a simplicial vertex such that N(u) is not empty
and |[N(v)| > k+1 for each v € N(u). Then td(G) = td(G[V(G) \ {u}]).

Proof. The subgraph relation proves td(G) > td(G[V(G) \ {«}]). In the following, we show
the converse inequality. Let T' be an optimal elimination tree of G[V(G) \ {u}]. Since N(u)
forms a clique in G[V(G) \ {u}], by Observation 8, there is v € N(u) with N(u) C V(P,).
From the assumption of this lemma, v has at least k neighbors different from u. Since
height(T") < k, at least one of them is a descendant of v in 7. Observe that a rooted tree
T’ obtained from T by adding u as a child of v is an elimination tree of G. This follows
from N(u) C V(P,). Moreover, since v is not a leaf in T, height(T") = height(7”) and hence
td(G) < td(GIV(G) \ {u}]) holds. |

» Rule 10. Let u € I be a simplicial vertex of G. Suppose each v € N(u) has at least k + 1
neighbors. Then, delete u from G.

The above two rules give us a small kernel for treedepth.

» Lemma 11. Suppose td(G) < k, |C| > k, and neither Rule 5, Rule 7, nor Rule 10 are
applicable to G. Then, the number of vertices of G is O(|C|?).

Proof. Let S be the set of simplicial vertices of G, let P =SN1I, and let Q = I\ P. By
Rule 5, each vertex in P has at least one neighbor in C. For each u € P, by Rule 10, there
is a vertex v € N(u) whose degree is at most k. We associate u with v € C. Each vertex
in P is associated with some vertex in C and at most k vertices in P are associated with
each vertex in C. Hence, |P| < k-|C| < |C|?. Next, consider non-adjacent vertices u,v of
C. Observe that u and v have at most £ — 1 common neighbors in G. This follows from

Rule 7. As each vertex in @) has at least one pair of non-adjacent vertices in C, we have
Q| < (k—1)-|C|(|C| —1)/2 < |C|3/2. Therefore, V(G) = |C| + |P| + Q| < 3-|C|3. <

Let (G,C,k) be an instance of our decision problem. Suppose |C| < k. Obviously,
(G,C\k) is a YES-instance. In this case, we output a constant-sized YES-instance. Suppose
otherwise. We exhaustively apply Rule 7 and Rule 10 to G until both of them are not
applicable to G. By Lemmas 6 and 9, the resulting graph H satisfies td(H) < k if and only
if td(G) < k. Moreover, V(H) N C is a vertex cover of H. Thus, (H,V(H) N C, k) is a valid
instance. By Lemma 11, if |V (H)| > 3-|V(H) N CJ3, then (G, C, k) is a NO-instance. In
this case, we output a constant-sized NO-instance. Overall, we have Theorem 1.

4 Fixed-Parameter Algorithm

The aim of this section is to develop an algorithm computing the treedepth of G' whose
running time is upper bounded by O(4™(@)1(G)n), where n = |[V(G)|. First, we use the
following algorithm to obtain a minimum vertex cover in advance.
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» Proposition 12 (folklore). There is a O(27() (n+m)) time algorithm that finds a minimum
vertex cover of a graph G, where n and m are respectively the number of vertices and edges

of G.

Note that m = O(n - 7(G)). In the rest of this section, fix a vertex cover C of G. We
assume that C' is not empty since otherwise the problem is trivial. Let I = V(G) \ C. For
X CC,weset I(X)={vel|N()C X} Wesay that a rooted tree is atomic if it consists
of a single vertex.

» Definition 13. For X C C and P C C'\ X, we say that a rooted forest F' is compatible
with (X, P) if the following three conditions are satisfied:

ClL. V(F)=XUI(XUP),

C2. G[V(F)] C clos(F), and

C3. every vertex in I(P) forms an atomic rooted tree in F'.

Note that a rooted forest that is compatible with (X, P) does not contain any vertex in
P and contains every vertex in I(P). We denote by td(X, P) the minimum height over all
rooted forests that are compatible with (X, P). We say that F' is optimal for (X, P) if F is
compatible with (X, P) and height(F) = td(X, P). Also, note that if G[X UI(X U P)] is
connected, there is a rooted tree 7' that is optimal for (X, P).

In what follows, we will give recurrences for computing td(X, P) for X C C'and P C C\ X.
The algorithm evaluates those recurrences by a straight forward dynamic programming. The
following lemma is the base case of our recurrences and is easy to verify.

» Lemma 14. Let P C C. If I(P) is not empty, then td(0, P) = 1. Otherwise, td(, P) = 0.
Let X CC and P C C'\ X. From now on, we consider the case X # 0.

» Lemma 15. Let x € X be arbitrary and let F' be a rooted forest that is compatible with
(X \ {z},PU{x}). Then the rooted forest F' := I(P)U (F \ I(P))ox is compatible with
(X, P). Here and in similar situations later, I(P) is also interpreted as the set of atomic
rooted trees.

Proof. Clearly, F' satisfies condition C3 for (X, P). As V(F)\ V(F') = {z}, F’ satisfies
condition C1 for (X, P). Let T' = (F \ I(P))ox. Since every vertex in Ngpy () () is
a descendant of x in T, T is an elimination tree of G[V(T)]. As X N P = ), we have
E(X,I(P)) = 0. Thus, condition C2 holds for (X, P) and hence the lemma follows. <

We say that a bipartition (Y, Z) of X is separated if neither Y nor Z is empty and
E(Y,Z) = (). The following observation is easy to verify.

» Observation 16. Let (Y, Z) be a bipartition of X. Then, I(X U P) is partitioned into
N(Y)NN(Z)nI(X UP), (Y UP)\ I(P), (ZUP)\ I(P), and I(P).

Let (Y, Z) be a separated bipartition of X. We define the rooted forest Fy z from Fy
and Fz, where Fy and Fyz are rooted forests that are compatible with (Y, P) and (Z, P),
respectively, as follows. Let vg, v1,...v, be the vertices in N(Y) N N(Z) N I(X U P) with
arbitrary order. Note that Fy and Fz may share the set of vertices I(P). Set Fy :=
(Fy UFz)\I(P) and, for each 0 < ¢ < p, set F; 11 := Fyov;. Finally, set Fy,z := F,41 UI(P).
By the above definition, if N(Y) N N(Z)NI(X U P) is empty, Fy z is indeed Fy U Fz.

» Lemma 17. Let (Y,Z) be a separated bipartition of X and let Fy and Fyz be rooted
forests that are compatible with (Y, P) and (Z, P), respectively. Then, Fy,z is compatible
with (X, P).
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Proof. We show that Fy z satisfies the three conditions of compatibility with (X, P).
Clearly, Fy,z satisfies condition C3. By the construction of G, V(Fy,z) is composed of

(V(Fy)UV(EZ)\ I(P), N(Y) N N(Z) N I(X U P), and I(P). Since V(Fy) NI = I(Y UP)

and V(Fz)NI = I(ZU P), by Observation 16, we have V(Fy z) NI = I(X UP). Recall that

Y UZ = X. Thus, we have V(Fy z) = X UI(X U P), that is, Fy, z satisfies condition CI.

To show the condition C2, it is enough to show that for each edge {u,v} in G[X UI(X U P)],
u is an ancestor of v or vice versa in Fy z. Since X is a vertex cover of G[X U I(X U P)],
at least one of u and v is in X. Assume without loss of generality v is in Y. Since Fy is
compatible with (Y, P), if {u,v} C V(Fy), we are done. Otherwise, as u ¢ V(Fz), u must
bein N(Y)NN(Z)NI(X UP), and hence u is an ancestor of v. This finishes the proof. <«

Let T be a rooted tree that is compatible with (X, P) and let v € V(T') be a maximum
depth vertex such that every vertex in V(P,) \ {v} is not a branching point of T'. That is
v is either a leaf or the minimum depth branching point of T. Observe that a rooted tree
that is obtained by swapping the positions of an arbitrary pair of vertices in V(P,) is also
compatible with (X, P). This implies the following observation.

» Observation 18. Let T be a rooted tree that is compatible with (X, P). Let v € V(T) be a
mazimum depth vertex such that every vertex in u € V(P,) \ {v} is not a branching point of
T. Suppose there is a vertex x € X NV (P,). Then, there is a rooted tree T' with root x that
is compatible with (X, P) whose depth is height(X, P).

Observation 18 implies that if there is no rooted tree T' that is optimal for (X, P) whose
root belongs to X, then there is the minimum depth branching point v in T such that
V(P,) C I(X U P) for every rooted tree T that is optimal for (X, P).

The following lemma plays a key role for the construction of optimal elimination trees.

To this end, we need some operation on rooted trees. A vertex remowval of a non-root vertex
u (or u is removed) from a rooted tree T results a rooted tree that is obtained from T by
deleting u and adding an edge between the parent of u and each child of u. When w is the
root of T" and has only one child, the vertex removal of u is simply deleting u from 7.

» Lemma 19. Assume that G[X U I(X U P)] is connected. Then, there exists an optimal
rooted tree T for (X, P) such that either (1) the root x of T is in X and every vertex in
I(P U{x}) is a child of x or (2) there is a separated bipartition (Y,Z) of X such that
V(Py,) =NY)NN(Z)NI(X UP), where v is the minimum depth branching point in T

Proof. Let T be an optimal rooted tree for (X, P). From Observation 18, we can assume
that either the root of T" is in X or there is the minimum depth branching point v of T such
that V(P,) C I(X U P).

Suppose first that the root of T'is € X. Let u be the vertex in I(P U {x}) that is not a
child of x. Since u has exactly one neighbor x in G[X U I(X U P)], the rooted tree obtained
from T by removing v and adding u as a child of x is also an elimination tree of height not
larger than T'. The repeated applications of the above argument show that every vertex in
I(PU{z}) is a child of .

Suppose otherwise. Let T' be an arbitrary optimal rooted tree for (X, P). Recall that we
have V(P,) C I(X U P) in this case. We construct a separated bipartition (Y, Z) of X as
follows. Let v be the minimum depth branching point of 7" and let W be the set of children
of v. Observe that for each w € W, V(T,) contains at least one vertex of X as otherwise
G[X UI(X U P)] is not connected, which contradicts our assumption. Choose a non-empty
proper subset W' C W. Let Y = ey (V(Tw) N X) and let Z = X \ Y. Clearly, (Y, Z) is
a separated bipartition of X. This implies that every vertex in N(Y)NN(Z)NI(X U P)
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belongs to V(P,). Hence, we have V(P,) D N(Y)NN(Z)NI(X UP). In the following we
will show that, under an appropriate choice of T', this separated bipartition (Y, Z) satisfies
V(P,) CNY)NN(Z)NnI(XUP).

We choose an optimal rooted tree T for (X, P) and a separated bipartition (Y, Z) of X
in such a way as to minimize the number of vertices in V/(P,) \ (N(Y) N N(Z)NI(X U P)).
Let Q =V (P,)\ (N(Y)NN(Z)NI(X UP)) be the set of vertices in V(P,) each of which
has a neighbor neither in Y nor in Z. We claim that ) is empty and hence such T and
(Y, Z) satisty V(P,) C N(Y)NN(Z)NnI(X UP). Suppose, for contradiction, let u € Q.
As G[X UI(X U P)] is connected, V(P,) must have at least two vertices and hence w is
removable from T (either u is not the root of T or w is the root which has only one child).
We assume, without loss of generality, u has a neighbor in Z. Let W be the set of children w
of v with V(T,,) NY # 0 and let Fyy = {T,, : w € W}. We construct another rooted tree
from T as follows. Remove u and delete the vertices of Fy from T. Then, combine T" with
Fyou by adding an edge between w and wu. It is easy to see that the result of the above
operations is an elimination tree of G[X U I(X U P)] and the height is not larger than the
original T. Moreover, the size of @ in the result is strictly smaller than the original one.
This is contracting to the minimality of Q). Hence, the lemma follows. |

» Lemma 20. Let X C C with X # 0 and let P C C\ X. Then, td(X, P) is equal to the
smaller value of

glei)r(ltd(X \{z},PU{z})+1 (1)
and

minmax(td(Y, P), td(Z, P)) + [N(Y) A N(Z) N I(X U P)], (2)

where, in expression (2), the minimum is taken among all separated bipartitions (Y, Z) of X
and if there is no separated bipartition of X then the value of (2) is defined to be infinity.

Proof. First, we show that td(X, P) is not smaller than the value of both (1) and (2).
Consider the case where the value of (1) is not smaller than that of (2). Let = be a vertex in
C' that attains the minimum of expression (1) and let F' be a minimum height rooted forest
among all rooted forests that are compatible with (X \ {z}, PU {z}). By Lemma 15, Fox is
compatible with (X, P). Therefore, we have

td(X, P) < height(Fox) = height(F) + 1 = mi}r{l td(X \ {z},PU{z}) + 1.
zTE

Suppose the other case: the value of (1) is larger than that of (2). In this case, there
is a separated bipartition (Y, Z) of X that attains the minimum of expression (2). Let Fy
and Fz be minimum height rooted forests among all rooted forests that are compatible with
(Y, P) and (Z, P), respectively. Let Fy z be a rooted forest constructed from Fy and Fyz as
in Lemma 17. Since Fy,z is compatible with (X, P), we have

td(X,P) < height(Fy z)
= max(height(Fy), height(Fz)) + |NY)NN(Z)NI(X U P)|
= max(td(Y, P),td(Z,P))+ IN(Y)NN(Z)NI(X U P)]
Hence, td(X, P) is not smaller than the value of both (1) and (2).

Next, we show the other direction. We distinguish the two cases: G[X UI(X U P)] is
connected or not.
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Consider the case where G[X U I(X U P)] is connected. Let T be an elimination tree
described in Lemma 19. Then, either the root of T is in X or there exists a separated
bipartition (Y, Z) of X with V(P,) = N(Y)NN(Z) N I(X U P), where v is the minimum
depth branching point in 7.

Case 1: The root x of T is in X. Let F’ be a rooted forest which is obtained from T by
deleting the root z. To prove our desired inequality height(7") > td(X \ {z}, PU{z}) + 1,
we will show that F’ is compatible with (X \ {z}, P U {z}). It is easy to verify that
V(F')NC =X \{z}, V(F)NI =1((X \ {z}) U(PU{z})), and G[V(F")] C clos(F’). By
Lemma 19, each vertex v € I(P U {x}) is a child of z, that is, I(P U {x}) is the set of atomic
rooted trees in F’. Hence, F’ is compatible with (X \ {z}, P U {z}).

Case 2: There is a separated bipartition (Y, Z) of X with V(P,) = N(Y)NN(Z)NI(XUP),
where v is the minimum depth branching point of T'. Let F’ be the rooted forest obtained
from T by deleting all the vertices in V(P,). We claim that F’ is partitioned into two rooted

forests Fy and Fz such that Fy and Fyz are compatible with (Y, P) and (Z, P), respectively.

Note that this claim establishes the inequality height(7") > max(td(Y, P),td(Z, P))+|N(Y)N
N(Z)NI(X U P)|. Consider the two rooted forests Fy = {T" € F' : V(T')NY # 0} and
Fz ={T" € F' : V(T')N Z # 0}. Observe that Fy and Fz are disjoint since (Y, Z) is
separated and every common neighbor of ¥ and Z must be in V(P,). As V(P,) C I, for each
child w of v, T, contains at least one vertex of X. Thus, (Fy, Fy) is a bipartition of F’. It
is easy to see that V(Fy)NC =Y and G[V(Fy)] C clos(Fy). Recall that I(P) is empty. By
Observation 16, I(X UP) is partitioned into I(YUP), I(ZUP),and N(Y)NN(Z)NI(XUP).
Since every vertex in I(Y U P) has a neighbor in Y, V(Fy)N1I = I(Y U P). Hence, Fy
is compatible with (Y, P). A similar argument shows that F is compatible with (Z, P).
Therefore, we have the claim.

Finally, we consider the case where G[X U I(X U P)] is not connected. Let C be the
set of connected components of G[X U I(X U P)]. We apply Lemma 19 to each component
in C \ I(P) and obtain a rooted forest F' from C \ I(P). Note that every component in
C\ I(P) has at least one vertex of X. If F' consists of a single rooted tree, we can apply
the same argument with the connected case to the unique rooted tree T' € F. Otherwise,
the connected components of F' naturally induce some separated bipartition of X, which
satisfies the desired inequality since N(Y) N N(Z) N I(X U P) is empty. Hence, we have the
lemma. <

By Lemmas 14 and 20, for X C C and P C C'\ X, we can compute td(X, P) via a
standard dynamic programming. When the values td(X’, P’) are stored in a table for X’ C X
and P’ C C'\ X', the value td(X, P) is computed in O(2!X!|X|n) time. Hence, the running
time of our dynamic programming is

oY o@Xxm) = D 29 0@ Xn)

XCC PCC\X Xcc

= > 0@
Xcc
o |Cn).
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5 Conclusion

In this paper, we have given a polynomial kernelization and a fixed-parameter algorithm for
treedepth when the minimum size of vertex cover of the input graph is parameterized.

The main open questions are improving on the size of kernel and the running time of
fixed-parameter algorithm. Jansen [22] showed that there is a kernel for treewidth whose
size is quadratic with respect to vertex cover number, which improves the previous result of
polynomial kernelization due to Bodlaender et al. [7]. He concluded in his paper that the
key lemma to the kernelization does not work for pathwidth. This obstacle also appears
in the case of treedepth. Chapelle et al. [8] improved the running time of their algorithm
for treewidth using the fast subset convolution technique due to Bjorklund et al. [2]. One
may expect that the bottleneck of our running time (the computation of expression (2) of
Lemma 20) can be broken by the fast subset convolution technique. However, this technique
does not seem to apply to our fixed-parameter algorithm directly.

Finally, extending our result to more general cases would be interesting. One of such
extensions is to use another structural parameterization. Feedback vertex set number would
be a good candidate for this line. Another extension is to consider the problem on directed
graphs. Cycle rank [14] is known to be a directed version of treedepth. To the best of our
knowledge, no fixed-parameter tractability result for cycle rank is known.

Acknowledgements. We are grateful to anonymous referees for the suggestions for improv-
ing the presentation of the paper.
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