
11th International Symposium
on Parameterized and Exact
Computation

IPEC’16, August 24–26, 2016, Aarhus, Denmark

Edited by

Jiong Guo
Danny Hermelin

LIPIcs – Vo l . 63 – IPEC’16 www.dagstuh l .de/ l ip i c s



Editors
Jiong Guo Danny Hermelin
School of Computer Science and Technology Department of Industrial Engineering and Management
Shandong University Ben-Gurion University of the Negev
Jinan Beer Sheva
China Israel
jguo@sdu.edu.cn hermelin@bgu.ac.li

ACM Classification 1998
F.1.3 Complexity Measures and Classes, F.2 Analysis of Algorithms and Problem Complexity, G.2 Discrete
Mathematics

ISBN 978-3-95977-023-1

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-023-1.

Publication date
February, 2017

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.IPEC.2016.0

ISBN 978-3-95977-023-1 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-95977-023-1
http://www.dagstuhl.de/dagpub/978-3-95977-023-1
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.0
http://www.dagstuhl.de/dagpub/978-3-95977-023-1
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics


0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Susanne Albers (TU München)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Catuscia Palamidessi (INRIA)
Wolfgang Thomas (Chair, RWTH Aachen)
Pascal Weil (CNRS and University Bordeaux)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

http://www.dagstuhl.de/lipics

IPEC 2016

http://www.dagstuhl.de/dagpub/1868-8969
http://www.dagstuhl.de/lipics




Contents

Preface
Jiong Guo and Danny Hermelin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:vii

Invited Talk

Determinant Sums for Hamiltonicity
Andreas Björklund . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1:1–1:1

Regular Papers

Improved Algorithms and Combinatorial Bounds for Independent Feedback
Vertex Set

Akanksha Agrawal, Sushmita Gupta, Saket Saurabh, and Roohani Sharma . . . . . . . . 2:1–2:14

H-Free Graphs, Independent Sets, and Subexponential-Time Algorithms
Gábor Bacsó, Dániel Marx, and Zsolt Tuza . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3:1–3:12

Parallel Multivariate Meta-Theorems
Max Bannach and Till Tantau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4:1–4:17

Finding Secluded Places of Special Interest in Graphs
René van Bevern, Till Fluschnik, George B. Mertzios, Hendrik Molter,
Manuel Sorge, and Ondřej Suchý . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5:1–5:16

The Parameterized Complexity of Dependency Detection in Relational Databases
Thomas Bläsius, Tobias Friedrich, and Martin Schirneck . . . . . . . . . . . . . . . . . . . . . . . . . 6:1–6:13

A Faster Parameterized Algorithm for Pseudoforest Deletion
Hans L. Bodlaender, Hirotaka Ono, and Yota Otachi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7:1–7:12

Optimal Dynamic Program for r-Domination Problems over Tree Decompositions
Glencora Borradaile and Hung Le . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8:1–8:23

Fine-Grained Dichotomies for the Tutte Plane and Boolean #CSP
Cornelius Brand, Holger Dell, and Marc Roth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9:1–9:14

A Parameterized Algorithmics Framework for Degree Sequence Completion
Problems in Directed Graphs

Robert Bredereck, Vincent Froese, Marcel Koseler, Marcelo Garlet Millani,
André Nichterlein, and Rolf Niedermeier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10:1–10:14

On the Parameterized Complexity of Biclique Cover and Partition
Sunil Chandran, Davis Issac, and Andreas Karrenbauer . . . . . . . . . . . . . . . . . . . . . . . . . . 11:1–11:13

Exact Algorithms for List-Coloring of Intersecting Hypergraphs
Khaled Elbassioni . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12:1–12:15

Turbocharging Treewidth Heuristics
Serge Gaspers, Joachim Gudmundsson, Mitchell Jones, Julián Mestre,
and Stefan Rümmele . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13:1–13:13

11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/


0:vi Contents

On Satisfiability Problems with a Linear Structure
Serge Gaspers, Christos H. Papadimitriou, Sigve Hortemo Sæther,
and Jan Arne Telle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14:1–14:14

Cutwidth: Obstructions and Algorithmic Aspects
Archontia C. Giannopoulou, Michał Pilipczuk, Jean-Florent Raymond,
Dimitrios M. Thilikos, and Marcin Wrochna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15:1–15:13

Computing Graph Distances Parameterized by Treewidth and Diameter
Thore Husfeldt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16:1–16:11

Lower Bounds for Protrusion Replacement by Counting Equivalence Classes
Bart M.P. Jansen and Jules J. H.M. Wulms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17:1–17:12

Treedepth Parameterized by Vertex Cover Number
Yasuaki Kobayashi and Hisao Tamaki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18:1–18:11

Dynamic Parameterized Problems
R. Krithika, Abhishek Sahu, and Prafullkumar Tale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19:1–19:14

A 2`k Kernel for `-Component Order Connectivity
Mithilesh Kumar and Daniel Lokshtanov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20:1–20:14

Structural Parameterizations of Feedback Vertex Set
Diptapriyo Majumdar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21:1–21:16

Randomised Enumeration of Small Witnesses Using a Decision Oracle
Kitty Meeks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22:1–22:12

Backdoors for Linear Temporal Logic
Arne Meier, Sebastian Ordyniak, Ramanujan Sridharan, and Irena Schindler . . . . . 23:1–23:17

Improved Bounds for Minimal Feedback Vertex Sets in Tournaments
Matthias Mnich and Eva-Lotta Teutrine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24:1–24:10

Ground Reachability and Joinability in Linear Term Rewriting Systems are Fixed
Parameter Tractable with Respect to Depth

Mateus de Oliveira Oliveira . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25:1–25:12

Edge Bipartization Faster Than 2k

Marcin Pilipczuk, Michał Pilipczuk, and Marcin Wrochna . . . . . . . . . . . . . . . . . . . . . . . . 26:1–26:13

Cut and Count and Representative Sets on Branch Decompositions
Willem J.A. Pino, Hans L. Bodlaender, and Johan M.M. van Rooij . . . . . . . . . . . . . 27:1–27:12

A Fast Parameterized Algorithm for Co-Path Set
Blair D. Sullivan and Andrew van der Poel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28:1–28:13

Clifford Algebras Meet Tree Decompositions
Michał Włodarczyk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29:1–29:18

The First Parameterized Algorithms and Computational Experiments Challenge
Holger Dell, Thore Husfeldt, Bart M.P. Jansen, Petteri Kaski,
Christian Komusiewicz, and Frances A. Rosamond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30:1–30:9



Preface

This volume contains the papers presented at IPEC 2016: the 11th International Symposium
on Parameterized and Exact Computation held during August 24–26, 2016, in Aarhus,
Denmark. IPEC was held togeter with seven other algorithms conferences as part of the
annual ALGO congress.
The International Symposium on Parameterizd and
Exact Computation (IPEC, formerly IWPEC) is a
series of international symposia covering research in
all aspects of parameterized and exact algorithms
and complexity. Started in 2004 as a biennial work-
shop, it became an annual event in 2009.
In response to the call of papers, 48 papers were
submitted. Each submission was reviewed by at
least 3 reviewers. The reviews came from the 14
members of the program committee, and from 84
external reviewers contributing 107 external reviews.
The program committee held electronic meetings
through the EasyChair.

Previous IPECs
2004 Bergen, Norway
2006 Zürich, Switzerland
2008 Victoria, Canada
2009 Copenhagen, Denmark
2010 Chennai, India
2011 Saarbrücken, Germany
2012 Ljubljana, Slovenia
2013 Sophia Antipolis, France
2014 Wrocław, Poland
2015 Patras, Greece

The program committee felt that the median submission quality was very high, and in the
end selected 28 of the submissions for presentation at the symposium and for inclusion in the
proceedings volume. The program committee presented the IPEC 2016 Best Paper Awards
to Michał Włodarczyk for the paper Clifford Algebras Meet Tree Decompositions, Kitty
Meeks for the paper Randomised Enumeration of Small Witnesses Using a Decision Oracle,
and Archontia Giannopoulou, Michał Pilipczuk, Jean-Florent Raymond, Dimitrios Thilikos,
and Marcin Wrochna for the paper Cutwidth: Obstructions and Algorithmic Aspects. The
program committee also presented the IPEC 2016 Excellent Student Paper Awards to Michał
Włodarczyk for the paper Clifford Algebras Meet Tree Decompositions and R. Krithika,
Abhishek Sahu, and Prafullkumar Tale for the paper Dynamic Parameterized Problems.

IPEC invited one plenary speaker to the ALGO meeting, Andreas Björklund, as part of
the award ceremony for the 2016 EATCS-IPEC Nerode Prize for outstanding papers in the
area of multvariate algorithmics. The award was given by a committee consisting of Jan Arne
Telle, David Eppstein, and Dániel Marx to Andreas Björklund for his paper Determinant
Sums for Undirected Hamiltonicity [SIAM J. Comput., 43(1), 2014]. We thank Andreas for
accepting our invitation and for contributing an excellent talk to IPEC 2016.

We would like to thank the program committee, together with the external reviewers
for their commitment in the whole paper reviewing process. We also thank all authors who
submitted their work for consideration. Finally, we are grateful to the local organizers of
ALGO, chaired by Gerth Stølting Brodal, for the efforts, which made chairing IPEC an
enjoyable experience.

Jiong Guo and Danny Hermelin
Jinan and Beer-Sheva, October 2016

11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/




Program Committee

Cristina Bazgan
LAMSADE, Universite Paris-Dauphine

Yixin Cao
Hong Kong Polytechnic University

Jiong Guo (chair)
Shandong University

Danny Hermelin (chair)
Ben-Gurion University of the Negev

Bart M. P. Jansen
Eindhoven University of Technology

Eun-Jun Kim
CNRS-Paris Dauphine

Christian Komusiewicz
Friedrich-Schiller-Universität Jena

Geevarghese Philip
Max-Planck-Institut für Informatik

Hadas Shachnai
The Technion

Stefan Szeider
TU Wien

Jan Arne Telle
University of Bergen

Meirav Zehavi
The Technion

11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/




External Reviewers 0:xi

External Reviewers

Faisal Abu-Khzam

Julien Baste

René van Bevern

Hans L. Bodlaender

Robert Bredereck

Hubie Chen

Marek Cygan

Holger Dell

Eduard Eiben

Moran Feldman

Qilong Feng

Henning Fernau

Till Fluschnik

Fedor Formin

Martin Fürer

Serge Gaspers

Petr Golovach

Alexander Grigoriev

Gregory Gutin

Thore Husfeldt

Davis Issac

Dus̆an Knop

Mikko Koivisto

Sudeshna Kolay

Stavros Kolliopoulos

Lukasz Kowalik

Dieter Kratsch

Stefan Kratsch

R. Krithika

O-Joung Kwon

Michael Lampis

Euiwoong Lee

Wenjun Li

Mathieu Liedloff

Hong Liu

Yang Liu

Daniel Lokshtanov

Amaldev Manuel

Pranabendu Misra

Valia Mitsou

Matthias Mnich

Hendrik Molter

Amer Mouawad

Haiko Müller

Martin Mundhenk

N. S. Narayanaswamy

Jesper Nederlof

André Nichterlein

Rolf Niedermeier

Sebastian Ordyniak

Fahad Panolan

Marcin Pilipczuk

Michał Pilipczuk

M. Praveen

Ashutosh Rai

Venkatesh Raman

M. S. Ramanujan

Jean-Florent Raymond

Felix Reidl

Noy Rotbart

Stefan Rümmele

Michalis Samaris

IPEC 2016



0:xii External Reviewers

Ignasi Sau

Saket Saurabh

Roy Schwartz

Yash Raj Shrestha

Friedrich Slivovsky

Manuel Sorge

A.V. Sreejith

Yann Strozecki

Ondr̆ej Suchý

Peng Sun

Prafullkumar Tale

Nimrod Talmon

Thomas C. Van Dijk

Johan M.M. Van Rooij

Stéphane Vialette

Fernando Sánchetz Villaamil

Magnus Waldström

Justin Ward

Oren Weimann

Andreas Wiese

Marcin Wrochna

Yongjie Yang



List of Authors

Akanksha Agrawal

Gábor Bacsó

Max Bannach

René van Bevern

Thomas Bläsius

Hans L. Bodlaender

Glencora Borradaile

Cornelius Brand

Robert Bredereck

Sunil Chandran

Holger Dell

Khaled Elbassioni

Till Fluschnik

Tobias Friedrich

Vincent Froese

Serge Gaspers

Archontia Giannopoulou

Joachim Gudmundsson

Sushmita Gupta

Thore Husfeldt

Davis Issac

Bart M.P. Jansen

Mitchell Jones

Andreas Karrenbauer

Petteri Kaski

Yasuaki Kobayashi

Christian Komusiewicz

Marcel Koseler

R. Krithika

Mithilesh Kumar

Hung Le

Daniel Lokshtanov

Diptapriyo Majumdar

Dániel Marx

Kitty Meeks

Arne Meier

George B. Mertzios

Julián Mestre

Marcelo Garlet Millani

Matthias Mnich

Hendrik Molter

André Nichterlein

Rolf Niedermeier

Mateus de Oliveira Oliveira

Hirotaka Ono

Sebastian Ordyniak

Yota Otachi

Chritos Papadimitriou

Marcin Pilipczuk

Michał Pilipczuk

Willem Pino

M. S. Ramanujan

Jean-Florent Raymond

Frances A. Rosamond

Marc Roth

Stefan Rümmele

Sigve Hortemo Sæther

Abhishek Sahu

Saket Saurabh

Irena Schindler

Martin Schirneck

Roohani Sharma
11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/


0:xiv Authors

Manuel Sorge

Ondr̆ej Suchý

Blair D. Sullivan

Prafullkumar Tale

Hisao Tamaki

Till Tantau

Jan Arne Telle

Eva-Lotta Teutrine

Dimitrios Thilikos

Zsolt Tuza

Andrew van der Poel

Johan M.M. van Rooij

Michał Włodarczyk

Marcin Wrochna

Jules J.H.M. Wulms



Determinant Sums for Hamiltonicity
Andreas Björklund

Department of Computer Science, Lund University, Lund, Sweden
andreas.bjorklund@cs.lth.se

Abstract
The best worst case guarantee algorithm to see if a graph has a Hamiltonian cycle, a closed tour
visiting every vertex exactly once, for a long time was based on dynamic programming over all
the vertex subsets of the graph. In this talk we will show some algebraic techniques that can be
used to see if a graph has a Hamiltonian cycle much faster. These techniques utilize sums over
determinants of matrices.

In particular we will show how you can find out if an undirected graph has a Hamiltonian
cycle much faster, but we will also talk about some partial results for the directed case and
modular counting.

1998 ACM Subject Classification G.2.2 Graph Algorithms, I.1.2 Analysis of Algorithms

Keywords and phrases Hamiltonian cycle, exact algorithm, matrix determinant, algebraic tech-
niques

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.1

Category Invited Talk

© Andreas Björklund;
licensed under Creative Commons License CC-BY

11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin; Article No. 1; pp. 1:1–1:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de




Improved Algorithms and Combinatorial Bounds
for Independent Feedback Vertex Set∗

Akanksha Agrawal1, Sushmita Gupta2, Saket Saurabh3, and
Roohani Sharma4

1 Department of Informatics, University of Bergen, Norway
akanksha.agrawal@uib.no

2 Department of Informatics, University of Bergen, Norway
sushmita.gupta@uib.no

3 Institute of Mathematical Sciences, HBNI, Chennai, India
saket@imsc.res.in

4 Institute of Mathematical Sciences, HBNI, Chennai, India
roohani@imsc.res.in

Abstract
In this paper we study the “independent” version of the classic Feedback Vertex Set problem
in the realm of parameterized algorithms and moderately exponential time algorithms. More
precisely, we study the Independent Feedback Vertex Set problem, where we are given an
undirected graph G on n vertices and a positive integer k, and the objective is to check if there
is an independent feedback vertex set of size at most k. A set S ⊆ V (G) is called an independent
feedback vertex set (ifvs) if S is an independent set andG\S is a forest. In this paper we design two
deterministic exact algorithms for Independent Feedback Vertex Set with running times
O?(4.1481k)1 and O?(1.5981n). In fact, the algorithm with O?(1.5981n) running time finds the
smallest sized ifvs, if an ifvs exists. Both the algorithms are based on interesting measures and
improve the best known algorithms for the problem in their respective domains. In particular,
the algorithm with running time O?(4.1481k) is an improvement over the previous algorithm that
ran in time O?(5k). On the other hand, the algorithm with running time O?(1.5981n) is the first
moderately exponential time algorithm that improves over the naïve algorithm that enumerates
all the subsets of V (G). Additionally, we show that the number of minimal ifvses in any graph
on n vertices is upper bounded by 1.7485n.

1998 ACM Subject Classification G.2.2 Graph Algorithms, I.1.2 Analysis of Algorithms

Keywords and phrases independent feedback vertex set, fixed parameter tractable, exact al-
gorithm, enumeration

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.2

1 Introduction

Feedback Vertex Set (FVS) is one of the classic NP-complete problems. In fact, it is one
of the problems in the Karp’s famous list of twenty one NP-complete problems [21]. FVS
together with several of its variants have been extensively studied from both combinatorial
as well as algorithmic view points. Indeed, FVS is one of the central problems in any

∗ The research leading to these results has received funding from the European Research Council (ERC)
via grant PARAPPROX, reference 306992.

1 The O?() notation suppresses polynomial factors in the running-time expression.

© Akanksha Agrawal, Sushmita Gupta, Saket Saurabh, and Roohani Sharma;
licensed under Creative Commons License CC-BY

11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin; Article No. 2; pp. 2:1–2:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


2:2 Improved Algorithms and Combinatorial Bounds for IFVS

algorithmic paradigm that has to cope with NP-hardness, examples being : approximation
algorithms, moderately exponential time algorithms, enumeration algorithms and paramet-
erized algorithms [2, 3, 4, 7, 8, 11, 14, 16, 20, 22, 23, 28, 29, 33]. The goal of this article
is to study the independent set version of FVS in the realm of parameterized complexity,
moderately exponential time algorithms and combinatorial upper bounds.

We begin by formally defining the problem. The formal description of the problem being
studied is as follows.

Independent Feedback Vertex Set (IFVS) Parameter: k

Input: An undirected graph G on n vertices and a positive integer k.
Question: Is there an independent feedback vertex set of size at most k?

IFVS and Parameterized Complexity. FVS together with Vertex Cover is one of the
most well studied problem in the field of parameterized complexity [3, 4, 22, 28]. The
other variants of FVS on undirected graphs that have been studied extensively, include,
Subset FVS [8, 23, 33], Group FVS [7, 20, 33], Connected FVS [25], Simultaneous
FVS [1] and indeed IFVS [24, 30, 31]. The current champion algorithms for FVS are: a
randomized algorithm with running time O?(3k) [6] and a deterministic algorithm running
in time O?(3.619k) [22]. Misra et al. [24] introduced IFVS in 2011 (in the conference version
of the cited paper) as a generlization of FVS and gave an algorithm with running time
O?(5k). They also designed a polynomial kernel of size O(k3) for the problem. Later, Song
claimed a deterministic algorithm with running time O?(4k) for the problem [30]. However,
the algorithm of Song [30] does not seem to be correct.2 Tamura et al. [31] studied IFVS
on special graph classes and showed that the problem remains NP-complete even on planar
bipartite graphs of maximum degree four. They also designed linear time algorithms for
graphs of bounded treewidth, chordal graphs and cographs. Finally, they gave an algorithm
with running time O(2O(

√
k log k)n) for IFVS on planar graphs. We refer the reader to

the recent book on parameterized algorithms for more details regarding the paradigm of
parameterized complexity, as well as about the literature on the FVS problem [5]. Our first
main result is the following result regarding IFVS.

I Theorem 1. There is an algorithm for IFVS running in time O?(4.1481k).

Our new algorithm is based on iterative compression and the subroutine for iterative
compression is based on branching. The branching algorithm itself exploits (a) the fact
that once we select a vertex in the independent feedback vertex set then all its neighbors
must be in the forest; and (b) an interesting variation of the measure used for analyzing
the fastest known deterministic algorithm for FVS [22]. Finally, we also observe that the
randomized algorithm designed for FVS, running in time O?(3k) [6], can be adapted to
design a randomized O?(3k) time algorithm for IFVS.

IFVS and Moderately Exponential Time Algorithms. In moderately exponential time
algorithms (or exact algorithms for short), the objective is to design an algorithm for
optimization version of a problem that is better than the naïve brute force algorithm. In
particular, for FVS the goal will be to design an algorithm that runs in time cn, c < 2 a
constant, and finds a minimum sized set S such that G− S is a forest. We refer to the book

2 We have approached the author with concrete questions but he has not yet responded. Furthermore, we
give a family of counter-examples to his algorithm in the Section 3.2.



A. Agrawal, S. Gupta, S. Saurabh, and R. Sharma 2:3

of Fomin and Kratsch for more details regarding moderately exponential time algorithms [17].
Obtaining a non-trivial exact algorithm for FVS was open for quite some time before Razgon
obtained an algorithm with running time O(1.8899n) [29]. Later this algorithm was improved
to O?(1.7347n) [18]. Recently, Fomin et al. [13] obtained an interesting result relating
parameterized algorithms and exact algorithms. Roughly speaking, they showed that if
a problem (satisfying some constraints) has O?(ck) time algorithm parameterized by the
solution size, then there is an exact algorithm running in time O?(

(
2− 1

c

)n). Both FVS and
IFVS satisfies the required constraints and thus we immediately obtain the following exact
algorithm for IFVS: (a) a randomized algorithm running in timeO?(

(
2− 1

3
)n) = O?(1.6667n);

and (b) a deterministic algorithm running in time O?(
(
2− 1

4.1481
)n) = O?(1.7590n). We

give a recursive algorithm based on classical measure and conquer [15, 17] and design faster
algorithm than both the mentioned algorithms. In particular, we prove the following theorem.

I Theorem 2. There is an algorithm for IFVS running in time O?(1.5981n).

Combinatorial Upper Bounds. In our final section we address the following question: How
many minimal ifvses are there in any graph on n vertices? Proving an upper bound on the
number of combinatorial structures is an old and vibrant area. Some important results in
this area include an upper bound of

3n/3 on the number of maximal independent sets in a graph [26].
1.667n on the number of minimal feedback vertex sets in a tournament [13].
1.8638n on the number of minimal feedback vertex sets in a graph [14, 16].

One can easily observe that every minimal ifvs is also a minimal feedback vertex set. Thus,
an upper bound of 1.8638n on the number of minimal ifvses in any graph on n vertices
follows by [14]. As our final result, we give an improved upper bound on the number of
minimal ifvses in any graph on n vertices. We obtain this result by applying reduction
rules and branching rules with a carefully choosen measure. At the base case we prove that
counting the number of spanning trees is same as counting the number of minimal ifvses.
For bounding the number of spanning trees we use the result of Grimmett [19].

I Theorem 3. A graph G on n vertices has at most 1.7485n minimal ifvses.

Let n be divisible by 3 and G be a graph that is union of n/3 vertex disjoint triangles.
Then any minimal ifvs must contain exactly one vertex from each of n/3 triangles and thus
G has 3n/3 minimal ifvses. Closing the gap between 3n/3 and 1.7485n remains an interesting
open problem. The proofs of Theorem 2 and 3 are omitted due to space constraints.

2 Preliminaries

In this section, we state some basic definitions and introduce terminology from graph theory
and algorithms. We also establish some of the notations that will be used throughout.

We denote the set of natural numbers by N. To describe the running times of our
algorithms, we will use the O? notation. Given f : N → N, we define O?(f(n)) to be
O(f(n) · p(n)), where p(·) is some polynomial function. That is, the O? notation suppresses
polynomial factors in the running-time expression.

Graphs. We use standard terminology from the book of Diestel [9] for those graph-related
terms which are not explicitly defined here. We only consider finite graphs possibly having
loops and multi-edges. For a graph G, by V (G) and E(G) we denote the vertex and edge sets
of the graph G, respectively. For a vertex v ∈ V (G), we use dG(v) to denote the degree of v,

IPEC 2016



2:4 Improved Algorithms and Combinatorial Bounds for IFVS

i.e the number of edges incident on v, in the (multi) graph G. We also use the convention
that a loop at a vertex v contributes two to its degree. For a vertex subset S ⊆ V (G), G[S]
and G \ S are the graphs induced on S and V (G) \ S, respectively. For an edge subset
S ⊆ E(G), by G \ S, we denote the graph obtained after removing edges in S from G. For a
vertex subset S ⊆ V (G), we let NG(S) and NG[S] denote the open and closed neighbourhood
of S in G. That is, NG(S) = {v | (u, v) ∈ E(G), u ∈ S} \ S and NG[S] = NG(S) ∪ S. We
drop the sub-script G from dG(v), NG(S), NG[S] whenever the context is clear. For a graph
G and an edge e ∈ E(G), G/e denotes the graph obtained after contracting e in G.

A path in a graph is a sequence of distinct vertices v0, v1, . . . , v` such that (vi, vi+1) is
an edge for all 0 ≤ i < `. A cycle in a graph is a sequence of distinct vertices v0, v1, . . . , v`

such that (vi, v(i+1) mod (`+1)) is an edge for all 0 ≤ i ≤ `. We note that both a double edge
and a loop are cycles. A tree T rooted at r ∈ V (T ) is called as a star if E(T ) = {(v, r) | v ∈
V (T ) \ {r}}.

Let W ⊆ V (G) and H = G \W . We define certain useful vertices in V (H). We call a
vertex v ∈ V (H), a nice vertex if dH(v) = 0 and dG(v) = 2, i.e. both the neighbours of v
belong to the set W . Similarly, we call a vertex v ∈ V (H), a tent if dH(v) = 0 and dG(v) = 3.
A feedback vertex set is a subset S ⊆ V (G) such that G \ S is a forest.

Parameterized Complexity. A parameterized problem Π is a subset of Γ∗ × N, where Γ is
a finite alphabet. An instance of a parameterized problem is a tuple (x, k), where x is a
classical problem instance, and k is called the parameter. A central notion in parameterized
complexity is fixed-parameter tractability (FPT) which means, for a given instance (x, k),
decidability in time f(k) · p(|x|), where f is an arbitrary function of k and p is a polynomial
in the input size. For more details on parameterized complexity, we refer the reader to the
books of Downey and Fellows [10], Flum and Grohe [12], Niedermeier [27], and the more
recent book by Cygan et al. [5].

When we say that we branch on a vertex v, we mean that we recursively generate two
instances, one where v belongs to the solution, the other where v does not belong to the
solution. This is a standard method of exhaustive branching.

Bounded Search Trees. The running time of an algorithm that uses bounded search
trees can be analyzed as follows (see, e.g., [5, 10]). Suppose that the algorithm executes
a branching rule which has ` branching options (each leading to a recursive call with the
corresponding parameter value), such that, in the ith branch option, the current value of
the parameter decreases by bi. Then, (b1, b2, . . . , b`) is called the branching vector of this
rule. We say that α is the root of (b1, b2, . . . , b`) if it is the (unique) positive real root of
xb∗ = xb∗−b1 + xb∗−b2 + · · ·+ xb∗−b` , where b∗ = max{b1, b2, . . . , b`}. If r > 0 is the initial
value of the parameter, and the algorithm (a) returns a result when (or before) the parameter
is negative, and (b) only executes branching rules whose roots are bounded by a constant
c > 0, then its running time is bounded by O∗(cr).

A reduction rule is a polynomial time algorithm that replaces an instance (I, k) of a
parameterized language L by a new instance (I ′, k′). It is said to be safe if (I, k) ∈ L if and
only if (I ′, k′) ∈ L.

3 FPT Algorithm for Independent Feedback Vertex Set

In this section we give an FPT algorithm for IFVS running in time O?(4.1481k). Given an
input (G, k), the algorithm starts by computing a feedback vertex set Z in G. A feedback



A. Agrawal, S. Gupta, S. Saurabh, and R. Sharma 2:5

vertex set in G of size at most k (if it exists) can be computed in time O?(3.619k) using the
algorithm given in [22]. If there is no feedback vertex set of size at most k, then we conclude
that (G, k) is a NO instance of ifvs since an ifvs is also a feedback vertex set in G.

We let H = G\Z. The algorithm either outputs an ifvs in G of size at most k or correctly
conclude that (G, k) is a NO-instance of IFVS. The algorithm guesses a subset Z ′ ⊆ Z,
such that for an ifvs X in G, X ∩ Z = Z ′. For each of the guess Z ′, the algorithm does
the following. If G[Z ′] is not an independent set then it concludes that there is no ifvs
X in G such that Z ′ ⊆ X. Otherwise, G[Z ′] is an independent set. Let W = Z \ Z ′. If
G[W ] is not a forest, then their is no ifvs X such that, X ∩ Z = Z ′. Therefore, the guess
Z ′ is not correct and the algorithm rejects this guess. Otherwise, it deletes the vertices in
Z ′ and tries to find an ifvs S ⊆ V (H) \W of size at most k − |Z ′|. Note that any vertex
v ∈ NH(Z ′) cannot be part of the solution. Therefore, the algorithm adds the vertices in
NH(Z ′) to a set R. The set R consists of those vertices which cannot be included in ifvs in
order to maintain the independence of the vertices included in the solution. The algorithm
calls the sub-routine Disjoint Independent Feedback Vertex Set (Dis-IFVS) on the
instance (G \ Z ′,W,R, k − |Z ′|) to find an ifvs X ⊆ V (G \ Z ′) \ (W ∪R). In Section 3.1 we
give an algorithm for Dis-IFVS, which given an instance (G,W,R, k) either finds an ifvs
S ⊆ V (G) \ (W ∪R) of size at most k or correctly concludes that there does not exits such
an ifvs. Moreover, the algorithm for Dis-IFVS runs in time O?(3.1481k).

I Theorem 1 (restated). There is an algorithm for IFVS running in time O?(4.1481k).

Proof. Given an instance (G, k) of IFVS, the algorithm computes a feedback vertex set
Z in G of size at most k (if it exists) in time O?(3.619k). If there is no feedback vertex
set of size at most k, it correctly concludes that (G, k) is a NO instance. Otherwise, for
each Z ′ ⊆ Z, either it correctly concludes that Z ′ is a wrong guess (for extending it to
an ifvs) or runs the algorithm for Dis-IFVS on the instance (G \ Z ′,W,R, k − |Z ′|).
Here, the instance (G \ Z ′,W,R, k − |Z ′|) is created as described above in the description
of the algorithm. The correctness of the algorithm follows from the correctness of the
algorithm for Dis-IFVS and the fact that all possible intersections of the solution with
Z are considered. The running time of the algorithm is given by the following equation:
3.619k · nO(1) +

∑k
i=0
(

k
i

)
· 3.1481k−i · nO(1) ≤ 4.1481k · nO(1). This concludes the proof. J

3.1 Algorithm for Disjoint Independent Feedback Vertex Set

We give an algorithm for Disjoint Independent Feedback Vertex Set running in time
O?(3.1481k).

Disjoint Independent Feedback Vertex Set (Dis-IFVS) Parameter: k

Input: An undirected (multi) graph G, a fvs W in G, R ⊆ V (G) \W and, an integer k.
Question: Does G have an ifvs S ⊆ V (G) \ (W ∪R) such that |S| ≤ k?

The algorithm for Dis-IFVS either applies some reduction rules or branches on a vertex
in V (G) \W . The algorithm branches on a vertex in V (G) \W only when (a) none of the
reduction rules are applicable; and (b) we are not in the case where we can solve the problem
in polynomial time. Let H = G \W . We arbitrary root the trees in H at some vertex
(preferably a vertex v with dH(v) > 2). We will be using the following measure µ associated
with the instance (G,W,R, k) to bound the number of nodes of the search tree.

µ = µ(G,W,R, k) = 2k + ρ(W )− (η + 2τ) .

IPEC 2016



2:6 Improved Algorithms and Combinatorial Bounds for IFVS

yu v

x yv

u v

x

x

v

x

Figure 1 Reduction Rule 2.

Here, ρ(W ) is the number of components in W , η denotes the number of nice vertices in
V (H) \ R and τ denotes the number of tents in V (H) \ R. We note that here nice vertices
and tents are defined with respect to the set W . See preliminaries for the definitions of a
nice vertex and a tent.

Now we describe all the reduction rules that will be used by the algorithm. The first two
reduction rules get rid of vertices of degree at most one and consecutive vertices of degree
two in the graph. The safeness of these reduction rules follow from [24].

Reduction Rule 1. Delete vertices of degree at most one since they do not participate in
any cycle.
Reduction Rule 2. Let u, v be two adjacent degree two vertices in the input graph G which
are not nice in H, and x, y be the other neighbors of u, v respectively. Delete the vertex
u and add the edge (x, v). Here, if one of u, v belongs to R, say v ∈ R then we delete v
and add an edge between its neighbors (see Figure 1).
When applying Reduction Rule 2, if both the degree two vertices belong to R, then the
choice of deleting one of them and adding an edge between its neighbors is arbitrary.
Observe that the measure µ does not increase after the application of Reduction Rules 1
and 2.
Reduction Rule 3. If k < 0, then return that (G,W,R, k) is a NO instance.
Reduction Rule 4. If there is a vertex v ∈ R such that v has two neighbors in the same
component of W , then return that (G,W,R, k) is a NO instance.
Reduction Rule 5. If there is a vertex v ∈ R such that v has a neighbor in W , then remove
v from R and add v toW . That is, we solve the instance (G,W ∪{v},R\{v}, k). Observe
that by moving v to W we do not increase the number of components of G[W ∪ {v}].
Reduction Rule 6. If there is a vertex v ∈ V (H) \R such that v has at least two neighbors
in the same component of W , then remove v from G and add the vertices in NH(v) to R.
That is, the resulting instance is (G \ {v},W,R∪NH(v), k − 1). In this case it is easy to
observe that v must belong to any ifvs.
Reduction Rule 7. If there is a vertex u ∈ R such that there is a leaf v in H adjacent
to u and dW (v) ≤ 2. Then remove u from R and include u in W i.e. the resulting
instance is (G,W ∪ {u},R \ {u}, k). Observe that moving u to W increases the number
of components in W , but it also makes v either a nice vertex or a tent.
Reduction Rule 8. Let T be a tree in H and u ∈ V (T ) ∩ (V (H) \ R) such that the tree,
Tu, rooted at u is a star. That is, all the children of u are leaves of T . Furthermore, each
vertex in Vu = V (Tu) \ {u} (all the children of u) has exactly one neighbor in W and
1 ≤ |Vu| ≤ 2. Finally, assume that either V (T ) \ V (Tu) = ∅ or the parent x of u is in R.
Then include the vertices in Vu ∪ {x} to W and remove x from R (if it exists) i.e. the



A. Agrawal, S. Gupta, S. Saurabh, and R. Sharma 2:7

u

x

wv

u

x
w

v

u

wv

u

w
v

Figure 2 Illustration of Reduction Rule 8.

resulting instance is (G,W ∪ Vu ∪ {x},R \ {x}, k). Here, {x} = ∅, if x does not exists.
(see Figure 2)

I Lemma 4. Reduction Rule 4 is safe.

Proof. Let x, y be two neighbors of v ∈ R that are present in the same component of W .
Since x, y belong to the same component of W , there is a path P in W from x to y. But
then, G[V (P ) ∪ {v}] contains a cycle, with v being the only vertex not in W . Therefore,
there cannot exist an ifvs, S ⊆ V (G) \ (W ∪R) in G. This concludes the proof. J

I Lemma 5. Reduction Rule 5 is safe. Furthermore, the measure µ does not increase after
application of Reduction Rule 5.

Proof. Let v ∈ R be a vertex such that v has a neighbor in W . Note that any ifvs,
S ⊆ V (G) \ (W ∪R) in G does not contain v. Moreover, since v has a neighbor in W , adding
v to W does not increase the number of components in W . This implies that µ does not
increase. J

I Lemma 6. Reduction Rule 6 is safe. Furthermore, the measure µ does not increase after
application of Reduction Rule 6.

Proof. Let v ∈ V (H) \ R be a vertex such that v has 2 neighbors, say x, y, in the same
component of W . Since x, y belong to the same component of W , there is a path P in W
from x to y. But then, G[V (P ) ∪ {v}] contains a cycle, with v being the only vertex not in
W . Therefore, any ifvs S ⊆W must include v and hence avoid NH(v).

When we delete v from G and decrease k by 1, the number of components in W remains
the same. If v was either a nice vertex or a tent then η + 2τ can decrease at most by 2.
Therefore, the measure µ in the resulting instance can not increase. This concludes the
proof. J

I Lemma 7. Reduction Rule 7 is safe and the measure µ does not increase after its applica-
tion.

IPEC 2016



2:8 Improved Algorithms and Combinatorial Bounds for IFVS

Proof. Let u ∈ R be a vertex such that there is a leaf v in H adjacent to u such that
dW (v) ≤ 2. Observe that no solution to Dis-IFVS can contain u. Therefore, we only need to
show that the measure µ does not increase. When we add u to W , the number of components
in W can increase by 1. But then v becomes either a nice vertex or a tent. Therefore, η+ 2τ
decreases at least by 1. This together with the fact that k remains the same imply that µ
cannot increase. J

I Lemma 8. Reduction Rule 8 is safe and the measure µ does not increase after its applica-
tion.

Proof. Let T be a tree in H and u ∈ V (T ) ∩ (V (H) \ R) such that the tree, Tu, rooted
at u is a star. That is, all the children of u are leaves of T . Furthermore, the vertices in
Vu = V (Tu) \ {u} (all the children of u) have exactly one neighbor in W and 1 ≤ |Vu| ≤ 2.
Also, either V (T ) \V (Tu) = ∅ or the parent x of u is in R. To prove the lemma, we will show
that if (G,W,R, k) is a YES instance of Dis-IFVS then there is an ifvs, S ⊆ V (H)\ (W ∪R),
of size at most k in G such that S ∩ Vu = ∅. Observe that x (if it exists) cannot belong to S.

Let S ⊆ V (H) \ (W ∪R) be an ifvs in G of size at most k. If S ∩ Vu = ∅ then S is the
desired solution. Otherwise, let S′ = (S \ Vu) ∪ {u}. Since S ∩ Vu 6= ∅, we have that u does
not belong to S and thus the size of S′ is also at most k. We claim that S′ is an ifvs of the
desired form. Notice that S′ ⊆ V (H) \ (W ∪R) holds. Also, S′ is an independent set since
neighbors of u do not belong to S′ and S \ Vu is an independent set. Therefore, we only need
to prove that S′ is a feedback vertex set in G. Suppose not, then there is a cycle C in G \ S′.
If C does not contain any vertex from Vu ∪{x}, then C is also a cycle in G \S, contradicting
that S in an ifvs in G. If C contains x, but does not contain any other vertex from Vu, then
we can conclude that C is a cycle in G \ S, since x /∈ S. Otherwise, C contain a vertex say,
v ∈ Vu. Note that v is a degree 2 vertex in G. This implies that any cycle containing v must
contain both the neighbors of v. But then u belongs to C contradicting that C is a cycle in
G \ S′. This proves the safeness of the reduction rule.

When we add Vu ∪ {x} to W the number of components can increase at most by 1. Note
that none of the vertices in Vu ∪{x} is a tent. Therefore, the number of nice vertices or tents
does not decrease and u becomes a nice vertex or a tent. This implies that the measure µ
does not increase. This concludes the proof. J

Algorithm Description. We give an algorithm only for the decision variant of the problem.
It is straightforward to modify the algorithm so that it actually finds a solution, provided
there exists one.

We will follow a branching strategy with a nontrivial measure function. Let (G,W,R, k) be
the input instance. The algorithm first applies Reduction Rules 1–8, in this order, exhaustively.
That is, at any point of time we apply the lowest numbered applicable Reduction Rule. For
clarity we denote the reduced instance (the one on which Reduction Rules 1–8 do not apply)
by (G,W,R, k).

We now check whether every vertex in V (G) \ (W ∪R) is either a nice vertex or a tent.
If this is the case, then in polynomial time we can check whether or not there is an ifvs
contained in V (G) \ (W ∪R) that is of size at most k; and return accordingly as described
by Lemma 9.

I Lemma 9. Let (G,X) be an instance of IFVS where every vertex in V (G) \X is either a
nice vertex or a tent. Then in polynomial time we can find a minimum sized ifvs S ⊆ V (G)\X
in G.



A. Agrawal, S. Gupta, S. Saurabh, and R. Sharma 2:9

The proof of Lemma 9 follows from Lemma 4.10 in [5], which is based on a polynomial
time algorithm for FVS in subcubic graphs by Ueno et at. [32] and the fact that the algorithm
described in [5] for finding feedback vertex set on the instances of described type always
returns an independent feedback vertex set (if it exists).

Finally, we move to the branching step of the algorithm. We never branch on a nice
vertex or a tent. We will branch on the vertices in V (H) \ R based on certain criteria. We
consider the following three scenarios.

Scenario A. There is a vertex which in not a tent and has at least 3 neighbors in W .
Scenario B. There is a leaf which is not a nice vertex and has exactly 2 neighbors in W ,
but no leaf has more than 2 neighbors in W .
Scenario C. All the leaves have exactly one neighbor in W .

Scenario A. If there is a vertex v ∈ V (H) which is not a tent and has at least 3 neighbors
in W . Note that v /∈ R as the Reduction Rule 5 is not applicable. In this case we branch on
v as follows.

When v belongs to the solution, then all the vertices in NH(v) cannot belong to the
solution. Therefore, we add all the vertices in NH(v) to the set R. The resulting instance
is (G \ {v},W,R∪N(v), k − 1). In this case k decreases by 1 and ρ(W ), η, τ remains the
same. Therefore, µ decreases by 2.
When v does not belong to the solution, then we add v to W . The resulting instance
is (G,W ∪ {v},R, k). Note that v cannot have two neighbors in the same component of
W , otherwise Reduction Rule 6 would be applicable. Therefore, G[W ∪ {v}] has at most
ρ(W )− 2 components. Also, k does not change and η, τ does not decrease. Therefore, µ
decreases at least by 2.

The resulting branching vector for this case is (2, 2). When none of the Reduction Rules are
applicable and we cannot branch according to Scenario A, then we can assume that there is
no vertex v ∈ V (H), such that v has more than 2 neighbors in W . Of course a tent could
have three neighbors in W but as stated before we never branch on a nice vertex or a tent.
For each tree T (a component) in H, for a vertex v ∈ V (T ) we define the level `(v) of v to
be the distance of v from the root of T . The root r in a tree has `(r) = 0. We call a leaf
vertex v ∈ V (T ) as a deep leaf if `(v) 6= 0 and for all leaves v′ ∈ V (T ), `(v′) ≤ `(v).

Scenario B. Let v be a leaf in some tree T in H with the unique neighbor u ∈ V (H) such
that v has exactly two neighbors in W . Observe that u /∈ R since Reduction Rule 7 is not
applicable. We branch on u as follows.

When u belongs to the solution, then all the vertices in NH(u) cannot belong to the
solution. We add all the vertices in NH(u) \ {v} to the set R. We add the vertex v to
W . The resulting instance is (G \ {u},W ∪ {v},R∪ (NH(u) \ {v}), k− 1). In this case k
decreases by 1, and η, τ do not decrease. The number of components in G[W ∪ {v}] is
ρ(W )− 1, since v has 2 neighbors in different components of W . Therefore, µ decreases
by 3.
When u does not belong to the solution, then we add u to W . The resulting instance is
(G,W ∪ {u},R, k). Note that when we add u to W then v becomes a tent. The number
of components in G[W ∪ {u}] is at most ρ(W ) + 1. Note that k does not increase, η does
not decrease and τ increases at least by 1. Therefore, µ decreases by at least 1.

The resulting branching vector for this case is (3, 1).
We now assume that all the leaves in H have exactly one neighbor in W .

IPEC 2016



2:10 Improved Algorithms and Combinatorial Bounds for IFVS

Scenario C. Let v be a deep leaf in some tree T in H. Let the unique neighbor of v in
H be u. We note that the sub-tree Tu rooted at u is a star, i.e. u is the only vertex in Tu

which can possibly have degree more than one. This follows from the fact that v is a deep
leaf. Also, u /∈ R since Reduction Rule 7 is not applicable. We consider the following cases
depending on the number of leaves in the sub-tree Tu rooted at u.

Case 1. If Tu has at least two more leaves, say x, y other than v. We branch on the vertex
u as follows.

When u belongs to the solution, then the vertices in NH(u) does not belong to the
solution. We add all the vertices in NH(u) to the set R. The resulting instance is
(G \ {u},W,R ∪ NH(u), k − 1). In this case k decreases by 1 and η, τ, ρ(W ) does not
change. Therefore, µ decreases at least by 2.
When u does not belong to the solution, we add u to W . The resulting instance is
(G,W ∪ {u},R, k). Observe that when we add u to W then, v, x, y becomes nice vertices
and the number of components in G[W ∪{u}] is at most ρ(W )+1. Therefore, µ decreases
at least by 2.

The resulting branching vector for this case is (2, 2).

Case 2. If Tu has at most one more leaf other than v. We let x to be the parent of u in T .
Note that x exists and x /∈ R because each leaf has exactly one neighbor in W and Reduction
Rules 2 and 8 are not applicable. In this case we branch on x.

When x belongs to the solution, then the vertices in NH(x) do not belong to the solution.
We add all the vertices in NH(x)\{u} to the set R and add u to the set W . The resulting
instance is (G \ {x},W ∪ {u},R∪ (NH(x) \ {u}), k − 1). Observe that Reduction Rule 2
is not applicable. Therefore, at least one of the following holds.
u has a neighbor in W .
u has one more leaf v′ (not in W ′) adjacent to it in other than v.

In the former case, when we add u to W , the number of components in G[W ∪ {u}] is at
most ρ(W ). Also, v becomes a nice vertex. Therefore, η increases at least by 1 and τ
does not decrease. Therefore, µ decreases at least by 3. In the latter case when we add u
to W , v, v′ becomes nice vertices. In this case k decreases by 1, η increases by 2, τ does
not decrease, and ρ(W ) can increase at most by 1. Therefore, µ decreases at least by 3.
When x does not belong to the solution, we add x to W . But then Tu is a star and u
does not have a parent. Therefore, we can apply the Reduction Rule 8. That is, we can
add v, v′ to W . The resulting instance would be (G,W ∪ {x, v, v′},R, k). Observe that u
becomes a tent. In this case k, ρ remains the same, while τ increases by 1 and ρ(W ) can
increase at most by 1. Therefore, µ decreases at least by 1.

The resulting branching vector for this case is (3, 1).
This completes the description of the algorithm.

Analysis and Correctness of the Algorithm. The following Lemma which will be used to
prove the correctness of the algorithm.

I Lemma 10. For an instance I = (G,W,R, k) of Dis-IFVS, if µ < 0, then I is a NO
instance.

Proof. Let us assume for contradiction that I is a YES instance and µ < 0. Let S ⊆
V (G) \ (W ∪ R) be an ifvs in G of size at most k. Therefore, F = G \ S is a forest.
Let N ⊆ V (G) \ (W ∪ R), T ⊆ V (G) \ (W ∪ R) be the set of nice vertices and tents in



A. Agrawal, S. Gupta, S. Saurabh, and R. Sharma 2:11

Table 1 The branch vectors and the corresponding running times.

Scenario Cases Branch Vector cµ

Scenario A (2, 2) 1.4142µ

Scenario B (3, 1) 1.4656µ

Scenario C
Case 1 (2, 2) 1.4142µ

Case 2 (3, 1) 1.4656µ

V (G) \ (W ∪R), respectively. Since F is a forest we have that G′ = G[(W ∪N ∪ T ) \ S] is a
forest. In G′, we contract each of the components in W to a single vertex to obtain a forest F̃ .
Observe that F̃ has at most |V (F̃ )| ≤ ρ(W ) + |N \ S|+ |T \ S| vertices and thus can have at
most ρ(W ) + |N \S|+ |T \S| − 1 many edges. The vertices in (N ∪T ) \S ⊆ V (G) \ (W ∪R)
forms an independent set in F̃ , since they are nice vertices or tents. The vertices in N \ S
and T \ S have degree 2 and degree 3 in F̃ , respectively, since their degree cannot drop while
contracting the components of G[W ]. This implies that,

2|N \ S|+ 3|T \ S| ≤ |E(F̃ )| ≤ ρ(W ) + |N \ S|+ |T \ S| − 1.

Therefore, |N \ S|+ 2|T \ S| < ρ(W ). But N ∩ T = ∅ and thus

|N |+ 2|T | < ρ(W ) + 2|S| ≤ ρ(W ) + 2k. (1)

However, by our assumption, µ(I) = ρ(W ) + 2k − (|N |+ 2|T |) < 0 and thus |N |+ 2|T | >
ρ(W ) + k. This, contradicts the inequality given in Equation 1 contradicting our assumption
that I is a YES instance. J

I Lemma 11. The algorithm presented for Dis-IFVS is correct.

Proof. Let I = (G,W,R, k) be an instance of Dis-IFVS. We prove the correctness of the
algorithm by induction on µ = µ(I) = 2k + ρ(W )− (η + 2τ). The base case occurs in one of
the following cases.

µ < 0. By Lemma 10, when µ < 0, we can correctly conclude that I is a NO instance.
k < 0. By Reduction Rule 3 it follows that when k < 0, we can correctly conclude that I
is a NO instance.
When none of the Reduction Rules and Branching Rules are applicable. In this case we
are able to solve the instance in polynomial time.

By induction hypothesis we assume that for all µ ≤ l, the algorithm is correct. We will
now prove that the algorithm is correct when µ = l + 1. The algorithm does one of the
following. Either applies one of the Reduction Rules if applicable. By Lemma 4 to Lemma 8
we know that the Reduction Rules correctly concludes that I is a NO instance or produces an
equivalent instance I ′ with µ(I ′) ≤ µ(I). If µ(I ′) < µ(I), then by induction hypothesis and
safeness of the Reduction Rules the algorithm correctly decides if I is a yes instance or not.
Otherwise, µ(I ′) = µ(I). If none of the Reduction Rules are applicable then the algorithm
applies one of the Branching Rules. Branching Rules are exhaustive and covers all possible
cases. Furthermore, µ decreases in each of the branch by at least one. Therefore, by the
induction hypothesis, the algorithm correctly decides whether I is a YES instance or not. J

I Theorem 12. The algorithm presented solves Disjoint Independent Feedback Vertex
Set in time O?(3.1481k).

IPEC 2016



2:12 Improved Algorithms and Combinatorial Bounds for IFVS

Proof. The Reduction Rules 1 to 8 can be applied in time polynomial in the input size. Also,
at each of the branch we spend a polynomial amount of time. At each of the recursive calls in
a branch, the measure µ decreases at least by 1. When µ ≤ 0, then we are able to solve the
remaining instance in polynomial time or correctly conclude that the corresponding branch
cannot lead to a solution. At the start of the algorithm µ ≤ 3k. The worst-case branching
vector for the algorithm is (3, 1) (see Table 1). The recurrence for the worst case branching
vector is:

T (µ) ≤ T (µ− 3) + T (µ− 1) .

The running time corresponding to the above recurrence relation is 3.1481k. J

3.2 A family of counter examples to Song’s Algorithm for Independent
Feedback Vertex Set

Let F be the family of even cycles. For any C ∈ F , let (CW , CH) be a bipartition of C.
Given a graph G and a feedback vertex set F in G, Lemma 3.1 of [30] claims to output a
minimum IFVS in G. But for G = C and F = CW , where C ∈ F , the algorithm of Lemma
3.1 always returns ∅.

4 Conclusion

In this paper we studied the Independent Feedback Vertex Set problem in the realm of
parameterized algorithms, moderately exponential time algorithms and combinatorial upper
bounds. We gave the fastest known deterministic algorithms for the problem running in times
O∗(4.1481k) and O∗(1.5981n), respectively. Finally, we showed that the number of minimal
ifvses in any graph on n vertices is upper bounded by 1.7485n. We also complemented the
upper bound result by obtaining a family of graphs where the number of minimal ifvses is
at least 3n/3. Improving running time of all our algorithms is an interesting question. We
conclude the paper with few concrete open problems.

Does Independent Feedback Vertex Set admit a kernel of size O(k2)?
Could we close the gap (or even bring closer) between the upper bound and the lower
bounds on the number of minimal ifvses in any graph on n vertices?

Acknowledgements. We thank Amer E. Mouawad and Prafullkumar P. Tale for discussions
and help in programming.

References
1 Akanksha Agrawal, Daniel Lokshtanov, Amer E. Mouawad, and Saket Saurabh. Simultan-

eous Feedback Vertex Set: A Parameterized Perspective. In Proc. of the 33rd Symposium on
Theoretical Aspects of Computer Science (STACS’16), volume 47 of LIPIcs, pages 7:1–7:15.
Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.STACS.
2016.7.

2 Vineet Bafna, Piotr Berman, and Toshihiro Fujito. A 2-approximation algorithm for the
undirected feedback vertex set problem. SIAM Journal on Discrete Mathematics, 12(3):289–
297, 1999.

3 Yixin Cao, Jianer Chen, and Yang Liu. On feedback vertex set: New measure and new
structures. Algorithmica, 73(1):63–86, 2015.

http://dx.doi.org/10.4230/LIPIcs.STACS.2016.7
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.7


A. Agrawal, S. Gupta, S. Saurabh, and R. Sharma 2:13

4 Jianer Chen, Fedor V. Fomin, Yang Liu, Songjian Lu, and Yngve Villanger. Improved
algorithms for feedback vertex set problems. Journal of Computer and System Sciences,
74(7):1188–1198, 2008.

5 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

6 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michał Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth
in single exponential time. In Proceedings of the 52nd Annual Symposium on Foundations
of Computer Science (FOCS), pages 150–159, 2011.

7 Marek Cygan, Marcin Pilipczuk, and Michal Pilipczuk. On group feedback vertex set
parameterized by the size of the cutset. Algorithmica, 74(2):630–642, 2016.

8 Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. Subset
feedback vertex set is fixed-parameter tractable. SIAM Journal of Discrete Mathematics,
27(1):290–309, 2013.

9 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

10 Rod G. Downey and Michael R. Fellows. Parameterized complexity. Springer-Verlag, 1997.
11 Paola Festa, Panos M. Pardalos, and Mauricio G.C. Resende. Feedback set problems. In

Handbook of combinatorial optimization, Supplement Vol. A, pages 209–258. Kluwer Acad.
Publ., Dordrecht, 1999.

12 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006.

13 Fedor V. Fomin, Serge Gaspers, Daniel Lokshtanov, and Saket Saurabh. Exact algorithms
via monotone local search. In Proceedings of the 48th Annual ACM Symposium on Theory
of Computing (STOC’16), pages 764–775, 2016.

14 Fedor V. Fomin, Serge Gaspers, Artem V. Pyatkin, and Igor Razgon. On the minimum
feedback vertex set problem: Exact and enumeration algorithms. Algorithmica, 52(2):293–
307, 2008.

15 Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. A Measure & Conquer approach
for the analysis of exact algorithms. Journal of ACM, 56(5), 2009.

16 Fedor V. Fomin, Pinar Heggernes, Dieter Kratsch, Charis Papadopoulos, and Yngve Vil-
langer. Enumerating minimal subset feedback vertex sets. Algorithmica, 69(1):216–231,
2014.

17 Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer, 2010. An
EATCS Series: Texts in Theoretical Computer Science.

18 Fedor V. Fomin, Ioan Todinca, and Yngve Villanger. Large induced subgraphs via triangu-
lations and CMSO. SIAM Journal on Computing, 44(1):54–87, 2015.

19 G.R. Grimmett. An upper bound for the number of spanning trees of a graph. Discrete
Mathematics, 16(4):323–324, 1976.

20 Sylvain Guillemot. FPT algorithms for path-transversal and cycle-transversal problems.
Discrete Optimization, 8(1):61–71, 2011.

21 Richard M. Karp. Reducibility among combinatorial problems. In Complexity of computer
computations, pages 85–103. Plenum Press, New York, 1972.

22 Tomasz Kociumaka and Marcin Pilipczuk. Faster deterministic feedback vertex set. In-
formation Processing Letters, 114(10):556–560, 2014.

23 Daniel Lokshtanov, M. S. Ramanujan, and Saket Saurabh. Linear time parameterized
algorithms for subset feedback vertex set. In Automata, Languages, and Programming –
42nd International Colloquium, ICALP, volume 9134, pages 935–946, 2015.

24 Neeldhara Misra, Geevarghese Philip, Venkatesh Raman, and Saket Saurabh. On paramet-
erized independent feedback vertex set. Theoretical Computer Science, 461:65–75, 2012.

IPEC 2016



2:14 Improved Algorithms and Combinatorial Bounds for IFVS

25 Neeldhara Misra, Geevarghese Philip, Venkatesh Raman, Saket Saurabh, and Somnath
Sikdar. FPT algorithms for connected feedback vertex set. Journal of Combinatorial
Optimization, 24(2):131–146, 2012.

26 J.W. Moon and L. Moser. On cliques in graphs. Israel Journal of Mathematics, 3:23–28,
1965.

27 Rolf Niedermeier. Invitation to fixed-parameter algorithms, 2006.
28 Venkatesh Raman, Saket Saurabh, and C.R. Subramanian. Faster fixed parameter tract-

able algorithms for finding feedback vertex sets. ACM Transactions on Algorithms,
2(3):403–415, 2006.

29 Igor Razgon. Exact computation of maximum induced forest. In Proceedings of the 10th
Scandinavian Workshop on Algorithm Theory (SWAT 2006), volume 4059, pages 160–171,
2006.

30 Yinglei Song. An improved parameterized algorithm for the independent feedback vertex
set problem. Theoretical Computer Science, 535:25–30, 2014.

31 Yuma Tamura, Takehiro Ito, and Xiao Zhou. Algorithms for the independent feedback
vertex set problem. IEICE Transactions, 98-A(6):1179–1188, 2015.

32 Shuichi Ueno, Yoji Kajitani, and Shin’ya Gotoh. On the nonseparating independent set
problem and feedback set problem for graphs with no vertex degree exceeding three. Dis-
crete Mathematics, 72(1):355–360, 1988.

33 Magnus Wahlström. Half-integrality, LP-branching and FPT algorithms. In Proceedings
of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages
1762–1781, 2014.



H-Free Graphs, Independent Sets, and
Subexponential-Time Algorithms∗

Gábor Bacsó1, Dániel Marx2, and Zsolt Tuza3

1 Institute for Computer Science and Control, Hungarian Academy of Sciences,
Budapest, Hungary

2 Institute for Computer Science and Control, Hungarian Academy of Sciences,
Budapest, Hungary

3 Alfréd Rényi Institute of Mathematics, Budapest, Hungary; and
Department of Computer Science and Systems Technology, University of
Pannonia, Veszprém, Hungary

Abstract
It is an old open question in algorithmic graph theory to determine the complexity of the Max-
imum Independent Set problem on Pt-free graphs, that is, on graphs not containing any
induced path on t vertices. So far, polynomial-time algorithms are known only for t ≤ 5 [Lok-
shtanov et al., SODA 2014, pp. 570–581, 2014]. Here we study the existence of subexponential-
time algorithms for the problem: by generalizing an earlier result of Randerath and Schiermeyer
for t = 5 [Discrete Appl. Math., 158 (2010), pp. 1041–1044], we show that for any t ≥ 5, there is
an algorithm for Maximum Independent Set on Pt-free graphs whose running time is subex-
ponential in the number of vertices.

Scattered Set is the generalization of Maximum Independent Set where the vertices
of the solution are required to be at distance at least d from each other. We give a complete
characterization of those graphs H for which d-Scattered Set on H-free graphs can be solved
in time subexponential in the size of the input (that is, in the number of vertices plus number of
edges):

If every component of H is a path, then d-Scattered Set on H-free graphs with n vertices
and m edges can be solved in time 2(n+m)1−O(1/|V (H)|) , even if d is part of the input.
Otherwise, assuming ETH, there is no 2o(n+m)-time algorithm for d-Scattered Set for any
fixed d ≥ 3 on H-free graphs with n-vertices and m-edges.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, F.2.2 Nonnumerical
Algorithms and Problems

Keywords and phrases independent set, scattered set, subexponential algorithms, H-free graphs

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.3

1 Introduction

The Maximum Independent Set problem (MIS, for short) is one of the fundamental
problems in discrete optimization. It takes a graph G as input, and asks for the maximum
number α(G) of mutually nonadjacent (i.e., independent) vertices in G. On unrestricted
input, it is not only NP-hard (its decision version “Is α(G) ≥ k?” being NP-complete), but

∗ Research of Gábor Bacsó and Dániel Marx was supported by ERC Starting Grant PARAMTIGHT
(No. 280152) and OTKA grant NK105645. Research of Zsolt Tuza was supported by the National
Research, Development and Innovation Office – NKFIH under the grant SNN 116095.

© Gábor Bacsó, Dániel Marx, and Zsolt Tuza;
licensed under Creative Commons License CC-BY

11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin; Article No. 3; pp. 3:1–3:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


3:2 H-Free Graphs, Independent Sets, and Subexponential-Time Algorithms

APX-hard as well, and, in fact, even not approximable within O(n1−ε) in polynomial time
for any ε > 0 unless P=NP, as proved by Zuckerman [21]. For this reason, classes of graphs
are of definite interest on which MIS becomes tractable. One direction of this area is to
study the complexity of MIS on H-free graphs, that means graphs not containing any induced
subgraph isomorphic to a given graph H.

What do we know about the complexity of MIS on H-free graphs? One the hardness
side, it is easy to see that if G′ is obtained from G by subdividing each edge with 2t new
vertices, then α(G′) = α(G) + t|E(G)| holds. This can be used to show that MIS is NP-hard
on H-free graphs whenever H is not a forest, and also if H contains a tree component with
at least two vertices of degree larger than 2 (first observed in [2], see, e.g., [11]). As MIS is
known to be NP-hard on graphs of maximum degree at most 3, the case when H contains a
vertex of degree at least 4 is also NP-hard.

The only case not covered by the above observations is when every component of H is
either a path, or a tree with exactly one degree-3 vertex c with three paths of arbitrary
lengths starting from c. Even this collection means infinitely many cases. For decades, on
these graphs H only partial results have been obtained, proving polynomial-time solvability
in some cases. A classical algorithm of Minty [16] and its corrected form by Sbihi [19] solved
the problem when H is a claw (3 paths of length 1 in the model above). This happened
in 1980. Much later, in 2004, Alekseev [3] generalized this result by an algorithm for H
isomorphic to a fork (2 paths of length 1 and one path of length 2).

Somewhat embarrassingly, even the seemingly easy case of Pt-free graphs is poorly
understood (where Pt is the path on t vertices). MIS on Pt-free graphs is not known to be
NP-hard for any t; for all we know, it could be polynomial-time solvable for every fixed t ≥ 1.
P4-free graphs (also known as cographs) have very simple structure, which can be used to
solve MIS in way that is very simple, but does not generalize to Pt-free graphs for larger t.
In 2010, it was a breakthrough when Randerath and Schiermeyer [17] stated that MIS was
solvable in subexponential time, more precisely within O(Cn1−ε) for any constants C > 1
and ε < 1/4, on P5-free graphs. Designing an algorithm based on deep results, Lokshtanov
[11] finally proved that MIS is polynomial-time solvable on P5-free graphs. More recently, a
quasipolynomial (nlogO(1) n-time) algorithm was found for P6-free graphs [13].

In this paper, we explore MIS and some variants on H-free graphs from the viewpoint of
subexponential-time algorithms. That is, instead of aiming for algorithms with running time
nO(1) on n-vertex graphs, we ask if 2o(n) algorithms are possible. Our first result shows that
there is indeed such an algorithm for Pt-free graphs.

I Theorem 1. For every fixed t ≥ 5, MIS on n-vertex Pt-free graphs is subexponential,
namely, it can be solved by a 2O(n1−1/bt/2c+o(1))-time algorithm.

In particular, for t = 5, this improves the result of Randerath and Schiermeyer [17]. The
algorithm is based on the obsevation that a connected Pt-free graph always has a high-degree
vertex, which can be used for efficient branching. However, the algorithm does not seem to
be extendable to H-free graphs where H is the subdivision of a K1,3, hence the existence of
subexponential-time algorithms on such graphs remains an open question.

Scattered Set (also known under other names such as dispersion or distance-d in-
dependent set [14, 20, 1, 18, 6, 9]) is the natural generalization of MIS where the vertices
of the solution are required to be at distance at least d from each other; the size of the
largest such set will be denoted by αd(G). We can consider with d being part of the input,
or assume that d ≥ 2 is a fixed constant, in which case we call it d-Scattered Set.
Clearly, MIS is exactly the same as 2-Scattered Set. Despite its similarity to MIS, the
branching algorithm of Theorem 1 cannot be generalized: we give evidence that there is



G. Bacsó, D. Marx, and Zs. Tuza 3:3

no subexponential-time algorithm for 3-Scattered Set on P5-free graphs. For the lower
bound, we assume the Exponential-Time Hypothesis (ETH) of Impagliazzo, Paturi, and
Zane, which can be informally stated as n-variable 3SAT cannot be solved in 2o(n) time (see
[7, 12, 10]).

I Theorem 2. Assuming ETH, there is no 2o(n)-time algorithm for d-Scattered Set with
d = 3 on P5-free graphs with n vertices.

In light of the negative result of Theorem 2, we slightly change our objective by aiming
for an algorithm that is subexponential in the size of the input, that is, in the total number of
vertices and edge of the graph G. As the number of edges of G can be up to quadratic in the
number of vertices, this is a weaker goal: an algorithm that is subexponential in the number
of edges is not necessarily subexponential in the number of vertices. We give a complete
characterization when such algorithms are possible for Scattered Set.

I Theorem 3. For every fixed graph H, the following holds.
1. If every component of H is a path, then d-Scattered Set on H-free graphs with n

vertices and m edges can be solved in time 2(n+m)1−O(1/|V (H)|) , even if d is part of the
input.

2. Otherwise, assuming ETH, there is no 2o(n+m)-time algorithm for d-Scattered Set
for any fixed d ≥ 3 on H-free graphs with n-vertices and m-edges.

The algorithmic side of Theorem 3 is based on the combinatorial observation that the
treewidth of Pt-free graphs is sublinear in the number of edges, which means that standard
algorithms on bounded-treewidth graphs can be invoked to solve the problem in time
subexponential in the number of edges. It has not escaped our notice that this approach is
completely generic and could be used for many other problems (e.g., Hamiltonian Cycle,
3-Coloring, . . . ) where 2O(t) · nO(1) or even 2t·logO(1) t · nO(1)-time algorithms are known on
graphs of treewidth t. For the lower bound part of Theorem 3, we need to examine only two
cases: claw-free graphs and Ct-free graphs (where Ct is the cycle on t vertices); the other
cases then follow immediately.

The algorithm described in Section 3 implies Theorem 1, while Theorems 2 and 3 are
implied by Sections 4 and 5.

2 Preliminaries

This work investigates simple undirected graphs throughout. The vertex set of graph G will
be denoted by V (G), the edge set by E(G). When we deal with a fixed graph, we write
simply V and E respectively.

A graph is H-free if it does not contain H as an induced subgraph.
A distance-d set (d-scattered) set) in a graph G is a vertex set S ⊆ V (G) such that for

every pair of vertices in S, the distance between them is at least d in the graph. For d = 2,
we obtain the traditional notion of independent set (stable set). For d > c, a distance-d set
is a distance-c set as well, for example, any distance-d set is independent for d ≥ 2.

The algorithmic problem Weighted Independent Set is the problem of maximizing
the sum of weights in a graph with nonnegative vertex weights w. The maximum is denoted
by αw(G). For a weight w everywhere 1, we obtain the usual problem Independent Set (MIS)
with maximum α(G).

Several definitions are used in the literature under the name subexponential function.
Each of them means some condition: this function (with variable p > 1, called the parameter)

IPEC 2016



3:4 H-Free Graphs, Independent Sets, and Subexponential-Time Algorithms

may not be larger than some bound, depending on p. Here we use two versions, where the
bound is of type exp(o(p)) and exp(p1−ε) respectively, with some ε > 0. (Clearly, the second
one is the more strict.) Throughout the paper, we state our results emphasizing, which
version we mean.

An algorithm A is subexponential in parameter p > 1 if the number of steps executed by
A is a subexponential function of the parameter p. We will use here this notion for graphs,
mostly in the following cases: p is the number n of vertices, the number m of edges, or
p = n+m (which is considered to be the size of the input generally).

A problem Π is subexponential if there exists some subexponential algorithm solving Π.
The notation dG(x, y) and diam(G) will have the usual meaning. For a vertex x of

G, its radius rG(x) is max{dG(x, y)|y ∈ V (G)} and for the radius of graph G, r(G) :=
min{rG(x)|x ∈ V (G))}. ∆(G) is the maximal degree in G.

Pt (Ct) is the chordless path (cycle) on t vertices.

3 Algorithm for MIS on Pt-free graphs

The method used here will be similar to that of [17]. There a special dominating set is found
(applying [5]), here a vertex of small radius will help. More precisely, the algorithm is based
on the observation that a connected Pt-free graph always has a high-degree vertex. The
following definition formalizes this property.

I Definition 4. For a fixed real δ > 0 and a natural number n0, let C := C(n0, δ) be the
class of graphs G with the following property: For every connected induced subgraph G′ of
G with k := |V (G′)| ≥ n0, ∆(G′) ≥ kδ.

Clearly, each class C := C(n0, δ) is contained in the class of Pt-free graphs for t = n0. But if
we extend C, the result below will be stronger than a statement merely for graphs without
some long induced path.

I Definition 5. For a fixed real δ > 0 and a natural number n0, let G := G(n0, δ) be the
class of graphs G with the following property: For every connected induced subgraph G′ of
G having maximum degree at least 3, with k := |V (G′)| ≥ n0, ∆(G′) ≥ kδ.

The following result presents the connection of Ptfree graphs with the classes above.

I Lemma 6. For every t ≥ 5, every Pt-free graph is in C(N0, δ) (and thus in G(N0, δ) as
well) with δ = bt/2c−1 and an appropriate N0 = N0(t).

Proof. Every connected Pt-free graph has radius at most diam(G) ≤ t − 2. To obtain
stronger constants, we use a result of Erdős, Saks, and Sós [8, Theorem 2.1], which states, in
an alternative formulation, that every connected Pt-free graph has radius at most bt/2c.1

Assuming that G is connected and has maximum degree ∆, the number of vertices at
distance i from a vertex c with minimal radius is at most ∆ · (∆ − 1)i−1. Thus, if G is
connected, Pt-free, moreover it has n vertices and maximum degree ∆ = ∆(G), then for any
t ≥ 6, we have

n ≤ 1 + ∆ ·
r∑
i=1

(∆− 1)i−1 < ∆bt/2c, (1)

1 A subset of the present authors [4] established a stronger property which is equivalent to being Pt-free.



G. Bacsó, D. Marx, and Zs. Tuza 3:5

Algorithm 1 Algorithm DEGALPHA
Input: a graph G
1. If |V (G)| = 1 then α(G) = 1.
2. If |V (G)| > 1 and G is disconnected:

a. Determine a connected component G′ of G, and set G′′ = G−G′.
b. Determine α(G′) and α(G′′), calling Algorithm DEGALPHA for G′ and G′′ separately,

and write α(G) = α(G′) + α(G′′).
3. If |V (G)| > 1 and G is connected:

a. Determine a vertex v of maximum degree, dG(v) = ∆(G).
b. ∆(G) ≤ 2 then α(G) is the maximal size of independent set in the corresponding path

or cycle respectively.
c. Determine α(G − v) and α(G − N [v]) where N [v] is the closed neighborhood of v,

calling Algorithm DEGALPHA for G− v and G−N [v] separately, and write α(G) =
max(α(G− v), α(G−N [v]) + 1).

which corresponds to the standard Moore bound (see, e.g., inequality (1) on page 8 of [15]).
As a consequence, for t ≥ 6, we obtain

∆(G) ≥ nbt/2c−1
(2)

For t = 5, we get the slightly weaker bound n ≤ 1 + ∆ + ∆(∆− 1) = ∆2 + 1. However, with
additional arguments, we can show that n ≤ ∆2 holds if ∆ > 2, thus the statement is true if
n > 5. (Sketch of the proof: the only way that n = ∆2 + 1 can hold is when c has exactly ∆
neighbors, each of which has exactly ∆− 1 neighbors at distance two from c, and they do
not share any of these neighbors. Let u and v be two neighbors of c. If a neighbor u′ 6= c

of u is nonadjacent to a neighbor v′ 6= c of v, then u′, u, c, v, v′ form an induced P5. This
shows that u′ has degree at least 1 + (∆− 1)2, which is more than ∆ if ∆ > 2.) J

Next we show that subexponential-time algorithms exists for the class G(n0, δ).

I Remark. The class G(n0, δ) with appropriate parameters contains non-Pt-free graphs for
any t.

I Lemma 7. For any fixed real 0 < δ < 1 and a natural number n0, the independent set
problem is subexponential (in the strong sense) for the class G(n0, δ), namely, it can be solved
by an algorithm executing at most O(exp(c(δ) · n1−δ · lnn)) steps, where c(δ) is any real
constant greater than δ

1−δ .

Proof. The conditions lead to a simple exact algorithm solving MIS (see Algorithm 1),
which is also the basis for the analysis in [17] (except that here we need not deal with
isolated vertices separately) and whose variants also appear in enumeration algorithms for
independent sets.

It is a direct consequence of the definitions that Algorithm DEGALPHA properly de-
termines the independence number of G.

Time analysis. We may and will assume that the number n of vertices is larger than a
suitably fixed threshold value n0 = n0(δ). Connectivity test and separation of a connected
component – as well as the determination of a maximum-degree vertex – can be performed
in O(n2) steps. Therefore, a non-decreasing integer function f(n) surely is a valid upper

IPEC 2016



3:6 H-Free Graphs, Independent Sets, and Subexponential-Time Algorithms

bound on the running time of Algorithm 1 on any input graph G on n vertices whenever, for
any n > n0 and all integers n′ in the range n/2 ≤ n′ < n, we have

f(n) ≥ kn2 + f(n′) + f(n− n′) (3)
f(n) ≥ kn2 + f(n− 1) + f(n− dnδe) (4)

where k is a suitably chosen (not large) constant. Throughout this proof, square brackets [ ]
will be used as parentheses, with the same meaning as ( ), for making some expressions more
transparent.

Note that the time bound in Lemma 7 is superpolynomial, therefore writing f in the form

f(n) = g(n) + kn3/3

requires the same growth order for f and g. Let us define

g(x) = exp(h(x))

where

h(x) = c(δ) · x1−δ · ln x.

By the observations above, (3) and (4) will follow if we prove the inequalities

g(x) ≥ g(x′) + g(x− x′) (5)
g(x) ≥ g(x− 1) + g(x− xδ) (6)

for every real x large enough and every x′ with x/2 ≤ x′ ≤ x − 1. We can immediately
observe that (5) is a consequence of (6) as

g(x)− g(x′) ≥ g(x)− g(x− 1) ≥ g(x− xδ) ≥ g(x/2) ≥ g(x− x′)

if x is large enough with respect to δ, because g is an increasing function and δ is a constant
smaller than 1. Therefore only (6) remains to be proved.

We shall need the derivatives of g and h, which can be computed as

g′(x) = (exp[h(x)])′ = exp[h(x)] · h′(x) = g(x) · h′(x)

and

h′(x) =
(
c(δ) · x1−δ · ln x

)′
= c(δ) · x−δ · [(1− δ) ln x+ 1]. (7)

It is important to note for later use that

h′(x− 1) = (1 + o(1)) · h′(x)

as x→∞. Moreover, g and h are increasing, while h′ is decreasing, except on a bounded
part of the domain.

Next, we apply Cauchy’s Mean value theorem in three steps, first for both g and h to
estimate g(x)− g(x− 1), and second for h to estimate g(x− xδ), as follows. For some ξ and
ξ′ with x− 1 ≤ ξ, ξ′ ≤ x we have

g(x)− g(x− 1) = g′(ξ) = exp(h(ξ)) · h′(ξ)
≥ exp[h(x− 1)] · h′(x)
= exp[h(x)− h′(ξ′)] · h′(x)
≥ exp[h(x)− h′(x− 1)] · h′(x)
= exp [h(x)− (1 + o(1)) · h′(x)] · h′(x). (8)



G. Bacsó, D. Marx, and Zs. Tuza 3:7

On the other hand, for some ξ′′ with x− xδ ≤ ξ′′ ≤ x we have h(x− xδ) = h(x)− xδ · h′(ξ′′),
therefore

g(x− xδ) = exp[h(x)− xδ · h′(ξ′′)]
≤ exp[h(x)− xδ · h′(x)]. (9)

Thus, to prove (6), it suffices to show that (8) is not smaller than (9). Taking logarithms
this means

h(x)− (1 + o(1)) · h′(x) + ln h′(x) ≥ h(x)− xδ · h′(x).
(10)

Or equivalently

[xδ − 1− o(1)] · h′(x) ≥ − ln h′(x).
(11)

Using (7), we obtain that it is enough to prove

(c(δ) + o(1)) · (1− δ) · ln x ≥ (δ + o(1)) · ln x.

This is implied by the condition on c(δ) (even with strict inequality), completing the proof
of the lemma. J

Theorem 1 follows immediately from putting together Lemmas 6 and 7.

4 Algorithm for Scattered Set on Pt-free graphs

The algorithm for Scattered Set for Pt-free graphs hinges on the following combinatorial
bound.

I Lemma 8. For every t ≥ 2 and for every Pt-free graph with m edges, we have that G has
treewidth at most 3m1−1/(t+2).

Proof. Let n be the number of vertices of G. We may ignore components of G that are trees
or isolated vertices and hence we can assume that n ≤ m. We consider two cases. Suppose
first that m ≥ n1+1/(t+1). Then we have

m1−1/(t+2) ≥ n(1+1/(t+1))(1−1/(t+2)) = n.

Obviously, n is an upper bound on the treewidth of G, and hence the claim follows.
Suppose now that m < n1+1/(t+1). Let X be the subset of vertices of G with degree

at least n2/(t+1). The degree sum of the vertices in X is at most 2m, hence we have
|X| ≤ 2m/n2/(t+1) < 2n1−1/(t+1). By the definition of X, the graph G−X has maximum
degree less than n2/(t+1). Thus each component of X is a Pt-free graph with maximum degree
less than n2/(t+1) and hence Lemma 6 implies that each component of G−X has at most
n(2/(t+1))bt/2c ≤ n1−1/(t+1) vertices. In particular, this implies that G−X has treewidth at
most n1−1/(t+1). As removing a vertex can decrease treewidth at most by one, it follows that
G has treewidth at most n1−1/(t+1) + |X| = 3n1−1/(t+1) < 3m1−1/(t+1) ≤ 3m1−1/(t+2). J

It is known that Scattered Set can be solved in time dO(w) · nO(1) on graphs of
treewidth w using standard dynamic programming techniques (cf. [20, 14]). By Lemma 8, it
follows that Scattered Set on Pt-free graphs can be solved in time

d3m1−1/(t+2)
· nO(1) = 2O(m1−1/(t+2) logm) = 2m

1−1/(t+2)+o(1)

IPEC 2016



3:8 H-Free Graphs, Independent Sets, and Subexponential-Time Algorithms

(taking into account that we may assume n = O(m) and d ≤ n). Observe that if every
component of H is a path, then H is an induced subgraph of P2|V (H)|, which implies that
H-free graphs are P2|V (H)|-free. Thus the algorithm described here for Pt-free graphs implies
the first part of Theorem 3.

5 Lower bounds for Scattered Set

A standard consequence of ETH and the so-called Sparsification Lemma is that there is no
subexponential-time algorithm for MIS even on graphs of bounded degree (see, e.g., [7]):

I Theorem 9. Assuming ETH, there is no 2o(n)-time algorithm for MIS on n-vertex graphs
of maximum degree 3.

A very simple reduction can reduce MIS to 3-Scattered Set for P5-free graphs, showing
that, assuming ETH, there is no algorithm subexponential in the number of vertices for the
latter problem. This proves Theorem 2 stated in the Introduction.

Proof (Theorem 2). Given an n-vertex m-edge graph G with maximum degree 3 and an
integer k, we construct a graph G′ with n + m = O(n) vertices such that α(G) = α3(G′).
This reduction proves that a 2o(n)-time algorithm for 3-Scattered Set could be used to
obtain a 2o(n)-time algorithm for MIS on graphs of maximum degree 3, and this would violate
ETH by Theorem 9.

The graph G′ contains one vertex for each vertex of G and additionally one vertex for
each edge of G. The m vertices of G′ representing the edges of G form a clique. Moreover,
if the endpoints of an edge e ∈ E(G) are u, v ∈ V (G), then the vertex of G′ representing e
is connected with the vertices of G′ representing u and v. This completes the construction
of G′. It is easy to see that G′ is P5-free: an induced path of G′ can contain at most two
vertices of the clique corresponding to E(G) and the vertices of G′ corresponding to the
vertices of G form an independent set.

If S is an independent set of G, then we claim that the corresponding vertices of G′
are at distance at least 3 from each other. Indeed, no two such vertices have a common
neighbor: if u, v ∈ S and the corresponding two vertices in G′ have a common neighbor, then
this common neighbor represents an edge e of G whose endpoints are u and v, violating the
assumption that S is independent. Conversely, suppose that S′ ⊆ V (G′) is a set of k vertices
with pairwise distance at least 3 in G′. If k ≥ 2, then all these vertices represent vertices of
G: observe that for every edge e of G, the vertex of G′ representing e is at distance at most 2
from every other non-isolated vertex of G′. We claim that S′ corresponds to an independent
set of G. Indeed, if u, v ∈ S′ and there is an edge e in G′ with endpoints u and v, then the
vertex of G′ representing e is a common neighbor of u and v, a contradiction. J

Next we give negative results on the existence of algorithms for Scattered Set that
have running time subexponential in the number of edges. To rule out such algorithms, we
construct instances that have bounded degree: then being subexponential in the number
of vertices or the number of edges are the same. We consider first claw-free graphs. The
key insight here is that Scattered Set with d = 3 in line graphs (which are claw-free) is
essentially the Induced Matching problem, for which it is easy to prove hardness results.

I Theorem 10. Assuming ETH, d-Scattered Set does not have a 2o(n) algorithm on
n-vertex claw-free graphs of maximum degree 4 for any fixed d ≥ 3.



G. Bacsó, D. Marx, and Zs. Tuza 3:9

Proof. Given an n-vertex graph G with maximum degree 3, we construct a claw-free graph
G′ with O(dn) vertices and maximum degree 4 such that αd(G′) = α(G). Then by Theorem 9,
a 2o(n)-time algorithm for d-Scattered Set for n-vertex claw-free graphs of maximum
degree 4 would violate ETH.

The construction is slightly different based on the parity of d; let us first consider the case
when d is odd. Let us construct the graph G+ by attaching a path Qv of ` = (d− 1)/2 edges
to each vertex v ∈ V (G); let us denote by ev,1, . . . , ev,` the edges of this path such that ev,1
is incident with v. The graph G′ is defined as the line graph of G+, that is, each vertex of
G′ represents an edge of G+ and two vertices of G′ are adjacent if the corresponding two
vertices share an endpoint. It is well known that line graphs are claw-free. As G+ has O(dn)
edges and maximum degree 4 (recall that G has maximum degree 3), the line graph G′ has
O(dn) vertices an edges. Thus an algorithm for Scattered Set with running time 2o(n)

on n-vertex claw-free graphs of maximum degree 3 could be used to solve MIS on n-vertex
graphs with maximum degree 3 in time 2o(n), contradicting ETH.

If there is an independent set S of size k inG, then we claim that the set S′ = {ev,` | v ∈ S}
is a d- scattered set of size k in G′. To see this, suppose for a contradiction that there are
two vertices u, v ∈ S such that the vertices of G′ representing eu,` and ev,` are at distance
at most d− 1 from each other. This implies that there is a path in G+ that has at most d
edges and whose first and last edges are eu,` and ev,`, respectively. However, such a path
would need to contain all the ` edges of path Qu and all the ` edges of Qv, hence it can
contain at most d− 2` = 1 edges outside these two paths. But u and v are not adjacent in
G+ by assumption, hence more than one edge is needed to complete Qu and Qv to a path, a
contradiction.

Conversely, let S′ be a distance-d scattered set in G′, which corresponds to a set S+ of
edges in G+. Observe that for any v ∈ V (G), at most one edge of S+ can be incident to the
vertices of Qv: otherwise, the corresponding two vertices in the line graph G′ would have
distance at most ` < d. It is easy to see that if S+ contains an edge incident to a vertex of
Qv, then we can always replace this edge with ev,`, as this can only move it farther away from
the other edges of S+. Thus we may assume that every edge of S+ is of the form ev,`. Let
us construct the set S = {v | ev,` ∈ S+}, which has size exactly k. Then S is independent in
G: if u, v ∈ S are adjacent in G, then there is a path of 2`+ 1 = d edges in G+ whose first
an last edges are ev,` and eu,`, respectively, hence the vertices of G′ corresponding to them
have distance at most d− 1.

If d ≥ 4 is even, then the proof is similar, but we obtain the graph G+ by first subdividing
each edge and attaching paths of length ` = d/2 − 1 to each original vertex. The proof
proceeds in a similar way: if u and v are adjacent in G, then G+ has a path of 2`+ 2 = d

edges whose first and last edges are ev,` and eu,`, respectively, hence the vertices of G′
corresponding to them have distance at most d− 1. J

There is a well-known and easy way of proving hardness of MIS on graphs with large
girth: subdivide edges increases girth and the size of the largest independent set changes in
a controlled way.

I Lemma 11. If there is an 2o(n)-time algorithm for MIS on n-vertex graphs of maximum
degree 3 and girth more than g for any fixed g > 0, then ETH fails.

Proof. Let g be a fixed constant and let G be a simple graph with n vertices, m edges, and
maximum degree 3 (hence m = O(n)). We construct a graph G′ by subdividing each edge
with 2g new vertices. We have that G′ has n′ = O(n + gm) = O(n) vertices, maximum
degree 3, and girth at least 3(2g + 1). It is known and easy to show that subdividing the

IPEC 2016



3:10 H-Free Graphs, Independent Sets, and Subexponential-Time Algorithms

edges this way increases the size of the maximum independent set exactly by gm. Thus a
2o(n′)- time algorithm for n′-vertex graphs of maximum degree 3 and girth at least g could
be used to give a 2o(n)-time algorithm for n-vertex graphs of maximum degree g, hence ETH
would fail by Theorem 9. J

We use the lower bound of Lemma 11 to prove lower bounds for Scattered Set on
Ct-free graphs.

I Theorem 12. Assuming ETH, d-Scattered Set does not have a 2o(n) algorithm on
n-vertex Ct-free graphs with maximum degree 3 for any fixed t ≥ 3 and d ≥ 2.

Proof. Let G be an n-vertex m-edge graph of maximum degree 3 and girth more than
t. We construct a graph G′ the following way: we subdivide each edge of G with d − 2
new vertices to create a path of length d− 1, and attach a path of length d− 1 to each of
the (d − 2)m = O(dn) new vertices created. The resulting graph has maximum degree 3,
O(d2n) vertices and edges, and girth more than (d− 1)t (hence it is Ct-free). We claim that
αd(G′) = α(G) +m(d− 2) holds. This means that an 2o(n′)-time algorithm for Scattered
Set n′-vertex Ct-free graphs with maximum degree 3 would give a 2o(n)-time algorithm for
n-vertex graphs of maximum degree 3 and girth more than t and this would violate ETH by
Lemma 11.

To see that αd(G′) = α(G) +m(d− 2) holds, consider first an independent set S of G.
When constructing G′, we attached m(d − 2) paths of length d − 1. Let S′ contain the
degree-1 endpoints of these m(d − 2) paths, plus the vertices of G′ corresponding to the
vertices of S. It is easy to see that any two vertices of S′ has distance at least d from each
other: S is an independent set in G, hence the corresponding vertices in G′ are at distance
at least 2(d− 1) from each other, while the degree-1 endpoints of the paths of length d− 1
are at distance at least d from every other vertex that can potentially be in S′. This shows
αd(G′) ≥ α(G) +m(d− 2) Conversely, let S′ be a set of vertices in G′ that are at distance at
least d from each other. The set S′ contains two types of vertices: let S′1 be the vertices that
correspond to the original vertices of G and let S′2 be the m(d− 2)d new vertices introduced
in the construction of G′. Observe that S′2 can be covered by m(d − 2) paths of length
d − 1 and each such path can contain at most one vertex of S′, hence at most m(d − 2)
vertices of S′ can be in S′2. We claim that S′1 can contain at most α(G) vertices, as S′ ∩ S′1
corresponds to an independent set of G. Indeed, if u and v are adjacent vertices of G, then
the corresponding two vertices of G′ are at distance d− 1, hence they cannot be both present
in S′. This shows αd(G′) ≤ α(G) +m(d− 2), completing the proof of the correctness of the
reduction. J

As the following corollary shows, putting together Theorems 10 and 12 implies The-
orem 3(2).

I Corollary 13. If H is a graph having a component that is not a path, then, assuming ETH,
d-Scattered Set has no 2o(n+m)-time algorithm on n-vertex m-edge H-free graphs for any
fixed d ≥ 3.

Proof. Suppose first that H is not a forest and hence some cycle Ct for t ≥ 3 appears as
an induced subgraph in H. Then the class of H-free graphs is a superset of Ct-free graphs,
which means that statement follows from Theorem 12 (which gives a lower bound for a more
restricted class of graphs).

Assume therefore that H is a forest. Then it has to have a component that is a tree, but
not a path, hence it has a vertex v of degree at least 3. The neighbors of v are independent in



G. Bacsó, D. Marx, and Zs. Tuza 3:11

the forest H, which means that the claw K1,3 appears in H as an induced subgraph. Then the
class of H-free graphs is a superset of claw-free graphs, which means that statement follows
from Theorem 10 (which gives a lower bound for a more restricted class of graphs). J

6 Conclusion

In spite of our results, it remains an open problem for an infinite class of graphs H, whether a
subexponential or even a polynomial algorithm exists for MIS on H-free graphs. Namely, as
indicated in the Introduction, among connected graphs these are the ones in which the triple
of lengths of paths starting from the unique vertex of degree three is (i, j, k) with i ≤ j ≤ k
and with (i, j, k) 6= (1, 1, 1), (1, 1, 2). Moreover, for paths, it is an unsolved question whether
the problem is polynomial-time solvable for H = Pt, t ≥ 6.

Our subexponential algorithm uses simple branching which clearly works for Weighted
Independent Set as well.

For Scattered Set, we have seen that on Pt-free graphs there are algorithms subexpo-
nential in the number of edges, and Theorem 2 shows that polynomial-time algorithms are
unlikely. But can one give a tight lower bound on the subexponential running time, perhaps
showing that 1−O(1/t) in the exponent of the exponent is in some sense best possible?

After the acceptance of this manuscript we learned that independently and simultaneously
Brause (Ch. Brause, “A subexponential-time algorithm for the Maximum Independent Set
in Pt-free graphs”, Discrete Applied Mathematics, DOI:10.1016/j.dam.2016.06.016) also
proved the subexponentiality of MIS on Pt-free graphs. (His time bound is weaker than
the one in this paper.) Moreover, an unpublished result of Lokshtanov, Pilipczuk, and van
Leuwen yields an algorithm with much better bound on the running time.

References
1 Geir Agnarsson, Peter Damaschke, and Magnús M. Halldórsson. Powers of geometric

intersection graphs and dispersion algorithms. Discrete Applied Mathematics, 132(1-3):3–
16, 2003. doi:10.1016/S0166-218X(03)00386-X.

2 V.E. Alekseev. The effect of local constraints on the complexity of determination of the
graph independence number. In Combinatorial-algebraic methods in applied mathematics,
pages 3–13. Gor′kov. Gos. Univ., Gorki, 1982.

3 Vladimir E. Alekseev. Polynomial algorithm for finding the largest independent sets in
graphs without forks. Discrete Applied Mathematics, 135(1-3):3–16, 2004. doi:10.1016/
S0166-218X(02)00290-1.

4 Gábor Bacsó and Zsolt Tuza. A characterization of graphs without long induced paths. J.
Graph Theory, 14(4):455–464, 1990. doi:10.1002/jgt.3190140409.

5 Gábor Bacsó and Zsolt Tuza. Dominating cliques in P5-free graphs. Period. Math. Hungar.,
21(4):303–308, 1990. doi:10.1007/BF02352694.

6 Binay K. Bhattacharya and Michael E. Houle. Generalized maximum independent sets for
trees in subquadratic time. In Algorithms and Computation, 10th International Symposium,
ISAAC’99, Chennai, India, December 16-18, 1999, Proceedings, pages 435–445, 1999. doi:
10.1007/3-540-46632-0_44.

7 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

8 Paul Erdős, Michael E. Saks, and Vera T. Sós. Maximum induced trees in graphs. J. Comb.
Theory, Ser. B, 41(1):61–79, 1986. doi:10.1016/0095-8956(86)90028-6.

IPEC 2016

http://dx.doi.org/10.1016/j.dam.2016.06.016
http://dx.doi.org/10.1016/S0166-218X(03)00386-X
http://dx.doi.org/10.1016/S0166-218X(02)00290-1
http://dx.doi.org/10.1016/S0166-218X(02)00290-1
http://dx.doi.org/10.1002/jgt.3190140409
http://dx.doi.org/10.1007/BF02352694
http://dx.doi.org/10.1007/3-540-46632-0_44
http://dx.doi.org/10.1007/3-540-46632-0_44
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1016/0095-8956(86)90028-6


3:12 H-Free Graphs, Independent Sets, and Subexponential-Time Algorithms

9 Hiroshi Eto, Fengrui Guo, and Eiji Miyano. Distance-d independent set problems for
bipartite and chordal graphs. J. Comb. Optim., 27(1):88–99, 2014. doi:10.1007/
s10878-012-9594-4.

10 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.
2001.1774.

11 Daniel Lokshantov, Martin Vatshelle, and Yngve Villanger. Independent set in P5-free
graphs in polynomial time. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014,
pages 570–581, 2014. doi:10.1137/1.9781611973402.43.

12 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the
exponential time hypothesis. Bulletin of the EATCS, 105:41–72, 2011. URL: http:
//albcom.lsi.upc.edu/ojs/index.php/beatcs/article/view/96.

13 Daniel Lokshtanov, Marcin Pilipczuk, and Erik Jan van Leeuwen. Independence and effi-
cient domination on P6-free graphs. In Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January
10-12, 2016, pages 1784–1803, 2016. doi:10.1137/1.9781611974331.ch124.

14 Dániel Marx and Michal Pilipczuk. Optimal parameterized algorithms for planar facility
location problems using Voronoi diagrams. In Algorithms – ESA 2015 – 23rd Annual
European Symposium, Patras, Greece, September 14-16, 2015, Proceedings, pages 865–877,
2015. doi:10.1007/978-3-662-48350-3_72.

15 M. Miller and J. Širáň. Moore graphs and beyond: A survey of the degree/diameter problem.
Electronic J. Combinatorics, 20:1–92, 2013.

16 George J. Minty. On maximal independent sets of vertices in claw-free graphs. J. Combin.
Theory Ser. B, 28(3):284–304, 1980. doi:10.1016/0095-8956(80)90074-X.

17 Bert Randerath and Ingo Schiermeyer. On maximum independent sets in P5-free graphs.
Discrete Applied Mathematics, 158(9):1041–1044, 2010. doi:10.1016/j.dam.2010.01.
007.

18 Daniel J. Rosenkrantz, Giri Kumar Tayi, and S. S. Ravi. Facility dispersion problems
under capacity and cost constraints. J. Comb. Optim., 4(1):7–33, 2000. doi:10.1023/A:
1009802105661.

19 Najiba Sbihi. Algorithme de recherche d’un stable de cardinalité maximum dans un graphe
sans étoile. Discrete Math., 29(1):53–76, 1980. doi:10.1016/0012-365X(90)90287-R.

20 Dimitrios M. Thilikos. Fast sub-exponential algorithms and compactness in planar
graphs. In Algorithms – ESA 2011 – 19th Annual European Symposium, Saarbrücken,
Germany, September 5-9, 2011. Proceedings, pages 358–369, 2011. doi:10.1007/
978-3-642-23719-5_31.

21 David Zuckerman. Linear degree extractors and the inapproximability of Max Clique and
Chromatic Number. Theory of Computing, 3(1):103–128, 2007. doi:10.4086/toc.2007.
v003a006.

http://dx.doi.org/10.1007/s10878-012-9594-4
http://dx.doi.org/10.1007/s10878-012-9594-4
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1137/1.9781611973402.43
http://albcom.lsi.upc.edu/ojs/index.php/beatcs/article/view/96
http://albcom.lsi.upc.edu/ojs/index.php/beatcs/article/view/96
http://dx.doi.org/10.1137/1.9781611974331.ch124
http://dx.doi.org/10.1007/978-3-662-48350-3_72
http://dx.doi.org/10.1016/0095-8956(80)90074-X
http://dx.doi.org/10.1016/j.dam.2010.01.007
http://dx.doi.org/10.1016/j.dam.2010.01.007
http://dx.doi.org/10.1023/A:1009802105661
http://dx.doi.org/10.1023/A:1009802105661
http://dx.doi.org/10.1016/0012-365X(90)90287-R
http://dx.doi.org/10.1007/978-3-642-23719-5_31
http://dx.doi.org/10.1007/978-3-642-23719-5_31
http://dx.doi.org/10.4086/toc.2007.v003a006
http://dx.doi.org/10.4086/toc.2007.v003a006


Parallel Multivariate Meta-Theorems
Max Bannach1 and Till Tantau2

1 Institute for Theoretical Computer Science, Universität zu Lübeck, Germany
bannach@tcs.uni-luebeck.de

2 Institute for Theoretical Computer Science, Universität zu Lübeck, Germany
tantau@tcs.uni-luebeck.de

Abstract
Fixed-parameter tractability is based on the observation that many hard problems become tract-
able even on large inputs as long as certain input parameters are small. Originally, “tractable”
just meant “solvable in polynomial time,” but especially modern hardware raises the question
of whether we can also achieve “solvable in polylogarithmic parallel time.” A framework for this
study of parallel fixed-parameter tractability is available and a number of isolated algorithmic
results have been obtained in recent years, but one of the unifying core tools of classical FPT
theory has been missing: algorithmic meta-theorems. We establish two such theorems by giv-
ing new upper bounds on the circuit depth necessary to solve the model checking problem for
monadic second-order logic, once parameterized by the tree width and the formula (this is a
parallel version of Courcelle’s Theorem) and once by the tree depth and the formula. For our
proofs we refine the analysis of earlier algorithms, especially of Bodlaender’s, but also need to
add new ideas, especially in the context where the parallel runtime is bounded by a function of
the parameter and does not depend on the length of the input.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases Parallel computation, FPT, meta-theorems, tree width, tree depth

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.4

1 Introduction

Algorithmic meta-theorems bound the computational resources needed to solve problems
defined in a certain logic for inputs from a specific class of structures. The prime example is
Courcelle’s Theorem [5], which states that monadic second-order (MSO) definable problems
can be solved in linear time on structures with bounded tree width. This yields, for instance,
a linear time algorithm for the feedback vertex set problem on graphs of bounded tree width.
Other examples are a “logspace version” [6] or a theorem for structures of bounded tree
depth, where constant depth circuits (AC0) suffice [7]; many more versions can be found in
the surveys by Grohe and Kreutzer [10] and Kreutzer [12].

With the rise of multivariate algorithms, algorithmic meta-theorems have become useful
tools for establishing parameterized upper bounds. The prime example is again Courcelle’s
Theorem, which actually gives a linear-time FPT-algorithm when the tree width of the input
structure is the parameter. Since the tree width of a graph with a feedback vertex set of
size k is at most k + 1, the theorem shows that the naturally parameterized feedback vertex
set problem can be solved in parameterized linear time.

The field of parameterized complexity is renowned for its ability to find algorithms that
solve NP- or even PSPACE-complete problems in reasonable time. Unfortunately, “reasonable
time” is not quite the same as “fast” and, furthermore, the instances in typical applications
for these algorithms are huge. We may thus wish to speedup the computation by taking

© Max Bannach and Till Tantau;
licensed under Creative Commons License CC-BY

11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin; Article No. 4; pp. 4:1–4:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


4:2 Parallel Multivariate Meta-Theorems

advantage of the multiple cores and powerful gpus present in modern hardware. In order
to do so, we need parallel fixed-parameter algorithms. A first step in this direction was
taken by us in [1], where we showed that the vertex cover problem, among several other
problems, allows fast parallel fixed-parameter algorithms; but for many problems, including
the feedback vertex set problem, the parallel parameterized complexity remains open. In
particular, results concerning the parallel fixed-parameter tractability of problems have been
obtained on a problem-by-problem basis without an overarching, unifying approach – which
is exactly what the present paper tries to remedy.

Our Contributions. We formulate and prove different parallel parameterized meta-theorems,
which unify previous results and allow us to obtain new algorithms for natural problems. Our
meta-theorems are obtained by translating the logspace and circuit versions of Courcelle’s
Theorem from [6, 7] into parameterized counter parts, but we must point out already at
this point that this is harder than one might expect: Unlike the original linear-time version
of Courcelle’s Theorem, which is “a theorem about parameterized complexity in disguise,”
the logspace and circuit versions just state that problems lie in the classes XL and XAC0.
However, these latter classes are presumably not even contained in FPT, let alone in parallel
subclasses thereof and, thus, are not the classes we are looking for.

To establish the parallel parameterized meta-theorem, we need to study the parameterized
parallel complexity of computing tree decomposition of parameterized width and possibly
also depth. At the heart of Courcelle’s Theorem and related versions are tree automata
that process the tree decomposition of the input. We provide fast parallel algorithms to
evaluate parameter-sized tree automata on arbitrary trees and on trees of parameterized
depth. By combining these algorithms with the parallel algorithms for computing tree
decompositions, we obtain parallel algorithms for monadic second-order model checking on
graphs of parameterized tree width or parameterized tree depth (pφ,td/tw-mc(MSO)). The
logic is defined as usual, for instance the following MSO-sentence describes that a graph is
colorable with three colors:

φ = ∃R ∃G∃B ∀x
(
R(x) ∨G(x) ∨B(x)

)
∧ ∀x, y

(
E(x, y)→ (¬R(x) ∨ ¬R(y)) ∧ (¬G(x) ∨ ¬G(y)) ∧ (¬B(x) ∨ ¬B(y))

)
.

The model checking problem asks, given a logical structure (for instance a graph), and a
logical formula, whether or not the structure is a model for the formula. For example, we
have |= φ, but 6|= φ. For an introduction to the field, we refer to [8]. Our main results
are stated in form of the following theorems (para-AC0↑ contains problems decidable by
“FPT-sized” circuits whose depth depends only on the parameter, detailed definition follow
later):

I Theorem 1. pφ,td-mc(MSO) ∈ para-AC0↑.

I Theorem 2. pφ,tw-mc(MSO) ∈ para-NC2+ε.

Armed with these new meta-theorems, we settle the parallel parameterized complexity of
different natural problems, including the feedback vertex set problem.

Related Work. The prime example of algorithmic meta-theorems is Courcelle’s Theorem [5]
which becomes powerful in combination with Bodlaender’s linear-time algorithm for comput-
ing optimal tree decompositions of graphs of bounded tree width [4]. Since the release of
this theorem, many other meta-theorems, which place many problems in P, were presented,



M. Bannach and T. Tantau 4:3

see [10, 12] for surveys. For Courcelle’s Theorem there are versions for other classes: a
LOGCFL-version by Wanke [15], which was later improved to an L-version by Elberfeld,
Jakoby, and the last author [6], who also prove an AC0-version [7]. While most meta-theorems
that place problems in P place the parameterized version of the problem in para-P = FPT,
this is not the case for the last-mentioned versions: The L- and AC0-versions of Courcelle’s
Theorem place problems in XL and XAC0 and not, as we would like, in para-L and para-AC0.
Early studies on the parallel complexity of computing tree decompositions for graphs of
bounded tree width where made by Bodlaender [3]. However, the algorithm does not ob-
tain “FPT-work” in the parameterized setting and only yields a XNC-algorithm. Lagergren
provided a parallel O(log3 n) time algorithm using O(n) processors for this problem in the
crcw model [13], which translates into a para-NC algorithm for parameterized problems.
Bodlaender and Hagerup later provided a parallel algorithm with optimal speedup running
in time O(log2 n) using O(n) operations on the erew model [2]. This algorithm readily
translates into a para-NC algorithm, but only the careful analysis done in this paper shows
that it is actually a para-NC2+ε algorithm.

Organization of This Paper. In Section 2 we define our basic terminology and recap the
definition of classes of fixed-parameter parallelism. In Section 3 we provide parallel algorithms
to compute tree decompositions of graphs with parameterized tree width or parameterized
tree depth. In Section 4 we provide parallel algorithms to evaluate tree automata on arbitrary
trees and on trees of parameterized depth. Putting it all together, we provide parallel
algorithms for monadic second-order model checking on graphs of parameterized tree width
or depth in Section 5. We close the paper by studying the parallel complexity of certain
parameterized problems with the help of these meta-theorems in Section 6. Due to lack of
space, proofs have been moved to the appendix.

2 Classes of Fixed-Parameter Parallelism

We use standard terminology of parameterized complexity theory, see for instance [8]. A
parameterized problem is a tuple (Q, κ) of a language Q ⊆ Σ∗ and a parameterization
κ : Σ∗ → N. As we deal with small parameterized circuit classes, we require the parameter
to be computable in dlogtime-uniform AC0 or, equally, to be first-order computable.1 We
denote parameterized problems by a leading “p-” as in p-vertex-cover, and, whenever the
parameter is not clear from the context, we add it as index as in ptw-distance.

A parameterized problem (Q, κ) is called fixed-parameter tractable if there is a language
R decidable in polynomial time (P) and a computable function f : N→ N such that x ∈ Q
if, and only if, (x, 1f(κ(x))) ∈ R. That is, the problem is decidable in polynomial time after
an arbitrarily complex pre-computation on the parameter. The resulting complexity class
is called FPT or para-P. If we replace P in this definition by subclasses of P, we obtain
subclasses of FPT, which inherit their inclusion structure from their classical counter parts:

para-AC0 ( para-TC0 ⊆ para-NC1 ⊆ para-L ⊆ para-NL ⊆ para-AC1 ⊆ para-P.

In order to explicitly define what the parameterized circuit classes contain, we use the
definition from [1]:

1 Sometimes this definition is to restrictive, for instance the tree width of a graph is computable in FPT,
but probably not in P, and certainly not in AC0. In such cases we assume that the input is extended
by an upper bound on the parameter, which can easily be extracted in AC0. However, in this case any
algorithm deciding the problem has to verify this parameter by itself.

IPEC 2016



4:4 Parallel Multivariate Meta-Theorems

I Definition 3 (Classes of Parallel Fixed-Parameter Tractability). Let d : N2 → N be a depth
bounding function and s : N2 → N be a size bounding function which both map each pair
of an input length and a parameter to a number. We define para-AC[d, s] as the class of
parameterized problems (Q, κ) for which there exists a dlogtime-uniform2 family (Cn,k)n,k∈N
of AC-circuits (only not-, and-, and or-gates are allowed, and- and or- gates may have
unbounded fan-in) such that: (1) For all x ∈ Σ∗, the circuit C|x|,κ(x) evaluates to 1 on input
x if, and only if, x ∈ Q. (2) The depth of each Cn,k is at most d(n, k). (3) The size of each
Cn,k is at most s(n, k).

We define the classes para-ACi as para-AC0 = para-AC[O(1), f(κ(x)) · |x|O(1)] and for
i > 0 para-ACi = para-AC[O(logi |x|), f(κ(x)) · |x|O(1)] (in slight abuse of notation, as its
actually the union of this class over all computable functions f). However, there are also
interesting new classes, namely the “up-”classes, defined in [1]:

para-ACi↑ = para-AC[f(κ(x)) · logi |x|, f(κ(x)) · |x|O(1)].

Note that para-AC0↑ captures exactly the problems that can be solved by a circuit of depth
depending only on the parameter, and “FPT”-size. Notice, furthermore, that the “up-”classes
can be strictly more powerful than the underlying classes (para-AC0 ( para-AC0↑ [1]), but
that a slight increase of the depth in dependence on |x| compensates this effect: We have
para-ACi ⊆ para-ACi↑ ⊆ para-ACi+ε. These definitions and observations can, of course,
also be applied to circuits of bounded fan-in (NC), and to circuits that are equipped with
threshold-gates (TC).

To get familiar with parameterized circuits, let us consider an important technique from
the design of parallel algorithms: symmetry breaking, that is, the ability to find parts of the
input that can be processed in parallel. For graph algorithms in the pram model, this is
often achieved by computing maximal independent-sets. In the lemma, as in the rest of the
paper, f is an appropriate computable function and c is an appropriate constant.

I Lemma 4. There is a dlogtime-uniform family of AC-circuits of depth f(k) + log∗ |V |
and size f(k) · |V |c that, on input of an undirected graph G = (V,E) and an integer k, outputs
either that the maximum degree of G exceeds k or a maximal independent set I of G.

Notice that, in sense of circuit classes, the lemma yields a para-AC0+ε ⊆ para-NC1+ε

circuit for computing maximal independent sets with respect to the parameter “maximum
degree.”

3 Parallel Computation of Tree Decompositions

In our algorithmic meta-theorems, the tree width and tree depth of the input graphs are of
special interest: First, they are parameters and, second, our algorithms work on the tree
decompositions underlying the input graphs. Thus, it is of particular interest how such tree
decompositions can be computed in parallel.

Recall the definition of a tree decomposition (T, ι) of a graph G = (V,E). It is a rooted
tree T together with a mapping ι from the nodes of T to subsets of V (which we call bags)
such that for each vertex v ∈ V and for each edge {v, w} ∈ E there is (1) at least one node n
in T with v ∈ ι(n), (2) at least one node n in T with {v, w} ⊆ ι(n), and (3) the set of nodes of

2 In this context, this means that the circuit Cn,k can be computed in time f(k) + O(log n) by a
deterministic Turing machine that obtains 1n#1k as input.



M. Bannach and T. Tantau 4:5

T that contain v in their bag is connected. The width of a tree decomposition is the maximum
size of its bags minus 1, its depth is the maximum of its width and the depth of the tree T .
For a graph G, we define tw(G) to be the minimum width each tree decomposition of G has
to have, and we define td(G) in a similar way for the tree depth.3 For many algorithms it is
useful to have a certain form of a tree decomposition: A nice tree decomposition is a tuple
(T, ι, η) such that (T, ι) is a tree decomposition and η : V (T )→ {leaf, introduce, join, forget}
is a labeling function of the nodes. The nodes that are labeled as leaf are exactly the leafs
and the root of T , and the bags of these nodes are empty. Introduce- and forget-nodes
n have one child x such that there is one v ∈ V with v 6∈ ι(x) and ι(n) = ι(x) ∪ {v}, or
v ∈ ι(x) and ι(n) = ι(x) \ {v}, respectively. Join-nodes n have two children x and y with
ι(n) = ι(x) = ι(y). A tree decomposition (T, ι) is called balanced if T is a balanced tree;
a nice tree decomposition (T, ι, η) is balanced if the tree obtained from T by contracting
introduce and forget nodes is balanced. We refer to the textbook from Flum and Grohe for a
more detailed introduction into the field [8].

Computing Depth-Bounded Tree Decompositions. We first study the case that we deal
with graphs parameterized by their tree depth. This class of graphs is well suited for
parallel algorithms, as a parallel algorithm can traverse the whole decomposition in time
depending only on the parameter. We will see in this section that we can also compute a
tree decomposition of parameterized depth within this time bound.

I Theorem 5. There is a dlogtime-uniform family of AC-circuits of depth f(k) and size
f(k)·|G|c that, on input of an undirected graph G = (V,E) and an integer k, either determines
td(G) > k or outputs a tree decomposition (T, ι) of G with depth bounded by O

(
2td(G)).

In order to prove Theorem 5 we will use known facts about the relation of bounded-
depth tree decompositions and depth-first search trees [14]. To use these facts, we need
a representation of a depth-first search tree that is suitable for our circuit model. Let
G = (V,E) be a graph with s ∈ V , and let T be a depth-first search tree of G starting at s,
a depth-first search labeling is a mapping λs : V → N such that λs(v) is the distance from s

to v in T . The figure below shows from left to right: an example graph, a depth-first search
tree starting at v1, and a corresponding depth-first search labeling.

v1

v2

v3

v4

v5

v1

v2

v3

v5 v4

0

1
2

3

3

In a similar way, we can define a breadth-first search labeling with respect to a breadth-first
search tree. Notice that in this case the labeling is actually the (path) distance from s to the
other vertices.

I Lemma 6. There is a DLOGTIME-uniform family of AC-circuits of depth f(k) and size
f(k) · |G|c that, on input of an undirected graph G = (V,E), a vertex s ∈ V , and an integer
k, either correctly detects that the longest path in G is longer than 2k, or that output a
depth-first and a breadth-first search labeling starting at s.

3 Note that the common definition of tree depth is slightly different, but that it is an upper bound for the
definition we use.

IPEC 2016



4:6 Parallel Multivariate Meta-Theorems

Proof of Theorem 5. It is a well-known fact [14] that the length of the longest path in a
graph G is bounded by 2td(G). A direct consequence is that a depth-first search tree can
be used to obtain a tree decomposition (T, ι) of width and depth bounded by 2td(G): let us
assume G is connected and let T be a depth-first search tree rooted at an arbitrary start
vertex r ∈ V . For all v ∈ V define ι(v) = {w | w lies on the unique path from v to r in T }.
The depth of T is naturally bounded by 2td(G), and, therefore, we also have |ι(v)| ≤ 2td(G)

for each v ∈ V . Since bags extend along the paths from the root to the leaves of T , all the
conditions of a tree decomposition are satisfied by (T, ι).

A circuit with the desired size and depth can compute a depth-first search labeling using
Lemma 6, and either conclude that the length of the longest path exceeds k, and therefore
td(G) > k, or it can compute the bags of the decomposition in parallel. For each v ∈ V the
circuit initializes the bag ι(v) = {v}. As long as r 6∈ ι(v), the circuit repeats the following
sequentially: let w ∈ ι(v) the vertex that minimizes λ(w) in ι(v), the circuits adds the unique
w′ ∈ N(w) that satisfies λ(w′) = λ(w)− 1 to ι(v). To complete the proof, we have to handle
the case that G is not connected. The circuit can compute all connected components of
G using a breadth-first search labeling (Lemma 6). Afterwards, the circuit can apply the
algorithm from above to each connected component. Finally, the circuit adds a new empty
root bag that is connected to the roots of all constructed tree decompositions. This operation
does not increase the width and increases the depth only by one. J

Computing Width-Bounded Tree Decompositions. We will now handle the case that the
input graph is parameterized by tree width. In this case the depth of a tree decomposition
is not bounded by any function in the parameter and, thus, it seems unlikely that parallel
algorithms running in time depending only on the parameter exist. And, indeed, deciding
if a graph has tree width at most k for a fixed k is already L-complete and, hence, the
parameterized version of this problem cannot lie in para-AC0 or para-AC0↑.

I Theorem 7. There is a dlogtime-uniform family of NC-circuits with depth f(k) +
log2+ε |G| and width f(k) · |G|c that, on input of an undirected graph G = (V,E) and an
integer k, either determines tw(G) > k or outputs a tree decomposition of G of width at
most k.

The proof of Theorem 7 is essentially a new analysis of a parallel algorithm from
Bodlaender and Hagerup [2]. They provide an O(log2 n) time and O(n) work algorithm on
the erew-pram model to compute optimal tree decompositions of graphs with bounded tree
width, from which one can derive that the problem of computing a tree decomposition lies
somewhere in para-NC. Our main contribution in the following is a careful analysis regarding
the exact circuit class the algorithm achieves: It is para-NC2+ε for all ε > 0.

The idea of the algorithm is as follows: If G = (V,E) is small enough, we can compute
an optimal tree decomposition via “brute-force”, otherwise we try to reduce the graph until
it has a suitable size. We call two vertices u, v ∈ V reduction partner if they are adjacent or
twins ( ). We can reduce the size of G by 1 if we contract the two vertices, that is, if we
remove v from G after connecting all neighbors of v to u (without creating multi-edges: ).
Let G′ be the resulting graph, and let (T ′, ι′) be a recursively computed tree decomposition
of G′ of width at most k ( ). We can compute a tree decomposition (T, ι) of G of
width at most k + 1 by injecting v into (T ′, ι′), that is, by adding v to all bags that contain
u ( ). The resulting tree decomposition is most likely not optimal, but its width
is bounded by a function in k and we can use it to compute an implicit representation of
an optimal tree decomposition of G. This implicit representation, called path labeled tree



M. Bannach and T. Tantau 4:7

representation, is a binary tree T in which for every v ∈ V exactly two vertices are labeled
with v, i. e., the vertices of V correspond to paths in T ( ). If we consider the nodes
as bags, each bag that lies on the unique path between two nodes labeled width v will
contain v. Each node may be labeled with multiple vertices, but of course with at most
k + 1. Given such an implicit representation, we can compute a tree decomposition of width
k ( ).

As we seek for a circuit of polylogarithmic depth, we can not only contract one reduction
pair in every round, as we would require O(|V |) rounds. Fortunately, there are always multiple
reduction partners that can be contracted in parallel. The correctness of the algorithm is
shown in [2]. For us, it remains to show that we can implement the algorithm in para-NC2+ε,
a task for which we have to show that each subfunction of the algorithm can be realized by
circuits of logarithmic depth and polynomial size. The following lemmas show that all parts
of a single iteration of the algorithm can be computed by a para-NC1+ε-circuit.

I Lemma 8. There is a dlogtime-uniform family of NC-circuits of depth f(k) + log1+ε |V |
and size f(k) · |V |c that, on input of a graph G = (V,E) and k ∈ N, outputs a set I of
1/g(k) · |V | pairs of vertices that can be contracted in parallel, or that concludes tw(G) > k.

I Lemma 9. There is a dlogtime-uniform family of NC-circuits of depth f(k) · log |V | and
size f(k) · |V |c that, on input of a graph G = (V,E), a set of pairs of vertices I, a graph
G′ = (V ′, E′) that is obtained from G by contracting the pairs in I, and a tree decomposition
(T ′, ι′) of G′ of width k, outputs a balanced and nice tree decomposition (T, ι, η) of G of width
at most 8k + 3 and depth (16k + 6) · log |V |+ 1.

I Lemma 10. There is a dlogtime-uniform family of NC-circuits of depth f(k) · log |V |
and size f(k) · |V |c that, on input of a graph G = (V,E), an integer k, and of a balanced and
nice tree decomposition (T, ι, η) of G of width at most ` ≤ f(k), outputs either tw(G) > k or
a width-k tree decomposition of G.

Proof of Theorem 7. The circuit first checks whether the size of the input graph is bounded
by k. If this is the case, an optimal tree decomposition can be computed via “brute-force”.
Otherwise, the circuit computes a set of 1/f(k) · |V | reduction pairs using Lemma 8, or
concludes that the tree width of G exceeds k. The circuit reduces G to G′ by contracting
the reduction pairs (the lemma guarantees that this is possible in parallel) and recursively
computes a tree decomposition of G′. This tree decomposition can be transformed to a
nice and balanced decomposition of G of width bounded by a function in k using Lemma 9.
Finally, the circuit can reduce the width of the decomposition to k or conclude tw(G) > k

using Lemma 10.
Since Lemma 8 provides us with 1/f(k) · |V | reduction pairs, f(k) · log |V | rounds of

the algorithm are sufficient to reduce the graph to a size depending only on the parameter.
Considering each round as a subcircuit, each subcircuit has to execute the algorithms from
the lemmas 8, 9, and 10. The most expensive part is Lemma 8, as the circuit needs depth
f(k) + log1+ε here, for the lemmas 9 and 10 circuits of depth f(k) · log |V | ≤ f(k) + log1+ε |V |
are sufficient. The complete circuit has, therefore, a total depth of f(k) log |V | ·

(
f(k) +

log1+ε |V |
)
≤ f(k) + log2+ε |V |, and is, hence, a para-NC2+ε-circuit. J

4 Parallel Evaluation of Tree Automata

A key aspect of modern algorithmic meta-theorems is the simulation of tree automata, since
such theorems commonly translate a tree decomposition of the input structure into a labeled

IPEC 2016



4:8 Parallel Multivariate Meta-Theorems

tree that is accepted by a certain tree automaton if, and only if, the structure was a model
for the input formula. “Classical” translations produce degree-bounded trees that are then
processed by classical tree automata. However, this approach may increase the depth of
the tree decomposition by up to a logarithmic factor, which is unacceptable if we wish to
handle the tree in parallel time depending on the depth of the tree. As a solution, the
authors of [7] suggest the use of multiset automata. A multiset M is a set S together with a
multiplicity function #M : S → N. The multiplicity of M is maxe∈S #M (e). We denote by
Pω(S) the class of all multisets of S and by Pm(S) the class of all multisets of multiplicity
at most m ∈ N of S. Notice that P1(S) is just the standard power set of S. For a multiset
M ∈ Pω(S) and a number m ∈ N, the capped version M |m of M is defined by setting
#M (e) = min(#M (e),m) for all e ∈ S.

I Definition 11 (Multiset Automaton). A nondeterministic (bottom-up) multiset automaton
is a tuple A = (Σ, Q,Qa,∆,m) consisting of an alphabet Σ, a state set Q with accepting
states Qa ⊆ Q, a state transition relation ∆ ⊆ Σ × Pm(Q) × Q, and a multiplicity bound
m ∈ N. The automaton is deterministic if for every σ ∈ Σ and every M ∈ Pm(Q) there is
exactly one q ∈ Q with (σ,M, q) ∈ ∆; in this case we can view ∆ as state transition function
δ : Σ× Pm(Q)→ Q.

I Definition 12 (Computation of a Multiset Automaton). Let (T, λ) be a labeled tree, where
λ : V (T)→ Σ is the labeling function, and let A = (Σ, Q,Qa,∆,m) be a multiset automaton.
A computation of A on (T, λ) is a partial assignment q : V (T) → Q such that for every
node n ∈ V (T) for which q(n) is defined, we have that (a) the value q(c) is defined for
each child c of n in T and (b) for the multiset M = { q(c) | c is a child of n } we have
(λ(n),M |m, q(n)) ∈ ∆. A computation is accepting if q(r) ∈ Qa holds for the root node r of
T. The tree language L(A) contains all labeled trees accepted by A.

I Fact 13 ([7]). The following statements hold and are constructive:
1. For all multiset automata A and B there is a multiset automaton C with L(C) = L(A) ∩

L(B);
2. For every nondeterministic multiset automaton A there is a deterministic multiset auto-

maton B with L(A) = L(B);
3. For every multiset automaton A there is a multiset automaton B accepting the complement

of L(A).

The actual aim of this section is to study the parallel parameterized complexity of
the simulation of a multiset automaton. Since we will need such simulations in different
scenarios, instead of classifying the problem into complexity classes, we identify circuit
families depending on different parameters.

I Lemma 14. Let Sk,d be the set of labeled trees (T, λ) of maximal depth d and maximal
degree k. There is a dlogtime-uniform family of circuits over the standard base (only AND-,
OR-, and NOT-gates) with fan-in k, depth f(|A|) · d and size f(|A|) · |T|c that, on input of a
labeled tree (T, λ) ∈ Sk,d and a multiset automata A = (Σ, Q,Qa,∆,m), decides whether or
not (T, λ) ∈ L(A) holds.

As used later on, we will mention two special cases of Lemma 14: The simulation of
multiset automata can be performed (a) in para-AC0↑ for trees of depth bounded by the
parameter and (b) in para-NC1↑ for balanced binary trees. Here, the size of the automata is
the parameter.



M. Bannach and T. Tantau 4:9

5 Parallel Second-Order Model Checking

The goal of this section is to actually prove Theorem 1 and Theorem 2. The classical way of
proving variants of Courcelle’s Theorem is as follows: On input of a logical structure S and
a mso-formula φ, we first compute a tree decomposition (T, ι) of S. This tree decomposition
is then translated into a s-tree-structure T and φ is translated to a new mso-formula ψ such
that S |= φ⇔ T |= ψ. To decide T |= ψ, the s-tree-structure T is transformed into a labeled
tree (T, λ) and ψ is turned into a multiset automata A such that T |= ψ ⇔ (T, λ) ∈ L(A).
Here, an s-tree-structure is a structure T = (V,ET , P 1

1 , . . . , P
T
s ) over the signature τs-tree =

(E2, P 1
1 , . . . , P

1
s ) where (V,ET ) is a directed tree.

I Fact 15 (Implicit in [7]). There are functions h1, h2, h3 and h4 performing the following
mappings:
1. The input for h1 are a structure S together with a width-w tree decomposition (T, ι) of S

and an mso-formula φ. The output is an s-tree-structure T .
2. The input for h2 are an mso-formula φ and a tree width w. The output is an mso-formula

formula ψ.
3. The input for h3 are an s-tree-structure T and an mso-formula ψ. The output is a labeled

tree (T, λ) of the same depth.
4. The input for h4 is an mso-formula ψ. The output is a multiset automaton A.
The following holds for the values computed by these functions:

S |= φ ⇐⇒ T |= ψ ⇐⇒ (T, λ) ∈ L(A).

All hi are computable and h1 and h3 are even computable by dlogtime-uniform AC-circuits
of depth O(1) and size f(φ,w)|S||T |.

Since the size of φ and the tree depth or width of the input structure are parameters in our
setting, we can use Fact 15 to prove Theorem 1 and Theorem 2:

Proof of Theorem 1. On input of a logical structure S and an mso-formula φ, a para-AC0↑-
circuit can compute a tree decomposition (T, ι) of the Gaifman graph of S (the graph that
uses the universe of S as vertex-set and that contains an edge between two elements if,
and only if, the two elements stand in any relation) using Theorem 5. Given the tuple
(S, (T, ι), φ), the circuit can then compute a labeled tree (T, λ) and a multiset automaton A

using Fact 15. The depth of T is bounded by the depth of (T, ι) and, hence, bounded by the
parameter. Furthermore, we have |A| ≤ f(|ψ|+ td(S)) for a computable function f . Hence,
a para-AC0↑-circuit can now invoke Lemma 14 and output the result. J

Proof of Theorem 2. The proof is almost identical to the proof of Theorem 1. On input
of a logical structure S and a mso-formula φ, a para-NC2+ε-circuit can compute a tree
decomposition (T, ι) of the Gaifman graph of S using Theorem 7. At this point a problem
arises, as the depth of (T, ι) is not bounded. This can be overcome as follows: Let the width
of (T, ι) be w, then a FTC0-circuit can compute a balanced tree decomposition (T ′, ι′) of
width at most 4w + 3 [7]. Given this decomposition, we can proceed as in the proof of
Theorem 1 and compute the labeled tree (T, λ) and a multiset automaton A. Since (T, λ) is
balanced, it is binary and of logarithmic depth, and, therefore, Lemma 14 can be invoked by
a para-NC1↑-circuit which presents the result as output. J

IPEC 2016



4:10 Parallel Multivariate Meta-Theorems

6 Applications

Most graph problems studied in complexity theory can be described in monadic second
order logic, including vertex cover, dominating set, independent set, or clique, and, thus,
our algorithmic meta-theorems apply to them. For instance, we get corollaries like ptw,k-
dominating-set ∈ para-NC2+ε and ptd,k-dominating-set ∈ para-AC0↑.

It is, however, worth to take a closer look, as we are naturally interested in more precise
parameterizations than in the combined parameter td/tw + k. Although the tree width
and depth are fairly sensible parameters, we are even more interested in the complexity of
the problems without restrictions on these parameters (but, perhaps still with other, more
natural parameters). Sometimes this is possible, as the tree width is parameterized indirectly.
For the feedback vertex set problem (given an undirected graph G = (V,E) and a parameter
k, decide whether there exists a set S ⊆ V with |S| ≤ k such that G[V \ S] is acyclic) the
existence of such a set implies that the tree width of G is at most k + 1: Since G[V \ S] is a
tree, adding S to each bag of a tree decomposition of G[V \ S] yields a tree decomposition
of G of width at most k + 1.

I Corollary 16. pk-feedback-vertex-set ∈ para-NC2+ε.

The above corollary is currently the best result on the parallel parameterized complexity
of the feedback vertex set problem. In other scenarios the opposite is possible, i. e., the tree
width indirectly parameterizes the solution size. A well known example is the clique problem,
as any graph with tree width at most w can not contain a clique bigger than w + 1.

I Corollary 17. ptd-clique ∈ para-AC0↑, ptw-clique ∈ para-NC2+ε.

On the other hand, there are problems where we can not hope for such effects. For instance,
the dominating-set problem is well known to be W[2]-complete and, hence, we can not hope
to get rid of the parameter tree width. Since the tree width does not bound k in this case
either, we do not get rid of this parameter as well. Nevertheless, our meta-theorems at least
improve the known upper bound for the dominating-set problem with combined parameter.
In contrast, for the vertex cover problem we do need both parameters as well and obtain
ptw,k-vertex-cover ∈ para-NC2+ε (ptd,k-vertex-cover ∈ para-AC0↑), but one can show
directly [1] that pk-vertex-cover ∈ para-AC0 holds. In other words, our algorithmic
meta-theorems do not yield an optimal bound on the vertex cover problem, a “less generic”
approach yields better bounds.

Reachability Problems. The charm of studying parameterized parallel complexity is that
it is not only interesting to consider NP- or even PSPACE-hard problems, but also problems
that lie within P. For instance, the classical reachability problem in directed graphs reach =
{ (G, s, t) | in G is a path from s to t } is a natural NL-complete problem. If we consider
graphs with parameterized tree depth, the complexity of the problem can be lowered by
Theorem 1.

I Corollary 18. ptd-reach ∈ para-AC0↑.

From the point of view of parallel complexity, we are especially interested in P-complete
problems, since it is believed that such problems are inherent sequential. A natural P-complete
version of the reachability problem is the alternating reachability problem [11], which is
based on the following definition of alternating paths: Given a directed graph G = (V,E)
and a partition V = V∃ ∪ V∀, an alternating path from s to t is a set S of paths in G, all of



M. Bannach and T. Tantau 4:11

∃

∃

∃

∀
s

∀

∀

∀ ∀
t

∀
s

∀

∀

∀

∀ ∀
t

∃

∃

Figure 1 Examples of input graphs for the alternating reachability problem. In left graph there
is an alternating path from s to t and the alternating distance is 5, in the right one there is not.

which end at t, such that (1) exactly one of them starts at s; (2) when a path in S starts
at some v ∈ V∃ \ {t}, then there is for some w with (v, w) ∈ E a path in S starting at w;
and (3) when a path in S starts at some v ∈ V∀ \ {t}, then for all w with (v, w) ∈ E there is
a path in S starting at w (and there is at least one such w). The length of an alternating
path is the maximum length of any path in the set S. The alternating distance between two
vertices is the minimum distance of any alternating path between them.

I Problem 19 (ptw-areach, ptd-areach).
Instance: A directed graph G = (V,E), a partition V = V∃ ∪ V∀, and two vertices s, t ∈ V .
Parameter: Tree width or tree depth of G.
Question: Is there an alternating path from s to t in G?

I Problem 20 (ptw,d-adistance, ptd,d-adistance).
Instance: A directed graph G = (V,E), a partition V = V∃ ∪ V∀, two vertices s, t ∈ V , a

distance d.
Parameter: Tree width or tree depth of G as well as d.
Question: Is the alternating distance from s to t in G at most d?

It is a standard exercise to describe the alternating reachability and distance problems
using a monadic second order formula and, thus, our algorithmic meta-theorems yield the
following:

I Corollary 21. ptw-areach ∈ para-NC2+ε, ptw,d-adistance ∈ para-NC2+ε.

I Corollary 22. ptd-areach ∈ para-AC0↑, ptd,d-adistance ∈ para-AC0↑.

It turns out that, as for the vertex cover problem, for the alternating distance problem we
can do better, but also, that the classes we study are the “right” classes for these problems:

I Theorem 23. pd-adistance is complete for para-AC0↑ under para-AC0-reduction.

7 Conclusion

Algorithmic meta-theorems play a key role in modern complexity theory. We have seen that
this powerful tool can also be applied to the study of parameterized parallel algorithms.
Indeed, the results state that mso-definable problems on graphs with parameterized tree
width do not only allow linear time dynamic programs, but that these problems also allow
fast parallel algorithms as well. The theorems show that problems definable in monadic
second order logic can be solved in parallel time f(k) or f(k) · logn if a tree decomposition

IPEC 2016



4:12 Parallel Multivariate Meta-Theorems

of parameterized depth or width is given. In the first case, we have seen that such a
decomposition can be computed in the same time. However, in the second case it turns out
that the bottleneck is the computation of such a decomposition, since we were only able to
show that this can be done in time f(k) + log2+ε n. A reasonable research goal is therefore
to seek an algorithm between para-L and para-NC2+ε that computes a tree decomposition of
a given graph with parameterized tree width. A first step would be to reduce the circuit
depth to para-NC2↑.

References
1 M. Bannach, C. Stockhusen, and T. Tantau. Fast parallel fixed-parameter algorithms via

color coding. In 10th International Symposium on Parameterized and Exact Computation
(IPEC 2015), pages 224–235. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015. doi:
10.4230/LIPIcs.IPEC.2015.224.

2 H. Bodlaender and T. Hagerup. Parallel algorithms with optimal speedup for bounded
treewidth. SIAM Journal on Computing, 27(6):1725–1746, 1998. doi:10.1137/
S0097539795289859.

3 Hans L. Bodlaender. NC-algorithms for graphs with small treewidth. In Graph-Theoretic
Concepts in Computer Science: International Workshop, WG’88, pages 1–10. Springer Ber-
lin Heidelberg, 1989. doi:10.1007/3-540-50728-0_32.

4 H.L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth.
In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, May
16-18, 1993, San Diego, CA, USA, STOC’93, pages 226–234. ACM, New York, USA, 1993.
doi:10.1145/167088.167161.

5 B. Courcelle. Graph rewriting: An algebraic and logic approach. In Formal Models and
Semantics, volume B of Handbook of Theoretical Computer Science, pages 193–242. Elsevier,
Amsterdam, Netherlands and MIT Press, Cambridge, Massachusetts, 1990. doi:10.1016/
B978-0-444-88074-1.50010-X.

6 M. Elberfeld, A. Jakoby, and T. Tantau. Logspace Versions of the Theorems of Bodleander
and Courcelle. In Proceedings of the Annual IEEE Symposium on Foundations of Computer
Science, October 23–26, 2010, Las Vegas, USA, FOCS’10, pages 143–152. IEEE Computer
Society, Los Alamitos, California, 2010. doi:10.1109/FOCS.2010.21.

7 M. Elberfeld, A. Jakoby, and T. Tantau. Algorithmic meta theorems for circuit classes of
constant and logarithmic depth. In Proceedings of the Twenty-Ninth International Sym-
posium on Theoretical Aspects of Computer Science, February 29 – March 3, 2012, Prais,
France, STACS’12, pages 66–77. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2012.
doi:10.4230/LIPIcs.STACS.2012.66.

8 J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, Heidelberg, Germany,
2006. doi:10.1007/3-540-29953-X.

9 A. Goldberg, S. Plotkin, and G. Shannon. Parallel symmetry-breaking in sparse graphs. In
Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC’87,
pages 315–324. ACM, New York, USA, 1987. doi:10.1145/28395.28429.

10 M. Grohe and S. Kreutzer. Methods for algorithmic meta theorems. In Model Theoretic
Methods in Finite Combinatorics, pages 181–206. AMS, Contemporary Mathematics Series,
2011. doi:10.1090/conm/558/11051.

11 Neil Immerman. Languages which capture complexity classes. In Proceedings of the Fif-
teenth Annual ACM Symposium on Theory of Computing, STOC’83, pages 347–354. ACM
New York, NY, 1983. doi:10.1145/800061.808765.

12 Stephan Kreutzer. Algorithmic meta-theorems. CoRR, abs/0902.3616, 2009. URL: http:
//arxiv.org/abs/0902.3616.

http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.224
http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.224
http://dx.doi.org/10.1137/S0097539795289859
http://dx.doi.org/10.1137/S0097539795289859
http://dx.doi.org/10.1007/3-540-50728-0_32
http://dx.doi.org/10.1145/167088.167161
http://dx.doi.org/10.1016/B978-0-444-88074-1.50010-X
http://dx.doi.org/10.1016/B978-0-444-88074-1.50010-X
http://dx.doi.org/10.1109/FOCS.2010.21
http://dx.doi.org/10.4230/LIPIcs.STACS.2012.66
http://dx.doi.org/10.1007/3-540-29953-X
http://dx.doi.org/10.1145/28395.28429
http://dx.doi.org/10.1090/conm/558/11051
http://dx.doi.org/10.1145/800061.808765
http://arxiv.org/abs/0902.3616
http://arxiv.org/abs/0902.3616


M. Bannach and T. Tantau 4:13

13 Jens Lagergren. Efficient parallel algorithms for graphs of bounded tree-width. Journal of
Algorithms, 20:20–44, 1996. doi:10.1006/jagm.1996.0002.

14 Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity. Springer Berlin Heidelberg,
2012. doi:10.1007/978-3-642-27875-4.

15 Egon Wanke. Bounded tree-width and logcfl. Graph-Theoretic Concepts in Computer
Science, 790:33–44, 2005. doi:10.1006/jagm.1994.1022.

A Technical Appendix: Proofs

For the readers convenience, the claims of the proofs given in this appendix are repeated
before the proofs.

Claim of Lemma 4. There is a dlogtime-uniform family of AC-circuits of depth f(k) +
log∗ |V | and size f(k) · |V |c that, on input of an undirected graph G = (V,E) and an integer
k, outputs either that the maximum degree of G exceeds k or a maximal independent set I
of G.

Proof. As the circuit may have depth f(k), it can count the degree of each vertex and can
directly reject if any degree exceeds k [1]. Otherwise, the circuit implements the algorithm
from Goldberg, Plotkin, and Shannon to compute a maximal independent set in degree-
bounded graphs [9]. The circuit interprets G as directed graph ~G by considering each edge
{u, v} as two directed edges (u, v) and (v, u). The edge set of this graph is partitioned into k
sets E1, . . . , Ek such that each of the graphs ~Gi = (V,Ei) has only vertices of out-degree at
most 1. This partition can be computed in depth f(k) as the circuit has essentially to count
up to k.

The circuit now performs the following operations on all ~Gi in parallel: First, in constant
depth, an initial coloring of ~Gi is computed by assigning each vertex vi the color i ∈ N, which
needs at most log |V | bits. This coloring can be improved to a coloring with log |V | colors in
constant depth: Replace the color c of each vertex v by 2k+ b, where k is the position of the
lowest bit on which c differs from the color of the unique successor of v, and where b is the
value of this bit. Computing this improvement consecutively log∗ |V | times yields a coloring
with 6 colors [9].

Given the colorings of the k graphs ~Gi, the circuit can compute a 6k coloring of G by
assigning to each vertex the k-tuple of colors that this vertex has in the different ~Gi. Finally,
the circuit initializes a set I = ∅, iterates over the colors and, in parallel, adds all vertices of
the current color that do not have a neighbor in I to I. As each step can be performed in
a constant number of AC-layers, the set I can be computed in f(k) AC-layers. The circuit
outputs I, as the final value of I is a maximal independent-set. The total depth of the circuit
is f(k) + log∗ |V |. J

Claim of Lemma 6. There is a DLOGTIME-uniform family of AC-circuits of depth f(k)
and size f(k) · |G|c that, on input of an undirected graph G = (V,E), a vertex s ∈ V , and an
integer k, either correctly detects that the longest path in G is longer than 2k, or that output
a depth-first and a breadth-first search labeling starting at s.

Proof. We first handle the breadth-first search labeling, which yields a natural parallel
algorithm. Our circuit starts by assigning color 0 to s. The circuit is build up of layers,
where layer i+ 1 assigns color i+ 1 to each vertex that is not colored yet and that has at
least one vertex of color i as neighbor. The algorithm stops if all vertices are colored, or
at the very last after 2k layers. In the later case, the circuit can report that the length of

IPEC 2016

http://dx.doi.org/10.1006/jagm.1996.0002
http://dx.doi.org/10.1007/978-3-642-27875-4
http://dx.doi.org/10.1006/jagm.1994.1022


4:14 Parallel Multivariate Meta-Theorems

the longest path exceeds 2k. After a run of the algorithm, each vertex that has obtained
a color is in the same connected component as s and, furthermore, the colors constitute a
breadth-first search labeling starting at s.

Computing a depth-first search labeling turns out to be more complicated, since an
AC-circuit of the desired depth cannot simply follow a path of the search tree and “backtrack”
once it reaches a leaf, as the depth of the circuit would not be bounded by the longest path
in this case. Instead, we have to compute the vertices which have more than one child
in the depth-first search tree in advance. Once we know these vertices, we can perform a
fork and compute the depth-first search labeling for all of there children in parallel. Since
we have seen how the circuit can compute a breadth-first search labeling, we can assume
that we have access to a subcircuit that computes the connected components of G. In
order to compute the depth-first search labeling, the circuit first computes these connected
components and checks if the the longest path in all these components is bounded by 2k.
Afterwards, the following algorithm, which we call a phase, is executed in parallel on all
connected components with color c = 0 as argument. Each phase does nothing if all vertices
are colored, this is the end of the recursion. If c = 0, an arbitrary vertex is selected and
colored with c, otherwise an arbitrary vertex that is not colored, but that has a neighbor
of color c − 1, is selected and colored with c. At the end of a phase the vertices of G are
partitioned in colored vertices C and the uncolored vertices V \C. The circuit computes the
connected components of G[V \ C], which we denote by V1, . . . , V` ⊆ V \ C. Afterwards, a
new phase is started recursively on each graph G[Vi ∪ C]. If all phases are completed, the
coloring constitutes a depth-first search labeling starting at s.

0 0
1

0

2
1

0
3

2
1

0

2
1

3

0
3

2
1

3

Since this algorithm never performs backtracking, the number of consecutive phases is
bounded by the length of the longest path, which is bounded by 2k. For each phase, a circuit
of depth f(k) is sufficient, since the most expensive part is clearly the computation of the
connected components. Thus, a depth first-search labeling can be computed by an AC-circuit
of depth f(k). J

Claim of Lemma 8. There is a dlogtime-uniform family of NC-circuits of depth f(k) +
log1+ε |V | and size f(k) · |V |c that, on input of a graph G = (V,E) and k ∈ N, outputs a
set I of 1/g(k) · |V | pairs of vertices that can be contracted in parallel, or that concludes
tw(G) > k.

Proof. We call two vertices u, v reduction partners if we have either {u, v} ∈ E, or if they
are twins, i. e., N(u) = N(v). Let us call a vertex v d-small if δ(v) ≤ d.

Let d = 2k+4(54k + 54) and c = 1/
(
8(27k + 27)2)

. If tw(G) ≤ k, then there are at least
c|V |/2 distinct pairs {u, v} of d-small vertices that are reduction partners [2]. Since a circuit
of the desired size can check all pairs of vertices in parallel, it can compute in the desired



M. Bannach and T. Tantau 4:15

depth a set S of reduction partners. Furthermore, the circuit can check whether |S| ≤ c|V |/2
holds, and can reject otherwise.

We cannot contract all pairs in S simultaneously, as pairs may share a vertex, may be
adjacent, or may have a common neighbor. Since all these properties are first-order definable,
a circuit of the desired size and depth can easily check for each pair of reduction partners if
they are in conflict. By doing so, the circuit can compute a conflict graph C whose node set
is S and whose edges indicate conflicts. As the degree of each vertex appearing in a pair
in S is bounded by d, the degree of C is bounded by g(k) for a computable function g.

Since each maximal independent set I in a graph of maximum degree ∆ has size at
least |V |/(∆ + 1), it is sufficient to use the reduction partners that constitute a maximal
independent set in C. The circuit can compute such a set using Lemma 4. J

Claim of Lemma 9. There is a dlogtime-uniform family of NC-circuits of depth f(k)·log |V |
and size f(k) · |V |c that, on input of a graph G = (V,E), a set of pairs of vertices I, a graph
G′ = (V ′, E′) that is obtained from G by contracting the pairs in I, and a tree decomposition
(T ′, ι′) of G′ of width k, outputs a balanced and nice tree decomposition (T, ι, η) of G of width
at most 8k + 3 and depth (16k + 6) · log |V |+ 1.

Proof. Let (T ′, ι′) be the given tree decomposition. An AC0-circuit can compute (T, ι) by
adding for each pair {u, v} ∈ I the vertex v to every bag that contains u. This can be done
in parallel for all vertices and all bags. Since the number of vertices in each bag is at most
doubled, (T, ι) has width at most 2k.

This decomposition can be transformed into a balanced one of width at most 8k + 3 by
a TC0-circuit [7]. The last thing we have to do is to transform this decomposition into a
nice decomposition (T, ι, η). In order to do so, the circuit first adds an empty bag to each
leaf, which is labeled as leaf node. Then, each node n with two children x and y is replaced
by nodes n, nl, and nr such that nl, nr are the children of n, x is a child of nl, and y a
child of nr. The node n is labeled as join node. This operation doubles the depth of the
decomposition. Finally, for every node x with child y, the circuit computes a chain of forget
nodes from x to a new node z with ι(x) ∩ ι(y) = ι(z), and a chain of introduce nodes from z

to y. This will increase the depth of the decomposition at most by a factor of 8k + 3.
Since making a balanced tree decomposition nice will result in a balanced decomposition

again, the above algorithm produced a nice, balanced tree decomposition of width at most
2k and depth at most (16k + 6) log |V |+ 1. J

Claim of Lemma 10. There is a dlogtime-uniform family of NC-circuits of depth f(k) ·
log |V | and size f(k) · |V |c that, on input of a graph G = (V,E), an integer k, and of a
balanced and nice tree decomposition (T, ι, η) of G of width at most ` ≤ f(k), outputs either
tw(G) > k or a width-k tree decomposition of G.

Proof. The original algorithm by Bodlaender and Hagerup [2] computes a path labeled tree
representation of a tree decomposition of width k of G, or correctly detects tw(G) > k. This
algorithm “bubbles up” the nice tree decomposition and spends f(k) time on every node.
Since the depth of the tree is f(k) log |V |, the desired circuit can implement this algorithm
without modification.

After the execution of the above algorithm, the circuit may either reject if the algorithm
reports that the tree width exceeds k, or obtains a path labeled tree representation. Recall
that this implicit representation is a labeled binary tree T where exactly two nodes are
labeled with each vertex of G. The idea is that the unique path between these two nodes

IPEC 2016



4:16 Parallel Multivariate Meta-Theorems

defines the bags in which the vertex (used as label) lies. Since the “real” tree decomposition
we try to extract from this implicit representation uses the same tree, the rest of the lemma
boils down to the following algorithmic task: Given a tree T = (V,E) and three nodes
s, x, t ∈ V , decide whether or not x lies on the unique path between s and t. This property is
clearly expressible in MSO and, since T is a tree (of tree width 1), decidable in NC1 [7]. J

Claim of Lemma 14. Let Sk,d be the set of labeled trees (T, λ) of maximal depth d and
maximal degree k. There is a dlogtime-uniform family of circuits over the standard base
(only AND-, OR-, and NOT-gates) with fan-in k, depth f(|A|) · d and size f(|A|) · |T|c that,
on input of a labeled tree (T, λ) ∈ Sk,d and a multiset automata A = (Σ, Q,Qa,∆,m), decides
whether or not (T, λ) ∈ L(A) holds.

Proof. Since both, the depth and the size of the circuit, depend on the size of A by an
arbitrary computable function f , we can assume that A is deterministic, since if this is not
the case we can compute an equivalent deterministic automaton using Fact 13. The circuit
has d layers, each of which consists of circuits of depth f(|A|). The i-th layer will assign
states to the nodes of the (d− i)-th layer of T. The first layer simply assigns states to the
leafs of T. Layer i then has access to the assigned states of layer i− 1. In order to compute
the state q(n) for a node n the circuit computes the multiset M = { q(c) | c is a child of n }
using the result of the last layer. Now the circuit has to cap M to compute M |m. In order
to do so, the circuit has to count up to m. Since we have m ≤ |A|, the value m is bounded
by the parameter and, therefore, a para-AC0 layer is sufficient for this task [1]. Once M |m is
computed, the circuit can compute q(n) by a lookup of (λ(n),M |m) in the description of δ.
The circuit outputs 1 if, and only if, after the evaluation of the d layers the root r of T is
assigned with q(r) ∈ Qa.

Clearly, the depth of the circuit is bounded by f(|A|) · d. To see that the fan-in of the
circuit does only depend on the maximal degree of T, observe the following: The subcircuit of
a layer computing q(n) for a node n has size bounded by f(|A|) and, hence, can be replaced
by a circuit of fan-in two without violating the depth bound of f(|A|). The bigger fan-in
is only needed to transmit the multiset M = { q(c) | c is a child of n } to the subcircuit
computing q(n), but since we have |M | ≤ k the claim follows. J

Claim of Theorem 23. pd-adistance is complete for para-AC0↑ under para-AC0-reduction.

Proof. For containment consider a circuit that performs a backward breadth-first search
starting at t, similar to Lemma 6. The circuit handles the graph in d layers, computing
in layer i the vertices that have alternating distance i to t. In the first layer, vertex t is
colored. In layer i, all vertices x ∈ V∃ that have one colored neighbor, and all y ∈ V∀ that
have only colored neighbors (and at least one) are colored. There is an alternating path of
distance at most d from s to t if, and only if, s is colored after d layers. The correctness
of the circuit follows by a simple induction: in layer 1 we color exactly the vertices with
alternating distance 1, and it is easy to see that coloring a vertex in layer i is only possible if
it has a neighbor (or all its neighbors) with alternating distance i− 1.

For completeness let us reduce any problem L ∈ para-AC0↑ to pd-adistance. As L is
in para-AC0↑, there is a fixed family of circuits deciding L. Let C be such a circuit. We
may assume that C is monotone since one can always replace a non-monotone circuit by a
monotone one (using the standard argument used in showing that the circuit value problem
reduces to its monotone version).



M. Bannach and T. Tantau 4:17

We translate the monotone circuit C into an alternating graph as follows: The vertices
of the graph are the gates, and the wires are edges directed from the unique output gate
towards the input bits. For each input bit there is a vertex as well. We label the output gate
as s, add a new vertex t, and we add edges from all input bits that are set to 1 towards t.
We partition the vertices such that V∃ is the set of or -gates joined by t and the input
bits; and such that V∀ is the set of and -gates. The constructed graph with s and t, and
with d as distance, constitutes an instance of pd-adistance. An alternating path from s to
t corresponds to wires that are set to true during the evaluation of the circuit and, hence,
such a path can only exist if the circuit evaluates to true. Since, furthermore, the depth of
the circuit is bounded by d, such a path has length at most d as well. J

IPEC 2016





Finding Secluded Places of Special Interest in
Graphs∗†

René van Bevern‡1, Till Fluschnik§2, George B. Mertzios3,
Hendrik Molter¶4, Manuel Sorge5, and Ondřej Suchý‖6

1 Novosibirsk State University, Novosibirsk, Russian Federation; and
Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of
Sciences, Novosibirsk, Russian Federation
rvb@nsu.ru

2 Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
till.fluschnik@tu-berlin.de

3 School of Engineering and Computing Sciences, Durham University, UK
george.mertzios@durham.ac.uk

4 Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
h.molter@tu-berlin.de

5 Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
manuel.sorge@tu-berlin.de

6 Faculty of Information Technology, Czech Technical University in Prague,
Czech Republic
ondrej.suchy@fit.cvut.cz

Abstract
Finding a vertex subset in a graph that satisfies a certain property is one of the most-studied
topics in algorithmic graph theory. The focus herein is often on minimizing or maximizing the size
of the solution, that is, the size of the desired vertex set. In several applications, however, we also
want to limit the “exposure” of the solution to the rest of the graph. This is the case, for example,
when the solution represents persons that ought to deal with sensitive information or a segregated
community. In this work, we thus explore the (parameterized) complexity of finding such secluded
vertex subsets for a wide variety of properties that they shall fulfill. More precisely, we study the
constraint that the (open or closed) neighborhood of the solution shall be bounded by a parameter
and the influence of this constraint on the complexity of minimizing separators, feedback vertex
sets, F-free vertex deletion sets, dominating sets, and the maximization of independent sets.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases Neighborhood, Feedback Vertex Set, Vertex Deletion, Separator, Domi-
nating Set

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.5

∗ A full version of the paper is available at https://arxiv.org/abs/1606.09000.
† This research was initiated at the annual research retreat of the algorithms and complexity group of

TU Berlin, held in Krölpa, Thuringia, Germany, from April 3rd till April 9th, 2016.
‡ Results in Section 4 were obtained under support of the Russian Science Foundation, grant 16-11-10041.
§ Supported by the DFG, project DAMM (NI 369/13).
¶ Supported by the DFG, project DAPA (NI 369/12).
‖ Supported by grant 14-13017P of the Czech Science Foundation.

© René van Bevern, Till Fluschnik, George B. Mertzios, Hendrik Molter, Manuel Sorge, and
Ondřej Suchý;
licensed under Creative Commons License CC-BY

11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin; Article No. 5; pp. 5:1–5:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.5
https://arxiv.org/abs/1606.09000
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


5:2 Finding Secluded Places of Special Interest in Graphs

1 Introduction

In many optimization problems on graphs, one searches for a minimum or maximum cardi-
nality subset of vertices and edges satisfying certain properties, like a minimum s-t path, a
maximum independent set, or a minimum dominating set. In several applications, however,
it is important to also limit the exposure of the solution [5, 17]. For instance, we may want to
find a way to send sensitive information that we want to protect from a vertex s to a vertex t

in a network. If we assume that the information is exposed to all vertices on the way and
all of their neighbors, limiting the exposure means to find an s-t path with a small closed
neighborhood [5]. Another example is the search for segragated communities in social net-
works [17]. Herein, we search for dense subgraphs which are exposed to few neighbors in the
rest of the graph. In addition to being a natural constraint in these applications, restricting
the exposure of the solution may also yield more efficient algorithms [14, 16, 17, 18].

In accordance with previous work, we call a solution secluded if it has a small exposure [5].
Secluded paths and Steiner trees have been studied before [5, 11]. Our aim in this paper is to
study the constraint of being secluded on the complexity of diverse vertex-subset optimization
problems.

Inspired by Chechik et al. [5], we first measure the exposure of a solution S by the size
of the closed neighborhood NG[S] = S ∪

⋃
v∈S NG(v) of S in the input graph G. Given a

predicate Π(G, S) that determines whether S is a solution for input graph G, we hence study
the following problem.
Secluded Π
Input: A graph G = (V, E) and an integer k.
Question: Is there a subset S ⊆ V of vertices such that S satisfies Π(G, S) and |NG[S]| ≤ k?

It makes sense to also control the size of the solution and its neighborhood in the graph
directly. For example, when sending sensitive information from s to t as above, we may
simultaneously aim to optimize latency, that is, minimize the number of vertices in the
communication path and limit the exposure. Hence, our second measure of exposure of the
solution is the size of the open neighborhood NG(S) = NG[S] \S. This leads to the following
problem formulation.
Small (Large) Secluded Π
Input: A graph G = (V, E) and two integers k, `.
Question: Is there a subset S ⊆ V of vertices of G such that S satisfies Π(G, S), |S| ≤ k,

and |NG(S)| ≤ ` (resp. |S| ≥ k, and |NG(S)| ≤ `)?

We study both problems in the framework of parameterized complexity. As a parameter for
Secluded Π we use the size k of the closed neighborhood and as parameters for Small
Secluded Π we use the size k of the solution as well as the size ` of the open neighborhood.

The predicates Π(G, S) that we study are s-t Separator, Feedback Vertex Set
(FVS), F-free Vertex Deletion (F-FVD) (for an arbitrary finite family F of graphs),
encompassing Cluster Vertex Deletion, for example, and Independent Set (IS).
Perhaps surprisingly, we find that Secluded s-t-Separator is polynomial-time solvable,
whereas Small Secluded s-t Separator becomes NP-complete. The remaining problems
are NP-complete. For them, roughly speaking, we prove that fixed-parameter tractability
results for Π parameterized by the solution size carry over to Secluded Π parameterized
by k. For Small Secluded Π parameterized by `, however, we mostly obtain W[1]-hardness.
On the positive side, for Small Secluded F-FVD we prove fixed-parameter tractability
when parameterized by k + `.



R. van Bevern, T. Fluschnik, G. B. Mertzios, H. Molter, M. Sorge, and O. Suchý 5:3

Table 1 Overview of our results. PK stands for polynomial kernel. The results marked by an
asterisk follow by a straightforward reduction from the non-secluded variant.

Complexity Parameterized Complexity / Kernelization
Secluded Small Secl. Secluded Small Secluded

Problem k k ` k + `

s-t-separator P NP-c. P W[1]-h. W[1]-h. ?/noPK
F-free VD NP-c. NP-c.* FPT/PK ? ? FPT/?

FVS NP-c. NP-c.* FPT/PK ? W[1]-h. ? / ?
q-DS, 2p ≤ q NP-c. NP-c.* W[2]-h. → → W[2]-h.
q-DS, 2p > q NP-c. NP-c.* FPT/noPK ? ? FPT/noPK

Large Secluded IS NP-c.* → → W[1]-h.

We also study, for two integers p < q, the p-secluded version of q-Dominating Set
(q-DS): a vertex set S is a q-dominating set if every vertex of V \ S has distance at most q

to some vertex in S. Herein, by p-secluded we mean that we upper bound the size of the
distance-p-neighborhood of the solution S. Interestingly, this problem admits a complexity
dichotomy: Whenever 2p > q, (Small) p-Secluded q-Dominating Set is fixed-parameter
tractable with respect to k (with respect to k + `), but it is W[2]-hard otherwise.

We also study polynomial-size problem kernels for our secluded problems. Here we observe
that the polynomial-size problem kernels for Feedback Vertex Set and F-free Vertex
Deletion carry over to their Secluded variants, but otherwise we obtain mostly absence
of polynomial-size problem kernels unless the polynomial hierarchy collapses.

A summary of our results is given in Table 1.

Related work. Secluded Path and Secluded Steiner Tree were introduced and
proved NP-complete by Chechik et al. [5]. They obtained approximation algorithms for both
problems with approximation factors related to the maximum degree. They also showed that
Secluded Path is fixed-parameter tractable with respect to the maximum vertex degree of
the input graph, whereas vertex weights lead to NP-hardness for maximum degree four.

Fomin et al. [11] studied the parameterized complexity of Secluded Path and Secluded
Steiner Tree, showing that both are fixed-parameter tractable even in the vertex-weighted
setting. Furthermore, they showed that Secluded Steiner Tree is fixed-parameter
tractable with respect to r+p, where r = k−s, k is the desired size of the closed neighborhood
of the solution, s is the size of an optimum Steiner tree, and p is the number of terminals.
On the other hand this problem is co-W[1]-hard when parameterized by r only.

The small secluded concept can be found in the context of cut problems in graph [21, 12].
Fomin et al. [12] introduced the Cutting at Most k Vertices problem, which asks,
given a graph G = (V, E) and two integers k ≥ 1 and ` ≥ 0, whether there is a non-empty
set S ⊆ V such that |S| ≤ k, and |NG(X)| ≤ `, thus resembling our small secluded concept.
Both works [12, 21] study the parameterized complexity of related cut problems in graphs.

The concept of isolation can be found in the context of cuts [7] and was thoroughly
explored for finding dense subgraphs [14, 16, 17, 18]. Herein, chiefly the constraint that
the vertices in the solution shall have maximum/minimum/average outdegree bounded by
a parameter was considered [14, 17, 18], leading to various parameterized tractability and
hardness results. Also the overall number of edges outgoing the solution has been studied
recently [16].

IPEC 2016



5:4 Finding Secluded Places of Special Interest in Graphs

Preliminary observations. Concerning classical computational complexity, the Small
(Large) Secluded variant of a problem is at least as hard as the nonsecluded prob-
lem, by a simple reduction in which we set ` = n, where n denotes the number of vertices in
the graph. Since this reduction is a parameterized reduction with respect to k, parameterized
hardness results for this parameter transfer, too. Furthermore, observe that hardness also
transfers from Secluded Π to Small Secluded Π for all problems Π, since Secluded Π
allows for a parameterized Turing reduction to Small Secluded Π: try out all k′ and `′ with
k = k′ + `′. Additionally, many tractability results (in particular polynomial time solvability
and fixed-parameter tractability) transfer from Small Secluded Π parameterized by (k + `)
to Secluded Π parameterized by k.

I Observation 1.1. Secluded Π parameterized by k is parameterized Turing reducible to
Small Secluded Π parameterized by (k + `) for all predicates Π.

Therefore, for the Small (Large) Secluded variants of the problems the interesting cases
are those where the base problem is tractable (deciding whether input graph G contains a
vertex set S of size k that satisfies Π(G, S)) or where ` is a parameter.

Notation. We use standard notation from parameterized complexity and graph theory. All
graphs in this paper are undirected. We denote dG(u, v) the distance between vertices u

and v in G, that is, the number of edges of a shortest u-v path in G. For a set V ′ of vertices
and a vertex v ∈ V we let the distance of v from V ′ be dG(v, V ′) := min{dG(u, v) | u ∈ V ′}.
We use Nd

G[V ′] = {v | dG(v, V ′) ≤ d} and Nd
G(V ′) = Nd

G[V ′] \ V ′ for any d ≥ 0 (hence
N0

G(V ′) = ∅). We omit the index if the graph is clear from context and also use N [V ′] for
N1[V ′] and N(V ′) for N1(V ′). If V ′ = {v}, then we write Nd[v] in place of Nd[{v}].

Organization. We dedicate one section to each studied problem. We study s-t-Separator
in Section 2, q-Dominating Set in Section 3, F-free Vertex Deletion in Section 4,
Feedback Vertex Set in Section 5, and Independent Set in Section 6. Section 7
summarizes results and gives directions for future research. We remark that some proofs and
proof details (marked with (?)) are deferred to a full version of this paper.

2 s-t-Separator

In this section, we show that Secluded s-t-Separator is in P, while Small Secluded
s-t-Separator is NP-hard and W [1]-hard with respect to the size of the open neighborhood,
or the size of the solution. Moreover, we also exclude the existence of polynomial-size kernels
for the latter problem with respect to the sum of the bounds.

2.1 Secluded s-t-Separator
In this subsection we show that the following problem can be solved in polynomial time.
Secluded s-t-Separator
Input: A graph G = (V, E), two distinct vertices s, t ∈ V , and an integer k.
Question: Is there an s-t separator S ⊆ V \ {s, t} such that |NG[S]| ≤ k?

I Theorem 2.1. Secluded s-t-Separator can be solved in polynomial time.

Proof. We reduce the problem to the problem of finding an ordinary s-t separator in an
auxiliary graph. Let (G = (V, E), s, t, k) be the input instance and G′′ be a graph obtained



R. van Bevern, T. Fluschnik, G. B. Mertzios, H. Molter, M. Sorge, and O. Suchý 5:5

from G by adding two vertices s′ and t′ and making s′ only adjacent to s and t′ only adjacent to
t′. Now let G′ = (V ′, E′) be the third power of G′′, that is, V ′ = V (G′) = V (G′′) = V ∪{s′, t′}
and {u, v} ∈ E′ if and only if dG′′(u, v) ≤ 3.

We claim that there is an s-t-separator S in G with |N [S]| ≤ k if and only if there is
an s′-t′-separator S′ in G′ with |S′| ≤ k. The theorem then follows as we can construct G′

and find the minimum s′-t′-separator in G′ in polynomial time using standard methods, for
example, based on network flows.

“⇒”: Let S be an s-t-separator in G with |N [S]| ≤ k. Observe that S then also constitutes
an s′-t′-separator in G′′ as every path in G′′ from s′ must go through s and every path to
t′ must go through t. We claim that S′ = N [S] is an s′-t′-separator in G′. Suppose for
contradiction that there is an s′-t′ path P = p0, p1, . . . , pq in G′ − S′. Let A′ be the set of
vertices of the connected component of G′′ − S containing s′ and let a be the last index
such that pa ∈ A′ (note that p0 = s′ ∈ A′ and pq = t′ /∈ A′ by definition). It follows that
pa+1 /∈ A′ and, since {pa, pa+1} ∈ E′, there is a pa-pa+1 path P ′ in G′′ of length at most 3.
As we have pa ∈ A′ and pa+1 ∈ V \ (A′ ∪ S′) and G[A′] is a connected component of G′′ − S,
there must be a vertex x of S on P ′. Since neither pa nor pa+1 is in S′ = N [S], it follows
that dG(pa, x) ≥ 2 and dG(pa+1, x) ≥ 2. This contradicts P ′ having length at most 3.

“⇐”: Let S′ be an s′-t′-separator in G′ of size at most k. Let A′ be the vertex set of the
connected component of G′−S′ containing s′. Consider the set S = {v ∈ S′ | dG′′(v, A′) = 2}.
We claim that S is an s-t-separator in G and, moreover, that N [S] ⊆ S′ and, hence, |N [S]| ≤ k.
As to the second part, we have S ⊆ S′ by definition. Suppose for contradiction that there
was a vertex u ∈ N(S) \ S′ that is a neighbor of v ∈ S. Then, since dG′′(v, A′) = 2, we
have dG′′(u, A′) ≤ 3, u has a neighbor in A′ in G′, and, thus u is in A′. This implies that
dG′′(v, A′) = 1, a contradiction. Hence, |N [S]| ≤ k.

It remains to show that S is an s-t-separator in G. For this, we prove that S is an
s′-t′-separator in G′′. Since it contains neither s nor t, it follows that it must be also an
s-t-separator in G. Assume for contradiction that there is an s′-t′ path in G′′ − S. This
implies that d(G′′−S)(t′, A′) is well defined (and finite). Let q := d(G′′−S)(t′, A′) and P be
the corresponding shortest path in G′′ − S. Let us denote P = p0, . . . , pq with pq = t′

and p0 ∈ A′. If dG′′(t′, A′) ≤ 3, then t′ has a neighbor in A′ in G′, and therefore it is in
A′ contradicting our assumption that S′ is an s′-t′-separator in G′. As t′ = pq, we have
q > 3. Since dG′′(p0, A′) = 0, dG′′(pq, A′) > 3, and dG′′(pi+1, A′) ≤ dG′′(pi, A′) + 1 for every
i ∈ {0, . . . q − 1}, there is an a such that dG′′(pa, A′) = 2. If pa is not in S′, then pa is in A′,
contradicting our assumptions on P and q as a ≥ 2. Therefore we have dG′′(pa, A′) = 2 and
pa is in S′. It follows that pa is in S, a contradiction. J

2.2 Small Secluded s-t-Separator
In this subsection we prove hardness results for the following problem.
Small Secluded s-t-Separator
Input: A graph G = (V, E), two distinct vertices s, t ∈ V , and two integers k, `.
Question: Is there an s-t separator S ⊆ V \ {s, t} such that |S| ≤ k and |NG(S)| ≤ `?

We show that, in contrast to Secluded s-t-Separator, the above problem is NP-hard.
Moreover, at the same time, we show parameterized hardness with respect to k and with
respect to `.

I Theorem 2.2. Small Secluded s-t-Separator is NP-hard and W [1]-hard when pa-
rameterized by k or by `.

IPEC 2016



5:6 Finding Secluded Places of Special Interest in Graphs

In the proof of the theorem, we reduce from the Cutting at Most k Vertices with
Terminal [12] problem, which asks, given a graph G = (V, E), a vertex s ∈ V , and two
integers k ≥ 1, ` ≥ 0, whether there is a set S ⊆ V such that s ∈ S, |S| ≤ k, and |NG(X)| ≤ `.
Fomin et al. [12] proved that Cutting at Most k Vertices with Terminal is NP-hard
and W[1]-hard when parameterized by k or by `.

Proof. We give a polynomial-parameter transformation from Cutting at Most k Vertices
with Terminal to Small Secluded s-t-Separator.

Construction. Let I := (G = (V, E), s, k, `) be an instance of Cutting at Most k

Vertices with Terminal. We construct an instance I ′ := (G′, s′, t′, k′, `′) of Small
Secluded s-t-Separator equivalent to I as follows. To obtain G′ from G we add to G

two vertices s′ and t′ and two edges {s′, s} and {s, t′}. Note that G = G′ − {s′, t′}. We set
k′ = k and `′ = ` + 2. Hence, we ask for an s′-t′ separator S ⊆ V (G′) in G′ of size at most
k′ and |NG′(S)| ≤ `′. Clearly, the construction can be carried out in polynomial time.

Correctness. We show that I is a yes-instance of Cutting at Most k Vertices with
Terminal if and only if I ′ is a yes-instance of Small Secluded s-t-Separator.

“⇒”: Let I be a yes-instance and let S ⊆ V (G) be a solution to I, that is, s ∈ S,
|S| ≤ k, and |NG(S)| ≤ `. We claim that S is also a solution to I ′. Since s ∈ S and s′ and t′

are both only adjacent to s, S separates s′ from t′ in G′. Moreover, |S| ≤ k = k′ and, as
NG′(S) = NG(S) ∪ {s′, t′}, we have |NG′(S)| ≤ ` + 2 = `′. Hence, S′ is a solution to I ′, and
I ′ is a yes-instance.

“⇐”: Let I ′ be a yes-instance and let S′ ⊆ V (G′) be an s′-t′ separator in G′ with |S′| ≤ k′

and |NG′(S′)| ≤ `′. We claim that S′ is also a solution to I. Note that |S′| ≤ k′ = k. Since
S′ is an s′-t′ separator in G′ and s′ and t′ are both adjacent to s, it follows that s ∈ S′ and
s′, t′ ∈ NG′(S′). Thus, we have s ∈ S′ and |NG(S′)| = |NG′−{s′,t′}(S′)| = |NG′(S′)| − 2 ≤
`′ − 2 = `. Hence, S′ is a solution to I and I is a yes-instance.

Note that, in the reduction, k′ and `′ only depend on k and `, respectively. Since Cutting
at Most k Vertices with Terminal parameterized by k or by ` is W[1]-hard [12], it
follows that Small Secluded s-t-Separator parameterized by k or by ` is W[1]-hard. J

It would be interesting to know whether Small Secluded s-t-Separator is FPT when
parameterized by k + `. We conjecture that this is the case. However, under standard
assumptions, the problem does not admit a polynomial-size kernel with respect to this
parameter:

I Theorem 2.3 (?). Unless NP ⊆ coNP/poly, Small Secluded s-t-Separator parame-
terized by k + ` does not admit a polynomial kernel.

3 q-Dominating Set

In this section, for two constants p, q ∈ N with 0 ≤ p < q, we study the following problems:
p-Secluded q-Dominating Set
Input: A graph G = (V, E) and an integer k.
Question: Is there a set S ⊆ V such that V = Nq

G[S] and |Np
G[S]| ≤ k?

Small p-Secluded q-Dominating Set
Input: A graph G = (V, E) and two integers k, `.
Question: Is there a set S ⊆ V such that V = Nq

G[S], |S| ≤ k, and |Np
G(S)| ≤ `?



R. van Bevern, T. Fluschnik, G. B. Mertzios, H. Molter, M. Sorge, and O. Suchý 5:7

For p = 0, the size restrictions in both cases boil down to |S| ≤ k. This is the well-known
case of q-Dominating Set (also known as q-Center) which is NP-hard and W[2]-hard
with respect to k (see Lokshtanov et al. [20], for example). Therefore, for the rest of the
section we focus on the case p > 0. Additionally, by a simple reduction from q-Dominating
Set, letting ` = |V (G)|, we arrive at the following observation.

I Observation 3.1. For any 0 < p < q, Small p-Secluded q-Dominating Set is
W[2]-hard with respect to k.

We now go on to show NP-hardness and W[2]-hardness with respect to k for p-Secluded
q-Dominating Set. We reduce from the following problem:
Set Cover
Input: A finite universe U , a family F ⊆ 2U , and an integer k.
Question: Is there a subset X ⊆ F such that |X| ≤ k and

⋃
x∈X x = U?

We write
⋃

X short for
⋃

x∈X x. It is known that Set Cover is NP-complete, W[2]-hard with
respect to k, and admits no polynomial kernel with respect to |F |, unless NP ⊆ coNP/poly [6].

I Theorem 3.2. For any 0 < p < q, p-Secluded q-Dominating Set is NP-hard. Moreover,
it does not admit a polynomial kernel with respect to k, unless NP ⊆ coNP/poly.

Proof. We give a polynomial-parameter transformation from Set Cover parameterized
by |F |. Let (U, F, k) be an instance of Set Cover. Without loss of generality we assume
that 0 ≤ k < |F |.

Construction. Let k′ = p + 1 + |F | · p + k. We construct the graph G of a p-Secluded
q-Dominating Set instance (G, k′) as follows. We start the construction by taking two
vertices s and r and three vertex sets VU = {u | u ∈ U}, VF = {vA | A ∈ F}, and
V ′F = {v′A | A ∈ F}. We connect vertex r with vertex s by a path of length exactly q. For
each A ∈ F we connect vertices vA and r by an edge and vertices vA and v′A by a path
tA
0 , tA

1 , . . . , tA
p of length exactly p, where tA

0 = vA and tA
p = v′A. All introduced paths are

internally disjoint and the internal vertices are all new. We connect a vertex v′A ∈ V ′F with a
vertex u ∈ VU by an edge if and only if u ∈ A. Furthermore, we introduce a clique CU of
size k′ and make all its vertices adjacent to each vertex in V ′F ∪ VU .

If q − p ≥ 2, then for each u ∈ U , we create a path bu
0 , bu

1 , . . . , bu
q−p−2 of length exactly

q− p− 2 such that bu
0 = u and the other vertices are new. Furthermore, in this case, for each

h ∈ {0, . . . , q − p− 2} we introduce a clique Cu
h of size k′ and make all its vertices adjacent

to vertex bu
h. If q − p = 1 we do not introduce any new vertices.

One can show that the original instance of Set Cover is a yes-instance if and only if
the constructed instance of p-Secluded q-Dominating Set is. We defer the proof of the
equivalence to a full version of the paper. J

In the following, we observe that the parameterized complexity of both problems varies for
different choices of p and q.

I Theorem 3.3 (?). For any 0 < p ≤ 1
2 q, p-Secluded q-Dominating Set is W[2]-hard

with respect to k.

For Small p-Secluded q-Dominating Set, we remark that we can adapt the reduction
for Theorem 3.2: instead of restricting the size of the closed neighborhood of the q-dominating
set to at most p + 1 + |F | · p + k, we restrict the size of the q-dominating set to at most k + 1
and the size of its open neighborhood to at most p + |F | · p. Analogously, we can adapt the
reduction for Theorem 3.3. This yields the following hardness results.

IPEC 2016



5:8 Finding Secluded Places of Special Interest in Graphs

I Corollary 3.4. For any 0 < p < q, Small p-Secluded q-Dominating Set is NP-hard.
Moreover, it does not admit a polynomial kernel with respect to (k+`) unless NP ⊆ coNP/poly.
For any 0 < p ≤ 1

2 q, Small p-Secluded q-Dominating Set is W[2]-hard with respect to
(k + `).

Now we look at the remaining choices for p and q, that is all p, q with p > 1
2 q. In these cases

we can show fixed-parameter tractability.

I Theorem 3.5. For any p > 1
2 q, Small p-Secluded q-Dominating Set can be solved in

O(mkk+2(k + `)qk) time and, hence, it is fixed-parameter tractable with respect to k + `.

Proof. Consider a solution S for an instance (G, k, `) of Small p-Secluded q-Dominating
Set. If x ∈ S, then |Np[x]| ≤ k +`, since |S| ≤ k and |Np(S)| ≤ `. Moreover, |Np[x]| ≤ k +`

implies |N [v]| ≤ k + ` for every v ∈ Np−1[x]. It follows that, if |Np[y]| ≤ k + ` and y /∈ S,
then for each x ∈ Nq[y] ∩ S every vertex on every x-y path of length at most 2p− 1 ≥ q has
degree at most k + `− 1, since each such vertex has distance at most p− 1 to x or y.

If k + ` = 1, then either G has at most one vertex or (G, k, `) is a no-instance. Hence,
in the following, we assume k + ` ≥ 2. We call vertices u and v linked, if there is a path of
length at most q between u and v in G such that the degree of every vertex on the path is
at most k + `− 1. Let B[u] = {v | u and v are linked}. One can show |B[v]| ≤ (k + `)q for
any v (we defer the proof to a full version of the paper).

Let Y = {y | |Np[y]| ≤ k + `}. Obviously, we have S ⊆ Y , since |Np[S]| ≤ k + `. If
y ∈ Y \ S, then there is x ∈ S such that x and y are linked. It follows that y ∈ B[x] and,
thus, Y ⊆

⋃
x∈S B[x]. Hence, |Y | ≤ k · (k + `)q ≤ (k + `)q+1.

This suggests the following algorithm for Small p-Secluded q-Dominating Set: Find
the set Y . If |Y | > k · (k + `)q, then answer “no”. Otherwise, for each k′ ≤ k and each size-k′
subset S′ of Y , check whether S′ is a p-secluded q-dominating set in G. If any such set is
found, return it. Otherwise, answer “no”. Since S ⊆ Y , this check is exhaustive.

As to the running time, the set Y can be determined in O(n(k + `)) time by running a
BFS from each vertex and stopping it after it discovers k +` vertices or all vertices in distance
at most p, whichever occurs earlier. Then, there are k ·

(
k·(k+`)q

k

)
≤ kk+1(k + `)qk candidate

subsets of Y . For each such set S′ we can check whether it is a p-secluded q-dominating
set in G by running a BFS from each vertex of S′ and marking the vertices which are in
distance at most p and at most q, respectively. This takes O(mk) time. Hence, in total, the
algorithm runs in O(mkk+2(k + `)qk) time. J

By Observation 1.1, the previous result transfers to p-Secluded q-Dominating Set
parameterized by k.

I Corollary 3.6. For any p > 1
2 q, p-Secluded q-Dominating Set is fixed-parameter

tractable with respect to k.

4 F-free Vertex Deletion

In this section, we study the F-free Vertex Deletion (F-FVD) problem for families F
of graphs with at most a constant number c of vertices, that is, the problem of destroying all
induced subgraphs isomorphic to graphs in F by at most k vertex deletions. The problem
can, in particular, model various graph clustering tasks [3, 15], where the secluded variants
can be naturally interpreted as removing a small set of outliers that are weakly connected to
the clusters.



R. van Bevern, T. Fluschnik, G. B. Mertzios, H. Molter, M. Sorge, and O. Suchý 5:9

4.1 Secluded F-free Vertex Deletion
In this section, we prove a polynomial-size problem kernel for Secluded F-free Vertex
Deletion, where F is a family of graphs with at most a constant number c of vertices:
Secluded F-free Vertex Deletion
Input: A graph G = (V, E) and an integer k.
Question: Is there a set S ⊆ V such that G− S is F-free and |NG[S]| ≤ k?

Henceforth, we call a set S ⊆ V such that G− S is F-free an F-free vertex deletion set.
Note that Secluded F-free Vertex Deletion can be polynomial-time solvable for

some families F for which F -FVD is NP-hard: Vertex Cover (where F contains only the
graph consisting of a single edge) is NP-hard, yet any vertex cover S satisfies N [S] = V .
Therefore, an instance to Secluded Vertex Cover is a yes-instance if and only if k ≥ n. In
general, however, one can show that Secluded F-Free Vertex Deletion is NP-complete
for every family F that includes only graphs of minimum vertex degree two (Theorem 4.1).
We mention in passing that, from this peculiar difference of the complexity of Vertex
Cover and Secluded Vertex Cover, it would be interesting to find properties of F
which govern whether Secluded F-free Vertex Deletion is NP-hard or polynomial-time
solvable along the lines of the well-known dichotomy results [9, 19].

I Theorem 4.1 (?). For each family F containing only graphs of minimum vertex degree
two, Secluded F-Free Vertex Deletion is NP-complete.

It is easy to see that Secluded F-free Vertex Deletion is fixed-parameter tractable.
More specifically, it is solvable in ck · poly(n) time: simply enumerate all inclusion-minimal
F-free vertex deletion sets S of size at most k using the standard search tree algorithm
described by Cai [4] and check |N [S]| ≤ k for each of them. This works because, for any
F-free vertex deletion set S with |N [S]| ≤ k, we can assume that S is an inclusion-minimal
F-free vertex deletion set since |N [S′]| ≤ |N [S]| for every S′ ( S.

We complement this observation of fixed-parameter tractability by the following kernel-
ization result.

I Theorem 4.2. Secluded F-free Vertex Deletion has a problem kernel comprising
O(kc+1) vertices, where c is the maximum number of vertices in any graph of F .

Our proof of Theorem 4.2 exploits expressive kernelization algorithms for d-Hitting Set [1,
2, 8], which preserve inclusion-minimal solutions and that return subgraphs of the input
hypergraph as kernels: Herein, given a hypergraph H = (U, C) with |C| ≤ d for each C ∈ C,
and an integer k, d-Hitting Set asks whether there is a hitting set S ⊆ U with |S| ≤ k, that
is, C ∩ S 6= ∅ for each C ∈ C. Our kernelization for Secluded F-free Vertex Deletion
is based on transforming the input instance (G, k) to a d-Hitting Set instance (H, k),
computing an expressive d-Hitting Set problem kernel (H ′, k), and outputting a Secluded
F-free Vertex Deletion instance (G′, k), where G′ is the graph induced by the vertices
remaining in H ′ together with at most k + 1 additional neighbors for each vertex in G.

I Definition 4.3. Let (G = (V, E), k) be an instance of Secluded F-free Vertex
Deletion. For a vertex v ∈ V , let Nj(v) ⊆ NG(v) be j arbitrary neighbors of v, or
Nj(v) := NG(v) if v has degree less than j. For a subset S ⊆ V , let Nj(S) :=

⋃
v∈S Nj(v).

Moreover, let
c := maxF∈F |V (F )| be the maximum number of vertices in any graph in F ,
H = (U, C) be the hypergraph with U := V and C := {S ⊆ V | G[S] ∈ F},

IPEC 2016



5:10 Finding Secluded Places of Special Interest in Graphs

H ′ = (U ′, C′) be a subgraph of H with |U ′| ∈ O(kc) such that each set S ⊆ U with
|S| ≤ k is an inclusion-minimal hitting set for H if and only if it is for H ′, and
G′ = (V ′, E′) be the subgraph of G induced by U ′ ∪Nk+1(U ′).

To prove Theorem 4.2, we show that (G′, k) is a problem kernel for the input instance (G, k).
The subgraph H ′ exists and is computable in linear time from H [2, 8]. Moreover, for
constant c, one can compute H from G and G′ from H ′ in polynomial time. It is obvious
that the number of vertices of G′ is O(kc+1). Hence, it remains to show that (G′, k) is a
yes-instance if and only if (G, k) is. This is achieved by the following two lemmas.

I Lemma 4.4. For any S ⊆ U ′ with |NG′ [S]| ≤ k, it holds that NG[S] = NG′ [S].

Proof. Since S ⊆ U ′ ⊆ V ′∩V and since G′ is a subgraph of G, it is clear that NG[S] ⊇ NG′ [S].
For the opposite direction, observe that each v ∈ S has degree at most k in G′. Thus, v has
degree at most k in G since, otherwise, k + 1 of its neighbors would be in G′ by construction.
Thus, NG′(v) ⊇ Nk+1(v) = NG(v) for all v ∈ S and, thus, NG′ [S] ⊇ NG[S]. J

I Lemma 4.5 (?). Graph G allows for an F-free vertex deletion set S with |NG[S]| ≤ k if
and only if G′ allows for an F-free vertex deletion set S with |NG′ [S]| ≤ k.

4.2 Small Secluded F-free Vertex Deletion
In this subsection, we present a fixed-parameter algorithm for the following problem parame-
terized by ` + k.
Small Secluded F-free Vertex Deletion
Input: A graph G = (V, E) and two integers k, `.
Question: Is there a subset S ⊆ V such that G− S is F-free, |S| ≤ k, and |NG(S)| ≤ `?

As before, we call a set S ⊆ V such that G− S is F-free an F-free vertex deletion set.
In the previous section, we discussed a simple search tree algorithm for Secluded F-free

Vertex Deletion that was based on the fact that we could assume that our solution is an
inclusion-minimal F-free vertex deletion set. However, an F-free vertex deletion set S with
|S| ≤ k and |NG(S)| ≤ ` is not necessarily inclusion-minimal: some vertices may have been
added to S just in order to shrink its open neighborhood. However, the following simple
lemma limits the number of possible candidate vertices that can be used to enlarge S in
order to shrink N(S), which we will use in a branching algorithm.

I Lemma 4.6. Let S be an F-free vertex deletion set and S′ ⊇ S such that |S′| ≤ k and
|NG(S′)| ≤ `, then |NG(S)| ≤ ` + k.

Proof. |NG(S)| = |NG[S] \ S| ≤ |NG[S′] \ S| ≤ |NG[S′]| ≤ |NG(S′) ∪ S′| ≤ ` + k. J

I Theorem 4.7. Small Secluded F-free Vertex Deletion can be solved in max{c, k +
`}k · poly(n)-time, where c is the maximum number of vertices in any graph of F .

Proof. First, enumerate all inclusion-minimal F-free vertex deletion sets S with |S| ≤ k.
This is possible in ck · poly(n) time using the generic search tree algorithm described by
Cai [4]. For each k′ ≤ k, this search tree algorithm generates at most ck′ sets of size k′. For
each enumerated set S of k′ elements, do the following:
1. If |NG(S)| ≤ `, then output S as our solution.
2. If |NG(S)| > `+k, then S cannot be part of a solution S′ with NG(S′) ≤ ` by Lemma 4.6,

we proceed with the next set.



R. van Bevern, T. Fluschnik, G. B. Mertzios, H. Molter, M. Sorge, and O. Suchý 5:11

3. Otherwise, initiate a recursive branching: recursively branch into at most `+k possibilities
of adding a vertex from NG(S) to S as long as |S| ≤ k.

The recursive branching initiated at step 3 stops at depth k − k′ since, after adding k −
k′ vertices to S, one obtains a set of size k. Hence, the total running time of our algorithm is

poly(n) ·
k∑

k′=1
ck′

(`+k)k−k′
= poly(n) ·

k∑
k′=1

max{c, `+k}k = poly(n) ·max{c, `+k}k. J

Given Theorem 4.7, a natural question is whether the problem allows for a polynomial kernel.

5 Feedback Vertex Set

In this section, we study secluded versions of the Feedback Vertex Set (FVS) problem,
which asks, given a graph G and an integer k, whether there is a set W ⊆ V (G), |W | ≤ k,
such that G−W is cycle-free.

5.1 Secluded Feedback Vertex Set
We show in this subsection that the problem below is NP-hard and admits a polynomial kernel.
Secluded Feedback Vertex Set (SFVS)
Input: A graph G = (V, E) and an integer k.
Question: Is there a set S ⊆ V such that G− S is cycle-free and |NG[S]| ≤ k?

I Theorem 5.1 (?). Secluded Feedback Vertex Set is NP-hard.

The proof is by a reduction from the FVS problem and works by attaching to each vertex
in the original graph a large set of new degree-one neighbors. On the positive side, SFVS
remains fixed-parameter tractable with respect to k:

I Theorem 5.2. Secluded Feedback Vertex Set admits a kernel with O(k5) vertices.

In the remainder of this section, we describe the data reduction rules that yield the polynomial-
size problem kernel. The running time and correctness proofs, as well as the kernel-size
bound of Theorem 5.2 is deferred to a full version of this paper. The reduction rules are
inspired by the kernelization algorithm for the Tree Deletion Set problem given by
Giannopoulou et al. [13].

We start by introducing the following notation. A 2-core [22] of a graph G is a maximum
subgraph H of G such that, for each v ∈ V (H), we have degH(v) ≥ 2. Note that a 2-core H

of a given graph G is unique and can be found in polynomial time [22]. If H is a 2-core of G,
then we use degH|0(v) to denote degH(v) if v ∈ V (H) and degH|0(v) = 0 if v /∈ V (H).

IObservation 5.3. Let G be a graph, H its 2-core, and C a connected component of G−V (H).
Then |N(C) ∩ V (H)| ≤ 1 and |N(H) ∩ V (C)| ≤ 1.

Proof. We only show the first statement. The second statement follows analogously. Towards
a contradiction, assume that |N(C) ∩ V (H)| ≥ 2. Then, there are vertices x, y ∈ V (H)
with x 6= y such that x and y have neighbors a, b ∈ V (C). If a = b, then G′ = G[V (H)∪{a}]
is a subgraph of G such that degG′(v) ≥ 2 for every v ∈ V (G′), contradicting the choice
of H as the 2-core of G. If a 6= b, then, since C is connected, there is a path PC in C

connecting a and b. Thus, G′ = G[V (H)∪V (PC)] is a subgraph of G such that degG′(v) ≥ 2
for every v ∈ V (G′), again contradicting the choice of H as the 2-core of G. J

IPEC 2016



5:12 Finding Secluded Places of Special Interest in Graphs

Note that only the vertices in the 2-core are involved in cycles of G. However, the vertices
outside the 2-core can influence the size of the closed neighborhood of the feedback vertex set.
Next, we apply the following reduction rules to our input instance with G given its 2-core H.

I Reduction Rule 1. If degH|0(v) = 0 for every v ∈ N [u], then delete u.

Note that, if Reduction Rule 1 has been exhaustively applied, then degH|0(v) = 0 implies
that v has exactly one neighbor, which is in the 2-core of the graph.

I Reduction Rule 2. If v0, v1, . . . , v`, v`+1 is a path in the input graph such that ` ≥ 3,
degH|0(vi) = 2 for every i ∈ {1, . . . , `}, degH|0(v0) ≥ 2, and degH|0(v`+1) ≥ 2, then let
r = min{degG(vi) | i ∈ {1, . . . , `}}− 2 and remove vertices v1, . . . , v` and their neighbors not
in the 2-core. Then introduce two new vertices u1 and u2 with edges {v0, u1}, {u1, u2}, and
{u2, vl+1} and 2r further new vertices and connect u1 with r of them and u2 with another r

of them.

For x ∈ V (G), we denote by petal(x) the maximum number of cycles only intersecting in x.

I Reduction Rule 3. If there is a vertex x ∈ V (G) such that petal(x) ≥ dk
2 e, then output

that (G, k) is a no-instance of SFVS.

I Reduction Rule 4. If v ∈ V (G) is a vertex such that degG(v) > k, but degH|0(v) < degG(v),
then remove one of its neighbors not in the 2-core.

I Reduction Rule 5. Let x, y be two vertices of G. If there are at least k internally vertex
disjoint paths of length at least 2 between x and y in G, then output that (G, k) is a no-instance
of SFVS.

Note that Reduction Rules 1, 2, 4, and 5 can be applied trivially in polynomial time.
Reduction Rule 3 can be applied exhaustively in polynomial time due to Thomassé [23].

After applying the reduction rules above exhaustively, one can show that the resulting
instance is either a no-instance, or the number of vertices is O(k5).

5.2 Small Secluded Feedback Vertex Set
In contrast to restricting the closed neighborhood of a feedback vertex set, restricting the
open neighborhood by a parameter yields a W[1]-hard problem.
Small Secluded Feedback Vertex Set
Input: A graph G = (V, E) and two integers k, `.
Question: Is there a set S ⊆ V such that G− S is cycle-free, |S| ≤ k, and |NG(S)| ≤ `?

I Theorem 5.4. Small Secluded Feedback Vertex Set is W[1]-hard with respect to `.

Proof. We provide a parameterized reduction from Multicolored Independent Set
(MIS): given a k-partite graph G = (V, E) and its partite sets V1∪ . . .∪Vk = V , the question
is whether there is an independent set I of size k such that I ∩ Vi 6= ∅ for each i ∈ {1, . . . , k}.
MIS is W[1]-hard when parameterized by the size k of the independent set [10].

Let G = (V, E) with partite sets V1 ∪ V2 ∪ . . . ∪ Vk = V be an instance of MIS. We can
assume that for each i ∈ {1, . . . , k} we have |Vi| ≥ 2 and there is no edge {v, w} ∈ E with
v, w ∈ Vi. We create an instance (G′, k′, `) of Small Secluded Feedback Vertex Set
(SSFVS) with k′ = |V | − k and ` = k + 1 as follows.

Construction: Refer to Figure 1 for an sketch of the following construction. Initially,
let G′ := G. For each i ∈ {1, . . . , k} turn Vi into a clique, that is, add the edge sets



R. van Bevern, T. Fluschnik, G. B. Mertzios, H. Molter, M. Sorge, and O. Suchý 5:13

u

. . .

# k′ + `

V1
V2

· · ·

Vk

v1
i v2

j

iff {v1
i , v2

j } ∈ E(G) · · ·
Figure 1 Sketch of the construction in proof of Theorem 5.4. The circles refer to cliques with

vertex set Vi, i ∈ {1, . . . , k}.

{{a, b} | a, b ∈ Vi, a 6= b}. Next, add to G′ a vertex u and a set L of k′ + ` vertices. Finally,
connect each vertex in V ∪ L to u by an edge.

Correctness: We show that (G, k) is a yes-instance of MIS if and only if (G′, k′, `) is a
yes-instance of SSFVS.

“⇒”: Let (G, k) be a yes-instance of MIS and let I ⊆ V with |I| = k be a multicolored
independent set in G. We delete all vertices in S := V (G′) \ (I ∪ L ∪ {u}) from G′. Observe
that |S| = |V | − k = k′. Moreover, NG′(S) = k + 1 = `. Since there is no edge between any
two vertices in I, G− S forms a star with center u and k′ + ` + 1 + k vertices. Since every
star is acyclic, (G′, k′, `) is a yes-instance of SSFVS.

“⇐”: Let (G′, k′, `) be a yes-instance of SSFVS and let S ⊆ V (G′) be a solution. Observe
that G′[Vi ∪ {u}] forms a clique of size |Vi|+ 1 for each i ∈ {1, . . . , k}. Since the budget does
not allow for deleting the vertex u (i.e. u 6∈ S), all but one vertex in each Vi must be deleted.
Since k′ = |V | − k and |Vi| ≥ 2 for all i ∈ {1, . . . , k}, S contains exactly |Vi| − 1 vertices of
Vi for each i ∈ {1, . . . , k}. Hence, |S| = |V | − k and NG′(S) = k + 1 = `. Let F := V \ S

denote the set of vertices in V not contained in S. Recall that |F | = k and |F ∩ Vi| = 1
for all i ∈ {1, . . . , k}. Next, suppose there is an edge between two vertices v, w ∈ F . Since
u 6∈ S and u is incident to all vertices in V , the vertices u, v, w form a triangle in G′. This
contradicts the fact that S is a solution for (G′, k′, `), that is, that G′ − S is acyclic. It
follows that E(G′[F ]) = ∅, that is, no two vertices in F are connected by an edge. Together
with |F | = k and |F ∩ Vi| = 1 for all i ∈ {1, . . . , k}, it follows that F forms a multicolored
independent set in G. Thus, (G, k) is a yes-instance of MIS. J

6 Independent Set

For Independent Set, it makes little sense to bound the size of the closed neighborhood
from above, as in this case the empty set always constitutes a solution. One might ask
for an independent set with closed neighborhood as large as possible. However, for any
inclusion-wise maximal independent set S, one has N [S] = V . Hence, this question is also
trivial. Therefore, in this section we only consider the following problem.
Large Secluded Independent Set (LSIS)
Input: A graph G = (V, E) and two integers k, `.
Question: Is there an independent set S ⊆ V such that |S| ≥ k and |NG(S)| ≤ `?

IPEC 2016



5:14 Finding Secluded Places of Special Interest in Graphs

a b

c

de

a b

c

de

Figure 2 Example of the construction in Theorem 6.1. The left-hand side shows the original
graph, the right-hand side the graph constructed by the reduction, where the newly introduced
edges between each pair of vertices of the original graph are drawn in grey. The vertices introduced
for each edge of the original graph are filled red and black, the corresponding new edges are drawn
in black. Note that the blue vertices of the original graph form a clique and that the vertices
corresponding to the edges of said clique (filled red) form an independent set in the new graph.

The case ` = |V | equals Independent Set and, thus, LSIS is W [1]-hard with respect to k.
We show that LSIS is also W[1]-hard when parameterized by k + `.

I Theorem 6.1. Large Secluded Independent Set is W [1]-hard with respect to k + `.

Proof. We provide a polynomial-parameter transformation from Clique parameterized by
the solution size k.

Construction. Let (G, k) be an instance of Clique and assume without loss of generality
that k < |V (G)| − 1 (otherwise, solve the instance in polynomial time). We construct
an equivalent instance (G′, k′, `′) of Large Secluded Independent Set as follows (see
Figure 2 for an example).

Initially, let G′ be an empty graph. Add all vertices of G to G′. Denote the vertex set
by V . If two vertices of G are adjacent, we add a vertex to G′, that is, G′ additionally to V

contains the vertex set X := {xuv | {u, v} ∈ E}. Next, connect xuv to u and v, that is, add
the edge set E′ = {{u, xuv}, {v, xuv} | {u, v} ∈ E}. Finally, connect any two vertices in V

by an edge. Graph G′ consists of the vertex set V ∪X and of the edge set E′ ∪
(

V
2
)
. Observe

that X forms an independent set in G′. Set k′ :=
(

k
2
)
and `′ := k. We claim that (G, k) is

a yes-instance of Clique if and only if (G′, k′, `′) is a yes-instance of Large Secluded
Independent Set.

“⇒”: Let C ⊆ V (G) be a clique of size k = |C| in G. We claim that X ′ := {xu,v | u, v ∈ C}
forms an independent set of size

(
k
2
)
with |N(X ′)| = k = `′ in G′. Since X ′ ⊆ X, X ′ forms

an independent set. Moreover, since C is a clique of size k, there are
(

k
2
)
edges in G[C], and

thus |X ′| =
(

k
2
)
. By construction, each vertex in X is only adjacent to vertices in C. Hence,

|N(X ′)| = |C| = k. Therefore, X ′ witnesses that (G′, k′, `′) is a yes-instance of Large
Secluded Independent Set.

“⇐”: Let U ⊆ V (G′) form an independent set of size k′ with open neighborhood of size
upper-bounded by `′. Suppose that v ∈ V is contained in U (observe that U contains at most
one vertex of V , as otherwise it would not be independent). Then |N(U)| ≥ |V | − 1 > k = `′,
which contradicts the choice of U . It follows that U ∩ V = ∅, and hence U ⊆ X. By
construction, for each xuv ∈ U , the vertices u, v are contained in N(U). Since each vertex in
U corresponds to an edge in G, we have

(
k
2
)
edges incident with at most k vertices. The only

graph that fulfills this property is the complete graph on k vertices. Hence, G contains a
clique of size k, and thus (G, k) is a yes-instance of Clique(k). J

We remark that the proof above is similar to the W[1]-hardness proof for Cutting `

Vertices [21].



R. van Bevern, T. Fluschnik, G. B. Mertzios, H. Molter, M. Sorge, and O. Suchý 5:15

7 Summary and Future Work

In this paper, we studied the problem of finding sets of vertices in a graph that fulfill
certain properties and have a small neighborhood. We presented computational complexity
results for secluded and small secluded variants of s-t-Separator, q-Dominating Set,
Feedback Vertex Set, F-free Vertex Deletion, and for the large secluded variant
of Independent Set. In the case of s-t-Separator, we leave as an open question the
parameterized complexity of Small Secluded s-t-Separator with respect to k + `. We
conjecture that it is fixed-parameter tractable. Concerning Secluded F-free Vertex
Deletion, we would like to point out that it is an interesting question which families F
exactly yield NP-hardness as opposed to polynomial-time solvability.

A natural way to generalize our results would be to consider vertex-weighted graphs
and directed graphs. This generalization was already investigated by Chechik et al. [5] for
Secluded Path and Secluded Steiner Tree. Furthermore, we would like to mention
that replacing the bound on the open neighborhood in the case of small secludedness by a
bound on the outgoing edges of a solution would be an interesting modification of the problem.
The variation follows the idea of the concept of isolation as used, e.g., in [14, 16, 17, 18]. As
the number of outgoing edges is at least as large as the open neighborhood, this might offer
new possibilities for fixed-parameter algorithms.

Acknowledgment. We would like to thank the anonymous referees of IPEC for comments
that helped to improve the paper and for pointing us to the work of Fomin et al. [12]. The
second author thanks Nikolay Karpov (St. Petersburg Department of the Steklov Institute of
Mathematics of the RAS) for discussion on secluded problems.

References

1 R. van Bevern. Fixed-Parameter Linear-Time Algorithms for NP-hard Graph and Hyper-
graph Problems Arising in Industrial Applications. PhD thesis, TU Berlin, 2014.

2 R. van Bevern. Towards optimal and expressive kernelization for d-Hitting Set. Algorith-
mica, 70(1):129–147, 2014.

3 R. van Bevern, H. Moser, and R. Niedermeier. Approximation and tidying – a problem
kernel for s-Plex Cluster Vertex Deletion. Algorithmica, 62(3-4):930–950, 2012.

4 L. Cai. Fixed-parameter tractability of graph modification problems for hereditary proper-
ties. Inform. Process. Lett., 58(4):171–176, 1996.

5 S. Chechik, M. Johnson, M. Parter, and D. Peleg. Secluded connectivity problems. In Proc.
23rd ESA, volume 8125 of LNCS, pages 301–312. Springer, 2013.

6 M. Dom, D. Lokshtanov, and S. Saurabh. Kernelization lower bounds through colors and
IDs. ACM TALG, 11(2):13, 2014.

7 R. Downey, V. Estivill-Castro, M. Fellows, E. Prieto, and F. Rosamond. Cutting up is hard
to do: the parameterized complexity of k-Cut and related problems. Electr. Notes Theor.
Comput. Sci., 78:209–222, 2003. doi:10.1016/S1571-0661(04)81014-4.

8 S. Fafianie and S. Kratsch. A shortcut to (sun)flowers: Kernels in logarithmic space or
linear time. In Proc. 40th MFCS, volume 9235 of LNCS, pages 299–310. Springer, 2015.

9 M. Fellows, J. Guo, H. Moser, and R. Niedermeier. A complexity dichotomy for finding
disjoint solutions of vertex deletion problems. ACM ToCT, 2(2):5, 2011.

10 M. Fellows, D. Hermelin, F. Rosamond, and S. Vialette. On the parameterized complexity
of multiple-interval graph problems. Theor. Comput. Sci., 410(1):53–61, 2009.

IPEC 2016

http://dx.doi.org/10.1016/S1571-0661(04)81014-4


5:16 Finding Secluded Places of Special Interest in Graphs

11 F. Fomin, P. Golovach, N. Karpov, and A. Kulikov. Parameterized complexity of secluded
connectivity problems. In Proc. 35th FSTTCS, volume 45 of LIPIcs, pages 408–419. Schloss
Dagstuhl, 2015. doi:10.4230/LIPIcs.FSTTCS.2015.408.

12 F. Fomin, P. Golovach, and J. Korhonen. On the parameterized complexity of cutting a
few vertices from a graph. In Proc. 38th MFCS, volume 8087 of LNCS, pages 421–432.
Springer, 2013. doi:10.1007/978-3-642-40313-2_38.

13 A. Giannopoulou, D. Lokshtanov, S. Saurabh, and O. Suchý. Tree deletion set has a
polynomial kernel (but no OPTO(1) approximation). In Proc. 34th FSTTCS, volume 29 of
LIPIcs, pages 85–96. Schloss Dagstuhl, 2014. doi:10.4230/LIPIcs.FSTTCS.2014.85.

14 F. Hüffner, C. Komusiewicz, H. Moser, and R. Niedermeier. Isolation concepts for
clique enumeration: Comparison and computational experiments. Theor. Comput. Sci.,
410(52):5384–5397, 2009.

15 F. Hüffner, C. Komusiewicz, H. Moser, and R. Niedermeier. Fixed-parameter algorithms
for cluster vertex deletion. Theor. Comput. Syst., 47(1):196–217, 2010.

16 F. Hüffner, C. Komusiewicz, and M. Sorge. Finding highly connected subgraphs. In Proc.
41st SOFSEM, volume 8939 of LNCS, pages 254–265. Springer, 2015.

17 H. Ito, K. Iwama, and T. Osumi. Linear-time enumeration of isolated cliques. In Proc.
13th ESA, volume 3669 of LNCS, pages 119–130. Springer, 2005.

18 C. Komusiewicz, F. Hüffner, H. Moser, and R. Niedermeier. Isolation concepts for efficiently
enumerating dense subgraphs. Theor. Comput. Sci., 410(38-40):3640–3654, 2009.

19 J. Lewis and M. Yannakakis. The node-deletion problem for hereditary properties is NP-
complete. J. Comput. Syst. Sci., 20(2):219–230, 1980.

20 D. Lokshtanov, N. Misra, G. Philip, M. Ramanujan, and S. Saurabh. Hardness of r-
dominating set on graphs of diameter (r + 1). In Proc. 8th IPEC, volume 8246 of LNCS,
pages 255–267. Springer, 2013.

21 D. Marx. Parameterized graph separation problems. Theor. Comput. Sci., 351(3):394–406,
2006. doi:10.1016/j.tcs.2005.10.007.

22 S. Seidman. Network structure and minimum degree. Soc. Networks, 5(3):269–287, 1983.
23 S. Thomassé. A 4k2 kernel for feedback vertex set. ACM TALG, 6(2), 2010. doi:10.1145/

1721837.1721848.

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.408
http://dx.doi.org/10.1007/978-3-642-40313-2_38
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.85
http://dx.doi.org/10.1016/j.tcs.2005.10.007
http://dx.doi.org/10.1145/1721837.1721848
http://dx.doi.org/10.1145/1721837.1721848


The Parameterized Complexity of Dependency
Detection in Relational Databases
Thomas Bläsius1, Tobias Friedrich2, and Martin Schirneck3

1 Hasso Plattner Institute, Potsdam, Germany
thomas.blaesius@hpi.de

2 Hasso Plattner Institute, Potsdam, Germany
tobias.friedrich@hpi.de

3 Hasso Plattner Institute, Potsdam, Germany
martin.schirneck@hpi.de

Abstract
We study the parameterized complexity of classical problems that arise in the profiling of rela-
tional data. Namely, we characterize the complexity of detecting unique column combinations
(candidate keys), functional dependencies, and inclusion dependencies with the solution size as
parameter. While the discovery of uniques and functional dependencies, respectively, turns out
to be W [2]-complete, the detection of inclusion dependencies is one of the first natural problems
proven to be complete for the class W [3]. As a side effect, our reductions give insights into the
complexity of enumerating all minimal unique column combinations or functional dependencies.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases parameterized complexity, unique column combination, functional de-
pendency, inclusion dependency, profiling relational data

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.6

1 Introduction

Data profiling is the process of gathering metadata from a given database, which in turn
facilitates various tasks such as data cleansing, normalization and integration as well as
query optimization. A common problem in data profiling is the detection of different
types of dependencies between pieces of data, most notably unique column combinations,
functional dependencies, and inclusion dependencies. Due to their practical relevance, these
three problems have received much attention, which lead to numerous detection as well as
enumeration algorithms, see e.g. the survey by Abedjan, Golab and Naumann [1]. Despite
the fact that these algorithms perform well in practice, there are usually no theoretical
performance guarantees. This is not very surprising as all three problems are known to be
intractable: finding a minimum unique column combination is NP-complete [3] and cannot
be approximated within a factor of 1/4 logn (under reasonable complexity assumptions) [2],
finding a minimum functional dependency is also NP-complete [7] and finding a maximum
inclusion dependency is NP-complete even for restricted cases [14].

One approach to overcome these difficulties is to exploit properties that are usually
observed in realistic data to design algorithms that guarantee a polynomial run time in
case these features are present in the problem instance. Consider for example the his-
tograms in Figure 1, showing the size distribution of minimal unique column combinations,
minimal functional dependencies, and maximal inclusion dependencies in the MusicBrainz
database [18]. Usually the majority of functional dependencies (as well as unique column

© Thomas Bläsius, Tobias Friedrich, and Martin Schirneck;
licensed under Creative Commons License CC-BY

11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin; Article No. 6; pp. 6:1–6:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


6:2 The Parameterized Complexity of Dependency Detection in Relational Databases

unique column combinations

0

300

1 2 3 4

100

200

functional dependencies

0

1500

1 2 3 4 5 6 7

1000

500

inclusion dependencies
1 2 3 4 5 6

12k

24k

36k

0

Figure 1 The number of minimal unique column combinations, minimal functional dependencies
and maximal inclusion dependencies for given solution sizes in the MusicBrainz database.

combinations and inclusion dependencies) are rather small. Beside surrogate keys, giving rise
to multiple functional dependencies of size 1, natural causalities also lead to small functional
dependencies. For example, the name of an event together with the year in which it starts
determines the year in which it ends, implying a functional dependency of size 2. Note that
the starting year alone is not enough to infer this information. The name of the action,
however, seems to indicate whether the event ends in the starting year or the following one.

Although the size k of the minimum functional dependency can in principle be (almost)
as large as the total number of attributes, it appears to be a reasonable assumption that
k is significantly smaller. It is thus very natural to ask whether the problem of finding a
minimum functional dependency is fixed-parameter tractable (FPT) with respect to k, i.e.,
whether it can be solved in time O(f(k) · p(n)), where p is a polynomial in the input size n,
while f is an arbitrary function in the parameter k, but not in n. Note that the running
time of an FPT-algorithm in general can still be superpolynomial. However, when assuming
the parameter k to be bounded by a constant, one obtains a polynomial running time, in
O(p(n)), whose order of growth does not depend on k. Hence, one can think of parameterized
complexity as being a more fine-grained approach to complexity theory.

Parameterized complexity has been a great success in the design and analysis of algo-
rithms [11, 5]. Nevertheless, its techniques have rarely been employed in the context of
database theory so far. A notable exception is the complexity of database queries. Papadim-
itriou and Yannakakis [17] considered this problem for different query languages using the
size of the query or alternatively the number of variables as the parameter. They showed
that presumably none of the variants admits an FPT-algorithm, as the resulting problems
are at least W [1]-hard (some are actually W [t]-hard for any positive integer t, W [SAT]-hard
or even W [P]-hard). For further results on the parameterized complexity of database queries
see the survey by Grohe [13]. Besides queries, we are not aware of any algorithmic database
problems that have been considered through the lens of parameterized complexity.

Our Contribution and Outline. We show that detecting minimum unique column combi-
nations and minimum functional dependencies are both W [2]-complete problems. Also, we
prove that finding maximum inclusion dependencies isW [3]-complete. Thereby we completely
settle the parameterized complexity of these problems with the solution size as parameter.
We would like to point out that the completeness for the class W [3] of a well-studied problem
like the discovery of inclusion dependencies is quite surprising as natural problems are rarely
W [3]-complete. In fact, besides a result by Chen and Zhang [4] related to supply chain
management, we are not aware of any natural W [t]-complete problem for t > 2.



T. Bläsius, T. Friedrich, and M. Schirneck 6:3

In Section 2 we give basic definitions and formal problem statements. In Section 3,
we examine the detection of minimum unique column combinations as well as minimum
functional dependencies. For the latter, we actually consider two variants, one for which the
right hand side of the functional dependency is fixed and one in which it is variable. We
show that all three problems are W [2]-complete. As a byproduct, our reductions (involving
the problem Hitting Set) have certain implications on the computational hardness of
enumerating all unique column combinations or functional dependencies of a given relation.
See the end of Section 3 for more details. In Section 4 we show that finding minimum
inclusion dependencies for a pair of relations is W [3]-complete. We also show that the
problem remains W [3]-complete if both relations are defined over the same schema together
with a fixed mapping between the columns of the tables. In Section 5, we conclude this paper
by discussing alternative parameter choices as well as possible future research in general.

2 Notation and Problems

2.1 Parameterized Complexity
For an instance I of a decision problem and a parameter k ∈ N+, the pair (I, k) is an instance
of the corresponding parameterized problem. The running time of an algorithm is then
considered not only in terms of the input size |I| but also in terms of k. A parameterized
problem is fixed-parameter tractable, i.e., it belongs to the complexity class FPT, if a given
instance can be solved in time O(f(k) ·p(|I|)), where p is a polynomial while f is an arbitrary
computable function. We then also say that the algorithm runs in FPT-time.

Let P and P ′ be two parameterized problems. A parameterized reduction from P to P ′
is an algorithm running in FPT-time that maps an instance (I, k) of P to an equivalent
instance (I ′, k′) of P ′ such that the parameter k′ depends only on the value of k (and not on
|I|). Note that an (hypothetical) FPT-algorithm for P ′ would also yield an FPT-algorithm
for P via this reduction. Hence, considering their parameterized complexity, P is at most as
hard as P ′, which we denote by P ≤FPT P ′. If conversely P ′ ≤FPT P also holds, we say that
P and P ′ are FPT-equivalent.

The parameterized reduction leads to a hierarchy of complexity classes, the so-called
W -hierarchy, by specifying a complete problem for each class. To define the desired family of
problems, we employ Boolean formulas in propositional logic. Let ϕ be such a formula. A
satisfying truth assignment for ϕ has Hamming weight k if exactly k variables are set to true
in this assignment; we also call the set of these k variables a solution for ϕ. The formula
ϕ is t-normalized if it can be written as a conjunction of disjunctions of conjunctions of
disjunctions (and so on) of literals with t−1 alternations between conjunction and disjunction.
Observe that a Boolean formula is 2-normalized if it is in conjunctive normal form (CNF)
and 3-normalized if it is a conjunction of subformulas in disjunctive normal form (DNF).

The problem Weighted t-normalized Satisfiability is to decide for a given t-nor-
malized formula ϕ and a positive integer k whether ϕ has a weight k satisfying assignment;
here k serves as the parameter. For any t ≥ 1, a parameterized problem P is said to be in
the complexity class W [t] in case P ≤FPT Weighted t-normalized Satisfiability.1

The classes FPT ⊆W [1] ⊆W [2] ⊆ . . . form an ascending hierarchy and all inclusion are
assumed to be proper, which is however still unproven [11]. The higher a problem ranks in
the W -hierarchy the lower we consider the chances of finding an FPT-algorithm to solve it.

1 We tacitly avoid the classical definition of W [t] via weft-t-depth-d-families of decision circuits. This is
justified by the Normalization Theorem by [9, 10].

IPEC 2016



6:4 The Parameterized Complexity of Dependency Detection in Relational Databases

2.2 Dependencies in Relational Databases

If not explicitly stated otherwise, notation regarding relational databases follows the survey
by Abedjan et al. [1]. We let R and S be relational schemata, i.e., sets of columns; each
column is associated with a set of admissible values. Symbols X,Y refer to sets of columns
and symbols A,B refer to a single column, an attribute. We denote with ri, rj tuples whose
entries, respectively, are indexed by some schema R and, for any subset X ⊆ R of columns,
we let ri[X] denote the sub-tuple of ri consisting only of the entries indexed by X. In
particular, ri[A] denotes the value of attribute A in ri. A set r of such tuples is an instance
of schema R if, for any ri ∈ r and A ∈ R, value ri[A] is admissible for attribute A. Instances
of schematas are called relations or relational databases (over the corresponding schema).
With r[X] we denote the collection of all sub-tuples ri[X] for ri ∈ r.

Let r be an instance of schema R. A collection X ⊆ R of columns is called a unique column
combination or unique if, for any two distinct tuples ri 6= rj in r, we have ri[X] 6= rj [X].
So the combination of values for X fully identifies a tuple of relation r. Otherwise, X is
called a non-unique. The size of a unique X is the cardinality |X|. Clearly, any superset of a
unique is unique and any subset of a non-unique is again non-unique. The problem Unique
is to decide for a given relational database r and a positive integer k whether r has a unique
column combination of size at most k. Unique is known to be NP-complete [3].

A functional dependency (FD) over a schema R is an expression of the form X → A

for some set X ⊆ R of columns and an attribute A ∈ R. The set X is called the left-hand
side (LHS) of the dependency and attribute A the right-hand side (RHS). A functional
dependency X → A holds in an instance r (of schema R) if any pair of tuples that agree on
X also agree on A, i.e., if ri[X] = rj [X] implies ri[A] = rj [A] for any two tuples ri, rj ∈ r.
Otherwise, the FD is said to fail in r. A functional dependency is non-trivial if A /∈ X
(X → A evidently holds if A ∈ X). The size of an FD is the cardinality of its LHS. The
problem FD is to decide for a given relational database r and a positive integer k whether
there is a non-trivial functional dependency of size at most k that holds in r. The problem
FDfixed is to decide for a given attribute A ∈ R, whether there is such a functional dependency
with right-hand side A. The restricted variant FDfixed is known to be NP-complete [7].

At last we define inclusions between columns among different relations. Let r be an
instance of schema R and s be an instance of S. For some X ⊆ R, let σ : X → S be an
injective map. Then the pair (X,σ) is an inclusion dependency (IND) if, for each tuple ri ∈ r,
there exists a tuple sj ∈ s such that ri[A] = sj [σ(A)] for every A ∈ X, i.e., r[X] ⊆ s[σ(X)].
If the map σ is given in the input, we simply say that X is the inclusion dependency. The
size of an inclusion dependency is |X|. The problem IND is to decide for two relations r and
s (over schemata R and S, respectively) and a positive integer k whether there is an inclusion
dependency (X,σ) of size at least k. In case of R = S and σ being the identity mapping over
R, the problem INDfixed is to decide whether there is an inclusion dependency X of size at
least k. Detecting an inclusion dependency in a relational database is NP-complete [14].

Note that the decision problems defined above do not depend upon asking for a solution
of size at most/at least k as opposed to one of size exactly k. A functional dependency stays
valid when adding arbitrary additional columns to the LHS. The same holds for unique
column combinations. Conversely, if a pair of relations admits an inclusion dependency of
size at least k, one can obtain one comprising exactly k columns by removing dispensable
attributes. In this paper, we consider all the decision problems to be parameterized by the
size of the respective solution. Thus, Unique, FD, FDfixed , IND and INDfixed refer to the
corresponding parameterized problems with parameter k.



T. Bläsius, T. Friedrich, and M. Schirneck 6:5

(a)

A B C D E

U = {a, b, c, d, e}
Z1 = {a, b, c}
Z2 = {a, d, e}
Z3 = {b, d, e}
Z4 = {b, c}

0 0 0 0 0
1
2

1

3
4

1

4

2
3

2
3

0 0
0 0

00
0 0 0

(b)

1 1 1 1
0 2 1 1

2 0 0 1

A B C D

1 2 2 0
0 1 2 0

1 1 1 1
0 2 1 1

2 0 0 1

A B C D

1 2 2 0
0 1 2 0

r0

− 1 1
− 1
1 −

rB

rC

rD

r

r′ \ r

r

r0

0
0
0

2
2

Figure 2 (a) An instance of Hitting Set and its equivalent instance of Unique. (b) An instance
r of problem FDfixed with fixed RHS A and the resulting instance r′ of problem FD. Note that the
functional dependency AB → D holds in r but not in r′.

3 Unique Column Combinations and Functional Dependencies

It is a well-known phenomenon that throughout the fields of database design and data
profiling theoreticians as well as practitioners are frequently confronted with the task of
finding an inclusion-minimal collection of items that has a non-empty intersection with each
member of a prescribed family of sets [1, 6, 16]. Thus, they aim to solve instances of the
so-called Hitting Set problem. In this section we show that this encounter is somewhat
inevitable in the sense that detecting uniques or functional dependencies is both exactly as
hard as finding a hitting set in terms of parameterized complexity.

Hitting Set is formally defined as follows. For a finite system of subsets Z ⊆ P(U) of
some finite ground set U , a set H ⊆ U is called hitting set iff for all Z ∈ Z, H ∩ Z 6= ∅. The
problem Hitting Set is to decide for a positive integer k whether there is a hitting set H
with |H| ≤ k. Hitting Set is NP-complete [15] and W [2]-complete with respect to k [11].
Hence, we can utilize it to show the W [2]-completeness of the dependency problems at hand.

More precisely, in this section we establish a (seemingly ascending) chain of problems via
parameterized reductions. This chain consists of problems Hitting Set, Unique, FDfixed ,
FD and Weighted 2-normalized Satisfiability in that order. As the first and last
problem are both W [2]-complete and thus FPT-equivalent, this in fact proves equivalence
(and hence W [2]-completeness) for the other problems as well. Due to space constraints, we
only sketch key ideas for the first three reductions (Hitting Set to Unique, Unique to
FDfixed and FDfixed to FD).

I Lemma 1. Hitting Set ≤FPT Unique ≤FPT FDfixed ≤FPT FD.

Proof (sketch). The first reduction regarding Hitting Set and Unique is a straight-
forward translation of the sets to hit into tuples of a relational database, cf. Figure 2.(a).
For the second reduction, the main idea is to add an extra column serving as a tuple ID and
to subsequently show that a column combination is unique just in case it is the LHS of a
functional dependency pointing to this ID. The last reduction is established by adding to a
given relation copies of an already present tuple, “ruling out” a different entry in each copy,
see Figure 2.(b). This then invalidates functional dependency with unwanted RHS. J

In the next lemma we prove that every instance of FD can be expressed by an equivalent

IPEC 2016



6:6 The Parameterized Complexity of Dependency Detection in Relational Databases

Boolean CNF-formula, establishing the reduction from FD to Weighted 2-normalized
Satisfiability. This is the main result of this section.

I Lemma 2. FD ≤FPT Weighted 2-normalized Satisfiability.

Proof. Given a relation r (over some schema R), we derive a propositional formula that has
a satisfying truth assignment of weight k + 1 if and only if there is a non-trivial functional
dependency of size k that holds in r. The formula will be in CNF and hence 2-normalized.
We use two types of variables distinguished by their semantic purpose, namely, the elements
of VarR = {xA | A ∈ R} and Var′R = {x′A | A ∈ R}. A variable from VarR being set to true
denotes that the corresponding attribute appears on the LHS of the FD; for Var′R, this
denotes that the attribute is the RHS. Consequently, we want to ensure that any satisfying
assignment chooses exactly one variable from Var′R while the corresponding variable in VarR

is not chosen. We achieve this as follows. First, define some clause

cR =
∨

x′
A
∈Var′

R

x′A.

Then, for any two distinct attributes A 6= B, the clause

cA,B = ¬x′A ∨ ¬x′B .

Finally, we set, for every A ∈ R,

cA = ¬x′A ∨ ¬xA.

We note that the clauses cA,B and cA are only added to smooth the analysis, the correctness
of the reduction does not depend upon their presence. Clause cR however is essential. Now,
for any possible RHS A ∈ R and any two tuples ri, rj ∈ r with ri[A] 6= rj [A], let

cA,ri,rj = ¬x′A ∨
∨

B∈R\A
ri[B] 6=rj [B]

xB .

That is, clause cA,ri,rj
contains the negative literal of the variable from Var′R corresponding

to the RHS and the positive literal of any variable in VarR that corresponds to another
attribute on which ri and rj disagree. Intuitively speaking, clause cA,ri,rj

states that if A is
the RHS of a non-trivial FD holding in r, then the LHS has to contain at least one of the
attributes B 6= A such that ri[B] 6= rj [B]. We assemble the following Boolean formulas:

ϕRHS = cR ∧
∧

A,B∈R
A6=B

cA,B ∧
∧

A∈R

cA;

as well as, for each possible RHS A ∈ R,

ϕA =
∧

ri,rj∈r
ri[A] 6=rj [A]

cA,ri,rj

and their conjunction

ϕLHS =
∧

A∈R

ϕA.



T. Bläsius, T. Friedrich, and M. Schirneck 6:7

At last, we take ϕFD = ϕLHS ∧ ϕRHS as the result of the reduction. In total, ϕFD has at
most |R|2 + |R| |r|2 clauses with at most |R| literals each and a representation of ϕFD is
computable in time polynomial in the input size.

Regarding the correctness of this reduction, recall that we claimed ϕFD to have a weight
k + 1 satisfying assignment just in case there is a non-trivial functional dependency of size k
in r. First assume we are given a satisfying assignment for subformula ϕRHS. This ensures
that exactly one variable x′A ∈ Var′R is set to true, which uniquely determines an attribute
A. The variables in VarR that are set to true determine a set X, i.e., B ∈ X iff xB is set to
true. Note that A /∈ X is enforced by clause cA. Thus, a satisfying assignment for ϕRHS
defines a non-trivial functional dependency X → A. We show that this FD holds in r if and
only if the assignment additionally fulfills subformula ϕLHS.

Suppose that X → A holds in r. Then all variables in Var′R are set to false, except x′A,
automatically satisfying clauses cB,ri,rj for all attributes B 6= A. It remains to show that
cA,ri,rj

is satisfied for every pair of tuples ri, rj ∈ r with ri[A] 6= rj [A]. Since X → A holds,
X includes, for every such pair, an attribute B such that ri[B] 6= rj [B]. Clause cA,ri,rj in
turn comprises the literal xB, which is satisfied by above assignment. Conversely, assume
X → A fails in r. Then there is a pair of tuples ri, rj ∈ r such that ri[A] 6= rj [A] but
ri[X] = rj [X]. The clause cA,ri,rj

does not contain any variables xB such that B ∈ X. As a
result, all literals in cA,ri,rj

for variables from VarR evaluate to false. Literal ¬x′A, however,
is false as well as A is the RHS. J

The reductions in Lemma 1 and 2, and the fact that Hitting Set and Weighted
2-normalized Satisfiability are both W [2]-complete yield the following theorem.

I Theorem 3. The problems Unique, FDfixed and FD are W [2]-complete.

We point out that our reductions have some further implications beyond the scope of
parameterized complexity. Our reduction from FDfixed to FD, is actually a polynomial-time
reduction and thus proves that FD is NP-hard. As the problem is also trivially contained
in NP, it is in fact NP-complete. This is not very surprising, but has only been proven
for the restricted case FDfixed before. More importantly, the parameterized reduction
from Hitting Set to Unique, also runs in polynomial time and establishes a one-to-one
correspondence between inclusion-wise minimal hitting sets and unique column combinations.
Thus, enumerating all uniques is at least as hard as enumerating all hitting sets. Using the
techniques presented in this section, it is not hard to extend this observation to the task
of enumerating all FDs with a fixed RHS or all FDs in general. Finding all hitting sets is
also known by the name Transversal Enumeration for hypergraphs and is notoriously
difficult [12]. Up until now, there is no output-polynomial algorithm known for this problem.
Hence, it is quite astonishing that the enumeration problems arising in data profiling can be
solved in reasonable time on practical data sets [1]. Regarding the opposite direction, we
would like to mention that there is a straight-forward polynomial reduction from FDfixed to
Hitting Set that additionally shows that enumerating FDs with fixed RHS or (and thus
uniques) is also at most as hard as enumerating hitting sets. It is still unknown, however,
whether this holds for arbitrary functional dependencies as well.

4 Inclusion Dependencies

In this section, we identify the detection of inclusion dependencies as one of the first natural
problems to be complete for the parameterized class W [3]. More precisely, we show that
both IND and INDfixed are FPT-equivalent to a W [3]-complete parameterized version of

IPEC 2016



6:8 The Parameterized Complexity of Dependency Detection in Relational Databases

the satisfiability problem for certain Boolean formulas. Recall that a propositional formula
is 3-normalized if it is a conjunction of disjunctions of conjunctions of literals. A formula is
antimonotone if it only contains negative literals as, e.g., in the following expression

((¬a ∧ ¬b) ∨ (¬c ∧ ¬d)) ∧ ((¬a ∧ ¬c) ∨ (¬b ∧ ¬d)).

It is antimonotone, 3-normalized and admits a satisfying assignments of Hamming weight 0
and 1, but none of larger weight. The problem Weighted Antimonotone 3-normalized
Satisfiability (WA3NS) is to decide for a 3-normalized antimonotone formula ϕ and a
positive integer k whether ϕ has a weight k satisfying assignment. Although it seems to be
a unreasonably restricted case of Weighted 3-normalized Satisfiability, WA3NS is
W [3]-complete in its own right when parameterized by k [8, 9]. As all literals in WA3NS are
negative, every subset of a solution is a solution. Thus, asking for a solution of size exactly k
is again equivalent to asking for a solution of size at least k.

4.1 IND is in W[3]
In this subsection, we show that both variants of the IND problem are members of the
parameterized class W [3]. As a first step, we reduce the special case INDfixed to the
(seemingly) more general problem IND.

I Lemma 4. INDfixed ≤FPT IND.

Proof. Let r and s be two relations over the same schema R forming an instance of problem
INDfixed . We introduce a new tuple t− = (−A)A∈R, where each “−A” is a unique symbol not
used anywhere in the relations r or s. Note that (r, s) has an inclusion dependency of size k
with the identity as the fixed mapping if and only if (r ∪ {t−}, s ∪ {t−}) has one. It is easy
to see that (r ∪ {t−}, s ∪ {t−}) interpreted as an instance of IND (now without prescribed
mapping) has an inclusion dependency (X,σ) if and only if σ is the identity and X is an
inclusion dependency for (r, s), which implies the claim. J

To reduce IND to WA3NS we construct from the two relations an antimonotone formula
which has a weight k satisfying assignment if and only if the relations have an inclusion
dependency of the same size. For this, we use a correspondence between pairs of attributes
of the relational schemata and Boolean variables.

I Theorem 5. IND ≤FPT WA3NS.

Proof. Let R = {A1, . . . , A|R|} and S = {B1, . . . , B|S|} be two schemata. We introduce a
Boolean variable xm,n for each pair of attributes Am ∈ R and Bn ∈ S. We let VarP denote
the set of variables corresponding to a collection P ⊆ R× S of such pairs. Consider subsets
X ⊆ R and Y ⊆ S together with a bijection σ : X → Y . From this we can construct a truth
assignment by setting variable xm,n to true iff Am ∈ X and σ(Am) = Bn (implying Bn ∈ Y ).
The resulting assignment has weight |X| and the collection of all possible configurations (X,σ)
is uniquely described by VarR×S and the truth assignments obtained this way. Moreover,
these assignments all satisfy the following Boolean formula.

ϕmap =

 |R|∧
m=1

|S|−1∧
n=1

|S|∧
n′>n

(¬xm,n ∨ ¬xm,n′)

 ∧

 |S|∧
n=1

|R|−1∧
m=1

|R|∧
m′>m

(¬xm,n ∨ ¬xm′,n)

 .

The first half of ϕmap states that, for every pair of variables xm,n and xm,n′ such that n 6= n′, at
most one of them is set to true; the second half is satisfied if the same holds for all pairs xm,n



T. Bläsius, T. Friedrich, and M. Schirneck 6:9

and xm′,n such that m 6= m′. Conversely, given a satisfying assignment for ϕmap, we obtain
sets X = {Am | ∃ 1 ≤ n ≤ |S| : xm,n = true} and Y = {Bn | ∃ 1 ≤ m ≤ |R| : xm,n = true}
as well as a bijection σ : X → Y by setting σ(Am) = Bn iff xm,n is true. So ϕmap is exactly
fulfilled by the assignments described above.

We now formalize the requirement that (X,σ), for some set X ⊆ R, actually is an
inclusion dependency. First, assume that the relations r and s consist of a single tuple ri and
sj , respectively. We say a pair (Am, Bn) is forbidden for ri and sj if ri[Am] 6= sj [Bn]. Let
Fi,j be the set of all forbidden pairs. Then (X,σ) is an inclusion dependency if xm,n is set
to false for all pairs (Am, Bn) ∈ Fi,j . In terms of Boolean formulas, this is represented as

ϕi,j =
∧

x∈VarFi,j

¬x.

It follows that (X,σ) is an inclusion dependency if and only if the corresponding variable
assignment satisfies both ϕmap and ϕi,j .

Now suppose s has multiple tuples (while r is still considered to have only one). (X,σ) is
an inclusion dependency for (r, s) just in case it is an inclusion dependency for at least one
instance (r, {sj}), 1 ≤ j ≤ |s|. If also r has more than one tuple, then (X,σ) is an inclusion
dependency for (r, s) if it is one in each instance ({ri}, s), 1 ≤ i ≤ |r|. Thus, we obtain an
inclusion dependency if and only if ϕmap and the formula

ϕ =
|r|∧

i=1

|s|∨
j=1

ϕi,j

are simultaneously satisfied by the assignment corresponding to (X,σ).
The formula ϕ ∧ ϕmap is antimonotone and 3-normalized and a representation can be

computed in polynomial time. Moreover, by the above observation that any solution for
the sub-formula ϕmap that corresponds to (X,σ) has size |X|, the reduction preserves the
parameter. J

I Corollary 6. INDfixed and IND are both in class W [3].

4.2 IND is W[3]-hard
In the remainder of this section, we argue that the existence of weight k satisfying assignments
for 3-normalized antimonotone formulas can be decided by solving INDfixed instances. As a
result, we prove that both variants of problem IND are hard for the class W [3]. For this
reduction we make use of indicator functions, which we will define in a moment. First, we
would like to point out that in the following we interpret propositional formulas ϕ over n
variables as functions fϕ : {0, 1}n → {0, 1} in the obvious way. For an instance (r, s) of
INDfixed , we encode any subset X ⊆ R using its characteristic vector (of length |R|). Then
we define the indicator function f(r,s) : {0, 1}|R| → {0, 1}, where f(r,s)(X) = 1 iff X is an
inclusion dependency. We claim that for any antimonotone and 3-normalized formula ϕ, there
is an instance (r, s) of INDfixed computable in FPT-time such that fϕ = f(r,s). This clearly
gives an FPT-reduction from WA3NS to INDfixed . The remaining lemmas are dedicated to
proving this claim.

Recall that an antimonotone, 3-normalized formula is a conjunction of antimonotone
sub-formulas in DNF. Thus, the top level connective is a conjunction. Next we show how to
model this connective in terms of relational databases.

IPEC 2016



6:10 The Parameterized Complexity of Dependency Detection in Relational Databases

I Lemma 7. Let (r(1), s(1)) and (r(2), s(2)) be two instances for the problem INDfixed (all
relations are over the same schema R) with indicator functions f (1) and f (2), respectively.
Then there exists an instance (r, s) (over R), having size |r| = |r(1)| + |r(2)| and |s| =
|s(1)|+ |s(2)|, with indicator function f(r,s) = f (1) ∧ f (2).

Proof. W.l.o.g. assume that the values appearing in r(1) and s(1) are disjoint from those
in r(2) and s(2). We straightforwardly construct instance (r, s) by defining r = r(1) ∪ r(2)

and s = s(1) ∪ s(2). Obviously, the construction matches the requirements on both the
computability and size of the resulting instance. It remains to show that f(r,s) = f (1) ∧ f (2).

Equivalently, we show that X is an inclusion dependency in (r, s) if and only if it is one
in both sub-instances (r(1), s(1)) and (r(2), s(2)). First, suppose the condition holds. Then,
for every tuple r(1)

i ∈ r(1), there exists a tuple s(1)
j ∈ s(1) with r(1)

i [X] = s
(1)
j [X], and the

same holds for r(2) and s(2). As all said tuples are also present in (r, s), X is an inclusion
dependency there as well. Conversely, suppose X is not an inclusion dependency in, say,
(r(1), s(1)). Then r(1) has a tuple r(1)

i such that r(1)
i disagrees on X with every s(1)

j ∈ s(1).
By construction, r(1)

i is also in r. Moreover, all tuples in s belong either to s(1) or have
completely disjoint values. This results in r(1)

i [X] 6= sj [X] for every sj ∈ s as desired. J

One could hope that there is a similar method treating disjunctions. However, we believe
that there is none that is both computable in FPT-time and compatible with a complementing
method for conjunctions (e.g. the one shown above). The reasoning is as follows: Negative
literals are easily expressible as instances of INDfixed using pairs of single-tuple relations.
Together with FPT-time procedures of constructing conjunctions as well as disjunctions one
could encode antimonotone Boolean formulas of arbitrary logical depth. According to the
Antimonotone Collaps Theorem by [11] this would render INDfixed to be hard for all classes
W [t]. As a consequence of Theorem 5 (in conjunction with Lemma 4) the W -hierarchy
would collapse to the level W [3]. That being said, there is a method specifically tailored to
antimonotone formulas in DNF.

I Lemma 8. Let ϕ be an antimonotone formula in DNF. Then there is an instance (r, s)
for problem INDfixed of size polynomial in |ϕ| such that fϕ = f(r,s).

Proof. Let x1, . . . , xn be the variables of formula ϕ. Define schema R = {A1, . . . , An} by
identifying each variable xi with attribute Ai. To build the instance (r, s) over the schema
R, we first describe the relation r and then construct s accordingly.

As ϕ is a DNF formula, it is the disjunction of conjunctive clauses c1, . . . , cm. For each
clause cj , we create the tuple rj by setting rj [Ai] = j if xi occurs in cj and rj [Ai] = 0
otherwise. For example, the clause c1 = (¬x1 ∧ ¬x2 ∧ ¬x3) in Figure 3 leads to the tuple
(1, 1, 1, 0, 0, 0). Relation s is obtained by first creating m copies of r. In the j-th copy we
then set the value for attribute Ai to the special symbol “−” whenever xi occurs in the
conjunctive clause cj ; see Figure 3 again. Note that |R| equals the number of variables of ϕ
and |r| is linear while |s| is quadratic in the number of conjunctive clauses in ϕ. In total, the
size of the instance (r, s) is polynomial in |ϕ|. It is left to show that fϕ = f(r,s).

First, suppose fϕ(X) = 1 for some binary vector X of length |R| or, equivalently, a
subset X ⊆ R. We show that f(r,s)(X) = 1. Necessarily, we have fcj

(X) = 1 for at least one
conjunctive clause cj and since the clause contains only negative literals, all of its variables
evaluate to 0. This is equivalent to X not containing any attributes corresponding to variables
occurring in cj . In the j-th copy of r in s the values were changed to “−” for exactly those
attributes. Thus, restriction s[X] comprises an exact copy of r[X], resulting in f(r,s)(X) = 1
by definition.



T. Bläsius, T. Friedrich, and M. Schirneck 6:11

ϕ = c1 ∨ c2 ∨ c3

c1 = (¬x1 ∧ ¬x2 ∧ ¬x3)
c2 = (¬x2 ∧ ¬x4 ∧ ¬x5)
c3 = (¬x1 ∧ ¬x3 ∧ ¬x4 ∧ ¬x6)

1 1 1 0 0 0
0 2 0 2 2 0
3 0 3 3 0 3

A1 A2 A3 A4 A5 A6

0 0 0
2 2 0
3 0 3

A1 A2 A3 A4 A5 A6

1 1 0
0 0 0
3 3 3

1 0
2 2
0 0

− − −
− − −
− − −
− − −
− − −
− − −

− − − −
− − − −
− − − −

Figure 3 Illustration of Lemma 8. Formula ϕ is on the left (with the three conjunctive clauses
c1, c2, c3), relation r in the center and relation s on the right.

For the opposite direction, suppose fϕ(X) = 0. Then, for each conjunctive clause, at
least one variable evaluates to 1 and, consequently, for each tuple in s, the value of at least
one attribute in X was replaced by “−”. As r does not contain the special symbol “−” at all,
X is not an inclusion dependency, i.e., f(r,s)(X) = 0. J

Lemma 8 in combination with Lemma 7 implies that, given an antimonotone 3-normalized
formula ϕ, we can build an instance (r, s) of problem INDfixed in FPT-time (even polynomial)
such that fϕ = f(r,s). Using the findings of Section 4.1, this proves the desired theorem.

I Theorem 9. INDfixed and IND are W [3]-complete.

5 Conclusion

We have determined the complexity of various dependency problems when parameterized by
the solution size. Our results imply that these problems do not admit FPT algorithms unless
the W -hierarchy at least partially collapses. This is unfortunate, the choice of parameter
appears to be very natural in the sense that the requirement of a small solution size is
regularly met in practice (Figure 1). Notwithstanding our results, one can still obtain FPT
algorithms by using other parameters. As an example, to solve the problem Unique for a
relation r over the schema R (and similar considerations hold for FD and IND), one can
consider all subsets of R and check for each whether it is a unique column combination. This
takes polynomial time for each of the 2|R| subsets. Thus, this leads to an FPT-algorithm
with |R| as parameter. This is of course not very satisfying, as assuming |R| to be small is a
much stronger assumption than assuming the solution size to be small.

Similarly, one could consider the maximum number d of attributes on which two tuples
in a relation r disagree. Then any pair of tuples yields up to d candidate attributes such
that at least one of these attributes must be contained in every unique column combination.
Thus, one can check whether there is a solution of size k to the problem Unique by using a
bounded search tree of height k with nodes of degree at most d. This gives an FPT algorithm
with respect to the parameter d + k. However, assuming that any two pairs in a relation
differ only on a few columns seems to be an unrealistic assumption for most data sets.

We leave it as an open problem for future research to figure out properties of realistic
instances that can explain and hopefully even improve the running times of practical methods

IPEC 2016



6:12 The Parameterized Complexity of Dependency Detection in Relational Databases

for dependency detection in relational databases. For example, by designing a multivariate
algorithm with more than one parameter.

Acknowledgement. We would like to thank Sebastian Kruse, Felix Naumann and Thorsten
Papenbrock for the interesting discussions that initiated our research on this topic, for their
continued support and of course for providing us with the data presented in the introduction.
We also want to thank Christoph Keßler for proof-reading an early draft of this paper and
Sharon Nemeth for revising the final version.

References
1 Z. Abedjan, L. Golab, and F. Naumann. Profiling relational data: a survey. The VLDB

Journal, 24:557–581, 2015.
2 Tatsuya Akutsu and Feng Bao. Approximating minimum keys and optimal substructure

screens. In Proceedings of the 2nd Annual International Conference on Computing and
Combinatorics (COCOON), pages 290–299, 1996. doi:10.1007/3-540-61332-3_163.

3 C. Beeri, M. Dowd, R. Fagin, and R. Statman. On the structure of armstrong relations for
functional dependencies. Journal of the ACM, 31(1):30–46, January 1984. doi:10.1145/
2422.322414.

4 Jianer Chen and Fenghui Zhang. On product covering in 3-tier supply chain models: Nat-
ural complete problems for W [3] and W [4]. Theoretical Computer Science, 363(3):278–288,
2006. doi:10.1016/j.tcs.2006.07.016.

5 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

6 C.J. Date. An Introduction to Database Systems. Addison-Wesley Longman Publishing,
Boston, MA, USA, 8th edition, 2003.

7 Scott Davies and Stuart Russell. NP-completeness of searches for smallest possible feature
sets. Technical report, AAAI, 1994.

8 Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness.
Congressus Numerantium, 87:161–178, 1992.

9 Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness
I: Basic results. SIAM Journal on Computing, 24(4):873–921, 1995.

10 Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness
II: On completeness for W [1]. Theoretical Computer Science, 141(1&2):109–131, 1995.

11 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

12 Thomas Eiter and Georg Gottlob. Hypergraph transversal computation and related prob-
lems in logic and AI. In Proceedings of the 8th European Conference on Logics in Artificial
Intelligence (JELIA), pages 549–564, 2002. doi:10.1007/3-540-45757-7_53.

13 Martin Grohe. The parameterized complexity of database queries. In Proceedings of the
20th Symposium on Principles of Database Systems (PODS), pages 82–92, 2001. doi:
10.1145/375551.375564.

14 Martti Kantola, Heikki Mannila, Kari-Jouko Räihä, and Harri Siirtola. Discovering func-
tional and inclusion dependencies in relational databases. International Journal of Intelli-
gent Systems, 7(7):591–607, 1992. doi:10.1002/int.4550070703.

15 R. Karp. Reducibility among combinatorial problems. In Proceedings of a symposium on
the Complexity of Computer Computations, pages 85–103, 1972. URL: http://www.cs.
berkeley.edu/~luca/cs172/karp.pdf.

16 D. Maier. The Theory of Relational Databases. Computer Science Press, 1983.

http://dx.doi.org/10.1007/3-540-61332-3_163
http://dx.doi.org/10.1145/2422.322414
http://dx.doi.org/10.1145/2422.322414
http://dx.doi.org/10.1016/j.tcs.2006.07.016
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1007/978-1-4471-5559-1
http://dx.doi.org/10.1007/3-540-45757-7_53
http://dx.doi.org/10.1145/375551.375564
http://dx.doi.org/10.1145/375551.375564
http://dx.doi.org/10.1002/int.4550070703
http://www.cs.berkeley.edu/~luca/cs172/karp.pdf
http://www.cs.berkeley.edu/~luca/cs172/karp.pdf


T. Bläsius, T. Friedrich, and M. Schirneck 6:13

17 Christos H. Papadimitriou and Mihalis Yannakakis. On the complexity of database queries.
Journal of Computer and System Sciences, 58(3):407–427, 1999. doi:10.1006/jcss.1999.
1626.

18 Aaron Swartz. MusicBrainz: a semantic web service. IEEE Intelligent Systems, 17(1):76–77,
Jan 2002. See http://www.musicbrainz.org. doi:10.1109/5254.988466.

IPEC 2016

http://dx.doi.org/10.1006/jcss.1999.1626
http://dx.doi.org/10.1006/jcss.1999.1626
http://www.musicbrainz.org
http://dx.doi.org/10.1109/5254.988466




A Faster Parameterized Algorithm for
Pseudoforest Deletion∗

Hans L. Bodlaender1, Hirotaka Ono2, and Yota Otachi3

1 Department of Information and Computing Sciences, Utrecht University; and
Department of Mathematics and Computer Science, University of Technology
Eindhoven, The Netherlands
h.l.bodlaender@uu.nl

2 Department of Economic Engineering, Kyushu University, Fukuoka, Japan
hirotaka@econ.kyushu-u.ac.jp

3 School of Information Science, Japan Advanced Institute of Science and
Technology, Ishikawa, Japan
otachi@jaist.ac.jp

Abstract
A pseudoforest is a graph where each connected component contains at most one cycle, or alterna-
tively, a graph that can be turned into a forest by removing at most one edge from each connected
component. In this paper, we show that the following problem can be solved in O(3knkO(1)) time:
given a graph G and an integer k, can we delete at most k vertices from G such that we obtain a
pseudoforest? The result improves upon an earlier result by Philip et al. [MFCS 2015] who gave
a (nonlinear) 7.56knO(1)-time algorithm both in the exponential factor depending on k as well
as in the polynomial factor depending on n.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases pseudoforest deletion, graph class, width parameter, parameterized com-
plexity

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.7

1 Introduction

In this paper, we consider the Pseudoforest Deletion problem. A pseudoforest is an
undirected graph that is obtained from a forest by adding at most one edge to each connected
component. In the Pseudoforest Deletion problem, we are given a graph G = (V,E)
and an integer k, and ask if there is a set of at most k vertices in G, that, when deleted from
G, turns G into a pseudoforest. The Pseudoforest Deletion problem is closely related to
the well known Feedback vertex set problem, where we want to delete at most k vertices
from a graph so that the graph becomes a forest.

The Pseudoforest Deletion problem was first studied by Philip et al. [12], together
with the generalization where each connected component is a tree plus at most ` edges. They
showed that for each `, the problem to delete at most k vertices such that we obtain such an
`-pseudoforest has a kernel with f(`)k2 vertices. For the Pseudoforest Deletion problem,

∗ This research was partially supported by the Networks project, funded by the Dutch Ministry of
Education, Culture and Science through NWO and by MEXT/JSPS KAKENHI grant numbers 24106004,
24220003, 25730003, 26540005. The third author was partially supported by FY 2015 Researcher
Exchange Program between JSPS and NSERC.

© Hans L. Bodlaender, Hirotaka Ono, and Yota Otachi;
licensed under Creative Commons License CC-BY

11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin; Article No. 7; pp. 7:1–7:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


7:2 A Faster Parameterized Algorithm for Pseudoforest Deletion

i.e., the case that ` = 1, they give a deterministic algorithm with running time 7.56knO(1).1
In this paper, we improve upon the latter result, both with respect to the exponential factor
in k, as well as in the polynomial factor in n, which is, in our case, linear.

It is easy to see that the Pseudoforest deletion problem belongs to the class of
problems studied by Fomin et al. [9], and thus, by these results, the problem has a constant
factor polynomial time approximation algorithm, a polynomial kernel (improved to quadratic
by the results of Philip et al. [12]), and a randomized algorithm that runs in time O(ckn)
for some constant c. The randomized algorithm is a generalization of an algorithm by
Becker et al. [3] for the Feedback Vertex Set problem and a related problem called
the Loop Cutset problem. Fomin et al. [9] also give deterministic algorithms running
in time O(2O(k)n log2 n) and O(nm) time constant factor approximation algorithms for a
large class of problems that includes Pseudoforest deletion. If one looks closely at the
randomized algorithm by Becker et al. [3] and the generalization by Fomin et al. [9], it follows
that one can solve the Pseudoforest deletion problem with a randomized algorithm in
O(4knkO(1)) time.

Our improvement on these two algorithms is based upon the combination of a few different
insights and techniques, in particular:

Positive instances, i.e., graphs that can be turned into a pseudoforest by deleting at most
k vertices have treewidth at most k + 2.
The notion of pseudoforest has the following local characterization: a graph is a pseudo-
forest if and only if it has an edge orientation such that each vertex has outdegree at
most one.
The local characterization allows us to solve the problem with dynamic programming on a
tree decomposition in time that is linear in the number of vertices and single exponential
in the treewidth, without the need to use advanced techniques like the cut and count
method [8] or the rank based approach [6].
With help of convolutions [15] (see also [4]), the running time of the dynamic programming
algorithm is reduced to O(3tntO(1)) on tree decompositions of width t.
What remains is the need to find an initial tree decomposition to run the dynamic
programming algorithm on. For this, we use a modification of the O(f(t)n) algorithm for
Treewidth by Bodlaender [5]. The modification includes the use of iterative compression
inside one of the subroutines.

It is interesting to contrast our result with the currently best known parameterized
algorithms for Feedback Vertex Set: for the Pseudoforest Deletion problem we
have a deterministic O(3knkO(1)) algorithm, while Feedback Vertex Set can be solved in
O(3knO(1)) time with a randomized algorithm [8] and O(3.63knO(1)) time with a deterministic
algorithm [10]; in both cases, the running time is not linear in n.

This paper is organized as follows. In Section 2, we give some preliminary definitions.
Section 3 contains a number of graph theoretic observations; in many cases these are not hard
to observe, from existing literature or folklore. Section 4 discusses how the Pseudoforest
Deletion problem can be solved when a tree decomposition of bounded width is available.
This method is used as a subroutine in the main algorithm, that is given in Section 5. The
paper ends with some conclusions in Section 6.

1 They did not specify the exact dependency in n, which is at least quadratic.



H. L. Bodlaender, H. Ono, and Y. Otachi 7:3

2 Preliminaries

When not specified otherwise, a graph G = (V,E) is considered to be undirected, but possibly
with selfloops and parallel edges. Allowing selfloops and parallel edges makes the description
of the main algorithm easier. An orientation of a graph G = (V,E) is a directed graph
obtained by giving each edge in G a direction. For a graph G = (V,E) and vertex set W ⊆ V ,
the subgraph of G induced by W is denoted by G[W ] = (W, {e ∈ E | both endpoints of e
belong to W}).

A tree decomposition of a graph G = (V,E) is a pair ({Xi | i ∈ I}, T = (I, F )) with T a
tree, and {Xi | i ∈ I} a collection of subsets (called bags) of V , such that
1.
⋃

i∈I Xi = V ;
2. for all {v, w} ∈ E, there is an i ∈ I with {v, w} ⊆ Xi

3. for all v ∈ V , the set of nodes {i ∈ I | v ∈ Xi} forms a connected subtree of T .
The width of a tree decomposition ({Xi | i ∈ I}, T = (I, F )) is maxi∈I |Xi|−1. The treewidth
of a graph G is the minimum width over all tree decompositions of G.

For the definition above, if there are parallel edges or selfloops, we can just ignore them,
i.e., a tree decomposition of a graph with parallel edges and selfloops is a tree decomposition
of the associated simple graph (obtained by keeping only one of each set of parallel edges
and removing all selfloops).

In this paper, we also use the related notion of nice tree decomposition. In the literature,
there are a few variants of this notion that differ in details. In this case, we use the variant
with edge introduce nodes and leaf bags of size one.

A nice tree decomposition is a tree decomposition ({Xi | i ∈ I}, T = (I, F )) where T is a
rooted tree, and nodes are of one of the following five different types. With each bag/node
in the tree decomposition, we also associate a subgraph of G; the subgraph associated with
node i is denoted Gi = (Vi, Ei). We give each type together with how the corresponding
subgraph is formed.

Leaf nodes i. i is a leaf of T ; |Xi| = 1, and Gi = ({vi}, ∅) is the graph consisting of the
vertex vi and no edges.
Introduce vertex nodes i. i has one child, say j. There is a vertex v with Xi = Xj∪{v},
v 6∈ Vj , and Gi = (Vj ∪ {vi}, Ej), i.e., Gi is obtained from Gj by adding vi as isolated
vertex.
Introduce edge nodes i. i has one child, say j. There are two vertices v, w ∈ Xi,
Xi = Xj , and Gi = (Vj , Ej ∪ {v, w}). I.e., Gi is obtained from Gj by adding an edge
between two vertices in Xi = Xj . If we have parallel edges, we have one introduce edge
node for each parallel edge. E.g., if there are two edges from v to w, we have two edge
introduce nodes for the pair v, w; typically, one of these can be the parent of the other in
the tree. A selfloop with endpoint v is handled in the same way, i.e., there is an introduce
edge node i with v ∈ Xi, and Gi is obtained by adding the selfloop to Gj .
Forget nodes i. i has one child, say j. There is a vertex v with Xi = Xj − {v}. Gi and
Gj are the same graph.
Join nodes i. i has two children, say j1 and j2. Xi = Xj1 = Xj2 , Vj1 ∩ Vj2 = Xi and
Ej1 ∩ Ej2 = ∅. Gi = (Vj1 ∪ Vj2 , Ej1 ∪ Ej2). I.e., Gi is obtained by taking the union of
Gj1 and Gj2 , where the vertices in Xi are the intersection of these two graphs.

If r is the root of T , then Gr = G.
Restricting a function f to a sub-domain Z is denoted f |Z . With f + v → i we denote

the new function, obtained by adding v to the domain of f , mapping v to i. fv→i denotes
the function, obtaining by changing f by mapping v to i.

IPEC 2016



7:4 A Faster Parameterized Algorithm for Pseudoforest Deletion

A pseudotree is a connected graph that is either a tree or obtained by adding one edge to
a tree. Note that, as we allow selfloops and parallel edges, this edge may be a selfloop or a
parallel edge. A graph is a pseudoforest, if each connected component is a pseudotree.

A pseudoforest deletion set in a graph G = (V,E) is a set of vertices W ⊆ V such that
G[V −W ] is a pseudoforest.

A p-contraction of an edge {v, w} is the operation that identifies v and w, removes the
edge {v, w}, but keeps parallel edges, e.g., if there are edges {v, x} and {w, x} before the
contraction, then x has two parallel edges to the newly formed vertex; if there is an edge
parallel to the contracted edge, then this turns into a selfloop. Note that the number of
edges of a graph drops by exactly one when doing a p-contraction.

The c-improved graph of a graph G = (V,E) is the graph, obtained by adding an edge
between each pair of vertices that have at least c common neighbors of degree at most c+ 1.
(We do not take the closure of this operation.)

A vertex v is simplicial in a graph G = (V,E) if the neighborhood of v is a clique.

3 Graph theoretic observations

In this section, we give some graph theoretic results that are either folklore or easy to see.
The following lemma is a trivial observation.

I Lemma 3.1. Let G = (V,E) be a graph. The following statements are equivalent.
1. G is a pseudoforest.
2. G has an orientation such that each vertex has outdegree at most 1.

While Lemma 3.1 is an easy observation, it is a key point to our result: being a pseudoforest
seems to be a global property, it actually can be expressed by a local property: having an
orientation with outdegree at most one allows a dynamic programming algorithm on tree
decompositions with three states per vertex, i.e., with tables of size bounded by 3t, t being
the width of the tree decomposition.

I Lemma 3.2. Let G = (V,E) be a graph.
1. Suppose that there are four or more parallel edges from v to w. Let G′ be the graph,

obtained from G by removing one parallel edge from v to w. The minimum size of a
pseudoforest deletion set in G equals the minimum size of the pseudoforest deletion set of
G′.

2. Suppose that there are three or more self loops with v as endpoint. Let G′′ be the graph,
obtained from G by removing one selfloop with v as endpoint. The minimum size of a
pseudoforest deletion set in G equals the minimum size of the pseudoforest deletion set of
G′′.

Proof. The result follows by observing that if there are three or more parallel edges from v

to w then any pseudoforest deletion set must contain v or w, and that if there are two or
more selfloops with v as endpoint, then any pseudoforest deletion set contains v. J

The following lemma, used in our algorithm is the main reason why we use p-contractions
and graphs with parallel edges and self-loops: we do not have such a result when we would
use simple graphs and the usual notion of contraction.

I Lemma 3.3. Let G′ be obtained from G by a p-contraction of the edge {v, w}. Let x be
the vertex resulting from the contraction of {v, w}. Suppose W is a pseudoforest deletion set
in G′.



H. L. Bodlaender, H. Ono, and Y. Otachi 7:5

1. If x 6∈W , then W is a pseudoforest deletion set in G.
2. If x ∈W , then W − {x} ∪ {v, w} is a pseudoforest deletion set in G.

Proof. The result follows by observing that when we contract an edge from a pseudoforest,
we again obtain a pseudoforest. J

The following result is folklore. While the folklore result deals with simple graphs, we
can build a nice tree decomposition for a graph with parallel edges and selfloops by building
a tree decomposition for the underlying simple graph, and then adding the selfloops and
parallel edges in the obvious way.

I Lemma 3.4. Suppose G = (V,E) is given with a tree decomposition of width k with r bags.
Then one can construct a nice tree decomposition of G with O(kr+ |E|) bags in O(k2r+ |E|k)
time.

The following result is a trivial consequence of treewidth folklore. As the construction in
the proof is used in the algorithm, we give the constructive proof here.

I Lemma 3.5. Let G = (V,E) be a graph.
1. If G is a pseudoforest, the treewidth of G is at most 2.
2. If there is a set W ⊆ V such that G[V −W ] is a pseudoforest, the treewidth of G is at

most 2 + |W |. The corresponding tree decomposition can be computed in O(n · |W |) time.

Proof.
1. The treewidth of a tree is 1; the treewidth of a tree plus one edge is 2: add one endpoint

of the new edge to all bags. The treewidth of a graph equals the maximum treewidth of
a connected component, hence the treewidth of a pseudoforest is 2.

2. Take a tree decomposition of width 2 of G[V −W ], and add W to all bags. J

One ingredient of our algorithm is an approach, first used by Bodlaender [5] to obtain an
algorithm for Treewidth that uses O(f(k)n) time, see Theorem 3.6 below. Perković and
Reed [11] showed that the result can be improved with respect to factors polynomial in k;
for our purposes, the form below suffices.

I Theorem 3.6 (Bodlaender [5]). Let G = (V,E) be a graph and t an integer. At least one
of the following three statements is true.

Any maximal matching of G has 1
O(t8)n edges.

The t-improved graph of G has at least 1
O(t2)n simplicial vertices of degree at most t.

The treewidth of G is at least t+ 1.

I Lemma 3.7. Let G be a graph and let k be an integer. G has a set X ⊆ V (G) of size at
most k such that G−X is a pseudoforest if and only if the k + 3-improved graph of G has a
set X ′ of size at most k such that G−X ′ is a pseudoforest.

Proof. As a subgraph of a pseudoforest is a pseudoforest, the ‘if’-direction is trivial.
Suppose G has a set X of size at most k such that G−X is a pseudoforest. Consider

two vertices v, w, with at least k + 3 common neighbors. We claim that v ∈ X or w ∈ X.
Suppose not. Vertices v and w have at least 3 common neighbors that do not belong to X.
We now have five vertices with at least six edges between them, so for any orientation, at
least one of these five vertices has outdegree two or more, contradiction. As v ∈ X or w ∈ X,
we can safely add the edge {v, w}, as G−X remains a pseudoforest. J

IPEC 2016



7:6 A Faster Parameterized Algorithm for Pseudoforest Deletion

4 Solving Pseudoforest Deletion on tree decompositions

In this section, we will prove the following result.

I Theorem 4.1. Suppose G = (V,E) is given with a tree decomposition of width at most t
with O(n) bags. One can find in O(3tntO(1)) time a minimum size pseudoforest deletion set.

For easier explanation of the algorithm, we will first derive an algorithm that uses
O(4tntO(1)) time and solves the decision problem, i.e., computes the size of the minimum
pseudoforest deletion set. Then, with help of the convolutions technique for tree decompo-
sitions, introduced by van Rooij et al. [15], we obtain a decision problem with O(3tntO(1))
running time. At the end, we discuss how we can compute within the same time bound also
the corresponding minimum size pseudoforest deletion set.

An algorithm that runs in O(4tntO(1)) time

We first transform the tree decomposition to a nice tree decomposition, which has O(tn)
bags.

Recall that we associate a subgraph of G, Gi with each node i in the nice tree decompo-
sition. A partial solution for a node i ∈ I is a pair (Y,Λ), with Y ⊆ Vi a set of vertices and
Λ an orientation of Ei such that each vertex in Vi − Y has at most one outgoing arc in Λ. If
r is the root of the nice tree decomposition, then a partial solution for r is called a solution.
We say a solution (Y,Λ) extends partial solution (Y ′,Λ′) for i if Y ′ = Y ∩ Vi and Λ′ is the
restriction of Λ to Ei.

The characteristic of a partial solution (Y,Λ) for i is the function f : Xi → {X, 0, 1},
such that

For all v ∈ Xi, f(v) = X if and only if v ∈ Y .
If v ∈ Xi and f(v) = 0, then v has no outgoing arcs in Λ.
If v ∈ Xi and f(v) = 1, then v has exactly one outgoing arc in Λ.

The main ingredient of the algorithm is to compute for each node in i a table (function)
Ti, in postorder, i.e., we compute the table for a node after the tables for its children are
known. A table Ti maps each function f : Xi → {0, 1, X} to an nonnegative integer or to ∞,
in the following way.

Suppose i is a bag in a nice tree decomposition, with corresponding set Xi and subgraph
Gi. For a function f : Xi → {0, 1, X}, Ti(f) equals the minimum of |Y | over all partial
solutions (Y,Λ) at i with characteristic f . If no such partial solution exists, then Ti(f) =∞.

The following claim trivially holds by Lemma 3.1, and shows how to obtain the answer
to the decision version of the Pseudoforest Deletion problem given Tr for the root r of
the tree decomposition.

I Claim 4.2. Let r be the root of a nice tree decomposition of G = (V,E). The minimum size
of a pseudoforest deletion set in G equals the minimum of Tr(f) over all f : Xr → {0, 1, X}.

We will now discuss for each of the types of nodes in a nice tree decomposition how to
compute the table Ti, given the tables of the children of the node.

Leaf nodes. Let i be a leaf node, with Xi = {v}. Now, if f(v) = 0, then Ti(f) = 0; if
f(v) = 1, then Ti(f) =∞, and if f(v) = X, then Ti(f) = 1.



H. L. Bodlaender, H. Ono, and Y. Otachi 7:7

Introduce vertex nodes. Suppose i is an introduce vertex node i with child j with Xi =
Xj ∪ {v}.

As the degree of v in Gi is 0, for each f with f(v) = 1, we have Ti(f) =∞, as there are
no partial solutions with v having outdegree 1.

For a function f with f(v) = 0, we have Ti(f) = Ti(f |Xi
); and for functions f with

f(v) = X, we have Ti(f) = Ti(f |Xi
) + 1 — we can just extend any partial solution for Gj

by either not placing v in the pseudoforest deletion set, in which case v has outdegree 0; or
placing v in the pseudoforest deletion set, in which case v is mapped to X and the size of
the set is increased by one.

Introduce edge nodes. Consider an introduce edge node i with child j, where we introduce
an edge with endpoints v and w. Note that we allow parallel edges and selfloops; the
subroutine below is also correct in case the introduced edge is parallel to an existing edge or
is a selfloop (i.e., v = w.)

For each f : Xi → {0, 1, X}, we consider the two cases in which {v, w} can be oriented.
We then obtain the following cases; for brevity, we omit the isomorphic cases with the roles
of v and w switched.

If f(v) = X and f(w) = X, then Ti(f) = Tj(f).
If f(v) = X and f(w) = 0, then Ti(f) = Tj(f). (We must orient the edge from v to w.)
If f(v) = X and f(w) = 1, then Ti(f) = min{Tj(f), Tj(fw→0)}.
If f(v) = 1 and f(w) = 1, then Ti(f) = min{Tj(fv→0), Tj(fw→0)}.
If f(v) = 1 and f(w) = 0, then Ti(f) = Tj(fv→0). (We must orient the edge from v to w,
and thus v has outdegree 0 in the corresponding orientation of Gj .)
If f(v) = 0 and f(w) = 0, then Ti(f) =∞. (No orientation with both v and w having
outdegree 0 is possible.)

Forget nodes. Let i be a forget node with child j with Xj = Xi ∪ {v}. Then Ti(f) =
min{Tj(f + v → 0), Tj(f + v → 1), Tj(f + v → X)}.

Join nodes. Suppose i is a join node with children j1 and j2. The following claim gives
that we can compute Ti, given Tj1 and Tj2 in time O(4ttO(1)). As said, we later will improve
the exponential factor to 3t with help of convolutions.

I Lemma 4.3. Ti(f) is the minimum over all f1 and f2 of Tj1(f1) + Tj2(f2)− α, where
For all v ∈ Xi, f(v) = X ⇔ f1(v) = X ⇔ f2(v) = X.
For all v ∈ Xi, f(v) = 0⇔ f1(v) = 0⇔ f2(v) = 0.
For all v ∈ Xi, if f(v) = 1 then either f1(v) = 1 and f2(v) = 0, or f1(v) = 0 and
f2(v) = 1.
α = |{v ∈ Xi | f(v) = X}|.

Proof. The proof follows standard techniques for dynamic programming on tree decompo-
sitions. The number of elements in the vertex deletion set Z in Gi equals the number of
elements in Z in Gj1 plus the number of elements in Z in Gj2 , minus the number of elements
in Z in both — the latter number is α; we thus have to subtract α once to prevent counting
vertices in Z ∩Xi twice. J

The claim above shows that we can compute Ti given Tj1 and Tj2 in O(4ttO(1)) time: for
each v ∈ Xi, there are four combinations to consider: f1(v) = f2(v) = X; f1(v) = f2(v) = 0;
f1(v) = 1 and f2(v) = 0; f1(v) = 0 and f2(v) = 1. This gives 4|Xi| combinations in total;

IPEC 2016



7:8 A Faster Parameterized Algorithm for Pseudoforest Deletion

for each, look up the table entries in Tj1 and Tj2 , compute the value which arrives when we
combine these entries. We initialize each value in Ti to ∞, and for each computed value, we
set the value of the corresponding entry in Ti to the minimum of its current value and the
just computed value.

Pseudoforest Deletion is finite integer index

We now discuss a small modification, that deletes some table entries which will never lead
to an optimal solution. The modification shows that Pseudoforest Deletion is finite
integer index (see [7]), and in fact, has the de Fluiter property, as defined by van Rooij [14,
Chapter 11.2]. We do not give the formal definition of this property, but state the elements
that are needed for our algorithm.

I Lemma 4.4. Let i be a bag, and let fX be the function, that maps each element of Xi

to X.
1. For all f : Xi → {0, 1, X}, Ti(fX) ≤ Ti(f) + |Xi|.
2. Let f : Xi → {0, 1, X}. If Ti(f) > Ti(fX), then no partial solution at i with characteristic

f will extend to an optimal solution.

As a result, we have that we can ignore in our computations, all values for Ti that are
larger than Ti(fX) without affecting the correctness of the algorithm. In the implementation,
we just delete these entries from the tables or set there values to Ti(fX) + 1. As a result, all
values in a table Ti are in the range Ti(fX)− |Xi|, . . . , Ti(fX).

Using convolutions for Join Nodes

In order to speed up the dynamic programming algorithm, we use convolutions. The use of
this technique in the setting of dynamic programming on tree decompositions was introduced
by van Rooij et al. [15, 14].

Obtaining a constructive algorithm

As for many dynamic programming algorithms, constructing an optimal solution is done
after computing its value, by traversing the tree top-down. We first select an entry
from the root table Tr with minimum value, i.e., a function f : Xr → {0, 1, X} with
Tr(f) = minf ′:Xr→{0,1,X} Tr(f ′). We construct a solution corresponding to f by finding (a)
‘corresponding’ table entries in the child nodes, constructing partial solutions corresponding
to these nodes, and placing the vertices in Xr with f(v) = X in the pseudoforest deletion
set. What are ‘corresponding’ table entries is different for the different types of nodes of a
nice tree decompositions; e.g., for a forget node an entry corresponding to f is where the
minimum in min{Tj(f + v → 0), Tj(f + v → 1), Tj(f + v → X)} is attained. Obtaining these
entries is trivial, except for join nodes.

For a join node i, we must solve the following problem: we are given an f : Xi → {0, 1, X},
and must find f1 and f2 as in Lemma 4.3. It is easy to see, and for our purposes sufficient to
notice that we can try all combinations f1 and f2, such that for all v ∈ Xi:

If f(v) = X, then f1(v) = f2(v) = X.
If f(v) = 0, then f1(v) = f2(v) = 0.
If f(v) = 1, then (f1(v) = 1 and f2(v) = 0) or (f1(v) = 0 and f2(v) = 1).

These are at most 2t+1 different combinations to try; for each, we can see if these combine to
f as in Lemma 4.3 in O(tO(1)) time. With O(n) nodes in the tree decomposition, the time
to construct a solution after all tables Ti have been computed is bounded by O(n2ttO(1)).



H. L. Bodlaender, H. Ono, and Y. Otachi 7:9

(As a side remark, using self reduction (see [14, Chapter 12]) it is possible to avoid the factor
exponential in t here and perform this step in O(ntO(1)) time, but as the asymptotic running
time is not dominated by this step, we prefer to give the simpler argument.)

Note that the algorithm remains correct when we run it on multigraphs with possible
parallel edges and selfloops. This ends the proof of Theorem 4.1.

5 Main algorithm

In this section, we give the main algorithm and prove that it attains the O(3knkO(1)) time
bound. We first give the general outline of the algorithm (Section 5.1); then discuss two
subroutines for two cases in Sections 5.2 and 5.3. Some implementation details and the time
analysis will be discussed in Section 5.4.

5.1 Outline
We now give the overall outline of the algorithm. We have a recursive algorithm, that follows
the cases of Theorem 3.6. In addition, we have a base case: if we have a graph G = (V,E)
with at most k vertices, we can just return V and are done. So suppose |V | > k. Let
t = k + 2.

The algorithm first computes an arbitrary maximal matching M . If this matching M
is large enough, i.e., has size 1

O(t8)n = 1
O(k8)n as in the first case of Theorem 3.6, then we

proceed with the subroutine discussed in Section 5.2. If this matching is not of this size, we
compute the k + 3-improved graph, and then find the set of simplicial vertices S of degree at
most k + 3. If set S is large enough, i.e., has size 1

O(t2)n = 1
O(k2)n as in the second case of

Theorem 3.6, then we proceed with the subroutine discussed in Section 5.3. If neither M
nor S is large enough, we halt and reject: by Theorem 3.6, we know that G has treewidth
at least t+ 1 = k + 3, and hence G has no pseudoforest deletion set of size at most k; see
Lemma 3.5.

We will discuss how each of the subroutines solves the problem when the corresponding
case holds, and how this leads to an algorithm with the stated time bounds below.

5.2 Graphs with a large maximal matching
In this section, we suppose that we have a (maximal) matching M in G = (V,E) with size

1
O(k8)n. We give a subroutine that either gives a pseudoforest deletion set of size at most k,
or decides that G has no such set.

Let GM = (VM , EM ) be the graph obtained by p-contracting all edges in M , i.e., we
contract the edges but keep parallel edges and selfloops.

Now, recursively solve the problem on GM . From Lemma 3.3, we have:

I Lemma 5.1. Suppose G has a pseudoforest deletion set X. Let XM be the set of vertices
in GM obtained from X by the p-contraction of edges. Then XM is a pseudoforest deletion
set of G.

From Lemma 5.1, it follows that if our recursive call to GM tells us that GM has no
pseudoforest deletion set of size at most k, then also G has no pseudoforest deletion set of
size at most k, and thus we say ‘no’ and halt.

So, now assume that our recursive call gives us a pseudoforest deletion set S of GM of
size at most k. Let S′ be the set of vertices that are contracted to S; i.e., if a vertex v ∈ S is

IPEC 2016



7:10 A Faster Parameterized Algorithm for Pseudoforest Deletion

the result of contracting an edge from x to y, then we have x, y ∈ S′; if a vertex v ∈ S is not
the result of a contraction, then we place v in S′.

I Claim 5.2. S′ is a pseudoforest deletion set of size at most 2k.

We thus build S′, and now we apply iterative improvement. Number the vertices in S′,
i.e., write S′ = {v1, v2, . . . , vr}; we have r ≤ 2k. Write Vi = (V − S′) ∪ {v1, v2, . . . , vi}, and
Gi = G[Vi]. Note that {v1, . . . , vk} is a pseudoforest deletion set of Gk. SetW = {v1, . . . , vk}.

Now, for i = k + 1 to r, do iteratively the following steps.
Set S = {vi} ∪W .
An invariant of the algorithm is that S is a pseudoforest deletion set of size at most k+ 1
of Gi.
Compute a tree decomposition of Gi of width at most k + 3:
Gi − S is a pseudoforest, so we can build a tree decomposition of Gi − S of width at
most 2 in linear time.
Add S to all bags of this tree decomposition.

Run the algorithm of Theorem 4.1 and solve the Pseudoforest Deletion problem on
Gi with parameter k.
If this algorithm returns that Gi has no pseudoforest deletion set of size at most k, then
G has no pseudoforest deletion set of size at most k, and we say ‘no’ and halt.
Otherwise, let W be the pseudoforest deletion set of Gi that was obtained.

When we are done, we either have decided that G has no pseudoforest deletion set of size
k, or we obtained a pseudoforest deletion set W of Gr = G of size at most k.

5.3 Improved graphs with many simplicial vertices
We now suppose that we have the k+3-improved graph G′, and a set Z with 1

O(t2)n = 1
O(k2)n

simplicial vertices of degree at most k + 3.
We recursively run the algorithm on G′−Z. If G′−Z has no pseudoforest deletion set of

size at most k, then G′ has none, and hence, by Lemma 3.7 G has no pseudoforest deletion
set of size at most k; we can halt and answer ‘no’.

Otherwise, we obtain a pseudoforest deletion set of size at most k of G′ − Z. We can
thus build a tree decomposition of width at most k + 2 of G′ − Z, as in Lemma 3.5. Build a
tree decomposition of width at most k+ 2 of G′, by adding a bag with vertex set N [z] for all
z ∈ Z; making this bag adjacent to a bag that contains the clique N(z). This is identical
to an operation from the algorithm in [5]. As G is a subgraph of G′, we now have a tree
decomposition of G of width at most k + 2, and thus can run the dynamic programming
algorithm from Theorem 4.1 on this latter tree decomposition. Return the answer of this
algorithm.

5.4 Implementation and time analysis
We discuss here some implementation details. Each of the steps except for the recursive
calls and the call to the dynamic programming algorithm of Theorem 4.1 can be done in
O(nkO(1)) time: finding a maximal matching and contracting a maximal matching is trivially
within this time bound; how to find the improved graph, the simplicial vertices of bounded
degree, and how to transform a tree decomposition of the graph without these simplicial
vertices to one with the simplicial vertices (the main steps from Sections 5.2 and 5.3) in
O(nkO(1)) time is shown in [5]; we can use the same procedures as in [5] here. We call the



H. L. Bodlaender, H. Ono, and Y. Otachi 7:11

O(n3kkO(1)) dynamic programming algorithm O(k) times, and thus the time per recursive
call is bounded by O(n3kkO(1)). One call of the procedure makes one recursive call on a
graph where we lost a fraction of 1

O(k8) of the vertices, and thus our running time satisfies
the following recurrence:

T (n) = T

(
n− 1

O(k8)n
)

+O(n3kkO(1)).

This resolves to T (n) = O(n3kkO(1)), which shows our main result Theorem 4.1.

I Theorem 5.3. The problem, given a graph G and integer k, to decide if G has a pseudoforest
deletion set of size at most k, and if so, find one, can be solved in O(n3kkO(1)) time.

6 Concluding remarks

In this paper, we gave a fast parameterized algorithm for the Pseudoforest Deletion
problem, with a running time with the currently best known factor depending on the
parameter k, and a factor, linear in the number of vertices.

It is an interesting open problem whether this is (up to factors, polynomial in k) optimal,
assuming the (Strong) Exponential Time Hypothesis, or whether a result similar to the lower
bound proofs by Cygan et al. [8] can show that there is no O((3− ε)tnO(1)) algorithm for
Pseudoforest Deletion on graphs given with a tree (or path) decomposition of width t;
compare the similar result for Feedback Vertex Set in [8].

A generalization of the Pseudoforest Deletion problem is the `-Pseudoforest
Deletion problem; a graph is an `-pseudoforest, if it can be obtained from a forest by
adding at most ` edges to each tree. It seems that the problem is harder when ` > 1,
as there is no apparent ‘local formulation’, whereas for ` = 1, we have the formulation
from Lemma 3.1. Thus, we wonder whether there exist deterministic algorithms for `-
Pseudoforest Deletion that run in O(ck

`n) time for constant c` depending on `. Philip et
al. [13] show that for every `, `-Pseudoforest Deletion has a kernel with O(k2) vertices.
Given the local nature of Pseudoforest Deletion, it is interesting to see if there exists a
kernel for it with a linear number of vertices.

Our result also implies a 2-approximation algorithm for Feedback Vertex Set, see
below. There exist polynomial-time2 2-approximation algorithms for this problem [2, 1]; our
algorithm uses linear time at the cost of a factor, exponential in k. The result can possibly
be used as a first step in an fpt algorithm for Feedback Vertex Set using iterative
compression, aiming at an algorithm that is efficient both in the term depending on k as
well as in the term depending on n.

I Corollary 6.1. There is a 2-approximation algorithm for Feedback Vertex Set that
runs in O(n3kkO(1)) time.

Proof. Run the algorithm of Theorem 5.3. If G has no pseudoforest deletion set of size at
most k, then G also has no feedback vertex set of size at most k. Otherwise, let X be a
pseudoforest deletion set of size at most k. If G−X contains more than k cycles, then G−X
has no feedback vertex set of size k; otherwise, choose a set Y with one vertex per cycle in
G−X; X ∪ Y is a feedback vertex set in G of size at most 2k. J

2 O(m + n log n)-time [2] and O(min{n2, m log n})-time [1].

IPEC 2016



7:12 A Faster Parameterized Algorithm for Pseudoforest Deletion

References
1 V. Bafna, P. Berman, and T. Fujito. A 2-approximation algorithm for the undirected

feedback vertex set problem. SIAM Journal on Discrete Mathematics, 12:289–297, 1999.
2 A. Becker and D. Geiger. Optimization of Pearl’s method of conditioning and greedy-

like approximation algorithms for the vertex feedback set problem. Artificial Intelligence,
83:167–188, 1996.

3 Ann Becker, Reuven Bar-Yehuda, and Dan Geiger. Randomized algorithms for the loop
cutset problem. Journal of Artificial Intelligence Research, 12:219–234, 2000.

4 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Fourier meets
Möbius: Fast subset convolution. In Proceedings of the 39th Annual Symposium on Theory
of Computing, STOC 2007, pages 67–74, 2007.

5 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing, 25:1305–1317, 1996.

6 Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic
single exponential time algorithms for connectivity problems parameterized by treewidth.
Information and Computation, 243:86–111, 2015.

7 Hans L. Bodlaender and Babette van Antwerpen-de Fluiter. Reduction algorithms for
graphs of small treewidth. Information and Computation, 167:86–119, 2001.

8 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth
in single exponential time. In Proceedings of the 52nd Annual Symposium on Foundations
of Computer Science, FOCS 2011, pages 150–159, 2011.

9 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar F -
deletion: Approximation, kernelization and optimal FPT algorithms. In Proceedings of the
53rd Annual Symposium on Foundations of Computer Science, FOCS 2012, pages 470–479,
2012. doi:10.1109/FOCS.2012.62.

10 Tomasz Kociumaka and Marcin Pilipczuk. Faster deterministic feedback vertex set. Inf.
Process. Lett., 114(10):556–560, 2014.

11 Ljubomir Perković and Bruce Reed. An improved algorithm for finding tree decompositions
of small width. International Journal of Foundations of Computer Science, 11:365–371,
2000.

12 Geevarghese Philip, Ashutosh Rai, and Saket Saurabh. Generalized pseudoforest deletion:
Algorithms and uniform kernel. In 40th International Symposium on Mathematical Foun-
dations of Computer Science 2015, MFCS 2015, volume 9235 of Lecture Notes in Computer
Science, pages 517–528. Springer Verlag, 2015.

13 Geevarghese Philip, Venkatesh Raman, and Somnath Sikdar. Polynomial kernels for domi-
nating set in graphs of bounded degeneracy and beyond. ACM Transactions on Algorithms,
9(1):11, 2012.

14 Johan M. M. van Rooij. Exact Exponential-Time Algorithms for Domination Problems in
Graphs. PhD thesis, Utrecht University, 2011. URL: dspace.library.uu.nl/bitstream/
handle/1874/205442/rooij.pdf.

15 Johan M. M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith. Dynamic programming
on tree decompositions using generalised fast subset convolution. In Amos Fiat and Peter
Sanders, editors, Proceedings of the 17th Annual European Symposium on Algorithms, ESA
2009, pages 566–577. Springer Verlag, Lecture Notes in Computer Science, vol. 5757, 2009.

http://dx.doi.org/10.1109/FOCS.2012.62
dspace.library.uu.nl/bitstream/handle/1874/205442/rooij.pdf
dspace.library.uu.nl/bitstream/handle/1874/205442/rooij.pdf


Optimal Dynamic Program for r-Domination
Problems over Tree Decompositions∗

Glencora Borradaile1 and Hung Le2

1 Department of Electrical Engineering and Computer Science, Oregon State
University, USA
glencora@eecs.orst.edu

2 Department of Electrical Engineering and Computer Science, Oregon State
University, USA
lehu@onid.oregonstate.edu

Abstract
There has been recent progress in showing that the exponential dependence on treewidth in
dynamic programming algorithms for solving NP-hard problems is optimal under the Strong
Exponential Time Hypothesis (SETH). We extend this work to r-domination problems. In r-
dominating set, one wishes to find a minimum subset S of vertices such that every vertex of G
is within r hops of some vertex in S. In connected r-dominating set, one additionally requires
that the set induces a connected subgraph of G. We give a O((2r + 1)twn) time algorithm for r-
dominating set and a randomized O((2r+ 2)twnO(1)) time algorithm for connected r-dominating
set in n-vertex graphs of treewidth tw. We show that the running time dependence on r and tw is
the best possible under SETH. This adds to earlier observations that a “+1” in the denominator
is required for connectivity constraints.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases r-dominating set, Exponential Time Hypothesis, Dynamic Programming

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.8

1 Introduction

There has been recent progress in showing that the exponential dependence on treewidth in
dynamic programming algorithms for solving NP-hard problems is optimal under the Strong
Exponential Time Hypothesis (SETH) [12]. Lokshtanov, Marx and Saurabh showed that
for a wide variety of problems with local constraints, such as maximum independent set,
minimum dominating set and q-coloring, require Ω∗((2−ε)tw), Ω∗((3−ε)tw) and Ω∗((q−ε)tw)
time in graphs of treewidth tw, where Ω∗ hides polynomial dependence on the size of the
graph [15]; these lower bounds met the best-known upper bounds for the same problems.
For problems with connectivity constraints, such as connected dominating set, some thought
that a dependence of twtw would be required. Cygan et al. showed that this is not the case,
giving tight upper and lower bounds for the dependence on treewidth for many problems,
including connected dominating set [6]. They also observed that the base of the constant
increased by one when adding a connectivity constraint. For example, vertex cover has tight
upper and lower bounds of O∗(2tw) and Ω∗((2− ε)tw) while connected vertex cover has tight

∗ This material is based upon work supported by the National Science Foundation under Grant No. CCF-
1252833.

© Glencora Borradaile and Hung Le;
licensed under Creative Commons License CC-BY

11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin; Article No. 8; pp. 8:1–8:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


8:2 Optimal Dynamic Program for r-Domination Problems over Tree Decompositions

Table 1 Old and new results on the domination problem

Lower Bound Reference Upper Bound Reference
DS Ω∗((3 − ε)tw) [15] O∗(3tw) [19]

CDS Ω∗((4 − ε)tw) [6] O∗(4tw) [6]
rDS Ω∗(2r + 1)(1−ε)tw) Theorem 3 O∗((2r + 1)tw) Theorem 2

rCDS Ω∗(2r + 2)(1−ε)tw) Theorem 5 O∗((2r + 2)tw) Theorem 4

upper and lower bounds of O∗(3tw) and Ω∗((3− ε)tw). Similarly, dominating set has tight
upper and lower bounds of O∗(3tw) and Ω∗((3− ε)tw) while connected dominating set has
tight upper and lower bounds of O∗(4tw) and Ω∗((4− ε)tw).

1.1 Generalization to r-domination

In this paper, we show that this pattern of dependence extends to domination problems
over greater distances. The r-dominating set (rDS) problem is a natural extension of the
dominating set (DS) problem, in which, given a graph G of n vertices, the goal is to find a
minimum subset S of vertices such that every vertex of G is within r hops of some vertex
in S. Likewise, the connected r-dominating set (rCDS) is the connected generalization of
connected dominating set (CDS). We show that rDS can be solved in O∗((2r + 1)tw) time
and that rCDS can be solved in O∗((2r + 2)tw) time. Further, we show that these upper
bounds are tight, assuming SETH, even when r is non-constant. We note that our results
generalize the previous results listed in Table 1 when r = O(1) since we can reformulate
our lower bound as Ω∗(2r + 1− ε′)tw) for rDS problem and as Ω∗(2r + 2− ε′)tw) for rCDS
problem by setting ε = 1− ln(2r+1−ε′)

ln(2r+1) .

1.2 Notation

We denote the input graph with vertex set V and edge set E by G = (V,E) and use n to
denote the number of vertices. Edges of the graph are undirected and unweighted. For two
vertices u, v, we denote the shortest distance and path between them by dG(u, v) and PG(u, v).
Given a subset of vertices S and u a vertex of G, we define dG(u, S) = minv∈S{dG(u, v)}
and PG(u, S) = PG(u, v) where v is a vertex in S such that d(u, S) = d(u, v). We omit the
subscript G when G is clear from context. G[S] is the subgraph induced by S. A set of
vertices D is an r-dominating set if for every vertex v ∈ V , there exists u ∈ D such that
dG(u, v) ≤ r.

I Definition 1 (Tree decomposition). A tree decomposition of G is a tree T whose nodes are
subsets Xi (so-called bags) of V satisfying the following conditions:
1. The union of all sets Xi is V .
2. For each edge (u, v) ∈ E, there is a bag Xi containing both u, v.
3. For a vertex v ∈ V , all the bags containing v make up a subtree of T .

The width of a tree decomposition T is maxi∈T |Xi| − 1 and the treewidth of G is the
minimum width among all possible tree decompositions of G. We will assume throughout
that graph G has treewidth tw and that we are given a tree decomposition of G of width tw.

A path decomposition is a tree decomposition whose underlying structure is a path. The
pathwidth of a path decomposition and a graph G is defined the same as treewidth.



G. Borradaile and H. Le 8:3

1.2.1 Upper and lower bounds for r-dominating set
The algorithm we give is a generalization of the O(3twtw2n)-time algorithm for DS given by
van Rooij, Bodlaender and Rossmanith [19].

I Theorem 2. There is an O((2r + 1)tw+1n)-time algorithm for rDS in graphs G with n
vertices and treewidth tw.

Demaine et al. [8] gave an algorithm with running time O((2r+1) 3
2 bwn) for rDS in graphs

of branchwidth bw; since branchwidth and treewidth are closely related by the inequality
bw ≤ tw + 1 ≤ b 3

2bwc (for which there are tight examples) [16], our algorithm improves
the exponential dependence. Our proof of the corresponding lower bound uses a high level
constructionz of Lokshtanov, Marx and Saurabh for DS [15] to get around the case when
log(2r + 1) is not an integer. However, to handle a wide range of values r, the gadgets we
require are non-trivial. We prove the following in Section 3.

I Theorem 3. If r-dominating set can be solved in (2r+ 1)(1−ε)pwnO(1) time in a graph with
pathwidth pw and n vertices for every ε < 1, then there is a δ < 1 such that SAT instances
of n0 variables can be solved in O∗(2δn0).

1.2.2 Upper and lower bounds for connected r-dominating set
As with the algorithms for connectivity problems with singly-exponential time dependence on
treewidth as introduced by Cygan et al. [6], our algorithm for rCDS is a randomized Monte-
Carlo algorithm. We note that there exists deterministic algorithms with singly-exponential
time dependence on treewidth for connected domination problems [2, 11]. However, these
algorithms have worse exponential time than the randomized algorithm that we present. As
for rDS, we include the details of this upper bound in Appendix B:

I Theorem 4. There is a O∗((2r + 2)tw+1)-time true-biased Monte-Carlo algorithm that
decides rCDS for graphs of treewidth tw.

The gadget construction from the lower bound of Cygan et al. [6] for r = 1 assigns truth
values to vertices of the gadget, and hence, it is not immediately extended to r ≥ 2. We
design a new construction that assigns truth values to edges of the gadget. Furthermore,
we employ the global construction in the proof of Theorem 3 to get around the case when
log(2r + 2) is not an integer. It turns out that our construction works for a wide range of
values of r. The following theorem is proved in Section 5.

I Theorem 5. If connected r-dominating set can be solved in (2r+ 2)(1−ε)pwnO(1) time in a
graph with pathwidth pw and n vertices for every ε < 1, then there is a δ < 1 such that SAT
instances of n0 variables can be solved in O∗(2δn0).

1.3 Motivation
Algorithms for problems in graphs of bounded treewidth are useful as subroutines in many
approximation algorithms for graphs having bounded local treewidth [10]; specifically,
polynomial-time approximation schemes (PTASes) for many problems, including dominating
set, TSP and Steiner tree, in planar graphs and graphs of bounded genus all reduce to the
same problem in a graph of bounded treewidth whose width depends on the desired preci-
sion [4, 5, 13, 1]. For sufficiently small r, Baker’s technique and Demaine and Hajiaghayi’s
bidimensionality framework imply PTASes for rDS and rCDS (respectively) [1, 7]. For larger

IPEC 2016



8:4 Optimal Dynamic Program for r-Domination Problems over Tree Decompositions

values of r, approximate r-domination can be achieved by the recent bi-criteria PTAS due to
Eisenstat, Klein and Mathieu [9]; they guarantee a (1 + ε)r-dominating set of size at most
1 + ε times the optimal r-dominating set. It is an interesting open question of whether a true
PTAS (without approximating the domination distance) can be achieved for rDS in planar
graphs for arbitrary values of r. We also note that the bi-criteria PTAS of Eisenstat, Klein
and Mathieu [9] is not an efficient PTAS, one which the degree of the polynomial in n (the
size of the graph) does not depend on the desired precision, ε. Our new lower bounds suggest
that, for large r, it may not be possible to design an efficient PTAS for rDS without also
approximating the domination distance, since the O∗(rtw) run-time of the dynamic program
becomes an O∗(r1/ε) run time for the PTAS.

2 Algorithm for r-dominating Set

In this section, we sketch the dynamic programming algorithm to find an optimal r-dominating
set and leave the details in Appendix A. To simplify the dynamic program, we will use a
nice tree decomposition1. Kloks shows how to make a tree decomposition nice in linear time
with only a constant factor increase in space (Lemma 13.1.2 [14]).

We denote the size of the bag Xi by ni. We use Vi to denote the set of vertices in
descendant bags of Xi. The dynamic programming table Ai for a node Xi of the tree
decomposition is indexed by bags of the tree decomposition and all possible distance-labelings
of the vertices in that bag. For a vertex v in bag Xi, a positive distance label for v indicates
that v is r-dominated at that distance in G[Vi], and a negative distance label for v indicates
that v should be r-dominated at that distance in G but not in G[Vi].

For an r-dominating set D, we say that D induces the labeling c : Xi → [−r, r] for bag
Xi such that:

c(u) =
{
dG(u,D) if dG[Vi](u,D ∩ Vi) = dG(u,D)
−dG(u,D) otherwise

If D induces the labeling c, the set D∩Vi is the partial solution associated with c. We limit
ourselves to labelings that are locally valid as optimal r-dominating sets in G induce locally
valid labelings at any bag of the tree decomposition; c is locally valid if |c(u)− c(v)| ≤ 1 for
any two adjacent vertices u, v ∈ Xi. If a labeling c is not locally valid, we define Ai[c] = −∞.

We show how to populate Ai from the populated tables for the child/children of Xi. Over
the course of the dynamic programming, we maintain the following correctness invariant at
all bags of the of the tree T :

Correctness Invariant. For any locally valid labeling c of Xi, we will maintain:

Ai[c] = min
D⊆V

D induces c

|D ∩ Vi| . (1)

Intuitively, Ai[c] is the minimum size of the partial solution associated with labeling c.
From the root bag X0, we can extract the minimum size of an r-dominating set from the
root’s table. This is the optimal answer by the correctness invariant and the definition of
induces.

We define an ordering � on labels for single vertices: `1 � `2 if |`1| = |`2| and `1 ≤ `2. We
extend this ordering to labelings c, c′ for a bag of vertices Xi by saying c � c′ if c(u) � c′(u)
for all u ∈ Xi.

1 The definition of a nice tree decomposition is in Appendix A



G. Borradaile and H. Le 8:5

I Lemma 6 (Ordering Lemma). Let D′ and D be two r-dominating sets that induce two
labelings c and c′ of a bag Xi such that (i) |D∩Xi| = A[c], (ii) |D′ ∩Xi| = A[c′] , (iii) c′ � c
and (iv) D has minimum size among r-dominating sets that induce c. If A[c′] > A[c], then
|D′| > |D|.

The Ordering Lemma tells us that if c′ � c and A[c′] > A[c], the r-dominating set that
induces c′ cannot be the minimum r-dominating set of the graph. Thus, we will maintain the
following Ordering Invariant to reduce the number of cases we need to consider in populating
the table of an introduce node and join node.

Ordering Invariant. If two labelings c and c′ of X satisfy c′ � c, then Ai[c′] ≤ Ai[c].

We sketch some ideas to show how to update the dynamic programming tables here and
leave the rest in Appendix A. There are four types of nodes in a nice tree decomposition:
leaf nodes, forget nodes, introduce nodes and join nodes and we will handle each type of
nodes separately. Leaf nodes and forget nodes can be handled straightforwardly and more
care is needed when when handling introduce nodes and join nodes. For introduce nodes, the
introduced vertices can r-dominate the vertices that are not r-dominated in the subgraph
induced by the descendant bags. Thus, we may need to change negative distance labelings
to positive distance labelings and that introduces some complication.

For join nodes, we need two intermediate tables, called the indication table and the
convolution table that can be computed efficiently from children tables. Suppose we are given
two dynamic programming tables of two children nodes Xj , Xk and we want to propagate the
dynamic programming table of the parent node Xi. The indication table indexes the solution
Aj [c] and is indexed by labellings and numbers from 0 to n. We initialize the indication
table Nj for Xj by (we likewise initialize Nk):

Nj [cj ][x] =
{

1 ifAj [cj ] = x

0 otherwise (2)

The convolution table N̄i for Xi (and likewise N̄j and N̄k for Xj and Xk) is also indexed
by labellings and numbers from 0 to n. However, we use a different labeling scheme. To
distinguish between the labeling schemes, we use the bar-labels [−r, . . . ,−1, 0, 1̄, . . . , r̄] for
the convolution table and c̄ to represent a bar-labeling of the vertices in a bag. We define
the convolution table in terms of the indication tables as:

N̄i[c̄][x] =
∑

c : |c(u)|=c̄(u)

Ni[c][x] (3)

We show (in Appendix A) that convolution tables can be computed from indication tables
and vice versa in time O(nni(2r + 1)ni) and the convolution table of a join node can be
efficiently computed from those of children nodes. This property gives us an efficient way to
update the dynamic programming table of a join node.

3 Lower Bound for r-dominating Set

In this section we prove Theorem 3 by giving a reduction from a SAT instance of n0 variables
and m clauses to an instance of r-dominating set in a graph of pathwidth pw such that:

pw ≤ n0p

bp log(2r + 1)c +O (rp) for any integer p. (4)

IPEC 2016



8:6 Optimal Dynamic Program for r-Domination Problems over Tree Decompositions

g1
g1

g2

P

g2

p1 p2 p3 p2r+1p1 p2 p3 p2r+1p

A A

B C B C

Figure 1 (a) An r-frame (r = 3). (b) An r-frame avoiding p (dashed edges to be deleted). (c)
Two r-frames and a path of length 2r + 1 (r=3). (d) Graph obtained from identifying the two
r-frames and path in (c).

Therefore, an O∗
(

(2r + 1)(1−ε)pw
)
-time algorithm for r-dominating set would imply an

algorithm for SAT of time O∗
(

(2r + 1)(1−ε)pw
)
which is O∗

(
2(1−ε)pw log (2r+1)). We argue

that for sufficiently large p depending only on ε, there is a δ such that:

(1− ε)pw log (2r + 1) = δn0

which would complete the reduction. By Equation (4),

(1− ε)pw log (2r + 1) = n0

(
(1− ε)p log (2r + 1)
bp log(2r + 1)c + O((1− ε)rp)

n0bp log(2r + 1)c

)
The second term in the bracketed expression is o(1) for large n0; we show that the first term
in the bracketed expression equal to δ which is less than 1 for sufficiently large p:

(1− ε)p log (2r + 1)
bp log(2r + 1)c ≤ bp log(2r + 1)c − εbp log(2r + 1)c+ 1

bp log(2r + 1)c = 1− ε+ 1
bp log(2r + 1)c

Therefore, choosing p sufficiently large makes this expression smaller than 1− ε/2.
Given an integer p, we assume, without loss of generality, that n is a multiple of

bp log(2r + 1)c. Divide the n0 variables of the SAT formula into t groups, F1, ...., Ft, each of
size bp log(2r+ 1)c; t = n0

bp log(2r+1)c . We assume that r ≥ 2. In the following, the length of a
path is given by the number of edges in the path.

r-frame
An r-frame is a graph obtained from a grid of size (r + 1)× (r + 1), adding edges along the
diagonal, removing vertices on one side of the diagonal, subdividing edges of the diagonal path
and connecting the subdividing vertices to the vertices of the adjacent triangles. The vertex
A is the top of the r-frame and the path BC is the bottom path of the r-frame. A necessary
condition of the r-frame is that the center vertex of the bottom path must r-dominate the
whole r-frame. An r-frame avoiding a vertex p of the bottom path is the graph obtained
by deleting edges not in the bottom path and incident to p. We define identification to be
the operation of identifying the bottom paths of one or more r-frames with a path of length
2r + 1 (see Fig. 1).

The group gadget
We construct a gadget to represent each group of variables as follows. Let P = {P1, P2, ..., Pp}
be a set of p paths, each of length 2r+ 1. For each path Pi, we construct a graph Ci from Pi



G. Borradaile and H. Le 8:7

s1 s2 s3 s4 s5 s2r+2s2r+1s2r

a1

a2

a3

a4

a5

a6 a2r

a2r+1

a2r+2

a2r+3

s1 s2 s3 s4 s5

a2 a4 a6

s2r+2s2r+1s2r

a2r+1

a2r+2

a2r+3

s1 s2 s3 s4 s5 s2r+2s2r+1s2r

a1

a2

a3

a4

a5

a6 a2r

a2r+1

a2r+2

a2r+3

Pr(2r)

xS

Pr(2r)

Pr(2r)

xS(2r+2)P

a1 a3 a5

C1

C2

CP

Path of length r − 1

x̄S

x̄S(2r+2)P

x

Figure 2 The group gadget. The red edges are edges of r-frames with top xS .

by identifying two r-frames with top vertices g1 and g2, called guards, to Pi. In the remaining
steps of the construction, we will only connect different parts of the gadget to the vertices of
P. In order to r-dominate the guards, we see:

I Observation 7. At least one vertex of Ci will be required in the dominating set in order to
r-dominate Ci.

Let S be a set of p vertices, one selected from each path in P. Let S be the collection
of all such sets. We injectively map each set in S to a particular truth assignment for the
corresponding group of variables. Since the number of sets in S maybe larger than the number
of truth assignments, we remove the sets that are not mapped to any truth assignment. For
every S ∈ S, add a vertex xS , and for each P ∈ P , identify an r-frame with top xS avoiding
the vertex in S ∩ P with P (see Figure 2). Attach each xS to a distinct vertex x̄S via a path
of length r − 1. We then connect x̄S to two new vertices x and x′, for all S ∈ S, and attach
paths of length r − 1 to each of x and x′. Since no vertex in P can r-dominate, for example,
x, we get:

I Observation 8. The group gadget requires at least p+ 1 vertices to be r-dominated.

The super group gadgets
Recall that m is the number of clauses of the SAT instance. For each group Fi, create
m(2rpt+1) copies {B̂1

i , ..., B̂
(2rpt+1)m
i } of a group gadget. For every j = 1, . . . , (2rpt+1)m−1

and ` = 1, . . . , p, connect the last vertex of P` in B̂ji to the first vertex of P` in B̂j+1
i . Add

two vertices h1 and h2, connect h1 to the first vertices of paths in B̂1
i and h2 to the last

vertices of paths in B̂m(2rpt+1)
i and attach two paths of length r to each of h1 and h2 (see

Figure 3).

IPEC 2016



8:8 Optimal Dynamic Program for r-Domination Problems over Tree Decompositions

path of length r-1

B̂xi

c`j

h1 h2

Figure 3 The super group gadgets. Each shaded square represents a group gadget. Each row of
group gadgets represents one group of variables. Each column of group gadgets represents all groups.

Connecting the super group gadget to represent a SAT formula

Recall that each set S ∈ S for a particular group of variables corresponds to a particular truth
assignment for that group of variables. For each clause j, we create 2rpt+ 1 clause vertices c`j
for ` = 0, . . . , 2ptr and connect each clause vertex to all vertices x̄S in {B̂m`+ji |i = 1, . . . , t},
for all S ∈ S that correspond to truth assignments that satisfy the clause j. Connect a path
of length r − 1 to each clause vertex.

I Lemma 9. If φ has a satisfying assignment, G has a r-dominating of size (p+ 1)tm(2rpt+
1) + 2.

Proof. Given a satisfying assignment of φ, we construct the dominating set D of G as follows.
For each group gadget Bji , 1 ≤ i ≤ t, 1 ≤ j ≤ m(2rpt + 1), we will select {x̄S} ∪ S, for S
corresponding to the satisfying assignment of the group variables, for the r-dominating set.
S r-dominates:

All the guards and some vertices of their r-frames within distance r from S.
All the vertices xS′ and some vertices of their r-frames within distance r from S for all
S′ ∈ S\{S}.
All the vertices of the path Pi in Bji and maybe some vertices of its copies in Bj+1

i and
Bj−1
i within distance r from S (see Figure 4)

The remaining vertices of the r-frames of guards and xS for S ∈ S that are not r-
dominated by S in Bji would be r-dominated by the set S of the nearby group gadgets. The
set of vertices that are r-dominated by the vertex x̄S include:

The vertices of the path from xS to x̄S .
The clause vertex connected to x̄S and its attached path.
The vertex x and x′ and their attached paths.
The vertices x̄S′ and the vertices of the path from xS′ to x̄S′ for S′ ∈ S\{S}.



G. Borradaile and H. Le 8:9

Pi Pi

(a) a path in B̂ji (b) a path in B̂j+1
i

g1

g2

g1

g2

Figure 4 Two paths Pi in two consecutive gadgets for r = 3. Two circled vertices are in the
r-dominating set D. The vertex p1

i of the gadget B̂j+1
i is not dominated by the vertex p5

i of the
same gadget but it is dominated by the vertex p5

i of B̂ji . The distance between two circled vertices
must be no larger than 7 (= 2r + 1). The numbering of the vertices of the horizontal path is shown
in Figure 1.

Taking the union over all t groups, and all m(2rpt+ 1) copies of the group gadgets in the
super group gadgets gives (p+ 1)tm(2rpt+ 1) vertices. Adding vertices h1 and h2 gives the
lemma. J

I Lemma 10. If G has a r-dominating set of size (p + 1)tm(2ptr + 1) + 2, then φ has a
satisfying assignment.

Proof. Let D be the r-dominating set of size (p+ 1)tm(2ptr + 1) + 2. Since some vertices
in the paths attached to h1 and h2 must be in D, we can replace these with h1 and h2.
By observation 8, at least (p + 1) vertices of each group gadget must be in D, which
implies that exactly (p + 1) vertices are chosen from each group gadget since there are
tm(2ptr + 1) group gadgets. Let B̂ji , 1 ≤ i ≤ t, 1 ≤ j ≤ m(2ptr + 1) be a group gadget and
let Pk ∈ P = {P1, . . . , Pp} be a path of B̂ji . By observation 7, at least one vertex from each
Pk, 1 ≤ k ≤ p must be included in D. To dominate the vertex x and x′ and their attached
paths, at least one vertex from the set {x̄S |S ∈ S} must be selected. Therefore, the set of
p+ 1 vertices in D ∩ B̂ji includes:

p vertices, one from each path Pk, 1 ≤ k ≤ p, which make up the set S.
the vertex x̄S that corresponds to xS since xS is not dominated by S.

We say that the dominating set D is consistent with a set of gadgets {B̂i}ki=1 iff D ∩ P is
the same for all B̂i. We show that there exists a number ` ∈ {0, 1, . . . , 2rtp} such that D is
consistent with the set of gadgets {B̂m`+ji |1 ≤ j ≤ m} for each 1 ≤ i ≤ t. For two consecutive
gadgets B̂qi and B̂q+1

i , if two vertices pai and pbi of the path Pi in B̂qi and of its copy in B̂q+1
i ,

respectively, are selected, the distance between them must be less than 2r + 1 (see Figure 4).
Therefore, we have b ≤ a. We call two consecutive gadgets B̂qi and B̂q+1

i a bad pair if b < a.
Since the distance between pai and pbi is smaller than 2r+1, there are at most 2pr consecutive
bad pairs for each i and for t groups of variables Fi, 1 ≤ i ≤ t, the number of bad pairs is no
larger than 2rpt. By the pigeonhole principle, there exists a number ` ∈ {0, 1, . . . , 2rtp} such
that D is consistent with the set of gadgets B̂m`+ji , 1 ≤ j ≤ m for all i.

For each i ∈ {1, . . . , t}, let {B̂m`+ji |1 ≤ j ≤ m} for some ` ∈ {0, 1, . . . , 2prt} be the
set of group gadgets that is consistent with D and let Fi be the corresponding group of
variables. We assign to the variables of group Fi the values of assignment corresponding
to the selected set S. This assignment satisfies the clauses of φ that are connected to the
vertices x̄S . Because all clauses of φ are r-dominated, the truth assignment of all groups
Fi, 1 ≤ i ≤ t, makes up a satisfying assignment of φ. J

IPEC 2016



8:10 Optimal Dynamic Program for r-Domination Problems over Tree Decompositions

We prove the following bound on pathwidth using a mixed search game [17]. We view the
graph G as a system of tunnels. Initially, all edges are contaminated by a gas. An edge can
be cleared by placing two searchers at both ends of that edge simultaneously or by sliding a
searcher along that edge. A cleared edge can be recontaminated if there is a path between
this edge and a contaminated edge such that there is no searcher on this path. Set of rules
for this game includes:

Placing a searcher on a vertex.
Removing a searcher from a vertex.
Sliding a searcher on a vertex along an incident edge.

A search is a sequence of moves following these rules. A search strategy is winning if all edges
of G are cleared after its termination. The minimum number of searchers required to win
is the mixed search number of G, denoted by ms(G). The following relation is established
in [17]:

pw(G) ≤ms(G) ≤ pw(G) + 1 .

I Lemma 11. pw(G) ≤ tp+O(rp).

Proof. We give a search strategy using at most tp + O((2r + 1)p) searchers. For a group
gadget B̂, we call the sets of vertices {P 1

i |1 ≤ i ≤ p} and {P 2r+1
i |1 ≤ i ≤ p} the sets of entry

vertices and exit vertices, respectively. We search the graph G in m(2rpt+1) rounds. Initially,
we place tp searchers on the entry vertices of t group gadgets B̂1

i , 1 ≤ i ≤ t. We use one more
searcher to clear the path and the edges incident to h1. In round b, 1 ≤ b ≤ m(2prt + 1)
such that b = m`+ j, 0 ≤ ` ≤ 2prt+ 1, 1 ≤ j ≤ m, we keep tp searchers on the entry vertices
of all group gadgets B̂ml+ji , 1 ≤ i ≤ t. We clear the group gadget B̂ml+ji by using at most
5(2r + 1)p+ 4 searchers in which:

(2r + 1)p searchers are placed on the vertices of p paths in P.
2(2r + 1) searchers to clear the guards and their r-frames.
3 searchers are placed on x, x′ and c`j and one more searcher to clear their attached paths.
2(2r + 1) to clear xS and their r-frames for all S ∈ S.

After B̂ml+ji is cleared, we keep searchers on the exit vertices and c`j , remove other searchers
and reuse them to clear B̂ml+ji+1 . After all the group gadgets in round b are cleared, we slide
searchers on the exit vertices of B̂bi to the entry vertices of B̂b+1

i for all 1 ≤ i ≤ t and start
a new round. When b = m(2rpt + 1), we need one more searcher to clear the path and
the edges incident to h2. In total, we use at most tp+ (5 + p)(2r + 1) + 4 searchers which
completes the proof of the lemma. J

Combined with Lemmas 9 and 10, we get Theorem 3.

4 Algorithm for Connected r-dominating Set

We apply the Cut&Count technique by Cygan et al. [6] to design a randomized algorithm
which decides whether there is a connected r-dominating set of a given size in graphs of
treewidth at most tw in time O((2r+ 2)twnO(1)) with probability of false negative at most 1

2
and no false positives.

Rather than doubly introduce notation, we give an overview of the Cut&Count technique
as applied to our connected r-dominating set problem. The goal is, rather than search
over the set of all possible connected r-dominating sets, which usually results in Ω(twtw)
configurations for the dynamic programming table, to search over all possible r-dominating
sets. Formally, let S be the family of connected subsets of vertices that r-dominate the input



G. Borradaile and H. Le 8:11

graph and let Sk ⊆ S be the subset of solutions of size k. Likewise, let R be the family of
(not-necessarily-connected) subsets of vertices that r-dominate the input graph and similarly
define Rk. Note that S and Sk are subsets of R and Rk, respectively. We wish to determine,
for a given k, whether Sk is empty. We cannot, of course, simply determine whether Rk is
empty. Instead, for every subset of vertices U , we derive a family C(U) whose size is odd only
if G[U ] is connected. Further, we assign random weights ω to the vertices of the graph, so
that, by the Isolation Lemma (formalized below), the subset of Sk contains a unique solution
of minimum weight with high probability. We can then determine, for a given k, the parity
of | ∪U∈Rk : ω(U)=W C(U)| for every W . We will find at least one value of W to result in odd
parity if Sk is non-empty.

The Isolation Lemma was first introduced by Valiant and Vazirani [18]. Given a universe
U of |U| elements and a weight function ω : U → Z. For each subset X ⊆ U, we define
ω(X) =

∑
x∈X ω(x). Let F be a family of subsets of U. We say that ω isolates a family F if

there is a unique set in F that has minimum weight.

I Lemma 12 (Isolation Lemma). For a set U, a random weight function ω : U→ {1, 2, . . . , N},
and a family F of subsets of U:

Prob[ω isolates F ] ≥ 1− |U|
N

.

Throughout the following, we fix a root vertex, ρ, of the graph G = (V,E) and use a
random assignment of weights to the vertices ω : V → {1, 2, . . . , 2n}.

4.1 Cutting
Given a graph G = (V,E), we say that an ordered bipartition (V1, V2) of V is a consistent
cut of G if there are no edges in G between V1 and V2 and ρ ∈ V1. We say that an ordered
bipartition (C1, C2) of a subset C of V is a consistent subcut if there are no edges in G

between C1 and C2, and, if ρ ∈ C then ρ ∈ C1.

I Lemma 13 (Lemma 3.3 [6]). Let C be a subset of vertices that contains ρ. The number of
consistent cuts of G[C] is 2cc(G[C])−1 where cc(G[C]) is the number of connected components
of G[C].

Recall the definitions of S, Sk, R and Rk from above. We further let Sk,W be the subset
of Sk with the further restriction of having weight W : Sk,W = {U ∈ Sk : ω(U) = W}.
Similarly, we define Rk,W . Let Ck,W be the family of consistent cuts derived from Rk,W as:

Ck,W = {(C1, C2)) : C ∈ Rk,W and (C1, C2) is a consistent cut of G[C]} .

Since the number of consistent cuts of G[C] for C ∈ Sk,W is odd by Lemma 13 and the
number of of consistent cuts of G[C] for C ∈ Rk,W \ Sk,W is even by Lemma 13, we get:

I Lemma 14 (Lemma 3.4 [6]). For every W , |Sk,W | ≡ |Ck,W | (mod 2).

4.2 Counting
Lemma 14 allows us to focus on computing |Ck,W | (mod 2). In Appendix B, we give an
algorithm to compute |Ck,W | for all k and W (W ∈ {1, 2, . . . , 2n2}):

I Lemma 15. There is an algorithm which computes |Ck,W | for all k and W in time
O(k2n4(2r + 2)tw).

IPEC 2016



8:12 Optimal Dynamic Program for r-Domination Problems over Tree Decompositions

s1 s2 s3 s4 s5 s6 s2r+2s2r+1s2r

a1

a2

a3

a4

a5

a6

a7

a2r

a2r+1

a2r+2

a2r+3

Figure 5 A core for group gadgets. The dashed lines represent paths of length r + 1 connected
to rT .

Let k∗ be the size of the smallest connected r-dominating set. Since the range of ω has size
2n, by the Isolation Lemma, the smallest value W ∗ of W such that Sk∗,W is non-empty also
implies that |Sk∗,W∗ | = 1 with probability 1/2. By Lemma 14, |Ck∗,W∗ | is also odd (with
probability 1/2). We can then find |Ck∗,W∗ | by linear search over the possible values of W .
Thus Lemma 15 implies Theorem 4

5 Lower Bound for Connected r-dominating Set

In this section, we prove Theorem 5. The main idea is similar to that of the previous section:
a reduction from n0-variable, m-clause SAT to an instance of connected r-dominating set in
a graph of pathwidth pw such that:

pw ≤ n0p

bp log(2r + 2)c +O
(
(2r + 2)2p) for any integer p.

Given this reduction, the final argument for Theorem 5 is similar to the argument at the
beginning of Section 3. Let φ be a SAT formula with n0 variables and m clauses. For a
given integer p, we assume that n0 is divisible by bp log(2r + 2)c. We partition φ’s variables
into t = n

bp log(2r+2)c groups of variables {F1, F2, . . . , Ft} each of size bp log(2r + 2)c. We will
speak of an r-dominating tree as opposed to a connected r-dominating set: the tree is simply
a witness to the connectedness of the r-dominating set. We treat the problem as rooted: our
construction has a global root vertex, rT , which we will require to be in the rCDS solution.
This can be forced by attaching a path of length r to rT .

Core
A core is composed of a path with 2r+3 vertices a1, a2, . . . , a2r+3, 2r+2 edges s1, s2, . . . , s2r+2
(called segments), consecutive odd-indexed vertices connected by a subdivided edge and
consecutive even-indexed vertices connected by a subdivided edge. The even indexed vertices
a2, a4, . . . , a2r+2 are connected to the root rT via paths of length r + 1 (see Figure 5).

Pattern
A pattern Pr(q) is a tree-like graph with q leaves and a single root rP such that the distance
from the root to the leaves is r. The structure depends on the parity of r; if r is even, the
children of vertex h are connected by a clique (indicated by the oval). The dotted lines
represent paths of length r−1

2 for r odd and r
2 − 1 for r even (see Figure 6).



G. Borradaile and H. Le 8:13

p1 p2 p3 p4 pq

h

rP

p1 p2 p3 p4 pq

h

rP

(a) Pr(q) when r is odd

r+1
2

r−1
2

r
2 + 1

r
2 − 1

(b) Pr(q) when r is even
p1 p2 p3 pq

Pr(q)

(c) shorthand for Pr(q)

rP

Figure 6 A pattern Pr(q) with root rP . The oval in (b) is a clique between neighboring vertices
of the vertex h.

I Observation 16. A leaf of a pattern r-dominates all but the other leaves of the pattern.

Given a set of q vertices X, we say that pattern Pr(q) is attached to set X if the leaves of
Pr(q) are identified with X.

Core gadget
We connect patterns to the core in such a way as to force a minimum solution to contain
a path from rT to the core, ending with a segment edge. To each core that we use in the
construction, we attach one pattern Pr(r + 1) to the odd-indexed vertices a1, a2, . . . , a2r+1
(but not a2r+3) and another pattern Pr(r + 1) to the even-indexed vertices a2, a4, . . . , a2r+2.
In order to r-dominate the roots of these patterns, the dominating tree must contain a path
from rT to an odd-indexed vertex and to an even-indexed vertex. We attach additional
path-forcing patterns to guarantee that, even after adding the rest of the construction, this
path will stay in the dominating tree. For i = 1, . . . , r, for the r + 1 vertices that are i hops
from rT , we attach a pattern Pr(r + 1). As a result, at least one vertex at each distance
from rT must be included in the dominating tree. A core gadget is a subgraph of the larger
construction such that edges from the remaining construction only attach to the vertices
a1, a2, . . . , a2r+3 and rT . The previous observations guarantee:

I Observation 17. The part of a rCDS that intersects a core gadget can be modified to
contain a path from rT to an odd-indexed vertex (via a segment edge) without increasing its
size.

Group gadget
For each group Fi of variables, we construct a group gadget which consists of p cores
{C1, C2, . . . , Cp}. Let S be a set of p segments, one from each core, and let S be a collection
of all possible such sets S; therefore |S| = (2r + 2)p. Since a group represents bp log(2r + 2)c
variables, there are at most 2p log(2r+2) = (2r+2)p truth assignments to each group of variables.
We injectively map each set in S to a particular truth assignment for the corresponding
group of variables. Since the number of sets in S maybe larger than the number of truth
assignments, we remove the sets that are not mapped to any truth assignment. For each
set S ∈ S, we connect a corresponding set pattern Pr(2rp) to the cores as follows. For each
i = 1, . . . , p, Pr(2rp) is attached to

the vertices a1, a2, . . . , a2r+2 of Ci except the endpoints of sj if sj ∈ S
the vertices a2, a3, . . . , a2r+1 if s2r+2 ∈ S

IPEC 2016



8:14 Optimal Dynamic Program for r-Domination Problems over Tree Decompositions

s1 s2 s3 s4 s5 s2r+2s2r+1s2r

a1

a2

a3

a4

a5

a6 a2r

a2r+1

a2r+2

a2r+3

s1 s2 s3 s4 s5

a2 a4 a6

s2r+2s2r+1s2r

a2r+1

a2r+2

a2r+3

s1 s2 s3 s4 s5 s2r+2s2r+1s2r

a1

a2

a3

a4

a5

a6 a2r

a2r+1

a2r+2

a2r+3

Pr(2r)

xS

Pr(2r)

Pr(2r)

xS(2r+2)P

a1 a3 a5

C1

C2

CP

Path of length r − 1

x̄S

x̄S(2r+2)P

x

Figure 7 A group gadget. Red segments are segments of the set S. The vertex xS is the root of
the pattern shown. The dashed lines represent paths of length r + 1 connected to rT .

We label the root of this pattern by the set vertex xS . We then connect these set patterns
together. For each S ∈ S, we connect:

xS to a new vertex x̄S via a path of length r − 1
x̄S to the root rT via paths of length r + 1
x̄S to a common vertex x, and
x to a path of length r − 1.

Similarly, as in the core gadget construction, for the set of vertices {x̄S |S ∈ S}, we add
path forcing patterns Pr(|S|) to each level of vertices along the paths from r to x̄S , S ∈ S
(see Figure 7).

I Observation 18. The part of a rCDS that intersects a group gadget can be modified to
contain a path from rT to a vertex in the set {x̄S |S ∈ S} without increasing its size.

Super-path
A super path Fi is a graph that consists of X = m ((2r + 1)pt+ 1) copies of the group
gadget B1

i , B
2
i , . . . , B

X
i , which are assembled into a line (m is the number of clauses). Vertex

a2r+s of every core gadget of the group gadget Bji is identified with the vertex a1 of the
corresponding core gadget of the group gadget Bj+1

i . The vertices a1 and a2r+3 of the core
gadgets of B1

i and BXi are directedly connected to the root rT . In order to dominate all the
odd- and even-indexed vertices of the cores (without spanning more than one segment edge
per core), we must have:



G. Borradaile and H. Le 8:15

I Observation 19. If an endpoint of segment edge sj in the tth core of Bki is in the rCDS,
then there must be an endpoint of a segment sj′ in the tth core of Bk+1

i that is also in the
rCDS, for j′ ≤ j.

Representing clauses
For each clause Cj of φ, we introduce ((2r + 1)pt+ 1) clause vertices c`j , 0 ≤ ` ≤ (2r + 1)pt.
(There are m((2r + 1)pt+ 1) clause vertices in total.) For a fixed i (1 ≤ i ≤ t) and for each
c`j , (1 ≤ j ≤ m, 0 ≤ ` ≤ (2r + 1)pt), we connect c`j to Bm`+ji by connecting it directly to
the subset of vertices in the set {x̄S |S ∈ S} of Bm`+ji such that the truth assignments of
the corresponding subsets in the collection S satisfy the clause Cj . Each clause vertex is
attached to a path of length r − 1. Denote the final constructed graph as G.

I Lemma 20. If φ has a satisfying assignment, G has a connected r-dominating set of
((r + 2)p+ r + 1)tm((2r + 1)tp+ 1) + 1 vertices.

Proof. Given a satisfying assignment of φ, we construct an r-dominating tree T as follows.
For group i, let Si be the set of p segments which corresponds to the truth assignment of
variables of Fi. In addition to the root, T contains:

The path of length r + 2 from rT that ends in each segment of Si for every group in the
construction. Each such path contains r+ 2 vertices in addition to the root. As there are
tm((2r + 1)tp+ 1) groups and p cores per group, this takes (r + 2)ptm((2r + 1)tp+ 1)
vertices. By Observation 16, this set of vertices will r-dominate all of the non-leaf vertices
of all the patterns in the core gadget, since all these patterns include a leaf in one of these
paths. This set of vertices will also dominate xS for every S 6= Si since S will connect to
the endpoints of at least one segment edge that is not in Si.
For each group, the path of length r + 1 from rT to x̄Si . Each such path contains r + 1
vertices (not including the root). As there are tm((2r + 1)tp + 1) groups, this takes
(r + 1)tm((2r + 1)tp+ 1) vertices (not including the root). The vertex x̄Si r-dominates
the vertices on the path from xSi

to x̄Si
, the vertex x and the path attached to it, the

clause vertex connected to x̄Si and its attached path and the vertices on the path from
xS to x̄S , not including xS , for every S 6= Si. J

I Lemma 21. If G has an r-dominating tree of ((r + 2)p + r + 1)tm((2r + 1)tp + 1) + 1
vertices, then φ has a satisfying assignment.

Proof. Let T be the r-dominating tree; T contains the root rT . By Observations 17 and 18,
each group gadget requires at least (r + 2)p+ r + 1 vertices (not including the root) in the
dominating tree. Since the number of copies of group gadget is tm((2r + 1)tp + 1), this
implies exactly (r + 2)p+ r + 1 vertices of each group gadget will be selected in which:

For each core gadget, exactly one segment si in the set {s1, s2, . . . , s2r+2} and a path
connecting it to the root rT are selected which totals (r+ 2)p vertices for p cores. Denote
the set of p selected segments by S.
r + 1 vertices on the path from x̄S to the root rT .

We say that T is consistent with a set of group gadgets iff the set of segments in T are the
same for every group gadget. If two segments sa and sb of two consecutive cores in group
gadgets Bqi and Bq+1

i , respectively, are in T , by Observation 19, we have b ≤ a. If b < a, we
call sa and sb a bad pair. Since there are p cores in which there can be a bad pair, and each
core has 2r+ 2 segments, for each super-path, there can be at most (2r+ 1)p consecutive bad
pairs. Since we have t super-paths, there are at most tp(2r+ 1) bad pairs. By the pigeonhole

IPEC 2016



8:16 Optimal Dynamic Program for r-Domination Problems over Tree Decompositions

principle, there exists a number ` ∈ {0, 1, . . . , tp(2r + 1)} such that T is consistent with the
set of gadgets {Bm`+ji |1 ≤ i ≤ t, 1 ≤ j ≤ m}.

Let {Bm`+ji |1 ≤ i ≤ t, 1 ≤ j ≤ m} be the set of group gadgets which is consistent with T .
For each group gadget Bm`+ji , we assign the truth assignment corresponding to the set of
segments S ∈ T ∩Bm`+ji to variables in the group Fi. The assignment of variables in all Fi
makes up a satisfying assignment of φ, since all clause vertices are r-dominated by T . J

I Lemma 22. pw(G) ≤ tp+O((2r + 2)2p).

By slightly adapting the proof of Lemma 11, we can prove Lemma 22 and we leave the details
as an exercise to readers.

Acknowledgement. We thank the anonymous reviewers for helpful comments and for
pointing out the mistake in the earlier version of the proof of Theorem 3.

References
1 B. Baker. Approximation algorithms for NP-complete problems on planar graphs. Journal

of the ACM, 41(1):153–180, 1994. doi:10.1145/174644.174650.
2 H.L. Bodlaender, M. Cygan, S. Kratsch, and J. Nederlof. Deterministic single exponential

time algorithms for connectivity problems parameterized by treewidth. In Proceedings of
the 40th International Colloquium on Automata, Languages and Programming, ICALP’13,
pages 196–207, 2013. doi:10.1007/978-3-642-39206-1_17.

3 H.L. Bodlaender and B.A. Fluiter. Reduction algorithms for graphs of small treewidth.
Information and Computation, 167(2):86–119, 2001. doi:10.1006/inco.2000.2958.

4 G. Borradaile, E. Demaine, and S. Tazari. Polynomial-time approximation schemes for
subset-connectivity problems in bounded-genus graphs. Algorithmica, 68(2):287–311, 2014.
doi:10.1007/s00453-012-9662-2.

5 G. Borradaile, P. Klein, and C. Mathieu. An O(n logn) approximation scheme for Steiner
tree in planar graphs. ACM Transactions on Algorithms, 5(3):31:1–31:31, 2009. doi:
10.1145/1541885.1541892.

6 M. Cygan, J. Nederlof, M. Pilipczuk, J.M.M. van Rooij M. Pilipczuk, and J.O. Wo-
jtaszczyk. Solving connectivity problems parameterized by treewidth in single exponential
time. In Proceedings of the 2011 IEEE 52nd Annual Symposium on Foundations of Com-
puter Science, FOCS’11, pages 150–159, 2011. doi:10.1109/FOCS.2011.23.

7 E. Demaine, M. Hajiaghayi, and B. Mohar. Approximation algorithms via contraction
decomposition. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA’07, pages 278–287, 2007.

8 E.D. Demaine, F.V. Fomin, M. Hajiaghayi, and D.M. Thilikos. Fixed-parameter al-
gorithms for the (k, r)-center in planar graphs and map graphs. In Proceedings of the 30th
International Conference on Automata, Languages and Programming, ICALP’03, pages
829–844, 2003. doi:10.1007/3-540-45061-0_65.

9 D. Eisenstat, P.N. Klein, and C. Mathieu. Approximating k-center in planar graphs. In
Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’14,
pages 617–627, 2014.

10 D. Eppstein. Diameter and treewidth in minor-closed graph families. Algorithmica,
27(3):275–291, 2000. doi:10.1007/s004530010020.

11 F.V. Fomin, D. Lokshtanov, and S. Saurabh. Efficient computation of representative sets
with applications in parameterized and exact algorithms. In Proceedings of the 25th Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA’14, pages 142–151, 2014.

http://dx.doi.org/10.1145/174644.174650
http://dx.doi.org/10.1007/978-3-642-39206-1_17
http://dx.doi.org/10.1006/inco.2000.2958
http://dx.doi.org/10.1007/s00453-012-9662-2
http://dx.doi.org/10.1145/1541885.1541892
http://dx.doi.org/10.1145/1541885.1541892
http://dx.doi.org/10.1109/FOCS.2011.23
http://dx.doi.org/10.1007/3-540-45061-0_65
http://dx.doi.org/10.1007/s004530010020


G. Borradaile and H. Le 8:17

12 R. Impagliazzo and R. Paturi. On the complexity of k-SAT. Journal of Computer and
System Sciences, 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

13 P.N. Klein. A linear-time approximation scheme for TSP in undirected planar graphs
with edge-weights. SIAM Journal on Computing, 37(6):1926–1952, 2008. doi:10.1137/
060649562.

14 Ton Kloks, editor. Treewidth, Computations and Approximations, volume 842. Springer
Berlin Heidelberg, 1994. doi:10.1007/BFb0045375.

15 D. Lokshtanov, D. Marx, and S. Saurabh. Known algorithms on graphs of bounded
treewidth are probably optimal. In Proceedings of the 22nd Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA’11, pages 777–789, 2011.

16 N. Robertson and P.D. Seymour. Graph minors. X. obstructions to tree-decomposition.
Journal of Combinatorial Theory, Series B, 52(2):153–190, 1991. doi:10.1016/
0095-8956(91)90061-N.

17 A. Takahashi, S. Ueno, and Y. Kajitani. Mixed searching and proper-path-width. Theor-
etical Computer Science, 137(2):253–268, 1995. doi:10.1007/3-540-54945-5_50.

18 L.G. Valiant and V.V. Vazirani. NP is as easy as detecting unique solutions. Theoretical
Computer Science, 47(0):85–93, 1986. doi:10.1016/0304-3975(86)90135-0.

19 J.M.M. van Rooij, H. L. Bodlaender, and P. Rossmanith. Dynamic programming on
tree decompositions using generalised fast subset convolution. In Proceedings of 17th
European Symposium on Algorithms, ESA’09, pages 566–577, 2009. doi:10.1007/
978-3-642-04128-0_51.

A Details of the Dynamic Programming Algorithm for r-dominating
Set

I Definition 23 (Nice tree decomposition). A tree decomposition T of G is nice if the following
conditions hold:

T is rooted at node X0.
Every node has at most two children.
Any node Xi of T is one of four following types:
leaf node: Xi is a leaf of T ,
forget node: Xi has only one child Xj and Xi = Xj\{v} ,
introduce node: Xi has only one child Xj and Xj = Xi\{v},
join node: Xi has two children Xj , Xk and Xi = Xj = Xk.

We will show how to handle each of the four types of nodes (leaf, forget, introduce and
join) in turn. We use #0(Xi, c) to denote the number of vertices in Xi that are assigned
label 0 in c in populating the tables for leaf and join nodes. We say v positively resolves u if
c(v) = c(u)− 1 when c(u) > 0; we use this definition for leaf and introduce nodes.

Leaf Node

We populate the table Ai for a leaf node Xi as follows:

Ai[c] =


0 if c is locally valid and all negative
#0(Xi, c) if c is locally valid and all positive are positively resolved
∞ otherwise

(5)

We can populate the table for a leaf node in O(n2
i (2r + 1)ni) time. Also, we can prove

the correctness invariant is maintained at leaf nodes by induction on the label of vertices.

IPEC 2016

http://dx.doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1137/060649562
http://dx.doi.org/10.1137/060649562
http://dx.doi.org/10.1007/BFb0045375
http://dx.doi.org/10.1016/0095-8956(91)90061-N
http://dx.doi.org/10.1016/0095-8956(91)90061-N
http://dx.doi.org/10.1007/3-540-54945-5_50
http://dx.doi.org/10.1016/0304-3975(86)90135-0
http://dx.doi.org/10.1007/978-3-642-04128-0_51
http://dx.doi.org/10.1007/978-3-642-04128-0_51


8:18 Optimal Dynamic Program for r-Domination Problems over Tree Decompositions

Forget Node

Let Xi be a forget node with child Xj and Xi = Xj ∪ {u}. Let ci be a labeling of Xi. We
consider extensions of ci to labelings cj = ci × d of Xj as follows:

cj(v) =
{
ci(v) if v ∈ Xi

d otherwise .

We populate the table Ai for forget node Xi as follows:

Ai[ci] = min
{
Aj [ci × d] ∀d < 0,∃ a v in Xi s.t. ci(v) = d+ dG(u, v)
Aj [ci × d] ∀d ≥ 0

. (6)

Assuming the correctness invariant for Aj , we can show that the correctness invariant
is maintained for forget nodes. For running time, we can check the condition for the first
case of Equation (6) in time proportional to the degree of u in Xj (O(ni)). Thus, we can
populate the table for a forget node Xi with child Xj in O(ni(2r + 1)nj ) time.

Introduce Node

Let Xi be an introduce node with its child Xj and Xi = Xj ∪{u}. We show how to compute
Ai[ci] where ci = cj × d is the extension of a labeling cj for Xj to Xi where u is labeled d.
We define a map φ applied to the label cj(v) of a vertex v:

φ(cj(v)) =
{
−cj(v) if cj(v) > 0 and dG[Vi](v, u) = dG(u, v) = cj(v)− d
cj(v) otherwise

.

We use φ(cj) to define the natural extension this map to a full labeling of Xj . Clearly
φ(cj) � cj . This map corresponds to the lowest ordering label that is � cj that we use in
conjunction with the Ordering Invariant. Note that φ will be used only for d ≥ 0. There are
three cases for computing Ai[cj × d], depending on the value of d:
d = 0: In this case, u is in the dominating set. If a vertex v ∈ Xj is to be r-dominated

by u via a path contained in G[Vi], it will be represented by the table entry in which
cj(v) = −dG(u, v). Therefore Aj [c′j ] + 1 corresponds to the size of a subset of Vi that
induces the positive labels of cj × 0 for any c′j � cj and where cj(v) = dG(u, v) =
dG[Vi](v, u). The Ordering Invariant tells us that the best solution is given by the rule
Ai[cj × 0] = Ai[φ(cj)× 0] = Aj [φ(cj)] + 1.

d > 0: In this case, u is r-dominated is to be dominated by a vertex in Vi via a path contained
by G[Vi]. Therefore, we require there be a neighbor v of u in Xj (with a label) that
positively resolves u; otherwise, the labeling cj×d is infeasible. Further, for other vertices
v′ of Xj which are r-dominated by a vertex of Vi by a path through u and contained by
G[Vi], the condition of the mapping φ must hold dG(v′, u) = dG[Vi](v′, u) = cj(v′)− d. As
for the previous case, the Ordering Invariant tells us that the best solution is given by
the rule: Ai[c×{t}] = Aj [φ(c)] if v ∈ Xi s.t v positively resolves u and Ai[c×{t}] = +∞
otherwise.

d < 0: In this case, u is not r-dominated by a path contained entirely in G[Vi]. Therefore,
the table entries for Xi are simply inherited from Xj (as long as cj × d is locally
valid). We set Ai[c× {ci(u)}] = Aj [c] if c× {ci(u)} is a locally valid labeling of Xi and
Ai[c× {ci(u)}] = +∞ otherwise.

Since the correctness invariant holds for Xj , and by the arguments above (using the
Ordering Lemma), the correctness invariant is maintained for introduce nodes. Also, we can
populate the dynamic programming table for an introduce bag in O((2r + 1)twtw) time.



G. Borradaile and H. Le 8:19

Join Nodes

In this section, we will refer to the tables of the previous sections as the original tables. We
denote the indication table by N and the convolution table by N̄ . We will initialize Nj and
Nk from Aj and Ak, then compute N̄j from Nj and N̄k from Nk, then combine N̄j and N̄k
to give N̄i, then compute Ni from N̄i and finally Ai from Ni. The tables N̄j can be used to
count the number of r-dominating sets; we view our method as incorrectly counting so that
we can more efficiently compute Ai from Aj and Ak while still correctly computing Ai.

Let Xi be a join node with two children Xj and Xk and Xi = Xj = Xk. We say the
labeling ci (for Xi) is consistent with labelings cj and ck (for Xj and Xk, respectively) if for
every u ∈ Xi:
1. If ci(u) = 0, then cj(u) = 0 and ck(u) = 0.
2. If ci(u) = t < 0, then cj(u) = t and ck(u) = t.
3. If ci(u) = t > 0, then (cj(u) = t) ∧ (ck(u) = −t) or (cj(u) = −t) ∧ (ck(u) = t) or

(cj(u) = t) ∧ (ck(u) = t).
Ai[ci] = min(Aj [cj ] +Ak[ck]−#0(Xi, ci)|ci is consistent with cj and ck) (7)

Using the indication table, Equation 7 can be written as:

Ai[ci] = min{∞,min{x : Ni[ci][x] > 0}} (8)

where we define

Ni[ci][x] =
∑

xj ,xk:xj+xk−#0(Xi,ci)=x
ci is consistent with cj and ck

Nj [cj ][xj ] ·Nk[ck][xk] . (9)

We guarantee that Ni[ci][x] is non-zero only if there is a subset of Vi of size x that induces
the positive labels of ci. This, along with the correctness invariant held for the children of
Xi, we maintain the correctness invariant at join nodes.

The following observation, which is a corollary of Equation (7) and the definition of
consistent, is the key to our algorithm:

I Observation 24. If the vertex u ∈ Xi has label t̄, its label in Xj and Xk must also t̄.

Running time analysis

I Lemma 25. Convolution tables can be computed from indication tables and vice versa in
time O(nni(2r + 1)ni).

Proof. Consider the indicator table Ni and convolution table N̄i for bag Xi; we order the
vertices of Xi arbitrarily. We calculate Equation (3) by dynamic programming over the
vertices in this order.

We first describe how to compute N̄i from Ni. We initialize N̄i[c] = Ni[c′] where
c′(u) = c(u) if c(u) ≤ 0 and c′(u) = c(u) if c′(u) > 0. We then correct the table by
considering the barred labels of the vertices according to their order from left to right. In
particular, suppose c = c1×{t̄}×c2, for some t > 0, be a labeling in which c1 is a bar-labeling
of the first ` vertices of Xi and c2 is a bar-labeling of the last ni − `− 1 vertices. We update
N̄i[c] in order from ` = 0, . . . , ni according to:

N̄i[c1 × {t̄} × c2][x] := N̄i[c1 × {t̄} × c2][x] + N̄i[c1 × {−t} × c2][x] . (10)

It is easy to show that this process results in the same table as Equation (3).

IPEC 2016



8:20 Optimal Dynamic Program for r-Domination Problems over Tree Decompositions

We now describe how to compute Ni from N̄i, which is the same process, but in reverse.
We initialize Ni[c] = N̄i[c′] where c(u) = c′(u) if c(u) ≤ 0 and c(u) = c′(u) if c(u) > 0. We
then update Ni[c] in reverse order of the vertices of Xi, i.e. for ` = ni, ni− 1, . . . , 0 according
to:

Ni[c1 × {t} × c2][x] := Ni[c1 × {t} × c2][x]−Ni[c1 × {−t} × c2][x] . (11)

Since the labeling c has length of ni, the number of operations for the both forward and
backward conversion is bounded by O(nni(2r + 1)ni). J

I Lemma 26. The convolution tables for Xi, Xj and Xk satisfy:

N̄i[c̄][x] =
∑

xi,xj : xi+xj−#0(Xi,c̄)=x

N̄j [c̄][xi] · N̄k[c̄][xj ] (12)

Proof. If a labeling c is consistent with c1, c2, we write c ∼ (c1, c2).

N̄i[c̄][x] =
∑

c : |c(u)|=c̄(u)

Ni[c][x]

=
∑

c : |c(u)|=c̄(u)

∑
xj ,xk : xj+xk−#0(Xi,c)=x

cj ,ck : c∼(cj ,ck)

(Nj [cj ][xj ] ·Nk[ck][xk])

=
∑

xj ,xk : xj+xk−#0(Xi,c)=x

∑
c : |c(u)|=c̄(u)
cj ,ck : c∼(cj ,ck)

(Nj [cj ][xj ] ·Nk[ck][xk])

=
∑

xj ,xk : xj+xk−#0(Xi,c)=x

∑
cj : |cj(u)|=c̄(u)
ck : |ck(u)|=c̄(u)

(Nj [cj ][xj ] ·Nk[ck][xk])

=
∑

xj ,xk : xj+xk−#0(Xi,c)=x

∑
cj : |cj(u)|=c̄(u)

N̄j [c̄][x1]
∑

ck : |ck(u)|=c̄(u)

Nk[ck][xk]

=
∑

xj ,xk : xj+xk−#0(Xi,c)=x

N̄j [c̄][x1] · N̄k[c̄][x2]

J

I Lemma 27. The time required to populate the dynamic programming table for join node
Xi is O(n2(2r + 1)ni).

Proof. We update the table Ai of the join node Xi by following steps: (1) computing the
indication tables Nj [cj ][x] and Nk[ck][x] for all possible cj , ck and x by Equation (2), (2)
computing the convolution tables N̄j [c̄][x] and N̄k[c̄][x] via Lemma 25, (3) computing the
table N̄i[c̄][x] of the join node Xi via Lemma 26, (4) computing the indication table Ni[ci][x]
of the join node Xi via Lemma 25 and (5) computing the table Ai[ci] of the join node Xi by
Equation (8). J

Proof of Theorem 2

Theorem 2 follows from the correctness and running time analyses for each of the types of
nodes of the nice tree decomposition. Using the finte integer index property [3, 19], we can
reduce the running time of Theorem 2 to O((2r + 1)tw+1tw2n).

For a given bag Xi, let Sc be the minimum partial solution that is associated with a
labeling c of Xi; |Sc| = A[c]. Let S1 be the minimum partial solution that is associated with
the labeling c1 = {1, 1, . . . , 1} of Xi.



G. Borradaile and H. Le 8:21

I Lemma 28 (Claim 5.4 [3] – finite integer index property). For a given bag Xi, if the minimum
partial solution Sc can lead to an optimal solution of G, we have:

||Sc| − |S1|| ≤ ni + 1 .

I Theorem 29. We can populate the dynamic programming table for join node Xi in
O(n2

i (2r + 1)ni) time.

Proof. By Lemma 28, for a fixed c̄, there are at most 2ni + 3 values x ∈ {1, 2, . . . , n} such
that N̄ [c̄][x] 6= 0. Therefore, by maintaining non-zero values only, we can populate the table
by: (1) computing the convolution tables N̄j [c̄][x] and N̄k[c̄][x] via Lemma 25, (2) computing
the table N̄i[c̄][x] of the join node Xi via Lemma 26, (3) computing the indication table
Ni[ci][x] of the join node Xi via Lemma 25 and (4) computing the table Ai[ci] of the join
node Xi by Equation (8). J

Clearly, Theorem 29 implies an O((2r + 1)tw+1tw2n) time algorithm for rDS problem.

B Counting Algorithm for connected r-dominating set

To determine |Ck,W | for each W , we use dynamic programming given a tree decomposition T
of G. To simplify the algorithm, we use an edge-nice variant of T. A tree decomposition T is
edge-nice if each bag is one of following types:
Leaf: a leaf Xi of T with Xi = ∅
Introduce vertex: Xi has one child bag Xj and Xi = Xj ∪ {v}
Introduce edge: Xi has one child bag Xj and Xi = Xj and E(Xi) = E(Xj) ∪ {e(u, v)}
Forget: Xi has one child bag Xj and Xj = Xi ∪ {v}
Join: Xi has two children Xj , Xj and Xi = Xj = Xk

We root this tree-decomposition at a leaf bag. Let Gi = (Vi, Ei) be the subgraph formed by
the edges and vertices of descendant bags of the bag Xi.

As with the dynamic program for the r-dominating set problem, we use a distance labeling,
except we have two types of 0 labels:

c : Xi → {−r, . . . ,−1, 01, 02, 1, . . . , r}

A vertex u is in a corresponding subsolution if c(u) ∈ {01, 02} and the subscript of 0 denotes
the side of the consistent cut of the subsolution that u is on. Throughout, we only allow the
special root vertex to be labeled 01. We use the same notion of induces as for the non-connected
version of the problem, with the additional requirement that we maintain bipartitions (cuts)
of the solutions. Specifically, a cut (C1, C2) induces the labeling c for a subset X of vertices
if d(u,C1 ∪ C2) = c(u) if c(u) > 0, u ∈ C1 if c(u) = 01 and u ∈ C2 if c(u) = 02. We limit
ourselves to locally valid solutions as before.

A dynamic programming table Ai for a bag Xi of T is indexed by a distance labeling
c of Xi, and integers t ∈ {0, . . . , n} and W ∈ {0, 1, . . . , 2n2}. Ai[t,W, c] is the number of
consistent subcuts (C1, C2) of Gi such that: (i) |C1 ∪ C2| = t, (ii) ω(C1 ∪ C2) = W and (iii)
C1 ∪ C2 induces the labeling c for Xi.

We show how to compute Ai[t,W, c] of the bag Xi given the tables of it children.

Leaf

Let Xi be a non-root leaf of T: Ai[t,W, ∅] = 1.

IPEC 2016



8:22 Optimal Dynamic Program for r-Domination Problems over Tree Decompositions

Introduce vertex

Let Xi be an introduce vertex bag with its child Xj and Xi = Xj ∪ {u}. Let c × d is a
labeling of Xi where c is a labeling of Xj and d is the label of u. There are four cases for
computing Ai[t,W, c× d] depending on the value of d. Since u is isolated in Gi, we need not
worry about checking for local validity.

Ai[t,W, c× d] =


0 if d > 0
Aj [t− 1,W − ω(u), c] if d = 01

Aj [t− 1,W − ω(u), c] if d = 02

Aj [t,W, c] if d < 0

Introduce edge

Let Xi be an introduce edge bag with its child Xj and Ei = Ej ∪ {e(u, v)}. For any labeling
that is not locally valid upon the introduction of uv, that is, if |c(u) − c(v)| > 1, we set
Ai(t,W, c) = 0. If c(u) = 01 and c(v) = 02 (or vice versa), c cannot correspond to a consistent
subcut, so Ai(t,W, c) = 0. If c(u) = c(v)− dGi

(u, v) ≥ 0 then u positively resolves v. We say
that a vertex x ∈ Gi is uniquely resolved by u at distance d if there is no vertex other than
u that positively resolves v and dGi

(u, v) = d. When the edge e(u, v) is introduced to the
bag Xi, some vertices will be positively resolved by u. The vertices v ∈ Xi that are uniquely
resolved by u at distance dGi(u, v) have negative labels in Xj . We define a map φ applied to
the label c(x) of a vertex x:

φ(c(x)) =
{
−c(x) if x is uniquely resolved by u at distance dGi

(u, x)
c(x) otherwise

We use φ(c) to define the natural extension this map to a full labeling of Xi. We get
Ai[t,W, c] = Aj [t,W, c] + Aj [t,W, φ(c)]. In all other cases, the labeling is locally valid,
the corresponding subcuts are valid and neither u nor v has been positively resolved, so
Ai[t,W, c] = Aj [t,W, c].

Forget

Let Xi be a forget bag with child Xj such that Xj = Xi ∪ {u}. We compute Ai[t,W, c] from
Aj [t,W, c× d] where c× d is a labeling of Xj where u is labeled d. We say that the labeling
c× d is forgettable if d ≥ 0 or there is a vertex v ∈ Xj such that c(v) = d+ dGi

(u, v). In the
first case, u has been dominated already; in the second case, the domination of u must be
handled through other vertices in Xj in order for the labeling to be induced by a feasible
solution.

Ai[t,W, c] =
∑

d : c×d is forgettable
Aj [t,W, c× d] .

Join

Let Xi be a join bag with children Xj and Xk and Xi = Xj = Xk. We say the labeling
ci (for Xi) is consistent with labelings cj and ck (for Xj and Xk, respectively) if for every
u ∈ Xi

If ci(u) = 0j for j ∈ {1, 2}, then cj(u) = 0j and ck(u) = 0j .
If ci(u) = t < 0, then cj(u) = t and ck(u) = t.



G. Borradaile and H. Le 8:23

If ci(u) = t > 0, then one of the following must be true: (a) cj(u) = t and ck(u) = −t,
(b) cj(u) = −t and ck(u) = t or (c) cj(u) = t and ck(u) = t.

Given this, Ai[t,W, ci] is the product Aj [t1,W1, cj ] · · ·Ak[t2,W2, ck] summed over: (i) all t1
and t2 such that t1 + t2 − t is equal to the number of vertices that are labeled 01 or 02 by ci,
(ii) all W1 and W2 such that W1 +W2 −W is equal to the weight of vertices that are labeled
01 or 02 by ci and (iii) all ci and cj that are consistent with cj and ck.

By using the bar-coloring formulation, as for the disconnected case, we can avoid summing
over all pairs of consistent distance labellings and instead compute Ai[t,W, c̄i] as the product
Aj [t1,W1, c̄i] · · ·Ak[t2,W2, c̄i] summed over all t1 and t2 and all W1 and W2 as described
above. Using this latter formulation, we can compute Ai in time O(k2n3(2r + 2)tw).

Running Time

The number of configurations for each node of T is O(kn2(2r + 2)tw). The running time
to update leaf, introduce edge, introduce vertex, and forget bags is O(kn2(2r + 2)tw). The
running time to update join bags is O(k2n3(2r + 2)tw). Therefore, the total running time
of the counting algorithm is O(nk2n3(2r + 2)tw) = O(k2n4(2r + 2)tw) after running the
algorithm for all possible choices of root vertex ρ.

IPEC 2016





Fine-Grained Dichotomies for the Tutte Plane and
Boolean #CSP∗

Cornelius Brand1, Holger Dell2, and Marc Roth3

1 Saarland University, Saarbrücken, Germany; and
Cluster of Excellence “Multimodal Computing and Interaction” (MMCI),
Saarbrücken, Germany

2 Saarland University, Saarbrücken, Germany; and
Cluster of Excellence “Multimodal Computing and Interaction” (MMCI),
Saarbrücken, Germany

3 Saarland University, Saarbrücken, Germany; and
Cluster of Excellence “Multimodal Computing and Interaction” (MMCI),
Saarbrücken, Germany

Abstract
Jaeger, Vertigan, and Welsh [15] proved a dichotomy for the complexity of evaluating the Tutte
polynomial at fixed points: The evaluation is #P-hard almost everywhere, and the remaining
points admit polynomial-time algorithms. Dell, Husfeldt, and Wahlén [9] and Husfeldt and
Taslaman [12], in combination with the results of Curticapean [7], extended the #P-hardness
results to tight lower bounds under the counting exponential time hypothesis #ETH, with the
exception of the line y = 1, which was left open. We complete the dichotomy theorem for the
Tutte polynomial under #ETH by proving that the number of all acyclic subgraphs of a given
n-vertex graph cannot be determined in time exp

(
o(n)

)
unless #ETH fails.

Another dichotomy theorem we strengthen is the one of Creignou and Hermann [6] for count-
ing the number of satisfying assignments to a constraint satisfaction problem instance over the
Boolean domain. We prove that all #P-hard cases cannot be solved in time exp

(
o(n)

)
unless

#ETH fails. The main ingredient is to prove that the number of independent sets in bipartite
graphs with n vertices cannot be computed in time exp

(
o(n)

)
unless #ETH fails.

In order to prove our results, we use the block interpolation idea by Curticapean [7] and
transfer it to systems of linear equations that might not directly correspond to interpolation.

1998 ACM Subject Classification F.2.1 [Analysis of Algorithms and Problem Complexity] Nu-
merical Algorithms and Problems, G.2.1 [Discrete Mathematics] Combinatorics

Keywords and phrases Computational complexity, counting problems, Tutte polynomial, expo-
nential time hypothesis, forests, independent sets

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.9

1 Introduction

Counting combinatorial objects is at least as hard as detecting their existence, and often
it is harder. Valiant [20] introduced the complexity class #P to study the complexity of
counting problems and proved that counting the number of perfect matchings in a given
bipartite graph is #P-complete. By a theorem of Toda [19], we know that PH ⊆ P#P

holds; in particular, for every problem in the entire polynomial-time hierarchy, there is a

∗ This work was done while the authors were visiting the Simons Institute for the Theory of Computing.

© Cornelius Brand, Holger Dell, and Marc Roth;
licensed under Creative Commons License CC-BY

11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin; Article No. 9; pp. 9:1–9:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


9:2 Fine-Grained Dichotomies for the Tutte Plane and Boolean #CSP

polynomial-time algorithm that is given access to an oracle for counting perfect matchings.
This theorem suggests that counting is much harder than decision.

When faced with a problem that is NP-hard or #P-hard, the area of exact algorithms
strives to find the fastest exponential-time algorithm for a problem, or find reasons why
faster algorithms might not exist. For example, the fastest known algorithm for counting
perfect matchings in n-vertex graphs [1] runs in time 2n/2 ·poly(n). It has been hypothesized
that no O

(
1.99n/2)-time algorithm for the problem exists, but we do not know whether such

an algorithm has implications for the strong exponential time hypothesis, which states that
for all ε > 0, there is some k such that the problem of deciding satisfiability of boolean
formulas in k-CNF on n variables does not have an algorithm running in time (2 − ε)n.
However, we know by [8] that the term O(n) in the exponent is asymptotically tight, in
the sense that a 2o(n)-time algorithm for counting perfect matchings would violate the
(randomized) exponential time hypothesis (ETH) by Impagliazzo and Paturi [13]. Using the
idea of block interpolation, Curticapean [7] strengthened the hardness by showing that a
2o(n)-time algorithm for counting perfect matchings would violate the (deterministic) counting
exponential time hypothesis (#ETH).

Our main results are hardness results under #ETH for 1) the problem of counting all
forests in a graph, that is, its acyclic subgraphs, and 2) the problem of counting the number
of independent sets in a bipartite graph. If #ETH holds, then neither of these problems has
an algorithm running in time exp(o(n)) even in simple n-vertex graphs of bounded maximum
degree. We use these results to lift two known “FP vs. #P-hard” dichotomy theorems to
their more refined and asymptotically tight “FP vs. #ETH-hard” variants. Here FP is the
class of functions computable in polynomial time. Note that #ETH is weaker than ETH, so
that our results could also be stated under ETH.

1.1 The Tutte polynomial under #ETH

The Tutte polynomial of a graph G with G = (V,E) is the bivariate polynomial T (G;x, y)
defined via

T (G;x, y) =
∑
A⊆E

(x− 1)k(A)−k(E)(y − 1)k(A)+|A|−|V |
, (1)

where k(A) is the number of connected components of the graph (V,A). The Tutte polynomial
captures many combinatorial properties of a graph in a common framework, such as the
number of spanning trees, forests, proper colorings, and certain flows and orientations, but
also less obvious connections to other fields, such as link polynomials from knot theory,
reliability polynomials from network theory, and (perhaps most importantly) the Ising and
Potts models from statistical physics. We make no attempt to survey the literature or the
different applications for the Tutte polynomial, and instead refer to the upcoming CRC
handbook on the Tutte polynomial [10].

Since T (G;−2, 0) corresponds to the number of proper 3-colorings of G, we cannot hope
to compute all coefficients of T (G;x, y) in polynomial time. Instead, the literature and this
paper focus on the complexity of evaluating the Tutte polynomial at fixed evaluation points.
That is, for each (x, y) ∈ Q2, we consider the function Tx,y defined as G 7→ T (G;x, y). Jaeger,
Vertigan, and Welsh [15] proved that this function is either #P-hard to compute or has a
polynomial-time algorithm. In particular, if (x, y) satisfies (x − 1)(y − 1) = 1, then Tx,y
corresponds to the 1-state Potts model and has a polynomial-time algorithm, and if (x, y)
is one of the four points (1, 1), (−1,−1), (0,−1), or (−1, 0), it also has a polynomial-time



C. Brand, H. Dell, and M. Roth 9:3

algorithm; the most interesting point here is T (G; 1, 1), which corresponds to the number of
spanning trees in G and happens to admit a polynomial-time algorithm.

A trivial algorithm to compute the Tutte polynomial runs in time 2O(m), where m is
the number of edges. Björklund et al. [2] proved that there is an algorithm running in time
exp
(
O(n)

)
, where n is the number of vertices. Dell et al. [8] proved for all hard points, except

for points with y = 1, that an exp
(
o(n/ log3 n)

)
-time algorithm for Tx,y on simple graphs

would violate #ETH. Distressingly, this result not only left open one line, but also left a
gap in the running time. Curticapean [7] introduced the technique of block interpolation to
close the running time gap: Under #ETH, there does not exist an exp

(
o(n)

)
-time algorithm

for Tx,y on simple graphs at any hard point (x, y) with y 6= 1.1

Our contributions: We resolve the complexity of the missing line y = 1 under #ETH. On
this line, the Tutte polynomial counts forests weighted in some way, and the main result is
the following theorem.

I Theorem 1 (Forest counting is hard under #ETH). If #ETH holds, then there exist constants
ε, C > 0 such that no O(exp(εn))-time algorithm can compute the number of all forests in a
given simple n-vertex graph with at most C · n edges.

The fact that the problem remains hard even on simple sparse graphs makes the theorem
stronger. The previously best known lower bound under #ETH was that forests cannot
be counted in time O

(
exp(nδ)

)
where δ > 0 is some constant depending on the instance

blow-up caused by the known #P-hardness reductions for forest counting; the thesis of
Taslaman [18] shows a detailed proof for δ = 1

8 . Our approach yields a #P-hardness proof
for forest counting that is simpler than the proofs we found in the literature.2

Combined with all previous results [15, 8, 7], we can now formally state a complete #ETH
dichotomy theorem for the Tutte polynomial over the reals.

I Corollary 2 (Dichotomy for the real Tutte plane under #ETH). Let (x, y) ∈ Q2. If (x, y)
satisfies

(x− 1)(y − 1) = 1 or (x, y) ∈
{

(1, 1), (−1,−1), (0,−1), (−1, 0)
}
,

then Tx,y can be computed in polynomial time. Otherwise Tx,y is #P-hard and, if #ETH is
true, then there exists ε > 0 such that Tx,y cannot be computed in time exp(εn), even for
simple graphs.

The result also holds for sparse simple graphs. We stated the results only for rational numbers
in order to avoid discussions about how real numbers should be represented.

For the proof of Theorem 1, we establish a reduction chain that starts with the problem
of counting perfect matchings on sparse graphs, which is known to be hard under #ETH. As
an intermediate step, we find it convenient to work with the multivariate forest polynomial
as defined, for example, by Sokal [17]. After a simple transformation of the graph, we are
able to extract the number of perfect matchings of the original graph from the multivariate
forest polynomial of the transformed graph, even when only two different variables are used.
Subsequently, we use Curticapean’s idea of block interpolation [7] to reduce the problem of

1 The conference version of [7] does not handle the case y = 0, but the full version (to appear) does.
2 For the #P-hardness of forest counting, [15] refers to private communication with Mark Jerrum as well

as the PhD thesis of Vertigan [21]. A self-contained (but involved) proof appears in “Complexity of
Graph Polynomials” by Steven D. Noble, chapter 13 of [11].

IPEC 2016



9:4 Fine-Grained Dichotomies for the Tutte Plane and Boolean #CSP

computing all coefficients of the bivariate forest polynomial to the problem of evaluating the
univariate forest polynomial on multigraphs where all edge multiplicity are bounded by a
constant. Finally, we replace parallel edges with parallel paths of constant length to reduce
to the problem of evaluating the univariate forest polynomial on simple graphs.

1.2 #CSP over the Boolean domain under #ETH
In the second part of this paper, we consider constraint satisfaction problems (CSPs) over the
Boolean domain, which are a natural generalization of the satisfiability problem for k-CNF
formulas. A constraint is a relation R ⊆ {0, 1}k for some k ∈ N, and a set Γ of constraints is
a constraint language. CSP(Γ) is the constraint satisfaction problem where all constraints
occurring in the instances are of a type contained in Γ, and #CSP(Γ) is the corresponding
counting version, which wants to compute the number of satisfying assignments. If all
constraints happen to be affine, that is, they are linear equations over GF(2), then the
number of solutions can be determined in polynomial time by applying Gaussian elimination
and determining the size of the solution space. Creignou and Hermann [6] prove that, as
soon as you allow even just one constraint type that is not affine, the resulting CSP problem
is #P-hard.

Our contributions: We prove that all Boolean #CSPs that are #P-hard are also hard
under #ETH. The #P-hardness is established in [6] by reductions from counting independent
sets in bipartite graphs, which we prove to be hard in the following theorem.

I Theorem 3 (Counting bipartite independent sets is hard under #ETH). If #ETH holds, then
there exist constants ε > 0 and D ∈ N such that no O(exp(εn))-time algorithm can compute
the number of independent sets in bipartite n-vertex graphs of maximum degree at most D.

The fact that the problem is hard even on graphs of bounded degree makes the theorem
stronger. We remark that the number of independent sets in bipartite graphs has a prominent
role in counting complexity. Currently, the complexity of approximating this number is
unknown, and many problems in approximate counting turn out to be polynomial-time
equivalent to approximately counting independent sets in bipartite graphs. Theorem 3
shows that this mysterious situation does not occur for the exact counting problem in the
exponential-time setting: it is just as hard as counting satisfying assignments of 3-CNFs.

The #P-hardness of counting independent sets in bipartite graphs was established by
Provan and Ball [16]. The main ingredient in their proof is a system of linear equations that
does not seem to correspond to polynomial interpolation directly. We prove Theorem 3 by
transferring the block interpolation idea from [7] to this system of linear equations, which we
do using a Kronecker power of the original system.

Theorem 3 combined with existing reductions in [6] yields the fine-grained dichotomy.

I Corollary 4 (Creignou and Hermann under #ETH). Let Γ be a finite constraint language.
If every constraint in Γ is affine, then #CSP(Γ) has a polynomial-time algorithm. Otherwise
#CSP(Γ) is #P-complete, and if #ETH holds, it cannot be computed in time exp(o(n))
where n is the number of variables.

We consider Corollary 4 to be a first step towards understanding the fine-grained complexity
of technically much more challenging dichotomies, such as the ones for counting CSPs with
complex weights of Cai and Chen [3], or the dichotomy for Holant problems with symmetric
signatures over the Boolean domain of Cai, Lu and Cia [4].



C. Brand, H. Dell, and M. Roth 9:5

2 Preliminaries

Given a matrix A of size m1 × n1 and a matrix B of size m2 × n2 their Kronecker product
A⊗B is a matrix of size m1m2 × n1n2 given by

A⊗B =

a11B . . . a1nB
...

...
...

am1B . . . amnB

 .
Let A⊗n be the matrix defined by A⊗1 = A and A⊗n+1 = A ⊗ A⊗n. Furthermore, if A
and B are quadratic matrices of size na and nb, respectively, it is known that det(A⊗B) =
det(A)nb · det(B)na holds.

The exponential time hypothesis (ETH) by Impagliazzo and Paturi [13] is that satisfiability
of 3-CNF formulas cannot be computed substantially faster than by trying all possible
assignments. The counting version of this hypothesis [8], which is a weaker assumption
(clearly, counting the number of solutions entails deciding existence of a solution), reads as
follows:

(#ETH) There is a constant c > 0 such that no deterministic algorithm can compute
#3-SAT in time exp(c · n), where n is the number of variables.

A different way of formulating #ETH is to say no algorithm can compute #3-SAT in time
exp(o(n)). The latter statement is clearly implied by the formal statement, and it will be
more convenient for discussion to use this form.

The sparsification lemma by Impagliazzo, Paturi, and Zane [14] is that every k-CNF
formula ϕ can be written as the disjunction of 2εn formulas in k-CNF, each of which has
at most c(k, ε) · n clauses. Moreover, this disjunction of sparse formulas can be computed
from ϕ and ε in time 2εn ·poly(m). The density c = c(k, ε) is the sparsification constant, and
the best known bound is c(k, ε) = (k/ε)3k [5]. It was observed [8] that the disjunction can be
made so that every assignment satisfies at most one of the sparse formulas in the disjunction,
and so the sparsification lemma applies to #ETH as well. In particular, #ETH implies that
#3-SAT cannot be computed in time exp(o(m)), where m is the number of clauses.

We also make use of the following result, whose proof is based on block interpolation.

I Theorem 5 (Curticapean [7]). If #ETH holds, then there are constants ε,D > 0 such that
neither of the following problems have O(2εn)-time algorithms n-vertex graphs G, even if G
is simple and of maximum degree at most D:

Computing the number of perfect matchings of G.
Computing the number of independent sets of G.

In the proof, we recover a univariate graph polynomial of high degree, and a classical
approach to do so is polynomial interpolation. Interpolation works by evaluating a polynomial
at different points and then solving some linear equations. In our case, however, we can
evaluate the univariate polynomial only at certain discrete points, which involves constructing
graphs with a number of edges that grows roughly as the square of the number of evaluation
points. Since we need roughly as many points as the (large) degree of the polynomial, the
conditional lower bounds we can achieve are not optimal.

While univariate interpolation appears to be insufficient for obtaining tight bounds
under ETH, the univariate polynomials we consider have natural multilinear variants. The
univariate polynomial can be reconstructed from the multilinear one, but since the multilinear
polynomial has linearly many variables, we would need exponentially many evaluation

IPEC 2016



9:6 Fine-Grained Dichotomies for the Tutte Plane and Boolean #CSP

points to reconstruct all coefficients of the multilinear polynomial. This is not feasible in a
subexponential-time reduction.

Block interpolation is able to find a sweet spot between univariate interpolation, where
the constructed graphs would grow super-linearly, and multilinear interpolation, where
the number of evaluation points would be exponential. For this, we arbitrarily partition
the variables of the multilinear polynomial into (almost) equal-size parts (or blocks) and
identify any variables in the same part. By choosing large but constant-sized parts, the
individual degree of each variable is constant, but their number is sub-linear, which allows a
subexponential-time reduction to work. At the same time, the graphs that we need to query
are larger by at most by a constant factor. After the block interpolation, we can recover the
univariate polynomial as desired.

3 Counting forests is #ETH-hard

Let F(G) be the set of all forests of G, that is, edge subsets A ⊆ E(G) such that the graph
(V (G), A) is acyclic. For y = 1, only the terms with k(A) + |A| − |V | = 0 survive, and we get
the following:

T (G;x, 1) =
∑

A∈F(G)

(x− 1)k(A)−k(E)
. (2)

We want to prove that, for every fixed x 6= 1, computing the value T (G;x, 1) for a given
graph G is hard under #ETH. In particular, this is true for T (G; 2, 1), which is the number
of forests in G. The goal of this section is to prove the following theorem.

I Theorem 6. Let x ∈ R \ {1}. If #ETH holds, then there exist ε, C > 0 such that the
function that maps simple n-vertex graphs G with at most C · n edges to the value T (G;x, 1)
cannot be computed in time 2εn.

Theorem 6 yields Theorem 1 as its special case with x = 2.

3.1 The multivariate forest polynomial
A weighted graph is a graph G in which every edge e ∈ E(G) is endowed with a weight we,
which is an element of some ring. We use the multivariate forest polynomial, defined e.g. by
Sokal [17, (2.14)] as follows:

F (G;w) =
∑

A∈F(G)

∏
e∈A

we .

Projecting all weights we onto a single variable x yields the univariate forest polynomial:

F (G;x) =
∑

A∈F(G)

x|A| =
|E(G)|∑
k=0

ak(G)xk ,

where ak(G) is the number of forests with k edges in G. For all x ∈ R \ {1}, the formal
relation between T (G;x, 1) and the univariate forest polynomial is given by the identity

T (G;x, 1) = (x− 1)|V |−k(E)
∑

A∈F(G)

(x− 1)−|A| = (x− 1)|V |−k(E) · F
(
G; 1

x− 1

)
. (3)



C. Brand, H. Dell, and M. Roth 9:7

The first equality follows from (2) and the fact that k(A) + |A| − |V | = 0 holds if and only if
A is a forest.

In particular, evaluating the forest polynomial and evaluating the Tutte polynomial for
y = 1 are polynomial-time equivalent.

For a forest A ∈ F(G), let C(A) be the family of all sets U ⊆ V (G) such that U 6= ∅ and
U is a maximal connected component in A; clearly, each such U is the vertex set of a tree in
the forest, where we also allow trees with |U | = 1.

I Lemma 7 (Adding an apex). Let G be a weighted graph, and let G′ be obtained from G

by adding a new vertex a and joining it with each vertex v ∈ V (G) using edges of weight zv.
Then

F (G′) =
∑

A∈F(G)

∏
e∈A

we ·
∏

U∈C(A)

(
1 +

∑
u∈U

zu

)
. (4)

Moreover, when we set zv = −1 for all v ∈ V (G) and we = w for all e ∈ E(G), we have
that the coefficient of wn/2 in F (G′) is equal to the number of perfect matchings in G.

Proof. We first define a projection φ that maps a forest A′ in the graph G′ to the forest
A = φ(A′) in the original graph G. In particular, φ simply removes all edges added in the
construction of G′, that is, we define φ(A′) = E(G) ∩A′ for all A′ ∈ F(G′). Now φ(A′) is a
forest in G.

Next we characterize the forests A′ that map to the same A under φ. Let A be a fixed
forest in G. Then a forest A′ in G′ maps to A under φ if and only if set X := A′ \A satisfies
the following property:
(P) For all trees U ∈ C(A), at most one edge of X is incident to a vertex of U .
The forward direction of this claim follows from the fact that A′ is a forest, and so in addition
to any tree U ∈ C(A) it can contain at most one edge connecting U to a; otherwise the tree
and the two edges to a would contain a cycle in A′. For the backward direction of the claim,
observe that adding a set X with the property (P) to A cannot introduce a cycle.

Finally, we calculate the weight contribution of all A′ that map to the same A. Let A′ be
a forest in G, let A = φ(A′) and X = A′ \A. The weight contribution of A′ in the definition
of F (G′) is

∏
e∈A′ w′e. For all e ∈ A, we have w′e = we. For each e ∈ X, we let ve ∈ V (G) be

the vertex with e = {a, ve}, and we have w′e = zve
. Thus the overall weight contribution of

all A′ with φ(A) = A′ is

∑
A′∈F(G′)
φ(A′)=A

∏
e∈A

w′e =
∏
e∈A

we ·
∑
X

∏
e∈X

zve
=
∏
e∈A

we ·
∏

U∈C(A)

(
1 +

∑
u∈U

zu

)
. (5)

The sum in the middle is over all X with the property (P), and the first equality follows from
the bijection between forests A′ and sets X with property (P). For the second equality, we
use property (P) and the distributive law. We obtain (4) by taking the sum of equations (5)
over all A ∈ F(G).

For the moreover part of the lemma, note that the stated settings of the edge weights
for G′ yields

F (G′) =
∑

A∈F(G)

w|A|
∏

U∈C(A)

(1− |U |) .

IPEC 2016



9:8 Fine-Grained Dichotomies for the Tutte Plane and Boolean #CSP

The coefficient of wn/2 in F (G′) satisfies

[wn/2]F (G′) =
∑

A∈F(G)
|A|=n/2

∏
U∈C(A)

(1− |U |) . (6)

Since (V (G), A) is an acyclic graph with exactly n/2 edges, it is either a perfect matching or
it contains an isolated vertex. If it contains an isolated vertex v, then we have {v} ∈ C(A)
and thus the product in (6) is equal to zero. It follows that A does not contribute to the
sum if it is not a perfect matching. On the other hand, if A is a perfect matching, then we
have |U | = 2 for all U ∈ C(A), so the product in (6) is equal to 1 or −1, depending on the
parity of n/2. Overall, we obtain that [wn/2]F (G′) is equal in absolute value to the number
of perfect matchings of G. J

Lemma 7 shows that computing the multivariate forest polynomial is at least as hard as
counting perfect matchings; moreover, this is true even if at most two different edge weights
are used. Next we argue how to reduce from the multivariate forest polynomial with at most
two distinct weights to the problem of evaluating the univariate polynomial in multigraphs.
We do so via an oracle serf-reduction, whose queries are sparse multigraphs in which each
edge has at most a constant number of parallel edges.

I Lemma 8 (From two weights to small weights using block interpolation). Let x and y be
two variables, and let z ∈ R \ {0} be fixed. There is an algorithm as follows:
1. Its input is a weighted graph (G,w) with we ∈ {x, y} for all e ∈ E(G), and a real ε > 0.
2. It outputs all coefficients of the bivariate polynomial F (G;w).
3. It runs in time 2ε|E(G)| · poly(|G|).
4. It has access to an oracle that computes F (G; z ·w′), where w′ can be any weight function

that assigns integer weights w′e satisfying 0 ≤ w′e ≤ Cε for some constant Cε that only
depends on ε.

We remark that non-negative integer multiples of z, say z · w′e, can be thought of as w′e
parallel edges of weight z in a multigraph. The quantity F (G′; z) for this multigraph G′

is then equal to the value F (G; z · w′) of the weighted forest polynomial of G at z · w′. In
particular, F (G′; 1) is the number of forests in G′.

Proof. Let (G,w) with we ∈ {x, y} for all e ∈ E and ε > 0 be given as input, and let
m := |E(G)|. We define Cε ∈ N as a large enough constant to be determined later. The
algorithm assigns a new weight z ·w′e to each edge e, where each w′e is chosen from the set of
indeterminates X ∪ Y with X = {x1, . . . , xm/Cε

} and Y = {y1, . . . , ym/Cε
} in the following

way: If we = x, choose w′e ∈ X, and if we = y, choose w′e ∈ Y . We further demand that the
number of edges sharing the same weight is at most Cε for each weight in X ∪ Y . Among all
such assignments z ·w′, we pick an arbitrary one. We now consider the polynomial F (G; z ·w′).
It has at most 2m/Cε variables and the maximum degree of each variable is at most Cε,
so F (G; z · w′) has at most (C + 1)2m/Cε monomials. The coefficients of this polynomial
can be reconstructed when its values are given for all evaluation points in z · [0, Cε]2m/Cε ,
which is an 2m/Cε-dimensional grid dilated by a factor z (that is, for any two grid points,
the distance between any two entries in the same coordinate is z).

Since each evaluation point only uses non-negative integer multiples of z between 0
and z · Cε, we can obtain the values at these evaluation points by querying the oracle
for F (G; z · w′) that we are given. The number of evaluation points in the grid is equal
to (Cε + 1)2m/Cε . The claim on the running time follows since the interpolation can be



C. Brand, H. Dell, and M. Roth 9:9

performed in time poly
(

(Cε + 1)2m/Cε

)
, which is at most Cε · 2εm when Cε is chosen large

enough depending on ε.
In order to obtain the coefficient of xiyj in F (G;w), we compute the image of F (G; z ·w′)

under the projection that maps all variables in X to x/z and all variables in Y to y/z. That
is, we sum up the coefficients of F (G; z · w′) corresponding to the same monomial xiyj , and
divide by the factor zi+j . J

The combination of Lemma 7 and Lemma 8 shows, for all fixed x 6= 0, that it is hard to
evaluate F (G;x) for multigraphs with at most a constant number of parallel edges. Next we
apply a stretch to make the graphs simple. To this end, we calculate the effect of a k-stretch
on the univariate forest polynomial of a graph.

I Lemma 9 (The forest polynomial under a k-stretch). Let G be a multigraph with m edges,
where every edge is weighted with w ∈ R and let k be a positive integer such that the number
gk(w) with

gk(w) = wk

(w + 1)k − wk

is well-defined. Let G′ be the simple graph obtained from G by replacing every edge by a path
of k edges. Then we have

F (G′;w) =
(
(w + 1)k − wk

)m · F (G; gk(w)
)
.

Proof. We define a mapping φ that maps forests in G′ to forests in G as follows: We add an
edge e ∈ E(G) to A = φ(A′) if and only if A′ contains all k edges of G′ that e got stretched
into. That is, subgraphs A′ that only differ by edges in “incomplete paths” are mapped to
the same multigraph A by φ.

Clearly, φ partitions F(G′) into sets of forests with the same image under φ. Let A be a
forest in G, and let us describe a way to generate all A′ with φ(A′) = A. First, for each e ∈ A,
we add its corresponding path in G′ of length k to A′. Moreover, for each edge e ∈ E(G) \A,
we can add to A′ any proper subset of edges from the k-path in G′ that corresponds to e.
Therefore, at each e ∈ E(G) \A independently, there are

(
k
i

)
ways to extend A′ by i edges

to a forest in G′. A forest A′ can be obtained in this fashion if and only if φ(A′) = A holds.
For a fixed A, let us consider all summands w|A′| in F (G′;w) with φ(A′) = A. By the above

considerations, the total weight contribution of these summands is wk·|A| ·
(∑k−1

i=0
(
k
i

)
wi
)m−|A|,

which equals wk·|A| ·
(
(w + 1)k − wk

)m−|A| by the binomial theorem. These remarks justify
the following calculation for the forest polynomial:

F (G′;w) =
∑

A∈F(G)

∑
A′∈F(G′)
φ(A′)=A

w|A
′| =

∑
A∈F(G)

wk·|A| ·
(

(w + 1)k − wk
)m−|A|

=
(

(w + 1)k − wk
)m
·
∑

A∈F(G)

(
wk

(w + 1)k − wk

)|A|
.

Since the sum in the last line is equal to F
(
G; gk(w)

)
, this concludes the proof. J

We are now in position to formally prove the main theorem of this section.

Proof of Theorem 6. Let x ∈ R \ {1}. Suppose that, for all ε > 0, there exists an algo-
rithm B to compute the mapping G 7→ T (G;x, 1) in time 2εn for given simple graphs G

IPEC 2016



9:10 Fine-Grained Dichotomies for the Tutte Plane and Boolean #CSP

with at most C ′εn edges, where C ′ε will be chosen later. By (3), algorithm B can be used
to compute values F (G; (x − 1)−1) with no relevant overhead in the running time, so let
t = (x − 1)−1. Given such an algorithm (or family of algorithms), we devise a similar
algorithm for counting perfect matchings, which together with Theorem 5 implies that #ETH
is false.

Let G be a simple n-vertex graph with at most C ·n edges. Let G′ be the graph obtained
from G as in Lemma 7 by adding an apex, labeling the edges incident to the apex with the
indeterminate z, and all other edges with the indeterminate w. By Lemma 7, the coefficients
of the corresponding bivariate forest polynomial of G′ are sufficient to extract the number of
perfect matchings of G, so it remains to compute these coefficients.

To obtain the coefficients, we use Lemma 8. The reduction guaranteed by the lemma
produces 2εm multigraphs H, all with the same vertex set V (G′). Moreover, each H has at
most Cε|E(G′)| = Cε(|E(G)|+ n) ≤ O(Cεn) edges, and the multiplicity of each edge is at
most Cε. Finally, each edge of each H is assigned the same weight z, which we will choose
later.

The reduction makes one query for each H, where it asks for the value F (H; z). Our
assumed algorithm however only works for simple graphs, so we perform a 3-stretch to obtain
a simple graph H ′ with at most 3|E(H)| ≤ O(Cεn) edges. Lemma 9 allows us to efficiently
compute the value F (H; z) when we are given the value F (H ′; t) and z = g3(t) holds. Since
gk is a total function whenever k is a positive odd integer, and 3 is indeed odd, the value
g3(t) is well-defined, and we set z = g3(t).

We set C ′ε large enough so that E(H ′) ≤ C ′ε · n holds. Tracing back the reduction chain,
we can use algorithm B to compute T (H ′;x, 1) in time 2εn any ε > 0. Using (3), we get the
value of F (H ′; t) since x 6= 1. This, in turn, yields the value of F (H; z) since (z+1)k−zk 6= 0
and g3(t) = z. We do this for each of the 2εm queries H that the reduction in Lemma 8
makes. Finally, the latter reduction outputs the coefficients of the bivariate forest polynomial
of G′, which contains the information on the number of perfect matchings of G.

To conclude, assuming the existence of the algorithm family B, we are able to count
perfect matching in time poly(2εm) for all ε > 0, which implies via Theorem 5 that #ETH is
false. J

Note that the construction from the proof of Theorem 1 implies hardness of T (G;x, 1) for
tripartite G, and also in the bipartite case whenever x 6= −1.

4 Counting solutions to Boolean CSPs under #ETH

In this section, we prove that the #P-hard cases of the dichotomy theorem for Boolean
CSPs by Creignou and Hermann [6] are also hard under #ETH. The main difficulty is to
establish #ETH-hardness of counting independent sets in bipartite graphs. We do so first,
and afterwards observe that all other reductions in [6] can be used without modification.

4.1 Counting Independent Sets in Bipartite Graphs is #ETH-hard
We prove that the problem of counting independent sets in bipartite graphs admits no
subexponential algorithm under #ETH, even for sparse and simple graphs.

Proof of Theorem 3. We reduce from the problem of counting independent sets in graphs of
bounded degree; by Theorem 5, this problem does not have a subexponential-time algorithm.
First we note that a set is an independent set if and only its complement is a vertex cover.



C. Brand, H. Dell, and M. Roth 9:11

u v` copies

Figure 1 The gadget H` of Provan and Ball [16] as used in the proof of Theorem 3. It corresponds
to an `-fattening of the edge {u, v}, followed by a 4-stretch of each of the ` parallel edges.

Hence their numbers are equal. We devise a subexponential-time oracle reduction family to
reduce counting vertex covers in general to counting them in bipartite graphs.

Given a graph G with n vertices and m edges, and a running time parameter d ∈ N, the
reduction works as follows. We partition the edges into |E|d blocks of size at most d each.
We denote the blocks by B1, . . . , Bm

d
. Next, for each ~̀= (`1, . . . , `m

d
) ∈ Nm/d, we denote G~̀

as the graph obtained from G by replacing each edge e ∈ Bi with a copy of the gadget H`i

shown in Figure 1. Note that G~̀ is bipartite.

I Observation 10 (Provan and Ball). The number of vertex covers of H` containing neither
u nor v is 2`, the number of vertex covers containing a particular one of u or v is 3`, and
the number of vertex covers containing both u and v is 5`.

We follow the proof of Provan and Ball, but do so in a block-wise fashion. To this end,
let T be the set of all (m/d) × 3 matrices with entries from {0, . . . , d}. The type of a set
S ⊆ V (G) is the matrix t ∈ T such that, for all i = 1 . . . md ,
1. ti1 is equal to the number of edges e ∈ Bi with |e ∩ S| = 0,
2. ti2 is equal to the number of edges e ∈ Bi with |e ∩ S| = 1, and
3. ti3 is equal to the number of edges e ∈ Bi with |e ∩ S| = 2.
Every set S ⊆ V (G) has exactly one type. Let xt be the number of all sets S ⊆ V (G) that
have type t.

We classify vertex covers C ⊆ V (G~̀) of G~̀ by their intersection with V (G), so let
S = C ∩ V (G) and let t be the type of S. By Observation 10 and the fact that all inserted
gadgets act independently after conditioning on the intersection of the vertex covers of G~̀
with V (G), there are exactly

∏m/`
i=1 (2ti13ti25ti3)`i vertex covers C ′ whose intersection with

V (G) is S. Moreover, the number of sets S of type t is equal to xt. Hence the number N~̀ of
vertex covers of G~̀ satisfies

N~̀ =
∑
t∈T

xt ·
m/d∏
i=1

(
2ti13ti25ti3

)`i (7)

Since G~̀ is bipartite, our reduction can query the oracle to obtain the numbers N~̀ for all
~̀ ∈ [(d+ 1)3] n

d . This yields a system of linear equations of type (7), where the xt for t ∈ T
are the unknowns; note that we have exactly |T | equations and unknowns. Let M be the
corresponding |T | × |T | matrix, so that the system can be written as N = M · x.

It remains to prove that M is invertible. For this, we observe that M can be decomposed
into a tensor product of smaller matrices as follows. Let A be the (d+1)3× (d+1)3 where the
row indices ` are from [(d+ 1)3], the column indices τ are from {0, . . . , d}3, and the entries
are defined via A`τ = (2τ13τ25τ3)`. Provan and Ball, as well as the reader, observe that A is
the transpose of a Vandermonde matrix. Due to the uniqueness of the prime factorization,

IPEC 2016



9:12 Fine-Grained Dichotomies for the Tutte Plane and Boolean #CSP

the evaluation points 2τ13τ25τ3 are distinct for distinct τ , and thus det(A) 6= 0. Furthermore,
we observe that M = A⊗

n
d holds, which implies det(M) 6= 0 and that M is invertible.

Since M is invertible, we can solve the equation system N = M · x in time polynomial in
its size, and compute xt for all t ∈ T . Finally, we compute the sum of xt over all matrices t
whose first column contains only zeros. This yields the number of all sets S ⊆ V (G) that
intersect every edge of G at least once, that is, the number of vertex covers of G which equals,
as mentioned above, the number of independent sets of G.

Assume that #ETH holds, and let ε,D > 0 be the constants from Theorem 5, which are
such that no algorithm can count independent sets in general graphs of maximum degree D
in time 2εn. We apply our reduction to such a graph; it makes at most 2O(log d·m/d) queries to
the oracle. Since m ≤ Dn holds, and the running time for solving the linear equation system
is polynomial in the number of queries, we can choose d ∈ N to be a large enough constant
depending on ε > 0 to achieve an overall running time of O(2 1

2 εn) for the reduction. Also
note that the queries to the oracle for bipartite graphs have degree at most (d+ 1)3 ·D, which
is a constant that only depends on ε. If there was an algorithm for counting independent
sets in bipartite graphs that ran in time O(2 1

2 εn), we would get a combined algorithm for
counting independent sets in general graphs that would be faster than the choice of ε and D
would allow. Hence, under #ETH, there are constants ε′, D′ > 0 such that no O(2ε′n)-time
algorithm can count all independent sets on graphs of maximum degree at most D′. J

4.2 The Boolean CSP dichotomy
Instances of the constraint satisfaction problem #CSP(Γ) are conjunctions of relations in
Γ applied to variables over the Boolean domain and the goal is to compute the number
of satisfying assignments. A satisfying assignment is an assignment to the variables such
that the formula evaluates to true, that is, every relation in the conjunction evaluates to
true. A more detailed description of the problem can be found in the paper of Creignou and
Hermann [6].

Creignou and Hermann prove Theorem 4 by reducing either from #Pos2Sat, the problem
of counting satisfying assignments of a 2-CNF where every literal is positive, or from
#Imp2Sat, the problem of counting satisfying assignments of a 2-CNF where every clause
contains exactly one positive and one negative literal. A straightforward analysis of the
construction reveals that the reductions only lead to a linear overhead. More precisely:

I Observation 11. Given an instance of #Pos2Sat or #Imp2Sat with n variables and a set
Γ of logical relations such that at least one of the relations is not affine, the construction of
Creignou and Hermann results in an instance of #CSP(Γ) of size c · n where c only depends
on the size of the largest non-affine relation in Γ.

Therefore it suffices to establish that neither #Pos2Sat nor #Imp2Sat have a 2o(n)-time algo-
rithm. Since #Pos2Sat is identical to counting vertex covers in (general) graphs, Theorem 5
applies here. The #ETH-hardness of #Imp2Sat follows by a known reduction from counting
independent sets in bipartite graphs, which we include here for completeness.

I Lemma 12. Assuming #ETH, there is no algorithm that solves #Imp2Sat in time 2o(n)

where n is the number of variables.

Proof. Given a bipartite graph G = (V ∪̇U,E) with constant degree we construct a 2-CNF F
by adding a clause (v → u) for every edge {v, u} ∈ E. Now the number of independent sets
in G equals the number of satisfying assignments of F . Furthermore the existence of an
algorithm that solves #Imp2Sat in time 2o(n) would imply the existence of an algorithm that



C. Brand, H. Dell, and M. Roth 9:13

solves #BIS in time 2o(n). Applying Theorem 3 we obtain that such an algorithm would
refute #ETH. J

We sketch how to obtain the #ETH dichotomy theorem for Boolean CSPs.

Proof of Corollary 4. If every relation in Γ is affine then we can solve #CSP(Γ) in polynomial
time using Gaussian elimination as in [6]. Otherwise, the problem is #P-hard by [6]. If,
in addition, #ETH holds, #CSP(Γ) cannot be solved in time 2o(n) as a subexponential
algorithm could also be used to solve #Pos2Sat or #Imp2Sat (see Observation 11) in time
2o(n) which is not possible assuming #ETH (by Theorem 5 and Lemma 12). J

Acknowledgments. We thank Radu Curticapean for various fruitful discussions and in-
teractions, and also Leslie Ann Goldberg, Miki Hermann, Mark Jerrum, John Lapinskas,
David Richerby, and all other participants of the “dichotomies” work group at the Simons
Institute in the spring of 2016. Moreover, we thank Tyson Williams who in 2013 pointed the
second author to [11], and Thore Husfeldt for encouraging us to pursue the publication of
this manuscript.

References
1 Andreas Björklund. Counting perfect matchings as fast as Ryser. In Proceedings of the

23rd Symposium on Discrete Algorithms, SODA 2012, pages 914–921, 2012. doi:10.1137/
1.9781611973099.73.

2 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Computing the
Tutte polynomial in vertex-exponential time. In Proceedings of the 47th annual IEEE
Symposium on Foundations of Computer Science, FOCS 2008, pages 677–686, 2008. doi:
10.1109/FOCS.2008.40.

3 Jin-Yi Cai and Xi Chen. Complexity of counting CSP with complex weights. In Proceedings
of the 44th Symposium on Theory of Computing, STOC 2012, pages 909–920, 2012. doi:
10.1137/100814585.

4 Jin-Yi Cai, Pinyan Lu, and Mingji Xia. Computational complexity of holant problems.
SIAM Journal on Computing, 40(4):1101–1132, 2011. doi:10.1137/100814585.

5 Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. A duality between clause
width and clause density for SAT. In Proceedings of the 21st Annual IEEE Conference on
Computational Complexity, CCC’06, pages 252–260, Washington, DC, USA, 2006. IEEE
Computer Society. doi:10.1109/CCC.2006.6.

6 Nadia Creignou and Miki Hermann. Complexity of generalized satisfiability counting prob-
lems. Information and Computation, 125(1):1–12, 1996. doi:10.1006/inco.1996.0016.

7 Radu Curticapean. Block interpolation: A framework for tight exponential-time count-
ing complexity. In Proceedings of the 42nd International Colloquium on Automata, Lan-
guages and Programming, ICALP 2015, pages 380–392. Springer, 2015. doi:10.1007/
978-3-662-47672-7_31.

8 Holger Dell, Thore Husfeldt, Dániel Marx, Nina Taslaman, and Martin Wahlén. Exponen-
tial time complexity of the permanent and the Tutte polynomial. ACM Transactions on
Algorithms, 10, 2014. doi:10.1145/2635812.

9 Holger Dell, Thore Husfeldt, and Martin Wahlén. Exponential time complexity of the
permanent and the Tutte polynomial. In Proceedings of the 37th International Colloquium
on Automata, Languages and Programming, ICALP 2010, pages 426–437, 2010. doi:10.
1007/978-3-642-14165-2_37.

10 Joanna Ellis-Monaghan and Iain Moffatt. CRC handbook on the Tutte polynomial and
related topics. CRC press, in preparation.

IPEC 2016

http://dx.doi.org/10.1137/1.9781611973099.73
http://dx.doi.org/10.1137/1.9781611973099.73
http://dx.doi.org/10.1109/FOCS.2008.40
http://dx.doi.org/10.1109/FOCS.2008.40
http://dx.doi.org/10.1137/100814585
http://dx.doi.org/10.1137/100814585
http://dx.doi.org/10.1137/100814585
http://dx.doi.org/10.1109/CCC.2006.6
http://dx.doi.org/10.1006/inco.1996.0016
http://dx.doi.org/10.1007/978-3-662-47672-7_31
http://dx.doi.org/10.1007/978-3-662-47672-7_31
http://dx.doi.org/10.1145/2635812
http://dx.doi.org/10.1007/978-3-642-14165-2_37
http://dx.doi.org/10.1007/978-3-642-14165-2_37


9:14 Fine-Grained Dichotomies for the Tutte Plane and Boolean #CSP

11 Geoffrey Grimmett and Colin McDiarmid, editors. Combinatorics, Complexity, and
Chance: A Tribute to Dominic Welsh. Oxford Lecture Series in Mathematics and Its
Applications (Book 34). Oxford University Press, 2007.

12 Thore Husfeldt and Nina Taslaman. The exponential time complexity of computing the
probability that a graph is connected. In Proceedings of the 5th International Symposium
on Parameterized and Exact Computation, IPEC 2010, pages 192–203, 2010. doi:10.1007/
978-3-642-17493-3_19.

13 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

14 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.
doi:10.1006/jcss.2001.1774.

15 François Jaeger, Dirk L. Vertigan, and Dominic J.A. Welsh. On the computational com-
plexity of the Jones and Tutte polynomials. Mathematical proceedings of the Cambridge
Philosophical Society, 108(1):35–53, 1990. doi:10.1017/S0305004100068936.

16 J. Scott Provan and Michael O Ball. The complexity of counting cuts and of computing
the probability that a graph is connected. SIAM Journal on Computing, 12(4):777–788,
1983. doi:10.1137/0212053.

17 Alan D. Sokal. The multivariate Tutte polynomial (alias Potts model) for graphs and
matroids. In Surveys in Combinatorics, volume 327 of London Mathematical Society Lecture
Note Series, pages 173–226, 2005.

18 Nina Sofia Taslaman. Exponential-Time Algorithms and Complexity of NP-Hard Graph
Problems. PhD thesis, IT-Universitetet i København, 2013.

19 Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on Com-
puting, 20(5):865–877, 1991. doi:10.1137/0220053.

20 Leslie G. Valiant. The complexity of computing the permanent. Theoretical Computer
Science, 8(2):189–201, 1979. doi:10.1016/0304-3975(79)90044-6.

21 Dirk Llewellyn Vertigan. On the computational complexity of Tutte, Jones, Homfly and
Kauffman invariants. PhD thesis, University of Oxford, 1991.

http://dx.doi.org/10.1007/978-3-642-17493-3_19
http://dx.doi.org/10.1007/978-3-642-17493-3_19
http://dx.doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1017/S0305004100068936
http://dx.doi.org/10.1137/0212053
http://dx.doi.org/10.1137/0220053
http://dx.doi.org/10.1016/0304-3975(79)90044-6


A Parameterized Algorithmics Framework for
Degree Sequence Completion Problems in
Directed Graphs∗

Robert Bredereck1, Vincent Froese2, Marcel Koseler3,
Marcelo Garlet Millani4, André Nichterlein†5, and
Rolf Niedermeier6

1 Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
robert.bredereck@tu-berlin.de

2 Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
vincent.froese@tu-berlin.de

3 Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
marcel.koseler@campus.tu-berlin.de

4 Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
marcelo.garletmillani@campus.tu-berlin.de

5 Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
andre.nichterlein@tu-berlin.de

6 Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
rolf.niedermeier@tu-berlin.de

Abstract
There has been intensive work on the parameterized complexity of the typically NP-hard task
to edit undirected graphs into graphs fulfilling certain given vertex degree constraints. In this
work, we lift the investigations to the case of directed graphs; herein, we focus on arc insertions.
To this end, our general two-stage framework consists of efficiently solving a problem-specific
number problem transferring its solution to a solution for the graph problem by applying flow
computations. In this way, we obtain fixed-parameter tractability and polynomial kernelizability
results, with the central parameter being the maximum vertex in- or outdegree of the output
digraph. Although there are certain similarities with the much better studied undirected case,
the flow computation used in the directed case seems not to work for the undirected case while
f -factor computations as used in the undirected case seem not to work for the directed case.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases NP-hard graph problem, graph realizability, graph modification, arc
insertion, fixed-parameter tractability, kernelization

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.10

1 Introduction

Modeling real-world networks (e.g., communication, ecological, social) often requests directed
graphs (digraphs for short). We study a class of specific “network design” (in the sense of

∗ A full version of the paper is available at https://arxiv.org/abs/1604.06302.
† From Feb. 2016 to Jan. 2017 on postdoctoral leave to Durham University (GB), funded by DAAD.

© Robert Bredereck, Vincent Froese, Marcel Koseler, Marcelo Garlet Millani, André Nichterlein, and
Rolf Niedermeier;
licensed under Creative Commons License CC-BY

11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin; Article No. 10; pp. 10:1–10:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.10
https://arxiv.org/abs/1604.06302
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


10:2 A Framework for Degree Sequence Completion Problems in Directed Graphs

constructing a specific network topology) or “graph realization” problems. Here, our focus is
on inserting arcs into a given digraph in order to fulfill certain vertex degree constraints. These
problems are typically NP-hard, so we choose parameterized algorithm design for identifying
relevant tractable special cases. The main parameter we work with is the maximum in- or
outdegree of the newly constructed digraph. To motivate the problems we deal with, consider
the following three application scenarios.
1. Assume we are given a directed network representing a system’s current state. Then, each

individual node might have certain desired states of connectivity in terms of the numbers
of in- and outgoing arcs which we want to satisfy by inserting arcs between the nodes.
For instance, in a peer-review network we have an arc from one author reviewing a paper
of another author. Depending on research experience, the authors might have different
requests with respect to the number of own papers to be reviewed by others and other
papers which they are reviewing. This leads to the Digraph Degree Constraint
Completion problem as studied in Section 4.1.

2. Assume that we have two different data sources: A network which is an incomplete
measurement of some unreliable source and the true degree sequence of the target
network. The goal is to reconstruct the original network by inserting arcs such that we
obtain the target degree sequence (in a sense, the network matches the given degree
sequence). In the presence of labeled input networks this might for example reveal
communication patterns between users in social networks. The corresponding problem is
called Digraph Degree Sequence Completion and studied in Section 4.2.

3. Assume we want to “k-anonymize” a social network, that is, after inserting a minimum
number of arcs each degree, that is, each combination of in- and outdegree, occurs either
zero or at least k times. This leads to the Digraph Degree Anonymity problem as
studied in Section 4.3.

All three problems are NP-hard. Based on a general framework presented in Section 3, we
derive several fixed-parameter tractability results for them, mainly exploiting the parameter
“maximum vertex degree” in the output digraph. Moreover, the three problems above are
special cases of the Digraph Degree Constraint Sequence Completion problem
which we will define next.

These three problems as well as Digraph Degree Constraint Sequence Completion
are special graph modification problems: given a graph, can it be changed by a minimum
number of graph modifications such that the resulting graph adheres to specific constraints
for its degree sequence?

In the most basic variant a degree sequence is a sequence of positive integers specifying
(requested) vertex degrees for a fixed ordering of the vertices. Typically, the corresponding
computational problems are NP-hard. In recent years, research in this direction focused
on undirected graphs [8, 10, 11, 14, 18, 20]. In this work, we investigate parameterized
algorithms on digraphs. As Gutin and Yeo [12] observed, much less is known about the
structure of digraphs than that of undirected graphs making the design of parameterized
algorithms for digraphs more challenging. In particular, we present a general framework for
a class of degree sequence modification problems, focusing on the case of arc insertions (that
is, completion problems).

The most general degree completion problem for digraphs we consider in this work is as
follows.



R. Bredereck et al. 10:3

Digraph Degree Constraint Sequence Completion (DDConSeqC)
Input: A digraph D = (V,A), a non-negative integer s, a “degree list function”

τ : V → 2{0,...,r}2 , and a “sequence property” Π.
Question: Is it possible to obtain a digraph D′ by inserting at most s arcs in D such that

the degree sequence of D′ fulfills Π and degD′(v) ∈ τ(v) for all v ∈ V ?

We emphasize that there are two types of constraints – one (specified by the function τ)
for the individual vertices and one (specified by Π) for the whole list of degree tuples. For
instance, a common Π as occurring in the context of data privacy applications is to request
that the list is k-anonymous, that is, every combination of in- and outdegree that occurs in
the list occurs at least k times (see the third motivating example before).

Since DDConSeqC and its special cases as studied here all turn out to be NP-hard [19, 15],
a parameterized complexity analysis seems the most natural fit for understanding the
computational complexity landscape of these kinds of problems – this has also been observed
in the above mentioned studies for the undirected case. Our main findings are mostly on the
positive side. That is, although seemingly more intricate to deal with due to the existence of
in- and outdegrees, many positive algorithmic results which hold for undirected graphs can
also be achieved for digraphs (albeit using different techniques). In particular, we present a
maximum-flow-based framework that, together with the identification and solution of certain
number problems, helps to derive several fixed-parameter tractability results with respect to
the parameter maximum possible in- or outdegree ∆∗ in any solution digraph. Notably, the
corresponding result in the undirected case was based on f -factor computations [8] which do
not transfer to the directed case, and, vice versa, the flow computation approach we present
for the directed case seemingly does not transfer to the undirected case. For special cases of
DDConSeqC, we can move further and even derive some polynomial-size problem kernels,
again for the parameter ∆∗.

We consider the parameter ∆∗ for the following reasons. First, it is always at most r,
a natural parameter in the input. Second, in combination with Π, we might get an even
smaller upper bound for ∆∗. Third, bounded-degree graphs are well studied and our work
extends this since we only require ∆∗ to be small, not to be constant.

Related Work. Most of the work on graph modification problems for realizing degree
constraints has focused on undirected graphs [8, 10, 11, 14, 18, 20]. Closest to our work is
the framework for deriving polynomial-size problem kernels for undirected degree sequence
completion problems [8], which we complement by our results for digraphs. Generally, we can
derive similar results, but the technical details differ and the landscape of problems is richer in
the directed case. As to digraph modification problems in general, we are aware of surprisingly
little work. We mention work studying arc insertion for making a digraph transitive [22] or
for making a graph Eulerian [7], both employing the toolbox of parameterized complexity
analysis. Somewhat related is also work about the insertion of edges into a mixed graph to
satisfy local edge-connectivity constraints [1] or about orienting edges in a partially oriented
graph to make it an oriented graph [2].

Our Results. In Section 3, we present our general framework for DDConSeqC. That is,
based on flow computations, in a two-stage approach we show that it is fixed-parameter
tractable with respect to the parameter ∆∗. To this end, we identify a specific pure number
problem that needs to be fixed-parameter tractable with respect to the largest integer in the
input. Next, presenting applications of the framework, in Section 4.1, we show that if there
is no constraint Π concerning the degree sequence (that is, Digraph Degree Constraint

IPEC 2016



10:4 A Framework for Degree Sequence Completion Problems in Directed Graphs

Completion), then we not only obtain fixed-parameter tractability but also a polynomial-
size problem kernel for parameter ∆∗ can be obtained. Then, in Section 4.2 we show an
analogous result if there is one exactly specified degree sequence to be realized (Digraph
Degree Sequence Completion). Finally, in Section 4.3, we show that if we request the
degree sequence to be k-anonymous (that is, Digraph Degree Anonymity), then we can at
least derive a polynomial-size problem kernel for the combined parameter (s,∆D), where ∆D

denotes the maximum in- or outdegree of the input digraph D. Also, we take a first step
outlining the limitations of our framework for digraphs. In contrast to the undirected case
(which is polynomial-time solvable [17]), the corresponding number problem of Digraph
Degree Anonymity surprisingly is weakly NP-hard and presumably not polynomial-time
solvable. Due to lack of space, several proofs are deferred to a full version (available at
https://arxiv.org/abs/1604.06302).

2 Preliminaries

We consider digraphs (without multiarcs or loops) D = (V,A) with n := |V | and m := |A|.
For a vertex v ∈ V , deg−D(v) denotes the indegree of v, that is, the number of incoming
arcs of v. Correspondingly, deg+

D(v) denotes the outdegree, that is, the number of outgoing
arcs of v. We define the degree degD(v) := (deg−D(v),deg+

D(v)). The set V (A′) := {v ∈ V |
((v, w) ∈ A′ ∨ (w, v) ∈ A′) ∧ w ∈ V } contains all vertices incident to an arc in A′ ⊆ V 2.
For a set of arcs A′ ⊆ V 2, D + A′ denotes the digraph (V,A ∪ A′), while D[A′] denotes
the subdigraph (V (A′), A′). Analogously, for a set of vertices V ′ ⊆ V , D[V ′] denotes
the induced subdigraph (V ′, A ∩ (V ′)2) which only contains the vertices V ′ and the arcs
between vertices from V ′. The set N+

D (v) := {w ∈ V | (v, w) ∈ A} denotes the set
of outneighbors of v. Analogously, N−D (v) := {w ∈ V | (w, v) ∈ A} denotes the set of
inneighbors. Furthermore, we define the maximum indegree ∆−D := maxv∈V deg−D(v), the
maximum outdegree ∆+

D := maxv∈V deg+
D(v), and ∆D := max{∆+

D,∆
−
D}.

A digraph degree sequence σ = {(d−1 , d
+
1 ), . . . , (d−n , d+

n )} is a multiset of nonnegative
integer tuples, where d−i , d

+
i ∈ {0, . . . , n− 1} for all i ∈ {1, . . . , n}. We define

∆−σ := max{d−1 , . . . , d−n }, ∆+
σ := max{d+

1 , . . . , d
+
n }, and ∆σ := max{∆−σ ,∆+

σ }.

For a digraph D = ({v1, . . . , vn}, A) we denote by σ(D) := {degD(v1), . . ., degD(vn)},
the digraph degree sequence of D. Let d = (d−, d+) be a nonnegative integer tuple. For
a digraph D, the block BD(d) of degree d is the set of all vertices having degree d, for-
mally BD(d) := {v ∈ V | degD(v) = d}. We define λD(d) as the number of vertices in D
with degree d, that is, λD(d) := |BD(d)|. Similarly, we define Bσ(t) as the multiset of all
tuples equal to t and λσ(t) as the number of occurrences of the tuple t in the multiset σ. For
two integer tuples (x1, y1), (x2, y2), we define the sum (x1, y1) + (x2, y2) := (x1 + x2, y1 + y2).

3 The Framework

Our goal is to develop a framework for deriving fixed-parameter tractability for a general
class of completion problems in directed graphs. To this end, recall our general setting for
DDConSeqC which is as follows. We are given a digraph and want to insert at most s
arcs such that the vertices satisfy certain degree constraints τ , and additionally, the degree
sequence of the digraph fulfills a certain property Π. Formally, the sequence property Π
is given as a function that maps a digraph degree sequence to 1 if the sequence fulfills the
property and otherwise to 0. We restrict ourselves to properties where the corresponding

https://arxiv.org/abs/1604.06302


R. Bredereck et al. 10:5

function can be encoded with only polynomially many bits in the number of vertices of the
input digraph and can be decided efficiently.1 We remark that it is not always the case that
there are both vertex degree constraints (as defined by τ) and degree sequence constraints (as
defined by Π) requested. This can be handled by either setting τ to the trivial degree list
function with τ(v) = {0, . . . , n− 1}2 for all v ∈ V or setting Π to allow all possible degree
sequences.

In this section, we show how to derive (under certain conditions) fixed-parameter trac-
tability with respect to the maximum possible in- or outdegree ∆∗ of the output digraph
for DDConSeqC. Note that ∆∗ in general is not known in advance. In practice, we might
therefore instead consider upper bounds for ∆∗ which depend on the given input. For
example, it always holds ∆∗ ≤ min{r,∆D + s} since we are only inserting at most s arcs
in D. Clearly, ∆∗ might also be upper-bounded depending on Π (or even depending on r,
s, ∆D, and Π) in some cases. Our generic framework consists of two main steps: First,
we prove fixed-parameter tractability with respect to the combined parameter (s,∆D) in
Section 3.1. This step generalizes ideas for the undirected case [8]. Note that ∆D ≤ ∆∗
trivially holds. Second, we show in Section 3.2 how to upper-bound the number s of arc
insertions polynomially in ∆∗ by solving a certain problem specific numerical problem. For
this step, we develop a new key argument based on a maximum flow computation (the
undirected case was based on f -factor arguments).

3.1 Fixed-parameter tractability with respect to (s, ∆D)

We show that DDConSeqC is fixed-parameter tractable with respect to the combination
of the maximum number s of arcs to insert and the maximum in- or outdegree ∆D of
the input digraph D. The basic idea underlying this result is that two vertices v and w

with degD(v) = degD(w) and τ(v) = τ(w) are interchangeable. Accordingly, we will show that
it suffices to consider only a bounded number of vertices with the same “degree properties”.
In particular, if there is a solution, then there is also a solution that only inserts arcs between
a properly chosen subset of vertices of bounded size. To formalize this idea, we introduce the
notion of an α-block-type set for some positive integer α.

To start with, we define the types of a vertex via the numbers of arcs that τ allows
to add to this vertex. Let (D, s, τ,Π) be a DDConSeqC instance. A vertex v is of type
t ∈ {0, . . . ,∆∗}2 if degD(v) + t ∈ τ(v). Observe that one vertex can be of several types.
The subset of V (D) containing all vertices of type t is denoted by TD,τ (t). A vertex v of
type (0, 0) (that is, degD(v) ∈ τ(v)) is called satisfied. A vertex which is not satisfied is
called unsatisfied. We next define our notion of α-block-type sets and its variants.

I Definition 1. Let α be a positive integer and let U ⊆ V (D) denote the set of all unsatisfied
vertices in D. A vertex subset C ⊆ V (D) with U ⊆ C is called

α-type set if, for each type t 6= (0, 0), C contains exactly min{|TD,τ (t) \ U |, α} satisfied
vertices of type t;
α-block set if, for each degree d ∈ σ(D), C contains exactly min{|BD(d) \ U |, α} satisfied
vertices with degree d;
α-block-type set if, for each degree d ∈ σ(D) and each type t 6= (0, 0), C contains exactly
min{|(BD(d) ∩ TD,τ (t)) \ U |, α} satisfied vertices of degree d and type t.

1 All specific properties in this work can be easily decided in polynomial time. Indeed, in many cases
even fixed-parameter tractability with respect to the maximum integer in the sequence would suffice.

IPEC 2016



10:6 A Framework for Degree Sequence Completion Problems in Directed Graphs

As a first step, we prove that these sets defined above can be computed efficiently.

I Lemma 2. An α-type/α-block/α-block-type set C as described in Definition 1 can be
computed in O(m+ |τ |+ r2) / O(m+ n+ ∆2

D) / O(m+ |τ |+ ∆2
Dr

2) time.

We move on to the crucial lemma stating that a solution (that is, a set of arcs), if existing,
can always be found in between vertices of an α-block-type set C given that C contains
“enough” vertices of each degree and type. Here, enough means α := 2s(∆D + 1).

I Lemma 3. Let (D, s, τ,Π) be a DDConSeqC instance and let C ⊆ V (D) be a 2s(∆D +
1)-block-type set. If (D, s, τ,Π) is a yes-instance, then there exists a solution A∗ ⊆ C2

for (D, s, τ,Π), that is, |A∗| ≤ s, σ(D + A∗) fulfills Π, and degD+A∗(v) ∈ τ(v) for all v ∈
V (D).

If there are no restrictions on the resulting degree sequence (as it is the case for the
Digraph Degree Constraint Completion problem (DDConC) in Section 4.1), then
we can replace the 2s(∆D + 1)-block-type set in Lemma 3 by a 2s(∆D + 1)-type set:

I Lemma 4. Let (D, s, τ) be a DDConC instance and let C ⊆ V (D) be a 2s(∆D + 1)-type
set. If (D, s, τ) is a yes-instance, then there exists a solution A∗ ⊆ C2 for (D, s, τ), that is,
|A∗| ≤ s and degD+A∗(v) ∈ τ(v) for all v ∈ V (D).

Similarly, if there are no restrictions on the individual vertex degrees, that is, τ is
the degree list function τ(v) = {0, . . . , n − 1}2 for all v ∈ V (D), then we can replace
the 2s(∆D + 1)-block-type set by a 2s(∆D + 1)-block set.

I Lemma 5. Let (D, s, τ,Π) be a DDConSeqC instance where τ(v) = {0, . . . , n− 1}2 for
all v ∈ V (D) and let C ⊆ V (D) be a 2s(∆D + 1)-block set. If (D, s, τ,Π) is a yes-instance,
then there exists a solution A∗ ⊆ C2 for (D, s, τ,Π), that is, |A∗| ≤ s and σ(D+A∗) fulfills Π.

Lemma 3 implies a fixed-parameter algorithm by providing a reduced search space for
possible solutions, namely any 2s(∆D + 1)-block-type set C: Simply try out all possibilities
to insert at most s arcs with endpoints in C and check whether in one of the cases the degrees
and the degree sequence of the resulting graph satisfy the requirements τ and Π. As |C| ≤
2s(∆D + 1) · (∆D + 1)2(∆∗)2 and ∆∗ ≤ ∆D + s, there are at most O(2(2s(∆D+1)3(∆D+s)2)2)
possible subsets of arcs to insert. Altogether, this leads to the following theorem.

I Theorem 6. If deciding Π is fixed-parameter tractable with respect to the maximum integer
in the sequence, then DDConSeqC is fixed-parameter tractable with respect to (s,∆D).

3.2 Bounding the solution size s polynomially in ∆∗

This subsection constitutes the major part of our framework. The rough overall scheme is
analogous to the undirected case as described by Froese et al. [8]. By dropping the graph
structure and solving a simpler problem-specific number problem on the degree sequence
of the input digraph, we show how to solve DDConSeqC instances with “large” solutions
provided that we can solve the associated number problem efficiently. The number problem is
defined so as to simulate the insertion of arcs to a digraph on an integer tuple sequence. Note
that inserting an arc increases the indegree of a vertex by one and increases the outdegree
of another vertex by one. Inserting s arcs can thus be represented by increasing the tuple
entries in the degree sequence by an overall value of s in each component. Formally, the
corresponding number problem (abbreviated as #DDConSeqC) is defined as follows.



R. Bredereck et al. 10:7

vtvs

v+
1

v+
2
...
v+
n

v−1

v−2
...
v−n

1

1
1

1

y1

y2

yn

x1

x2

xn

Figure 1 A flow network as described in Construction 8. For each vertex vi in the digraph D
there are two vertices v+

i and v−
i . We connect a vertex v+

i to a vertex v−
j if the arc (vi, vj) is not in

D. Inserting the arc (vi, vj) is then represented by setting the flow on the arc (v+
i , v

−
j ) to one.

Numbers Only Digraph Degree Constraint Sequence Completion
Input: A sequence σ = (c1, d1), . . . , (cn, dn) of n nonnegative integer tuples, a positive

integer s, a “tuple list function” τ : {1, . . . , n} → 2{0,...,r}2 , and a sequence
property Π.

Question: Is there a sequence σ′ = (c′1, d′1), . . . , (c′n, d′n) such that
∑n
i=1 c

′
i−ci =

∑n
i=1 d

′
i−

di = s, ci ≤ c′i, di ≤ d′i, and (c′i, d′i) ∈ τ(i) for all 1 ≤ i ≤ n, and σ′ fulfills Π?

If we plug the degree sequence of a digraph into #DDConSeqC, then an integer tuple (c′i, d′i)
of a solution tells us to add xi := c′i − ci incoming arcs and yi := d′i − di outgoing arcs to the
vertex vi. We call the tuples (xi, yi) demands. Having computed the demands, we can then
try to solve our original DDConSeqC instance by searching for a set of arcs to insert that
exactly fulfills the demands. Such an arc set, however, might not always exist. Hence, the
remaining problem is to decide whether it is possible to realize the demands in the given
digraph. The following lemma shows (using flow computations) that this is in fact always
possible if the number s of arcs to insert is large compared to ∆∗.

I Lemma 7. Let D = (V = {v1, . . . , vn}, A) be a digraph and let x1, . . . , xn, y1, . . . , yn,
and ∆∗ be nonnegative integers such that
(I) ∆∗ ≤ n− 1,
(II) deg−D(vi) + xi ≤ ∆∗ for all i ∈ {1, . . . , n},
(III) deg+

D(vi) + yi ≤ ∆∗ for all i ∈ {1, . . . , n},
(IV)

∑n
i=1 xi =

∑n
i=1 yi =: s, and

(V) s > 2(∆∗)2.
Then, there exists an arc set A′ ⊆ V 2 \A of size s such that for the digraph D′ := D+A′

it holds degD′(vi) = degD(vi) + (xi, yi) for all vi ∈ V . Moreover, the set A′ can be computed
in O(n3) time.

Proof. The proof is based on a flow network which we construct such that the corresponding
maximum flow yields the set A′ of arcs to be inserted in D in order to obtain our target
digraph D′.

I Construction 8. We build a flow network N = (VN , AN ) according to the following steps.
Add a source vertex vs and a sink vertex vt to N ;
for each vertex vi ∈ V , add two vertices v+

i , v
−
i to N ;

for each i ∈ {1, . . . , n}, insert the arc (vs, v+
i ) with capacity yi;

for each i ∈ {1, . . . , n}, insert the arc (v−i , vt) with capacity xi;
for each (vi, vj) ∈ V 2 \A with i 6= j, insert the arc (v+

i , v
−
j ) with capacity one.

The network N contains |VN | ∈ O(n) vertices and |AN | ∈ O(n2 − m) arcs (since
m ≤ n2 − n, we also have |AN | ∈ Ω(n)) and can be constructed in O(n2) time. See Figure 1

IPEC 2016



10:8 A Framework for Degree Sequence Completion Problems in Directed Graphs

for an illustration. Inserting an arc (vi, vj) in D corresponds to sending flow from v+
i to v−j .

Since, by definition, each vertex v+
i will only receive at most yi flow from vs and each vertex

v−i will send at most xi flow to vt, we cannot insert more than s arcs (Condition (IV)).
We claim that for s > 2(∆∗)2 (Condition (V)), the maximum flow in the network is

indeed s. To see this, let V +
N := {v+

i ∈ VN | i ∈ {1, . . . , n}} and let V −N := {v−i ∈ VN | i ∈
{1, . . . , n}}. In the following, a vertex v+

i ∈ V
+
N (v−j ∈ V

−
N ) is called saturated with respect

to a flow f : AN → R+, if f(vs, v+
i ) = yi (f(v−j , vt) = xj). Suppose that the maximum

flow f has a value less than s. Then, there exist non-saturated vertices v+
i ∈ V +

N and
v−j ∈ V

−
N . Let X ⊆ V −N be the vertices to which v+

i has an outgoing arc in the residual graph
and let Y ⊆ V +

N be the vertices which have an outgoing arc to v−j in the residual graph.
Observe that deg+

N (v+
i ) = n− 1−deg+

D(vi) and deg−N (v−j ) = n− 1−deg−D(vj). Consequently,
|X| > n − 1 − deg+

D(vi) − yi ≥ n − 1 − ∆∗ holds due to Condition (III). Since v+
i is not

saturated, we know that |X| ≥ n−∆∗ ≥ 1 (due to Condition (I)). By the same reasoning
(using Conditions (II) and (I)) it follows that |Y | ≥ n−∆∗ ≥ 1.

Remember that f is a flow of maximum value. Hence, each vertex in X and each vertex
in Y is saturated. Otherwise, there would be an augmenting path in the residual graph,
contradicting our assumption of f being maximal. If a vertex x ∈ X would receive flow
from a vertex y ∈ Y , then this implies a backward arc in the residual graph resulting in
an augmenting path vs → v+

i → x → y → v−j → vt, again contradicting our maximality
assumption for f . Thus, we can conclude that all the flow that goes into X has to come from
the remaining vertices in V +

N \(Y ∪{v
+
i }). This set has size at most n−|Y | ≤ n−(n−∆∗) = ∆∗.

But since y` ≤ ∆∗ for all ` ∈ {1, . . . , n} (by Condition (III)), those ∆∗ vertices can cover at
most a flow of value (∆∗)2 and hence,∑

v−
i
∈X

xi ≤
∑

v+
i
∈V +

N
\(Y ∪{v+

i
})

yi ≤ (∆∗)2. (1)

Since X is saturated, and since also x` ≤ ∆∗ holds for all ` ∈ {1, . . . , n} (Condition (II)), we
obtain from Condition (IV)

s =
n∑
i=1

xi =
∑
v−

i
∈X

xi +
∑

v−
i
∈V −

N
\X

xi
(1)
≤ (∆∗)2 +

∑
v−

i
∈V −

N
\X

∆∗

= (∆∗)2 + |V −N \X| ·∆
∗ = (∆∗)2 + (n− |X|) ·∆∗

≤ (∆∗)2 + ∆∗ ·∆∗.

This contradicts s > 2(∆∗)2 (Condition (V)) and hence proves the claim.
Now, let f be a maximum flow inN (computable inO(|VN ||EN |) = O(n(n2−m)) time [21])

and let A′ := {(vi, vj) ∈ V 2 | f((v+
i , v

−
j )) = 1} and note that |A′| = s and A′∩A = ∅. Clearly,

for the digraph D′ := D +A′ it holds degD′(vi) = degD(vi) + (xi, yi) for all vi ∈ V . J

We remark that similar flow-constructions as given in the proof above have been used
before [9, 6]. The difference here is that we actually argue about the size of the flow and not
only about polynomial-time solvability. Consequently, our proof uses different arguments.

With Lemma 7 we have the key which allows us to transfer solutions of #DDConSeqC
to solutions of DDConSeqC. The following lemma is immediate.

I Lemma 9. Let I := (D = (V,A), s, τ,Π) with V = {v1, . . . , vn} be an instance of
DDConSeqC with s > 2(∆∗)2. If there exists an s′ with 2(∆∗)2 < s′ ≤ s such that
I ′ := (degD(v1), . . . ,degD(vn), s′, τ ′,Π) with τ ′(i) := τ(vi) for all vi ∈ V is a yes-instance
of #DDConSeqC, then also I is a yes-instance of DDConSeqC.



R. Bredereck et al. 10:9

{(0, 1)} {(1, 0), (2, 0)} {(0, 1)} {(0, 1)} {(2, 0)} {(1, 1), (2, 1)}

Figure 2 Two example instances of DDConC with s = 1. The left instance is solvable by
inserting the (dashed) arc from the right vertex to the middle vertex. The right instance is a
no-instance since one cannot add an outgoing arc to the left vertex or to the middle vertex but one
has to add an incoming arc to the right vertex (loops are not allowed).

We now have all ingredients for our first main result, namely transferring fixed-parameter
tractability with respect to the combined parameter (s,∆∗) to fixed-parameter tractability
with respect to the single parameter ∆∗, provided that #DDConSeqC is fixed-parameter
tractable with respect to the largest possible integer ξ in the output sequence. The idea is to
search for large solutions based on Lemma 9 using #DDConSeqC. If there are no large
solutions (that is, s ≤ 2(∆∗)2), then we run an FPT-algorithm with respect to (s,∆∗).

I Theorem 10. If DDConSeqC is fixed-parameter tractable with respect to (s,∆∗) and
#DDConSeqC is fixed-parameter tractable with respect to the largest possible integer ξ in
the output sequence, then DDConSeqC is fixed-parameter tractable with respect to ∆∗.

Our second main result allows to transfer a polynomial-size problem kernel with respect
to (s,∆∗) to a polynomial-size problem kernel with respect to ∆∗ if #DDConSeqC is
polynomial-time solvable. The proof is analogous to the proof of Theorem 10.

I Theorem 11. If DDConSeqC admits a problem kernel containing g(s,∆∗) vertices
computable in p(n) time and #DDConSeqC is solvable in q(n) time for polynomials p
and q, then DDConSeqC admits a problem kernel with g(2(∆∗)2,∆∗) vertices computable
in O(s · q(n) + p(n)) time.

4 Applications

In the following, we show how the framework described in Section 3 can be applied to three
special cases of DDConSeqC. These special cases naturally extend known problems on
undirected graphs to the digraph setting.

4.1 Digraph Degree Constraint Completion
In this section, we investigate the NP-hard special case of DDConSeqC2 where the prop-
erty Π allows any possible degree sequence, see Figure 2 for two illustrating examples.

Digraph Degree Constraint Completion (DDConC)
Input: A digraph D = (V,A), a positive integer s, and a “degree list function”

τ : V → 2{0,...,r}2 .
Question: Is it possible to obtain a digraph D′ by inserting at most s arcs in D such that

degD′(v) ∈ τ(v) for all v ∈ V ?

DDConC is the directed (completion) version of the well-studied undirected Degree
Constraint Editing problem [18, 10] for which problem kernel with O(r5)-vertices is

2 This special case was investigated more specifically in the Bachelor thesis of Koseler [15] (online
available).

IPEC 2016



10:10 A Framework for Degree Sequence Completion Problems in Directed Graphs

σ = {(0, 3), (1, 1), (2, 0), (2, 1)}

Figure 3 Example instance of DDSeqC. Inserting the dashed arc in the input digraph (solid arcs)
with degree sequence {(0, 1), (0, 2), (2, 0), (2, 1)} yields a digraph with the given target sequence σ.

known [8]. We subsequently transfer the polynomial-size problem kernel for the undirected
case to a polynomial-size problem kernel for DDConC with respect to ∆∗. Note that the
parameter ∆∗ is clearly at most r. Since it is trivial to decide Π in this case, we obtain
fixed-parameter tractability of DDConC with respect to (s,∆D) due to Theorem 6, which
is based on a bounded search space, namely a 2s(∆D + 1)-type set (see Definition 1 and
Lemma 4). We further strengthen this result by removing all vertices that are not in the
2s(∆D + 1)-type set and adjusting the degree list function τ appropriately. Lemma 4 then
yields the correctness of this approach resulting in a polynomial-size problem kernel with
respect to (s,∆∗).

I Theorem 12. DDConC admits a problem kernel containing O(s(∆∗)3) ⊆ O(sr3) vertices.
It is computable in O(m+ |τ |+ r2) time.

The goal now is to use our framework (Theorem 11) to transfer the polynomial-size kernel
with respect to (s,∆∗) to a polynomial-size kernel with respect to ∆∗. To this end, we
show that the corresponding number problem (#DDConC) is polynomial-time solvable.
Here, #DDConC is the special case of #DDConSeqC without the sequence property Π.
#DDConC can be solved in pseudo-polynomial time by a dynamic programming algorithm.
Note that pseudo-polynomial time is sufficient for our purposes since all occurring numbers
will be bounded by O(n2) when creating the #DDConC instance from the given DDConC
instance. (In fact, we conjecture that #DDConC is weakly NP-hard and a reduction from
Partition should be possible as in the case for #DDA in Section 4.3, Theorem 19.)

I Lemma 13. #DDConC is solvable in O(n(sr)2) time.

Combining Theorem 12 and Lemma 13 yields the following corollary of Theorem 11.

I Corollary 14. DDConC admits a problem kernel containing O((∆∗)5) ⊆ O(r5) vertices.
It is computable in O(m+ ns3r2) time.

4.2 Digraph Degree Sequence Completion
In this section, we investigate the NP-hard special case of DDConSeqC3 where τ does not
restrict the allowed degree of any vertex and Π is fulfilled by exactly one specific degree
sequence σ (see Figure 3 for an example). The undirected problem variant is studied by
Golovach and Mertzios [11].

Digraph Degree Sequence Completion (DDSeqC)
Input: A digraph D = (V,A), a digraph degree sequence σ containing |V | integer

tuples.
Question: Is it possible to obtain a digraph D′ by inserting arcs in D such that σ(D′) = σ?

3 Although not stated explicitly, the NP-hardness follows from the proof of Theorem 3.2 of the Bachelor
thesis of Millani [19] (online available) as the construction therein allows for only one feasible target
degree sequence.



R. Bredereck et al. 10:11

Figure 4 Example instance of DDA. The input digraph with three components (solid arcs) is
1-anonymous since there is only one vertex with degree (0, 1). By inserting the dashed arc, the
digraph becomes 7-anonymous since all vertices have degree (1, 1).

For DDSeqC, the parameter ∆∗ is by definition equal to ∆σ. Moreover, note that the
number s of arcs to insert (if possible) is determined by the target sequence σ by s :=∑

(c,d)∈σ c−
∑
v∈V (D) deg−D(v). We henceforth assume that

s =
∑

(c,d)∈σ

c−
∑

v∈V (D)

deg−D(v) =
∑

(c,d)∈σ

d−
∑

v∈V (D)

deg+
D(v) ≥ 0

holds since otherwise we have a trivial no-instance.
Since deciding Π (that is, deciding whether σ(D′) = σ) can be done in polynomial time, we

immediately obtain fixed-parameter tractability of DDSeqC with respect to (s,∆D) due to
Theorem 6. We further strengthen this result by developing a polynomial-size problem kernel
for DDSeqC with respect to (s,∆σ). The kernelization is inspired by the O(s∆2

σ)-vertex
problem kernel for the undirected problem by Golovach and Mertzios [11]. The main idea is
to only keep the vertices of a 2s(∆D + 1)-block set (see Definition 1) together with some
additional “dummy” vertices and to adjust the digraph degree sequence σ properly.

I Theorem 15. DDSeqC admits a problem kernel containing O(s∆3
σ) vertices computable

in O(n+m+ ∆2
σ) time.

The corresponding number problem #DDSeqC is the special case of #DDConSeqC
asking for the specific target sequence σ. #DDSeqC can be solved in polynomial time by
finding perfect matchings in an auxiliary graph.

I Lemma 16. #DDSeqC is solvable in O(n2.5) time.

Combining Theorem 15 and Lemma 16 yields the following corollary of Theorem 11.

I Corollary 17. DDSeqC admits a problem kernel containing O(∆5
σ) vertices. It is com-

putable in O(sn2.5)-time.

4.3 Degree Anonymity
We extend the definition of Degree Anonymity in undirected graphs due to Liu and
Terzi [17] to digraphs and obtain the following NP-hard problem [19] (Figure 4 presents an
example):

Digraph Degree Anonymity (DDA)
Input: A digraph D = (V,A) and two positive integers k and s.
Question: Is it possible to obtain a digraph D′ by inserting at most s arcs in D such

that D′ is k-anonymous, that is, for every vertex v ∈ V there are at least
k − 1 other vertices in D′ with degree degD′(v)?

The (parameterized) complexity as well as the (in-)approximability of the undirected version
called Degree Anonymity are well-studied [5, 14, 3]. There also exist many heuristic
approaches to solve the undirected version [4, 13]. Notably, our generic approach shown

IPEC 2016



10:12 A Framework for Degree Sequence Completion Problems in Directed Graphs

in Section 3.2 originates from a heuristic of Liu and Terzi [17] for Degree Anonymity.
Later, Hartung et al. [14] used this heuristic to prove that “large” solutions of Degree
Anonymity can be found in polynomial time and Froese et al. [8] extended this approach
to a more general class of problems. The property Π (that is, k-anonymity) can clearly be
checked for a given input digraph degree sequence in polynomial time. Hence, Theorem 6
yields fixed-parameter tractability of DDA with respect to (s,∆D). Again, we develop a
polynomial-size problem kernel with respect to (s,∆D). Somewhat surprisingly, we cannot
transfer this problem kernel to a problem kernel with respect to ∆∗ since we are not able to
solve the corresponding number problem in polynomial time. In fact, we will show that it is
at least weakly NP-hard.

We first provide a problem kernel based on Lemma 5 in a similar fashion as in the proof
of Theorem 15: We keep a 2s(∆D + 1)-block set C in the kernel and remove all other vertices.
In order to not change the degrees of the vertices we kept, we introduce “dummy” vertices
that will have a very high degree so that there is no interference with the vertices we kept.
The approach is inspired by the polynomial-size problem kernel of Hartung et al. [14].

I Theorem 18. DDA admits a problem kernel containing O(∆5
Ds) vertices. It is computable

in O(∆10
D s

2 + ∆3
Dsn) time.

In contrast to both number problems in Sections 4.1 and 4.2, we were unable to find a
polynomial-time algorithm for the number problem for DDA, which is the special case of
#DDConSeqC asking for a k-anonymous target sequence. We can show that #DDA is
weakly NP-hard by a polynomial-time many-one reduction from Partition.

I Theorem 19. #DDA is (weakly) NP-hard even if k = 2.

Note that the hardness from Theorem 19 does not translate to instances of #DDA
originating from digraph degree sequences because in such instances all numbers in the input
sequence σ and also in the output sequence σ′ are bounded by n−1 where n is the number of
tuples in σ. Since there are pseudo-polynomial-time algorithms for Partition, Theorem 19
leaves open whether #DDA is strongly NP-hard or can be solved in polynomial time for
instances originating from digraphs.

To again apply our framework (Theorem 10), we show that #DDA is at least fixed-
parameter tractable with respect to the largest possible integer ξ in the output sequence. To
this end, we develop an integer linear program that contains at most O(ξ4) integer variables
and apply the a famous result due to Lenstra [16].

I Theorem 20. #DDA is fixed-parameter tractable with respect to the largest possible
integer ξ in the output sequence.

Combining Theorems 6, 10, and 20 yields fixed-parameter tractability for DDA with
respect to ∆∗. Hartung et al. [14] showed fixed-parameter tractability with respect to ∆G in
the undirected setting. This result was based on showing that ∆∗ ≤ ∆2

G + 5∆2
G + 2. In the

directed setting, however, we can only show that ∆∗ ≤ 4k(∆D + 2)2.

I Lemma 21. Let D be a digraph and let S be a minimum size arc set such that D + S is
k-anonymous. Then the maximum degree in D + S is at most 4k(∆D + 2)2 + ∆D.

Consequently, combining Theorems 6, 10, 20, and Lemma 21, we obtain the following.

I Corollary 22. DDA is fixed-parameter tractable with respect to ∆∗ and (k,∆D).

It remains open whether DDA is fixed-parameter tractable with respect to ∆D. We
remark that the problems DDConC and DDSeqC are both NP-hard for ∆D = 3. This
follows from an adaption of the construction given by Millani [19, Theorem 3.2].



R. Bredereck et al. 10:13

5 Conclusion

We proposed a general framework for digraph degree sequence completion problems and
demonstrated its wider applicability in case studies. Somewhat surprisingly, the presumably
more technical case of digraphs allowed for some elegant tricks (based on flow computations)
that seem not to work for the presumably simpler undirected case. Once having established
the framework (see Section 3), the challenges then associated with deriving fixed-parameter
tractability and kernelizability results usually boil down to the question for fixed-parameter
tractability and (pseudo-)polynomial-time solvability of a simpler problem-specific number
problem. While in most cases we could develop polynomial-time algorithms solving these
number problems, in the case of Digraph Degree Anonymity the polynomial-time
solvability of the associated number problem remains open. Moreover, a widely open field
is to attack weighted versions of our problems. Finally, we believe that due to the fact
that many real-world networks are inherently directed (e.g., representing relations such as
“follower”, “likes”, or “cites”) further studies (e.g., exploiting special digraph properties) of
digraph degree sequence completion problems are desirable.

References
1 Jørgen Bang-Jensen, András Frank, and Bill Jackson. Preserving and increasing local

edge-connectivity in mixed graphs. SIAM Journal on Discrete Mathematics, 8(2):155–178,
1995.

2 Jørgen Bang-Jensen, Jing Huang, and Xuding Zhu. Completing orientations of partially
oriented graphs. CoRR abs/1509.01301, 2015.

3 Cristina Bazgan, Robert Bredereck, Sepp Hartung, André Nichterlein, and Gerhard J.
Woeginger. Finding large degree-anonymous subgraphs is hard. Theoretical Computer
Science, 622:90–110, 2016.

4 Jordi Casas-Roma, Jordi Herrera-Joancomartí, and Vicenç Torra. An algorithm for k-
degree anonymity on large networks. In Proceedings of the International Conference on
Advances in Social Networks Analysis and Mining (ASONAM’13), pages 671–675. ACM,
2013.

5 Sean Chester, Bruce Kapron, Gautam Srivastava, and S. Venkatesh. Complexity of social
network anonymization. Social Network Analysis and Mining, 3(2):151–166, 2013.

6 Marek Cygan, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Ildikó Schlotter. Pa-
rameterized complexity of eulerian deletion problems. Algorithmica, 68(1):41–61, 2014.

7 Frederic Dorn, Hannes Moser, Rolf Niedermeier, and Mathias Weller. Efficient algo-
rithms for eulerian extension and rural postman. SIAM Journal on Discrete Mathematics,
27(1):75–94, 2013.

8 Vincent Froese, André Nichterlein, and Rolf Niedermeier. Win-win kernelization for degree
sequence completion problems. Journal of Computer and System Sciences, 82(6):1100–1111,
2016.

9 D. Gale. A theorem on flows in networks. Pacific Journal of Mathematics, 7:1073–1082,
1957.

10 Petr A. Golovach. Editing to a graph of given degrees. Theoretical Computer Science,
591:72–84, 2015.

11 Petr A. Golovach and George B. Mertzios. Graph editing to a given degree sequence. In
Proceedings of the 11th International Computer Science Symposium in Russia (CSR’16),
volume 9691 of LNCS, pages 177–191. Springer, 2016.

12 Gregory Gutin and Anders Yeo. Some parameterized problems on digraphs. Computer
Journal, 51(3):363–371, 2008.

IPEC 2016



10:14 A Framework for Degree Sequence Completion Problems in Directed Graphs

13 Sepp Hartung, Clemens Hoffmann, and André Nichterlein. Improved upper and lower
bound heuristics for degree anonymization in social networks. In Proceedings of the 13th
International Symposium on Experimental Algorithms (SEA’14), volume 8504 of LNCS,
pages 376–387. Springer, 2014.

14 Sepp Hartung, André Nichterlein, Rolf Niedermeier, and Ondřej Suchý. A refined complex-
ity analysis of degree anonymization in graphs. Information and Computation, 243:249–262,
2015.

15 Marcel Koseler. Kernelization for degree-constraint editing on directed graphs. Bachelor
thesis, TU Berlin, November 2015. URL: http://fpt.akt.tu-berlin.de/publications/
theses/BA-marcel-koseler.pdf.

16 Hendrik W. Lenstra. Integer programming with a fixed number of variables. Mathematics
of Operations Research, 8:538–548, 1983.

17 Kun Liu and Evimaria Terzi. Towards identity anonymization on graphs. In Proceedings of
the ACM SIGMOD International Conference on Management of Data, SIGMOD’08, pages
93–106. ACM, 2008.

18 Luke Mathieson and Stefan Szeider. Editing graphs to satisfy degree constraints: A param-
eterized approach. Journal of Computer and System Sciences, 78(1):179–191, 2012.

19 Marcelo Garlet Millani. Algorithms and complexity for degree anonymization in directed
graphs. Bachelor thesis, TU Berlin, March 2015. URL: http://fpt.akt.tu-berlin.de/
publications/theses/BA-marcelo-millani.pdf.

20 Hannes Moser and Dimitrios M. Thilikos. Parameterized complexity of finding regular
induced subgraphs. Journal of Discrete Algorithms, 7(2):181–190, 2009.

21 James B. Orlin. Max flows in o(nm) time, or better. In Proceedings of the 45th Annual
ACM Symposium on Theory of Computing (STOC’13), pages 765–774. ACM, 2013.

22 Mathias Weller, Christian Komusiewicz, Rolf Niedermeier, and Johannes Uhlmann. On
making directed graphs transitive. Journal of Computer and System Sciences, 78(2):559–
574, 2012.

http://fpt.akt.tu-berlin.de/publications/theses/BA-marcel-koseler.pdf
http://fpt.akt.tu-berlin.de/publications/theses/BA-marcel-koseler.pdf
http://fpt.akt.tu-berlin.de/publications/theses/BA-marcelo-millani.pdf
http://fpt.akt.tu-berlin.de/publications/theses/BA-marcelo-millani.pdf


On the Parameterized Complexity of Biclique
Cover and Partition∗

Sunil Chandran1, Davis Issac2, and Andreas Karrenbauer3

1 Indian Institute of Science, Bangalore, India
2 Max Planck Institute for Informatics, Saarland Informatics Campus,

Saarbrücken, Germany
3 Max Planck Institute for Informatics, Saarland Informatics Campus,

Saarbrücken, Germany

Abstract
Given a bipartite graph G, we consider the decision problem called BicliqueCover for a fixed
positive integer parameter k where we are asked whether the edges of G can be covered with
at most k complete bipartite subgraphs (a.k.a. bicliques). In the BicliquePartition problem,
we have the additional constraint that each edge should appear in exactly one of the k bicliques.
These problems are both known to be NP-complete but fixed parameter tractable. However, the
known FPT algorithms have a running time that is doubly exponential in k, and the best known
kernel for both problems is exponential in k. We build on this kernel and improve the running
time for BicliquePartition to O∗(22k2+k log k+k) by exploiting a linear algebraic view on this
problem. On the other hand, we show that no such improvement is possible for BicliqueCover
unless the Exponential Time Hypothesis (ETH) is false by proving a doubly exponential lower
bound on the running time. We achieve this by giving a reduction from 3SAT on n variables to
an instance of BicliqueCover with k = O(logn). As a further consequence of this reduction,
we show that there is no subexponential kernel for BicliqueCover unless P = NP . Finally, we
point out the significance of the exponential kernel mentioned above for the design of polynomial-
time approximation algorithms for the optimization versions of both problems. That is, we show
that it is possible to obtain approximation factors of n

logn for both problems, whereas the previous
best approximation factor was n√

logn
.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Biclique Cover/Partition, Linear algebra in finite fields, Lower bound

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.11

1 Introduction

The problems of covering or partitioning the edge set of bipartite graphs have a long history.
It was shown by Orlin in 1977 that the covering problem, i.e., to decide for a given bipartite
graph G and given integer k, whether the edges of G can be covered by at most k complete
bipartite subgraphs (also known as bicliques), is NP-complete [13]. He conjectured the
partitioning problem, i.e., where each edge of G must appear in exactly one of the k bicliques,
to also be NP-complete, which has since been answered in the affirmative in [10].

The minimum number of bicliques to cover the edges of a graph is also called the bipartite
dimension [5], and Orlin called the minimum k that admits a partition of the edge set into k

∗ This work is supported in part by DFG-grant KA 3042/3-1 and the Max Planck Center for Visual
Computing and Communication (http://www.mpc-vcc.org).

© Sunil Chandran, Davis Issac, and Andreas Karrenbauer;
licensed under Creative Commons License CC-BY

11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin; Article No. 11; pp. 11:1–11:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.11
http://www.mpc-vcc.org
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


11:2 On the Parameterized Complexity of Biclique Cover and Partition

bicliques the bicontent [13]. We prefer the terms biclique cover number and biclique partition
number, respectively, to avoid any confusion.

There are numerous applications for biclique covering and partitioning. Related work
can be found in the areas of bioinformatics [11, 12], computer security [3], database tiling [7],
finite automata [9], and graph drawing [4].

Besides these applications, computing a biclique cover of a graph is equivalent to other
important notions in mathematics: Given an m-by-n matrix A, the Boolean rank of A is
the minimum k for which there exist two 0-1 matrices B and C of dimensions m× k and
k × n, respectively, such that A = B � C, where � denotes the matrix product over boolean
arithmetic. It has been shown that computing the Boolean rank of a matrix is equivalent to
computing the biclique cover number of a bipartite graph (see [8]). Similarly, the binary rank
of a matrix A ∈ {0, 1}m×n is defined as the minimum k for which there are B ∈ {0, 1}m×k
and C ∈ {0, 1}k×n such that A = B · C using the standard arithmetic over the reals. It can
be shown that the binary rank of the adjacency matrix of a bipartite graph is equal to its
biclique partition number.

Low-rank decompositions are of particular interest in Data Analytics. However, it is
even NP-hard to distinguish bipartite graphs or binary matrices that allow k ∈ O(nε)
from ones that require k ∈ Ω(n1−ε) for all ε > 0 for both BicliqueCover as well as
BicliquePartition [1]. In the same paper, only approximation factors of n√

logn
were

obtained with polynomial time algorithms.
From the parameterized complexity point of view, the picture is much brighter: Biclique-

Cover and BicliquePartition are in FPT when parameterized with k [6], which even
holds when the input graph is not bipartite. The authors obtain this result by providing
rules for obtaining kernels with at most 3k vertices for general graphs and with at most 2k+1

vertices for bipartite graphs. We will use this kernel to obtain some of our results.

1.1 Our contribution
We present an algorithm that decides whether a given bipartite graph has a BicliqueParti-
tion of size at most k in time O∗(22k2+k log k+k). This drastically improves the previous best
bound [6], which is O∗(222k log k+3k) [12].1 In contrast to this result, we prove that Biclique-
Cover seems to be much harder, i.e., there is no algorithm running in O∗(22o(k)) unless the
Exponential Time Hypothesis (ETH) is false. This almost closes the gap between lower and
best known upper bound, which is O∗(22k log k+2k+log k/k!) for the latter [12]. Moreover, we
prove an exponential lower bound for kernels for BicliqueCover that holds unless P = NP .
We conclude by showing how the kernel for BicliqueCover and BicliquePartition
improves the best known approximation factors for these two problems to O(n/ logn).

1.2 Preliminaries
For a bipartite graph G, we denote the two vertex bipartitions by U(G) and V (G). The
edges are denoted by E(G). For a subgraph H of G, U(H) denotes the set of vertices of H
that are in U(G) and V (H) denotes the set of vertices of H that are in V (G). All edges in
this paper are undirected edges, and we may use uv or vu to denote an edge between vertices
u and v. For a graph G and vertex v, we use NG(v) to denote the set of all the vertices that
are adjacent to v in G. We may choose to omit the subscript G when the graph is clear from

1 Note that the bound reported in [6] is inaccurate as also observed in [12].



S. Chandran, D. Issac, and A. Karrenbauer 11:3

the context. A domino graph is the graph G with U(G) = {u1, u2, u3}, V (G) = {v1, v2, v3}
and E(G) = {u1v1, u1v2, u2v1, u2v2, u2v3, u3v2, u3v3} (See Si in Figure 1). Two vertices w1
and w2 in graph G are said to be twins of each other iff N(w1) = N(w2). For a matrix A,
we say that the ith row is aTi , the jth column is Aj , and the entry corresponding to the ith
row and jth column is aij . For a prime number p, we use GF (p) to denote the Galois Field
over {0, 1, . . . , p− 1} with modulo p multiplication and addition.

2 FPT algorithm for BicliquePartition

This section is dedicated to the proof of the following theorem.

I Theorem 1. BicliquePartition has an algorithm which runs in O∗(22k2+k log k+k)-time.

As mentioned above, the biclique partition number of a bipartite graph is equal to the binary
rank of its adjacency matrix. Moreover, the binary decomposition B ·C of a binary matrix A
with A ∈ {0, 1}m×n, B ∈ {0, 1}m×k, and C ∈ {0, 1}k×n also gives the set of bicliques in the
corresponding biclique partition of the graph represented by A. Therefore, we consider the
following problem in the remainder of this section: Given a binary matrix A, does A have
binary rank at most k? We develop an O∗(22k2+k log k+k)-time algorithm for this problem.
Moreover, our algorithm also returns the binary decomposition BC of A if A is a YES
instance.

Let A be the given m × n binary matrix. If A has binary rank k, then there exist an
m × k binary matrix B and a k × n binary matrix C such that BC = A. Let p be the
smallest prime that is greater than k. It is a well-known fact that p is at most 2k and can be
found in time polynomial in k. We will work with arithmetic over the prime field GF (p).
We know that BC = A holds even over GF (p). We can assume that m,n ≤ 2k because of
the kernel given in [6]. Let s be the rank of B over GF (p). Clearly, s is at most k. Thus, we
can guess the value of s. Observe that permuting rows do not change the binary rank of A.
Moreover, the binary decomposition BC still holds, provided we permute the rows of B with
the same permutation used for rows of A. We guess a permutation of the rows of B such
that the first s rows of B are linearly independent over GF (p). Then, we apply the same
permutation to the rows of A. Note that it suffices to try

(
m
s

)
possibilities to find one such

permutation. Since m ≤ 2k due to the kernel in [6] and s ≤ k, we get that
(
m
s

)
≤ 2k2 , and

hence, this step is fine with respect to the running time that we want to achieve. Now, we
guess the entries of the first s rows of B. Since each row only has 2k possibilities, there are
only at most (2k)s ≤ 2k2 possibilities for this guess.

I Lemma 2. For each i ∈ [m], there exists a vector λ(i) ∈ {0, 1, . . . , p − 1}s such that∑s
t=1 λ(i)tat ≡ ai (mod p) and

∑s
t=1 λ(i)tbt (mod p) is a 0-1 vector.

Proof. For an arbitrary i, we exhibit a λ(i), which satisfies the conditions stated in the
statement of the lemma. Since the first s rows of B span all its rows over GF (p), there
exists λ(i) ∈ {0, 1, . . . , p− 1}s such that

∑s
t=1 λ(i)tbt ≡ bi (mod p), which is a 0-1 vector.

Furthermore,
∑s
t=1 λ(i)taTt ≡

∑s
t=1 λ(i)tbTt C ≡ bTi C ≡ aTi (mod p). J

For each i ∈ [m], we find a vector λ(i) as given by Lemma 2 and let b′i be the corresponding
0-1 vector given by

∑s
t=1 λ(i)tbt. For each i ∈ [m], this can be done by trying all possibilities

of λ(i)1, . . . , λ(i)s and takes only O(ps) = O(2k log k+k) time. Hence, finding all the λ(i) for
all i ∈ [m] takes only O(2k log k+km) time. We would like to highlight that the choice of λ(i)
is done independently for each i ∈ [m]. Note that since we do not yet know the value of

IPEC 2016



11:4 On the Parameterized Complexity of Biclique Cover and Partition

bi for i > s, the λ(i) that we fix is not guaranteed to be the one exhibited in the proof of
Lemma 2, i.e., b′i could differ from bi, but they are the same for i ≤ s.

Let B′ be the matrix whose rows are b′T1 , . . . , b′Tm . Let B̃ be the matrix B restricted to its
first s rows, and let Ã be the matrix A restricted to its first s rows. For each j ∈ [n], we find
a vector C ′j ∈ {0, 1}

k such that B̃C ′j = Ãj . For each j ∈ [n], this can be done by iterating
over all possible binary vectors of length k, which only takes O(2k) time. Note that such a
C ′j should exist for all j ∈ [n] if A has binary rank k, provided that our guess about the s
linearly independent rows in B is correct. Again, we would like to highlight that the choice
of C ′j is done independently for each j ∈ [n]. Let C ′ denote the matrix whose columns are
C ′1, C

′
2, . . . , C

′
n.

The following lemma is the core idea that our algorithm uses. The lemma essentially says
that although we choose the b′i’s and C ′j ’s independently, they actually combine to give a
binary decomposition of A over GF (p).

I Lemma 3. For each i ∈ [m] , j ∈ [n], b′Ti C ′j ≡ aij (mod p).

Proof. b′Ti C ′j ≡ (
∑s
t=1 λ(i)tbt)

T
C ′j (mod p) ≡

∑s
t=1 λ(i)tatj (mod p) ≡ aij (mod p) J

It only remains to eliminate the GF (p) arithmetic, which is done by the following Lemma.

I Lemma 4. For each i ∈ [m] , j ∈ [n], b′Ti C ′j = aij.

Proof. From Lemma 3, we have that b′Ti C ′j ≡ aj (mod p). Since b′i and C ′j are 0-1 vectors
of length k < p, we have bTi C ′j = (b′Ti C ′j mod p) = aij . J

From Lemma 4, we have that B′C ′ = A. Since B′ is an m× k binary matrix and C ′ is a
k × n binary matrix, we have a binary factorization of A with binary rank k. A pseudocode
for the algorithm is given in Algorithm 1, and in Lemma 5, we prove that its running time is
O∗(22k2+k log k+k).

I Lemma 5. The running time of Algorithm 1 is O∗(22k2+k log k+k).

Proof. The number of iterations of the outer loop is at most k ·
(
m
s

)
· 2sk = O∗(22k2),

which follows from m ≤ 2k and s ≤ k. The two inner loops only have n iterations at
most. Step 5 takes O∗(ps) = O∗(2k+k log k) time, and step 9 takes O∗(2k) time. All other
steps take time polynomial in m and n. Hence, the total time taken by the algorithm is
O∗(22k2 · (2k+k log k + 2k)) = O∗(22k2+k log k+k). J

3 FPT and kernel lower bounds for BicliqueCover

In this section, we prove the following theorem, which has consequences for the complexity
of BicliqueCover as stated in the corollaries below.

I Theorem 6. There exists a polynomial time reduction that, given a 3-SAT instance ψ on
n variables and m clauses, produces a bipartite graph G with |U(G)|+ |V (G)| = O(n+m)
such that there exists a positive integer k = O(logn) for which G has a biclique cover of size
at most k if and only if ψ is satisfiable.

I Corollary 7. BicliqueCover cannot be solved in time O∗(22o(k))-time unless the Expo-
nential Time Hypothesis is false.

Proof. Follows directly from Theorem 6. J



S. Chandran, D. Issac, and A. Karrenbauer 11:5

Algorithm 1: FPT algorithm for BicliquePartition
Input :An m× n binary matrix A and positive integer k such that m,n ≤ 2k.
Output :Either report that binary rank of A is greater than k or output m× k binary

matrix B′ and k × n binary matrix C ′ such that B′C ′ = A

1 Find p, the smallest prime greater than k.
2 foreach s ∈ [k],{i1, i2, · · · , is} ⊆ [m], and B̃ ∈ {0, 1}s×k do // loop 1
3 Permute the rows of A such that rows i1, i2, · · · , is become the first s rows of A.

Let this permutation be σ;
4 for i← 1 to m do
5 Find a λ(i) ∈ {0, 1, · · · , p− 1}s such that

∑s
t=1 λ(i)tat ≡ ai (mod p) and∑s

t=1 λ(i)tbt (mod p) is a 0-1 vector; if there is no such λ(i), then go to the
next iteration of loop 1;

6 b′i ←
∑s
t=1 λt(i)b̃t;

7 end
8 for j ← 1 to n do
9 Find C ′j ∈ {0, 1}

k such that B̃C ′j = Ãj where Ã is the matrix A restricted to
first s rows; if there is no such C ′j , then go to the next iteration of loop 1;

10 end
11 let B′ be the matrix with b′T1 , b′T2 , · · · , b′Tm as the rows and C ′ be the matrix with

C ′1, C
′
2, · · · , C ′n as the columns;

12 Apply the inverse permutation of σ to the rows of B′;
13 output B′ and C ′ and terminate.
14 end
15 report that binary rank of A is greater than k.

I Corollary 8. There exists a constant δ > 0 such that, unless P = NP , there is no
polynomial time algorithm that produces a kernel for BicliqueCover of size less than 2δk.

Proof. We give a proof sketch and refer to [2] for the details where the authors prove a similar
statement for EdgeCliqueCover. By Theorem 6, we have an algorithm A that takes
an instance of 3-SAT and gives an equivalent instance of BicliqueCover with parameter
k = O(logn). Suppose there is a kernelization algorithm B that produces a kernel with less
than 2δk size for some δ to be fixed later. Since BicliqueCover is NP-complete, there
exists an algorithm C that takes an instance of BicliqueCover and gives an equivalent
instance of 3-SAT in polynomial time. By composing the algorithms A, B, and C and fixing
the parameter δ appropriately, we get an algorithm D that, given a 3-SAT instance as input,
produces an equivalent smaller 3-SAT instance as output. We can apply D repeatedly to
solve 3-SAT. Hence, algorithm B cannot exist. J

The proof of Theorem 6 gives a reduction from 3-SAT to BicliqueCover, which is a
modification of the one given in [2] from 3-SAT to EdgeCliqueCover.2 The main difference
is that we introduce an additional gadget consisting of log2 n domino graph gadgets in order
to make the reduction work for BicliqueCover, where n is the number of variables in the
input 3-SAT formula. This gadget replaces the independent set of size log2 n used in [2], i.e.,

2 A parameter preserving reduction from EdgeCliqueCover to BicliqueCover would have been better
than having to redo the whole reduction from scratch. We could not find any such reduction.

IPEC 2016



11:6 On the Parameterized Complexity of Biclique Cover and Partition

we replace each vertex there by a domino graph here. We also modify some of the adjacencies
in the construction such that the graph becomes bipartite. Moreover, we have simplified
the reduction of [2] by using a simple trick. The trick is to make one of the domino graphs
special by adding edges between this domino graph and clause gadgets so that the biclique
covering this domino graph corresponds to a satisfying assignment. For EdgeCliqueCover,
this corresponds to making one of the vertices in the independent set special by adding edges
from it to the clause gadgets. We give the complete reduction for BicliqueCover here for
being self-contained.

In [2], the authors use cocktail party graphs as the main gadget in their reduction. We use
the bipartite analogue called crown graphs. A crown graph is basically a complete bipartite
graph minus a perfect matching. It is formally defined as follows.

I Definition 9 (Crown Graph, Hr). A crown graph on 2r vertices denoted by Hr is a bipartite
graph with bipartitions U(G) = {u1, u2, . . . , ur} and V (G) = {v1, v2, . . . , vr} such that there
is an edge from ui to vj iff i 6= j. In other words, the edges missing between U(Hr) and
V (Hr) form a perfect matching given by {uivi : i ∈ [r]}. (See H = Hn in Figure 1.)

If we pick exactly one vertex from each of the edges of the missing perfect matching of the
crown graph, then we get a maximal biclique provided that we pick at least one vertex from
each of the bipartitions. The complement of this vertex set also forms a maximal biclique.
These pair of bicliques are called duplex bicliques, formally defined as follows.

I Definition 10 (Duplex Biclique3). A duplex biclique of a crown graph Hr is defined
as a pair of bicliques {B1, B2} such that U(B1) ∩ U(B2) = ∅, V (B1) ∩ V (B2) = ∅, and
U(B1) ∪ U(B2) = U(Hr), and V (B1) ∪ V (B2) = V (Hr).

We go on to define a duplex biclique cover as follows.

I Definition 11 (Duplex Biclique Cover). A duplex biclique cover of a crown graph is defined
as a set of duplex bicliques that together cover all the edges of the graph. When we say size
of a duplex biclique cover, we mean the number of bicliques in the cover, which is twice the
number of duplex bicliques.

We prove the following two lemmas about crown graphs.

I Lemma 12. Hr has a duplex biclique cover of size 2dlog re that can be found in time
polynomial in n.

Proof. We exhibit such a biclique cover. Let ` = dlog re. For any x ∈
{

0, . . . , 2` − 1
}

and j ∈ [`], let 〈x〉j denote the j-th bit of the `-bit binary representation of x. For
each j ∈ [`], we define the j-th duplex biclique {T 1

j , T
2
j } as follows: T 1

j is the subgraph
induced by {ui : 〈i− 1〉j = 1} ∪ {vi : 〈i− 1〉j = 0}, and T 2

j is the subgraph induced by
{ui : 〈i− 1〉j = 0} ∪ {vi : 〈i− 1〉j = 1}, where ui and vi are defined as in Definition 9. It is
easy to see that {T 1

j , T
2
j } is indeed a duplex biclique. It is also easy to see that any pair of

vertices ui, vj such that i 6= j should be present in at least one of the ` duplex bicliques. J

I Lemma 13. Given a duplex biclique {B1, B2} of Hr such that |U(B1)| = |V (B1)|, we can
in polynomial time find a duplex biclique cover of Hr with size 2dlog2 re such that {B1, B2}
is one of the duplex bicliques forming the biclique cover.

3 Duplex Bicliques correspond to Twin Cliques in [2]. We use this name to avoid confusion with twin
vertices.



S. Chandran, D. Issac, and A. Karrenbauer 11:7

Proof. Using the definition of duplex bicliques and |U(B1)| = |V (B1)|, it follows that [r] can
be partitioned into 2 sets

J1 = {j ∈ [r] : uj ∈ U(B1) ∧ vj ∈ V (B2)} and J2 = {j ∈ [r] : uj ∈ U(B2) ∧ vj ∈ V (B1)}

which are each of size r
2 . We can reorder the indices of the vertices such that J1 =

{
1, 2, · · · r2

}
and J2 =

{
r
2 + 1, r2 + 2, · · · , r

}
. Let ` = log2 r. We define the duplex biclique {T 1

i , T
2
i }

for all i ∈ [`] the same way as in the proof of Lemma 12. It is clear that the duplex
biclique {B1, B2} is the same as the duplex biclique {T 1

1 , T
2
1 }. Thus, the set of bicliques{

T 1
1 , T

1
2 , . . . , T

1
`

}
∪
{
T 2

1 , T
2
2 , . . . , T

2
`

}
gives the required duplex biclique cover. J

Now, we state the following fact about twin vertices.

I Fact 14. If a1 and a2 are twins and E(G \ a2) can be covered with k bicliques, then E(G)
can be covered with k bicliques by adding a2 to all the bicliques containing a1.

When we say we apply twin-reduction to a pair of twin vertices, we mean the operation of
deleting one of the twin vertices from the graph. When we say we apply twin-reduction to a
graph, we mean to repeatedly apply twin-reduction until there are no more twins in the graph.

Let ψ be the input 3-SAT formula with n variables and m clauses. Let x1, . . . , xn be
the variables of ψ and C1, . . . , Cm be the clauses. Let C1

i , C
2
i , and C3

i denote the 3 literals
of clause Ci. For 1 ≤ a ≤ 3, we say that Cai = (xj , 1) if the ath literal in clause Ci is the
variable xj appearing in positive form, and we say Cai = (xj , 0) if the ath literal in Ci is the
variable xj appearing in negated form.

Assumptions about the input 3-SAT formula: We assume that the number of variables is
a power of 2. We also assume that if the instance is satisfiable, then there is a satisfying
assignment A such that half of the variables are assigned true in A and the other half false.
These assumptions can be handled easily by introducing some extra variables as shown in [2].
Note that this increases the number of variables by at most 4 times.

Let ` be such that 2` = n. We have that ` ∈ Z since n was assumed to be a power of 2.
Before giving the reduction, we give the following useful definition.

I Definition 15 (Bisimplicial Edge). An edge uv is said to be bisimplicial with respect to a
biclique B iff N(u) ∪N(v) = U(B) ∪ V (B).

Now, we give the reduction from 3-SAT to BicliqueCover.

Construction: Given ψ, we construct a bipartite graph G. See Figure 1 for an illustration
of the construction. A vertex with superscript u indicates that it belongs to U(G), and a
superscript v indicates that it belongs to V (G). The edges of G are divided into two sets, a
set of important edges Eimp and a set of free edges Efree. The number of bicliques required
to cover Eimp will be different depending on whether ψ is satisfiable or not, whereas the
number of bicliques required to cover Efree will depend only on the number of variables and
clauses of ψ but not on whether ψ is satisfiable or not. There are 5 main gadgets in our
construction of G as given below.
1. A graph H isomorphic to the crown graph Hn: Let the vertices of U(H) be hu1 , hu2 , . . . , hun

and that of V (H) be hv1, hv2, . . . , hvn. The edges of H are in Eimp. The vertices hui and
hvi correspond to the i-th variable of ψ. hui corresponds to the variable in positive form
and the vertex hvi corresponds to the variable in negative form.

IPEC 2016



11:8 On the Parameterized Complexity of Biclique Cover and Partition

Figure 1 Illustration of the construction of G. The black nodes denote the vertices in U(G), and
the white nodes denote the vertices in V (G). The solid edges represent edges in Eimp, and the
dashed edges denote edges in Efree. The edges between P and H and those between Y and G \ Y

are not shown. The edges shown between Si and H are present for all i ∈ [`− 1], whereas the edges
shown between S1 and P are only present for S1 and not for any Si for i ≥ 2.

2. A set P of clause gadgets P1, . . . , Pm: Each Pi is an induced matching of size 3. Let
U(Pi) = {pui1, pui2, pui3} and V (Pi) = {pvi1, pvi2, pvi3} and let the 3 edges of Pi be pui1pvi1, pui2pvi2,
and pui3pvi3. These edges are in Eimp. For all i ∈ [m], Pi corresponds to the clause Ci
in ψ, and the 3 edges in Pi correspond to the 3 literals in the clause, i.e., edge puiapvia
corresponds to literal Cai for a ∈ {1, 2, 3}.

3. A set S of ` domino graphs S1, S2, . . . , S` that are disconnected with each other: Let
U(Si) = {sui1, sui2, sui3} and V (Si) = {svi1, svi2, svi3}. The edges within each Si are in Eimp.



S. Chandran, D. Issac, and A. Karrenbauer 11:9

4. An induced matching Y of size kf where kf = O(logn) will be fixed later in Lemma 16:
Y consists of edges yu1 yv1 , . . . , yukf

yvkf
, which are in Efree. For all i ∈ [kf ], the edge yui yvi

will be made bisimplicial with respect to the biclique B̃fi , which will be defined later.
This is done to ensure that we need kf bicliques to cover the free edges.

We also have the following edges between gadgets.
Between H and S: For all i ∈ [`] and j ∈ [n], we add the following edges: sui2hvj and svi2huj
to Eimp; and, sui1hvj , sui3hvj , svi1huj , and svi3huj to Efree.
Between Pi and Pj : For all i 6= j ∈ [m], add edges between all pairs of vertices u, v such
that u ∈ U(Pi) and v ∈ V (Pj). These edges are in Efree.
Between P and Q: For all i ∈ [m], add edges between all pairs of vertices u, v such that
u ∈ U(Q) and v ∈ V (Pi). Similarly, for all i ∈ [m], add edges between all pairs of vertices
u, v such that u ∈ U(Pi) and v ∈ V (Q). These edges are in Efree.
Between H and P : For all i ∈ [m] and a ∈ [3], add edges between puia and hvj unless
Cai = (xj , 1) and between pvia and huj unless Cai = (xj , 0). These edges are in Efree.
Between S and P : The only vertices in S that will have edges to any Pi are the 4 vertices
su11, s

u
12, s

v
11, and sv12. From su11 and su12, add edges to all vertices in V (Pi) for all i ∈ [m].

Similarly, from sv11 and sv12, add edges to all vertices in U(Pi) for all i ∈ [m]. These edges
are in Efree.
Between Y and G \Y : These edges are added in such a way that edge yui yvi is bisimplicial
w.r.t. a biclique that will be defined later. We will give the exact description of these
edges after we define the bicliques Bfi for i ∈ [kf ]. These edges belong to Efree.

Summary of Eimp: All the edges within H,S, and Q; all edges within each Pi; edges sui2hvj
and svi2huj for all i ∈ [`− 1], j ∈ [n].

Summary of Efree: All the edges between Pi and Pj for i 6= j; all edges within Y ; all edges
between Y and G \Y ; edges sui1hvj , sui3hvj , svi1huj , and svi3huj for all i ∈ [`− 1], j ∈ [n]; all edges
between P and Q, between H and P , and between S1 and P .

First, we show how to take care of the edges in Efree without interfering with the budget of
Eimp. Let Ey be the set of all edges of G with at least one end point in U(Y ) ∪ V (Y ).

I Lemma 16. The edges in Efree \ Ey can be covered using kf = 4 log2 n+ 2dlog2 me+ 6
bicliques of G such that none of these bicliques contains an edge from Eimp, and these
bicliques can be found in time polynomial in n+m.

Proof. According to our construction, there are the following types of edges in Efree \Ey.
For each of these types, we show how to cover it in polynomial time using bicliques that do
not contain any edges from Eimp such that the total number of bicliques used is at most kf .

Edges between H and S: These edges can be covered with 2 bicliques, BHS1 and BHS2
defined as follows. U(BHS1 ) = U(H), V (BHS1 ) = {svi1 : 1 ≤ i ≤ `} ∪ {svi3 : 1 ≤ i ≤ `},
U(BHS2 ) = {sui1 : 1 ≤ i ≤ `}∪{sui3 : 1 ≤ i ≤ `}, and V (BHS2 ) = V (H). From the construc-
tion of G, it is easy to see that both BHS1 and BHS2 are indeed bicliques, and none of
them contains an edge in Eimp.
E(P )∩Efree: These edges can be covered with 2dlog2 me bicliques. Consider the subgraph
of G given by the edges E(P ) \ Eimp. Let this graph be G1. The vertices pui1, pui2, and
pui3 are twins of each other in G1 for all i ∈ [m]. Similarly, the vertices pvi1, pvi2, and pvi3
are twins of each other in G1 for all i ∈ [m]. Let G2 be the graph obtained by applying
twin-reduction to G1. It is clear that G2 is isomorphic to the crown graph Hm. Hence,

IPEC 2016



11:10 On the Parameterized Complexity of Biclique Cover and Partition

E(G2) can be covered by d2 log2 me bicliques in polynomial time by Lemma 12. Then,
by using Fact 14, we can find d2 log2 me bicliques that cover E(G1) = E(P ) \ Eimp.
Edges between P and Q: We can cover these edges with 2 bicliques BPQ1 and BPQ2 ,
defined as U(BPQ1 ) = U(P ), V (BPQ1 ) = V (Q); and, U(BPQ2 ) = U(Q), V (BPQ2 ) = V (P ).
Edges betweenH and P : We cover these edges with 4 log2 n bicliques. We will show how to
cover the edges between U(H) and V (P ) with 2 log2 n bicliques. Symmetrically, the edges
between V (H) and U(P ) can be covered with another 2 log2 n bicliques. Let 〈j〉i denote the
ith bit in the binary representation of j. We will now give the description of a set of 2 log2 n

bicliques BHP = {BHP1 , . . . , BHPlog2 n
} ∪ {B̃HP1 , . . . , B̃HPlog2 n

} covering the edges between
U(H) and V (P ). We define U(BHPi ) = {huj : 〈j〉i = 1}, U(B̃HPi ) =

{
huj : 〈j〉i = 0

}
,

V (BHPi ) =
⋂
u∈U(BHP

i
) N(u) ∩ V (P ), V (B̃HPi ) =

⋂
u∈U(B̃HP

i
) N(u) ∩ V (P ). It is clear

that these are indeed bicliques from the definitions of V (BHPi ) and V (B̃HPi ). Since there
are no edges of Eimp between U(H) and V (P ), we do not cover any edges in Eimp. We
now show that we have covered every edge between U(H) and V (P ). Suppose for the
sake of contradiction that the edge huj pvia was not covered. Let pvia correspond to variable
xt. Recall that the only vertex in U(H) that can possibly not have edge to pvia is hut .
Edge huj pvia not being covered by any biclique in B can happen only if every biclique in
BHP that contains huj also contains hut and if there is no edge between hut and pvia. But
if every biclique in B containing huj also contains hut , then j = t. This means that there
is no edge between huj and pvia, which is a contradiction.
Edges between S and P : These edges can be covered with 2 bicliques BPS1 and BPS2 ,
which is defined as follows. U(BPS1 ) = U(P ), V (BPS1 ) = {sv11, s

v
12}, U(BPS2 ) = {su11, s

u
12}

and V (BPS2 ) = V (P ). J

We fix kf as given by Lemma 16. By Lemma 16, we know that there are kf bicliques that
together cover all edges in Efree \Ey and do not cover any edges in Eimp. We will call these
bicliques Bf1 , . . . , B

f
kf
.

Now, we give the description of the edges from Y to G \ Y . Recall that these edges are
contained in Ey ⊂ Efree. For each i ∈ [kf ], we add edges from yui to all the vertices in
V (Bfi ) and from yvi to all vertices in U(Bfi ). Observe that now the edge yui yvi is bisimplicial
with respect to Bfi . This together with Lemma 16 gives the following Lemma about the edge
set Efree.

I Lemma 17. Let kf = 4 log2 n+ 2dlog2 me+ 6.
1. The edge set Efree can be covered using kf bicliques of G such that none of these bicliques

contains an edge from Eimp, and these bicliques can be found in time polynomial in n+m.
2. Any set of bicliques covering Efree has kf bicliques that do not contain any edges from

Eimp.

Proof. From Lemma 16, we know that Efree \Ey can be covered by kf bicliques that do not
cover any edges from Eimp. Given these kf bicliques Bf1 , . . . , B

f
kf
, we extend them to the

bicliques B̃fi , . . . , B̃
f
kf

as follows to cover all the edges of Efree : U(B̃fi ) = U(Bfi )∪{yui }, and
V (B̃fi ) = V (Bfi ) ∪ {yvi }. It is clear that B̃

f
1 , . . . , B̃

f
n are all indeed bicliques, they together

cover all edges of Efree, and do not cover any edges of Eimp.
Since the edges within Y form an induced matching of size kf , no two of them can be present
in the same biclique. Hence, we need at least kf bicliques to cover the edges in Efree. We now
show that if a biclique contains an edge from Eimp, it cannot have an edge from Y , which will
complete the proof of the lemma. Suppose the edge yui yvi and an important edge zuzv ∈ Eimp
are in the same biclique for the sake of contradiction. But since N(yui ) = V (Bfi ) ∪ {yvi }, we



S. Chandran, D. Issac, and A. Karrenbauer 11:11

have that zv ∈ V (Bfi ). Symmetrically, we can argue that zu ∈ U(Bfi ). Then, however, Bfi
contains the important edge zuzv, which is a contradiction. J

We set our budget k as kf + 2`+ 2, which means a budget of 2`+ 2 for the edges in Eimp
due to Lemma 17. Now, we argue the completeness of the reduction in the following Lemma.

I Lemma 18. If ψ is satisfiable, then the edges in Eimp can be covered by 2`+ 2 bicliques
of G. (These bicliques might contain some edges from Efree as well.)

Proof. We know that there exists a satisfying assignment A of ψ such that exactly half of
the variables are assigned true in A. Each clause Ci has at least one literal which satisfies
the clause. For each clause Ci, we fix one such literal. This literal corresponds to one of the
3 edges of Pi. Let us denote this edge by ei.

We use two bicliques, Bg1 and Bg2 , to cover the 2 guard edges of Q and 2 edges from each
Pi. Each of Bg1 and Bg2 covers 1 edge from Q and 1 edge from each Pi. It is clear that this
can be done. Now, each Pi has one edge still to be covered. We will assign Bg1 and Bg2 such
that the edge left uncovered in Pi is ei, i.e., the literal corresponding to this edge evaluates
to true in A.

Let B1 be the biclique defined as follows: U(B1) = {hui : A(xi) = true, i ∈ [n]} and
V (B1) = {hvi : A(xi) = false, i ∈ [n]}. Also, define B̄1 as the biclique defined by the vertex
sets U(B̄1) = U(H)\U(B1) and V (B̄1) = V (H)\V (B1). B1 and B̄1 are indeed bicliques of H
because no literal evaluates to both true and false, and thus, the missing edges corresponding
to the missing perfect matching in H are avoided. Likewise, they are duplex bicliques due
to the manner in which B̄1 is defined. Moreover, |U(B1)| = |V (B1)| since A has half of
the variables assigned true and the other half false. Therefore, by Lemma 13, there exist
` − 1 other duplex bicliques

{
B2, B̄2

}
, . . . ,

{
B`, B̄`

}
such that B1, B̄1, B2, B̄2, . . . , B`, and

B̄` together cover E(H). Now we extend these bicliques with additional vertices so that
these bicliques together with Bg1 and Bg2 cover Eimp, which is done as follows. For 2 ≤ j ≤ `,
we define biclique B′j as U(B′j) = U(Bj) ∪

{
suj1, s

u
j2
}
and V (B′j) = V (Bj) ∪

{
svj1, s

v
j2
}
. For

1 ≤ j ≤ `, we define B̄′j as U(B̄′j) = U(B̄j) ∪
{
suj2, s

u
j3
}
and V (B̄′j) = V (Bj) ∪

{
svj2, s

v
j3
}
. B′1

is defined as U(B′1) = U(B1) ∪ {su11, s
u
12} ∪

⋃
i∈[m] U(ei) and V (B′1) = V (B1) ∪ {sv11, s

v
12} ∪⋃

i∈[m] V (ei). It is clear that each B′i and B̄′i is indeed a biclique of G and that the bicliques
B′1, B

′
2, . . . , B

′
`, B̄

′
1, B̄

′
2, . . . , B̄

′
`, B

g
1 , and B

g
2 together cover Eimp. Hence, Eimp can be covered

by 2`+ 2 bicliques of G. J

Now, we argue the soundness of our reduction in the next Lemma.

I Lemma 19. If Eimp can be covered by using 2`+ 2 bicliques of G, then ψ is satisfiable.

Proof. The edge set M = {qu1 qv1 , qu2 qv2} ∪
{
suj1s

v
j1 : j ∈ [`]

}
∪
{
suj3s

v
j3 : j ∈ [`]

}
forms an

induced matching of size 2`+ 2 in G. Recall that all these edges are in Eimp. Since no two
edges of an induced matching can be contained in the same biclique, each edge in M has
to be covered by a distinct biclique. Let the biclique that covers qu1 qv1 be Bg1 and the one
that covers qu2 qv2 be Bg2 . Let Bj and B̄j be the bicliques covering the edges suj1svj1 and suj3svj3,
respectively. Since we have already used our budget of 2`+ 2, all the edges in Eimp must
be covered by at least one biclique in B =

{
B1
g , B

2
g

}
∪ {B1, B2, · · ·B`} ∪

{
B̄1, B̄2, · · · , B̄`

}
.

The only possible bicliques in B that can contain suj2 or svj2 are Bj and B̄j . That means,
edges between suj2 and H and edges between svj2 and H have to be covered by {Bj , B̄j}.
Moreover, they have to be partitioned by

{
Bj , B̄j

}
for the following reason: if the edge

suj2h
v
i appears in both bicliques Bj and B̄j , then the edge svj2hui cannot appear in any of

the two bicliques as there is no edge between hui and hvi ; and symmetrically, if the edge

IPEC 2016



11:12 On the Parameterized Complexity of Biclique Cover and Partition

svj2h
u
i appears in both bicliques Bj and B̄j , then the edge suj2hvi cannot appear in any of

the two bicliques. Combined with the fact that N(
{
suj2, s

v
j2
}

) = U(H) ∪ V (H), we get that
{B′j , B̄′j} is a duplex biclique, where B′j and B̄′j are the intersection of the bicliques Bj and
B̄j , respectively, with H.

Bg1 and Bg2 can each cover at most 1 edge from each Pi. Hence, there is at least 1 edge of
each Pi that must be covered by B \

{
B1
g , B

2
g

}
. Let us fix one such edge for each Pi and call

it ei. Since, there are no edges from end points of ei to any Sj for j ≥ 2, we know that each
ei must be covered by B1 or B̄1. But since end points of ei are not adjacent to su13 and sv13,
ei cannot be covered by B̄1. Thus, each ei has to be covered by B1.

Now, we construct an assignment A according to B1 as follows. For each i ∈ [n], since
{B1, B̄1} is a duplex biclique, B1 contains exactly one among hui and hvi . If hui ∈ U(B1),
then we assign xi = true in the assignment A. Otherwise, i.e, if hvi ∈ V (B1), then we assign
xi = false in A. We claim that A must be a satisfying assignment for ψ, which can be
observed as follows. Consider an arbitrary clause Cj . Let xi be the variable corresponding
to ej . Suppose xi occurs in positive form in Cj . From the construction of edges between
H and P , we know that there cannot be an edge from hvi and end points of ej . Hence, B1
cannot contain hvi . But, since B1 should contain one of hui and hvi , it should contain hui .
This means that we assigned xi = true in A and hence A satisfies clause Cj . Symmetrically,
we can argue that if xi occurred in the negative form in Cj , then we would have assigned
xi = false in A. Thus, A satisfies all the clauses of ψ. J

The statement of Theorem 6 follows from Lemmas 17, 18, and 19.

4 Approximation of BicliqueCover and BicliquePartition

In this section, we use the exponential kernel given in [6] to get a polynomial time approxim-
ation algorithm for the optimization versions of BicliqueCover and BicliquePartition,
achieving an approximation ratio of n

log2 n
. In the optimization versions of the problems,

we are required to find the biclique cover/partition with the smallest size. First, we give a
useful definition and then proceed towards describing the algorithm. We give the complete
algorithm including the reduction rule used for kernelization in [6].

I Definition 20 (Star). A star of a vertex w in a graph is the subgraph induced by {w}∪N(w).

Algorithm: Let G be the input graph. If there exist twin vertices w1 and w2 in G, we remove
one of them (say, w2) and the edges incident on it and then recurse by finding the biclique
cover/partition of the remaining graph G \ w2. After finding the biclique cover/partition
of G \ w2, we add w2 to all the bicliques in the solution that contain w1. If G contains no
twins, we output the set of stars of all vertices in U(G) as the biclique cover/partition. We
prove in Theorem 21 that this algorithm achieves an approximation ratio of n/ log2 n.

I Theorem 21. The above algorithm correctly finds a biclique cover/partition of G whose
size is at most n

log2 n
· k, where k is the size of the minimum biclique cover/partition and n is

the number of vertices of G. In other words, the algorithm is a polynomial time approximation
algorithm for the optimization versions of BicliqueCover and BicliquePartition, giving
an approximation ratio of n

log2 n
.

Proof. First let us prove the correctness, i.e, we indeed output a biclique cover/partition
of G. The correctness of reducing twins is clear and is already proven in [6]. In the case
when G does not contain twins, the correctness follows because each star is a biclique, and



S. Chandran, D. Issac, and A. Karrenbauer 11:13

each edge of G is present in exactly one of the stars of the vertices in U(G). Let k be the
number of bicliques in the optimal biclique cover/partition. Since we do not add any extra
bicliques while reducing twins, we need only to consider the case when G has no twins, in
order to estimate the size of the biclique/cover partition output by our algorithm. In this
case, we know that |U(G)|, |V (G)| ≤ 2k from [6]. Hence, the number of bicliques in the
cover/partition that we output is at most min{n, 2k} = min{n,2k}

k · k ≤ n
log2 n

· k. J

Acknowledgements. We are grateful to Erik Jan van Leeuwen for helpful discussions.

References
1 Parinya Chalermsook, Sandy Heydrich, Eugenia Holm, and Andreas Karrenbauer. Nearly

Tight Approximability Results for Minimum Biclique Cover and Partition. In Algorithms
– ESA 2014, volume 8737 of LNCS, pages 235–246. Springer Berlin Heidelberg, 2014. doi:
10.1007/978-3-662-44777-2_20.

2 Marek Cygan, Marcin Pilipczuk, and Michał Pilipczuk. Known algorithms for edge clique
cover are probably optimal. SIAM Journal on Computing, 45(1):67–83, 2016. doi:10.
1137/130947076.

3 Alina Ene, William Horne, Nikola Milosavljevic, Prasad Rao, Robert Schreiber, and
Robert E. Tarjan. Fast exact and heuristic methods for role minimization problems. In
SACMAT’08: Proceedings of the 13th ACM symposium on Access control models and tech-
nologies, pages 1–10, New York, NY, USA, 2008. ACM. doi:10.1145/1377836.1377838.

4 David Eppstein, Michael T. Goodrich, and Jeremy Yu Meng. Confluent layered drawings.
Algorithmica, 47:439–452, 2007. doi:10.1007/s00453-006-0159-8.

5 Peter C. Fishburn and Peter L. Hammer. Bipartite dimensions and bipartite degrees of
graphs. Discrete Math., 160(1-3):127–148, 1996. doi:10.1016/0012-365X(95)00154-O.

6 Herbert Fleischner, Egbert Mujuni, Daniël Paulusma, and Stefan Szeider. Covering graphs
with few complete bipartite subgraphs. TCS, 410(21-23):2045–2053, 2009. doi:10.1016/
j.tcs.2008.12.059.

7 Floris Geerts, Bart Goethals, and Taneli Mielikäinen. Tiling databases. In Discovery
Science, pages 278–289. Springer, 2004.

8 David A. Gregory, Norman J. Pullman, Kathryn F. Jones, and J. Richard Lundgren.
Biclique coverings of regular bigraphs and minimum semiring ranks of regular matrices.
J. Comb. Theory, Ser. B, 51(1):73–89, 1991. doi:10.1016/0095-8956(91)90006-6.

9 Hermann Gruber and Markus Holzer. Inapproximability of Nondeterministic State and
Transition Complexity Assuming P6=NP. In Tero Harju, Juhani Karhumäki, and Arto
Lepistö, editors, Developments in Language Theory, volume 4588 of Lecture Notes in Com-
puter Science, pages 205–216. Springer, 2007. doi:10.1007/978-3-540-73208-2_21.

10 Tao Jiang and B. Ravikumar. Minimal NFA Problems are Hard. SIAM Journal on Com-
puting, 22(6):1117–1141, 1993. doi:10.1137/0222067.

11 Dana S. Nau, George Markowsky, Max A. Woodbury, and D. Bernard Amos. A mathem-
atical analysis of human leukocyte antigen serology. Math. Biosciences, 40(3-4):243–270,
1978. doi:10.1016/0025-5564(78)90088-3.

12 Igor Nor, Danny Hermelin, Sylvain Charlat, Jan Engelstadter, Max Reuter, Olivier Duron,
and Marie-France Sagot. Mod/Resc parsimony inference: Theory and application. Inf.
Comput., 213:23–32, 2012. doi:10.1016/j.ic.2011.03.008.

13 James Orlin. Contentment in graph theory: Covering graphs with cliques. Indagationes
Mathematicae (Proceedings), 80(5):406–424, 1977. doi:10.1016/1385-7258(77)90055-5.

IPEC 2016

http://dx.doi.org/10.1007/978-3-662-44777-2_20
http://dx.doi.org/10.1007/978-3-662-44777-2_20
http://dx.doi.org/10.1137/130947076
http://dx.doi.org/10.1137/130947076
http://dx.doi.org/10.1145/1377836.1377838
http://dx.doi.org/10.1007/s00453-006-0159-8
http://dx.doi.org/10.1016/0012-365X(95)00154-O
http://dx.doi.org/10.1016/j.tcs.2008.12.059
http://dx.doi.org/10.1016/j.tcs.2008.12.059
http://dx.doi.org/10.1016/0095-8956(91)90006-6
http://dx.doi.org/10.1007/978-3-540-73208-2_21
http://dx.doi.org/10.1137/0222067
http://dx.doi.org/10.1016/0025-5564(78)90088-3
http://dx.doi.org/10.1016/j.ic.2011.03.008
http://dx.doi.org/10.1016/1385-7258(77)90055-5




Exact Algorithms for List-Coloring of Intersecting
Hypergraphs
Khaled Elbassioni

Masdar Institute of Science and Technology, Abu Dhabi, United Arab Emirates
kelbassioni@masdar.ac.ae

Abstract
We show that list-coloring for any intersecting hypergraph of m edges on n vertices, and lists
drawn from a set of size at most k, can be checked in quasi-polynomial time (mn)o(k2 log(mn)).

1998 ACM Subject Classification G.2.1 Combinatorial algorithms, G.2.2 Hypergraphs

Keywords and phrases Hypergraph coloring, monotone Boolean duality, list coloring, exact
algorithms, quasi-polynomial time

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.12

1 Introduction

Hypergraph k-Coloring is the problem of checking whether the vertex-set of a given
hypergraph (family of sets) can be colored with at most k colors such that every edge receives
at least two distinct colors. It is a basic problem in theoretical computer science and discrete
mathematics which has received considerable attention (see, e.g. [3, 4, 11, 12, 26, 29, 38]).
The problem is NP-complete already for k = 2, and in fact, it is quasi-NP-hard1 to decide if a
2-colorable hypergraph can be (properly) colored with 2(logn)Ω(1) colors [26]. On the positive
side, there exist polynomial time algorithms that can color an O(1)-colorable hypergraph with
nO(1) colors, where n is the number of vertices (see, e.g., [1, 9, 30]). Several generalizations
of the problem have also been considered, for example, list-coloring where every vertex can
take only colors from a given list of colors [20, 37].

Given the intrinsic difficulty of the problem, it is natural to consider special classes of
hypergraphs for which the problem is easier. Some better results exist for special classes, e.g.,
better approximation algorithms for hypergraphs of low discrepancy and rainbow-colorable
hypergraphs [5], polynomial time algorithms for bounded-degree linear hypergraphs [4, 8], for
random 3-uniform 2-colorable hypergraphs [34], as well as for some special classes of graphs
[14, 25, 27, 10].

In this paper, we consider the special class of intersecting hypergraphs, i.e., those in
which every pair of edges have a non-empty intersection (also considered in [35]). While
this may seem as a strong restriction at a first thought, the problem is still actually highly
non-trivial. In fact, the case k = 2 is equivalent to the well-known Monotone Boolean
Duality Testing, which is the problem of checking for a given pair of monotone CNF and
DNF formulas if they represent the same monotone Boolean function [15, 35]. Determining
the exact complexity of this duality testing problem is an outstanding open question, which
has been referenced in a number of complexity theory retrospectives, e.g., [31, 32], and has
been the subject of many papers, see, e.g., [6, 7, 13, 19, 15, 16, 17, 18, 21, 23, 22, 24, 28, 36].

1 More precisely, there is no polynomial time algorithm unless NP⊆ DTIME(2polylog n).

© Khaled Elbassioni;
licensed under Creative Commons License CC-BY

11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin; Article No. 12; pp. 12:1–12:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


12:2 Exact Algorithms for List-Coloring of Intersecting Hypergraphs

Fredman and Khachiyan [21] gave an algorithm for solving this problem with running time
no(logn), where n is the size of the input, thus providing strong evidence that this decision
problem is unlikely to be NP-hard.

The reduction from Boolean Duality Testing to checking 2-colorability is essentially
obtained by a construction from [35] which reduces the problem to checking if a monotone
Boolean function given by its CNF representation is self-dual. However, almost all the
known algorithms for solving Boolean duality testing cannot work directly with the
self-duality (and hence the 2-colorabilty) problem, due to their recursive nature which results
in subproblems that do not involve checking self-duality. The only algorithm we are aware of
that works directly on the 2-colorability version is the one given in [22], but it yields weaker
bounds nO(logn) than those given in [21]. In this paper, we provide bounds that (almost)
match those given in [21] and show that those can be in fact extended to the list-colorabilty
version2.

It is also worth mentioning that intersecting hypergraphs have been considered in [33,
Section 2.4.1] (with a slight generalization), where it was shown that if such a hypergraph is
2-colorable then it is also list-colorable for any lists of size 2. It is not clear whether such
result extends to the case k > 2.

2 Basic Notation and Main Result

Let H ⊆ 2V be a hypegraph on a finite set V , k ≥ 2 be a positive integer, and L : V → 2[k]

be a mapping that assigns to each vertex v ∈ V a non-empty list of admissible colors
L(v) ⊆ [k] := {1, . . . , k}. An L-(list) coloring of H is an assignment χ : V → [k] of colors
to the vertices of H such that χ(v) ∈ L(v) for all v ∈ V . An L-coloring is said to be
proper if it results in no monochromatic edges, that is, if |χ(H)| ≥ 2, for all H ∈ H, where
χ(H) := {χ(v) : v ∈ H}.

A hypergraph H is said to be intersecting if

H ∩H ′ 6= ∅ for all H, H ′ ∈ H. (1)

In this paper, we are interested in the following problem:

Proper-L-Coloring: Given a hypergraph H ⊆ 2V satisfying (1) and a mapping
L : V → 2[k], either find a proper L-coloring of H, or declare that no such coloring
exists.

We denote by n := |V |, m := |H|, ν := minv∈V |L(v)|, ρ := maxv∈V |L(v)|, and κ :=
maxu,v∈V, u6=v |L(u) ∩ L(v)|. We assume without loss of generality that ν ≥ 2.

For a set S ⊆ V , let HS := {H ∈ H : H ⊆ S} be the subhypergraph of H induced by
set S, HS = {H ∩ S : H ∈ H} be the projection (or trace) of H into S, and H(S) := {H ∈
H : H ∩ S 6= ∅}. For simplicity, we allow HS to be a multi-hypergraph (some edges may be
repeated). For v ∈ V , we define degH(v) := |{H ∈ H : v ∈ H}|.

The main result of the paper is the following.

I Theorem 1. Problem Proper-L-Coloring can be solved in time (mn)o(k2 log(mn)).

2 Note that is an intersecting hypergragh (with more than one edge) is trivially 3-colorable; so the
generalization to k colors would only be interesting if we consider list-coloring.



K. Elbassioni 12:3

In the following, we will consider partial L-colorings χ : V → [0 : k] := {0, 1, . . . , k}
of H, where χ(v) = 0 is used to mean that the vertex v is not assigned any color yet; we
say that such coloring is proper if no edge is monochromatic with this coloring. Given a
proper partial L-coloring χ of a hypergraph H ⊆ 2V , we will use the following notation:
V0(χ) := {v ∈ V : χ(v) = 0} and Hi(χ) := {H ∈ H : χ(H) = {0, i}} for i ∈ [0 : k], and
shall simply write V0 and Hi when χ is clear from the context. For i ∈ [0 : k], we write
H̄i :=

⋃
j 6=iHj . For a set S ⊆ V , we write S̄ := V \ S and denote by χ[S] the restriction

of χ on S. For two L-colorings χ : S → [k] and χ′ : S′ → [k], where S ∩ S′ = ∅, we denote
by χ′′ := χ ∪ χ′ : S ∪ S′ → [k] the k-coloring that assigns χ′′(v) := χ(v) for v ∈ S and
χ′′(v) := χ′(v) for v ∈ S′. If there is an H ∈ H such that |H| ≤ 1, we shall assume that H is
not properly L-colorable for any L : V → 2[k]. Also, by assumption, an empty hypergraph
(that is, H = ∅) is properly L-colorable.

In the following two sections we give two algorithms for solving the problem. They are
inspired by the two corresponding algorithms in [21] and can be thought of as generalizations.
The first algorithm is simpler and exploits the idea of the existence of a high-degree vertex in
any non-colorable instance. By considering all possible admissible colorings of such a vertex
we can remove a large fraction of the edges and recurse on substantially smaller subproblems.
Unfortunately, the degree of the high-degree vertex is only large enough to guarantee a
bound of mO(log2 m) (assuming k = O(1)). The second algorithm is more complicated and
considers both scenarios when there is a high-degree vertex and there are none (where now
the threshold for "high" is actually higher). If there is no high-degree vertex, then we can
find a "balanced-set" which contains a constant fraction of edges. Then a decomposition can
be obtained based on this set.

3 Solving Proper-L-Coloring in time nO(k3)mO(k2 log2 m)

We give two lemmas which show the existence of a high-degree vertex, unless the hypergraph
is easily colorable.
I Lemma 2. Let H ⊆ 2V be a given hypergraph satisfying (1) of minimum edge-size 2,
L : V → 2[k], and χ : V → [0 : k] be a proper partial L-coloring of H. Then either (i) there
is a vertex v ∈ V0 with degH0(v) ≥ |H0|

logν(mκ) , or (ii) an L-coloring χ0 : V0 → [k], such that
χ[V \ V0] ∪ χ0 is a proper L-coloring of H, can be found in O(ρ|V0|m) time.
Proof. We use the probabilistic method [2]. Let Hmin be an edge in

⋃k
i=0H

V0
i of minimum

size. Pick a random L-coloring χ0 : V0 → [k] by assigning, independently for each v ∈ V0,
χ0(v) = i ∈ L(v) with probability 1

|L(v)| . Then, for an edge H ∈ H0,

Pr[H is monochromatic] = |
⋂
v∈H

L(v)| ·
∏
v∈H

1
|L(v)| ≤ κ ·

(
1
ν

)|H|
,

and for H ∈ Hi, i ∈ [k],

Pr[H is monochromatic] ≤
∏

v∈H∩V0

1
|L(v)| ≤

(
1
ν

)|H∩V0|

.

It follows that

E[# monochromatic H ∈ H] =
∑
H∈H

Pr[H is monochromatic]

≤ κ
∑
H∈H0

(
1
ν

)|H|
+

k∑
i=1

∑
H∈Hi

(
1
ν

)|H∩V0|

≤ mκ
(

1
ν

)|Hmin|

.

IPEC 2016



12:4 Exact Algorithms for List-Coloring of Intersecting Hypergraphs

Thus if mκ
( 1
ν

)|Hmin|
< 1, then there is a proper L-coloring χ′ := χ[V \ V0] ∪ χ0 of H, which

can be found by the method of conditional expectations in time O(ρ|V0|m). Let us therefore
assume for the rest of this proof that |Hmin| ≤ logν(mκ).

Let vmax be a vertex of maximizing degH0(v) over v ∈ Hmin. Then (1) implies that

|H0| =

∣∣∣∣∣ ⋃
v∈Hmin

{H ∈ H0 : v ∈ H}

∣∣∣∣∣ ≤ ∑
v∈Hmin

|{H ∈ H0 : v ∈ H}| =
∑

v∈Hmin

degH0(v)

≤ |Hmin| degH0(vmax).

Consequently, degH0(vmax) ≥ |H0|
|Hmin| ≥

|H0|
logν(mκ) . J

I Lemma 3. Let H ⊆ 2V be a given hypergraph satisfying (1) of minimum edge-size 2,
L : V → 2[k] be a mapping, and χ : V → [0 : k] be a proper partial L-coloring of H. Then
either (i) there is a vertex v ∈ V0 and i, j ∈ [k], j 6= i, such that degHi(v) ≥ |Hi|

logν m
and

degHj (v) ≥ 1, or (ii) an L-coloring χ0 : V0 → [k], such that χ[V \ V0] ∪ χ0 is a proper
L-coloring of H, can be found in O(ρ|V0|m) time.

Proof. Let Hmin be an edge in
⋃k
i=1H

V0
i of minimum size. Note that (1) implies:

∀H ∈ Hi : H ∩H ′ ∩ V0 6= ∅ for all H ′ ∈ H̄i, (2)

since {i} = χ(H \ V0) 6= χ(H ′ \ V0) = {j} for all H ∈ Hi and H ′ ∈ Hj , for i 6= j.
If there is an i ∈ [k] such that Hj = ∅ for all j ∈ [k] \ {i} then an L-coloring satisfying

(ii) can be found by choosing arbitrarily χ(v) ∈ L(v) \ {i} for v ∈ V0. Assume therefore that
Hi 6= ∅ for at least two distinct indices i ∈ [k]. Pick a random L-coloring χ0 : V0 → [k] by
assigning, independently for each v ∈ V0, χ(v) = i ∈ L(v) with probability 1

|L(v)| . Then

Pr[∃i ∈ [k], H ∈ Hi : χ(Hi) = {i}] ≤
k∑
i=1

∑
H∈Hi

Pr[χ(H) = {i}]

≤
k∑
i=1

∑
H∈Hi

∏
v∈H∩V0

1
|L(v)| ≤ m

(
1
ν

)|Hmin|

.

Thus if m
( 1
ν

)|Hmin|
< 1, then there is an L-coloring satisfying (ii), which can be found by

the method of conditional expectations in time O(ρ|V0|m). Let us therefore assume for the
rest of this proof that |Hmin| ≤ logνm.

Let j be such that Hmin ∈ HV0
j , and vmax be a vertex maximizing degH̄j (v) over v ∈ Hmin.

Then (2) implies that

|H̄j | =

∣∣∣∣∣ ⋃
v∈Hmin

{H ∈ H̄j : v ∈ H}

∣∣∣∣∣ ≤ ∑
v∈Hmin

|{H ∈ H̄j : v ∈ H}| =
∑

v∈Hmin

degH̄j (v)

≤ |Hmin| degH̄j (vmax).

Consequently,
∑
i6=j degHi(vmax) = degH̄j (vmax) ≥ |H̄j |

|Hmin| ≥
|H̄j |

logν m
=
∑

i6=j
|Hi|

logν m
, from which

it follows that maxi 6=j
degHi (vmax)
|Hi| ≥

∑
i6=j

degHi (vmax)∑
i6=j
|Hi|

≥ 1
logν m

. J

If the number of edges in each Hi is small, the problem is easily solvable in polynomial
time.



K. Elbassioni 12:5

I Lemma 4. Given a hypergraph H ⊆ 2V such that maxki=0 |Hi| ≤ δ or |{i : Hi 6= ∅}| = 1,
a mapping L : V → 2[k], and a proper partial L-coloring χ : V → [0 : k] of H such that
H0 = ∅, there is a procedure Proper-L-Coloring-simple(H, L, χ) that checks if there is a
proper L-coloring of H extending χ, in time O((|V0|ρ)(k+1)δ).

Proof. If Hi 6= ∅ for exactly one i, then assigning any color j 6= i to the uncolored vertices
yields a proper L-coloring for H. On the other hand, if |Hi| ≤ δ for all i, we can simply try
all possibilities: for each edge H ∈ Hi, for i = 1, . . . , k (resp., H ∈ H0), we choose a vertex
v ∈ H ∩ V0 and a color for v among the colors in L(v) \ {i} (resp., two distinct vertices
v, v′ ∈ H ∩ V0 and two distinct colors i ∈ L(v) and j ∈ L(v′)). For each such choice, if the
resulting coloring, combined with χ, is a proper partial L-coloring for H, then it can be
extended to a proper L-coloring by coloring any remaining uncolored vertices arbitrarily;
otherwise, we conclude that no such coloring exists if we run out of choices. Since we have at
most (k + 1)δ edges in

⋃k
i=0Hi, the total number of choices is at most (|V0|ρ)(k+1)δ. J

The algorithm for solving Proper-L-Coloring is given as Algorithm 1, which is called
initially with χ ≡ 0. The algorithm terminates either with a proper L-coloring of H, or with
a partial L-coloring with some unassigned vertices, in which case we conclude that no proper
L-coloring of H exists.

The algorithm proceeds in two phases. As long as there is an edge with no assigned
colors, that is |H0| ≥ 1, the algorithm is still in phase I; otherwise it proceeds to phase II. In
a general step of phase I (resp. phase II), the algorithm picks a vertex v satisfying condition
(i) of Lemma 2 (resp., Lemma 3) and iterates over all feasible assignments of colors to v, that
result in no monochromatic edges; if no such v can be found, the algorithm concludes with a
proper L-coloring. In each iteration, any edge that becomes non-monochromatic is removed
and the algorithm recurses on the updated sets of hypergraphs. If non of the recursive calls
yields a feasible extension of the current proper partial L-coloring χ, we unassign vertex v
and return that there are no proper L-colorings (line 11).

To analyze the running time of the algorithm, let us measure the "volume" of a subproblem
with input (H,L, χ), in phase I by µ1 = µ1(H, χ) := |H0(χ)|, and in phase II by

µ2 = µ2(H, χ) := |{i ∈ [k] : |Hi(χ)| ≥ 1}| ·
k∏
i=1

max{|Hi(χ)|, 1}. (3)

The recursion stops when the volume µ2(H) becomes sufficiently small, or an L-coloring
satisfying condition (ii) of Lemmas 2 or 3 is found.

Lemma 4 implies that problem Proper-L-Coloring can be solved in time O((ρn)(k+1)ρ2)
if m ≤ δ := ρ2. Algorithm Proper-L-Coloring-A can be used to solve the problem in case
m > δ.

I Lemma 5. Algorithm 1 solves problem Proper-L-Coloring in time

(ρn)O(kρ2)ρ3mO(k2 log2 m
log ν ) .

Proof. Let ε := min{ 1
logν m

, 1
k}, α = 1

1−ε and δ = ρ2. Note that δ ≥ α2 since ε ≤ 1
k ≤

1
2 and

thus ρ ≥ 2 ≥ 1
1−ε = α.

Consider the recursion tree T of the algorithm. Let T1 (reps., T2) be the subtree (resp.,
sub-forest) of T belonging to phase I (resp., phase II) of the algorithm. Note that T2 consists
of maximal sub-trees of T, each of which is rooted at a leaf in T1. Let A1(µ) (resp., A2(µ))
be the total number of nodes in T1 (resp., T2) that result from a subproblem of volume µ.

IPEC 2016



12:6 Exact Algorithms for List-Coloring of Intersecting Hypergraphs

Algorithm 1 Proper-L-Coloring-A(H,L, χ)

Input: hypergraph H ⊆ 2V , a mapping L : V → 2[k], and a proper partial L-coloring
χ : V → [0 : k]

Output: TRUE (resp,. FALSE) if a proper L-coloring χ : V → [k] of H is (resp., cannot be)
found

1: V0 := V0(χ); Hi := Hi(χ) for i ∈ [0 : k]
2: if H0 6= ∅ then /* Phase I */
3: if there is v ∈ V0 satisfying condition (i) of Lemma 2 then
4: for each j ∈ L(v) do
5: χ(v) := j

6: if there is no H ∈ H such that χ(H) = {j} then /* if no edge becomes
monochromatic */

7: H′ := H \
⋃
i∈[k], i 6=j{H ∈ Hi : j ∈ χ(H)} /* delete non-monochromatic

edges */
8: return Proper-L-Coloring-A(H′,L, χ)
9: end if

10: end for
11: χ(v) := 0; return FALSE
12: else
13: Let χ0 : V0 → [k] be a coloring computed as in (ii) of Lemma 2
14: Set χ := χ[V \ V0] ∪ χ0 and stop /* A proper L-coloring has been found */
15: end if
16: else/* Phase II */
17: if µ2(H, χ) ≤ δ := ρ2 or |{i : Hi 6= ∅}| = 1 then
18: if Proper-L-Coloring-simple(H, L, χ) then
19: Stop /* A proper L-coloring has been found */
20: else
21: return FALSE
22: end if
23: end if
24: if there is v ∈ V satisfying condition (i) of Lemma 3 then
25: Same as in steps 4-11 of Phase I
26: else
27: Let χ0 : V → [k] be a coloring computed as in (ii) of Lemma 3
28: Set χ := χ[V \ V0] ∪ χ0 and stop /* A proper L-coloring has been found */
29: end if
30: end if

I Claim 6. The number of nodes in T1 is at most mlog ρ·logν(mκ)+O(1).

Proof. For a non-leaf node of T1, we have the recurrence:

A1(µ1) ≤ ρ ·A1((1− ε)µ1) + 1. (4)

At leaves we have µ1 = 0. It follows that the depth d(µ1) of the recursion subtree of a node
(in T1) of volume µ1 is at most log 1

1−ε
µ1 + 1, and hence the total number of tree nodes N1

is bounded by ρd(µ1)+1−1
ρ−1 ≤ µ

log 1
1−ε

ρ+2
1 . Using µ1 ≤ m, we get N1 = O(m

log ρ
log(1+1/ logν (mκ)) ) =

mlog ρ·logν(mκ)+O(1). J



K. Elbassioni 12:7

I Claim 7. The number of nodes in any sub-tree of T2 is at most mlog ρ·logν(mκ)+O(1).

Proof. Suppose that the algorithm proceeds to line 25 during the current recursive call
corresponding to a subproblem of volume µ2, and let v ∈ V be the vertex chosen at step 24,
and i, j ∈ [k] be such that i 6= j, degHi(v) ≥ ε|Hi| and degHj (v) ≥ 1. There are |L(v)|
recursive calls that will be initiated from this point, corresponding to ` ∈ L(v); consider
the `th recursive call. If ` 6= i then setting χ(v) = ` will result in deleting all the edges
containing v from Hi. Thus the new volume µ′2 will satisfy µ′2 ≤ (1− 1

logν m
)µ2 if |Hi| > 1

and µ′2 ≤ (1− 1
k )µ2 if |Hi| = 1; in both cases, µ′2 ≤ (1− ε)µ2. On the other hand, if ` = i,

then at least one edge in Hj will be deleted, yielding µ′2 ≤ µ2 − 1. Consequently we get the
recurrence:

A2(µ2) ≤ (ρ− 1) ·A(b(1− ε)µ2c) +A(µ2 − 1) + 1. (5)

By the stopping criterion in line 17, we have A2(µ2) = 1 for µ2 ≤ δ. We will prove by
induction on µ2 > δ that A2(µ2) ≤ C · µlogα µ2

2 , where C := (2δ + 1). We consider 3 cases:

Case 1. µ2 − 1 ≤ δ: Then b(1− ε)µ2c ≤ δ and (5) reduces to A2(µ2) ≤ ρ+ 1 < C.

Case 2. (1− ε)µ2 ≤ δ: Then (5) reduces to

A2(µ2) ≤ ρ+A2(µ2 − 1).

Iterating we get A2(µ2) ≤ rρ + A2(µ2 − r) ≤ rρ + 1, for r = µ2 − δ ≤ ε
1−εδ. Thus,

A2(µ2) ≤ ε
1−εδρ+ 1 ≤ 1

k−1ρδ + 1 ≤ C.

Case 3. µ2 − 1 > δ and (1− ε)µ2 > δ: We apply induction:

A2(µ2) ≤ C(ρ− 1) · ((1− ε)µ2)logα((1−ε)µ2) + C(µ2 − 1)logα(µ2−1) + 1

≤ C
ρ− 1

(1− ε)µ2
· 1
µ2
· µlogα µ2

2 + C(µ2 − 1)logα µ2 + 1

= C · µlogα µ2
2

(
ρ− 1
δµ2

+
(

1− 1
µ2

)logα µ2

+ 1
C · µlogα µ2

2

)

≤ C · µlogα µ2
2

(
1
µ2

+
(

1− 1
µ2

)2
+ 1
µ2

2

)
(since µ2 ≥ δ ≥ α2 and hence logα µ2 ≥ 2 )

≤ C · µlogα µ2
2 (since µ2 ≥ δ > 2).

Using the bound

µ2(H, χ) ≤ k ·
k∏
i=1
|Hi| ≤ k ·

(∑k
i=1 |Hi|
k

)k
≤ k ·

(m
k

)k
,

we get the claim. J

Putting these Claims 6 and 7 together, and noting that at internal nodes the running
time is O(nmρ), and that the roots of the maximal sub-trees in T2 are the leaves of T1, the
lemma follows. J

IPEC 2016



12:8 Exact Algorithms for List-Coloring of Intersecting Hypergraphs

4 Solving Proper-L-Coloring in time (nm)o(k2 log(nm))

For a hypergraph H ⊆ 2V and a positive number ε ∈ (0, 1), denote by T (H, ε) the subset
{v ∈ V : degH(v) > ε|H|} of "high" degree vertices in H. Given ε′, ε′′ ∈ (0, 1), let us call an
(ε′, ε′′)-balanced set with respect to H, any set S ⊆ V such that ε′|H| ≤ |HS | ≤ ε′′|H|.

I Lemma 8 ([19]). Let ε1, ε2 ∈ (0, 1) be two given numbers such that, ε1 < ε2 and T =
T (H, ε1) satisfies |HT | ≤ (1− ε2)|H|. Then there exists a (1− ε2, 1− (ε2 − ε1))-balanced set
S ⊇ T with respect to H. Such a set S can be found in O(nm) time.

I Lemma 9. Let H ⊆ 2V be a hypergraph satisfying (1), L : V → 2[k] be a mapping,
χ : V → [0 : k] be a proper partial L-coloring of H, and S ⊆ V0 be a given set of vertices
such that (H0)S 6= ∅. Then, χ is extendable to a proper L-coloring of H if and only if either

χ is extendable to a proper L-coloring for H̄0 ∪HS0 , or (6)
∃Y ∈ HS0 \ (H0)S , j ∈

⋂
v∈Y
L(v) : χ is extendable to a proper L-coloring χ′ for H

such that χ′(Y ) = {j}. (7)

Proof. Suppose that χ is extendable to a proper L-coloring χ′ for H. If (6) is not satisfied
then (since ∅ 6∈ HS0 by (1)) there is a Y ∈ HS0 \ (H0)S , such that (in any proper extension χ′
of χ) χ′(Y ) = {j}, for some j ∈

⋂
v∈Y L(v), and hence (7) is satisfied.

Conversely, if either (6) or (7) holds then there is an L-coloring extension χ′ of χ that
properly colors H. J

I Lemma 10. Let H ⊆ 2V be a hypergraph satisfying (1), L : V → 2[k] be a mapping,
χ : V → [0 : k] be a proper partial L-coloring of H, and S ⊂ V0 be a given set of vertices
such that, for some i ∈ [k], (Hi)S∪(V \V0) 6= ∅. Then χ is extendable to a proper L-coloring
of H if and only if either

χ is extendable to a proper L-coloring for H̄S∪(V \V0)
i ∪ (Hi)S∪(V \V0), or (8)

∃j 6= i, Y ∈ HS∪(V \V0)
j \ (Hj)S∪(V \V0) : j ∈

⋂
v∈Y
L(v), χ is extendable to a proper

L-coloring χ′ for H such that χ′(Y ) = {j}. (9)

Proof. Suppose that χ is extendable to a proper L-coloring χ′ for H. If (8) is not satisfied
then (since ∅ 6∈ H̄S∪(V \V0)

i by(1)) there is a Y ∈ HS∪(V \V0)
j for some j 6= i, such that

χ′(Y ) = {j} and j ∈
⋂
v∈Y L(v), and hence (9) is satisfied.

Conversely, suppose that either (8) or (9) holds. If (9) is satisfied then χ′ is a proper
L-coloring of H which extends χ. On the other hand, if (8) holds then there is an L-coloring
χ′ : S ∪ (V \ V0)→ [k] such that |χ(H)| ≥ 2 for all H ∈ H̄S∪(V \V0)

i ∪ (Hi)S∪(V \V0). Then χ′
can be extended to a proper L-coloring for H by setting χ′(v) ∈ L(v) \ {i} arbitrarily for
v ∈ V0 \ S (as H ∩ (V0 \ S) 6= ∅ for all H ∈ Hi \ (Hi)S∪(V \V0)). J

I Lemma 11. Let H ⊆ 2V be a hypergraph satisfying (1), L : V → 2[k] be a mapping,
χ : V → [0 : k] be a proper partial L-coloring of H such that Hi 6= ∅ for at least two
i’s, and ε1, ε2 ∈ (0, 1) be two given numbers such that, ε1 < ε2. Then either (i) there is
v ∈ V0 and i 6= j such that degHi(v) ≥ ε1|Hi| and degHj (v) ≥ ε1|Hj |, or (ii) there is a
(1− ε2, 1− (ε2 − ε1))-balanced set S ⊆ V0 with respect to HV0

j for some j ∈ [k].



K. Elbassioni 12:9

Proof. For any i 6= j such that Hi 6= ∅ and Hi 6= ∅, let Ti := T (HV0
i , ε1) and Tj := T (HV0

j , ε1).
If Ti ∩ Tj 6= ∅ then any v in this intersection will satisfy (i). Otherwise, (1) implies that
either (HV0

i )Ti = ∅ or (HV0
j )Tj = ∅, in which case a (1− ε2, 1− (ε2 − ε1))-balanced set with

respect to HV0
i or HV0

j , respectively, can be obtained by Lemma 8. J

Algorithm 2 is more sophisticated than Algorithm 1 as it does not require the existence
of a large-degree vertex, but uses more complicated decomposition rules, given by lemmas 9
and 10. As before, the algorithm proceeds in two phases. As long as there is a large "volume"
of edges with no assigned colors, that is |H0|

∑
H∈H0

|H| ≥ δ, the algorithm is still in phase I;
otherwise it proceeds to phase II. In a general step of phase I (resp., phase II), the algorithm
tries, in step 3 (resp., step 35), to find a vertex v of large degree in H0 (resp., in Hi and Hj
for some i 6= j) and iterates over all feasible assignments of colors to v, that result in no
monochromatic edges; if no such v can be found then Lemma 8 guarantees the existence of a
(1− ε2, 1− (ε2 − ε1))-balanced set with respect to H0 (resp., with respect to either HV0

i or
HV0
j as in Lemma 11), which is found in step 13 (resp, 38). Lemma 9 (resp., Lemma 10) then

reduces the problem in the latter case to checking (6) and (7) (resp., (8) and (9)), which
is done in steps 14, and 17-23 (resp., in steps 39, and 43-45), respectively. If none of the
recursive calls yields a feasible extension of the current proper partial L-coloring χ, we return
that there are no proper L-colorings (lines 11, 24, 32 and 46).

To analyze the running time of the algorithm, let us measure the volume of a subproblem
in phase I by µ2 = µ2(H, χ) = |H0|

∑
H∈H0

|H|, and in phase II by µ2 = µ2(H, χ) given by
(3). Phase II (and hence the recursion) stops when µ2(H, χ) ≤ δ, or an L-coloring has been
found.

Given a subproblem of volume µ, let ε(µ) := ln(eρ)
ξ(µ) , where ξ(µ) is the unique positive root

of the equation:(
ξ(µ)

2 ln(eρ)

)ξ(µ)
= µ2. (10)

Note that (for constant ρ) χ(µ) ≈ O
(

logµ
log logµ

)
. We set δ ≥ 2ρ such that ξ(δ) ≥ 2k ln(eρ).

Note that ξ(µ) ≥ 2 and ε(µ) ≤ 1
2k , for µ ≥ δ. We use in the algorithm: ε1(µ) := ε(µ) and

ε2(µ) := 2ε(µ).

I Lemma 12. Algorithm 2 solves problem Proper-L-Coloring in time (mn)o(k2 log(mn)).

Consider the recursion tree T of the algorithm. Let T1 (reps., T2) be the subtree (resp.,
sub-forest) of T belonging to phase I (resp., phase II) of the algorithm. Let B1(µ) (resp.,
B2(µ)) be the total number of nodes in T1 (resp., T2) that result from a subproblem of
volume µ. The lemma follows from the following two claims whose proofs are given in the
appendix.

I Claim 13. The number of nodes in T1 is at most (δ(ρδ + 1) + 1)(m2n)ξ(m2n).

Proof. If there is a vertex v ∈ V0 such that degH0(v) ≥ ε1|H0| then the algorithm proceeds
with steps 4-11 and we get the recurrence:

B1(µ1) ≤ ρ ·B1(b(1− ε1)µ1c) + 1, (11)

since we recurse in step 8 on a hypergraph H′ that excludes all the edges containing v
from H′0. On the other hand, if no such v can be found then Lemma 8 implies that there
is a (1 − ε2, 1 − (ε2 − ε1))-balanced set S, with respect to some H0, which is found in

IPEC 2016



12:10 Exact Algorithms for List-Coloring of Intersecting Hypergraphs

Algorithm 2 Proper-L-Coloring-B(H,L, χ)
Input: hypergraph H ⊆ 2V , a mapping L : V → 2[k], and a proper partial L-coloring χ : V → [0 : k]
Output: TRUE (resp,. FALSE) if a proper L-coloring χ : V → [k] of H is (resp., cannot be) found
1: V0 := V0(χ); Hi := Hi(χ) for i ∈ [0 : k]
2: if µ1 := µ1(H, χ)| > δ then /* Phase I */
3: if there is v ∈ V0 such that degH0

(v) ≥ ε1(µ1)|H0| then
4: for each j ∈ L(v) do
5: χ(v) := j
6: if there is no H ∈ H such that χ(H) = {j} then /* if no edge becomes monochromatic */
7: H′ := H \

⋃
i∈[k], i 6=j

{H ∈ Hi : j ∈ χ(H)} /* delete non-monochromatic edges */
8: return Proper-L-Coloring-B(H′,L, χ)
9: end if

10: end for
11: χ(v) := 0; return FALSE
12: else
13: Let S be a (1− ε2, 1− (ε2(µ1)− ε1(µ1)))-balanced set computed as in Lemma 8 w.r.t H0
14: if Proper-L-Coloring-B(H̄0 ∪HS

0 ,L, χ) then
15: stop /* A proper L-coloring has been found */
16: else
17: for each Y ∈ HS

0 \ (H0)S and j ∈
⋂

v∈Y
L(v) do

18: χ(Y ) := {j}
19: if there is no H ∈ H such that χ(H) = {j} then /* if no edge becomes monochromatic

*/
20: H′ := H \

⋃
i∈[k], i 6=j

{H ∈ Hi : j ∈ χ(H)} /* delete non-monochromatic edges */
21: return Proper-L-Coloring-B(H′,L, χ)
22: end if
23: end for
24: χ(Y ) := {0}; return FALSE
25: end if
26: end if
27: else/* Phase II */
28: if µ2 := µ2(H, χ) ≤ δ or |{i : Hi 6= ∅}| = 1 then
29: if Proper-L-Coloring-simple(H, L, χ) then
30: Stop /* A proper L-coloring has been found */
31: else
32: return FALSE
33: end if
34: else
35: if there is v ∈ V0 and i 6= j such that degHi

(v) ≥ ε1(µ2)|Hi| and degHj
(v) ≥ ε1|Hj | then

36: Same as in steps 4-11 of Phase I
37: else
38: Let S be a (1− ε2, 1− (ε2(µ2)− ε1(µ2)))-balanced set computed as in Lemma 8 w.r.t HV0

i
for some i ∈ [k]

39: if Proper-L-Coloring-B(H̄S∪(V \V0)
i ∪ (Hi)S∪(V \V0),L, χ) then

40: Set χ(v) ∈ L(v) \ {i} arbitrarily for v ∈ V0 \ S
41: stop /* A proper L-coloring has been found */
42: else
43: for each j 6= i and Y ∈ HS∪(V \V0)

j \ (Hj)S∪(V \V0) s.t. j ∈
⋂

v∈Y
L(v) do

44: Same as in steps 18-22 of Phase I
45: end for
46: χ(Y ) := {0}; return FALSE
47: end if
48: end if
49: end if
50: end if

step 13. Then we apply Lemma 9 which reduces the problem to one recursive call on the
hypergraph H̄0 ∪ HS0 in step 14, and at most |HS0 \ (H0)S | recursive calls (in step 21) on
the hypergraphs obtained by fixing the color of one set Y ∈ HS0 \ (H0)S . Note that S
satisfies: (1 − ε2)|H0| ≤ |(H0)S ≤ |(1 − (ε2 − ε1))|H0|. In particular, there is an H ∈ H0



K. Elbassioni 12:11

such that H \ S 6= ∅. Hence, in step 14, we recurse on the hypergraph H̄0 ∪ HS0 which
excludes at least one vertex from H. Moreover, in step 21, we recurse on a hypergraph H′
that has H′0 ⊆ H0 \ (H0)S , as all edges in (H0)S have non-empty intersections with the set
Y ∈ HS0 \ (H0)S in the current iteration of the loop in step 17, all vertices of which are
assigned color j. Since |H0 \ (H0)S | ≤ ε2|H0|, we get the recurrence:

B1(µ1) ≤ B1(µ1 − 1) + ρε2µ1 ·B1(bε2µ1c) + 1. (12)

By the termination condition of phase I (in line 2), we have B1(µ1) = 1 for µ1 ≤ δ. We
will prove by induction on µ1 ≥ δ that B1(µ1) ≤ C · µξ(µ1)

1 , for C := δ(ρδ + 1) + 1.
Let us consider first recurrence (11). If (1− ε1)µ1 ≤ δ then we get B1(µ1) ≤ ρ+ 1 < C.

Otherwise, we apply induction to get

B1(µ1) ≤ C · ρ((1− ε1)µ1)ξ(µ1) + 1 ≤ C · µξ(µ1)
1

(
ρ(1− ε1)χ(µ1) + 1

µ
ξ(µ1)
1

)

≤ C · µξ(µ1)
1

(
ρe−ε1ξ(µ1) + 1

µ
ξ(µ1)
1

)

≤ C · µξ(µ1)
1

(
1
e

+ 1
4

)
< C · µξ(µ1)

1 , (as ε1ξ(µ1) = ln(eρ) and ξ(µ1) ≥ 2 for µ1 ≥ δ).

Let us consider next recurrence (12). We consider 3 cases:

Case 1. µ1−1 ≤ δ: Then bε2µ1c ≤ δ and (12) reduces to B1(µ1) ≤ ρε2µ1+2 ≤ ρ(δ+1)+2 <
C.

Case 2. ε2µ1 ≤ δ: Then (12) reduces to

B1(µ1) ≤ B1(µ1 − 1) + ρε2µ1 + 1 ≤ B1(µ1 − 1) + ρδ + 1.

Iterating we get B1(µ1) ≤ B1(µ1 − r) + r(ρδ + 1) ≤ r(ρδ + 1) + 1, for r = µ1 − δ ≤(
1
ε2
− 1
)
δ. Thus, B1(µ1) ≤

(
1
ε2
− 1
)
δ(ρδ + 1) + 1. As ε2 = 2ε(µ1) = 2 ln(eρ)

ξ(µ1) , we get

B1(µ1) ≤
(

ξ(µ1)
2 ln(eρ) − 1

)
δ(ρδ + 1) + 1 ≤ (µ1 − 1) δ(ρδ + 1) + 1 ≤ Cµξ(µ1)

1 , for µ1 ≥ δ.

Case 3. µ1 − 1 > δ and ε2µ1 > δ: We apply induction:

B1(µ1) ≤ C(µ1 − 1)ξ(µ1) + C · ρε2µ1(ε2µ1)ξ(µ2) + 1

≤ C · µξ(µ1)
1

((
1− 1

µ1

)ξ(µ1)
+ ρε2µ1ε

ξ(µ1)
2 + 1

µ
ξ(µ1)
1

)

≤ C · µξ(µ1)
1

((
1− 1

µ1

)ξ(µ1)
+ ρε2
µ1

+ 1
µ
ξ(µ1)
1

)
(since εξ(µ1)

2 = 1
µ2

1
by (10))

≤ C · µξ(µ1)
1

((
1− 1

µ1

)2
+ 1
µ1

+ 1
µ2

1

)
(since ε2 ≤

1
k

and ξ(µ1) ≥ 2 for µ1 ≥ δ)

≤ C · µξ(µ1)
1 (since µ2 ≥ δ > 2).

Using µ1(H, χ) ≤ m2n, we get the claim. J

I Claim 14. The number of nodes in any sub-tree of T2 is at most

(δ(ρδ + 1) + 1)(mk/kk−1)ξ(m
k/kk−1) .

IPEC 2016



12:12 Exact Algorithms for List-Coloring of Intersecting Hypergraphs

Proof. If µ2(H, χ) ≤ δ (and already µ1(H, χ) ≤ δ), then Lemma 4 implies that problem
Proper-L-Coloring can be solved in time O((ρn)(k+1)δ), as m ≤ δ. If there is v ∈ V0
and i 6= j such that degHi(v) ≥ ε1|Hi| and degHj (v) ≥ ε1|Hj | then the algorithm proceeds
similar to steps 4-11 and we get the recurrence:

B2(µ2) ≤ ρ ·B2(b(1− ε1)µ2c) + 1, (13)

since we recurse (in the step similar to step 8) on a hypergraph H′ that excludes either all
the edges containing v from H′i, if we set the color of v to j, or all those containing v from
H′j if we set the color of v to i (or both, if we set the color of v to ` 6∈ {i, j}).

On the other hand, if no such v can be found then Lemma 11 implies that there is a
(1 − ε2, 1 − (ε2 − ε1))-balanced set S, with respect to some Hi, which is found in step 38.
Then we apply Lemma 10 which reduces the problem to one recursive call on the hypergraph
H̄S∪(V \V0)
i ∪ (Hi)S∪(V \V0) in step 39, and at most

∑
j 6=i |H

S∪(V \V0)
j \ (Hj)S∪(V \V0)| recursive

calls on the hypergraphs obtained by fixing the color of one set Y ∈ HS∪(V \V0)
j \(Hj)S∪(V \V0).

As S satisfies: (1− ε2)|Hi| ≤ |(Hi)S∪(V \V0)| ≤ (1− (ε2 − ε1))|Hi|, in step 39 we recurse on
the hypergraph H′ := H̄S∪(V \V0)

i ∪ (Hi)S∪(V \V0) with µ2(H′, χ) ≤ (1 − (ε2 − ε1))µ2(H, χ).
Moreover, for each Y satisfying the condition in step 43, we recurse on a hypergraph H′ that
has H′i ⊆ Hi \ (Hi)S∪(V \V0), as all edges in (Hi)S∪(V \V0) have non-empty intersections with
the set Y , all vertices of which are assigned color j 6= i. Since |Hi \ (Hi)S∪(V \V0)| ≤ ε2|Hi|,
we get the recurrence:

B2(µ2) ≤ B2(b(1− (ε2 − ε1))µ2c) + ρµ2 ·B2(bε2µ2c) + 1. (14)

By the stopping criterion in line 28, we have B2(µ2) = 1 for µ2 ≤ δ. We will prove by
induction on µ2 ≥ δ that B2(µ2) ≤ C · µξ(µ2)

2 , for C := δ(ρδ + 1) + 1.
As recurrence (13) is the same as (11), we need only to consider recurrence (14). We

consider 3 cases:

Case 1. (1 − (ε2 − ε1))µ2 ≤ δ: Then ε2µ2 ≤ 2ε(µ2)
1−ε(µ2)δ ≤

2
2k−1δ < δ for µ2 ≥ δ (recall

that ε(µ2) ≤ 1
2k for µ2 ≥ δ), and hence (13) reduces to B2(µ2) ≤ ρµ2 + 2 ≤ ρδ

1−ε(µ2) + 2 ≤
2kρδ
2k−1 + 2 < 2(ρδ + 1) < C.

Case 2. ε2µ2 ≤ δ: Then (12) reduces to

B2(µ2) ≤ B2((1− ε(µ2))µ2) + ρε2µ2 + 1 ≤ B2((1− ε(µ2))µ2) + ρδ + 1.

Iterating we get B2(µ2) ≤ B2(µ2(1− ε(µ2))r) + r(ρδ + 1) ≤ r(ρδ + 1) + 1, for r = ln(µ2/δ)
ε(µ2) ≤

ln(1/ε(µ2))
ε(µ2) . Thus, B2(µ2) ≤

(
ln(1/ε(µ2))
ε(µ2)

)
(ρδ + 1) + 1. As ln(1/ε(µ2))

ε(µ2) ≤ δµξ(µ2)
2 for µ2 ≥ δ ≥ 2

(since
(

1
2ε(µ2)

)ξ(µ2)
= µ2

2 by (10)), we get B2(µ2) ≤ δ(ρδ + 1) + 1 ≤ Cµξ(µ2)
1 .



K. Elbassioni 12:13

Case 3. (1− (ε2 − ε1))µ2 > δ and ε2µ2 > δ: We apply induction:

B2(µ2) ≤ C((1− ε(µ2))µ2)ξ(µ2) + C · ρµ2(ε2(µ2)µ2)ξ(µ2) + 1

≤ C · µξ(µ2)
2

(
(1− ε(µ2))ξ(µ2) + ρµ2(ε2(µ2))ξ(µ2) + 1

µ
ξ(µ2)
2

)

≤ C · µξ(µ2)
2

(
(1− ε(µ2))ξ(µ2) + ρ

µ2
+ 1
µ
ξ(µ2)
2

)
(since (ε2(µ2))ξ(µ2) = 1

µ2
2
by (10))

≤ C · µξ(µ2)
2

(
e−ε(µ2)ξ(µ2) + ρ

µ2
+ 1
µ
ξ(µ2)
2

)

≤ C · µξ(µ2)
2

(
1
eρ

+ ρ

µ2
+ 1
µ
ξ(µ2)
2

)
(since ε(µ2) = ln(eρ)

ξ(µ2) )

≤ C · µξ(µ2)
2

(
1
4 + 1

2 + 1
16

)
< C · µξ(µ2)

2 . (since ξ(µ2) ≥ 2 for µ2 ≥ δ ≥ 2ρ)

Using the bound µ1(H, χ) ≤ k ·
(
m
k

)k
, we get the claim.

Putting these Claims 6 and 7 together, the lemma follows. J

I Remark. Theorem 1 can be extended to the case when the input hypergraph H is almost
intersecting, that is, if for all H ∈ H,

H ∩H ′ = ∅ for at most O(1) edges H ′ ∈ H.

Acknowledgements. I thank Endre Boros and Vladimir Gurvich for helpful discussions.

References
1 N. Alon, P. Kelsen, S. Mahajan, and R. Hariharan. Approximate hypergraph coloring.

Nord. J. Comput., 3(4):425–439, 1996.
2 N. Alon and J.H. Spencer. The Probabilistic Method. Wiley Series in Discrete Mathematics

and Optimization. Wiley, 2004.
3 G. Bacsó, C. Bujtás, Z. Tuza, and V. Voloshin. New challenges in the theory of hyper-

graph coloring. In S. Arumugam and R. Balakrishnan, editors, ICDM 2008. International
conference on discrete mathematics. Mysore, 2008., pages 67–78, Mysore, 2008. Univ. of
Mysore.

4 J. Beck and S. Lodha. Efficient proper 2-coloring of almost disjoint hypergraphs. In Pro-
ceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January
6-8, 2002, San Francisco, CA, USA., pages 598–605, 2002.

5 V.V. S. P. Bhattiprolu, V. Guruswami, and E. Lee. Approximate hypergraph coloring under
low-discrepancy and related promises. In Approximation, Randomization, and Combinat-
orial Optimization. Algorithms and Techniques, APPROX/RANDOM 2015, August 24-26,
2015, Princeton, NJ, USA, pages 152–174, 2015. doi:10.4230/LIPIcs.APPROX-RANDOM.
2015.152.

6 J.C. Bioch and T. Ibaraki. Complexity of identification and dualization of positive boolean
functions. Information and Computation, 123(1):50–63, 1995.

7 E. Boros and K. Makino. A fast and simple parallel algorithm for the monotone dual-
ity problem. In Automata, Languages and Programming, 36th International Colloquium,
ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part I, pages 183–194, 2009.

IPEC 2016

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.152
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.152


12:14 Exact Algorithms for List-Coloring of Intersecting Hypergraphs

8 A. Chattopadhyay and B.A. Reed. Approximation, Randomization, and Combinatorial Op-
timization. Algorithms and Techniques: 10th International Workshop, APPROX 2007, and
11th International Workshop, RANDOM 2007, Princeton, NJ, USA, August 20-22, 2007.
Proceedings, chapter Properly 2-Colouring Linear Hypergraphs, pages 395–408. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2007.

9 H. Chen and A. Frieze. Integer Programming and Combinatorial Optimization: 5th Inter-
national IPCO Conference Vancouver, British Columbia, Canada, June 3–5, 1996 Proceed-
ings, chapter Coloring bipartite hypergraphs, pages 345–358. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1996.

10 D. de Werra. Restricted coloring models for timetabling. Discrete Mathematics,
165–166:161–170, 1997. Graphs and Combinatorics.

11 I. Dinur and V. Guruswami. PCPs via Low-Degree Long Code and Hardness for Con-
strained Hypergraph Coloring. In 54th Annual IEEE Symposium on Foundations of Com-
puter Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 340–349, 2013.

12 I. Dinur, O. Regev, and C. D. Smyth. The hardness of 3-uniform hypergraph coloring.
Combinatorica, 25(5):519–535, 2005.

13 C. Domingo. Polynominal time algorithms for some self-duality problems. In CIAC’97:
Proceedings of the 3rd Italian Conference on Algorithms and Complexity, Rome, Italy, pages
171–180, 1997.

14 M. Dror, G. Finke, S. Gravier, and W. Kubiak. On the complexity of a restricted list-
coloring problem. Discrete Mathematics, 195(1–3):103–109, 1999.

15 T. Eiter and G. Gottlob. Identifying the minimal transversals of a hypergraph and related
problems. SIAM Journal on Computing, 24(6):1278–1304, 1995.

16 T. Eiter, G. Gottlob, and K. Makino. New results on monotone dualization and gener-
ating hypergraph transversals. In STOC’02: Proceedings of the thiry-fourth annual ACM
symposium on Theory of computing, pages 14–22, 2002.

17 T. Eiter, G. Gottlob, and K. Makino. New results on monotone dualization and generating
hypergraph transversals. SIAM Journal on Computing, 32(2):514–537, 2003.

18 T. Eiter, K. Makino, and G. Gottlob. Computational aspects of monotone dualization: A
brief survey. KBS Research Report INFSYS RR-1843-06-01, Vienna University of Techno-
logy, 2006.

19 K. Elbassioni. On the complexity of monotone dualization and generating minimal hyper-
graph transversals. Discrete Applied Mathematics, 156(11):2109–2123, 2008.

20 P. Erdős, A. L. Rubin, and H. Taylor. Choosability in graphs. In Proceedings of the West
Coast Conference on Combinatorics, Graph Theory and Computing, Arcata, CA, Congr.
Numer. XXVI, pages 125–157, 1979.

21 M.L. Fredman and L. Khachiyan. On the complexity of dualization of monotone disjunctive
normal forms. Journal of Algorithms, 21:618–628, 1996.

22 D.R. Gaur and R. Krishnamurti. Average case self-duality of monotone boolean functions.
In Canadian AI’04: Proceedings of the 17th Conference of the Canadian Society for Com-
putational Studies of Intelligence on Advances in Artificial Intelligence,, pages 322–338,
2004.

23 G. Gottlob. Hypergraph transversals. In FoIKS’04: Proceedings of the 3rd International
Symposium on Foundations of Information and Knowledge Systems, pages 1–5, 2004.

24 G. Gottlob and E. Malizia. Achieving new upper bounds for the hypergraph duality prob-
lem through logic. In Joint Meeting of the Twenty-Third EACSL Annual Conference on
Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS), CSL-LICS’14, Vienna, Austria, July 14-18, 2014, pages
43:1–43:10, 2014.



K. Elbassioni 12:15

25 S. Gravier, D. Kobler, and W. Kubiak. Complexity of list coloring problems with a fixed
total number of colors. Discrete Applied Mathematics, 117(1–3):65–79, 2002.

26 V. Guruswami, P. Harsha, J. Håstad, S. Srinivasan, and G. Varma. Super-polylogarithmic
hypergraph coloring hardness via low-degree long codes. In Symposium on Theory of
Computing, STOC 2014, New York, NY, USA, May 31 – June 03, 2014, pages 614–623,
2014.

27 K. Jansen and P. Scheffler. Generalized coloring for tree-like graphs. Discrete Applied
Mathematics, 75(2):135–155, 1997.

28 D. J. Kavvadias and E.C. Stavropoulos. Monotone boolean dualization is in co-NP[log2 n].
Information Processing Letters, 85(1):1–6, 2003.

29 S. Khot and R. Saket. Hardness of coloring 2-colorable 12-uniform hypergraphs with
2(logn)Ω(1) colors. In 55th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 206–215, 2014.

30 M. Krivelevich, R. Nathaniel, and B. Sudakov. Approximating coloring and maximum
independent sets in 3-uniform hypergraphs. In Proceedings of the Twelfth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA’01, pages 327–328, Philadelphia, PA,
USA, 2001. Society for Industrial and Applied Mathematics.

31 L. Lovász. Combinatorial optimization: some problems and trends. DIMACS Technical
Report 92-53, Rutgers University, 2000.

32 C.H. Papadimitriou. NP-Completeness: A Retrospective. In ICALP’97: Proceedings of
the 24th International Colloquium on Automata, Languages and Programming, pages 2–6,
London, UK, 1997. Springer-Verlag.

33 M. Pei. List colouring hypergraphs and extremal results for acyclic graphs. PhD thesis,
University of Waterloo, Canada, 2008.

34 Y. Person and M. Schacht. An expected polynomial time algorithm for coloring 2-colorable
3-graphs. Electronic Notes in Discrete Mathematics, 34:465–469, 2009. European Confer-
ence on Combinatorics, Graph Theory and Applications (EuroComb 2009).

35 P.D. Seymor. An expected polynomial time algorithm for coloring 2-colorable 3-graphs.
The Quarterly Journal of Mathematics, 25(1):303–311, 1974.

36 K. Takata. On the sequential method for listing minimal hitting sets. In DM & DM
2002: Proceedings of Workshop on Discrete Mathematics and Data Mining, 2nd SIAM
International Conference on Data Mining, pages 109–120, 2002.

37 V.G. Vizing. Vertex colorings with given colors. Metody Diskret. Analiz., 29:3–10, 1976.
38 V. I. Voloshin. Coloring Mixed Hypergraphs: Theory, Algorithms, and Applications. Fields

Institute monographs. American Mathematical Society, 2002.

IPEC 2016





Turbocharging Treewidth Heuristics∗

Serge Gaspers†1, Joachim Gudmundsson2, Mitchell Jones3,
Julián Mestre4, and Stefan Rümmele5

1 UNSW, Sydney, Australia; and
Data61, CSIRO, Sydney, Australia
sergeg@cse.unsw.edu.au

2 University of Sydney, Sydney, Australia
joachim.gudmundsson@sydney.edu.au

3 University of Sydney, Sydney, Australia
mjon1572@uni.sydney.edu.au

4 University of Sydney, Sydney, Australia
julian.mestre@sydney.edu.au

5 University of Sydney, Sydney, Australia; and
UNSW, Sydney, Australia
stefan.rummele@sydney.edu.au

Abstract
A widely used class of algorithms for computing tree decompositions of graphs are heuristics that
compute an elimination order, i.e., a permutation of the vertex set. In this paper, we propose to
turbocharge these heuristics. For a target treewidth k, suppose the heuristic has already computed
a partial elimination order of width at most k, but extending it by one more vertex exceeds the
target width k. At this moment of regret, we solve a subproblem which is to recompute the
last c positions of the partial elimination order such that it can be extended without exceeding
width k. We show that this subproblem is fixed-parameter tractable when parameterized by k
and c, but it is para-NP-hard and W [1]-hard when parameterized by only k or c, respectively.
Our experimental evaluation of the FPT algorithm shows that we can trade a reasonable increase
of the running time for quality of the solution.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases tree decomposition, heuristic, fixed-parameter tractability, local search

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.13

1 Introduction

The most widely used treewidth heuristics are simple algorithms that compute an elimination
order, i.e., a permutation of the vertex set. For a given elimination order π of a graph G,
we obtain a chordal completion G′ by eliminating vertices according to this order: when we
eliminate a vertex, we add edges to make its neighborhood into a clique, and then remove the
vertex. Given this chordal completion G′, we can obtain a tree decomposition by traversing
π backwards: for each vertex v in π, let L(v) denote the neighbors of v in G′ that occur later
than v in π; choose a bag that contains L(v) and add a new neighboring bag that contains
{v} ∪ L(v). Thus, for a given elimination order, the width of the tree decomposition we

∗ The authors acknowledge support under the ARC’s Discovery Projects funding scheme (DP150101134).
† Serge Gaspers is the recipient of an Australian Research Council (ARC) Future Fellowship
(FT140100048).

© Serge Gaspers, Joachim Gudmundsson, Mitchell Jones, Julian Mestre, and Stefan Rümmele;
licensed under Creative Commons License CC-BY

11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin; Article No. 13; pp. 13:1–13:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


13:2 Turbocharging Treewidth Heuristics

obtain is the largest degree of an eliminated vertex (i.e., the degree of the vertex when it is
eliminated).1

The GreedyDegree heuristic selects a vertex of minimum degree as the next vertex of
the elimination order, while the GreedyFillIn heuristic selects a vertex that has fewest non-
edges in its neighborhood. These heuristics compare favorably to more involved heuristics;
see [3], where a small additional improvement is achieved by turning the resulting chordal
completion into a minimal chordal completion in a post-processing step.

In this paper, we propose to turbocharge the GreedyDegree and the GreedyFillIn
heuristics. For a target treewidth k and a change parameter c, suppose the heuristic has
already computed a partial elimination order π of width at most k and length l, but extending
π by one more vertex exceeds the target width k. At this moment of regret, we solve a
subproblem which is to compute a partial elimination order π′ of width at most k and length
l + 1 which coincides with π in the first l − c positions. Having solved this subproblem, we
continue running the heuristic with the partial elimination order π′. In this paper, we formally
study this subproblem, parameterized by combinations of l, k, and c, and experimentally
evaluate what effect the turbocharging has on the width of the obtained tree decompositions.

The subproblem turns out to be para-NP-hard under Turing reductions for parameter
k, W [1]-hard for parameters c or l, but fixed-parameter tractable for the combination of
parameters k and c. Our implementation is based on this FPT algorithm, and the experiments
show an improvement of the width of the obtained tree decompositions for reasonable values
of the parameter c, which allows us to trade running time for quality of the solution.

Our turbocharging strategy solves a local-search subproblem when the heuristic gets
stuck because all remaining vertices have degree at least k + 1, similar to the turbocharging
strategy for list coloring by Hartung and Niedermeier [7]. Another way to turbocharge
the GreedyFillIn heuristic would be to select several vertices at a time and minimize
the number of edges added when eliminating this set of vertices. However, we quickly run
into limitations of this method, since this problem is W [1]-hard when parameterized by the
number of vertices we would like to eliminate, and we did not pursue this strategy further.

2 Preliminaries

A graph G = (V,E) consists of a vertex set V and an edge set E. The neighborhood N(v) of
vertex v in G is defined as the set of all vertices adjacent to v, N(v) = {w | {v, w} ∈ E}.

A tree decomposition of a graph G = (V,E) is a pair T = (T, χ), where T is a tree and χ
maps each node t of T (we use t ∈ T as a shorthand below) to a bag χ(t) ⊆ V , such that
1. for each v ∈ V , there is a t ∈ T , s.t. v ∈ χ(t);
2. for each {v, w} ∈ E, there is a t ∈ T , s.t. {v, w} ⊆ χ(t);
3. for each r, s, t ∈ T , s.t. s lies on the path from r to t, χ(r) ∩ χ(t) ⊆ χ(s).

The width of a tree decomposition is defined as the cardinality of its largest bag minus
one. The treewidth of a graph G, denoted by tw(G), is the minimum width over all tree
decompositions of G. For a given graph G and integer k, deciding whether G has treewidth
at most k is NP-complete [1]. For fixed k, one can decide in linear time whether a graph has
treewidth ≤ k and, if so, compute a tree decomposition of width k [2].

1 We refer the reader who is not familiar with some of these notions to the Preliminaries section.



S. Gaspers, J. Gudmundsson, M. Jones, J. Mestre, and S. Rümmele 13:3

Treewidth
Instance: Graph G and integer k.
Problem: Decide whether tw(G) ≤ k holds.

One of the alternative characterizations of treewidth is based on so called elimination orders.
Let G = (V,E) be a graph and v ∈ V a vertex of G. Eliminating v from G refers to the process
of forming a clique out of the neighbourhood of v and removing v and its incident edges, that
is, we create a new graph G′ = (V \ {v}, (E ∪ E1) \ E2), where E1 = {{u,w} | u,w ∈ N(v)}
and E2 = {e ∈ E | v ∈ e}. An elimination order of a graph G = (V,E) with |V | = n is
a bijective function π : V → {1, . . . , n}. Starting with G and iteratively eliminating the
vertices in V according to the order π results in a sequence of n + 1 graphs with the last
one being the empty graph. The width of π is the maximum degree of any vertex v ∈ V
during its elimination according to the order π. This notion leads to the following alternative
characterization of treewidth.

I Theorem 1 (see for example [3]). Let G = (V,E) be a graph and let k ∈ N. G has treewidth
at most k if and only if there exists an elimination order π of width at most k.

We generalize the notion of elimination orders to partial elimination orders as follows. A
partial elimination order of length l ≤ n of a graph G = (V,E) with |V | = n is a bijective
partial function π : V → {1, . . . , l}, that is, an enumeration of l vertices of the graph. The
intended meaning of a partial elimination order is that it represents the first l positions of an
elimination order. Analogously to elimination orders, the width of partial elimination order
π is the maximum degree of any vertex v ∈ V during its elimination according the order π.

The two heuristics which we mentioned earlier as well as our algorithm compute the
treewidth based on elimination orders. The GreedyDegree heuristic as well as the
GreedyFillIn heuristic construct an elimination order by iteratively selecting the next
vertex in the elimination order and eliminating it from the graph. During the elimination
step, the vertex is removed and all its neighbours are connected to a clique. The selection of
the next vertex is based on a greedy criteria. GreedyDegree selects the vertex with the
minimal degree and GreedyFillIn selects the vertex whose elimination results in the fewest
new edges that need to be added to the graph in order to form a clique out of its neighbours.
In both cases ties are broken arbitrarily.

3 Local Search Variants of the Treewidth Problem

We are interested in how the existing greedy heuristics for Treewidth can be improved via
local search. We introduce the following problem, which we call the incremental conservative
(IC) treewidth problem, since it follows the spirit of incremental conservative k-list coloring
of graphs by Hartung and Niedermeier [7].

IC-Treewidth
Instance: Graph G, integer k and c, and partial elimination order π of length l

and width ≤ k.
Problem: Does there exist a partial elimination order π′ of length l+1 and width

≤ k such that π and π′ are identical on the first l − c positions?

Since we want to use an algorithm for IC-Treewidth as a subroutine for improving an
existing partial elimination order, we are interested in finding parameters for which the
problem becomes fixed-parameter tractable. The following result shows, that the length l
and hence also the change c are ineligible.

IPEC 2016



13:4 Turbocharging Treewidth Heuristics

I Theorem 2. IC-Treewidth is W[1]-hard when parameterized by l.

Proof. By reduction from Independent Set. An instance of Independent Set is given
by a graph G = (V,E) and integer k. The question is whether G has an independent set of
size k. Independent Set is W[1]-complete when parameterized by k [4].

Let (G = (V,E), k) be an instance of Independent Set with V = {v1, . . . , vn}. We
denote the maximum degree of G by ∆(G) = d. Now construct an instance (G′, π, c) of
IC-Treewidth as follows. Let U,W,X1, . . . , Xk−1, Y1, . . . , Yn be sets of new vertices of
cardinalities |U | = n, |W | = n + 2d, |Xi| = 2d + 1 for 1 ≤ i ≤ k − 1, and |Yj | = d + 1 for
1 ≤ j ≤ n. Let Ki

X with 1 ≤ i ≤ k − 1 denote the complete graph of the vertices on Xi.
Analogously, we denote by Kj

Y with 1 ≤ j ≤ n and by KW the complete graphs over Yj and
W , respectively. The new graph G′ = (V ∪U ∪W ∪X1 · · · ∪Xk−1 ∪ Y1 · · · ∪ Yn, E

′) contains
all edges of G, and all edges of the complete graphs Ki

X , Kj
Y , and KW . Additionally, we add

the following edges. Let U = {u1, . . . , un}.

{ui, vj} 1 ≤ i, j ≤ n
{ui, x} 1 ≤ i ≤ k − 1 and x ∈ Xi

{ui, w} k ≤ i ≤ n and w ∈W
{vj , y} 1 ≤ j ≤ n and y ∈ Yj

{x,w} x ∈ Xi, 1 ≤ i ≤ k − 1 and w ∈W
{y, w} y ∈ Yj , 1 ≤ j ≤ n and w ∈W

To complete the construction of the instance for IC-Treewidth, we set π = (u1, . . . , uk−1)
and c = k − 1. The partial elimination order π has width n+ 2d+ 1 since each vertex ui,
1 ≤ i ≤ k − 1, has as neighbourhood the n vertices of V and 2d + 1 vertices of Xi at the
time of its elimination. Note that this instance can be constructed in polynomial time.

We will show that G has an independent set of size k if and only if there exists a partial
elimination order π′ of width n+ 2d+ 1 and length k for graph G′. For the first direction,
assume that G has an independent set S of size k. Let π′ be an arbitrary order of the k
vertices in S. We show that π′ is a partial elimination order of width n+ 2d+ 1 for graph G′.
The neighbourhood of each vertex vj ∈ S in G′ consists of its original neighbourhood in G
together with all the vertices of U and Yj . Hence its degree is bounded by d(vj) ≤ n+ 2d+ 1.
Since S is an independent set, it holds for all pairs vi, vj ∈ S, that eliminating vi from G′
does not change the neighbourhood of vj . Therefore, π′ is a partial elimination order of
length k and width n+ 2d+ 1.

For the second direction, assume that π′ is a partial elimination order of length k and
width n+ 2d+ 1 for G′. We will show that the k vertices of π′ form an independent set in G.
π′ can not contain any vertex from W since they have degree n(3 + d) + 2dk − 1. Similar, π′
can not contain any vertex from Xi, 1 ≤ i ≤ k − 1, or from Yj , 1 ≤ j ≤ n, since they have
degree n+ 4d+ 1 and n+ 3d+ 1, respectively. We can also exclude vertices uk, . . . , un since
they have degree 2n + 2d. Starting by eliminating a vertex ui ∈ {u1, . . . , uk−1} creates a
clique of all vertices in V ∪Xi. This means, if π′ starts with ui, then it can not contain any
vertex from V . Note that eliminating a vertex vj ∈ V forms a clique of all vertices in U ∪ Yj .
Hence, if π′ contains vj , it can not be succeeded by any vertex in U . These two observations
combined, say that π′ either consists only of vertices of U or only of vertices of V . We can
exclude the case U , since π′ has length k and there are only k − 1 suitable vertices in U .
Therefore, π′ contains only vertices from V . It remains to show that these vertices form an
independent set. Assume towards a contradiction, that π′ contains two adjacent vertices, say
vi and vj . W.l.o.g. we assume vi is eliminated before vj . Eliminating vi introduces an edge



S. Gaspers, J. Gudmundsson, M. Jones, J. Mestre, and S. Rümmele 13:5

between vj and all d+ 1 vertices of Yi. Hence, vj has now degree d(vj) ≥ n+ 2d+ 2. But
this means vj can not be contained in π′, which contradicts our assumption and the vertices
in π′ form indeed an independent set. J

This reduction from Independent Set together with a straight-forward NP-membership
via a guess and check algorithm, gives us NP-completeness of IC-Treewidth.

I Corollary 3. IC-Treewidth is NP-complete.

A problem that is closely related to IC-Treewidth is the following Length-l-Partial-
Elimination-Order problem. To solve IC-Treewidth, we can eliminate the first l − c
vertices of the graph and then ask for a length c+ 1 partial elimination order.

Length-l-Partial-Elimination-Order
Instance: Graph G, integer l and k.
Problem: Does there exist a partial elimination order of G of length l and width ≤ k?

I Theorem 4. Length-l-Partial-Elimination-Order is fixed-parameter tractable when
parameterized by l and k.

Proof. Let G = (V,E), l and k be an instance of Length-l-Partial-Elimination-Order.
Let S be set of vertices of degree at most k, i.e., S = {v ∈ V | dG(v) ≤ k}. Let G[S] be
the subgraph G induced by S. Let A be a greedy algorithm for Independent Set that
iteratively selects a minimum degree vertex and remove its closed neighborhood from the
graph, until it either finds an independent set I of size l or fails to do so.

In case A succeeds, we show that sequencing (v1, v2, . . . , vl) of I is a partial elimination
order of G of width ≤ k. Note that each vi belongs to S, so it has degree at most k in G.
Since I is an independent set, eliminating vi does not add a new edge incident on I. Hence,
the partial elimination order (v1, . . . , vl) has width at most k.

On the other hand, if A fails to find an independent set of size l, we know that |S| ≤
(l− 1)(k+ 1). To see this, note that adding some vertex v ∈ S to I can block at most k other
vertices (v’s neighbors) from being selected by the greedy algorithm. Since the maximum
independent set that A can find in case of failure has size l − 1, the bound on S follows.

We can exploit this insight to design a branching algorithm for Length-l-Partial-
Elimination-Order. Each node of the branching process will have associated a partial
elimination order π′ and a graph G′. On the first level we only have the root node, where
π′ is empty and G′ is the input graph. Consider a node (π′,G′) at level i of the branching
process and let S′ = {v ∈ V | dG′(v) ≤ k}. If |S′| > (l − i)(k + 1) then we can use A to
extend the partial elimination order by (l − i+ 1) additional nodes, we can do just that and
stop the branching process. Otherwise, if |S′| ≤ (l − i)(k + 1), we branch on every node
v ∈ S′, by adding it to π′ order and eliminating it from G′, thus generating a new node
(π′′,G′′) on level i+ 1.

Notice that the number of branches we need to follow from a node in level i is at most
(l − i)(k + 1). Therefore, the total number of nodes we explore is at most

∏l
i=1(l − i)(k +

1) = (l − 1)!(k + 1)l. Hence, we can decide Length-l-Partial-Elimination-Order in
O∗
(
(l − 1)!(k + 1)l

)
time. J

Given a partial elimination order, we can backtrack the last c choices and use this FPT
result to extend it again by c+ 1 vertices. This leads to the following corollary.

I Corollary 5. IC-Treewidth is fixed-parameter tractable when parameterized by c and k.

IPEC 2016



13:6 Turbocharging Treewidth Heuristics

Similar, the W[1]-hardness of IC-Treewidth when parameterized by c carries over
to Length-l-Partial-Elimination-Order parameterized by l. We show next, that the
combination of parameters l and k is indeed necessary, that is, we show hardness for parameter
k alone.

I Theorem 6. Length-l-Partial-Elimination-Order is NP-hard even when k = 5.

Proof. Our reduction is from the NP-hard problem Independent Set on Cubic Graphs,
which takes as input a 3-regular graph G = (V,E) and an integer k, and the question is whether
G has an independent set of size k, i.e., a set of k vertices that are pairwise non-adjacent [5].
We construct an instance (G′, l = k, 5) for Length-l-Partial-Elimination-Order as
follows. To obtain G′, we start from G and add a disjoint clique W on 7 vertices. For every
vertex v of G, we add two vertices av and bv to G′ and make them adjacent to W ∪ {v}. To
see that a partial elimination order π of width at most 5 of G′ corresponds to an independent
set in G, and vice-versa, first observe that π contains no vertex from W or N(W ); indeed, the
first vertex from W ∪N(W ) occurring in π has more than 5 neighbors when it is eliminated.
Secondly, assume the partial elimination order contains two adjacent vertices. Let v be the
first vertex that is eliminated for which at least one neighbor u has already been eliminated.
But then, v has degree at least 6 when it is eliminated because eliminating u added the edges
{v, au} and {v, bu}. But, on the other hand, eliminating an independent set of size l = k

gives a partial elimination order of width 5 and length l. J

IC-Treewidth is defined as a decision problem. We call the problem of actually
computing such a partial elimination order π′, the function version of IC-Treewidth. As
mentioned before, if it exists, computing a tree decomposition of width k can be done in
linear time for fixed k [2]. This does not hold for our partial elimination orders.

I Theorem 7. The function version IC-Treewidth is NP-hard under Turing reductions
even when k = 5.

Proof. By reduction from Length-l-Partial-Elimination-Order for the special case of
k = 5. We can solve this problem by iteratively solving IC-Treewidth starting with an
empty partial elimination order and ending with one of length l − 1. J

Another application of Theorem 4 is a greedy algorithm where iteratively the next l
vertices are selected instead of a single next vertex. A natural question is, whether we can
get an FPT result if we try to select these l vertices in such a way, that number of fill-in
edges is minimal. The following result shows that this is unlikely.

Min-FillIn-Set
Instance: Graph G = (V,E), integer l and T .
Problem: Does there exist a set S ⊆ V of size l, such that eliminating the vertices

in S from G adds at most T new edges to G?

I Theorem 8. Min-FillIn-Set is W[1]-hard when parameterized by l.

Proof. By reduction from Clique. An instance of Clique is given by a bipartite graph G
and integer k. The question is, whether G contains a clique of size k. Clique is W[1]-hard
when parameterized by k.

Let G = (V,E) and k be an instance of Clique. We construct an instance (G′ =
(V ′, E′), l, T ) of Min-FillIn-Set as follows. The vertices V ′ consist of three disjoint sets
V ′ = X ∪ Y ∪Z, defined as follows. The set X contains a vertex for each edge in the original



S. Gaspers, J. Gudmundsson, M. Jones, J. Mestre, and S. Rümmele 13:7

graph, i.e., X = {xe | e ∈ E}. The set Y contains two copies of each vertex inthe original
graph, i.e., Y = {yv, y

′
v | v ∈ V }. The set Z contains 4k new vertices Z = {z1, . . . , z4k}. For

each edge e = {v, w} ∈ E we add the following 4 edges to E′: {xe, yv}, {xe, y
′
v}, {xe, yw},

and {xe, y
′
w}. Additionally, E′ contains all possible edges between vertex sets Y and Z, i.e.,

Y and Z form a complete bipartite subgraph. Finally, we set l =
(

k
2
)
and T = 4

(
k
2
)

+ k.
Clearly, (G′ = (V ′, E′), l, T ) can be constructed in polynomial time.

For the correctness, assume first that C ⊆ V is a solution to the Clique problem, i.e.,
C is a clique of size k. We will show that the

(
k
2
)
edges between vertices of C witness a

solution for our Min-FillIn-Set instance. Let S ⊆ X be the
(

k
2
)
vertices corresponding

to these edges. By construction, the neighbourhood of S consists of 2k vertices in Y that
correspond to the k vertices forming the clique C and their copies, say YC = {yi1 , . . . yik

}
and Y ′C = {y′i1

, . . . y′ik
}. Eliminating the vertices of S from G′ adds a new edge between

every vertex in y ∈ YC and its copy y′ ∈ Y ′C , resulting in k new edges. Furthermore, the
elimination of a vertex x{v,w} ∈ S forces the following 4 edges to be added to G′: {yv, yw},
{yv, y

′
w}, {y′v, yw}, and {y′v, y′w}. This results in a total of T = 4

(
k
2
)

+ k new edges being
added to G′. Hence, S is a solution for the Min-FillIn-Set instance.

For the other direction, assume that S ⊆ V ′ is a solution for Min-FillIn-Set. Observe
that eliminating a vertex y ∈ Y forces us to create a clique out of the 4k vertices Z, resulting
in more than T new edges to be added to G′. Similar, eliminating a vertex z ∈ Z forces
us to create a clique out of the vertices in Y . Note that we can assume that Y contains at
least 4k vertices, since otherwise we could simply blow up the Clique instance by adding at
most k new isolated vertices. Hence, S contains only vertices of X. As mentioned above, the
elimination of a vertex x{v,w} ∈ X forces the following 4 edges to be added to G′: {yv, yw},
{yv, y

′
w}, {y′v, yw}, and {y′v, y′w}. By construction, these 4 edges are unique for every vertex

x ∈ X. Since S is a solution of size
(

k
2
)
, we know that these 4

(
k
2
)
new edges are added to G′.

Furthermore, for every vertex v ∈ V that is incident to an edge e corresponding to one of
the eliminated vertices xe ∈ S, the edge {yv, y

′
v} is added to G′. Since S is a solution, we

know that ≤ T = 4
(

k
2
)

+ k are added to G′. Hence, S corresponds to a set of
(

k
2
)
edges that

is incident to at most k vertices. But this is only true, if S corresponds to the set of edges of
a k-clique in G. J

4 Turbocharged Treewidth Heuristics

In the previous section we showed that IC-Treewidth is fixed-parameter tractable when
parameterized by c and k. We use this FPT algorithm to extend an existing partial elimination
order in case a greedy heuristic gets “stuck”:

We use a standard greedy algorithm, like GreedyDegree or GreedyFillIn, with one
modification. In each step of the heuristic, we check if the next vertex that is to be eliminated,
will cause the partial elimination order to exceed our given target width. If this is not the
case, we proceed with the heuristic. On the other hand, if we would exceed the target width
(we call this a point of regret), instead we backtrack the last c eliminated vertices and use our
FPT algorithm to extend this shortened partial elimination order by adding c+ 1 vertices. If
the FPT algorithm is not able to produce such an extension, we abort, otherwise we switch
again to the greedy heuristic and continue to the next point of regret.

Algorithm 1 explains this approach in more detail for the case of using the GreedyDegree
heuristic. To change the used heuristic, only line 4 needs to be altered. The outer loop
(line 3) is executed |V | many times, as each iteration either extends the partial elimination
order π one position or aborts the whole search. Lines 5–7 correspond to the case when the

IPEC 2016



13:8 Turbocharging Treewidth Heuristics

Algorithm 1: TurbochargedMinDegree
Input :Graph G = (V,E), integer k, integer c.
Output :Elimination order of width ≤ k or no if none was found.

1 H ← G;
2 π ← ();
3 for i← 1 to |V | do
4 choose vertex v with minimum degree;
5 if d(v) ≤ k then
6 π ← π + (v);
7 H ← eliminate(H, v);
8 else
9 G′ ← eliminate(G, π[1], . . . , π[i− c− 1]);

10 W ← {v ∈ V (G′) | d(v) ≤ k}; // W is bounded by c(k + 1)
11 (H,π′)← IC-Treewidth(G′,W, k, c+ 1);
12 if π′ is empty then
13 return no;
14 else
15 π ← (π[1], . . . , π[i− c− 1]) + π′;

16 return π

Algorithm 2: IC-Treewidth
Input :Graph G, vertex set W , integer k, integer c.
Output :Pair (H, π) where π is a partial elimination order of width k and length c and H is

the remaining graph. (null, ∅) in case of failure.
1 for v ∈W do
2 H ← eliminate(G, v);
3 if c = 1 then
4 return (H, (v));
5 W ′ ← {v ∈ V (H) | d(v) ≤ k};
6 (H, π′)← IC-Treewidth(H,W ′, k, c− 1);
7 if π′ is not empty then
8 return (H, (v) + π′);

9 return (null, ∅);

heuristic does not run into a point of regret. Here we add the selected vertex v to π and
eliminate it from the graph. In case there is a point of regret, we fix the first part of the
elimination order (except the last c positions) and eliminate these vertices from the graph
(line 9). Vertex set W at line 10 contains all vertices of degree ≤ k. These are the vertices
which can be eliminated next without exceeding the target treewidth. The FPT algorithm
from Theorem 4 is implemented as a recursive procedure outlined in Algorithm 2.

5 Experimental Evaluation

To complement our theoretical analysis of the turbocharged approach, we performed a
thorough experimental evaluation of the turbocharged versions of GreedyDegree and
GreedyFillIn. The experiments were run on a quad-core Intel Core i7 processor running
at 2.7 GHz with 16GB of RAM. The implementation was in Java 7. We implemented and



S. Gaspers, J. Gudmundsson, M. Jones, J. Mestre, and S. Rümmele 13:9

Table 1 Comparison of average quality and average running time on different classes of randomly
generated partial k-trees.

min-degree min-fill-in turbo-min-degree turbo-min-fill-in
n k p quality time quality time quality time quality time
250 10 0.20 10.44 0.12 11.42 0.18 10.44 0.22 10.12 0.43
250 10 0.40 10.16 0.10 11.34 0.15 10.16 0.20 10.04 0.36
250 15 0.20 15.60 0.17 16.64 0.27 15.60 0.28 15.34 0.63
250 15 0.40 15.20 0.14 16.38 0.22 15.20 0.26 15.12 0.51
250 20 0.20 20.64 0.22 21.96 0.37 20.64 0.35 20.32 0.86
250 20 0.40 20.22 0.18 21.60 0.30 20.22 0.34 20.08 0.69
500 10 0.20 10.72 0.36 11.72 0.59 10.72 0.51 10.24 1.55
500 10 0.40 10.32 0.28 11.64 0.44 10.32 0.49 10.26 1.23
500 15 0.20 15.94 0.63 16.86 1.09 15.94 0.83 15.70 2.71
500 15 0.40 15.32 0.46 17.04 0.78 15.32 0.79 15.20 1.96
500 20 0.20 20.88 0.94 22.18 1.67 20.88 1.21 20.82 4.04
500 20 0.40 20.32 0.67 22.08 1.17 20.32 1.16 20.38 2.84
1000 10 0.20 10.90 1.75 11.94 3.11 10.90 2.08 10.64 7.81
1000 10 0.40 10.56 1.29 11.98 2.18 10.56 1.93 10.20 5.83
1000 15 0.20 16.04 3.46 17.20 6.71 16.04 3.87 15.94 15.46
1000 15 0.40 15.58 2.44 17.26 4.40 15.58 3.70 15.46 10.78
1000 20 0.20 21.16 5.34 22.38 10.24 21.16 5.58 21.54 22.38
1000 20 0.40 20.50 3.76 22.56 6.90 20.50 5.77 20.34 15.84

tested the following four algorithms:
min-degree: Iteratively eliminates a vertex with minimum degree.
min-fill-in: Iteratively eliminates a vertex with minimum fill-in.
turbo-min-degree: The turbocharged version of min-degre.
turbo-min-fill-in: The turbocharged version of min-fill-in.

When generating the elimination order for each of the above algorithms ties between vertices
need to be broken. To handle this we use a fixed seed to generate a random permutation on
the vertices. This permutation is then used to break ties. Using the same seed across all
algorithms allows for a fair comparison between the heuristic and its turbocharged version.

The turbocharged version of the min-degree heuristic was implemented using the pseudo-
code given in Algorithms 1 and 2, with one minor enhancement. In the first line of Algorithm 2,
no specific order is given on W . To better guide the search, we first sort the vertices in
W by increasing degree. The idea is that while we are now sorting the set W according to
the heuristic at every call, we hope to find an extended ordering quicker. The min-fill-in
heuristic is implemented using the corresponding versions of Algorithms 1 and 2, with the
same enhancement.

We tested our algorithms on two types of instances: randomly generated partial k-trees
(Section 5.1), and benchmark instances (Section 5.2).

In the rest of this section we explain how these instances were generated/sourced and
analyze the experimental performance of the different algorithms.

5.1 Random instances

The partial k-trees were generated using the method by Gogate and Dechter [6, Section
7.2]. The generator takes as input a triple of parameters (n, k, p). It generates a graph of
treewidth at most k having n nodes and (1− p)

(
kn−

(
k+1

2
))

edges. In order to ensure that
the graph has a tree decomposition of width exactly k, we apply the Maximum-Minimum
Degree (MMD) lower bound proposed by Koster et al. [8] and only keep those that are
guaranteed to have treewidth k. Fifty partial k-trees were generated for each triple (n, k, p),

IPEC 2016



13:10 Turbocharging Treewidth Heuristics

for all combinations of the following parameters n = {250, 500, 1000}, k = {10, 15, 20} and
p = {0.2, 0.4}.

From Theorem 4 we know that the number of times the turbocharged heuristic has to
backtrack might be exponential in the length of the partial elimination order (l). Therefore,
to keep the computation tractable, c needs to be small. For the experiments we choose c = 8
as the default value.

Table 1 provides statistical summaries of the quality and running times of the different
algorithms on the randomly generated instances. The running times of turbo-min-degree
and turbo-min-fill-in contain the running times of min-degree and min-fill-in, re-
spectively, since whenever the turbocharged version fails to find a decomposition of given
target width, we return the result of the standard version instead. Hence, the quality of the
turbocharged version will always be at least as good as the quality of the standard algorithm
and the running time will always be slower. Our first observation is that min-degree out-
performs min-fill-in in terms of time and quality, which is consistent with the results
reported by Bodlaender and Koster [3].

For turbo-min-degree, we saw no improvement in the quality of the decomposition.
This is probably because in most cases min-degree finds the optimal solution (47% of the
instances) or a solution very close to the optimal. Even after setting c = 12 the turbocharged
version failed to improve on any instances.

For turbo-min-fill-in, however, we observed a large improvement in quality. In this
case the algorithm was able to find the optimal treewidth in 690 out of the 900 instances. In
many of the smaller instances, the algorithm did not even backtrack the full c = 8 vertices;
indeed, on average only six steps was required. This means that for min-fill-in we spend
a few additional seconds to turbocharge the heuristic and get a considerable improvement.
Note that for most of the random instances turbo-min-fill-in finds a treewidth that is
better than the ones found by min-degree and turbo-min-degree.

5.2 Benchmark instances
Two data sets were used for the experiments: DIMACS Graph coloring networks instances,2
and Bayesian networks repository instances.3 In total, there are 73 instances out of which 63
are DIMACS Graph coloring networks instances and 10 are Bayesian networks repository
instances. The purpose of these experiments is to test the turbocharged heuristics performance
on larger instances.

Each heuristic, min-degree and min-fill-in, was executed three times on each instance.
The best result (smallest treewidth) for each heuristic was selected. Finally, the heuristic
producing the best result for each instance was turbocharged, using the same random seed
for consistency.

For the turbocharged version the heuristic requires a target treewidth parameter (k), which
is unknown. To get around this problem we chose to perform a biased binary search as follows.
Let k′ be the best treewidth found by either min-degree or min-fill-in. The experimental
evaluation showed that the turbocharge heuristic typically improved the treewidth by 3-5%.
As a result we chose to perform a binary search in the range [0.94 ·k′, k′−1] which terminated
after four iterations. In the case when this interval is non-existent (i.e. (k′ − 1)/k′ ≤ 0.94),
we run the turbocharged heuristic with k′ − 1, k′ − 2, and so on.

2 http://mat.gsia.cmu.edu/COLOR/instances.html
3 http://www.cs.huji.ac.il/site/labs/compbio/Repository/

http://mat.gsia.cmu.edu/COLOR/instances.html
http://www.cs.huji.ac.il/site/labs/compbio/Repository/


S. Gaspers, J. Gudmundsson, M. Jones, J. Mestre, and S. Rümmele 13:11

Table 2 A subset of the experimental results on DIMACS Graph coloring networks. For instances
DSJC1000.5 and DSJC500.9 we used c = 6, and for the other instances c = 8.

min-degree min-fill-in turbo
id n m tw quality time quality time quality time

queen7_7 49 952 35 37 0.056 37 0.075 36 0.104
queen8_8 64 1456 46 50 0.081 48 0.099 47 0.543
queen9_9 81 2112 59 64 0.100 63 0.128 62 0.266

queen11_11 121 3960 89 97 0.231 95 0.283 93 12.49
queen13_13 169 6656 125 140 0.610 137 0.808 135 36.67
queen14_14 196 8372 143 164 1.060 160 1.372 159 95.08

myciel4 23 71 10 11 0.011 11 0.016 10 4.62
le450_5b 450 5734 309 316 15.12 318 19.42 311 500.3
le450_15c 450 16680 372 376 21.35 376 26.44 372 240.6
le450_25d 450 17425 349 367 20.48 363 25.18 360 584.4
DSJC1000.5 1000 499652 977 980 642 978 705 977 5429
DSJC125.1 125 1472 64 67 0.144 66 0.170 65 54.885
DSJC250.1 250 6436 176 180 1.835 177 2.300 176 264.46
DSJC500.1 500 24916 409 413 31.086 411 43.048 410 2089.77
DSJC500.5 500 125248 479 481 41.024 482 48.481 479 19467.95
DSJC500.9 500 224874 492 493 45 493 47 492 2662

Coloring

We ran our heuristics on 63 instances of the DIMACS Graph coloring networks. Some of the
results are shown in Table 2. The fourth column shows the best known treewidth for each
instance extracted from the papers by Koster et al. [8] and Gogate and Dechter [6]. Each row
also lists the results obtained by the min-degree, the min-fill-in and the turbocharged
version (turbo).

In the 31 cases where neither greedy heuristics found the best known solution, the
turbocharge method was able to improve the result in 16 of the instances. These instances
are listed in Table 2. Specifically, in six of the cases the turbocharged version was able to
find a tree decomposition that has width equal to the best known solution.

In all but two cases the computation terminated within two hours. Note that due to the
size of some of the large instances, the parameter c = 6 was used for four instances, c = 4 for
one instance and, c = 8 for the remaining instances.

In Table 3 we list the same instances as in Table 2 to compare our results with the results
reported by Koster et al. [8] and Gogate and Dechter [6]. However it should be noted that
Koster et al. [8] implemented several approaches with varying quality performance and speed,
but we only include the smallest treewidth result in the table. For more details see [8].

Bayesian Networks

The Bayesian network instances are directed graphs transformed into undirected graphs for
the experiments. The set contains ten instances, most of these are quite small so in nine
out of the ten instances either the min-degree or min-fill heuristic found the best known
solution. Therefore turbocharging yielded no benefit. The only exception out of the ten
instances was the Link instance, where the turbocharged algorithm was able to improve the
min-fill heuristic from 15 to 13, which also improved the best known bound for this instance.

6 Conclusion and Future Work

We studied variants of the Treewidth problem that aim at modelling local search scenarios
that arise in the context of tree decomposition heuristics. We have shown that IC-Treewidth,

IPEC 2016



13:12 Turbocharging Treewidth Heuristics

Table 3 A comparison between turbocharged heuristics and the results reported by Gogate and
Dechter [6] and Koster et al. [8]. Note that the algorithm by Gogate and Dechter [6] was terminated
after 3 hours. Also note that Koster et al. [8] implemented several approaches with varying quality
performance and speed, however, only the smallest treewidth result is listed in this table.

Gogate and Dechter [6] Koster et al. [8] turbo
id n m quality time quality time quality time

queen7_7 49 952 35 543 35 0.51 36 0.10
queen8_8 64 1456 46 10800 46 1.49 47 0.54
queen9_9 81 2112 59 10800 59 3.91 62 0.27

queen11_11 121 3960 89 10800 89 23.36 93 12.5
queen13_13 169 6656 125 10800 125 107.6 135 36.7
queen14_14 196 8372 143 10800 145 215.4 159 95.1
myciel4 23 71 10 10800 10 0.01 10 4.6
le450_5b 450 5734 309 10800 313 7909 311 500
le450_15c 450 16680 372 10800 376 12471 372 241
le450_25d 450 17425 349 10800 356 11376 360 584
DSJC1000.5 1000 499652 977 10800 * * 977 5429
DSJC125.1 125 1472 64 10800 67 171.5 65 54.9
DSJC250.1 250 6436 176 10800 179 5507 176 264
DSJC500.1 500 24916 409 10800 * * 410 2089
DSJC500.5 500 125248 479 10800 * * 479 19468
DSJC500.9 500 224874 492 10800 * * 492 2662

the problem of extending a given partial elimination order without increasing its width by
recomputing at most the last c eliminated vertices, is hard when parameterized by either the
length of the partial elimination order or its width. But the problem becomes fixed-parameter
tractable when parameterized by the width and c combined. We used this FPT result to
turbocharge existing greedy heuristics by performing this local search whenever the heuristic
would exceed some given target width. This approach was implemented and evaluated,
showing that we can improve the quality of the heuristics with a modest trade off in the
running time.

In future work it would be interesting to study a permissive variant of IC-Treewidth,
which, for a given graph G = (V,E), integer k, and partial elimination order π of length
l and width at most k, asks to either compute a partial elimination order of length l + 1
and width at most k, or to determine that G has no elimination order (of length |V |) that
coincides with π on the first l − c vertices.

Acknowledgments. We thank Michael R. Fellows for inspiring this line of research.

References
1 Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity of finding em-

beddings in ak-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277–284, 1987.
2 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small

treewidth. SIAM J. Comput., 25(6):1305–1317, 1996.
3 Hans L. Bodlaender and Arie M.C.A. Koster. Treewidth computations I. Upper bounds.

Inf. Comput., 208(3):259–275, 2010. doi:10.1016/j.ic.2009.03.008.
4 Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness

II: on completeness for W[1]. Theor. Comput. Sci., 141(1&2):109–131, 1995.
5 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman, 1979.
6 Vibhav Gogate and Rina Dechter. A complete anytime algorithm for treewidth. In Proc.

of UAI’04, pages 201–208. AUAI Press, 2004.

http://dx.doi.org/10.1016/j.ic.2009.03.008


S. Gaspers, J. Gudmundsson, M. Jones, J. Mestre, and S. Rümmele 13:13

7 Sepp Hartung and Rolf Niedermeier. Incremental list coloring of graphs, parameterized by
conservation. Theor. Comput. Sci., 494:86–98, 2013.

8 Arie M.C.A. Koster, Hans L. Bodlaender, and Stan P.M. van Hoesel. Treewidth: Compu-
tational experiments. Electronic Notes in Discrete Mathematics, 8:54–57, 2001.

IPEC 2016





On Satisfiability Problems with a Linear Structure∗

Serge Gaspers†1, Christos H. Papadimitriou2,
Sigve Hortemo Sæther3, and Jan Arne Telle4

1 UNSW, Sydney, Australia; and
Data61, CSIRO, Sydney, Australia
sergeg@cse.unsw.edu.au

2 UC Berkeley, USA
christos@berkeley.edu

3 University of Bergen, Norway
sigve.sether@ii.uib.no

4 University of Bergen, Norway
telle@ii.uib.no

Abstract
It was recently shown [19] that satisfiability is polynomially solvable when the incidence graph is
an interval bipartite graph (an interval graph turned into a bipartite graph by omitting all edges
within each partite set). Here we relax this condition in several directions: First, we show an FPT
algorithm parameterized by k for k-interval bigraphs, bipartite graphs which can be converted
to interval bipartite graphs by adding to each node of one side at most k edges; the same result
holds for the counting and the weighted maximization version of satisfiability. Second, given two
linear orders, one for the variables and one for the clauses, we show how to find, in polynomial
time, the smallest k such that there is a k-interval bigraph compatible with these two orders. On
the negative side we prove that, barring complexity collapses, no such extensions are possible
for CSPs more general than satisfiability. We also show NP-hardness of recognizing 1-interval
bigraphs.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Satisfiability, interval graphs, FPT algorithms

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.14

1 Introduction

Constraint satisfaction problems (CSPs) such as satisfiability are both ubiquitous and difficult
to solve. It is therefore essential to identify and exploit any special structure of instances
that make CSPs susceptible to algorithmic techniques. One large class of such structured
instances comprises CSPs whose constraints can be arranged in a linear manner, presumably
reflecting temporal or spatial ordering of the real-life problem being modeled. A well known
example is the car sequencing class of CSPs proposed by the French automobile manufacturer
Renault in 2005 and reviewed in [22].

But defining what it means for a CSP to have “a linear structure” is not straightforward.
The linear structure should be somehow reflected in the incidence graph, which is a bipartite
graph that has a vertex for each variable and each constraint, and a variable vertex is

∗ This work was partially supported by a grant from the Peder Sather Center at UC Berkeley.
† Serge Gaspers is the recipient of an Australian Research Council (ARC) Future Fellowship (FT140100048)

and acknowledges support under the ARC’s Discovery Projects funding scheme (DP150101134).

© Serge Gaspers, Christos H. Papadimitriou, Sigve Hortemo Sæther, and Jan Arne Telle;
licensed under Creative Commons License CC-BY

11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin; Article No. 14; pp. 14:1–14:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


14:2 On Satisfiability Problems with a Linear Structure

adjacent to a constraint vertex if the corresponding variable occurs in the corresponding
constraint. Previous work has considered satisfiability instances with incidence graphs of
bounded treewidth or bounded cliquewidth [6, 16, 20, 21, 23]. Instances that are in some
sense close to efficiently solvable instances have been studied in terms of backdoors [8, 24],
in particular for CNF formulas that have a small number of variables whose instantiations
give formulas of bounded treewidth [9]. An important special case of bounded treewidth is
bounded pathwidth, a measure of how path-like a graph is and a strong indication of linear
structure. Bounded cliquewidth is a stronger notion, in which the graph’s cliques have a
linear structure.

Recently another direction for defining linear structure in CSPs was proposed, based in a
time honored graph-theoretic conception of linear structure: interval graphs, the intersection
graphs of intervals on the line. Interval graphs are a well-known class of graphs, going
back to the 1950s, used to model temporal reasoning [10], e.g. in resource allocation and
scheduling [1]. However, the incidence graphs we care about are bipartite, and the only
connected interval graphs that are bipartite are trees. A bipartite version of interval graphs
was introduced by Harary et al. in 1982 [12]: An interval bigraph is, informally, a bipartite
graph1 in which each vertex is associated with an interval, and there is an edge between
two vertices on different sides if and only if the corresponding intervals intersect. Interval
bigraphs form a natural and fairly rich class of bipartite graphs, containing, e.g., all bipartite
permutation graphs, which have been shown to have unbounded cliquewidth and thus also
unbounded treewidth and pathwidth [2].

Interval bigraphs have been studied quite extensively, and several important facts are
known about them. First, they can be recognized in polynomial time: In 1997 Müller gave an
algorithm with running time O(|V ||E|6(|V |+ |E|) log |V |) [14], and a 2012 technical report
[17] gives an algorithm with running time O(|V |(|E|+ |V |)). Importantly, Hell and Huang
[13] gave in 2004 a useful alternative characterization of interval bigraphs as all bipartite
graphs whose set of vertices can be ordered on the line so that the set of neighbors of each
vertex coincides with an interval whose high end is the position of the vertex (see Lemma 2
below for the formal statement).

Interval bigraphs constitute a natural basis for identifying an important class of CSPs
possessing a linear order: Define an interval CSP as a CSP whose variable-constraint incidence
graph is an interval bigraph. In [19] a general dynamic programming approach to solving a
class of CSPs was developed, and one consequence of that framework is that satisfiability
– even weighted MAXSAT and #SAT – on interval CNF formulae with m clauses and n

variables can be solved in time O(m3(m+ n)) (stated as Theorem 3 below). See also the
work of Brault-Baron et al [3] which sets out the wider context of the results of [19].

The present work is about extending Theorem 3 in several natural directions:
1. Many CSPs are not interval CSPs. Can the definition of interval CSPs be extended

usefully, so that a limited number of “faults” in the interval structure of CSPs is tolerated
by polynomial time algorithms?

2. In a variety of applications there is a natural linear ordering of both variables and
constraints, but not of their union. One well-studied application is car sequencing [22],
where sliding-window constraints [18] naturally come with an ordering of the variables
and the constraints. In other temporal or scheduling settings, variables can be ordered
according to the discrete timestep they are relevant to. Even when one is only given an
ordering of the variables, one can greedily order the constraints; for example by their

1 We use “bigraph” and “bipartite graph” interchangeably.



S.Gaspers, C. H. Papadimitriou, S. H. Sæther, and J. A.Telle 14:3

earliest variable in the variable-ordering or more domain-dependent methods. Under
what circumstances is it possible to merge these two linear orders into one, so that the
resulting bipartite graph is an interval bigraph?

3. If an order as in (2) above does not exist, can at least a merged order be found so the
resulting bipartite graph is as close as possible (presumably in some algorithmically useful
sense as in (1) above) to an interval bigraph?

4. Finally, to what extent can these algorithmic results be extended to CSPs beyond
satisfiability?

In this paper we address and largely resolve these questions. In particular, our contribu-
tions are the following:
1. We define a useful measure of how much the incidence graph of a CSP instance differs

from an interval bigraph: The smallest number k such that the incidence bigraph becomes
interval if each constraint vertex of the bigraph has at most k edges added to it. Deciding
if k ≤ 1 is NP-hard (Theorem 6) but we show (Theorem 9) that given an ordering
certifying a value of k such instances of satisfiability with m clauses and n variables
can be solved in O(m34k(m+ n)) time. Ditto for MAXSAT and #SAT; the exponential
dependence on k is, of course, expected.

2. We give a simple characterization of when two linear orders, one for constraints and one
for variables, can be merged so that the resulting total order satisfies the Hell-Huang
characterization of interval bigraphs.

3. We also show that, if no such merging is possible, we can find in polynomial time –
through a greedy algorithm – the minimum k such that the incidence graph becomes
interval with the addition of at most k edges to each constraint vertex. Hence, in the
case of satisfiability, if this minimum is bounded then polynomial algorithms result.

4. Finally, we show that the approach in (1) above – which started us down this path –
does not work for general CSPs, in that CSP satisfiability is intractable even when the
incidence graph has the same favorable structure as in (1), with bounded k (Theorem 10).

Definitions and Background
Since we mostly deal with satisfiability, we denote our bipartite graphs as G = (cla, var, E),
where cla stands for clauses and var for variables.

I Definition 1. A bipartite graph G = (cla, var, E) is an interval bigraph if every vertex
can be assigned an interval on the real line such that for all x ∈ var and c ∈ cla we have
xc ∈ E if and only if the corresponding intervals intersect. A Boolean formula in conjunctive
normal form (CNF) is called an interval CNF formula if the corresponding incidence graph
(cla the clauses, var the variables, E the incidences) is an interval bigraph.

A most interesting alternative characterization of interval bigraphs by Hell and Huang [13] is
stated here, expressed in terms of interval CNF formulas.

I Lemma 2 ([13]). A CNF formula is an interval CNF formula if and only if its variables
and clauses can be totally ordered (indicated by <) such that for any variable x appearing in
a clause C:
1. if x′ is a variable and x < x′ < C then x′ also appears in C, and
2. if C ′ is a clause and C < C ′ < x then x also appears in C ′.

We call an ordering of the variables and clauses of an interval CNF formula satisfying the
lemma an interval ordering. Interval bigraphs can be recognized in polynomial time [14], see
also [17].

IPEC 2016



14:4 On Satisfiability Problems with a Linear Structure

2 k-interval Bigraphs

Recent work has articulated efficient algorithms in the dynamic programming style for interval
CNF formulae.

I Theorem 3 ([19]). Given an interval CNF formula on n variables and m clauses and an
interval ordering of it, #SAT and weighted MaxSAT can be solved in time O(m3(m+ n)).

Combining Theorem 3 with the recognition algorithm of [14] gives the following:

I Corollary 4. Given a CNF formula, it can be decided if it is an interval CNF formula,
and if so #SAT and weighted MaxSAT can be solved in polynomial time.

We want to generalize this result to a larger class of formulae. To this end we introduce the
following graph classes and formula classes, parametrized by k ≥ 1.

I Definition 5. A bipartite graph G = (cla, var, E) is a k-interval bigraph if we can add
at most k edges to each vertex in cla such that the resulting bipartite graph is an interval
bigraph. A CNF formula is called a k-interval CNF formula if its incidence graph (with
clause vertices being cla) is a k-interval bigraph.

Note that 0-interval bigraphs are the interval bigraphs, and 1-interval bigraphs allow as many
exceptions (added edges) as there are clauses. Unfortunately, the recognition problem for
k-interval bigraphs becomes hard, already when k = 1. The proof is by reduction from the
strongly NP-hard 3-Partition problem and is given in Section 5.

I Theorem 6. Given a bipartite graph G and an integer k, deciding if G is a k-interval
bigraph is NP-hard, even when k = 1.

The alternative characterization of Lemma 2 can be extended to k-interval bigraphs.

I Lemma 7. A CNF formula is a k-interval CNF formula if and only if its variables and
clauses can be totally ordered such that for any clause C there are at most k variables x not
appearing in C where either
1. a variable x′ appears in C with x′ < x < C, or
2. x appears in a clause C ′ with C ′ < C < x.

Proof. The lemma follows directly from Definition 5 and Lemma 2. J

I Definition 8. For a k-interval CNF formula we call a total ordering of the kind guaranteed
by Lemma 7 a k-interval ordering.

Our first algorithmic result is that, given a k-interval ordering of a k-interval CNF formula,
#SAT and MaxSAT can be solved via a fixed-parameter tractable (FPT, see [4]) algorithm
parameterized by k.

I Theorem 9. Given a CNF formula and a k-interval ordering of it, we solve #SAT and
weighted MaxSAT in time O(m34k(m+ n)).

Proof. The full proof for #SAT and weighted MaxSAT is given in Section 4; here we give
a straightforward construction establishing a weaker result for satisfiability only.

The basic observation is that the satisfiability of a CNF formula is not affected if a clause
C is replaced by a particular set of clauses, defined next. Take any set SC of ` ≥ 0 variables
not occurring in C, and replace C with the 2` clauses of the form (C ∨Dj) : j = 1, . . . , 2`,
where Dj ranges over the 2` possible clauses containing the variables in SC . It is easy to see



S.Gaspers, C. H. Papadimitriou, S. H. Sæther, and J. A.Telle 14:5

that a truth assignment satisfies the new formula if and only if it satisfied the original one.
It is further clear that the satisfiability of the formula remains unaffected if all clauses are so
replaced, for different sets of variables and ` ≥ 0. Finally, if a CNF formula is k-interval,
then it has such an equivalent variant whose incidence graph is an interval bigraph. An
FPT algorithm (albeit for SAT only and with running time O(m38k(m2k + n)) instead of
O(m34k(m+ n))) follows by applying Theorem 3. J

We next show that the k-interval structure is not helpful for general CSPs:

I Theorem 10. Given a CSP instance I with variable-constraint incidence graph G and
an interval bigraph G′ obtained from G by adding at most k edges to each constraint vertex,
deciding the satisfiability of I is W [1]-hard parameterized by k.

Proof. Gottlob and Szeider [11] observed that CSP is W [1]-hard parameterized by the
number of variables, recasting a W[1]-hardness proof for conjunctive queries in databases
[15] to CSPs. The reduction is from clique, where for a graph G = (V,E) and an integer
parameter k, the question is whether there is a clique of size k in G, i.e., a set of k pairwise
adjacent vertices. In the language of CSPs, their reduction construct a CSP with k variables
x1, . . . , xk, each with domain V . Intuitively, variable xi represents the ith vertex of the
clique we are looking for. For each pair of variables xi, xj with i 6= j, add a constraint with
scope (xi, xj) whose constraint relation contains (u, v) iff uv ∈ E. Now, the CSP has a
solution iff G has a clique of size k. Given a CSP instance with k variables, we can turn
its incidence graph into an interval bigraph by adding all possible edges between variables
and constraints. This creates a complete bipartite graph and adds at most k edges to each
constraint vertex. J

3 Merging Linear Orders

Theorem 10 tells us that our ambition for new algorithmic results based on the concept of
k-interval bigraph should be limited to CSPs of the satisfiability kind, while Theorem 6
suggests that the new concept of k-interval bigraph can only extend the class of solvable
problems either in special cases, or indirectly, in specific contexts. In this section we derive
an algorithmic result of the latter type.

Suppose that the real life situation modelled by the CNF formula has linearly ordered
clauses, and linearly ordered variables, but there is no readily available linear order for both.
That is, we assume the input comes with two linear orderings, one for the variables and one
for the clauses. We wish to find the minimum value of k such that there exists a k-interval
ordering compatible with both.

Problem: Merging to minimum k-interval bigraph ordering
Input: Bipartite graph G = (cla, var, E), a total order of cla, and a total order of var
Output: The minimum k such that we can merge the two orders into a k-interval ordering
of cla ∪ var.

Consider first the case k = 0.

I Lemma 11. If a formula is given with variable ordering, clause ordering, and incidences
containing one of the obstructions in Figure 1, then it cannot be merged into an interval
bigraph ordering.

Proof. Consider the left-hand obstruction in Figure 1. We cannot insert z after C, since we
get A < C < z violating Condition 2 in Lemma 2. On the other hand, we cannot insert z
before C, since we get x < z < C violating Condition 1 in Lemma 2.

IPEC 2016



14:6 On Satisfiability Problems with a Linear Structure

A B C

x y zx

A C

z

Figure 1 Obstructions to merging into an interval bigraph ordering: variables ordered x < y < z,
clauses A < B < C, with solid lines indicating edges of the incidence graph and dotted lines
indicating non-edges, with remaining possibilities being any combination of edges or non-edges.

c1 c2 c3 c4 c5

x1 x4x3x2

Figure 2 Consider the above input, with non-incidences indicated by non-edges. The bold edges
and gray nodes show two overlapping obstructions as on the right side of Figure 1. Applying
Lemma 2 these obstructions can be fixed in at least two ways: adding edge c2x4 by positioning
c3 < x2; or adding edges c3x2 and c3x3 by positioning c2 > x4. In this last case a new obstruction
appears, see Figure 3.

Consider the right-hand obstruction in Figure 1. We cannot insert z after B, since we
get A < B < z violating Condition 2 in Lemma 2. On the other hand, we cannot insert y
before C, since we get x < y < C violating Condition 1 in Lemma 2. Thus, since B < C this
leaves no place to insert z without violating Lemma 2. J

It turns out that, if there are no obstructions as in Figure 1 then Merging to minimum
k-interval bigraph ordering has a solution with k = 0. Thus, for any instance where
the solution has value k > 0 we can view the task as one of iteratively adding edges until the
result has no obstruction as in Figure 1. On the face of it this is non-trivial, as there is more
than one way of fixing an obstruction, with varying edge costs, and some ways may lead to a
new obstruction appearing. For an example of this see Figures 2 and 3.

Nevertheless, a greedy approach will efficiently solve Merging to minimum k-interval
bigraph ordering. Let us describe it. Assume the input ordering on variables and clauses
is x1, ..., xn and c1, ..., cm. All orderings we consider will be compatible with these input
orderings. The greedy strategy works as follows. Start with k = 0 and consider clauses by
decreasing index cm, cm−1, etc. Insert ci among the variables in the highest possible position,
below the position of ci+1, that does not lead to more than k edges being added to ci. If no
such position exists then increase k and start all over again with cm. The correctness of this
strategy relies on the following observation.

I Observation 12. For any fixed position of ci among the variables the number of edges we
must add to clause ci does not depend on where the other clauses are inserted, as long as
c1, ..., ci−1 end up below ci and ci+1, ..., cm above ci.

Proof. By Lemma 7 we must add to ci exactly one edge for each variable x not appearing in
ci, where x satisfies one of the two conditions stated in Lemma 7. For the second condition



S.Gaspers, C. H. Papadimitriou, S. H. Sæther, and J. A.Telle 14:7

c1 c2 c3 c4 c5

x1 x4x3x2

Figure 3 Assume we fixed the obstructions from Figure 2 by adding edges c3x2 and c3x3. We
then get a new obstruction based in bold edges and gray nodes.

Greedy Algorithm for merging to minimum k-interval bigraph ordering
input: G = (cla, var, E), orderings cla = c1, c2, ..., cm and var = x1, x2, ..., xn

output: minimum k such that cla and var can be merged into a k-interval ordering

q := −1;
success := false;
while not success

q := q + 1;
start with the ordering x1, x2, ..., xn;
for i = m downto 1

insert ci at the highest position, below ci+1, where EdgesAdded(ci) ≤ q;
if no such position exists for clause ci then break out of the for loop;

if all clauses have been inserted then success := true;
output q;

EdgesAdded(C):= number of variables satisfying one of the conditions of Lemma 7

Figure 4 Greedy Algorithm for merging to minimum k-interval bigraph ordering.

note that C ′ can be any of c1, ..., ci−1 but no other clause. For the first condition note that
it does not depend on any other clause, only on the position of ci among the variables. J

In our greedy strategy, when deciding where to insert ci the only restriction imposed
on us by earlier decisions is that ci must end up below the position of ci+1. To allow the
maximum degree of freedom we simply ensure that we have inserted ci+1 in the highest
possible position. The pseudocode is in Figure 4.

I Theorem 13. The Greedy Algorithm for Merging to minimum k-interval bigraph
ordering is correct and can be implemented to run in time O(|E| log k).

Proof. Let us first argue for correctness. Consider an iteration of the inner loop that
successfully found a position for clause ci among the variables. For the current value of q
it is not possible to insert ci higher than this position without some cj needing more than
q edges added, for some i ≤ j ≤ m. This is in fact a loop invariant, as we inserted the
clauses of higher index in the highest possible positions under exactly this constraint, and by
Observation 12 their position does not influence the number of edges added to other clauses.
Similarly, if for some ci and current value of q we encounter ’no such position exists’ then in
any ordering of cla ∪ var compatible with the input orders there will be some cj , i ≤ j ≤ m
which will need more than k edges added. Thus, when the algorithm successfully finds
positions for all clauses then the current value of q is the correct answer.

Let us now argue for the running time. For the log k factor, rather than iterating on q
until we succeed, we can search for the minimum k by what is known as galloping search, i.e.
try q equal to 1, 2, 4, 8, etc until we succeed for an integer q, and then do binary search in

IPEC 2016



14:8 On Satisfiability Problems with a Linear Structure

Deciding if we can merge to a q-interval ordering, for fixed q, in O(|E|) time

∀x ∈ var: live(x) := number of clauses x appears in
∀c ∈ cla: var(c) := the set of variables in c

low(c) := i, lowest i with xi ∈ var(c)
livevar := 0;
t := n;
start with the ordering x1, x2, ..., xn;
for i := m downto 1

inserted := false;
while not inserted /* try to insert ci after xt */

if livevar + t− low(ci)− |var(ci)| ≤ q then
insert ci after xt;
inserted := true;
∀xj ∈ var(ci) : live(xj) := live(xj)− 1;

if live(xj) = 0 and j > t then livevar := livevar − 1;
else if t = 0 then halt: ’no for this value of q’;
else t := t− 1; if live(xt) > 0 then livevar := livevar + 1;

’yes for this value of q’;

Figure 5 Deciding if we can merge to a q-interval ordering, for fixed q, in O(|E|) time.

the interval [q/2..q]. To decide on positions for the clauses in time O(|E|), for a fixed q, we
need several program variables. The pseudocode is in Figure 5.

We maintain for each x ∈ var the value live(x) as the number of live clauses x appears
in, where a live clause is one whose position has not been decided yet. Also, we maintain
livevar as the number of variables indexed higher than the current xt and appearing in a
live clause. Finally, var(ci) are the variables in clause ci and low(ci) the index of its lowest
indexed variable. The number of edges needed for ci if inserted immediately after xt is then

EdgesAdded(ci) = livevar + t− low(ci)− |var(ci)| .

This is so since we must add to ci exactly one edge for each variable x not appearing in ci,
where x satisfies one of the two conditions stated in Lemma 7. The second condition counts
the number of variables indexed higher than the current xt and appearing in some clause
indexed lower than ci, i.e. livevar, minus the number of variables in ci of index higher than
t. The first condition counts the number of variables strictly between xlow(ci) and xt+1, i.e.
t− low(ci), minus the number of variables in ci of index t or less. Summing these two counts
we get the above. J

4 Proof of Theorem 9

In this section we prove Theorem 9, namely that if we are given a CNF formula and a
k-interval ordering of it, we can solve #SAT and weighted MaxSAT in time O(m34k(m+n)).

We first need to introduce the linear ps-width of a formula. We start with the related
notion of ps-value of a CNF formula F on variables var and clauses cla. For an assignment
τ of var, we denote by sat(F, τ) the inclusion maximal set C ⊆ cla so that each clause in C
is satisfied by τ . Such a subset C ⊆ cla is called projection satisfiable. The ps-value of F is
defined to be the number of projection satisfiable subsets of clauses, i.e. |PS(F )|, where

PS(F ) = {sat(F, τ) : τ is an assignment of var} ⊆ 2cla .



S.Gaspers, C. H. Papadimitriou, S. H. Sæther, and J. A.Telle 14:9

Now, consider a linear ordering e1, e2, ..., en+m of var ∪ cla. For any 1 ≤ i ≤ n + m

we define two disjoint subformulas F1(i) and F2(i) crossing the cut between {e1, ..., ei} and
{ei+1, ..., en+m}. We define F1(i) to be the subformula we get by removing from F all clauses
not in {e1, ..., ei} followed by removing from the remaining clauses each literal of a variable
not in {ei+1, ..., en+m}, and we define F2(i) vice-versa, as the subformula we get by removing
from F all clauses not in {ei+1, ..., en+m} followed by removing from the remaining clauses
each literal of a variable not in {e1, ..., ei}.

The ps-width of this linear ordering is defined to be the maximum ps-value over all
the 2(n+m) subformulas F1(1), F2(1), F1(2), ..., F2(n+m) that cross a cut of the ordering.
The linear ps-width of F is defined to be the minimum ps-width of all linear orderings of
var ∪ cla.

To prove Theorem 9, we will show that the input has linear ps-width at most m2k + 1
and then we can apply the following result by [19].

I Theorem 14 ([19]). Given a CNF formula F with n variables var and m clauses cla,
and a linear ordering of cla ∪ var showing that F has linear ps-width at most p, we solve
#SAT and weighted MaxSAT in time O(p2m(m+ n)).

Before giving the lemma that bounds the linear ps-width of the input formula, we state
a useful result.

I Lemma 15 ([19]). Any interval ordering of an interval CNF formula has ps-width no
more than the number of its clauses plus one.

I Lemma 16. Let F be a k-interval CNF formula on m clauses. Then any k-interval
ordering of it has ps-width at most m2k + 1.

Proof. Starting from F on m clauses and its k-interval ordering π we first construct an
interval CNF formula F ′ with at most m2k clauses. Any clause C of F for which Lemma 7
prescribes k′ ≤ k added edges from C to some k′ variables, will be replaced in F ′ by a set of
2k′ clauses consisting of the clause C extended by all linear combinations of these k′ variables.
Note that F ′ is then an interval CNF formula with an interval ordering π′ we get from π by
naturally expanding a clause C in π to the 2k′ clauses, in any order, that replace C in F ′.

Applying Lemma 15 all we need to finalize our proof is to show that the ps-width of the
k-interval ordering π of F is no larger than the ps-width of the interval ordering π′ of F ′.
To do this we must consider cuts of π.

Consider subformulas F1(i) and F2(i) of F crossing a cut of π. We show that for the
corresponding cut in π′ (i.e. we cut π′ in the corresponding place without splitting any of
the expanded set of clauses) the ps-values of the subformulas F ′1 and F ′2 of F ′ associated
with this cut has ps-value no smaller than the ps-values of F1(i) and F2(i). That is
|PS(F1(i))| ≤ |PS(F ′1)| and |PS(F2(i))| ≤ |PS(F ′2)|. Note that the variables of F1(i) and F ′1
are the same, and similarly the variables of F2(i) and F ′2 are the same. W.l.o.g., we focus on
F1(i) and F ′1, which we assume have variables var1.

We need to show that if two assignments a, b of var1 have sat(F1(i), a) 6= sat(F1(i), b)
then also sat(F ′1, a) 6= sat(F ′1, b). W.l.o.g., assume some clause C ∈ sat(F1(i), a) but
C 6∈ sat(F1(i), b). We show that we can find a clause C ′ that distinguishes a and b in F ′1 as
well. Clause C of F1(i) comes from an original clause (possibly larger, since C lives across a
cut) in F . Assume this original clause was expanded in F ′ to 2k′ clauses, for some k′ ≤ k,
by extending it with all linear combinations of the k′ new variables. Depending on which
variables are on the other side of the cut the clause C of F1(i) has been expanded to a set
of 2k′′ , for some k′′ ≤ k′, clauses in F ′1, still consisting of all linear combinations of the k′′

IPEC 2016



14:10 On Satisfiability Problems with a Linear Structure

variables not in C. Since a satisfies C and C is a part of all these expanded clauses we have
assignment a satisfying all of them. Since b does not satisfy C there will be exactly one of
these 2k′′ clauses that are not satisfied by b, namely the one where the linear combination of
the new variables is falsified by assignment b. This means that sat(F ′1, a) 6= sat(F ′1, b).

Thus the ps-width of the k-interval ordering of F is no more than the ps-width of the
interval ordering of F ′ and we are done. J

Combining Theorem 14 with Lemma 16 we arrive at Theorem 9. Combining with
Theorem 13 we get the following.

I Corollary 17. Given a CNF formula and two total orderings, one for its m clauses and
one for its n variables, we can in polynomial time find the minimum k such that these two
orders can be merged into a k-interval ordering and then solve #SAT and MaxSAT in time
O(m34k(m+ n)).

5 Proof of Theorem 6

In this section we prove Theorem 6, namely that it is NP-hard to recognize k-interval bigraphs,
already for k = 1.

Proof. We give a polynomial time reduction from the 3-Partition problem, which is strongly
NP-hard [7]. Given an integer b, a set A of 3n elements, and a positive integer s(a) for each
a ∈ A such that b/4 < s(a) < b/2 for each a ∈ A and

∑
a∈A s(a) = n · b, the question is

whether A can be partitioned into disjoint sets A1, . . . , An such that
∑

a∈Ai
s(a) = b for each

i ∈ {1, . . . , n}.
For a 3-Partition instance (b, A, s), we construct an instance G = (V,E) for the 1-

interval bigraph recognition problem as follows. We assume, w.l.o.g., that b ≥ 4, and therefore,
s(a) > 1 for each a ∈ A.

We add a set of slot vertices S =
⋃n

i=1 Si with Si = {si,1, . . . , si,b+1}. For all i, j with
1 ≤ i ≤ n and 1 ≤ j ≤ b we add a vertex `i,j that is adjacent to both si,j and si,j+1, so that
(si,1, `i,1, si,2, `i,2, . . . , si,b, `i,b, si,b+1) is a path for each i ∈ {1, . . . , n}.

For each i ∈ {1, . . . , n− 1} we add a delimiter vertex sd
i , and two vertices `d,1

i and `d,2
i .

We make `d,1
i adjacent to si,b, si,b+1, sd

i , and si+1,1 and we make `d,2
i adjacent to si,b+1, sd

i ,
si+1,1, and si+1,2. The set of delimiter vertices is D =

⋃n−1
i=1 {sd

i }.
We add a track vertex t that is adjacent to each vertex in S ∪D \ {sd

1}.
We add left anchor vertices al, `a,l, and make `a,l adjacent to al, s1,1, and s1,2. Symmet-

rically, we add right anchor vertices ar, `a,r, and make `a,r adjacent to ar, sn,b+1, and sn,b.
See Figure 6 for an illustration of the graph constructed so far.

For each element a ∈ A, we add a numeral gadget which is obtained from a path on
2 · s(a) + 1 new vertices (`n

a,0, na,1, `
n
a,1, . . . , na,s(a)−1, `

n
a,s(a)−1, na,s(a), `

n
a,s(a)) and the track

vertex t is made adjacent to na,1, . . . , na,s(a). See Figure 7 for an illustration of a numeral
gadget.

We will now show that (b, A, s) is a Yes-instance for 3-Partition if and only if G is a 1-
interval bigraph. For the forward direction, consider a solution A1, . . . , An to the 3-Partition
instance. We construct an interval representation following the scheme outlined in Figure 6,
which is missing the numeral gadgets. Now, for each Ai = {x, y, z}, we can intersperse
the intervals si,1, . . . , si,s(x)+1 with the intervals nx,1, . . . , nx,s(x), intersperse the intervals
si,s(x)+1, . . . , si,s(x)+s(y)+1 with the intervals ny,1, . . . , ny,s(y), and intersperse the intervals
si,s(x)+s(y)+1, . . . , si,b+1 with the intervals nz,1, . . . , nz,s(z). In this way, each vertex `i,j ,
1 ≤ i ≤ n, 1 ≤ j ≤ b, is non-adjacent to exactly one vertex (from {na,1, . . . , na,s(a) : a ∈ A})



S.Gaspers, C. H. Papadimitriou, S. H. Sæther, and J. A.Telle 14:11

al s1,1
s1,2 s1,3

. . .

s1,b s1,b+1 sd
1 s2,1 s2,2

. . .

`a,l `1,1 `1,2 `1,3 `1,b−1 `1,b `d,1
1 `d,2

1
`2,1 `2,2

t

s1,1 s1,2 s1,3 s1,b s1,b+1

sd
1

s2,1 s2,2

t

`1,1

`1,2

`1,3

. . .

`1,b−1

`1,b

`d,1
1

`d,2
1

`2,1

`2,2

. . .

al

`a,l

Figure 6 A part of the graph constructed by our reduction and a corresponding 1-interval
representation formed by the all the vertices except the numeral gadgets. The top two rows of
intervals correspond to the vertices in one partite set of the bipartition and the bottom rows to
vertices in the other partite set.

whose corresponding intervals overlap, and each vertex `n
a,j , a ∈ A, 1 ≤ j ≤ s(a) − 1, is

non-adjacent to exactly one vertex (from {si,2, . . . , si,b : 1 ≤ i ≤ n}) whose corresponding
intervals overlap. This certifies that G is a 1-interval bigraph.

For the backward direction, we observe that our construction enforces the rigid structure
from Figure 6. Intuitively, for each i ∈ {1, . . . , n}, the vertices `i,j enforce an ordering of the
intervals corresponding to the vertices in Si, and the delimiters glue the different sections of
Si vertices together in a linear fashion. Observe that between two vertices si,j and si,j+1, we
can still insert one vertex if it is adjacent to t, and we exploit this property to intersperse the
numerals. The anchor vertices are used to stretch the structure of the slot vertices beyond the
left and the right of the track t. This ensures then that the numerals need to be interspersed
with the slots. Since there are no elements a ∈ A with s(a) = 1, it is also not possible for
a numeral gadget to intersperse a section Si of slot vertices before si,1 or after si,b+1. In
addition, the delimiters ensure that numerals do not straddle different Si’s. Therefore, we
can obtain a solution to the 3-Partition instance by setting Ai to the elements from A that
we used to construct the numeral gadgets that are interspersed with the slots in Si. J

6 Discussion

The algorithmic challenge of CNF satisfiability and constraint satisfaction is central in both
computational theory and practice, and new angles of attack to these age-old problems
keep emerging. Here we focused on instances which possess a linear structure, and we

IPEC 2016



14:12 On Satisfiability Problems with a Linear Structure

na,1
na,2 na,3

. . .

na,s(a)−1

na,s(a)

`n
a,0 `n

a,1 `n
a,2 `n

a,s(a)−1 `
n
a,s(a)

t
na,1 na,2 na,3 na,s(a)−1na,s(a)

`n
a,0

`n
a,1

`n
a,2

`n
a,3

. . .

`n
a,s(a)−2

`n
a,s(a)−1

`n
a,s(a)

Figure 7 A numeral gadget for element a ∈ A.

proposed a new approach to dealing with local departures from such structure, as well as for
deducing linear structure from partial evidence; we also identified complexity obstacles to
fully exploiting and extending our approach. Our work raises several questions:

What if only one side of the bipartite incidence graph is ordered? Say we are given an
ordering of variables and asked if the clauses can be inserted so as to yield a k-interval
ordering. For the case k = 0 we can use the obstructions in Figure 1 to guide us towards
a linear ordering also of the clauses, e.g., for a pair of clauses A,C with two variables
x < z where xC, zA are edges and zC is a non-edge we must place C before A. We
believe such an approach should solve the k = 0 case in polynomial time, but we are less
optimistic about the general case of minimizing k.
What if we are given a partial order, with some special properties, on variables and
clauses? Note that already the approach for k = 0 hinted at above could yield a situation
with a linear order on variables and a partial order on clauses.
For which industrial CNF instances can we find k-interval orderings for low values of k?
Our greedy algorithm for merging two linear orders to a minimum k-interval ordering
is practical and can be applied to large instances in the SAT corpora. In light of the
hardness result for recognizing 1-interval bigraphs, heuristics or domain expertise could
be used to generate orders for clauses and variables, when they are not already given.
For a preliminary experimental study using heuristics to compute linear orderings that
produce k-interval bigraphs with small k, we refer to [5].
Which other classes of interval bigraph CSP instances can be solved efficiently? Our
hardness result is for general CSPs with large domains. For CSPs with Boolean domains
we can show a similar hardness result albeit not for k-interval bigraph instances, instead
for a different notion of “imperfection” where we are given k pairs of clause vertices in
the incidence graph such that merging each such pair results in an interval bigraph.

References

1 Amotz Bar-Noy, Reuven Bar-Yehuda, Ari Freund, Joseph (Seffi) Naor, and Baruch Schieber.
A unified approach to approximating resource allocation and scheduling. In Proceedings
of the Thirty-second Annual ACM Symposium on Theory of Computing, STOC’00, pages
735–744, New York, NY, USA, 2000. ACM. doi:10.1145/335305.335410.

2 Andreas Brandstädt and Vadim V. Lozin. On the linear structure and clique-width of
bipartite permutation graphs. Ars Comb., 67, 2003.

3 Johann Brault-Baron, Florent Capelli, and Stefan Mengel. Understanding model counting
for beta-acyclic CNF-formulas. In 32nd International Symposium on Theoretical Aspects of

http://dx.doi.org/10.1145/335305.335410


S.Gaspers, C. H. Papadimitriou, S. H. Sæther, and J. A.Telle 14:13

Computer Science, STACS 2015, March 4-7, 2015, Germany, volume 30 of LIPIcs, pages
143–156. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2015. doi:10.4230/LIPIcs.
STACS.2015.143.

4 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer, 1999. doi:10.1007/978-1-4612-0515-9.

5 Christian Egeland. Algorithms for linearly ordered boolean formulas. Master’s thesis,
University of Bergen, 2016. URL: http://hdl.handle.net/1956/12667.

6 Eldar Fischer, Johann A. Makowsky, and Elena V. Ravve. Counting truth assignments of
formulas of bounded tree-width or clique-width. Discrete Applied Mathematics, 156(4):511–
529, 2008. doi:10.1016/j.dam.2006.06.020.

7 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

8 Serge Gaspers and Stefan Szeider. Backdoors to satisfaction. In Hans L. Bodlaender,
Rod Downey, Fedor V. Fomin, and Dániel Marx, editors, The Multivariate Algorithmic
Revolution and Beyond – Essays Dedicated to Mike Fellows on His 60th Birthday, volume
7370 of Lecture Notes in Computer Science, pages 287–317. Springer, 2012. doi:10.1007/
978-3-642-30891-8_15.

9 Serge Gaspers and Stefan Szeider. Strong backdoors to bounded treewidth SAT. In 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October,
2013, Berkeley, CA, USA, pages 489–498. IEEE Computer Society, 2013. doi:10.1109/
FOCS.2013.59.

10 Martin Charles Golumbic and Ron Shamir. Complexity and algorithms for reasoning about
time: A graph-theoretic approach. J. ACM, 40(5):1108–1133, November 1993. doi:10.
1145/174147.169675.

11 Georg Gottlob and Stefan Szeider. Fixed-parameter algorithms for artificial intelligence,
constraint satisfaction and database problems. Comput. J., 51(3):303–325, 2008. doi:
10.1093/comjnl/bxm056.

12 Frank Harary, Jerald A Kabell, and Frederick R McMorris. Bipartite intersection graphs.
Commentationes Mathematicae Universitatis Carolinae, 23(4):739–745, 1982.

13 Pavol Hell and Jing Huang. Interval bigraphs and circular arc graphs. Journal of Graph
Theory, 46(4):313–327, 2004. doi:10.1002/jgt.20006.

14 Haiko Müller. Recognizing interval digraphs and interval bigraphs in polynomial time.
Discrete Applied Mathematics, 78(1-3):189–205, 1997. doi:10.1016/S0166-218X(97)
00027-9.

15 Christos H. Papadimitriou and Mihalis Yannakakis. On the complexity of database queries.
Journal of Computer and System Sciences, 58(3):407–427, 1999. doi:10.1006/jcss.1999.
1626.

16 Daniël Paulusma, Friedrich Slivovsky, and Stefan Szeider. Model counting for CNF formulas
of bounded modular treewidth. In STACS, volume 20 of LIPIcs, pages 55–66. Schloss
Dagstuhl – Leibniz-Zentrum fuer Informatik, 2013. doi:10.4230/LIPIcs.STACS.2013.55.

17 Arash Rafiey. Recognizing interval bigraphs by forbidden patterns. CoRR, abs/1211.2662,
2012.

18 Jean-Charles Régin and Jean-Francois Puget. A filtering algorithm for global sequencing
constraints. In Proceedings of the 3rd International Conference on Principles and Practice
of Constraint Programming (CP 1997), volume 1330 of Lecture Notes in Computer Science,
pages 32–46. Springer, 1997. doi:10.1007/BFb0017428.

19 Sigve Hortemo Sæther, Jan Arne Telle, and Martin Vatshelle. Solving #SAT and MAXSAT
by dynamic programming. J. Artif. Intell. Res. (JAIR), 54:59–82, 2015. doi:10.1613/
jair.4831.

IPEC 2016

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.143
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.143
http://dx.doi.org/10.1007/978-1-4612-0515-9
http://hdl.handle.net/1956/12667
http://dx.doi.org/10.1016/j.dam.2006.06.020
http://dx.doi.org/10.1007/978-3-642-30891-8_15
http://dx.doi.org/10.1007/978-3-642-30891-8_15
http://dx.doi.org/10.1109/FOCS.2013.59
http://dx.doi.org/10.1109/FOCS.2013.59
http://dx.doi.org/10.1145/174147.169675
http://dx.doi.org/10.1145/174147.169675
http://dx.doi.org/10.1093/comjnl/bxm056
http://dx.doi.org/10.1093/comjnl/bxm056
http://dx.doi.org/10.1002/jgt.20006
http://dx.doi.org/10.1016/S0166-218X(97)00027-9
http://dx.doi.org/10.1016/S0166-218X(97)00027-9
http://dx.doi.org/10.1006/jcss.1999.1626
http://dx.doi.org/10.1006/jcss.1999.1626
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.55
http://dx.doi.org/10.1007/BFb0017428
http://dx.doi.org/10.1613/jair.4831
http://dx.doi.org/10.1613/jair.4831


14:14 On Satisfiability Problems with a Linear Structure

20 Marko Samer and Stefan Szeider. Algorithms for propositional model counting. J. Discrete
Algorithms, 8(1):50–64, 2010. doi:10.1016/j.jda.2009.06.002.

21 Friedrich Slivovsky and Stefan Szeider. Model counting for formulas of bounded clique-
width. In Leizhen Cai, Siu-Wing Cheng, and Tak Wah Lam, editors, ISAAC, volume
8283 of Lecture Notes in Computer Science, pages 677–687. Springer, 2013. doi:10.1007/
978-3-642-45030-3_63.

22 Christine Solnon, Van-Dat Cung, Alain Nguyen, and Christian Artigues. The car se-
quencing problem: Overview of state-of-the-art methods and industrial case-study of the
ROADEF’2005 challenge problem. European Journal of Operational Research, 191(3):912–
927, 2008. doi:10.1016/j.ejor.2007.04.033.

23 Stefan Szeider. On fixed-parameter tractable parameterizations of SAT. In Enrico
Giunchiglia and Armando Tacchella, editors, SAT 2003, volume 2919 of Lecture Notes in
Computer Science, pages 188–202. Springer, 2003. doi:10.1007/978-3-540-24605-3_15.

24 Ryan Williams, Carla P. Gomes, and Bart Selman. Backdoors to typical case complexity.
In Georg Gottlob and Toby Walsh, editors, IJCAI-03, Proceedings of the Eighteenth Inter-
national Joint Conference on Artificial Intelligence, Acapulco, Mexico, August 9-15, 2003,
pages 1173–1178. Morgan Kaufmann, 2003.

http://dx.doi.org/10.1016/j.jda.2009.06.002
http://dx.doi.org/10.1007/978-3-642-45030-3_63
http://dx.doi.org/10.1007/978-3-642-45030-3_63
http://dx.doi.org/10.1016/j.ejor.2007.04.033
http://dx.doi.org/10.1007/978-3-540-24605-3_15


Cutwidth: Obstructions and Algorithmic Aspects∗†

Archontia C. Giannopoulou1, Michał Pilipczuk2,
Jean-Florent Raymond3, Dimitrios M. Thilikos4, and
Marcin Wrochna5

1 Technische Universität Berlin, Berlin, Germany
archontia.giannopoulou@tu-berlin.de

2 Institute of Informatics, University of Warsaw, Poland
michal.pilipczuk@mimuw.edu.pl

3 Institute of Informatics, University of Warsaw, Poland; and
AlGCo project team, CNRS, LIRMM, Montpellier, France
jean-florent.raymond@mimuw.edu.pl

4 AlGCo project team, CNRS, LIRMM, Montpellier, France; and
Department of Mathematics, National and Kapodistrian University of Athens,
Greece
sedthilk@thilikos.info

5 Institute of Informatics, University of Warsaw, Poland
m.wrochna@mimuw.edu.pl

Abstract
Cutwidth is one of the classic layout parameters for graphs. It measures how well one can order
the vertices of a graph in a linear manner, so that the maximum number of edges between any
prefix and its complement suffix is minimized. As graphs of cutwidth at most k are closed under
taking immersions, the results of Robertson and Seymour imply that there is a finite list of
minimal immersion obstructions for admitting a cut layout of width at most k. We prove that
every minimal immersion obstruction for cutwidth at most k has size at most 2O(k3 log k).

As an interesting algorithmic byproduct, we design a new fixed-parameter algorithm for
computing the cutwidth of a graph that runs in time 2O(k2 log k) · n, where k is the optimum
width and n is the number of vertices. While being slower by a log k-factor in the exponent than
the fastest known algorithm, due to Thilikos, Bodlaender, and Serna [17, 18], our algorithm has
the advantage of being simpler and self-contained; arguably, it explains better the combinatorics
of optimum-width layouts.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases cutwidth, obstructions, immersions, fixed-parameter tractability

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.15

∗ A full version of the paper is available at http://arxiv.org/abs/1606.05975.
† This work was partially done while A.C. Giannopoulou was holding a post-doc position at Warsaw

Center of Mathematics and Computer Science. The research of A.C. Giannopoulou has been supported
by the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (ERC consolidator grant DISTRUCT, agreement No 648527). The research of
Mi. Pilipczuk and M. Wrochna is supported by the Polish National Science Center grant SONATA
UMO-2013/11/D/ST6/03073. The research of J.-F. Raymond is supported by the Polish National
Science Center grant PRELUDIUM UMO-2013/11/N/ST6/02706. Mi. Pilipczuk is supported by the
Foundation for Polish Science (FNP) via the START stipend programme.

© Archontia C. Giannopoulou, Michał Pilipczuk, Jean-Florent Raymond, Dimitrios M. Thilikos,
and Marcin Wrochna;
licensed under Creative Commons License CC-BY

11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin; Article No. 15; pp. 15:1–15:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.15
http://arxiv.org/abs/1606.05975
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


15:2 Cutwidth: Obstructions and Algorithmic Aspects

1 Introduction

The cutwidth of a graph is defined as the minimum possible width of a linear ordering of its
vertices, where the width of an ordering σ is the maximum, among all the prefixes of σ, of
the number of edges that have exactly one vertex in a prefix. Due to its natural definition,
cutwidth has various applications in a range of practical fields of computer science: whenever
data is expected to be roughly linearly ordered and dependencies or connections are local,
one can expect the cutwidth of the corresponding graph to be small. These applications
include circuit design, graph drawing, bioinformatics, and text information retrieval; we refer
to the survey of layout parameters of Díaz, Petit, and Serna [5] for a broader discussion.

As finding a layout of optimum width is NP-hard [7], the algorithmic and combinatorial
aspects of cutwidth were intensively studied. There is a broad range of polynomial-time
algorithms for special graph classes [10, 11, 21], approximation algorithms [14], and fixed-
parameter algorithms [17, 18]. In particular, Thilikos, Bodlaender, and Serna [17, 18]
proposed a fixed-parameter algorithm for computing the cutwidth of a graph that runs1
in time 2O(k2) · n, where k is the optimum width and n is the number of vertices. Their
approach is to first compute the pathwidth of the input graph, which is never larger than
the cutwidth. Then, the optimum layout can be constructed by an elaborate dynamic
programming procedure on the obtained path decomposition. To upper bound the number
of relevant states, the authors had to understand how an optimum layout can look in a given
path decomposition. For this, they borrow the technique of typical sequences of Bodlaender
and Kloks [3], which was introduced for a similar reason, but for pathwidth and treewidth
instead of cutwidth.

Since the class of graphs of cutwidth at most k is closed under immersions, and the
immersion order is a well-quasi ordering of graphs2 [15], it follows that for each k there exists
a finite obstruction set Lk of graphs such that a graph has cutwidth at most k if and only if
it does not admit any graph from Lk as an immersion. However, this existential result does
not give any hint on how to generate, or at least estimate the sizes of the obstructions. The
sizes of obstructions are important for efficient treatment of graphs of small cutwidth; this
applies also in practice, as indicated by Booth et al. [4] in the context of VLSI design.

The estimation of sizes of minimal obstructions for several graph parameters has been
studied before. For minor-closed parameters pathwidth and treewidth, Lagergren [13] showed
that any minimal minor obstruction to admitting a path decomposition of width k has size at
most single-exponential in O(k4), whereas for treewidth he showed an upper bound double-
exponential in O(k5). Less is known about immersion-closed parameters, like cutwidth.
Govindan and Ramachandramurthi [9] showed that the number of minimal immersion
obstructions for the class of graphs of cutwidth at most k is at least 3k−7+1. The construction
in [9] exemplifies minimal obstructions for cutwidth at most k with (3k−5 − 1)/2 vertices.
To the best of our knowledge, nothing was known about upper bounds for the cutwidth case.

Results on obstructions. Our main result concerns the sizes of obstructions for cutwidth.

I Theorem 1. Suppose a graph G has cutwidth larger than k, but every graph with fewer
vertices or edges (strongly) immersed in G has cutwidth at most k. Then G has at most
2O(k3 log k) vertices and edges.

1 Thilikos, Bodlaender, and Serna [17, 18] do not specify the parametric dependence of the running time
of their algorithm. A careful analysis of their algorithm yields the above claimed running time bound.

2 All graphs considered in this paper may have parallel edges, but no loops.



A.C. Giannopoulou, Mi. Pilipczuk, J.-F. Raymond, D.M. Thilikos, and M. Wrochna 15:3

The above result immediately gives the same upper bound on the sizes of graphs from the
minimal obstruction sets Lk as they satisfy the prerequisites of Theorem 1. This somewhat
matches the (3k−5 − 1)/2 lower bound of Govindan and Ramachandramurthi [9].

Our approach for Theorem 1 follows the technique used by Lagergren [13] to prove
that minimal minor obstructions for pathwidth at most k have sizes single-exponential in
O(k4). Intuitively, the idea of Lagergren is to take an optimum decomposition for a minimal
obstruction, which must have width k + 1, and to assign to each prefix of the decomposition
one of finitely many “types”, so that two prefixes with the same type “behave” in the same
manner. If there were two prefixes, one being shorter than the other, with the same type,
then one could replace one with the other, thus obtaining a smaller obstruction. Hence, the
upper bound on the number of types, being double-exponential in O(k4), gives some upper
bound on the size of a minimal obstruction. This upper bound can be further improved
to single-exponential by observing that types are ordered by a natural domination relation,
and the shorter a prefix is, the weaker is its type. An important detail is that one needs to
make sure that the replacement can be modeled by minor operations. For this, Lagergren
uses the notion of linked path decompositions (a weaker variant of lean path decompositions;
cf. [19, 1]).

To prove Theorem 1, we perform a similar analysis of prefixes of an optimum ordering of
a minimal obstruction. We show that prefixes can be categorized into a bounded number of
types, depending on their “behavior”. Provided two prefixes with equally strong type appear
one after the other, we can “unpump” the part of the graph in their difference.

To make sure that unpumping is modeled by taking an immersion, we define linked
orderings for cutwidth and reprove the analogue of the result of Thomas [19] (see [1] for
simplified proofs): there is always an optimum-width ordering that is linked. We remark
this already follows from more general results on submodular functions: the same is true
for parameters like linear rank-width, as observed by Kanté and Kwon [12], which in turns
follows from the proof of an analogous theorem of Geelen et al. [8] that applies to branch-
decompositions, and thus, e.g., to parameters known as branch-width and carving-width.

The proof of the upper bound on the number of types essentially boils down to the
following setting. We are given a graph G and a subset X of vertices, such that at most `
edges have exactly one endpoint in X. The question is how X can look like in an optimum-
width ordering of G. We prove that there is always an ordering where X is split into at most
O(k`) blocks, where k is the optimum width. This allows us to store the relevant information
on the whole X in one of a constant number of types (called bucket interfaces). The swapping
argument used in this proof holds the essence of the typical sequences technique of Bodlaender
and Kloks [3], while being, in our opinion, more natural and easier to understand.

As an interesting byproduct, we can also use our understanding to treat the problem
of removing edges to get a graph of small cutwidth. More precisely, for parameters w, k,
we consider the class of all graphs G, such that w edges can be removed from G to obtain
a graph of cutwidth at most k. We prove that for every constant k, the minimal (strong)
immersion obstructions for this class have sizes bounded linearly in w. Moreover we give an
exponential lower bound to the number of these obstructions. Due to the auxiliary character
of these results, we defer the precise statement and discussion to the full version of this paper.

Algorithmic results. Consider the following “compression” problem: given a graph G and
its ordering σ of width `, we would like to construct, if possible, a new ordering of the vertices
of G of width at most k, where k < `. Then the types defined above essentially match states
that would be associated with prefixes of σ in a dynamic programming algorithm solving this

IPEC 2016



15:4 Cutwidth: Obstructions and Algorithmic Aspects

problem. Alternatively, one can think of building an automaton that traverses the ordering
σ of width ` while constructing an ordering of G of width at most k. Hence, our upper
bound on the number of types can be directly used to limit the state space in such a dynamic
programming procedure/automaton, yielding an FPT algorithm for the above problem.

With this result in hand, it is not hard to design of an exact FPT algorithm for cutwidth.
One could introduce vertices one by one to the graph, while maintaining an ordering of
optimum width. Each time a new vertex is introduced, we put it anywhere into the ordering,
and it can be argued that the new ordering has width at most three times larger than
the optimum. Then, the dynamic programming algorithm sketched above can be used to
“compress” this approximate ordering to an optimum one in linear FPT time.

The above approach yields a quadratic algorithm. To match the optimum, linear running
time, we use a similar trick as Bodlaender in his linear-time algorithm for computing the
treewidth of the graph [2]. Namely, we show that instead of processing vertices one by one,
we can proceed recursively by removing a significant fraction of all the edges at each step,
so that their reintroduction increases the width by a factor of at most two. We then run
the compression algorithm on the obtained 2-approximate ordering to get an optimum one.
Since we remove a large portion of the graph at each step, the recursive equation on the
running time solves to a linear function, instead of quadratic. This gives the following.

I Theorem 2. There exists an algorithm that, given an n-vertex graph G and an integer
k, runs in time 2O(k2 log k) · n and either correctly concludes that the cutwidth of G is larger
than k, or outputs an ordering of G of width at most k.

The algorithm of Theorem 2 has running time slightly larger than that of Thilikos,
Bodlaender, and Serna [17, 18]. The difference is the log k factor in the exponent, the
reason for which is that we use a simpler bucketing approach to bound the number of
states, instead of the more entangled, but finer, machinery of typical sequences. We believe
the main strength of our approach lies in its explanatory character. Instead of relying
on algorithms for computing tree or path decompositions, which are already difficult by
themselves, and then designing a dynamic programming algorithm on a path decomposition,
we directly approach cutwidth “via cutwidth”, and not “via pathwidth”. That is, the dynamic
programming procedure for computing the optimum cutwidth ordering on an approximate
cutwidth ordering is technically far simpler and conceptually more insightful than performing
the same on a general path decomposition. We also show that the reduction-by-a-large-
fraction trick of Bodlaender [2] can be performed also in the cutwidth setting, yielding a
self-contained, natural, and understandable algorithm.

2 Preliminaries

We denote the set of non-negative integers by N and the set of positive integers by N+. For
r, s ∈ N with r ≤ s, we denote [r] = {1, . . . , r} and [r, s] = {r, . . . , s}. Notice that [0] = ∅.

Graphs. All graphs considered in this paper are undirected, without loops, and may have
multiple edges. The vertex and edge sets of a graph G are denoted by V (G) and E(G),
respectively. For disjoint X,Y ⊆ V (G), by EG(X,Y ) we denote the set of edges of G with
one endpoint in X and one in Y . If S ⊆ V (G), then we denote δG(S) = |EG(S, V (G) \ S)|.
We drop the subscript if it is clear from the context. Every partition (A,B) of V (G) is called
a cut of G; the size of the cut (A,B) is δ(A).



A.C. Giannopoulou, Mi. Pilipczuk, J.-F. Raymond, D.M. Thilikos, and M. Wrochna 15:5

Cutwidth. Let G be a graph and σ be an ordering of V (G). For u, v ∈ V (G), we write
u <σ v if u appears before v in σ. Given two disjoint sequences σ1 = 〈x1, . . . , xr1〉
and σ2 = 〈y1, . . . , yr2〉 of vertices in V (G), we define their concatenation as σ1 ◦ σ2 =
〈x1, . . . , xr1 , y1, . . . , yr2〉. For X ⊆ V (G), let σX be the ordering of X induced by σ, i.e., the
ordering obtained from σ if we remove the vertices that do not belong in X. For a vertex v we
denote by V σv the set {u ∈ V (G) | u ≤σ v}. A σ-cut is any cut of the form (V σv , V (G) \ V σv )
for v ∈ V (G). The cutwidth of an ordering σ of G is defined as cwσ(G) = maxv∈V (G) δ(V σv ).
The cutwidth of G, cw(G), is the minimum of cwσ(G) over all possible orderings of V (G).

Obstructions. Let ≤ be a partial order on graphs. We say that G′ � G if G′ ≤ G and G′ is
not isomorphic to G. A graph class G is closed under ≤ if whenever G′ ≤ G and G ∈ G, we
also have that G′ ∈ G. Given a partial order ≤ and a graph class G closed under ≤, we define
the (minimal) obstruction set of G w.r.t. ≤, denoted by obs≤(G), as the set containing all
graphs where the following two conditions hold: O1: G 6∈ G, i.e., G is not a member of G,
and O2: for each G′ with G′ � G, we have that G′ ∈ G.

We say that a set of graphs H is a ≤-antichain if it does not contain any pair of
comparable elements wrt. ≤. By definition, for any class G closed under ≤, the set obs≤(G)
is an antichain.

Immersions. Let H and G be graphs. We say that G contains H as an immersion if there
is a pair of functions (φ, ψ), called an H-immersion model of G, such that φ is an injection
from V (H) to V (G) and ψ maps every edge uv of H to a path of G between φ(u) and φ(v)
so that different edges are mapped to edge-disjoint paths. Every vertex in the image of φ
is called a branch vertex. If we additionally demand that no internal vertex of a path in
ψ(E(H)) is a branch vertex, then we say that (φ, ψ) is a strong H-immersion model and H is
a strong immersion of G. We denote by H ≤i G (H ≤si G) the fact that H is an immersion
(strong immersion) of G; these are partial orders. Clearly, for any two graphs H and G, if
H ≤si G then H ≤i G. This implies the following observation:

I Observation 3. If G is a graph class closed under ≤i, then obs≤i(G) ⊆ obs≤si(G).

Robertson and Seymour proved in [15] that every ≤i-antichain is finite and conjectured
the same for ≤si. It is well-known that for every k ∈ N, the class Ck of graphs of cutwidth at
most k is closed under immersions. It follows from the results of [15] that obs≤i(Ck) is finite;
the goal of this paper is to provide good estimates on the sizes of graphs in obs≤si(Ck). As
the cutwidth of a graphs is the maximum cutwidth of its connected components, it follows
that graphs in obs≤si(Ck) are connected. Moreover, every graph in obs≤si(Ck) has cutwidth
exactly k + 1, because the removal of any of its edges decreases its cutwidth to at most k.

3 Bucket interfaces

Let G be a graph and σ be an ordering of V (G). For a set X ⊆ V (G), the X-blocks in σ are
the maximal subsequences of consecutive vertices of σ that belong to X. Suppose (A,B) is a
cut of G. Then we can write σ = b1 ◦ . . . ◦ bp, where b1, . . . , bp are the A- and B-blocks in σ;
these will be called jointly (A,B)-blocks. The next lemma is the cornerstone of our approach:
we prove that given a graph G and a cut (A,B) of G, there exists an optimum cutwidth
ordering of G where number of blocks depends only on the cutwidth and the size of (A,B).

I Lemma 4. Let ` ∈ N+ and G be a graph. If (A,B) is a cut of G of size `, then there is an
optimum cutwidth ordering σ of V (G) with at most (2`+ 1) · (2cw(G) + 3) + 2` (A,B)-blocks.

IPEC 2016



15:6 Cutwidth: Obstructions and Algorithmic Aspects

Proof. Let σ be an optimum cutwidth ordering such that, subject to the width being
minimum, the number of (A,B)-blocks it defines is also minimized. Let σ = b1 ◦ b2 ◦ · · · ◦ br,
where b1, b2, . . . , br are the (A,B)-blocks of σ. If σ defines less than three blocks, then the
claim already follows, so let us assume r ≥ 3.

Consider any ordering σ′ obtained by swapping two blocks, i.e., σ′ = b1 ◦ · · · ◦ bj−1 ◦ bj+1 ◦
bj ◦ bj+2 . . . br, for some j ∈ [r − 1]. Observe that since the blocks b1, . . . , br alternate as
A-blocks and B-blocks, the ordering σ′ has a strictly smaller number of blocks; indeed, either
j − 1 ≥ 1, in which case bj−1 ◦ bj+1 defines a single block of σ′, or j = 1 and hence j + 2 ≤ r,
in which case bj ◦ bj+2 does. Therefore, by choice of σ, for each j ∈ [r − 1], swapping bj and
bj+1 in σ must yield an ordering with strictly larger cutwidth.

We call a block free if it does not contain any endpoint of the cut edges EG(A,B). We
now prove that any sequence of consecutive free blocks in σ has at most 2cw(G) + 3 blocks.
Since the cut (A,B) has size `, there are at most 2` blocks that are not free. This implies
the claimed bound on the total number of all blocks in σ.

Suppose, to the contrary, that there exists a sequence of q > 2cw(G) + 3 consecutive free
blocks in σ. Let these blocks be br, br+1, . . . , bs, where s− r + 1 = q. For j ∈ [r, s− 1], we
define µ(j) to be the size of the cut between all vertices inside or preceding the vertices of
block bj and all vertices inside or following the vertices of block bj+1 in σ; see Figure 1.

I Claim 5. For all j ∈ [r + 1, . . . , s− 2], we have that µ(j − 1) > µ(j) or µ(j) < µ(j + 1).

Proof. Suppose that for some j ∈ [r+ 1, s− 2], µ(j) ≥ max(µ(j− 1), µ(j+ 1)). We will then
show that the ordering σ′ obtained by swapping the blocks bj and bj+1 still has optimum
cutwidth, a contradiction to the choice of σ. Notice that for every vertex v preceding all
vertices of bj or succeeding all vertices of bj+1, δ(V σ

′

v ) = δ(V σv ). Thus, it remains to show
that for any vertex v belonging to the block bj or to the block bj+1, also δ(V σ

′

v ) ≤ δ(V σv ).
Let pj be the number of edges of G with one endpoint in the block bj and the other

endpoint preceding (in σ) all vertices of bj . Let also sj be the number of edges of G with one
endpoint in bj and the other endpoint succeeding (in σ) all vertices of bj (and hence succeeding
all vertices of block bj+1, since both bj and bj+1 are free). Notice that µ(j) = µ(j−1)−pj+sj
and recall that µ(j) ≥ µ(j − 1). This yields that sj ≥ pj .

Similarly, let pj+1 be the number of edges of G with one endpoint in bj+1 and the other
endpoint preceding all vertices of the block bj+1 (and, in particular, all vertices of block bj).
Let also sj+1 be the number of edges of G with one endpoint in bj+1 and the other endpoint
succeeding all vertices of block bj+1. Again, we have µ(j + 1) = µ(j) − pj+1 + sj+1 and
µ(j) ≥ µ(j + 1). This yields that pj+1 ≥ sj+1.

Let v be a vertex of the block bj . Recall that the blocks bj and bj+1 are free and thus,
there are no edges between them. Observe then that δ(V σ′v ) = δ(V σv ) + sj+1 − pj+1 ≤ δ(V σv ).
Symmetrically, for any vertex v in bj+1, observe that δ(V σ′v ) = δ(V σv ) + pj − sj ≤ δ(V σv ).
Thus, cwσ′(G) ≤ cwσ(G) = cw(G), a contradiction. J

Claim 5 shows that for all j ∈ [r + 1, s− 2], we have µ(j − 1) > µ(j) or µ(j) < µ(j + 1).
It follows that any non-decreasing pair µ(j − 1) ≤ µ(j) must be followed by an increasing
pair µ(j) < µ(j + 1). Hence, if jmin is the minimum index such that µ(jmin) ≤ µ(jmin + 1),
then the sequence µ(j) has to be strictly decreasing up to jmin and strictly increasing from
jmin + 1 onward. Since µ(j) ≤ cw(G) for all j, the length q of the sequence of consecutive
free blocks cannot be longer than 2cw(G) + 3 in total, concluding the proof. J

We use the above lemma to bound the number of “types” of prefixes in graph orderings.
To describe such a prefix, i.e., one side of a cut in a graph, we use the following definition.



A.C. Giannopoulou, Mi. Pilipczuk, J.-F. Raymond, D.M. Thilikos, and M. Wrochna 15:7

· · · · · ·
block j − 1

µ(j − 1)

block j

µ(j)

block j + 1

µ(j + 1)

block j + 2

Figure 1 A cut (A, B) is highlighted (blue, red), with the corresponding blocks underlined and
cuts between them marked with dashed lines. Edges counted as pj and sj are thickened.

I Definition 6. A k-boundaried graph is a pair G = (G, x̄) where G is a graph and
x̄ = (x1, . . . , xk) is a k-tuple of the graph’s boundary vertices (ordered, not necessarily distinct).
The extension of G is the graph G∗ obtained from G by adding k new vertices x′1, . . . , x′k and
edges x1x

′
1, . . . , xkx

′
k. The join A⊕B of two k-boundaried graphs A = (A, x̄),B = (B, ȳ) is

the graph obtained from the disjoint union of A and B by adding an edge xiyi for i ∈ [k].

From Lemma 4 we derive that for any given cut (A,B) of size ` of a graph G with
cw(G) ≤ k, there is an optimum cutwidth ordering in which the vertices of A occur in O(k`)
blocks. Our next goal is to show that the only information about A that can affect the
cutwidth of G is: the placing of the endpoints of each cutedge (xi and x′i) into blocks, and
the cutwidth of each block (as an induced subgraph of A or A∗). Recall that for an ordering
σ of V (G), σ-cuts are cuts of the form (V σv , V (G) \ V σv ), for v ∈ V (G).

I Definition 7. Let G be a graph and σ be an ordering of its vertices. An `-bucketing of σ
is a function T : V (G)→ [`] such that T (u) ≤ T (v) for any u appearing before v in σ. For
every i ∈ [`], the set T−1(i) will be called a bucket; a bucket is naturally ordered by σ. For
every bucket T−1(i), i ∈ [`], let cuts(G, σ, T, i) be the family of σ-cuts containing on one
side all vertices of buckets appearing before i and a prefix (in σ) of the i-th bucket. For
an ordering σ of the vertices of a graph G, define the width of the bucket i, i ∈ [`], as the
maximum width of any cut in the family cuts(G, σ, T, i). Formally,

cuts(G, σ, T, i) =
{(
T−1([1, i− 1]) ∪ L, R ∪ T−1([i+ 1, `])

)
:

(L,R) is a σ-cut of T−1(i)
}
,

width(G, σ, T, i) = max { |EG(L,R)| : (L,R) ∈ cuts(G, σ, T, i) } .

Notice that every σ-cut of G is in cuts(G, σ, T, i) for at least one bucket i ∈ [`]; since cwσ(G)
is the maximum of |EG(L,R)| over σ-cuts (L,R), we have

cwσ(G) = max
i∈[`]

width(G, σ, T, i). (1)

For two k-boundaried graphs A = (A, x̄),B = (B, ȳ), we slightly abuse notation and
understand the edges x1x

′
1, . . . , xkx

′
k in A∗ to be the same as y′1y1, . . . , y

′
kyk in B∗ and as

x1y1, . . . , xkyk in A⊕B. That is, for an ordering σ of A⊕B with `-bucketing T , we define
T |A∗(v) to be T (v) for v ∈ V (A) and T (yi) for v = x′i. We define σ|A∗ as an ordering that
orders x′i just as σ orders yi, with the order between x′i and x′j chosen arbitrarily when
yi = yj . The following lemma shows that if an `-bucketing respects the sides of a cut, then
the width of any bucket can be computed as the sum of contributions of the sides.

IPEC 2016



15:8 Cutwidth: Obstructions and Algorithmic Aspects

I Lemma 8 (♠3). Let k, ` be positive integers and A = (A, x̄),B = (B, ȳ) be two k-boundaried
graphs. Let also σ be a vertex ordering of A ⊕ B with `-bucketing T . If T−1(i) does not
contain any vertex of A, for some i ∈ [`], that is, T−1(i) ∩ V (A) = ∅, then it holds that
width(A⊕B, σ, T, i) = width(A, σ|A, T |A, i) + width(B∗, σ|B∗ , T |B∗ , i).

Replacing the roles of A and B above, we obtain that if T−1(i) does not contain any
vertex of B, then width(A ⊕ B, σ, T, i) = width(A∗, σ|A∗ , T |A∗ , i) + width(B, σ|B , T |B , i).
Intuitively, this implies that the cutwidth of A⊕B depends on A only in the widths of each
block relative to A and A∗ (in any bucketing where buckets are either A-blocks or B-blocks).
Therefore, replacing A with another boundaried graph whose extension has an ordering and
bucketing with the same widths preserves cutwidth (as long as endpoints of the cut edges
are placed in the same buckets too). This is formalized in the next definition.

I Definition 9. For k, ` ∈ N, a (k,`)-bucket interface consists of functions:
b, b′ : [k]→ [`] identifying the buckets which contain xi and x′i, respectively and
µ, µ∗ : [`]→ [0, k] corresponding to the widths of buckets.

A k-boundaried graph G conforms with a (k, `)-bucket interface if there exists an ordering σ
of the vertices of G∗ and an `-bucketing T of G∗ such that:

T (v) is odd for v ∈ V (G) and even for v ∈ {x′1, . . . , x′k},
T (xi) = b(i) and T (x′i) = b′(i), for each i ∈ [k],
width(G, σ|G, T |G, j) ≤ µ(j), for each j ∈ [`],
width(G∗, σ, T, j) ≤ µ∗(j), for each j ∈ [`].

I Observation 10. For all k, ` ∈ N+ there are ≤ 22(k log `+` log(k+1)) (k, `)-bucket interfaces.

We call two k-boundaried graphs G1,G2 (k,`)-similar if the sets of (k, `)-bucket interfaces
they conform with are equal. The following lemma subsumes the above ideas. The proof
follows easily from Lemma 8 and the fact that cwσ(G) = maxi∈[`] width(G, σ, T, i) (Eq. (1)).

I Theorem 11 (♠). Let k, r be two positive integers. Let also A1 and A2 be two k-boundaried
graphs that are (k, `)-similar, where ` = (2k + 1) · (2r + 4). Then for any k-boundaried graph
B where cw(A1 ⊕B) ≤ r, it holds that cw(A2 ⊕B) = cw(A1 ⊕B).

4 Obstruction sizes and linked orderings

In this section we establish the main result on sizes of obstructions for cutwidth. We first
define linked orderings and prove that there is always an optimum ordering that is linked.

I Definition 12 (linked ordering). An ordering σ of V (G) is linked if for any two vertices u ≤σ
u′, there are min{δ(V σv ) | u ≤σ v ≤σ u′} edge-disjoint paths between V σu and V (G)\V σu′ in G.

I Lemma 13 ([8, 12]). For every graph G, there is a linked ordering σ of V (G) with
cwσ(G) = cw(G).

Proof. Without loss of generality, we may assume that the graph is connected. Let σ be an
optimum cutwidth ordering of V = V (G). Subject to the optimality of σ, we choose σ so
that

∑
v∈V δ(V σv ) is minimized. We prove that σ defined in this manner is in fact linked.

Assume the contrary. Then by Menger’s theorem, there exist vertices u <σ u′ in V and
i ∈ N such that δ(V σv ) > i for every u ≤σ v ≤σ u′, but a minimum cut (A,B) of G with

3 Proofs of statements marked with ♠ are ommited from this extended abstract. The full version of the
paper is available in http://arxiv.org/abs/1606.05975.

http://arxiv.org/abs/1606.05975


A.C. Giannopoulou, Mi. Pilipczuk, J.-F. Raymond, D.M. Thilikos, and M. Wrochna 15:9

u u′A1 A2 ∪B1 B2

u u′A1 A2 B1 B2

Figure 2 An ordering of vertices with the minimum cut (A, B) between A1 and B2 of size i high-
lighted in blue and red. Below, the modified ordering, with cutwidth bounded using submodularity.

V σu ⊆ A and V \ V σu′ ⊆ B has size δ(A) ≤ i. We partition A into sets A1 and A2, where
A1 = V σu and A2 = A \ A1, and we partition B into sets B1 and B2, where B2 = V \ V σu′
and B1 = B \ B2 (see Figure 2). Notice that A2 = A \ V σu = {v | u <σ v ≤σ u′} ∩ A and
that B1 = B \ (V \ V σu′) = {v | u <σ v ≤σ u′} ∩B. Let σ′ be the ordering of V obtained by
concatenating σ|A1 , σ|A2 , σ|B1 , and σ|B2 .

We prove that δ(V σ′v ) ≤ δ(V σv ), for every v ∈ V . Observe first that for every vertex
v ∈ A1∪B2 it holds that V σ′v = V σv and thus, δ(V σ′v ) = δ(V σv ). Let now v ∈ A2. Then V σ

′

v =
V σv ∩A. By the submodularity of cuts it follows that δ(V σv ∪A) + δ(V σv ∩A) ≤ δ(A) + δ(V σv ).
Notice that (V σv ∪A, V \ (V σv ∪A)) is also a cut separating A1 = V σu and B2 = V \V σu′ . From
the minimality of (A,B) it follows that δ(A) ≤ δ(V σv ∪ A). Therefore, δ(V σv ∩ A) ≤ δ(V σv ).
As V σ′v = V σv ∩A, we obtain that δ(V σ′v ) ≤ δ(V σv ).

Symmetrically, let now v ∈ B1. Then V σ
′

v = V σv ∪A. By the submodularity of cuts we
have δ(V σv ∪ A) + δ(V σv ∩ A) ≤ δ(A) + δ(V σv ). Notice that (V σv ∩ A, V \ (V σv ∩ A)) is a cut
separating A1 and B2. From the minimality of (A,B) it follows that δ(A) ≤ δ(V σv ∩ A).
Therefore, δ(V σv ∪A) ≤ δ(V σv ). As V σ′v = V σv ∪A, we obtain that δ(V σ′v ) ≤ δ(V σv ).

Thus, δ(V σ′v ) ≤ δ(V σv ) ≤ cw(G) for every v ∈ V , and hence cwσ′(G) = cw(G). Finally,
note that δ(V σ′v ) = δ(A) ≤ i < δ(V σv ) for the last vertex v in A. Thus

∑
v δ(V σ

′

v ) <∑
v δ(V σv ), contradicting the choice of σ. Therefore, σ is a linked ordering of V with

cwσ(G) = cw(G). J

The following theorem is the technical counterpart of Theorem 1. Its proof is based
on Theorem 11, Lemma 13, Observation 10 and the idea of “unpumping” repeating types,
presented in the introduction. The linkedness is used to make sure that within the unpumped
segment of the ordering, one can find the maximum possible number of edge-disjoint paths
between the parts of the graph on the left side and on the right side of the segment. This
ensures that the graph obtained from unpumping can be immersed in the original one.

I Theorem 14 (♠). Let k be a positive integer. If G ∈ obs≤si(Ck), then |V (G)| ≤ Nk+1,
where N = 22((k+1) log `+` log(k+2)) + 2 and ` = (2k + 3) · (2k + 6).

Theorem 14 provides an upper bound on the number of vertices of a graph in obs≤si(Ck).
Observe that since such a graph has cutwidth k + 1, each of its vertices has degree at
most 2(k + 1). It follows that any graph from obs≤si

(Ck) has 2O(k3 log k) vertices and edges.
Finally, by Observation 3 we have obs≤i(Cq) ⊆ obs≤si(Cq), so the same bound holds also for
immersions instead of strong immersions. This concludes the proof of Theorem 1.

5 An algorithm for computing cutwidth

In this section we present an exact FPT algorithm for computing the cutwidth of the graph.
First, we need to give a dynamic programming algorithm that given an approximate ordering
σ of width r, finds, if possible, an ordering of width at most k, where k ≤ r is given.

IPEC 2016



15:10 Cutwidth: Obstructions and Algorithmic Aspects

I Lemma 15 (♠). Let r ∈ N+. Given a graph G and an ordering σ of its vertices with
cwσ(G) ≤ r, an ordering τ of the vertices of G with cwτ (G) = cw(G) can be computed in
time 2O(r2 log r) · |V (G)|.

The main ingredient in the proof of Lemma 15 is the insight given by Lemma 4: any
set X with δ(X) ≤ r, in particular any prefix of σ, can be assumed to be split into at
most O(kr) blocks in some optimum ordering τ . A closer look into the proof of Lemma 4
shows that a stronger statement is true: there is some optimum ordering τ such that for
every prefix X of σ, there are at most O(kr) X-blocks in σ. This shows that an optimum
ordering τ can be constructed by a dynamic programming procedure that scans σ from left
to right while constructing an optimum ordering, maintained as a mapping of the already
scanned vertices into at most ` blocks. The description of such a partial ordering is an
enrichment of a (k, `)-bucket interface that we call a (k, `)-bucket profile. In such a profile, we
additionally store some information about the sizes of cuts which is needed to make sure that
the constructed ordering has width at most k. With this understanding, the construction of
the dynamic programming algorithm is a routine, though technical task.

Having the algorithm of Lemma 15, a standard application of the iterative compression
technique immediately yields a 2O(k2 log k) · n2 time algorithm for computing cutwidth, as
sketched in Section 1. Simply add the vertices of G one by one, and apply the algorithm of
Lemma 15 at each step. However, we can make the dependence on n linear by adapting the
approach of Bodlaender [2]; more precisely, we make bigger steps. Such a big step consists of
finding a graph H that can be immersed in the input graph G, which is smaller by a constant
fraction, but whose cutwidth is not much smaller. This is formalized in the next lemma.

I Lemma 16 (♠). There is an algorithm that given a positive integer k and a graph G, works
in time O(k2 · |V (G)|) and either concludes that cw(G) > k, or finds a graph H immersed in
G such that |E(H)| ≤ |E(G)| · (1− 1/(2k+ 1)4(k+1)+3) and cw(G) ≤ 2cw(H). Furthermore,
in the latter case, given an ordering σ of the vertices of H, an ordering τ of the vertices of
G with cwτ (G) ≤ 2cwσ(H) can be computed in O(|V (G)|) time.

The proof starts by iteratively dissolving vertices of degree two with both incident edges
going to different neighbors; this operation preserves the cutwidth of the graph. Then, if a
constant fraction (depending on k) of vertices has degree equal to one, we can find a large
matching of edges incident to degree-1 vertices. If we remove them, the size of the graph
drops by a constant fraction, but reintroducing them increases the cutwidth by at most one.

Otherwise, we arrive at the situation when there are no vertices of degree 2, apart from
the ones with only one neighbor, and there is only a very small fraction of vertices of degree
one. Our goal now is to find a large (constant fraction of |E(G)|, where the constant depends
on k) packing of edge-disjoint cycles in G. If we succeed in this, then an easy charging
argument shows that removing one edge from each of these cycles yields a graph H with
cw(H) ≥ cw(G)/2, whereas the size of H is smaller than G by a constant fraction. Now, if
there are many vertices of degree 2 with both incident edges going to the same neighbor,
then we have a large packing of 2-cycles and we are done. So we can assume that the total
number of vertices of degree 1 and 2 is only a small fraction of the total size of the graph.

At this point, we greedily find a large family of disjoint balls of radius 2(k + 1) (sets of
vertices at distance at most 2(k + 1) from some central vertex), each containing no vertex of
degree 1 or 2. If any of these balls induced a tree in G, it would contain a full binary tree of
height 2(k + 1); but such a binary tree is known to have cutwidth larger than k by itself,
allowing us to conclude that cw(G) > k. Finally, if every ball contains a cycle, then we have
found a large packing of vertex-disjoint, hence also edge-disjoint cycles.



A.C. Giannopoulou, Mi. Pilipczuk, J.-F. Raymond, D.M. Thilikos, and M. Wrochna 15:11

We are now ready to put all the pieces together and prove Theorem 2: given an n-vertex
graph G and an integer k, one can in time 2O(k2 log k) · n either conclude that cw(G) > k,
or output an ordering of G of width at most k. The proof follows the same recursive
Reduction&Compression scheme as the algorithm of Bodlaender [2]. By applying Lemma 16,
we obtain a significantly smaller immersion H, and we recurse on H. This recursive call
either concludes that cw(H) > k, which implies cw(G) > k, or it produces an ordering of
H of optimum width cw(H) ≤ k. This ordering can be lifted, using Lemma 16 again, to
an ordering of G of width ≤ 2k. Given this ordering, we apply the dynamic programming
procedure of Lemma 15 to construct an optimum ordering of G in time 2O(k2 log k) · |V (G)|.

Since at each recursion step the number of edges of the graph drops by a multiplicative
factor of at least 1/(2k + 1)4(k+1)+3, we see that the graph Gi at level i of the recursion will
have at most (1 − 1/(2k + 1)4(k+1)+3)i · |E(G)| edges. Hence, the total work used by the
algorithm is bounded by the sum of a geometric series:

∞∑
i=0

2O(k2 log k) · |E(Gi)| ≤ 2O(k2 log k) · |E(G)| ·
∞∑
i=0

(1− 1/(2k + 1)4k+7)i

= 2O(k2 log k) · |E(G)| · (2k + 1)4k+7 = 2O(k2 log k) · |E(G)|.

6 Conclusions

In this paper we have proved that the immersion obstructions for admitting a layout of
cutwidth at most k have sizes single-exponential in O(k3 log k). The core of the proof can be
interpreted as bounding the number of different behavior types for a part of the graph that
has only a small number of edges connecting it to the rest. This, in turn, gives an upper
bound on the number of states for a dynamic programming algorithm that computes the
optimum cutwidth ordering on an approximate one. This last result, complemented with
an adaptation of the reduction scheme of Bodlaender [2] to the setting of cutwidth, yields
a direct and self-contained FPT algorithm for computing the cutwidth of a graph. In fact,
we believe that our algorithm can be thought of “Bodlaender’s algorithm for treewidth in a
nutshell”. It consists of the same two components, namely a recursive reduction scheme and
dynamic programming on an approximate decomposition, but the less challenging setting of
cutwidth makes both components simpler, thus making the key ideas easier to understand.
For an alternative attempt of simplification of the algorithm of Bodlaender and Kloks [3],
applied for the case of pathwidth, see [6].

In our proof of the upper bound on the number of types/states, we used a somewhat new
bucketing approach. This approach holds the essence of the typical sequences of Bodlaender
and Kloks [3], but we find it more natural and conceptually simpler. The drawback is that
we lose a log k factor in the exponent. It is conceivable that we could refine our results by
removing this factor provided we applied typical sequences directly, but this is a price that
we are willing to pay for the sake of simplicity and being self-contained.

An important ingredient of our approach is the observation that there is always an
optimum cutwidth ordering that is linked: the cutsizes along the ordering precisely govern
the edge connectivity between prefixes and suffixes. Recently, there is a growing interest in
parameters that are tree-like analogues of cutwidth: tree-cut width [20] and carving-width [16].
In future work, we aim to explore and use linkedness for tree-cut decompositions and carving
decompositions in a similar manner as presented here.

IPEC 2016



15:12 Cutwidth: Obstructions and Algorithmic Aspects

Acknowledgements. The second author thanks Mikołaj Bojańczyk for the common work on
understanding and reinterpreting the Bodlaender-Kloks dynamic programming algorithm [3],
which influenced the bucketing approach presented in this paper. We also thank O-joung
Kwon for pointing us to [8, 12], as well as an anonymous referee for noting that the running
time in Lemma 16 can be reduced to polynomial by amortization.

References
1 Patrick Bellenbaum and Reinhard Diestel. Two short proofs concerning tree-decompositions.

Combinatorics, Probability & Computing, 11(6):541–547, 2002.
2 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small

treewidth. SIAM J. Comput., 25(6):1305–1317, 1996.
3 Hans L. Bodlaender and Ton Kloks. Efficient and constructive algorithms for the pathwidth

and treewidth of graphs. J. Algorithms, 21(2):358–402, 1996.
4 Heather Booth, Rajeev Govindan, Michael A. Langston, and Siddharthan Ramachandra-

murthi. Cutwidth approximation in linear time. In Proceedings of the Second Great Lakes
Symposium on VLSI, pages 70–73. IEEE, 1992.

5 Josep Díaz, Jordi Petit, and Maria J. Serna. A survey of graph layout problems. ACM
Comput. Surv., 34(3):313–356, 2002.

6 Martin Fürer. Faster computation of path-width. In Veli Mäkinen, J. Simon Puglisi, and
Leena Salmela, editors, Combinatorial Algorithms: 27th International Workshop, IWOCA
2016, Helsinki, Finland, August 17-19, 2016, Proceedings, pages 385–396, Cham, 2016.
Springer International Publishing.

7 Michael R. Garey and David S. Johnson. Computers and intractability, volume 174. Free-
man New York, 1979.

8 James F. Geelen, A.M.H. Gerards, and Geoff Whittle. Branch-width and well-quasi-
ordering in matroids and graphs. J. Comb. Theory, Ser. B, 84(2):270–290, 2002. A correc-
tion is available at http://www.math.uwaterloo.ca/~jfgeelen/Publications/bn-corr.
pdf.

9 Rajeev Govindan and Siddharthan Ramachandramurthi. A weak immersion relation on
graphs and its applications. Discrete Mathematics, 230(1):189–206, 2001.

10 Pinar Heggernes, Daniel Lokshtanov, Rodica Mihai, and Charis Papadopoulos. Cutwidth
of split graphs and threshold graphs. SIAM J. Discrete Math., 25(3):1418–1437, 2011.

11 Pinar Heggernes, Pim van ’t Hof, Daniel Lokshtanov, and Jesper Nederlof. Computing
the cutwidth of bipartite permutation graphs in linear time. SIAM J. Discrete Math.,
26(3):1008–1021, 2012.

12 Mamadou Moustapha Kanté and O-joung Kwon. An upper bound on the size of obstruc-
tions for bounded linear rank-width. CoRR, arXiv:1412.6201, 2014.

13 Jens Lagergren. Upper bounds on the size of obstructions and intertwines. J. Comb. Theory,
Ser. B, 73(1):7–40, 1998.

14 Frank Thomson Leighton and Satish Rao. Multicommodity max-flow min-cut theorems
and their use in designing approximation algorithms. J. ACM, 46(6):787–832, 1999.

15 Neil Robertson and Paul D. Seymour. Graph minors XXIII. Nash-Williams’ immersion
conjecture. J. Comb. Theory, Ser. B, 100(2):181–205, 2010.

16 Paul D. Seymour and Robin Thomas. Call routing and the ratcatcher. Combinatorica,
14(2):217–241, 1994.

17 Dimitrios M. Thilikos, Maria J. Serna, and Hans L. Bodlaender. Cutwidth I: A linear time
fixed parameter algorithm. J. Algorithms, 56(1):1–24, 2005.

18 Dimitrios M. Thilikos, Maria J. Serna, and Hans L. Bodlaender. Cutwidth II: Algorithms
for partial w-trees of bounded degree. J. Algorithms, 56(1):25–49, 2005.

http://www.math.uwaterloo.ca/~jfgeelen/Publications/bn-corr.pdf
http://www.math.uwaterloo.ca/~jfgeelen/Publications/bn-corr.pdf


A.C. Giannopoulou, Mi. Pilipczuk, J.-F. Raymond, D.M. Thilikos, and M. Wrochna 15:13

19 Robin Thomas. A Menger-like property of tree-width: The finite case. J. Comb. Theory,
Ser. B, 48(1):67–76, 1990.

20 Paul Wollan. The structure of graphs not admitting a fixed immersion. J. Comb. Theory,
Ser. B, 110:47–66, 2015.

21 Mihalis Yannakakis. A polynomial algorithm for the min-cut linear arrangement of trees.
J. ACM, 32(4):950–988, 1985.

IPEC 2016





Computing Graph Distances Parameterized by
Treewidth and Diameter∗

Thore Husfeldt

Lund University and IT University of Copenhagen, Lund, Sweden
thore.husfeldt@cs.lth.se

Abstract
We show that the eccentricity of every vertex in an undirected graph on n vertices can be
computed in time n expO(k log d), where k is the treewidth of the graph and d is the diameter.
This means that the diameter and the radius of the graph can be computed in the same time.
In particular, if the diameter is constant, it can be determined in time n expO(k). This result
matches a recent hardness result by Abboud, Vassilevska Williams, and Wang [SODA 2016] that
shows that under the Strong Exponential Time Hypothesis of Impagliazzo, Paturi, and Zane
[J. Comp. Syst. Sc., 2001], for any ε > 0, no algorithm with running time n2−ε exp o(k) can
distinguish between graphs with diameter 2 and 3.

Our algorithm is elementary and self-contained.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases Graph algorithms, diameter, treewidth, Strong Exponential Time Hypo-
thesis

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.16

1 Introduction

In an undirected graph, the eccentricity of a vertex is its largest distance to another vertex.
The graph’s diameter, denoted diamG, is the largest eccentricity of any of its vertices. The
graph’s radius, denote radG, is the smallest eccentricity of any its vertices. The treewidth is a
well-studied sparseness measure of graphs. These are fundamental parameters that permeate
both the design of graph algorithms and the analysis of networks in many scientific domains.

We show the following result:

I Theorem 1. Given an undirected n-vertex graph G with integer weights. If G has diameter
diamG and treewidth k, then we can compute the eccentricity of every vertex, and compute
diamG and radG, in time n expO(k log diamG) .

For constant diamG this matches a recent lower bound by Abboud, Vassilevska Williams,
and Wang [1] under the Strong Exponential Time Hypothesis of Impagliazzo, Paturi, and
Zane [6]. In particular, it settles the complexity of the very simple question of deciding if a
given undirected, unweighted graph has diameter 2 or 3.

1.1 Related work
It is easy to see that the diameter of an unweighted graph can be computed in time O(nm)
by computing the eccentricity of each node using breadth first search. For sparse graphs with

∗ This work was done at the Simons Institute for the Theory of Computation at UC Berkeley, partially
supported by Grant 2012–4730 from the Swedish Research Council.

© Thore Husfeldt;
licensed under Creative Commons License CC-BY

11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin; Article No. 16; pp. 16:1–16:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.16
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


16:2 Computing Graph Distances Parameterized by Treewidth and Diameter

m = O(n) this running time becomes O(n2), a bound that seems difficult to improve. Recent
work by Roditty and Vassilevska Williams [8] has provided an illuminating explanation for
this phenomenon: An algorithm for computing the diameter in time O(m2−ε) would violate
the Strong Exponential Time Hypothesis.

However, it is also clear that for some very sparse graphs, this bound can be broken. In
particularly, the diameter of a tree can be computed in linear time as follows. From any
node find a remotest node u using breadth first search. Then find a remotest node v from u

using breadth first search again. Elementary arguments show that diamG = dist(u, v).
A useful parameter for studying this phenomenon is treewidth. The treewidth of a graph

is a well-studied measure of its sparsity, properly defined in Section 2.4. In the extremes,
every tree has treewidth 1 and the n-clique has treewidth n− 1.

In this framework, we can ask how the complexity of computing the diameter deteriorates
with treewidth. For example, can the problem be solved in time O(n logn) on graphs
of logarithmic treewidth? Very surprisingly, Abboud, Vassilevska Williams, and Wang [1]
showed that not only can the complexity of the parameter be disentangled from the number of
vertices in the sense of parameterised complexity, but this dependency is at least exponential:
They show that under the Strong Exponential Time Hypothesis, it takes time

n2−ε exp Ω(k) for any ε > 0 (1)

to compute the diameter of an n-vertex graph with treewidth k. The same bound holds for
computing the radius, but under a stronger hypothesis called the Hitting Set Conjecture. See
[1] for a thorough presentation and discussion of these results and their underlying hypotheses
and a rich overview of related work.

This result is surprising because the innocuous diameter problem exhibits a similar
dependency on treewidth as several NP-hard problems. For instance, under the same Strong
Exponential Time Hypothesis, it is known that the NP-hard Independent Set problem cannot
be solved in time (2− ε)k polyn for any ε > 0 [7]. Of course, the lower bound (1) does not
imply that the diameter problem is an exponential-time problem. This is because, unlike for
Independent Set, the exponential dependency does not persist throughout all dependencies of
k on n. In this case, it becomes vacuous for k = Ω(logn), where the quadratic-time algorithm
takes over.

The lower bound holds even for very restricted diameter problems, such as deciding if
the diameter is 2 or 3, and (consequently) for approximating the solution. The same authors
provide an algorithm for computing the diameter with running time

O(k2n logk n) = n1+o(1) expO(k log k) . (2)

That algorithm follows a method introduced by Cabello and Knauer [3] for computing the
Wiener index, based on a reduction to a k-dimensional orthogonal range query problem and
its solution by Willard [9]. The authors explain how to extend this idea to provide algorithms
for radius and eccentricities within the same time bound.

Closing the gap between (1) and (2) is viewed as a very interesting open problem [1].
Our contribution is to offer yet another parameter to this analysis, by introducing a

dependency on the diameter to the running time. In particular, we match the lower bound of
Abboud et al. for the regime of constant diameters: If diamG = O(1) then the complexity
of these problems is (under various hypotheses) n exp Θ(k).

Planar graphs of constant diameter have constant treewidth, so for that class of graphs
the diameter can be found in linear time, which is a known result due to Eppstein [5].



T. Husfeldt 16:3

Our algorithm is elementary, in particular compared to data structure results leveraged
to establish (2). Instead of following Cabello and Knauer, we demonstrate that the necessary
information can be built by traversing the tree decomposition a number of times in different
directions. Once the dependency of the problem on the diameter has been realised, the
construction is unsurprising. However, the argument is quite fragile and ultimately relies on
a careful (but entirely combinatorial) analysis of shortest paths.

2 Algorithm

2.1 Preliminaries

A walk is an alternating sequence of vertices and edges, say v0, e1, . . . , el, vr, where ei = vi−1vi
for 1 ≤ i ≤ l. A walk with endvertices u and v is called a u, v-walk. A walk with no repeated
vertices is a path. We denote a u, v-path by symbols like uPv, making the endvertices explicit
for readability. The vertices on uPv except for u and v are called internal. The length of
a walk uPv is the number of edges (with repetitions) and denoted l(uPv). If x is a vertex
on the u, v-path uPv then we write uPx for the u, x-subpath of uPv, and xPv for the
x, v-subpath of uPv. Two paths uPv and vQw can be concatenated into the walk uPvQw
with the obvious interpretation.

Let dist(u, v) denote the distance between u and v in a connected graph G, which is the
length of the shortest u, v-path; with the understanding that dist(u, u) = 0. The eccentricity
of vertex u, denoted e(u), is max{ dist(u, v) | v ∈ V (G) }. The diameter of G, denoted diamG,
is max{ e(u) | u ∈ V (G) }. The radius of G, denoted radG, is min{ e(u) | u ∈ V (G) }.

The treewidth of a graph is the width of an optimal tree decomposition, an auxiliary
structure that maintains the structure of G in a sparse fashion. (See Section 2.4 for a full
definition.) Our algorithm requires a tree decomposition as input, and we note that this is
provided within the time bounds of our own algorithm by a recent result by Bodlaender et
al. [2] that we can state as follows:

I Theorem 2 (Bodlaender et al.). Given a graph G with n vertices and treewidth k, a nice tree
decomposition of G of width O(k) and with O(nk) nodes can be computed in time n expO(k).

We also need the fact that given such a tree decomposition, we can compute pairwise
distances quickly for all vertices in the same piece. For the purposes of exposition, we abstract
this to a more general result due to Chaudhuri and Zariolagis [4] that falls slightly short of
the ambitions on Theorem 1, by a factor logn. We show in Section 3 how to replace this
result with an explicit and self-contained construction with a better bound so as to establish
the bound in Theorem 1.

I Theorem 3 (Chaudhuri and Zariolagis). Let G denote an n-vertex graph given with a tree
decomposition of width k. In time O(k3n logn) we can compute a data structure such that
for any u, v ∈ V (G) we can compute dist(u, v) in time O(k3).

Chaudhuri and Zariolagis [4] present various trade-offs between construction and query time
that need not interest us here; the important part is the subquadratic dependency on n in
the construction time and polynomial dependency on the treewidth, so that the time to
compute the distance between a pair of vertices becomes negligible. We note that in itself,
the above structure brings us no closer to our goal: To compute the diameter, we still need
to evaluate dist(u, v) for all pairs of vertices, in time O(n2k3).

IPEC 2016



16:4 Computing Graph Distances Parameterized by Treewidth and Diameter

2.2 Distance profiles
Let R denote a fixed integer; think of R as the range of distances we want to keep track of,
ideally diamG ≤ R.

We denote by π a partition (U, V,W ) of V (G), where V = {v1, . . . , vr} is a separator in
G separating U and W .

(We will arrive at these partitions as induced by neighbouring nodes in a tree decomposi-
tion. We need the next two lemmas when we traverse the decomposition in both directions,
which is why we avoid the terms ‘above’ and ‘below’ in favour of ‘left’ and ‘right’. However,
the reader is encouraged to think of V as a piece in the tree decomposition, with U denoting
the vertices ‘below’ it, and W those ‘above.’ We give a more general framework here in order
to avoid the proliferation of ultimately similar arguments and tedious case analyses.)

We will pay special attention to paths whose internal vertices belong to U . In particular,
for u ∈ U ∪ V and v ∈ V a u, v-path is U-internal if all its internal vertices belong to U .
(As a possible source of confusion, the one-edge path uv is trivially U -internal. In fact,
both u and v may belong to V , so a U -internal path might completely avoid U .) We then
let distπ(u, v) ∈ {0, . . . , R} ∪ {∞} denote the length of the shortest U -internal u, v-path of
length at most R, or ∞ if no such path exists.

For each vertex u ∈ U define the distance profile pπ(u) as the vector of its distances to V :

pπ(u) = (distπ(u, v1), . . . ,distπ(u, vr)) .

We let Dπ denote the set of all such distance profiles,

Dπ =
⋃
u∈U

pπ(u) .

This set contains the information that we will maintain while traversing the tree decomposition
of the input graph; a vector of distances (d1, . . . , dr) is contained in Dπ exactly if there exists
a vertex u ∈ U with that distance profile, but we forget the identity of that vertex, and how
many there are. In particular, |Dπ| ≤ (R+ 2)r, whereas U itself may be much larger.

2.3 Maintaining distance profiles over neighbouring cuts
Consider two partitions π and π′ that differ only in a single vertex.

We consider two different ways in which π and π′ can differ by moving a single vertex
vr ‘one part to the left’ in the partition. Thus, either the vertex vr is moved from W to V ,
‘introducing’ it to V ; or the vertex vr is moved from V to U , ‘forgetting’ it from V .

The next two lemmas handle each case separately.

I Lemma 4 (Introduce). Let π′ = (U, V −{vr},W∪{vr}) be a partition with V = {v1, . . . , vr}
and consider the partition π given by (U, V,W ).
1. Dπ = Dπ′ × {∞}.
2. For vi, vj ∈ V with 1 ≤ i < j ≤ r, we have

distπ(vi, vj) =


distπ′(vi, vj) , if j < r ;
l(vivr) , if j = r and vivr ∈ E ;
∞ , otherwise .

Proof. Consider the partition π.
Since V −{vr} is a separator, there are no edges from vr to any vertex in U . In particular,

no path that includes any vertex in U can include vr.



T. Husfeldt 16:5

π′

U V − {vr}W ∪ {vr}

vi

vr

u (no edge)

π

U V W

vi

vr

u

Figure 1 Vertex vr is introduced to V .

V

π′:

U

v

vr

u

x

P

Q

R

V − {vr}

π :

U ∪ {vr}

v

vr

u

Figure 2 Vertex vr is forgotten from V . The part W is not shown.

For the first part, consider the distance vector (distπ(u, v1), . . . ,distπ(u, vr)) ∈ Dπ. The
last coordinate must be ∞ because there is no U -internal path from u ∈ U to vr. Moreover,
there is no path from u to any other vi ∈ V passing through vr either, so the remaining
distances are unchanged.

For the second part, consider a pair of vertices vi, vj ∈ V . If j 6= r then their U -internal
distance does not change. If vj = vr then the only possible U -internal path is the edge vivr
if it exists. J

The other case is more interesting:

I Lemma 5 (Forget). Let π′ = (U, V,W ) be a partition with V = {1, . . . , vr} and consider
the partition π given by (U ∪ {vr}, V − {vr},W ).
1. Dπ consists of the vector (distπ′(v1, vr), . . . ,distπ′(vr−1, vr)) and for each (d′1, . . . , d′r) ∈

Dπ′ the vectors (d1, . . . , dr−1) given by

dj = min{d′j , d′r + distπ′(vj , vr)} . (3)

2. For each vi, vj ∈ V with 1 ≤ i < j < r, we have

distπ(vi, vj) = min{distπ′(vi, vj), distπ′(vi, vr) + distπ′(vj , vr)} .

Proof. Let u ∈ U ∪ V and v ∈ V − {vr}. Let uSv be a shortest U ∪ {vr}-internal path. Let
uPv, uQvr, and vrRv be shortest U -internal paths, see Fig. 2.

We will show that

l(uSv) = min{l(uPv), l(uQvr) + l(vrRv)} . (4)

There are two cases. If the path uSv does not use vr then it is U -internal. In particular,
it has same length as the shortest U -internal path uPv. Let x be the earliest vertex on uQvr

IPEC 2016



16:6 Computing Graph Distances Parameterized by Treewidth and Diameter

also appearing on vrRv, possibly x = vr. If x 6= vr then uQxRv is a U -internal u, v-path, so
that

l(uSv) = l(uPv) ≤ l(uQxRv) ≤ l(uQvrRv) = l(uQvr) + l(vrRv) ,

establishing (4) in this case. If x = vr then uQvrRv is a path, and therefore no shorter than
uSv. Thus,

l(uQvr) + l(vrRv) = l(uQvrRv) ≥ l(uSv) = l(uPv).

establishing (4) in this case.
If the path uSv does contain vr then it decomposes into uSvr and vrSv, both of which

are shortest U -internal paths. Thus we can write

l(uPv) ≥ l(uSv) = l(uSvrSv) = l(uSvr) + l(vrSv) = l(uQvr) + l(vrRv) ,

where the first inequality merely observes that uPv is a shortest path in a smaller set of
internal vertices than uSv. We have established (4).

To establish the lemma, set v = vj . Provided all lengths are bounded by R, we can give
(4) as

distπ(u, vi) = min{distπ′(u, vi), distπ′(u, vr) + distπ′(vr, vi)} . (5)

For u ∈ U ∪ {vr}, write pπ(u) = (d1, . . . , dr−1). If u = vr then the distances are simply
given by di = distπ′(vi, vr), because no U -internal vi, vr-path can use vr as an internal
node. For every other u ∈ U let pπ′(u) = (d′1, . . . , d′r). Then (5) gives the first part of the
lemma with di = distπ(u, vi) and d′i = distπ′(u, vi). Finally, if u ∈ V with u = vi for some
i ∈ {1, . . . , vr−1} then (5) gives the second part of the lemma.

It remains to verify that (5) holds also if some of the lengths in (4) exceed R. If
l(uSv) > R then distπ(u, vi) =∞. We already observed that l(uSv) is at most l(uPv) (the
length of a shortest u, v-path internal in a subset of vertices) and also at most l(uQvrRv)
(the length of a u, v-walk internal in the same set vertices). Thus, both values on the right
hand side of (5) are also ∞. Conversely, if l(uSv) ≤ R then l(uPv) ≤ R, in which case
distπ′(u, vi) = l(uPv), or l(uQvr) + l(vrRr) ≤ R, in which case both distπ′(u, vr) = l(uQvr)
and distπ′(vr, vi) = l(vrRvi), because lengths are nonnegative. In any case, the minimum
operation will pick the correct value. J

2.4 Tree decompositions
We consider the standard notion of a (nice) tree decomposition. To fix notation, consider a
rooted, binary tree T and associate with each node t ∈ T a set Vt of vertices, called a piece.
Such a tree T is nice if it satisfies the following conditions:
1. if t is a leaf or the root then Vt is a singleton,
2. if t has a single child t′ then there exists a vertex v ∈ V such that either v /∈ Vt′ and

Vt = Vt′ ∪ {v}, in which case we say that t introduces v, or v ∈ Vtt′ and Vt = Vt′ − {v},
in which case we say that t forgets v.

3. if t has two children t′ and t′′ then Vt = Vt′ = Vt′′ .
The tree T forms a tree decomposition of G if the following conditions hold:
1. V (G) =

⋃
t∈T Vt.

2. for each uv ∈ E(G) there exists t ∈ T such that u, v ∈ Vt.
3. for each u ∈ V (G), the set of nodes t ∈ T such that u ∈ Vt are connected.



T. Husfeldt 16:7

The width of a tree decomposition is maxt∈T |Vt|−1. The treewidth of a graph is the minimum
width of any tree decomposition of G.

For each node t, we define a tripartition π(t) as the disjoint partition (U, V,W ) of V (G)
given as follows:
1. V is the piece Vt associated with t in the tree decomposition.
2. Intuitively, U are the vertices ‘below’ t. Formally, let T ′ denote the successors of t in T .

Then

U = {Vt′ | t′ ∈ T ′ } − Vt .

3. The remaining vertices belong to W , so W = V (G)− (Vt ∪ U).
We think of W as the vertices ‘above’ the node t, but remember that W includes vertices
that are associated with siblings of t, so ‘above’ is a slightly misleading term.

We are finally ready to define our distance measures. For u ∈ U ∪ V and v ∈ V consider
distπ(t)(u, v). Intuitively, this is the ‘below’-internal distance in the sense that U contains
the vertices ‘below’ the current node in the tree decomposition. The corresponding set of
distance vectors is Dπ(t).

Symmetrically, from π(t) = (U, V,W ) we define the ‘reverted’ partition ρ(t) as (W,V,U).
Then, for w ∈ W ∪ V and v ∈ V we consider distρ(t)(w, v). Intuitively, this is the ‘above’-
internal distance in the sense that W are the vertices ‘above’ the current node in the tree
decomposition. The corresponding set of distance profiles is Dρ(t).

We proceed to establish that the two sets Dπ(t) and Dρ(t) can be computed for each node
t ∈ T of the tree decomposition. The ‘below’-values are established bottom-up, after which
the ‘above’-values are established top-down.

I Algorithm D (Distance profiles). Given a graph G, its tree decomposition T , and an integer
R such that R ≥ diamG, this algorithm computes the sets Dπ(t) and Dρ(t) for each t ∈ T .

The algorithm works by traversing the tree decomposition twice, also computing for each
t ∈ T and each pair of vertices u, v ∈ Vt, the distances distπ(t)(u, v) and distρ(t)(u, v).

D1 – Traverse T bottom-up. For each leaf t of T , set Dπ(t) = ∅. Traverse T bottom-up
using Steps D2–D4. Then go to Step D5.

D2 – Introduce. If node t with child t′ introduces vertex vr to Vt′ = {v1, . . . , vr−1} then
compute distπ(t)(di, dj) for i ≤ i < j ≤ r and Dπ(t) from distπ(t′)(di, dj) and Dπ(t′) using
Lemma 4 with π = π(t) and π′ = π(t′).

D3 – Forget. If node t with child t′ forgets vertex vr from Vt′ = {v1, . . . , vr} then compute
distπ(t)(di, dj) for 1 ≤ i < j < r and Dπ(t) from distπ(t′)(vi, vj) and Dπ(t′) using Lemma 5
with π = π(t) and π′ = π(t′).

D4 – Join. If t joins t′ and t′′, with Vt = Vt′ = Vt′′ = {1, . . . , vr} then set

Dπ(t) = Dπ(t′) ∪Dπ(t′′) ,

and for each u, v ∈ Vt set

distπ(t)(u, v) = min{distπ(t′)(u, v), distπ(t′′)(u, v)} .

D5 – Traverse T top-down. At the root t of T , set Dρ(t) = ∅. Traverse T top-down using
Steps D6–D8. Then return.

D6 – Child of introduce. If t is the child of a node t′ introducing vr to Vt = {v1, . . . , vr−1}
then compute distρ(t)(vi, vj) for 1 ≤ i < j < r and Dρ(t) from distρ(t′)(vi, vj) and Dρ(t′)
using Lemma 5 with π = ρ(t) and π′ = ρ(t′).

IPEC 2016



16:8 Computing Graph Distances Parameterized by Treewidth and Diameter

D7 – Child of forget. If t is the child of a node t′ forgetting vr from Vt = {v1, . . . , vr} then
compute distρ(t)(vi, vj) for 1 ≤ i < i ≤ r and Dρ(t) from distρ(t′)(vi, vj) and Dρ(t′) using
Lemma 4 with π = ρ(t) and π′ = ρ(t′).

D8 – Child of join. If t is the child of a join node t′ and the sibling of t′′ then set

Dρ(t) = Dρ(t′) ∪Dπ(t′′) ,

and for each u, v ∈ Vt, set

distρ(t)(u, v) = min{distρ(t′)(u, v),distπ(t′′)(u, v)} .

Note the asymmetry in Steps D4 and D8. On the way up, we join information from ‘below’
the child nodes; on the way down we join information from ‘above’ the parent node and
‘below’ the other sibling. The correctness of the simple minimum operation in those two
steps crucially rests on the fact that distπ′′ records only the distances that are internal to
the first part U of π′′ (and similarly for π′ or ρ′). In particular, no new paths internal to the
first parts of π or ρ (both of which contain many more vertices than U) are introduced at
these join nodes.

We can now compute the eccentricity of each vertex from the following lemma:

I Lemma 6 (Eccentricities). Let v be a vertex in G with e(v) ≤ r. For any piece Vt =
{v1, . . . , vr} such that v ∈ Vt, we have

e(v) = max
(d1,...,dr)

min
1≤i≤r

di + dist(v, vi) , (6)

where the maximum is taken over all distance profiles (d1, . . . , dr) ∈ Dπ(t) ∪Dρ(t).

Proof. Consider a shortest path uPv. Assume u ∈ U , write π for π(t) and let (d1, . . . , dr) =
pπ(u). Let vi denote the first vertex on uPv that belongs to Vt, possibly vi = u. Because
uPvi is a shortest paths and it is U -internal we have l(uPvi) = di. Because viPv is a shortest
path we have l(viPv) = dist(vi, v). Thus, l(uPv) = l(uPviPv) = di + dist(v, vi). To see that
uPv attains the minimum over all i on the right and side of the expression, assume for a
moment that there exits j such that dj + dist(v, vj) < di + dist(v, vi). Choose a shortest
U -avoiding path uQvj of length dj and a shortest path vjRv of length dist(v, vj). Then the
walk uQvjRv would be shorter than the shortest path uPv, which is absurd. Thus,

l(uPv) = min
1≤i≤r

di + dist(v, vi)

= min
1≤i≤r

[
pπ(u)

]
i
+ dist(v, vi) ,

where
[
pπ(u)

]
i
is the ith coordinate of the vector pπ(u). Maximising over all u ∈ U we arrive

at

max
u∈U

l(uPv) = max
u∈U

min
1≤i≤r

[
pπ(u)

]
i
+ dist(v, vi)

= max
pπ(u)∈Dπ

min
1≤i≤r

[
pπ(u)

]
i
+ dist(v, vi)

= max
(d1,...,dr)∈Dπ

min
1≤i≤r

{di + dist(v, vi)} ,

by definition of Dπ. Repeating this argument to W and the corresponding distance profile
vectors indexed by ρ we see that the length of the longest shortest path uPv is indeed
expressed by (6). J



T. Husfeldt 16:9

Proof of Theorem 1, vertex-superlinear. Assume without loss of generality that G is con-
nected.

First assume that we know a bound R with R ≥ diamG but R = O(diamG). We
compute a tree decomposition T of width O(k) using Theorem 2. We then run Algorithm D
on input G and T . From the resulting Dπ and Dρ, we use Theorem 3 and Lemma 6 to
compute all eccentricities. From these values we can easily compute diamG = maxv e(v),
rad(G) = minv e(v), and list the vertices on the perimeter and in the center.

It remains to analyse the running time. Algorithm D performs two passes through T ,
which as O(kn) nodes. At each node, the computation is dominated by the applications
of Lemmas 4 and 5. This entails processing Dπ and Dπ′ , both of which are bounded by
(R+ 2)O(k). The total running time of algorithm D therefore bounded by |T |(R+ 2)O(k) =
n expO(k log diamG). When we apply Lemma 6, we need to compute the pairwise distances
dist(v, vi) for v, vi ∈ Vt for each tree node t ∈ T . This entails |T |

(
O(k)

2
)
computations, each

requiring time O(|T |k6) after O(k3n logn) preprocessing according to Theorem 3. Since we
have |T | = O(kn), this step takes time n1+o(1) poly(k).

If we do not know R, we can search for it iteratively R = 2, 3, . . ., until no infinite
eccentricities appear. This increases the running time by a factor of at most diamG, which
is absorbed in our time bounds. J

3 Vertex-linear time

We finish the proof of Theorem 1 with the desired time bound by showing how the distances
between vertices within the same piece can be computed in time linear in n. The idea is to
construct a graph whose edge lengths model those paths that have all their internal nodes
outside of the current piece. A standard all-pairs shortest paths computation among those
vertices then suffices.

I Algorithm L (Linear time distances). Given a graph and a tree decomposition T , this
algorithm computes dist(u, v) for each pair of vertices u, v belonging to Vt.

L1 – Internal distances. Compute distπ(t) and distρ(t) as in algorithm D, with R = n.
L2 – Traverse T top-down. Process T top-down. At each node t perform Steps L3 and L4.
L3 – Construct H. Let H be the complete graph on vertex set Vt. If t has a single child

then set l(u, v) = min{distπ(t)(u, v), distρ(t)(u, v)}. If t has two children t′ and t′′ then
set l(u, v) = min{distπ(t′)(u, v), distπ(t′′)(u, v), distρ(t)(u, v)}.

L4 – Find distances between all pairs in H. Run the Bellman–Ford algorithm to compute
the distances distH(u, v) in H between each pair of vertices u, v ∈ Vt. Let dist(u, v) =
distH(u, v).

I Theorem 7. Algorithm L is correct. If G has n vertices and T has width k then the
algorithm runs in time O(nk3).

Proof. In the first step, the algorithm mimics algorithm D but avoids the computation of
Dφ and Dρ. This requires, at each node t ∈ T , the constant-time computations described in
Lemmas 4 and 5 for each pair u, v ∈ Vt. Thus, the running time is dominated by running
the all-pairs shortest paths computation in Step L4, which runs in time O(|V (H)|3). J

We note that the performance of the algorithm is dwarfed by the requirements of actually
computing a tree decomposition, so for the polynomial dependency on k it is crucial that T
be provided as part of the input.

IPEC 2016



16:10 Computing Graph Distances Parameterized by Treewidth and Diameter

This finishes the proof of Theorem 1. Note that the computations of algorithm L can be
performed during the top-down traversal in Steps D6–D8, just after distρ(t) is found. Thus,
a unified presentation of the algorithm could be given in only two traversals.

4 Conclusion

Our constructions do extend readily to directed graphs, and parameters like directed eccent-
ricity, source radius, etc. can be computed within the same time bound as their undirected
counterparts. We choose to claim this here without proof, since a more general present-
ation that encompasses directed graphs incurs considerable expository overhead without
providing much insight outside of what is already present in the appendix of [1]. The
most notable changes arise in the computation of round-trip distance from u to v, which
is the minimum of the sums of the lengths of directed paths uPv and vQu. To compute
these values, we need to change the definition of distance profile vectors to matrices: For
partition π = (U, {v1, . . . , vr},W ) consider the r × r matrix M with mij = d if there is a
vertex u ∈ U such that there exist U -internal shortest directed paths viPu and uPvj with
d = l(viPu) + l(uPvj). The set Dπ then contains all matrices with elements bounded by
R that are realised by some u ∈ U . The total size of this set is bounded by (R + 2)r2 .
When vr is forgotten in the tree decomposition, the entries mir and mrj account for directed
U -internal paths of length mir +mij . The resulting time running time, suppressing several
details, becomes n expO(k2 log diamG), much like the bound of O(k2n logk

2−1 n) of [1]. In
both constructions, we notice an exponential dependency on the square of the treewidth.

Our bounds rely on the fact that we store merely the existence of vertex pairs at certain
distances, not the number of such pairs. Thus, our constructions have nothing to contribute
to various graph distance measures that involve counting, such as the Wiener index, the
median, or closeness centrality.

The main question opened up by our algorithms is the complexity of computing supercon-
stant diameter. In particular, an algorithm with running time n expO(k) could exist even
for diameter ω(1). However, we conjecture that the diameter of a graph with treewidth and
diameter k cannot be computed in time n2−ε exp o(k log k).

Acknowledgements. I am happy that Virginia Vassilevska Williams told me about this
question.

References

1 Amir Abboud, Virginia Vassilevska Williams, and Joshua R. Wang. Approximation and
fixed parameter subquadratic algorithms for radius and diameter in sparse graphs. In
Proceedings of the Twenty-Seventh Annual ACM–SIAM Symposium on Discrete Algorithms,
SODA 2016, Arlington, Va, USA, January 10–12, 2016, pages 377–391. SIAM, 2016.

2 Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lok-
shtanov, and Michał Pilipczuk. An O(ckn) 5-approximation algorithm for treewidth. SIAM
J. Comput., 45(2):317–378, 2016.

3 Sergio Cabello and Christian Knauer. Algorithms for bounded treewidth with orthogonal
range searching. Comput. Geom., 42(9):815–824, 2009.

4 Shiva Chaudhuri and Christos D. Zaroliagis. Shortest path queries in digraphs of small
treewidth. Algorithmica, 27(3):212–226, 2000.



T. Husfeldt 16:11

5 David Eppstein. Subgraph isomorphism in planar graphs and related problems. In Proceed-
ings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, 22-24 January
1995. San Francisco, California, pages 632–640. ACM/SIAM, 1995.

6 Russel Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

7 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms for graphs of
bounded treewidth are probably optimal. In Proceedings of the Twenty-Second Annual
ACM–SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California,
USA, January 23-25, 2011, pages 777–789. SIAM, 2011.

8 Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the
diameter and radius of sparse graphs. In Symposium on Theory of Computing Conference,
STOC’13, Palo Alto, CA, USA, June 1–4, 2013, pages 515–524. ACM, 2013.

9 Dan E. Willard. New data structures for orthogonal range queries. SIAM J. Comput.,
14(1):232–253, 1985.

IPEC 2016





Lower Bounds for Protrusion Replacement by
Counting Equivalence Classes∗†

Bart M. P. Jansen1 and Jules J. H. M. Wulms2

1 Eindhoven University of Technology, Eindhoven, The Netherlands
b.m.p.jansen@tue.nl

2 Eindhoven University of Technology, Eindhoven, The Netherlands
j.j.h.m.wulms@tue.nl

Abstract
Garnero et al. [SIAM J. Discrete Math. 2015, 29(4):1864–1894] recently introduced a framework
based on dynamic programming to make applications of the protrusion replacement technique
constructive and to obtain explicit upper bounds on the involved constants. They show that for
several graph problems, for every boundary size t one can find an explicit setRt of representatives.
Any subgraph H with a boundary of size t can be replaced with a representative H ′ ∈ Rt such
that the effect of this replacement on the optimum can be deduced from H and H ′ alone. Their
upper bounds on the size of the graphs in Rt grow triple-exponentially with t. In this paper we
complement their results by lower bounds on the sizes of representatives, in terms of the boundary
size t. For example, we show that each set of planar representatives Rt for the Independent
Set problem contains a graph with Ω(2t/

√
4t) vertices. This lower bound even holds for sets that

only represent the planar subgraphs of bounded pathwidth. To obtain our results we provide
a lower bound on the number of equivalence classes of the canonical equivalence relation for
Independent Set on t-boundaried graphs. We also find an elegant characterization of the
number of equivalence classes in general graphs, in terms of the number of monotone functions of
a certain kind. Our results show that the number of equivalence classes is at most 22t , improving
on earlier bounds of the form (t+ 1)2t .

1998 ACM Subject Classification G.2.1 Combinatorics, G.2.2 Graph Theory

Keywords and phrases protrusions, boundaried graphs, independent set, equivalence classes,
finite integer index

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.17

1 Introduction

Protrusion replacement is a versatile tool for attacking optimization problems on graphs.
When applied to solve an optimization problem on a graph G, the main idea is the following:
repeatedly replace a protrusion subgraph H ⊆ G that interacts with the rest of G through a
small boundary, by a smaller representative subgraph H ′. Suppose that we can ensure that (i)
the change ∆ in the optimum caused by this replacement only depends on H and H ′, and that
(ii) we can efficiently analyze H to find a suitable replacement H ′ and the corresponding ∆.
Then we can solve the problem on G by solving it on the smaller graph and adding ∆ to the
final result. In recent years, protrusion replacement has been applied to obtain approximation

∗ A full version of the paper is available at https://arxiv.org/abs/1609.09304.
† This work was supported by NWO Veni grant “Frontiers in Parameterized Preprocessing” and NWO

Gravitation grant “Networks”.

© Bart M.P. Jansen and Jules J.H.M. Wulms;
licensed under Creative Commons License CC-BY

11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin; Article No. 17; pp. 17:1–17:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.17
https://arxiv.org/abs/1609.09304
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


17:2 Lower Bounds for Protrusion Replacement by Counting Equivalence Classes

algorithms [7, 8], kernelization algorithms [1, 7, 8, 10, 15], and fixed-parameter tractable
algorithms [8, 15]. The generality of protrusion replacement comes at a price: it often results
in proofs that efficient algorithms of a certain type exist, without showing explicitly how such
algorithms can be constructed and without giving any explicit bounds on the constant factors
involved in the analysis. This non-constructivity stems from the use of a property called
finite integer index (FII, defined below). It is used to argue that for every constant boundary
size t, there is a finite set of representatives Rt such that any t-boundaried subgraph H can
safely be replaced by some representative H ′ ∈ Rt, as described above. The key issue is that
FII only guarantees that a finite set of representatives exist, without showing how to find it,
how large the set is, or how many vertices the representative subgraphs have.

To deal with the issue of non-constructivity, Garnero et al. [12] introduced a framework
based on dynamic programming. They showed that explicit bounds for the sizes of represen-
tatives can be obtained by analyzing the number of states required to solve the problem on
graphs of bounded treewidth. By presenting explicit dynamic programming algorithms for
problems such as r-Independent Set and r-Dominating Set, they were able to derive
upper bounds on the size of representatives in terms of the boundary size t. These upper
bounds grow very quickly with t, in some cases triple-exponentially. Garnero et al. [12, §7]
suggest to examine to what extent this exponential dependance is unavoidable. We pursue
this direction by presenting lower bounds.

Boundaried graphs and equivalence. To state our results we have to introduce some
terminology.1 We only consider undirected, finite, simple graphs. Let t be a positive integer.
A t-boundaried graph G consists of a vertex set V (G), an edge set E(G) ⊆

(
V (G)

2
)
, and

an injective labeling λG : {1, . . . , t} → V (G) that identifies t distinct boundary vertices
in the graph. The boundary of the graph is the set BG := {λG(1), . . . , λG(t)}. Two t-
boundaried graphs G and H can be glued together on their boundary, resulting in the
boundaried graph G⊕H that is obtained from the disjoint union of G and H by identifying
corresponding boundary vertices and removing any parallel edges that are introduced. That
is, we merge λG(i) with λH(i) for each i ∈ [t]. An optimization problem Π on graphs assigns to
every (unboundaried) graph G an optimal solution value Π(G) ∈ Z. We will also write Π(G)
for a boundaried graph G to denote the optimum of the underlying unboundaried graph.
Two t-boundaried graphs G and H are equivalent with respect to Π, denoted G ≡Π,t H, if
there exists a transposition constant ∆ ∈ Z such that for every t-boundaried graph F :

Π(G⊕ F ) = Π(H ⊕ F ) + ∆. (1)

It is easy to see that ≡Π,t is an equivalence relation. Problem Π has finite integer index
if ≡Π,t has a finite number of equivalence classes for each fixed t. In the remainder, we omit
the subscript t when it is clear from the context. Observe that these notions formalize the
idea behind protrusion replacement sketched above: if G ≡Π,t H, then replacing G by H
changes the optimum by exactly ∆.

Our results. We analyze the canonical equivalence relation ≡is,t on t-boundaried graphs
for the Independent Set (is) problem, which asks for the maximum size of an independent

1 To avoid an abundance of cumbersome definitions, our terminology differs slightly from that in earlier
work (cf. [2, 3], [5, §2]). In particular, we do not allow t-boundaried graphs with fewer than t boundary
vertices. The fact that we consider optimization problems as in [5], rather than decision problems as
in [1, 12], forms no essential difference; our lower bounds also apply to those settings.



B.M.P. Jansen and J. J. H.M. Wulms 17:3

set of pairwise non-adjacent vertices. We focus on Independent Set due to its simple
combinatorial structure, but our techniques carry over to Dominating Set, as explained
in §8. Define a set of representatives for ≡is,t to be a set Rt of t-boundaried graphs, such
that for every t-boundaried graph G there exists H ∈ Rt with G ≡is,t H. Let the critical
size of a set of representatives be the number of vertices of its largest graph. We aim to give
a lower bound on the critical size of any set of representatives for Independent Set in
terms of t. Our approach consists of two steps. First, we construct a large set of pairwise
nonequivalent graphs to give a lower bound on the number of equivalence classes of ≡is,t.
Then we use a counting argument to leverage this into a lower bound on the critical size.
Observe that each equivalence class must be represented by a different graph. It follows that
if the number of distinct t-boundaried graphs with at most s vertices is smaller than the
number of equivalence classes, then the critical size of any set of representatives must be
larger than s to give each class a distinct representative. By relating the number of small
graphs to the number of equivalence classes, we therefore obtain the desired lower bounds.

Protrusion replacement is often applied in the context of restricted graph classes, where
the protrusions to be replaced are known to have bounded treewidth and may even belong to a
family of embeddable graphs such as planar graphs. With these application areas in mind, we
develop our lower bounds to apply even when we wish only to have a representative for each
equivalence class that contains a planar graph whose treewidth is t+O(1), for boundary size t.
To find a large set of nonequivalent graphs we adapt a construction of Lokshtanov et al. [16],
which they used to prove that Independent Set on graphs of treewidth w cannot be solved
in time O∗((2− ε)w) for any ε > 0 unless the Strong Exponential Time Hypothesis fails. We
show that the graphs they construct can be made planar while increasing the treewidth (and
in fact the pathwidth) by only a small additive term. More importantly, we show how to use
this adapted construction to build a set ofM(t)−2 planar graphs of small treewidth which are
pairwise nonequivalent under ≡is,t, for all t. The term M(t) ≥ 2( t

bt/2c) ≥ 22t/
√

4t denotes the
t-th Dedekind number, which counts the number of monotone Boolean functions of t variables.
The number of equivalence classes therefore grows double-exponentially with t. Using the
counting argument above, this allows us to give a lower bound of Ω(logM(t)) ≥ Ω(2t/

√
4t)

on the critical size of any set of planar representatives for the equivalence classes of ≡is,t that
contain a planar graph of bounded pathwidth.

While developing a lower bound on the number of equivalence classes for planar graphs
of bounded pathwidth, we also found an exact characterization of the number of equivalence
classes of ≡is,t in general. We define a natural class of functions from {0, 1}t to N that we
call t-representative functions. We give a bijection between the t-representative functions and
the equivalence classes of ≡is,t for t-boundaried graphs. As we will show that all monotone
Boolean functions which are not constantly zero yield a distinct t-representative function, this
gives a lower bound of M(t)− 1 on the number of equivalence classes of ≡is,t. On the other
hand, we show that the number of such functions is at most 22t−1. The double-exponential
lower bound for the number of equivalence classes containing a bounded-pathwidth planar
graph is therefore not far off from the upper bound of 22t−1 in general graphs. The fact
that the base of the double-exponential in this expression is independent of t is noteworthy.
The naive way to bound the number of equivalence classes is to associate a table to each
t-boundaried graph. For each subset S of the boundary vertices B, the table stores the
maximum size of an independent set containing no vertex of B \ S. There are at most t+ 1
distinct values in such a table, and two boundaried graphs whose tables differ in the same
universal constant in all positions are easily shown to be equivalent. As there are 2t entries in
the table, and t+ 1 different options per entry, this gives an upper bound of (t+ 1)2t on the

IPEC 2016



17:4 Lower Bounds for Protrusion Replacement by Counting Equivalence Classes

number of equivalence classes. Garnero et al. [12, Lemma 3.7] obtain the same bound using
a subtly different definition for the table. Our result of 22t−1 yields a slight improvement.

2 Preliminaries

We use N to denote the natural numbers, including 0. For a positive integer n and a set X
we use

(
X
n

)
to denote the collection of all subsets of X of size n. The power set of X is

denoted 2X . The set {1, . . . , n} is abbreviated as [n]. A Boolean function is a function of
the form f : {0, 1}n → {0, 1}. We sometimes use the equivalent view that a Boolean function
assigns a 0/1-value to every subset S ⊆ [n], which is the value of f when the arguments
whose index is in S are set to 1 and the remaining arguments are set to 0. A Boolean
function f : 2[n] → {0, 1} is monotone if f(S′) ≤ f(S) whenever S′ ⊆ S ⊆ [n]. We will call
Boolean functions in this form set-functions, and may replace [n] by other finite sets of
ordered elements. A formula in conjunctive normal form (CNF) is monotone if no literal
appears negated. Proofs for statements marked (F) can be found in the full version [14].

I Proposition 1 (F). For every non-constant monotone Boolean set-function f : 2[n] →
{0, 1} there is a monotone CNF formula φ such that for all x1, . . . , xn ∈ {0, 1}n we
have φ(x1, . . . , xn) = 1 if and only if f({i | xi = 1}) = 1.

Graphs. We will denote the treewidth of a graph G by tw(G) and its pathwidth by pw(G).
It is well-known that pw(G) ≥ tw(G); refer to a textbook for further details [4, §7]. We use
the following consequence of the gluing operation.

I Proposition 2 (F). Let G and H be t-boundaried graphs that share the same set of boundary
vertices B = {v1, . . . , vt} but are otherwise vertex-disjoint. Then a vertex set X ⊆ V (G⊕H)
is independent in G ⊕ H if and only if X ∩ V (G) is independent in G and X ∩ V (H) is
independent in H.

3 Characterizing equivalence classes for Independent Set

In this section we derive several tools to analyze the equivalence classes of ≡is. For each t-
boundaried graph G we define a function that captures the interaction of optimal independent
sets with its boundary. These will be useful to reason about the (non)equivalence of pairs of
graphs with respect to ≡is.

I Definition 3. Let G be a t-boundaried graph with boundary B = {v1, . . . , vt}. The
function sG : 2B → N expresses the size of a maximum independent set in G whose intersection
with the boundary is a subset of a given set:

sG(S) := max
{
|X|

∣∣X is an independent set in G with X ∩B ⊆ S
}
. (2)

We will see that equivalence classes can be characterized by the functions sG of the
graphs G in that class. The next lemma shows that when gluing two boundaried graphs G
and H together, the optimum of the resulting graph G⊕H can be deduced from sG and sH .
The identity we prove is reminiscent of the recurrence that is used for join nodes when
solving Independent Set on graphs of bounded treewidth [4, §7.3.1].

I Lemma 4 (F). Let G and H be t-boundaried graphs for some t. The following holds:

max
S⊆B
{sG(S) + sH(S)− |S|} = optis(G⊕H).



B.M.P. Jansen and J. J. H.M. Wulms 17:5

To relate the equivalence of graphs to properties of the corresponding functions s, the
following indicator graphs will be convenient.

I Definition 5. Let t be a positive integer and B = {v1, . . . , vt}. For each S ⊆ B define
the t-boundaried indicator graph IS with boundary B as the result of the following process:
starting from an edgeless graph with vertex set B, for each vi ∈ B \ S add vertices ui, u′i and
the edges {vi, ui}, {vi, u′i} to IS .

Each boundary vertex not in S thus becomes the center of a star with two leaves in IS ,
and boundary vertices in S are isolated vertices in IS . The next proposition shows that
maximum independent sets of F ⊕ IS reveal the value of sF (S).

I Proposition 6 (F). optis(F ⊕ IS) = sF (S) + 2(t− |S|) for all t-boundaried graphs F .

Using Proposition 6 we can show that the equivalence class of a boundaried graph G
with respect to ≡is is completely characterized by the function sG.

I Theorem 7 (F). Let G and H be two t-boundaried graphs with boundary B = {v1, . . . , vt}.
Then G ≡is,t H if and only if there exists a constant c ∈ Z such that sG(S) = sH(S) + c for
all S ⊆ B.

Theorem 7 shows that two t-boundaried graphs G and H are equivalent under ≡is if
the functions sG and sH differ by a fixed constant for all inputs. It will be convenient to
eliminate this degree of freedom by normalizing the functions.

I Definition 8. The normalized boundary function of a t-boundaried graph G with bound-
ary B is the function s0

G : 2B → N given by s0
G(S) := sG(S)− sG(∅).

Intuitively, s0
G(S) represents how much larger an independent set can be if we are allowed

to use the boundary vertices from S, compared to when we are not allowed to use any
boundary vertices in the independent set.

I Corollary 9 (F). Let G and H be two t-boundaried graphs with boundary B = {v1, . . . , vt}.
Then G ≡is H if and only if s0

G = s0
H .

Corollary 9 shows that equivalence classes of ≡is are determined by the normalized
boundary functions of the graphs in the class. To see how many different equivalence classes
there can be, it is therefore useful to analyze the properties of normalized boundary functions.

I Definition 10. Let t be a positive integer and let B := {v1, . . . , vt}. A function f : 2B → N
is called a t-representative function if it satisfies the following three properties:
1. f(∅) = 0.
2. Monotonicity: for any S′ ⊆ S ⊆ B we have f(S′) ≤ f(S).
3. Bounded increase: For every nonempty set S ⊆ B we have f(S) ≤ 1 + minv∈S f(S \ {v}).

I Lemma 11. Let G be a t-boundaried graph with boundary B := {v1, . . . , vt}. Then s0
G is

a t-representative function.

Proof. We prove that s0
G has the three properties given in Definition 10.

1. By definition of s0
G we have s0

G(∅) = sG(∅)− sG(∅) = 0.
2. This follows directly from Definitions 3 and 8: the collection of independent sets over

which sG(S′) optimizes is a subset of the independent sets over which sG(S) optimizes.

IPEC 2016



17:6 Lower Bounds for Protrusion Replacement by Counting Equivalence Classes

3. Consider a nonempty set S ⊆ B and let X be an independent set in G of size sG(S)
with X ∩B ⊆ S, which exists by Definition 3. For every v ∈ S we have that X \ {v} is
an independent set of size |X| − 1 in G whose intersection with B is a subset of S \ {v},
implying that sG(S \ {v}) ≥ |X| − 1 = sG(S) − 1. Adding 1 − sG(∅) on both sides we
obtain s0

G(S) = sG(S)− sG(∅) ≤ 1 + sG(S \ {v})− sG(∅) = 1 + s0
G(S \ {v}). As this holds

for all v ∈ S, it holds in particular for v ∈ S minimizing s0
G(S \ {v}). J

4 Defining graphs with given boundary characteristics

Corollary 9 shows that t-boundaried graphs with the same normalized boundary function
belong to the same equivalence class. Since each normalized boundary function is a t-
representative function by Lemma 11, this implies that the number of equivalence classes
of ≡is,t is at most the number of distinct t-representative functions. In Lemma 13 we will
show that, surprisingly, the converse also holds: for each t-representative function there is
a distinct equivalence class of ≡is,t. Before proving that lemma, we first derive a useful
property of t-representative functions.

I Proposition 12 (F). Each t-representative function f satisfies f(S′)− |S′ \S| ≤ f(S) for
all S, S′ ⊆ B.

I Lemma 13. For every t-representative function f , there exists a t-boundaried graph G
with boundary B := {v1, v2, . . . , vt}, such that s0

G(S) = f(S) for every S ⊆ B.

Proof. Consider an arbitrary t-representative function f , which assigns a non-negative integer
to each S ⊆ B. We construct a t-boundaried graph G for which s0

G = f , as follows:
1. Start from an edgeless graph with vertex set B, which is the boundary of the graph.
2. For each i ∈ [t] add a vertex ui and the edge {ui, vi}.
3. For each S ⊆ B with f(S) > 0, add a set VS = {vS,1, . . . , vS,f(S)} consisting of f(S)

vertices to the graph. These vertices are false twins (all share the same open neighborhood)
and are connected to the rest of the graph as follows:
a. For each i ∈ [t] with vi ∈ S, all vertices of VS are adjacent to ui.
b. For each i ∈ [t] with vi 6∈ S, all vertices of VS are adjacent to vi.
c. All vertices of VS are adjacent to all vertices VS′ that are created for sets S′ 6= S.

We show that sG(S) = t + f(S) for all S ⊆ B. This will imply that s0
G(S) = sG(S) −

sG(∅) = (t+ f(S))− (t+ f(∅)) = (t+ f(S))− (t+ 0) = f(S) for all S ⊆ B, since f(∅) = 0
by Definition 10. We therefore conclude the proof by showing that sG(S) = t + f(S) for
all S ⊆ B, by establishing two inequalities. Consider an arbitrary S ⊆ B.

(≥) To show sG(S) ≥ t+ f(S) we construct an independent set X in G of size t+ f(S)
that intersects B in a subset of S. If f(S) = 0 then X = {u1, . . . , ut} suffices, so assume
in the remainder that f(S) > 0. Let X consist of the f(S) vertices in VS , together with
the vertices {ui | i ∈ [t], vi 6∈ S} and {vi | i ∈ [t], vi ∈ S}. Then |X| = t + f(S), and
using the construction above it is straight-forward to verify that X is an independent set.
Since X ∩B = S, this shows that sG(S) ≥ t+ f(S).

(≤) Now we argue that sG(S) ≤ t+ f(S). Consider a maximum independent set X in G
that intersects B in a subset of S, which has size sG(S) by Definition 3. If X contains no
vertices of VS′ for any S′ ⊆ B, then X has at most t vertices: an independent set contains
at most one vertex of each edge {vi, ui} for each i ∈ [t]. Hence |X| ≤ t in this case, which
is at most t + f(S) since f(S) ≥ 0 by Properties 1 and 2. In the remainder, assume X
contains a vertex of VS′ for some S′ ⊆ B. This implies that X contains no vertices from VS′′



B.M.P. Jansen and J. J. H.M. Wulms 17:7

for any S′′ 6= S′, since all vertices of VS′ are adjacent to all vertices of VS′′ by construction
of G. Hence besides the vertices from VS′ , the set X only contains vertices of edges {vi, ui}
for i ∈ [t]. The independent set X contains at most one vertex from each such edge. For
each vi ∈ S′ \ S, observe that X does not contain vi (since X ∩ B ⊆ S), and X does not
contain ui either (since ui is adjacent to all members of VS′). So X has at most f(S′) vertices
from VS′ , no vertices of {vi, ui} for each vi ∈ S′ \ S, and at most one vertex from each of the
remaining t−|S′ \S| edges. It follows that |X| ≤ f(S′) + (t−|S′ \S|). By Proposition 12 we
have f(S′)− |S′ \ S| ≤ f(S), which shows that |X| ≤ t+ f(S) and concludes the proof. J

5 Counting t-representative functions

We say that two t-representative functions are distinct if their function values differ on some
input. Lemma 13 shows that for each t-representative function f , there exists a t-boundaried
graph whose normalized boundary function equals f . Together with Corollary 9, which
says that boundaried graphs with the same normalized boundary function are equivalent
under ≡is,t, this establishes a bijection between the equivalence classes of ≡is,t and the
t-representative functions. To bound the number of equivalence classes of ≡is,t it therefore
suffices to bound the number of t-representative functions. Recall that M(t) denotes the t-th
Dedekind number, the number of distinct monotone Boolean functions of t variables.

I Lemma 14 (F). There are at least M(t)− 1 distinct t-representative functions.

It is known that M(t) ≥ 2( t
bt/2c). To see this, consider the subsets St =

( [t]
bt/2c

)
of [t] of

size bt/2c. For each subset S ′t ⊆ St we obtain a different monotone set-function by saying
that f(S) = 1 if and only if S contains one of the subsets in S ′t. By Stirling’s approximation
we have

(
t
bt/2c

)
≥ 2t/

√
4t, which implies that M(t) ≥ 22t/

√
4t. The following lemma gives an

upper bound on the number of t-representative functions.

I Lemma 15 (F). The number of distinct t-representative functions is at most 22t−1.

Lemmata 14 and 15 give the following corollary for each positive integer t.

I Corollary 16. The number of equivalence classes of ≡is,t lies between 22t/
√

4t and 22t−1.

6 Defining planar graphs with given boundary characteristics

In Lemma 13 we constructed nonequivalent t-boundaried graphs based on distinct t-
representative functions. The graphs constructed in that lemma have large treewidth
and are far from being planar; they contain cliques of size roughly 2t. To derive lower
bounds that are meaningful even when protrusion replacement is applied for planar graphs
of bounded treewidth, we present an alternative construction to lower bound the number
of equivalence classes that contain a planar graph of small pathwidth (and therefore have
small treewidth). The following gadget, of which several variations were used in earlier work
(cf. [13, Theorem 5.3] and [9, 16]), will be useful in our construction.

I Definition 17. Let k be a positive integer. The clause gadget of size k is the graph Ck
constructed as follows (see Figure 1a). For each i ∈ [k] create a triangle on vertices {ui, vi, wi}.
Connect these into a path by adding all edges {wi, ui+1} for i ∈ [k − 1]. Finally, add
vertices vstart, vend and the edges {vstart, u1} and {wk, vend}. The vertices (v1, . . . , vk) are
the terminals of the clause gadget.

IPEC 2016



17:8 Lower Bounds for Protrusion Replacement by Counting Equivalence Classes

vend

vstart

v3

v2

v1
u1

w1

u2

w2

u3

w3

(a) Clause gadget C3

v v′

u

u′

(b) Crossover gadget G×

H
HHHHj

i 0 1 2

0 7 8 8
1 8 9 9
2 7 8 9

(c) Values of optis in G×

Figure 1 Gadgets for Independent Set. The crossover gadget is due to Garey et al. [11, Fig. 11
and Table 1]. The table on the right shows for all relevant combinations of i and j what the maximum
size is of an independent set X satisfying |{v, v′} ∩ X| = i and |{u, u′} ∩ X| = j.

I Observation 18 (Cf. [9, Obs. 6–8]). For each positive k ∈ N, the clause gadget Ck has the
following properties:
1. optis(Ck) = k + 2.
2. Every maximum independent set in Ck contains a terminal vertex vi for some i ∈ [k].
3. ∀i ∈ [k] there is a maximum independent set in Ck containing vi but no other terminals.
4. Ck is planar and pw(Ck) = 2.

To ensure our construction yields a planar graph, we use a crossover gadget for Inde-
pendent Set due to Garey et al. [11]. It was originally designed for Vertex Cover, but
since the complement of a maximum independent set is a minimum vertex cover, we can
rephrase the properties of the gadget in terms of independent sets. The crossover gadget G×
is the 22-vertex graph illustrated in Figure 1b, which has four terminals (u, u′, v, v′). When
we have a drawing of a graph G in which exactly two edges {a, b}, {c, d} cross in a common
point, we can planarize the crossing by removing edges {a, b} and {c, d}, introducing a new
copy of G× at the position of the crossing, and adding the edges {a, v}, {v′, b}, {c, u}, {u′, d}.
Garey et al. [11] analyzed the size of a maximum independent set in G× when restricting
which terminal vertices may occur in the set, as shown in Figure 1c. As G× is symmetric in
both the horizontal and vertical axis, and the table shows that a maximum size independent
set size of nine can already be obtained using i = 1 of the terminals {v, v′} and j = 1 of the
terminals {u, u′}, we observe the following.

I Observation 19. For any choice of terminals v∗ ∈ {v, v′} and u∗ ∈ {u, u′} there is a
maximum independent set of size nine in G× that does not contain v∗ or u∗.

The following proposition summarizes the essential features of a planarization operation.

I Proposition 20 (F). Let G be a graph drawn in the plane such that no edge contains a
vertex in its interior and no more than two edges cross in any single point. Let G′ be the
result of planarizing an edge crossing by a crossover gadget. The following holds.
1. For every independent set X in G there is an independent set X ′ in G′ of size |X|+ 9

such that X ′ ∩ V (G) = X.
2. For every independent set X ′ in G′ there is an independent set X ′′ in G′ with |X ′| = |X ′′|

containing exactly nine vertices from G× with X ′′ ∩ V (G) ⊆ X ′ ∩ V (G).
3. For every independent set X ′ in G′ there is an independent set X in G of size |X ′| − 9

such that X ⊆ X ′ ∩ V (G).
4. optis(G′) = optis(G) + 9.

In most applications of crossover gadgets, the only important property is that they have
a fixed effect on the optimum (Property 4). In our case we also have to ensure that the



B.M.P. Jansen and J. J. H.M. Wulms 17:9

P1

Pt

pt,2mpt,1 pt,2 pt,3 pt,4 pt,2i−1 pt,2i

Ci

u′

v

u

v′vstart u1 w1 u2 w2 u3 w3 u4 w4 vend

v1 v2 v3 v4

pt,2m−1

Figure 2 Planarizing the graph Gφ to obtain G′φ in the proof of Lemma 21. Only the clause
gadget for the clause Ci = (x5 ∨x4 ∨x3 ∨x2) is shown. Shaded diamonds represent crossover gadgets.
The boundary B of the graph is circled, containing the first vertex from each path.

crossover gadgets do not disturb how the solutions intersect the boundary of the graph.
Properties 1–3 will be used for this purpose. Using these gadgets we present the construction.

I Lemma 21. Let t be a positive integer and B := {p1,1, p2,1, . . . , pt−1,1, pt,1}. For every non-
constant monotone set-function f : 2B → {0, 1} there is a planar graph G with boundary B
such that pw(G) ≤ t+O(1) and for every S ⊆ B : f(S) = 1 if and only if sG(S) = optis(G).

Proof. Consider a monotone set-function f and let φ be a monotone CNF formula that
represents f in the sense of Proposition 1. Let the clauses of φ be C1, . . . , Cm such that each
clause Ci is a subset of [t] giving the indices of the variables appearing in the clause. Since φ
is monotone, all variables appear positively. The number of literals in Ci is denoted |Ci|.

We first construct a nonplanar graph Gφ of small pathwidth such that for all S ⊆ B

we have f(S) = 1 if and only if sGφ(S) = optis(Gφ). Then we will use crossover gadgets
to turn Gφ into a planar graph G′φ while preserving these properties. The construction is
inspired by a reduction of Lokshtanov et al. [16, Thm. 3.1], and proceeds as follows.
1. We start by creating t paths P1, . . . , Pt, where every path Pi for i ∈ [t] consists of 2m

vertices pi,1, . . . , pi,2m. The boundary B = {p1,1, . . . , pt,1} of graph Gφ contains the first
vertex from each path.

2. For each clause i ∈ [m], add a copy of the clause gadget C|Ci| to the graph and denote its
terminals by (v1, . . . , v|Ci|). Let `(j) denote the j-th variable in the clause for each j ∈
[|Ci|] and sort these such that `(1) > `(2) > . . . > `(|Ci|); this will be useful later on
when planarizing the graph. For each j ∈ [|Ci|] make terminal vj in the clause gadget
adjacent to vertex p`(j),2i on path P`(j). Observe that clause gadgets only connect to
even-numbered vertices on the paths.

I Claim 22 (F). The graph Gφ with boundary B := {p1,1, . . . , pt,1} satisfies:
1. sGφ(B) = optis(Gφ) ≤ mt+

∑
1≤i≤m(|Ci|+ 2).

2. sGφ(B) = optis(Gφ) = mt+
∑

1≤i≤m(|Ci|+ 2).
3. For each S ⊆ B we have f(S) = 1 if and only if sGφ(S) = optis(Gφ).

IPEC 2016



17:10 Lower Bounds for Protrusion Replacement by Counting Equivalence Classes

Claim 22 shows that the boundary function of Gφ expresses the monotone Boolean
function f . The same argumentation as used by Lokshtanov et al. [16, Lemma 3.3] shows
that Gφ has pathwidth t+O(1). However, we will not prove this here for the non-planar
graph Gφ; we will prove a pathwidth bound after planarizing the graph. The planarization
starts from a drawing of Gφ in the plane in which the crossings have a fixed structure. This
drawing is defined as follows (see Figure 2):

Draw each path P1, . . . , Pt horizontally. Place the paths above each other so that P1 is
the highest and Pt is the lowest.
For each clause i ∈ [m] of φ, draw the clause gadget in a planar fashion above the paths,
so that its terminals stick out at the bottom, the lowest-indexed terminal on the left
and the highest-numbered terminal on the right. Draw the gadget for clause i between
the vertical lines containing the 2i− 1-th and the 2i-th vertices on each path. Consider
the set of edges ECi connecting the gadget for clause Ci to the vertices of the paths.
By construction of Gφ, the gadget only connects to vertices with index 2i on the paths.
Draw the edges from ECi in such a way that e ∈ ECi only crosses the edges between
the vertices pj,2i−1 and pj,2i of the paths Pj for j ∈ [t], and do not cross any other edge
e′ ∈ ECi . Since the left-to-right order of the variables in a clause matches the order in
which the paths are laid out from top to bottom, this is possible.

Based on this drawing we planarize the graph Gφ by repeatedly replacing crossings by
crossover gadgets, resulting in a planar graph G′φ as shown in Figure 2. Let N denote the
number of crossover gadgets which were introduced during the planarization process. By
Proposition 20 we know that optis(G′φ) = optis(Gφ) + 9N = mt+ 9N +

∑
1≤i≤m(|Ci|+ 2),

where we use Property 2 of Claim 22 for the second equality. To conclude the proof, it
remains to show that pw(G′φ) ≤ t + O(1) (Claim 24) and that for all subsets S ⊆ B we
have f(S) = 1 if and only if sG′

φ
(S) = optis(G′φ) (Claim 23).

I Claim 23 (F). For every S ⊆ B we have f(S) = 1 if and only if sG′
φ
(S) = optis(G′φ).

I Claim 24 (F). The graph G′φ has pathwidth t+O(1).

This concludes the proof of Lemma 21. J

7 Lower bound for protrusion replacement

To leverage the construction of Lemma 21 into a lower bound on the critical size of a set of
representatives, we need the following lemma. Observe that its second condition shows that
no pair of graphs from the constructed set G is equivalent under ≡is,t, and this is witnessed
already by gluing planar graphs of pathwidth one onto them. This implies that in any
protrusion reduction scheme applied to planar graphs that aims to replace occurrences of
bounded-pathwidth protrusions by representatives, there should be a distinct representative
for each graph in G.

I Lemma 25 (F). For each positive integer t there is a set G ofM(t)−2 distinct t-boundaried
planar graphs of pathwidth t+O(1), such that for each pair of distinct graphs Gf , Gf ′ ∈ G
there are two indicator graphs IS and IB as in Definition 5 such that:
1. The graphs Gf ⊕ IS , Gf ⊕ IB , Gf ′ ⊕ IS, Gf ′ ⊕ IB are planar and have pathwidth t+O(1).
2. optis(Gf ⊕ IS)− optis(Gf ′ ⊕ IS) 6= optis(Gf ⊕ IB)− optis(Gf ′ ⊕ IB).

Finally, we can combine our lower bound on the number of distinct equivalence classes of
Lemma 25 with an upper bound on the number of small graphs to obtain our main result.



B.M.P. Jansen and J. J. H.M. Wulms 17:11

I Theorem 26 (F). Let t ≥ t0 be a sufficiently large positive integer. Let Rt be a set of
t-boundaried planar graphs such that every equivalence class of ≡is,t that contains a planar
graph of pathwidth t+O(1) is represented by some graph in Rt. Then Rt contains a graph
with Ω(logM(t)) ≥ Ω(2t/

√
4t) vertices.

8 Conclusion

We presented lower and upper bounds on the number of equivalence classes of the canonical
equivalence relation ≡is,t for Independent Set on t-boundaried graphs. We combined these
lower bounds with upper bounds on the number of small graphs to give lower bounds for the
critical sizes of sets of representatives. For a set of planar representatives that represent all
equivalence classes containing a bounded-pathwidth planar graph, we gave a lower bound
of Ω(logM(t)) ≥ Ω(2t/

√
4t) on the critical size. The same argumentation can also be used to

obtain lower bounds on the critical size of sets of potentially nonplanar representatives. The
number of distinct t-boundaried (unrestrained) graphs is at most 2(n2) ·

(
n
t

)
≤ 2n2/2. Using

this bound in the proof of Theorem 26 yields a lower bound of Ω(
√

logM(t)) ≥ Ω(2t/2/ 4
√

4t)
on the critical size of a set of representatives that contains at least M(t)− 2 distinct graphs.

In their work, Garnero et al. [12] (roughly) show that each equivalence class of ≡is,t
containing a planar graph of treewidth at most t can be represented by a planar graph
with 2(t+1)2t vertices and treewidth at most t. Our lower bound shows that to represent all
equivalence classes containing a planar graph of pathwidth t+O(1) (a subset of the graphs
of treewidth t + O(1)), requires a graph with Ω(2t/

√
4t) vertices. Our single-exponential

lower bound is very far from the triple-exponential upper bound. However, we believe that
the correct bound is single-exponential. Since Corollary 9 shows that each equivalence class
is completely characterized by its normalized boundary function, and the construction of
Lemma 13 produces a boundaried graph with 2O(t) vertices for any given boundary function,
it follows that every equivalence class of ≡is,t has a representative with 2O(t) vertices. Note,
however, that the representatives constructed in this way are nonplanar and have pathwidth
and treewidth 2Θ(t).

The main conceptual contribution of this work is the fact that nontrivial lower bounds
can be obtained by counting equivalence classes. The fact that a significant portion of the
equivalence classes (at least M(t) ≥ 22t/

√
4t out of the total of at most 22t) can be generated

from monotone Boolean functions was useful in the construction of nonequivalent planar
graphs of bounded pathwidth. We showed that the lower bound construction of Lokshtanov
et al. [16] can be planarized while increasing the pathwidth by an additive constant. The
planarization argument employed here can also be used to strengthen the SETH-based
runtime lower bound of Ω((2 − ε)w · nO(1)) for solving Independent Set on graphs of
treewidth w, to planar graphs of treewidth w. Not all bounded-pathwidth graphs can be
planarized with a bounded increase in pathwidth. In particular, when planarizing K3,n for
sufficiently large n the pathwidth grows arbitrarily large [6].

The lower bounds for Independent Set given in Theorem 26 carry over to the Dom-
inating Set problem, for which protrusion replacement is used frequently. In the full
version [14] we describe this extension, which is based on the folklore planarity-preserving
NP-completeness reduction from Vertex Cover to Dominating Set.

Acknowledgments. We are grateful to Daniel Lokshtanov and David Eppstein for insightful
discussions regarding planarization, and to an anonymous referee of IPEC 2016 for suggesting
a simplification in the proof of Theorem 26.

IPEC 2016



17:12 Lower Bounds for Protrusion Replacement by Counting Equivalence Classes

References
1 Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh,

and Dimitrios M. Thilikos. (Meta) Kernelization. In Proc. 50th FOCS, pages 629–638.
IEEE Computer Society, 2009. doi:10.1109/FOCS.2009.46.

2 Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh,
and Dimitrios M. Thilikos. (Meta) Kernelization. CoRR, 2013. arXiv:0904.0727.

3 Hans L. Bodlaender and Babette van Antwerpen-de Fluiter. Reduction algorithms for
graphs of small treewidth. Inf. Comput., 167(2):86–119, 2001. doi:10.1006/inco.2000.
2958.

4 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

5 Babette de Fluiter. Algorithms for Graphs of Small Treewidth. PhD thesis, Utrecht Uni-
versity, 1997.

6 David Eppstein. Pathwidth of planarized drawing of K3,n. TheoryCS StackExchange
question, 2016. URL: http://cstheory.stackexchange.com/questions/35974/.

7 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, Geevarghese Philip, and Saket
Saurabh. Hitting forbidden minors: Approximation and kernelization. SIAM J. Discrete
Math., 30(1):383–410, 2016. doi:10.1137/140997889.

8 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar F-
deletion: Approximation, kernelization and optimal FPT algorithms. In Proc. 53rd FOCS,
pages 470–479. IEEE Computer Society, 2012. doi:10.1109/FOCS.2012.62.

9 Fedor V. Fomin and Torstein J. F. Strømme. Vertex cover structural parameterization
revisited. CoRR, 2016. arXiv:1603.00770.

10 Jakub Gajarský, Petr Hlinený, Jan Obdrzálek, Sebastian Ordyniak, Felix Reidl, Peter Ross-
manith, Fernando Sanchez Villaamil, and Somnath Sikdar. Kernelization using structural
parameters on sparse graph classes. In Proc. 21st ESA, pages 529–540. Springer, 2013.
doi:10.1007/978-3-642-40450-4_45.

11 M.R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some simplified NP-complete
graph problems. Theor. Comput. Sci., 1(3):237–267, 1976. doi:10.1016/0304-3975(76)
90059-1.

12 Valentin Garnero, Christophe Paul, Ignasi Sau, and Dimitrios M. Thilikos. Explicit linear
kernels via dynamic programming. SIAM J. Discrete Math., 29(4):1864–1894, 2015. doi:
10.1137/140968975.

13 Bart M.P. Jansen. The Power of Data Reduction: Kernels for Fundamental Graph
Problems. PhD thesis, Utrecht University, The Netherlands, 2013. URL: http://
igitur-archive.library.uu.nl/dissertations/2013-0612-200803/UUindex.html.

14 Bart M.P. Jansen and Jules J.H.M. Wulms. Lower bounds for protrusion replacement by
counting equivalence classes. CoRR, 2016. arXiv:1609.09304.

15 Eun Jung Kim, Alexander Langer, Christophe Paul, Felix Reidl, Peter Rossmanith, Ignasi
Sau, and Somnath Sikdar. Linear kernels and single-exponential algorithms via protrusion
decompositions. ACM Trans. Algorithms, 12(2):21, 2016. doi:10.1145/2797140.

16 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs on
bounded treewidth are probably optimal. In Proc. 22nd SODA, pages 777–789. SIAM,
2011. doi:10.1137/1.9781611973082.61.

http://dx.doi.org/10.1109/FOCS.2009.46
http://arxiv.org/abs/0904.0727
http://dx.doi.org/10.1006/inco.2000.2958
http://dx.doi.org/10.1006/inco.2000.2958
http://dx.doi.org/10.1007/978-3-319-21275-3
http://cstheory.stackexchange.com/questions/35974/
http://dx.doi.org/10.1137/140997889
http://dx.doi.org/10.1109/FOCS.2012.62
http://arxiv.org/abs/1603.00770
http://dx.doi.org/10.1007/978-3-642-40450-4_45
http://dx.doi.org/10.1016/0304-3975(76)90059-1
http://dx.doi.org/10.1016/0304-3975(76)90059-1
http://dx.doi.org/10.1137/140968975
http://dx.doi.org/10.1137/140968975
http://igitur-archive.library.uu.nl/dissertations/2013-0612-200803/UUindex.html
http://igitur-archive.library.uu.nl/dissertations/2013-0612-200803/UUindex.html
http://arxiv.org/abs/1609.09304
http://dx.doi.org/10.1145/2797140
http://dx.doi.org/10.1137/1.9781611973082.61


Treedepth Parameterized by Vertex Cover
Number
Yasuaki Kobayashi∗1 and Hisao Tamaki2

1 Kyoto University, Kyoto, Japan
kobayashi@iip.ist.i.kyoto-u.ac.jp

2 Meiji University, Kanagawa, Japan
tamaki@cs.meiji.ac.jp

Abstract
To solve hard graph problems from the parameterized perspective, structural parameters have
commonly been used. In particular, vertex cover number is frequently used in this context. In
this paper, we study the problem of computing the treedepth of a given graph G. We show that
there are an O(τ(G)3) vertex kernel and an O(4τ(G)τ(G)n) time fixed-parameter algorithm for
this problem, where τ(G) is the size of a minimum vertex cover of G and n is the number of
vertices of G.

1998 ACM Subject Classification G.2.2 Graph Algorithms

Keywords and phrases Fixed-parameter algorithm, Polynomial kernelization, Structural param-
eterization, Treedepth, Vertex cover

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.18

1 Introduction

Treedepth is an important graph invariant which attracts a lot of attentions in several
communities. One of the most important results related to treedepth is the work of Nešetřil
and Ossona de Mendez [27, 28]. Roughly speaking, they showed that graphs in a sparse graph
classes, called graphs of bounded expansion, can be decomposed into graphs of bounded
treedepth. An important consequence of this result is a linear time algorithm for deciding
first-order logic properties in graphs of bounded expansion [13].

The treedepth td(G) of an undirected graph G is defined to be the minimum height of a
rooted tree T such that G can be embedded into T in such a way that the end vertices of
each edge in G has an ancestor-descendant relationship in T . A formal definition of treedepth
is given in Section 2. Treedepth has been studied in literature with different names such as
vertex ranking numbers [4] and the minimum height of elimination trees [29]. This invariant
has applications in solving linear systems [25] and VLSI layouts [24, 31]. Moreover, treedepth
has a deep relation with other well-known graph invariants treewidth and pathwidth. Let
tw(G) and pw(G) be the treewidth and the pathwidth of a graph G, respectively. Then, we
have tw(G) ≤ pw(G) ≤ td(G)− 1 = O(tw(G) logn) [28], where n is the number of vertices
of G. When these three invariants are bounded, we can develop efficient algorithms for
many graph problems. More precisely, if the one of the above three invariants of the input
graph is at most k, many NP-hard graph problems are fixed-parameter tractable, that is,
there is an algorithm (called a fixed-parameter algorithm) that solves the target problem

∗ Y. K. was supported by JST, CREST.

© Yasuaki Kobayashi and Hisao Tamaki;
licensed under Creative Commons License CC-BY

11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin; Article No. 18; pp. 18:1–18:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.18
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


18:2 Treedepth Parameterized by Vertex Cover Number

in f(k)nO(1) time, where n is the number of vertices and the function f depends only on k
(see, for example [3]). On the other hand, Gutin et al. [21] recently showed that the mixed
Chinese postman problem is W[1]-hard parameterized by the pathwidth of the input graph
and is fixed-parameter tractable parameterized by its treedepth.

Based on the above facts, it is natural to seek an efficient algorithm for computing the
treedepth of graphs. Unfortunately, the problem of computing treedepth is known to be NP-
hard [29] even when the input graphs are restricted to bipartite graphs [4] or chordal graphs
[11]. On the other hand, there are polynomial time algorithms for some classes of graphs
[1, 10]. This problem is studied from the perspective of parameterized complexity. In this
context, we are asked whether the treedepth of the input graph is at most k. Since treedepth
is monotone under taking minor operations, this problem is fixed-parameter tractable when
k is given as a parameter. This follows from the celebrated work of Robertson and Seymour
which proves, for every minor closed graph class G, there is a fixed-parameter algorithm that
deciding whether the input graph belongs to G in f(G)nO(1) time. Recently, Reidl et al. [30]
gave an algorithm for the problem whose running time is 2O(k2)n. Their algorithm in fact
runs in time 2O(kt)n, where t is the treewidth of the input graph.

As we have already noted, many graph problems can be efficiently solved on graphs of
bounded treewidth. However, there are some exceptions. For example, the Bandwidth
problem is known to be NP-hard for graphs of pathwidth at most three [26]. Motivated
by this hardness result [26], Fellows et al. [16] showed that the Bandwidth problem is
fixed-parameter tractable when parameterized by the size τ(G) of a minimum vertex cover of
the input graph G. Since, for every graph G with n vertices, tw(G) ≤ τ(G) = O(tw(G) logn),
the parameterization of the size of a minimum vertex cover to the input graph is more
restricted than that of treewidth. Therefore, this parameterization were often used to
develop algorithms for various hard graph problems [9, 15, 18]. In particular, Chapelle
et al. [8] gave algorithms for computing treewidth and pathwidth whose running time is
3τ(G)nO(1). Although this parameterization is rather restrictive, their algorithms improve
the running time of the best known exact exponential algorithms for treewidth [19, 20]
and for pathwidth [23] on bipartite graphs. Moreover, this parameterization is used in the
context of kernelizations. Here, a kernelization is a polynomial time algorithm that, given
a pair of an instance I and a parameter k, computes a pair (I ′, k′) such that (I, k) is a
YES-instance if and only if (I ′, k′) is a YES-instance for the same problem and the size of I ′
and k′ are upper bounded by some function in k. An output of a kernelization is called a
kernel. A kernelization is polynomial if the size of I ′ is upper bounded by a polynomial in
k. Bodlaender et al. [7, 6] showed that the Treewidth and Pathwidth problem admit
polynomial kernelizations when parameterized by the size of a minimum vertex cover, in
contrast to the lower bound results of polynomial kernelizations [5, 12]. when parameterized
by the solution size. Subsequently, Jansen [22] improved the size of kernel to O(|τ(G)|2) for
treewidth.

In this paper, we give counterparts for treedepth to the results of kernelizations [7, 6]
and fixed-parameter algorithms [8] for treewidth and pathwidth. Our results are as follows.

I Theorem 1. There is a polynomial time algorithm that, given a graph G, a vertex cover C
of G, and an integer k, computes a graph H with |V (H)| = O(|C|3) such that the treedepth
of G is at most k if and only if that of H is at most k. Moreover, V (H) ∩ C is a vertex
cover of H.

I Theorem 2. The treedepth of G can be computed in O(4τ(G)τ(G)n) time, where τ(G) is
the size of a minimum vertex cover of G and n is the number of vertices of G.



Y. Kobayashi and H. Tamaki 18:3

Theorem 1 implies together with a well-known 2-approximation algorithm for vertex
cover that the treedepth problem admits a kernel with O(τ(G)3) vertices. Let us note that,
for the problem deciding whether td(G) ≤ k with parameter k, there is no polynomial
kernelization [5, 12] unless NP ⊆ coNP/poly and the running time of the fastest known
fixed-parameter algorithm is 2O(k2)n time [30]. Our kernelization and algorithm are useful for
the case τ(G) = td(G)O(1) and τ(G) = o(td(G)2), respectively. In contrast to treewidth and
pathwidth, our result does not improve the running time of the best known exact exponential
algorithm for treedepth [17] even on bipartite graphs. However, we believe that our approach
is relevant for improving the bipartite case.

The technique behind our algorithm in Theorem 2 is as follows. We are given a graph G
and a vertex cover C of G. Our algorithm constructs an optimal elimination tree, defined
in Section 2, of G by a bottom-up dynamic programming. To this end, we need to define
subproblems. The first attempt to define subproblems is that for each X ⊆ C, construct an
optimal elimination tree of an induced subgraph H of G with V (H) ∩C = X. However, this
strategy does not work since we cannot know which vertex in the independent set V (G)\C is
in V (H) \X. The second attempt is that for each X ⊆ C and each P ⊆ C \X, construct an
optimal elimination tree of H such that V (H) ∩ C = X and every vertex in P is committed
to be an ancestor of the vertices of H in an optimal elimination tree of the whole graph
G. Using this pair X and P , we can identify the vertices of H and therefore a subproblem
on (X,P ) for each X ⊆ C and P ⊆ C \ X is well-defined. For each subproblem (X,P ),
the remaining task is to compute an optimal elimination tree T of a graph corresponding
to (X,P ) from optimal elimination trees of graphs corresponding to smaller subproblems
(X ′, P ′) for X ′ ⊂ X and P ′ ⊆ C \X ′. To do this, we will exploit some nontrivial property
of an optimal elimination tree (See Section 4).

This paper is organized as follows. The next section describes some notations and
terminologies we use. In Section 3, we design a polynomial kernelization for proving
Theorem 1. In Section 4, we show Theorem 2 by giving a fixed-parameter algorithm for
treedepth. Finally, in Section 5, we conclude this paper.

2 Preliminaries

For an undirected graph G, V (G) denotes the set of vertices of G and E(G) denotes the set
of edges of G. For v ∈ V (G), the set of neighbors of v is denoted by NG(v). For X ⊆ V (G),
we set NG(X) =

⋃
x∈X NG(x) \X. We may drop the reference to G when it is clear from

the context. For disjoint sets X,Y ⊆ V (G), we use E(X,Y ) to denote the set of all edges
with one end in X and the other end in Y . The induced subgraph by X ⊆ V (G) of G is
denoted by G[X]. For two graphs G and H, H ⊆ G means that H is a subgraph of G.

Let T be a rooted tree. For v ∈ V (T ), the subtree rooted at v is denoted by Tv and
the unique path between v and the root of T is denoted by Pv. A branching point of T is
a vertex that has at least two children in T . For two vertices u, v ∈ V (T ), we say u is an
ancestor of v (v is a descendant of u) if u ∈ V (Pv). A set of disjoint rooted trees is called a
rooted forest. For a rooted forest F , we use V (F ) to denote

⋃
T∈F V (T ). The depth of v in

T is defined by the number of vertices of Pv. The height of T is the maximum depth among
the vertices in T and the height of rooted forest F is the maximum depth of a rooted tree
that belongs to F . The height of rooted tree T and rooted forest F are denoted by height(T )
and height(F ), respectively.

Let F be a rooted forest. The closure of F is a graph with vertex set V (F ) such that
the graph contains an edge {u, v} if and only if u is an ancestor of v in F or vice versa. We

IPEC 2016



18:4 Treedepth Parameterized by Vertex Cover Number

denote by clos(F ) the closure of F . In particular, when F consists of a single rooted tree T ,
we may write clos(T ) instead of clos({T}). For a (not necessary connected) graph G, the
treedepth td(G) of G is the minimum integer k such that there is a rooted forest F with
height(F ) = k and G ⊆ clos(F ).

As mentioned before, the notion of treedepth has equivalent definitions. In this paper,
we frequently use the notion of elimination trees. For a rooted forest F and a vertex v not in
V (F ), we use the notation F◦v to denote the rooted tree with root v obtained from F by
adding an edge between v and the root of T for each T ∈ F . In particular, if F consists of a
single rooted tree T , we write T◦v instead of {T}◦v.

I Definition 3. An elimination tree of a connected graph G is recursively defined as follows.
1. If G consists of a single vertex then the elimination tree of G is itself.
2. Otherwise, choose v ∈ V (G) arbitrary. Let F = {T1, T2, . . . , Tt} be elimination trees of

the connected components of G[V (G) \ {v}]. Then, F◦v is an elimination tree of G.

We say that an elimination tree T of G is optimal if there is no elimination trees of G
whose height is smaller than the height of T . It is easy to see that, for every elimination tree
T of G, the closure of T contains G as a subgraph. The following proposition shows that the
converse also holds when G is connected.

I Proposition 4 ([27]). Let G be a connected graph and let T be a rooted tree. Then, T is
an elimination tree of G if and only if G ⊆ clos(T ). In particular, the height of an optimal
elimination tree of G is td(G).

When we refer to an elimination tree T of G, we use the fact G ⊆ clos(T ) without the
reference to Proposition 4 and vice versa.

3 Kernelization

The aim of this section is to develop a polynomial kernelization for treedepth for proving
Theorem 1. The technique that we use is very similar to the kernelization result for
pathwidth [6].

Fix a vertex cover C of G. Let I = V (G) \C and let k be a positive integer. We consider
the problem of deciding whether td(G) ≤ k. We assume that C is not empty since otherwise
the problem is trivial.

We will describle three reduction rules. The following rule trivially does not change the
treedepth of G.

I Rule 5. Let u ∈ I be an isolated vertex. Then, delete u from G.

I Lemma 6. Suppose td(G) ≤ k. Let u, v be vertices with |NG(u) ∩NG(v)| ≥ k and let G′
be the graph obtained by adding an edge {u, v} to G. Then, td(G) = td(G′).

Proof. Since G is a subgraph of G′, td(G) ≤ td(G′). For the inverse direction, let T be an
optimal elimination tree of G. When Tu and Tv are not disjoint, T is also an elimination
tree of G′ and hence td(G) ≥ td(G′). Here, we assume otherwise. This assumption implies
the vertices NG(u) ∩NG(v) are common ancestors of u and v. This contradicts the fact that
height(T ) ≤ k and |NG(u) ∩NG(v)| ≥ k. J

This lemma verifies the following rule does not change the treedepth of G.

I Rule 7. Let u, v be vertices with |N(u) ∩N(v)| ≥ k. Suppose at least one of u ∈ C and
v ∈ C holds. Then, add an edge {u, v} to G.



Y. Kobayashi and H. Tamaki 18:5

Let us note that C is also a vertex cover of the result of an application of Rule 7 to G.
For the next rule, we need the following observation, which is clear from the definition of

closure.

I Observation 8. Let K be a clique in G and let T be an elimination tree of G. Then, there
is v ∈ K with K ⊆ V (Pv).

A vertex v is simplicial in G if NG(v) forms a clique.

I Lemma 9. Suppose td(G) ≤ k. Let u be a simplicial vertex such that N(u) is not empty
and |N(v)| ≥ k + 1 for each v ∈ N(u). Then td(G) = td(G[V (G) \ {u}]).

Proof. The subgraph relation proves td(G) ≥ td(G[V (G) \ {u}]). In the following, we show
the converse inequality. Let T be an optimal elimination tree of G[V (G) \ {u}]. Since N(u)
forms a clique in G[V (G) \ {u}], by Observation 8, there is v ∈ N(u) with N(u) ⊆ V (Pv).
From the assumption of this lemma, v has at least k neighbors different from u. Since
height(T ) ≤ k, at least one of them is a descendant of v in T . Observe that a rooted tree
T ′ obtained from T by adding u as a child of v is an elimination tree of G. This follows
from N(u) ⊆ V (Pv). Moreover, since v is not a leaf in T , height(T ) = height(T ′) and hence
td(G) ≤ td(G[V (G) \ {u}]) holds. J

I Rule 10. Let u ∈ I be a simplicial vertex of G. Suppose each v ∈ N(u) has at least k + 1
neighbors. Then, delete u from G.

The above two rules give us a small kernel for treedepth.

I Lemma 11. Suppose td(G) ≤ k, |C| ≥ k, and neither Rule 5, Rule 7, nor Rule 10 are
applicable to G. Then, the number of vertices of G is O(|C|3).

Proof. Let S be the set of simplicial vertices of G, let P = S ∩ I, and let Q = I \ P . By
Rule 5, each vertex in P has at least one neighbor in C. For each u ∈ P , by Rule 10, there
is a vertex v ∈ N(u) whose degree is at most k. We associate u with v ∈ C. Each vertex
in P is associated with some vertex in C and at most k vertices in P are associated with
each vertex in C. Hence, |P | ≤ k · |C| ≤ |C|2. Next, consider non-adjacent vertices u, v of
C. Observe that u and v have at most k − 1 common neighbors in G. This follows from
Rule 7. As each vertex in Q has at least one pair of non-adjacent vertices in C, we have
|Q| ≤ (k − 1) · |C|(|C| − 1)/2 ≤ |C|3/2. Therefore, V (G) = |C|+ |P |+ |Q| ≤ 3 · |C|3. J

Let (G,C, k) be an instance of our decision problem. Suppose |C| < k. Obviously,
(G,C, k) is a YES-instance. In this case, we output a constant-sized YES-instance. Suppose
otherwise. We exhaustively apply Rule 7 and Rule 10 to G until both of them are not
applicable to G. By Lemmas 6 and 9, the resulting graph H satisfies td(H) ≤ k if and only
if td(G) ≤ k. Moreover, V (H) ∩ C is a vertex cover of H. Thus, (H,V (H) ∩ C, k) is a valid
instance. By Lemma 11, if |V (H)| > 3 · |V (H) ∩ C|3, then (G,C, k) is a NO-instance. In
this case, we output a constant-sized NO-instance. Overall, we have Theorem 1.

4 Fixed-Parameter Algorithm

The aim of this section is to develop an algorithm computing the treedepth of G whose
running time is upper bounded by O(4τ(G)τ(G)n), where n = |V (G)|. First, we use the
following algorithm to obtain a minimum vertex cover in advance.

IPEC 2016



18:6 Treedepth Parameterized by Vertex Cover Number

I Proposition 12 (folklore). There is a O(2τ(G)(n+m)) time algorithm that finds a minimum
vertex cover of a graph G, where n and m are respectively the number of vertices and edges
of G.

Note that m = O(n · τ(G)). In the rest of this section, fix a vertex cover C of G. We
assume that C is not empty since otherwise the problem is trivial. Let I = V (G) \ C. For
X ⊆ C, we set I(X) = {v ∈ I | N(v) ⊆ X}. We say that a rooted tree is atomic if it consists
of a single vertex.

I Definition 13. For X ⊆ C and P ⊆ C \X, we say that a rooted forest F is compatible
with (X,P ) if the following three conditions are satisfied:
C1. V (F ) = X ∪ I(X ∪ P ),
C2. G[V (F )] ⊆ clos(F ), and
C3. every vertex in I(P ) forms an atomic rooted tree in F .

Note that a rooted forest that is compatible with (X,P ) does not contain any vertex in
P and contains every vertex in I(P ). We denote by td(X,P ) the minimum height over all
rooted forests that are compatible with (X,P ). We say that F is optimal for (X,P ) if F is
compatible with (X,P ) and height(F ) = td(X,P ). Also, note that if G[X ∪ I(X ∪ P )] is
connected, there is a rooted tree T that is optimal for (X,P ).

In what follows, we will give recurrences for computing td(X,P ) for X ⊆ C and P ⊆ C\X.
The algorithm evaluates those recurrences by a straight forward dynamic programming. The
following lemma is the base case of our recurrences and is easy to verify.

I Lemma 14. Let P ⊆ C. If I(P ) is not empty, then td(∅, P ) = 1. Otherwise, td(∅, P ) = 0.

Let X ⊆ C and P ⊆ C \X. From now on, we consider the case X 6= ∅.

I Lemma 15. Let x ∈ X be arbitrary and let F be a rooted forest that is compatible with
(X \ {x}, P ∪ {x}). Then the rooted forest F ′ := I(P ) ∪ (F \ I(P ))◦x is compatible with
(X,P ). Here and in similar situations later, I(P ) is also interpreted as the set of atomic
rooted trees.

Proof. Clearly, F ′ satisfies condition C3 for (X,P ). As V (F ) \ V (F ′) = {x}, F ′ satisfies
condition C1 for (X,P ). Let T = (F \ I(P ))◦x. Since every vertex in NG[V (T )](x) is
a descendant of x in T , T is an elimination tree of G[V (T )]. As X ∩ P = ∅, we have
E(X, I(P )) = ∅. Thus, condition C2 holds for (X,P ) and hence the lemma follows. J

We say that a bipartition (Y,Z) of X is separated if neither Y nor Z is empty and
E(Y, Z) = ∅. The following observation is easy to verify.

I Observation 16. Let (Y,Z) be a bipartition of X. Then, I(X ∪ P ) is partitioned into
N(Y ) ∩N(Z) ∩ I(X ∪ P ), I(Y ∪ P ) \ I(P ), I(Z ∪ P ) \ I(P ), and I(P ).

Let (Y, Z) be a separated bipartition of X. We define the rooted forest FY,Z from FY
and FZ , where FY and FZ are rooted forests that are compatible with (Y, P ) and (Z,P ),
respectively, as follows. Let v0, v1, . . . vp be the vertices in N(Y ) ∩N(Z) ∩ I(X ∪ P ) with
arbitrary order. Note that FY and FZ may share the set of vertices I(P ). Set F0 :=
(FY ∪FZ) \ I(P ) and, for each 0 ≤ i ≤ p, set Fi+1 := Fi◦vi. Finally, set FY,Z := Fp+1 ∪ I(P ).
By the above definition, if N(Y ) ∩N(Z) ∩ I(X ∪ P ) is empty, FY,Z is indeed FY ∪ FZ .

I Lemma 17. Let (Y,Z) be a separated bipartition of X and let FY and FZ be rooted
forests that are compatible with (Y, P ) and (Z,P ), respectively. Then, FY,Z is compatible
with (X,P ).



Y. Kobayashi and H. Tamaki 18:7

Proof. We show that FY,Z satisfies the three conditions of compatibility with (X,P ).
Clearly, FY,Z satisfies condition C3. By the construction of G, V (FY,Z) is composed of

(V (FY ) ∪ V (FZ)) \ I(P ), N(Y ) ∩N(Z) ∩ I(X ∪ P ), and I(P ). Since V (FY ) ∩ I = I(Y ∪ P )
and V (FZ)∩ I = I(Z ∪P ), by Observation 16, we have V (FY,Z)∩ I = I(X ∪P ). Recall that
Y ∪ Z = X. Thus, we have V (FY,Z) = X ∪ I(X ∪ P ), that is, FY,Z satisfies condition C1.
To show the condition C2, it is enough to show that for each edge {u, v} in G[X ∪ I(X ∪P )],
u is an ancestor of v or vice versa in FY,Z . Since X is a vertex cover of G[X ∪ I(X ∪ P )],
at least one of u and v is in X. Assume without loss of generality u is in Y . Since FY is
compatible with (Y, P ), if {u, v} ⊆ V (FY ), we are done. Otherwise, as u /∈ V (FZ), u must
be in N(Y )∩N(Z)∩ I(X ∪ P ), and hence u is an ancestor of v. This finishes the proof. J

Let T be a rooted tree that is compatible with (X,P ) and let v ∈ V (T ) be a maximum
depth vertex such that every vertex in V (Pv) \ {v} is not a branching point of T . That is
v is either a leaf or the minimum depth branching point of T . Observe that a rooted tree
that is obtained by swapping the positions of an arbitrary pair of vertices in V (Pv) is also
compatible with (X,P ). This implies the following observation.

I Observation 18. Let T be a rooted tree that is compatible with (X,P ). Let v ∈ V (T ) be a
maximum depth vertex such that every vertex in u ∈ V (Pv) \ {v} is not a branching point of
T . Suppose there is a vertex x ∈ X ∩ V (Pv). Then, there is a rooted tree T ′ with root x that
is compatible with (X,P ) whose depth is height(X,P ).

Observation 18 implies that if there is no rooted tree T that is optimal for (X,P ) whose
root belongs to X, then there is the minimum depth branching point v in T such that
V (Pv) ⊆ I(X ∪ P ) for every rooted tree T that is optimal for (X,P ).

The following lemma plays a key role for the construction of optimal elimination trees.
To this end, we need some operation on rooted trees. A vertex removal of a non-root vertex
u (or u is removed) from a rooted tree T results a rooted tree that is obtained from T by
deleting u and adding an edge between the parent of u and each child of u. When u is the
root of T and has only one child, the vertex removal of u is simply deleting u from T .

I Lemma 19. Assume that G[X ∪ I(X ∪ P )] is connected. Then, there exists an optimal
rooted tree T for (X,P ) such that either (1) the root x of T is in X and every vertex in
I(P ∪ {x}) is a child of x or (2) there is a separated bipartition (Y,Z) of X such that
V (Pv) = N(Y ) ∩N(Z) ∩ I(X ∪ P ), where v is the minimum depth branching point in T .

Proof. Let T be an optimal rooted tree for (X,P ). From Observation 18, we can assume
that either the root of T is in X or there is the minimum depth branching point v of T such
that V (Pv) ⊆ I(X ∪ P ).

Suppose first that the root of T is x ∈ X. Let u be the vertex in I(P ∪ {x}) that is not a
child of x. Since u has exactly one neighbor x in G[X ∪ I(X ∪ P )], the rooted tree obtained
from T by removing u and adding u as a child of x is also an elimination tree of height not
larger than T . The repeated applications of the above argument show that every vertex in
I(P ∪ {x}) is a child of x.

Suppose otherwise. Let T be an arbitrary optimal rooted tree for (X,P ). Recall that we
have V (Pv) ⊆ I(X ∪ P ) in this case. We construct a separated bipartition (Y, Z) of X as
follows. Let v be the minimum depth branching point of T and let W be the set of children
of v. Observe that for each w ∈ W , V (Tw) contains at least one vertex of X as otherwise
G[X ∪ I(X ∪ P )] is not connected, which contradicts our assumption. Choose a non-empty
proper subset W ′ ⊂W . Let Y =

⋃
w∈W ′(V (Tw) ∩X) and let Z = X \ Y . Clearly, (Y, Z) is

a separated bipartition of X. This implies that every vertex in N(Y ) ∩N(Z) ∩ I(X ∪ P )

IPEC 2016



18:8 Treedepth Parameterized by Vertex Cover Number

belongs to V (Pv). Hence, we have V (Pv) ⊇ N(Y ) ∩N(Z) ∩ I(X ∪ P ). In the following we
will show that, under an appropriate choice of T , this separated bipartition (Y, Z) satisfies
V (Pv) ⊆ N(Y ) ∩N(Z) ∩ I(X ∪ P ).

We choose an optimal rooted tree T for (X,P ) and a separated bipartition (Y,Z) of X
in such a way as to minimize the number of vertices in V (Pv) \ (N(Y ) ∩N(Z) ∩ I(X ∪ P )).
Let Q = V (Pv) \ (N(Y ) ∩N(Z) ∩ I(X ∪ P )) be the set of vertices in V (Pv) each of which
has a neighbor neither in Y nor in Z. We claim that Q is empty and hence such T and
(Y,Z) satisfy V (Pv) ⊆ N(Y ) ∩ N(Z) ∩ I(X ∪ P ). Suppose, for contradiction, let u ∈ Q.
As G[X ∪ I(X ∪ P )] is connected, V (Pv) must have at least two vertices and hence u is
removable from T (either u is not the root of T or u is the root which has only one child).
We assume, without loss of generality, u has a neighbor in Z. Let W be the set of children w
of v with V (Tw) ∩ Y 6= ∅ and let FW = {Tw : w ∈ W}. We construct another rooted tree
from T as follows. Remove u and delete the vertices of FW from T . Then, combine T with
FW ◦u by adding an edge between w and u. It is easy to see that the result of the above
operations is an elimination tree of G[X ∪ I(X ∪ P )] and the height is not larger than the
original T . Moreover, the size of Q in the result is strictly smaller than the original one.
This is contracting to the minimality of Q. Hence, the lemma follows. J

I Lemma 20. Let X ⊆ C with X 6= ∅ and let P ⊆ C \X. Then, td(X,P ) is equal to the
smaller value of

min
x∈X

td(X \ {x}, P ∪ {x}) + 1 (1)

and

min
Y,Z

max(td(Y, P ), td(Z,P )) + |N(Y ) ∩N(Z) ∩ I(X ∪ P )|, (2)

where, in expression (2), the minimum is taken among all separated bipartitions (Y,Z) of X
and if there is no separated bipartition of X then the value of (2) is defined to be infinity.

Proof. First, we show that td(X,P ) is not smaller than the value of both (1) and (2).
Consider the case where the value of (1) is not smaller than that of (2). Let x be a vertex in
C that attains the minimum of expression (1) and let F be a minimum height rooted forest
among all rooted forests that are compatible with (X \ {x}, P ∪ {x}). By Lemma 15, F◦x is
compatible with (X,P ). Therefore, we have

td(X,P ) ≤ height(F◦x) = height(F ) + 1 = min
x∈X

td(X \ {x}, P ∪ {x}) + 1.

Suppose the other case: the value of (1) is larger than that of (2). In this case, there
is a separated bipartition (Y,Z) of X that attains the minimum of expression (2). Let FY
and FZ be minimum height rooted forests among all rooted forests that are compatible with
(Y, P ) and (Z,P ), respectively. Let FY,Z be a rooted forest constructed from FY and FZ as
in Lemma 17. Since FY,Z is compatible with (X,P ), we have

td(X,P ) ≤ height(FY,Z)
= max(height(FY ), height(FZ)) + |N(Y ) ∩N(Z) ∩ I(X ∪ P )|
= max(td(Y, P ), td(Z,P )) + |N(Y ) ∩N(Z) ∩ I(X ∪ P )|

Hence, td(X,P ) is not smaller than the value of both (1) and (2).
Next, we show the other direction. We distinguish the two cases: G[X ∪ I(X ∪ P )] is

connected or not.



Y. Kobayashi and H. Tamaki 18:9

Consider the case where G[X ∪ I(X ∪ P )] is connected. Let T be an elimination tree
described in Lemma 19. Then, either the root of T is in X or there exists a separated
bipartition (Y,Z) of X with V (Pv) = N(Y ) ∩N(Z) ∩ I(X ∪ P ), where v is the minimum
depth branching point in T .

Case 1: The root x of T is in X. Let F ′ be a rooted forest which is obtained from T by
deleting the root x. To prove our desired inequality height(T ) ≥ td(X \ {x}, P ∪ {x}) + 1,
we will show that F ′ is compatible with (X \ {x}, P ∪ {x}). It is easy to verify that
V (F ′) ∩ C = X \ {x}, V (F ′) ∩ I = I((X \ {x}) ∪ (P ∪ {x})), and G[V (F ′)] ⊆ clos(F ′). By
Lemma 19, each vertex v ∈ I(P ∪ {x}) is a child of x, that is, I(P ∪ {x}) is the set of atomic
rooted trees in F ′. Hence, F ′ is compatible with (X \ {x}, P ∪ {x}).

Case 2: There is a separated bipartition (Y,Z) of X with V (Pv) = N(Y )∩N(Z)∩I(X∪P ),
where v is the minimum depth branching point of T . Let F ′ be the rooted forest obtained
from T by deleting all the vertices in V (Pv). We claim that F ′ is partitioned into two rooted
forests FY and FZ such that FY and FZ are compatible with (Y, P ) and (Z,P ), respectively.
Note that this claim establishes the inequality height(T ) ≥ max(td(Y, P ), td(Z,P ))+|N(Y )∩
N(Z) ∩ I(X ∪ P )|. Consider the two rooted forests FY = {T ′ ∈ F ′ : V (T ′) ∩ Y 6= ∅} and
FZ = {T ′ ∈ F ′ : V (T ′) ∩ Z 6= ∅}. Observe that FY and FZ are disjoint since (Y,Z) is
separated and every common neighbor of Y and Z must be in V (Pv). As V (Pv) ⊆ I, for each
child w of v, Tw contains at least one vertex of X. Thus, (FY , FZ) is a bipartition of F ′. It
is easy to see that V (FY )∩C = Y and G[V (FY )] ⊆ clos(FY ). Recall that I(P ) is empty. By
Observation 16, I(X∪P ) is partitioned into I(Y ∪P ), I(Z∪P ), and N(Y )∩N(Z)∩I(X∪P ).
Since every vertex in I(Y ∪ P ) has a neighbor in Y , V (FY ) ∩ I = I(Y ∪ P ). Hence, FY
is compatible with (Y, P ). A similar argument shows that FZ is compatible with (Z,P ).
Therefore, we have the claim.

Finally, we consider the case where G[X ∪ I(X ∪ P )] is not connected. Let C be the
set of connected components of G[X ∪ I(X ∪ P )]. We apply Lemma 19 to each component
in C \ I(P ) and obtain a rooted forest F from C \ I(P ). Note that every component in
C \ I(P ) has at least one vertex of X. If F consists of a single rooted tree, we can apply
the same argument with the connected case to the unique rooted tree T ∈ F . Otherwise,
the connected components of F naturally induce some separated bipartition of X, which
satisfies the desired inequality since N(Y ) ∩N(Z) ∩ I(X ∪ P ) is empty. Hence, we have the
lemma. J

By Lemmas 14 and 20, for X ⊆ C and P ⊆ C \ X, we can compute td(X,P ) via a
standard dynamic programming. When the values td(X ′, P ′) are stored in a table for X ′ ⊂ X
and P ′ ⊆ C \X ′, the value td(X,P ) is computed in O(2|X||X|n) time. Hence, the running
time of our dynamic programming is∑

X⊆C

∑
P⊆C\X

O(2|X||X|n) =
∑
X⊆C

2|C|−|X| ·O(2|X||X|n)

=
∑
X⊆C

O(2|C||C|n)

= O(4|C||C|n).

IPEC 2016



18:10 Treedepth Parameterized by Vertex Cover Number

5 Conclusion

In this paper, we have given a polynomial kernelization and a fixed-parameter algorithm for
treedepth when the minimum size of vertex cover of the input graph is parameterized.

The main open questions are improving on the size of kernel and the running time of
fixed-parameter algorithm. Jansen [22] showed that there is a kernel for treewidth whose
size is quadratic with respect to vertex cover number, which improves the previous result of
polynomial kernelization due to Bodlaender et al. [7]. He concluded in his paper that the
key lemma to the kernelization does not work for pathwidth. This obstacle also appears
in the case of treedepth. Chapelle et al. [8] improved the running time of their algorithm
for treewidth using the fast subset convolution technique due to Björklund et al. [2]. One
may expect that the bottleneck of our running time (the computation of expression (2) of
Lemma 20) can be broken by the fast subset convolution technique. However, this technique
does not seem to apply to our fixed-parameter algorithm directly.

Finally, extending our result to more general cases would be interesting. One of such
extensions is to use another structural parameterization. Feedback vertex set number would
be a good candidate for this line. Another extension is to consider the problem on directed
graphs. Cycle rank [14] is known to be a directed version of treedepth. To the best of our
knowledge, no fixed-parameter tractability result for cycle rank is known.

Acknowledgements. We are grateful to anonymous referees for the suggestions for improv-
ing the presentation of the paper.

References
1 B. Aspvall and P. Heggernes. Finding minimum height elimination trees for interval graphs

in polynomial time. BIT Numerical Mathematics, 34(4):484–509, 1994.
2 A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Fourier meets möbius: Fast subset

convolution. In Proceedings of the Thirty-ninth Annual ACM Symposium on Theory of
Computing, STOC’07, pages 67–74. ACM, 2007.

3 H.L. Bodlaender. A tourist guide through treewidth. Acta Cybern., 11(1-2):1–21, 1993.
4 H.L. Bodlaender, J. S. Deogun, K. Jansen, T. Kloks, D. Kratsch, H. Müller, and Z. Tuza.

Rankings of graphs. SIAM J. Discrete Math., 11(1):168–181, 1998.
5 H.L. Bodlaender, R.G. Downey, M.R. Fellows, and D. Hermelin. On problems without

polynomial kernels. J. Comput. Syst. Sci., 75(8):423–434, 2009.
6 H.L. Bodlaender, B.M.P. Jansen, and S. Kratsch. Kernel bounds for structural parameter-

izations of pathwidth. In Algorithm Theory – SWAT 2012 – 13th Scandinavian Symposium
and Workshops, Helsinki, Finland, July 4-6, 2012. Proceedings, pages 352–363, 2012.

7 H.L. Bodlaender, B.M.P. Jansen, and S. Kratsch. Preprocessing for treewidth: A combi-
natorial analysis through kernelization. SIAM J. Discrete Math., 27(4):2108–2142, 2013.

8 M. Chapelle, M. Liedloff, I. Todinca, and Y. Villanger. Treewidth and pathwidth parame-
terized by the vertex cover number. In Algorithms and Data Structures – 13th International
Symposium, WADS 2013, London, ON, Canada, August 12-14, 2013. Proceedings, pages
232–243, 2013.

9 M. Cygan, D. Lokshtanov, M. Pilipczuk, M. Pilipczuk, and S. Saurabh. On cutwidth
parameterized by vertex cover. Algorithmica, 68(4):940–953, 2014.

10 J. S. Deogun, T. Kloks, D. Kratsch, and H. Müller. On the vertex ranking problem for
trapezoid, circular-arc and other graphs. Discrete Applied Mathematics, 98(1-2):39–63,
1999.

11 D. Dereniowski and A. Nadolski. Vertex rankings of chordal graphs and weighted trees.
Inf. Process. Lett., 98(3):96–100, 2006.



Y. Kobayashi and H. Tamaki 18:11

12 Andrew Drucker. New limits to classical and quantum instance compression. SIAM J.
Comput., 44(5):1443–1479, 2015.

13 Z. Dvořák, D. Král, and R. Thomas. Testing first-order properties for subclasses of sparse
graphs. J. ACM, 60(5):36, 2013.

14 L.C. Eggan. Transition graphs and the star-height of regular events. Michigan Math. J.,
10(4):385–397, 12 1963.

15 M.R. Fellows, D. Hermelin, F.A. Rosamond, and H. Shachnai. Tractable parameterizations
for the minimum linear arrangement problem. In Algorithms – ESA 2013 – 21st Annual
European Symposium, Sophia Antipolis, France, September 2-4, 2013. Proceedings, pages
457–468, 2013.

16 M.R. Fellows, D. Lokshtanov, N. Misra, F.A. Rosamond, and S. Saurabh. Graph layout
problems parameterized by vertex cover. In Algorithms and Computation, 19th Interna-
tional Symposium, ISAAC 2008, Gold Coast, Australia, December 15-17, 2008. Proceedings,
pages 294–305, 2008.

17 F.V. Fomin, A.C. Giannopoulou, and M. Pilipczuk. Computing tree-depth faster than 2n.
Algorithmica, 73(1):202–216, 2015.

18 F.V. Fomin, B.M.P. Jansen, and M. Pilipczuk. Preprocessing subgraph and minor prob-
lems: When does a small vertex cover help? J. Comput. Syst. Sci., 80(2):468–495, 2014.

19 F.V. Fomin and Y. Villanger. Finding induced subgraphs via minimal triangulations. In
27th International Symposium on Theoretical Aspects of Computer Science, STACS 2010,
March 4-6, 2010, Nancy, France, pages 383–394, 2010.

20 F.V. Fomin and Y. Villanger. Treewidth computation and extremal combinatorics. Com-
binatorica, 32(3):289–308, 2012.

21 G. Gutin, M. Jones, and M. Wahlström. Structural parameterizations of the mixed chinese
postman problem. In Algorithms – ESA 2015 – 23rd Annual European Symposium, Patras,
Greece, September 14-16, 2015, Proceedings, pages 668–679, 2015.

22 B.M.P. Jansen. On sparsification for computing treewidth. Algorithmica, 71(3):605–635,
2015.

23 K. Kitsunai, Y. Kobayashi, K. Komuro, H. Tamaki, and Toshihiro Tano. Computing
directed pathwidth in o(1.89n) time. Algorithmica, 75(1):138–157, 2016.

24 C.E. Leiserson. Area-efficient graph layouts. In Foundations of Computer Science, 1980.,
21st Annual Symposium on, pages 270–281, Oct 1980.

25 J.W.H. Liu. The role of elimination trees in sparse factorization. SIAM J. Matrix Anal.
Appl., 11(1):134–172, January 1990.

26 B. Monien. The bandwidth minimization problem for caterpillars with hair length 3 is
NP-complete. SIAM J. Algebraic Discrete Methods, 7(4):505–512, October 1986.

27 J. Nešetřil and P.O. de Mendez. Tree-depth, subgraph coloring and homomorphism bounds.
Eur. J. Comb., 27(6):1022–1041, 2006.

28 J. Nešetřil and P.O. de Mendez. Sparsity – Graphs, Structures, and Algorithms, volume 28.
Springer, 2012.

29 A. Pothen. The complexity of optimal elimination trees. Technical Report CS-88-13, Penn-
sylvania State University, 1988.

30 F. Reidl, P. Rossmanith, F. Sanchez Villaamil, and S. Sikdar. A faster parameterized
algorithm for treedepth. In Automata, Languages, and Programming – 41st International
Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I,
pages 931–942, 2014.

31 A. Sen, H. Deng, and S. Guha. On a graph partition problem with application to vlsi
layout. Inf. Process. Lett., 43(2):87–94, August 1992.

IPEC 2016





Dynamic Parameterized Problems
R. Krithika1, Abhishek Sahu2, and Prafullkumar Tale3

1 The Institute of Mathematical Sciences, HBNI, Chennai, India
rkrithika@imsc.res.in

2 The Institute of Mathematical Sciences, HBNI, Chennai, India
asahu@imsc.res.in

3 The Institute of Mathematical Sciences, HBNI, Chennai, India
pptale@imsc.res.in

Abstract
In this work, we study the parameterized complexity of various classical graph-theoretic prob-
lems in the dynamic framework where the input graph is being updated by a sequence of edge
additions and deletions. Vertex subset problems on graphs typically deal with finding a subset
of vertices having certain properties that are of interest to us. In real-world applications, the
graph under consideration often changes over time and due to this dynamics, the solution at
hand might lose the desired properties. The goal in the area of dynamic graph algorithms is
to efficiently maintain a solution under these changes. Recomputing a new solution on the new
graph is an expensive task especially when the number of modifications made to the graph is
significantly smaller than the size of the graph. In the context of parameterized algorithms, two
natural parameters are the size k of the symmetric difference of the edge sets of the two graphs
(on n vertices) and the size r of the symmetric difference of the two solutions. We study the
Dynamic Π-Deletion problem which is the dynamic variant of the Π-Deletion problem and
show NP-hardness, fixed-parameter tractability and kernelization results. For specific cases of
Dynamic Π-Deletion such as Dynamic Vertex Cover and Dynamic Feedback Vertex
Set, we describe improved FPT algorithms and give linear kernels. Specifically, we show that Dy-
namic Vertex Cover admits algorithms with running times 1.1740knO(1) (polynomial space)
and 1.1277knO(1) (exponential space). Then, we show that Dynamic Feedback Vertex Set
admits a randomized algorithm with 1.6667knO(1) running time. Finally, we consider Dynamic
Connected Vertex Cover, Dynamic Dominating Set and Dynamic Connected Domin-
ating Set and describe algorithms with 2knO(1) running time improving over the known running
time bounds for these problems. Additionally, for Dynamic Dominating Set and Dynamic
Connected Dominating Set, we show that this is the optimal running time (up to polynomial
factors) assuming the Set Cover Conjecture.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases dynamic problems, fixed-parameter tractability, kernelization

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.19

1 Introduction

Graphs are discrete mathematical structures that represent binary relations between objects.
Due to their tremendous power to model real-world systems, many problems of practical
interest can be represented as problems on graphs. Consequently, the design of algorithms
on graphs is of major importance in computer science. Applications that employ graph
algorithms typically involve large graphs that change over time and a natural goal in this
setting is to design algorithms that efficiently maintain a solution under these updates.

© R. Krithika, Abhishek Sahu, and Prafullkumar Tale;
licensed under Creative Commons License CC-BY

11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin; Article No. 19; pp. 19:1–19:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


19:2 Dynamic Parameterized Problems

Table 1 Summary of known and new results for different dynamic parameterized problems. All
running time bounds suppress polynomial factors.

Dynamic Problem Parameter k Parameter r

Vertex Cover 1.1740k, 1.1277k † 1.2738r

O(k) kernel O(r2) kernel
Connected Vertex Cover 4k [1], 2k W[2]-hard [1]
Feedback Vertex Set 1.6667k $ 3.592r, 3r $

O(k) kernel O(r2) kernel
Dominating Set 2O(k2) [9], 2k ‡ W[2]-hard [9]
Connected Dominating Set 4k [1], 2k ‡ W[2]-hard [1]
Π-Deletion See Section 2 for hardness and tractability results
† exponential-space algorithm $ randomized algorithm ‡ optimal under Set Cover Conjecture

In this work, we only consider instances where the possible changes to a graph are edge
additions and deletions. Formally, a dynamic version of a graph-theoretic problem is a
quintuple (G,G′, S, k, r) where G and G′ are graphs on the same vertex set and the size of
the symmetric difference of their edge sets is upper bounded by k. The set S is a subset of
vertices of G satisfying certain property and the task is to determine whether G′ has a set
S′ of vertices satisfying the same property such that the symmetric difference of S and S′ is
at most r.

Dynamic problems have been recently studied in the parameterized complexity framework
[1, 9, 15]. Two relevant parameters for dynamic problem instances are the edit parameter k
and the distance parameter r. In this work, we revisit the dynamic versions of several classical
problems with these parameterizations and describe parameterized complexity results. For a
fixed collection of graphs Π, given a graph G and an integer l, the Π-Deletion problem is to
determine if G has a set S ⊆ V (G) of vertices with |S| ≤ l such that G−S ∈ Π. Π-Deletion
is an abstraction of various problems in the graph-theoretic framework and it is known that
finding a minimum solution to Π-Deletion is NP-hard for most choices of Π [19]. Hence, it
has been extensively studied in various algorithmic realms. We define the dynamic version of
this problem referred to as Dynamic Π-Deletion and show NP-hardness, fixed-parameter
tractability and kernelization results. Then, for the specific cases of Π-Deletion such as
Dynamic Vertex Cover and Dynamic Feedback Vertex Set, we describe improved
FPT algorithms with respect to the edit parameter and give linear kernels. Then, for the
same parameterization, we describe algorithms for Dynamic Connected Vertex Cover,
Dynamic Dominating Set and Dynamic Connected Dominating Set. We also show
running time lower bounds for algorithms solving Dynamic Dominating Set and Dynamic
Connected Dominating Set assuming the Set Cover Conjecture [5]. Table 1 summarizes
our results along with the running time bounds known for these problems.

All graphs considered in this paper are finite, undirected, unweighted and simple. Nota-
tion/definitions not given explicitly here can be found in [8]. For a graph G, V (G) and E(G)
denote the sets of vertices and edges respectively. The symmetric difference of two subsets
S, S′ ⊆ V (G), denoted by dv(S, S′), is defined as the size of the set (S \ S′) ∪ (S′ \ S). For
two graphs G and G′ on the same vertex set, de(G,G′) denotes the size of the symmetric
difference of E(G) and E(G′). For a vertex u ∈ V (G), its neighbourhood NG(u) is set of all
the vertices adjacent to it and its closed neighbourhood NG[u] is the set NG(u) ∪ {u}. This
notation is extended to subsets of vertices as NG[S] =

⋃
v∈S NG[v] and NG(S) = NG[S] \ S

where S ⊆ V (G). The subscript in the notation for neighbourhood is omitted if the graph



R. Krithika, A. Sahu, and P. Tale 19:3

under consideration is clear from the context. The degree of a vertex is the size of its
neighbourhood. For a set E′ of edges, V (E′) denotes the union of the endpoints of the edges
in E′. For a set S ⊆ V (G), G[S] and G− S denote the subgraphs of G induced on sets S
and V (G) \ S respectively. The contraction operation of an edge e = uv in G results in the
addition of a new vertex w adjacent to NG(u) ∪ NG(v) and the deletion of u and v. An
independent set is a set of pairwise non-adjacent vertices and a clique is a set of pairwise
adjacent vertices. A triangle is a clique of size 3. We also refer to an edgeless graph as an
independent set and a complete graph as a clique. A forest is a graph with no cycles and a
tree is a connected forest.

In parameterized complexity, every instance of a problem is associated with an non-
negative integer called as the parameter that often measures some structural property of
the instance. A common parameter is a bound l on the size of an optimum solution to
the problem instance I. A problem is fixed-parameter tractable (FPT) with respect to
the parameter l if it has an algorithm with f(l)|I|O(1) running time for some computable
function f . The running time f(l)|I|O(1) where f is an exponential function is also specified
as O∗(f(l)) suppressing the polynomial factors. In order to classify parameterized problems
as being FPT or not, the W-hierarchy is defined as FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ XP using
Boolean circuits and parameterized reductions. It is believed that the subset relations in
this sequence are all strict and a parameterized problem that is hard for some complexity
class above FPT in this hierarchy is unlikely to be FPT. A kernelization algorithm is a
polynomial-time algorithm that transforms an instance (I, l) of the problem to an equivalent
instance (I ′, l′) of the same problem such that |I ′|+ l′ = g(l) for some computable function
g. The instance (I ′, l′) is called a kernel and if g(l) = lO(1), then it is called a polynomial
kernel and we say that the problem admits a polynomial kernelization (or kernel). We refer
the reader to [6, 10, 11] for an introduction to parameterized complexity and kernelization.

2 Dynamic Π-Deletion

A graph property Π is a collection of graphs. Π is said to be (induced) hereditary if for any
graph in Π, all of its (induced) subgraphs are in Π. The membership testing problem for Π
is the task of determining if a graph is in Π or not. Let In denote the graph on n vertices
with no edges and Kn denote the complete graph on n vertices. For most natural choices
of Π, the Π-Deletion problem is NP-complete [19] and interesting dichotomy results are
known in the parameterized complexity framework [2, 16]. We formally define its dynamic
variant referred to as Dynamic Π-Deletion as follows.

Dynamic Π-Deletion Parameter: k, r

Input: Graphs G,G′ on the same vertex set, a set S ⊆ V (G) such that G− S ∈ Π and
integers k, r with de(G,G′) ≤ k.
Question: Does there exist S′ ⊆ V (G′) with dv(S, S′) ≤ r such that G′ − S′ ∈ Π?

Observe that if Π-Deletion is in NP then so is Dynamic Π-Deletion. We are now ready
to state our first result.

I Theorem 2.1. Let Π be a graph property that includes all independent sets or all cliques.
Then, Π-Deletion reduces to Dynamic Π-Deletion in polynomial time.

Proof. Let (H, l) be an instance of Π-Deletion. We reduce (H, l) to the instance (G,G′ =
H,S = ∅, k, r = l) of Dynamic Π-Deletion as follows. If Π includes all independent sets
then G = I|V (H)| and k = |E(H)|. Otherwise, G = K|V (H)| and k =

(|V (H)|
2
)
− |E(H)|. In

IPEC 2016



19:4 Dynamic Parameterized Problems

both the cases, by the property of Π, G− S ∈ Π. Also, the vertex sets of H, G and G′ are
the same. Then, for a set S′ ⊆ V (H), we have H − S′ ∈ Π if and only if G′ − S′ ∈ Π such
that dv(S, S′) = |S′|. J

As a consequence of Theorem 2.1, we have the following hardness result.

I Corollary 2.2. Let Π be a property that includes all independent sets or all cliques.
If Π-Deletion is NP-hard, then Dynamic Π-Deletion is NP-hard.
If Π-Deletion parameterized by solution size is fixed-parameter intractable then Dy-
namic Π-Deletion parameterized by r is fixed-parameter intractable.
If Π-Deletion is NP-complete and does not admit a polynomial kernel when parameter-
ized by solution size then Dynamic Π-Deletion parameterized by r does not admit a
polynomial kernel.

Proof. The NP-hardness and the fixed-parameter intractability results follow straightaway
from Theorem 2.1. If Π-Deletion is NP-complete, then Dynamic Π-Deletion (which is
in NP) reduces to Π-Deletion in polynomial time. Therefore, if Dynamic Π-Deletion
parameterized by r admits a polynomial kernel, such a kernel can be transformed to a
polynomial (in solution size) kernel for Π-Deletion using this reduction and the reduction
described in Theorem 2.1.Thus, the claimed kernelization hardness follows too. J

The following lemma shows that for many choices of Π, to solve Dynamic Π-Deletion, it
suffices to look for a solution that contains the current solution.

I Lemma 2.3. Let Π be an induced hereditary property. If S′ is a solution to the Dynamic
Π-Deletion instance (G,G′, S, k, r) with dv(S, S′) = r′, then there is another solution S′′
with dv(S, S′′) ≤ r′ and S ⊆ S′′.

Proof. We have dv(S, S′) = |S \ S′| + |S′ \ S| = r′. Let S′′ be the set S ∪ S′. Then,
dv(S, S′′) = |S \ S′′| + |S′′ \ S| = |S′′ \ S| = |S′ \ S| ≤ r′. Now, as G′ − S′ ∈ Π and Π is
hereditary, it follows that G′ − S′′ ∈ Π. J

Now, we proceed to show that Dynamic Π-Deletion reduces to Π-Deletion for many
choices of Π.

I Theorem 2.4. Let Π be an induced hereditary property whose membership testing problem
is polynomial-time solvable. Then, Dynamic Π-Deletion reduces to Π-Deletion in
polynomial time.

Proof. Consider an instance (G,G′, S, k, r) of Dynamic Π-Deletion. The task is to
determine if G′ has a solution S′ with dv(S, S′) ≤ r. If G′ − S ∈ Π, then S is the required
solution S′. Otherwise, from Lemma 2.3, assume that the required set S′ contains S. Let H
denote the graph G′ − S. Then, H − (S′ \ S) ∈ Π. Therefore, for a set T ⊆ V (H), we have
H − T ∈ Π if and only if G′ − (S ∪ T ) ∈ Π such that dv(S, S′) = |T |. J

Then, the following claim holds.

I Corollary 2.5. Let Π be a hereditary property whose membership testing problem is
polynomial-time solvable. If Π-Deletion is FPT with respect to the solution size l as
the parameter, then Dynamic Π-Deletion is FPT with respect to both r and k as paramet-
ers.



R. Krithika, A. Sahu, and P. Tale 19:5

Proof. Consider an instance (G,G′, S, k, r) of Dynamic Π-Deletion. Suppose Π-Deletion
admits an algorithm with O∗(f(l)) running time. Then, from Theorem 2.4, there is an
algorithm A solving (G,G′, S, k, r) in O∗(f(r)) time. Thus, the problem is FPT when
parameterized by r. Let Ẽ denote the set E(G′) \ E(G). Let T be a set of vertices of G′
of size at most k that contains at least one endpoint of each edge in Ẽ. As Π is hereditary
and G− S ∈ Π, it follows that G′ − (S ∪ T ) ∈ Π. Now, if r ≥ k, then S ∪ T is the required
solution S′. Otherwise, the algorithm A solving Dynamic Π-Deletion runs in O∗(f(k))
time. Hence, the problem is FPT when parameterized by k. J

Finally, we move on to kernelization results.

I Corollary 2.6. Let Π be a hereditary property whose membership testing problem is
polynomial-time solvable. Suppose Π-Deletion parameterized by the solution size l admits
a kernel with p(l) vertices and q(l) edges.

If Π includes all independent sets, then Dynamic Π-Deletion admits a kernel with
2p(r) ≤ 2p(k) vertices and q(r) ≤ q(k) edges.
If Π includes all cliques, then Dynamic Π-Deletion admits a kernel with 2p(r) ≤ 2p(k)
vertices and q(r) + p(r)2 ≤ q(k) + p(k)2 edges.

Proof. Consider an instance (G,G′, S, k, r) of Dynamic Π-Deletion. If G′ − S ∈ Π
or r ≥ k, the output of the kernelization algorithm is (K1, ∅,K1, 0, 0) which is a trivial
YES instance of Dynamic Π-Deletion. Suppose G′ − S 6∈ Π and r < k. Let (H ′, r′)
be the kernel of the instance (H, r) of Π-Deletion obtained from Theorem 2.4. Then,
(H ′′, H ′, ∅, |E(H ′)|, r′) is the kernel of (G,G′, S, k, r) where H ′′ = I|V (H′)| if Π includes all
independent sets and H ′′ = K|V (H′)| if Π includes all cliques. Hence, the claimed bounds on
the kernel size follow. J

A property Π is interesting if the number of graphs in Π and the number of graphs not
in Π are unbounded. Any induced hereditary property that is interesting either contains all
independent sets or contains all cliques. Thus, all the above results hold for such properties.
In particular, the results of this section hold for the dynamic variants of classical problems
like Vertex Cover and Feedback Vertex Set.

3 Dynamic Vertex Cover

A vertex cover is a set of vertices that has at least one endpoint from every edge. Given a
graph G and an integer l, Vertex Cover is the problem of determining if G has a vertex
cover of size l. Its dynamic variant, Dynamic Vertex Cover, is defined as follows.

Dynamic Vertex Cover Parameter: k, r

Input: Graphs G,G′ on the same vertex set, a vertex cover S of G and integers k, r such
that de(G,G′) ≤ k.
Question: Does there exist a vertex cover S′ of G′ such that dv(S, S′) ≤ r?

In [1] it is claimed that Dynamic Vertex Cover is W[1]-hard with respect to k + r as
the parameter by a reduction from Independent Set parameterized by the solution size.
However, the reduction is incorrect and the fixed-parameter intractability does not follow.
Clearly, Dynamic Vertex Cover is Dynamic Π-Deletion where Π is the set of all
independent sets. Vertex Cover parameterized by the solution size l admits a kernel
with at most 2l vertices [4] and the current best FPT algorithm runs in O∗(1.2738l) time [3].

IPEC 2016



19:6 Dynamic Parameterized Problems

By Theorem 2.4 and Corollaries 2.5 and 2.6, these results extend to Dynamic Vertex
Cover as well. Also, as Vertex Cover is NP-hard, its dynamic version is NP-hard too by
Theorem 2.1 and Corollary 2.2. In particular, the following results hold.

Dynamic Vertex Cover is NP-complete and admits algorithms with O∗(1.2738r) and
O∗(1.2738k) running times.
Dynamic Vertex Cover admits an O(r2) kernel and an O(k2) kernel.

We now improve over these results by describing a linear kernel and a faster FPT algorithm
with respect to k as the parameter. First, we describe the linear kernelization.

I Theorem 3.1. Dynamic Vertex Cover admits a kernel with at most 2k vertices and
at most k edges.

Proof. Consider an instance (G,G′, S, k, r) of Dynamic Vertex Cover. By Lemma 2.3, it
suffices to search for a solution S′ that contains S. As de(G,G′) ≤ k, we have |E(G′)\E(G)| ≤
k. From Theorem 2.4 and Corollary 2.6, it suffices to output a linear kernel of the Vertex
Cover instance (G′ − S, r). We apply the following standard preprocessing on G′ − S.

I Reduction Rule 3.2. Delete isolated vertices.

I Reduction Rule 3.3. If there is a vertex v of degree 1 add N(v) into the solution, decrease
r by 1 and delete N [v] from the graph.

Let H ′ denote the resultant graph on which these rules are no longer applicable and r′

denote the corresponding budget. Then, (G′ − S, r) is a YES instance of Vertex Cover
if and only if (H ′, r′) is a YES instance of Vertex Cover. As the minimum degree of
H ′ is at least 2, we have 2|E(H ′)| ≥ 2|V (H ′)|. As G′ − S has at most k edges, it follows
that |E(H ′)| ≤ k. Thus, |V (H ′)| ≤ k and from Corollary 2.6 the kernel of (G,G′, S, k, r) is
(I|V (H′)|, H

′, ∅, k = |E(H ′)|, r′). J

Next, we describe an algorithm faster than O∗(1.2738k).

I Theorem 3.4. Dynamic Vertex Cover can be solved in O∗(1.1740k) time.

Proof. Consider an instance (G,G′, S, k, r) of Dynamic Vertex Cover. By Lemma 2.3, it
suffices to search for a solution S′ that contains S. From Theorem 2.4 and Corollary 2.6, it
suffices to solve the Vertex Cover instance (G′−S, r). We first apply Reduction Rules 3.2
and 3.3 on H = G′ − S as long as they are applicable. Then, |V (H)| ≤ |E(H) ≤ k. A
minimum vertex cover of a graph on n vertices can be found in O∗(1.2002n) time [22]. Thus,
an O∗(1.2002k) algorithm follows. We will describe a faster branching algorithm where the
measure used to bound the number of nodes of the search tree is the number of edges in H
and the leaves of the tree are instances corresponding to the empty graph or a graph with
maximum degree at most 2. To this end, we apply the following additional rule exhaustively.

I Reduction Rule 3.5. If there is a triangle on vertices u, v, w such that |N(u)| = 2 then
include v, w into the solution and delete u, v, w from the graph.

We eliminate all other triangles in the graph by applying following branching strategy.

I Branching Rule 3.6. Let u, v, w be the vertices of a triangle.
Branch 1: Include u into the solution and delete it from the graph.
Branch 2: Include N(u) into the solution and delete N [u] from the graph.



R. Krithika, A. Sahu, and P. Tale 19:7

As the degree of a vertex in a triangle is at least 3, the measure drops by at least 3 in the
first branch and by at least 6 in the second. When this rule is no longer applicable, we have
a triangle-free graph. Now, we state our final branching rule.

I Branching Rule 3.7. Let u be a vertex of degree at least three.
Branch 1: Include vertex u into the solution and delete it from the graph.
Branch 2: Include N(u) into the solution and delete N [u] from the graph.

In the first branch, the measure drops by at least 3. As the graph is triangle-free, no two
neighbours of u are adjacent. Further, all vertices have degree at least 2. Therefore, the
measure drops by at least 2|N(u)| ≥ 6 in the second branch. As no new edges are added to
the graph in any rule, the measure never increases after the application of a reduction or
branching rule. All reduction rules can be applied in polynomial time and at each branching
rule, we only spend polynomial time to find a vertex to branch on. When k is zero or the
maximum degree of the graph is at most 2, finding a minimum vertex cover is polynomial-time
solvable. If the vertex cover budget exceeds the permissible value at a branch, that branch is
aborted. The initial measure is upper bounded by k and the worst case branching vector is
(3, 6). This leads to the recurrence T (k) ≤ T (k − 3) + T (k − 6) whose solution is 1.1740k.
Thus, the algorithm runs in O∗(1.1740k) time. J

The treewidth of a graph is a parameter that quantifies the closeness of the graph to a tree
(see [6] for the precise definition). If the treewidth of the input graph is upper bounded by
tw, then a minimum vertex cover can be obtained in O∗(2tw) time [6]. The following result
relates the treewidth of a graph to the number of its vertices and edges.

I Lemma 3.8 ([17]). If G is a graph on n vertices and m edges, then the treewidth of G
is upper bounded by m

5.769 +O(logn). Moreover, a tree decomposition of the corresponding
width can be constructed in polynomial time.

Since the graph H on which a minimum vertex cover is desired has at most k edges and k
vertices, its treewidth tw is bounded by k

5.769 +O(log k). Then, we have the following result.

I Theorem 3.9. Dynamic Vertex Cover can be solved in O∗(1.1277k) time.

Though this algorithm is faster than the branching algorithm described earlier, it requires
exponential space while the algorithm in Theorem 3.4 requires only polynomial space.

4 Dynamic Connected Vertex Cover

A connected vertex cover of a graph is a vertex cover that induces a connected subgraph and
Dynamic Connected Vertex Cover is defined as follows.

Dynamic Connected Vertex Cover Parameter: k, r

Input: Graphs G,G′ on the same vertex set, a connected vertex cover S of G and integers
k, r such that de(G,G′) ≤ k.
Question: Does there exist a connected vertex cover S′ of G′ such that dv(S, S′) ≤ r?

The problem is NP-complete, W[2]-hard when parameterized by r and admits an O∗(4k)
algorithm by a reduction to finding a minimum weight Steiner tree [1]. We describe an
O∗(2k) algorithm by a reduction to finding a group Steiner tree. Given a graph G, an integer
p and a family F of subsets of V (G), the Group Steiner Tree problem is the task of
determining whether G contains a tree on at most p vertices that contains at least one vertex

IPEC 2016



19:8 Dynamic Parameterized Problems

from each set in F . This problem is known to admit an algorithm with O∗(2|F|) running
time [20]. We use this algorithm as a subroutine in our algorithm for Dynamic Connected
Vertex Cover. First, we show a lemma on the property of a solution to an instance of
Dynamic Connected Vertex Cover analogous to Lemma 2.3.

I Lemma 4.1. Consider an instance (G,G′, S, k, r) of Dynamic Connected Vertex
Cover. If S′ is a connected vertex cover of G′ with dv(S, S′) = r′, then S′ ∪ S is also a
connected vertex cover of G′ with dv(S, S′ ∪ S) ≤ r′.

Proof. Assume G′ is connected, otherwise the given instance is a NO instance. As a set that
contains a vertex cover is also a vertex cover, it follows that T = S′ ∪ S is a vertex cover of
G′. As S′ is a vertex cover of G′, S \ S′ is an independent set in G′. As G′ is connected,
every vertex in S \ S′ is adjacent to some vertex in S′. Then, as G′[S′] is connected and
S′ ⊆ T , it follows that G′[T ] is connected too. Further, as T \ S = S′ \ S it follows that
dv(S, T ) = |T \ S|+ |S \ T | = |T \ S| = |S′ \ S| ≤ r′. J

Now, we prove the main result of this section.

I Theorem 4.2. Dynamic Connected Vertex Cover can be solved in O∗(2k) time.

Proof. Consider an instance (G,G′, S, k, r) of Dynamic Connected Vertex Cover. By
Lemma 4.1, we can assume that the required solution S′ contains S. Observe that G′[S] is
not necessarily connected and the edges in G′ that are not covered by S are those edges in
E′ = (E(G′) \E(G))∩E(G′ − S). Now, we show a reduction to finding a group Steiner tree.
Contract each connected component of G′[S] to a single vertex. Let H denote the resulting
graph and let X = V (H) \ V (G′). Construct an instance (H, |X|+ r,F) of Group Steiner
Tree where F = {{u, v} | uv ∈ E′} ∪ {{x} | x ∈ X}. We claim that (G,G′, S, k, r) is a
YES instance of Dynamic Connected Vertex Cover if and only if (H, |X|+ r,F) is a
YES instance of Group Steiner Tree.

Suppose G′ has a connected vertex cover S′ such that dv(S, S′) ≤ r and S ⊆ S′. As
G′[S′] is connected, it follows that H[X ∪ (S′ ∩ V (G′ − S))] is also connected. Moreover,
as |S′ ∩ V (G′ − S)| ≤ r, it follows that the spanning tree of H[X ∪ (S′ ∩ V (G′ − S))] is of
size at most |X|+ r. Hence (H, |X|+ r,F) is a YES instance of Group Steiner Tree.
Conversely, suppose (H, |X| + r,F) is a YES instance of Group Steiner Tree. Let T
denote the solution tree of H. Then, X ⊆ V (T ) and |V (T ) \X| = |V (T ) ∩ V (G′ − S)| ≤ r.
Define S′ = S ∪ (V (T ) ∩ V (G′ − S)). The size of S′ is at most |S| + r. Further, G′[S′] is
connected as S′ is obtained from the vertices of T . Also, for every edge in E′, T contains
at least one of its endpoints. Thus, S′ is the desired connected vertex cover of G′. As the
sum of the number of connected components of G′[S] and the size of E′ is upper bounded by
k + 1, it follows that |F| ≤ k + 1. Thus, the Group Steiner Tree algorithm of [20] runs
in O∗(2k) time. J

5 Dynamic Feedback Vertex Set

A feedback vertex set is a set of vertices whose deletion results in a forest and Dynamic
Feedback Vertex Set is defined as follows.

Dynamic Feedback Vertex Set Parameter: k, r

Input: Graphs G,G′ on the same vertex set, a feedback vertex set X of G and integers
k, r such that de(G,G′) ≤ k.
Question: Does there exist a feedback vertex set X ′ of G′ such that dv(X,X ′) ≤ r?



R. Krithika, A. Sahu, and P. Tale 19:9

Clearly, Dynamic Feedback Vertex Set is Dynamic Π-Deletion where Π is the set
of all forests. Given a graph G and an integer l, the Feedback Vertex Set problem
is the task of determining if G has a feedback vertex set of at most l vertices. As it is a
classical NP-complete problem, its dynamic variant is NP-complete too by Theorem 2.1 and
Corollary 2.2. Feedback Vertex Set is known to admit an O∗(3.592l) algorithm [18]
and a kernel with O(l2) vertices [21]. Also, a randomized algorithm that solves the problem
in O∗(3l) time is known [7]. By Theorem 2.4 and Corollaries 2.5 and 2.6, all these results
extend to Dynamic Feedback Vertex Set. In particular, the following results hold.

Dynamic Feedback Vertex Set can be solved in O∗(3.592r) time and in O∗(3.592k)
time.
Dynamic Feedback Vertex Set admits randomized algorithms with O∗(3r) and
O∗(3k) running times.
Dynamic Feedback Vertex Set admits an O(r2) kernel and an O(k2) kernel.

We now improve these bounds by describing a linear kernel and a faster randomized FPT
algorithm with respect to k as the parameter. First, we describe the linear kernelization.

I Theorem 5.1. Dynamic Feedback Vertex Set admits a kernel with at most 4k vertices
and at most 3k edges.

Proof. Consider an instance (G,G′, X, k, r) of Dynamic Feedback Vertex Set. Observe
that if G′ is obtained from G by only deleting edges, then X is feedback vertex set of G′ too.
Also, edges in E(G′) \E(G) that have an endpoint in X do not affect the solution. Moreover,
from Lemma 2.3, it suffices to search for a feedback vertex set of G′ that contains X. Let H
be the subgraph of G′ induced on V (G′) \X. From Theorem 2.4, (G,G′, X, k, r) is a YES
instance of Dynamic Feedback Vertex Set if and only if (H, r) is a YES instance of
Feedback Vertex Set. From Corollary 2.6, it suffices to output a linear kernel of the
instance (H, r). We primarily exploit the fact that H is obtained by adding at most k edges
to a forest. This implies that |E(H)| ≤ |V (H)| + k − 1. Let Ẽ be the set of edges in G′

whose both endpoints are in V (G) \X and U = V (Ẽ). We apply the following reduction
rule to G−X. Note that G−X is a subgraph of H as E(H) = E(G−X) ∪ Ẽ.

I Reduction Rule 5.2. If there is a vertex v of degree at most 1 such that v /∈ U , then delete
v from the graph.

This rule preserves the size of a minimum feedback vertex set as v has degree at most 1 in H
too and no minimal feedback vertex set of H contains it. As the number of vertices with
degree at least 3 is upper bounded by the number of leaves in a forest, it follows that the
number of vertices of degree at least 3 is at most 2k on the resulting graph G′′ on which
this rule is not applicable. Consider the graph H ′′ obtained from G′′ by adding Ẽ. We once
again delete vertices of degree at most 1 (if any) and then apply following reduction rule
exhaustively.

I Reduction Rule 5.3. If there is a vertex v of degree 2, then delete v and add an edge
between its two neighbours.

Once again this rule preserves the size of a minimum feedback vertex set as any minimal
feedback vertex set of H ′′ that contains v can be modified into another minimal feedback
vertex set of at least the same size that does not contain v. Note that the application of
Reduction Rules 5.2 and 5.3 ensure that |E(H ′′)| ≤ |V (H ′′)| + k − 1 is satisfied. When
neither of the reduction rules are applicable on H ′′, the minimum degree of H ′′ is at least 3
and |E(H ′′)| ≤ |V (H ′′)|+ k− 1. This implies that 1.5|V (H ′′)| ≤ |E(H ′′)| ≤ |V (H ′′)|+ k− 1

IPEC 2016



19:10 Dynamic Parameterized Problems

and hence |V (H ′′)| ≤ 2k− 2, |E(H ′′)| ≤ 3k− 3. Also, (H, r) is a YES instance of Feedback
Vertex Set if and only if (H ′′, r) is a YES instance of Feedback Vertex Set. Thus,
from Corollary 2.6, the kernel of (G,G′, S, k, r) is (I|V (H′′)|, H

′′, ∅, k = |E(H ′′)|, r). J

Next, we proceed to describe a randomized FPT algorithm for the problem. If the treewidth
of the input graph is upper bounded by tw then there is a randomized O∗(3tw) time algorithm
that computes a minimum feedback vertex set [7]. Further, for finding a minimum feedback
vertex set of a graph on n vertices, there is a randomized algorithm running in O(1.6667n)
time [12]. The following result relates the treewidth of a graph to the number of its vertices
and edges.

I Lemma 5.4 ([13]). For any ε > 0, there exists an integer nε such that for every connected
graph G on n vertices and m edges with n > nε and 1.5n ≤ m ≤ 2n, the treewidth of G is
upper bounded by m−n

3 + εn. Moreover, a tree decomposition of the corresponding width can
be constructed in polynomial time.

This theorem along with the described linear kernelization leads to the following result.

I Theorem 5.5. Dynamic Feedback Vertex Set admits a randomized algorithm running
in O∗(1.6667k) time.

Proof. Consider an instance (G,G′, X, k, r) of Dynamic Feedback Vertex Set. Let
(H ′′, r) be the corresponding instance of Feedback Vertex Set obtained from the linear
kernelization of Theorem 5.1. That is, H ′′ is a graph (not necessarily simple) on n vertices
and m edges such that m ≤ n+k−1 and n ≤ 2k−2. Further, every vertex of H ′′ has degree
at least 3 and hence m ≥ 1.5n. If m > 2n, then as m ≤ n+ k − 1, we have n < k − 1. Then,
a minimum feedback vertex set of H ′′ can be obtained in O(1.6667k) using the randomized
exact exponential-time algorithm described in [12]. Otherwise, 1.5n ≤ m ≤ 2n. Let ε be a
constant (to be chosen subsequently). Then, let nε be the integer obtained from Lemma 5.4
satisfying the required properties. If n ≤ nε, then a minimum feedback vertex set of H ′′
can be obtained in constant time as nε is a constant depending only on ε. Otherwise, the
treewidth of H ′′ is at most t = m−n

3 + εn = m
3 + n(ε − 1

3 ). Then, using the randomized
algorithm described in [7], a minimum feedback vertex set of H ′′ can be obtained in O∗(3t)
time. Now, by choosing ε to be a sufficiently small constant, t can be made arbitrarily close
to m−n

3 . For instance, if ε = 10−10, then t is .3m− .33333333323n. As m−n
3 ≤ n+k−1−n

3 = k
3 ,

the algorithm in [7] runs in O∗(1.443k) time. J

6 Dynamic Dominating Set

A dominating set is a set of vertices that has a non-empty intersection with the closed
neighbourhood of every vertex and a set S ⊆ V (G) is said to dominate another set T ⊆ V (G)
if T ⊆ N [S]. The Dynamic Dominating Set problem is defined as follows.

Dynamic Dominating Set Parameter: k, r

Input: Graphs G,G′ on the same vertex set, a dominating set D of G and integers k, r
such that de(G,G′) ≤ k.
Question: Does there exist a dominating set D′ of G′ such that dv(D,D′) ≤ r?

The problem is NP-complete and W[2]-hard when parameterized by r [9]. Also, it is FPT
when parameterized by k via an 2O(k2) algorithm but admits no polynomial kernel unless
NP ⊆ coNP/poly [9]. We describe a faster FPT algorithm for this parameterization. First,
we show that it suffices to look for a dominating set with a specific property.



R. Krithika, A. Sahu, and P. Tale 19:11

I Lemma 6.1. Consider an instance (G,G′, D, k, r) of Dynamic Dominating Set. If D′
is a dominating set of G′ with dv(D,D′) = r′, then D′ ∪D is also a dominating set of G′
with dv(D,D′ ∪D) ≤ r′.

Proof. As a set that contains a dominating set is also a dominating set, it follows that
D′′ = D′ ∪ D is a dominating set of G′. Further, dv(D,D′′) = |D′′ \ D| + |D \ D′′| =
|D′′ \D| = |D′ \D| ≤ r′. J

Now, we solve Dynamic Dominating Set by reducing it to an instance of Set Cover. In
the Set Cover problem, we are given a family F of subsets of a universe U and a positive
integer `. The problem is to determine whether there exists a subfamily F ′ ⊆ F of size at
most ` such that U =

⋃
X∈F ′ X.

I Theorem 6.2. Dynamic Dominating Set admits an algorithm that runs in O∗(2k) time.

Proof. Consider an instance (G,G′, D, k, r) of Dynamic Dominating Set. If G′ is obtained
from G by only adding edges, then D is dominating set of G′. The only kind of edge deletions
that could possibly affect the solution are those that have one endpoint in D and the other
endpoint in V (G′) \D. Further, as de(G,G′) ≤ k, |V (G′) \NG′ [D]| ≤ k. That is, there are
at most k vertices in G′ that are not dominated by D. Let H be the subgraph of G′ induced
on V (G′) \D. Partition V (H) into two sets C = NG′(D) and B = V (H ′) \ C.

We claim that (G,G′, D, k, r) is a YES instance of Dynamic Dominating Set if and
only if there exists a set P ⊆ V (H) of cardinality at most r such that B ⊆ NH [P ]. If there is
a set P of size at most r in V (H) that dominates B, then D′ = D ∪P is a dominating set of
G′ with dv(D,D′) ≤ r. Hence, (G,G′, D, k, r) is a YES instance of Dynamic Dominating
Set. Conversely, suppose there is a dominating set D′ of G′ with dv(D,D′) ≤ r. Define D′′
as D′ \D. Note that |D′′| ≤ r. By construction of H, B is not dominated by D and hence
B ⊆ NH [D′′]. This implies that D′′ is the required set of vertices of H that dominates B.

The problem now reduces to finding a set of at most r vertices from B∪C that dominates
B in H. We construct an instance of Set Cover with U = B, F = {NH(u) ∩ B | u ∈
C} ∪ {NH [w] ∩ B | w ∈ B} and ` = r. Then, there exists a set P of size at most r in H
which dominates B if and only if (U,F , `) is a YES instance of Set Cover. A set X ∈ F
is said to be associated with a vertex v in C if X = NH(v) ∩ B or with a vertex v in B if
X = NH [v] ∩B. If there exists a set P with desired property, then every vertex w in B is
contained in open or closed neighbourhood of some vertex in P . Consider the subfamily F ′
of F that are associated with vertices in P . Every element of U is contained in at least one
of these sets. Thus, F ′ is the required set cover. Conversely, if there exists a set cover F ′ of
size at most ` = r, then let P ′ be the set of vertices which are associated with sets in F ′.
Then, |P ′| = |F ′| ≤ r and every vertex in B is either in P ′ or is adjacent to some vertex in
P ′. Hence, P ′ is the desired set.

As any instance (U,F , `) of Set Cover can be solved in O∗(2|U |) [14] and |U | = |B| ≤ k,
the claimed running time bound follows. J

Finally, we show a lower bound on the running time of an algorithm that solves Dynamic
Dominating Set assuming the Set Cover Conjecture which states that Set Cover cannot
be solved in O∗((2− ε)|U |) for any ε > 0 [5]. We do so by a reduction from Set Cover to
Dynamic Dominating Set.

I Theorem 6.3. Dynamic Dominating Set does not admit an algorithm with O∗((2− ε)k)
running time for any ε > 0 assuming the Set Cover Conjecture.

IPEC 2016



19:12 Dynamic Parameterized Problems

Proof. Consider an instance (U,F , `) of Set Cover where U = {u1, · · · , un} and F =
{S1, · · · , Sm}. Without loss of generality, assume that every ui is in at least one set Sj . Let
G be the graph with vertex set U ∪ V ∪ {x} where U = {u1, · · · , un} and V = {s1, · · · , sm}.
The set V is a clique and the set U is an independent set in G. Further, a vertex ui is
adjacent to sj if and only if ui ∈ Sj and x is adjacent to every vertex in U ∪ V . Clearly,
D = {x} is a dominating set of G. Let G′ be the graph obtained from G by deleting edges
between x and U . We claim that (U,F , `) is a YES instance of Set Cover if and only if
(G,G′, D = {x}, k = n, r = `) is a YES instance of Dynamic Dominating Set. Suppose
F ′ is a set cover of size at most `. Then, D′ = D ∪ {si | Si ∈ F ′} is a dominating set of G′
with dv(D,D′) ≤ `. Conversely, suppose G′ has a dominating set D′ with dv(D,D′) ≤ `.
From Lemma 6.1, assume that D ⊆ D′ and so |D′ \D| ≤ `. For every vertex u ∈ U ∩D′,
replace u by one of its neighbours in V . The resultant dominating set D′′ contains D and
satisfies D′′ \D ⊆ V . Now, {Si ∈ F | vi ∈ D′′ ∩ V } is a set cover of size at most `. This
leads to the claimed lower bound under the Set Cover Conjecture. J

7 Dynamic Connected Dominating Set

A connected dominating set is a dominating set that induces a connected subgraph and the
Dynamic Connected Dominating Set problem is defined as follows.

Dynamic Connected Dominating Set Parameter: k, r

Input: Graphs G,G′ on the same vertex set, a connected dominating set D of G and
integers k, r such that de(G,G′) ≤ k.
Question: Does there exist a connected dominating set D′ of G′ such that dv(D,D′) ≤ r?

The problem is NP-complete and admits an O∗(4k) algorithm by a reduction to finding a
minimum weight Steiner tree [1]. We now show that it admits an O∗(2k) algorithm by a
reduction to finding a group Steiner tree. Analogous to the problems considered earlier, we
first prove a property on the required solution.

I Lemma 7.1. Consider an instance (G,G′, D, k, r) of Dynamic Connected Dominating
Set. If D′ is a connected dominating set of G′ with dv(D,D′) = r′, then D′ ∪D is also a
connected dominating set of G′ with dv(D,D′ ∪D) ≤ r′.

Proof. Assume G′ is connected, otherwise the given instance is a NO instance. As a set
that contains a dominating set is also a dominating set, it follows that D′′ = D′ ∪D is a
dominating set of G′. Now, D′′ \D is D′ \D. As D′ is a dominating set of G′, every vertex
in D \D′ is adjacent to some vertex in D′. Then, as G′[D′] is connected and D′ ⊆ D′′, it
follows that G′[D′′] is connected too. Further, dv(D,D′′) = |D′′ \D|+ |D \D′′| = |D′′ \D| =
|D′ \D| ≤ r′ ≤ r. J

Now, we describe an algorithm by reducing the problem to finding a Group Steiner tree.

I Theorem 7.2. Dynamic Connected Dominating Set admits an algorithm that runs
in O∗(2k) time.

Proof. Consider an instance (G,G′, D, k, r) of Dynamic Connected Dominating Set.
Assume G′ is connected. Clearly, the edges in E(G′) \ E(G) do not affect the solution.
Partition V (G′) \ D into two sets C = NG′(D) and B = V (G′) \ C. Contract each
connected component of G′[D] to a single vertex. Let H denote the resulting graph and let
X = V (H) \ V (G′). Construct an instance (H, |X|+ r,F) of Group Steiner Tree where



R. Krithika, A. Sahu, and P. Tale 19:13

F = {NG′ [v] | v ∈ B} ∪ {{x} | x ∈ X}. We claim that (G,G′, D, k, r) is a YES instance of
Dynamic Connected Dominating Set if and only if (H, |X|+ r,F) is a YES instance of
Group Steiner Tree.

Suppose there exists a connected dominating set D′ of G′ such that dv(D,D′) ≤ r and
D ⊆ D′. For every vertex u in B, there is a vertex x in D′ ∩ (B ∪ C) that is adjacent to u.
As G′[D′] is connected, it follows that H[X ∪ (D′ ∩ (B ∪C))] is also connected. Moreover, as
|D′ ∩ (C ∪B)| ≤ |D′| − |D| ≤ r, it follows that the spanning tree of H[X ∪ (D′ ∩ (C ∪B))]
is of size at most |X| + r. Hence (H, |X| + r,F) is a YES instance of Group Steiner
Tree. Suppose (H, |X|+ r,F) is a YES instance of Group Steiner Tree. Let T denote
the solution tree of H. Then, X ⊆ V (T ) and |V (T ) \X| = |V (T ) ∩ (C ∪ B)| ≤ r. Define
D′ = D ∪ (V (T ) ∩ (B ∪ C)). The size of D′ is at most |D|+ r. Now, G′[D′] is connected as
D′ is obtained from the vertices of T . Also, for every vertex u in B, T contains at least one
vertex in NG′ [v]. Thus, D′ is the desired connected dominating set of G′.

As E(G) \ E(G′), the sum of the number of connected components of G′[D] and the
size of B is upper bounded by k + 1. That is, |F| ≤ k + 1 and the Group Steiner Tree
algorithm of [20] runs in O∗(2k) time. J

Finally, by a reduction from Set Cover to Dynamic Connected Dominating Set, we
show the following result.

I Theorem 7.3. Dynamic Connected Dominating Set does not admit an algorithm
with O∗((2− ε)k) running time for any ε > 0 assuming the Set Cover Conjecture.

Proof. We observe that the reduction described in Theorem 6.3 reduces instances of Set
Cover to instances of Dynamic Connected Dominating Set. Thus, the claimed lower
bound holds assuming the Set Cover Conjecture. J

8 Conclusion

We described FPT algorithms for the dynamic variants of several classical parameterized
problems with respect to the edit parameter. The role of structural parameters like treewidth
and pathwidth in this setting remains to be explored. Also, further exploration of the contrast
between the parameterized complexity of a problem and its dynamic version is an interesting
direction of research.

Acknowledgments. We are grateful to Saket Saurabh for the invaluable discussions and for
providing several useful pointers that led to the writing of this paper. We are also thankful to
the reviewers for their suggestions that strengthened the results for Dynamic Π-Deletion.

References
1 F.N. Abu-Khzam, J. Egan, M.R. Fellows, F.A. Rosamond, and P. Shaw. On the Paramet-

erized Complexity of Dynamic Problems. Theoretical Computer Science, 607 (3):426–434,
2015.

2 L. Cai. Fixed-Parameter Tractability of Graph Modification Problems for Hereditary Prop-
erties. Information Processing Letters, 58(4):171–176, 1996.

3 J. Chen, I. A. Kanj, and W. Jia. Vertex Cover: Further Observations and Further Improve-
ments. Journal of Algorithms, 41(2):280–301, 2001.

4 J. Chen, I. A. Kanj, and G. Xia. Improved Upper Bounds for Vertex Cover. Theoretical
Computer Science, 411(40-42):3736–3756, 2010.

IPEC 2016



19:14 Dynamic Parameterized Problems

5 M. Cygan, H. Dell, D. Lokshtanov, D. Marx, J. Nederlof, Y. Okamoto, R. Paturi, S. Saur-
abh, and M. Wahlstrom. On Problems As Hard As CNF-SAT. In Proceedings of the IEEE
Conference on Computational Complexity, CCC’12, pages 74–84. IEEE Computer Society,
2012.

6 M. Cygan, F.V. Fomin, K. Lukasz, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Parameterized Algorithms. Springer, 2015.

7 M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J.M.M. van Rooij, and J.O. Wo-
jtaszczyk. Solving Connectivity Problems Parameterized by Treewidth in Single Exponen-
tial Time. In Proceedings of the IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS’11, pages 150–159, 2011.

8 R. Diestel. Graph Theory. Springer-Verlag Berlin Heidelberg, 2006.
9 R.G. Downey, J. Egan, M.R. Fellows, F.A. Rosamond, and P. Shaw. Dynamic Dominating

Set and Turbo-Charging Greedy Heuristics. Tsinghua Science and Technology, 19(4):329–
337, 2014.

10 R.G. Downey and M.R. Fellows. Fundamentals of Parameterized Complexity. Springer-
Verlag London, 2013.

11 J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
12 F.V. Fomin, S. Gaspers, D. Lokshtanov, and S. Saurabh. Exact Algorithms via Monotone

Local Search. In Proceedings of the 48th Annual ACM Symposium on Theory of Computing,
STOC’16. ACM, 2016.

13 F.V. Fomin, S. Gaspers, S. Saurabh, and A.A. Stepanov. On Two Techniques of Combining
Branching and Treewidth. Algorithmica, 54(2):181–207, 2009.

14 F.V. Fomin, D. Kratsch, and G. J. Woeginger. Exact (exponential) Algorithms for the Dom-
inating Set Problem. In Proceedings of the 30th International Workshop on Graph-Theoretic
Concepts in Computer Science, WG’04, pages 245–256. Springer Berlin Heidelberg, 2004.

15 S. Hartung and R. Niedermeier. Incremental List Coloring of Graphs, Parameterized by
Conservation. Theoretical Computer Science, 494:86–98, 2013.

16 S. Khot and V. Raman. Parameterized Complexity of Finding Subgraphs with Hereditary
Properties. Theoretical Computer Science, 289(2):997–1008, 2002.

17 J. Kneis, D. Mölle, S. Richter, and P. Rossmanith. A Bound on the Pathwidth of Sparse
Graphs with Applications to Exact Algorithms. SIAM Journal on Discrete Mathematics,
23(1):407–427, 2009.

18 T. Kociumaka and M. Pilipczuk. Faster Deterministic Feedback Vertex Set. Information
Processing Letters, 114(10):556–560, 2014.

19 J.M. Lewis and M. Yannakakis. The Node-Deletion Problem for Hereditary Properties is
NP-Complete. Journal of Computer and System Sciences, 20(2):219–230, 1980.

20 N. Misra, G. Philip, V. Raman, S. Saurabh, and S. Sikdar. FPT Algorithms for Connected
Feedback Vertex Set. Journal of Combinatorial Optimization, 24(2):131–146, 2012.

21 S. Thomassé. A Quadratic Kernel for Feedback Vertex Set. In Proceedings of the 12th
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’09, pages 115–119, 2009.

22 M. Xiao and H. Nagamochi. Exact Algorithms for Maximum Independent Set. In Pro-
ceedings of the 24th International Symposium on Algorithms and Computation, ISAAC’13,
pages 328–338. Springer Berlin Heidelberg, 2013.



A 2`k Kernel for `-Component Order
Connectivity∗

Mithilesh Kumar1 and Daniel Lokshtanov2

1 Department of Informatics, University of Bergen, Norway
Mithilesh.Kumar@ii.uib.no

2 Department of Informatics, University of Bergen, Norway
daniello@ii.uib.no

Abstract
In the `-Component Order Connectivity problem (` ∈ N), we are given a graph G on n

vertices, m edges and a non-negative integer k and asks whether there exists a set of vertices
S ⊆ V (G) such that |S| ≤ k and the size of the largest connected component in G−S is at most
`. In this paper, we give a kernel for `-Component Order Connectivity with at most 2`k
vertices that takes nO(`) time for every constant `. On the way to obtaining our kernel, we prove
a generalization of the q-Expansion Lemma to weighted graphs. This generalization may be of
independent interest.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Parameterized algorithms, Kernel, Component Order Connectivity, Max-
min allocation, Weighted expansion

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.20

1 Introduction

In the classic Vertex Cover problem, the input is a graph G and integer k, and the task
is to determine whether there exists a vertex set S of size at most k such that every edge
in G has at least one endpoint in S. Such a set is called a vertex cover of the input graph
G. An equivalent definition of a vertex cover is that every connected component of G− S
has at most 1 vertex. This view of the Vertex Cover problem gives rise to a natural
generalization: can we delete at most k vertices from G such that every connected component
in the resulting graph has at most ` vertices? Here we study this generalization. Formally,
for every integer ` ≥ 1, we consider the following problem, called `-Component Order
Connectivity (`-COC).

`-Component Order Connectivity (`-COC)
Input: A graph G on n vertices and m edges, and a positive integer k.
Task: determine whether there exists a set S ⊆ V (G) such that |S| ≤ k and the maximum
size of a component in G− S is at most `.

The set S is called an `-COC solution. For ` = 1, `-COC is just the Vertex Cover problem.
Aside from being a natural generalization of Vertex Cover, the family {`-COC : ` ≥ 1} of
problems can be thought of as a vulnerability measure of the graph G - how many vertices

∗ The research leading to these results has received funding from the European Research Council under the
European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no. 306992
and the Beating Hardness by Pre-processing grant funded by the Bergen Research Foundation.

© Mithilesh Kumar and Daniel Lokshtanov;
licensed under Creative Commons License CC-BY

11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin; Article No. 20; pp. 20:1–20:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.20
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


20:2 A 2`k Kernel for `-Component Order Connectivity

of G have to fail for the graph to break into small connected components? For a study of
`-COC from this perspective see the survey of Gross et al. [12].

From the work of Lewis and Yannakakis [16] it immediately follows that `-COC is NP-
complete for every ` ≥ 1. This motivates the study of `-COC within paradigms for coping with
NP-hardness, such as approximation algorithms [22], exact exponential time algorithms [11],
parameterized algorithms [5, 7] and kernelization [14, 17]. The `-COC problems have (for
some values of `) been studied within all four paradigms, see the related work section.

In this work we focus on `-COC from the perspective of parameterized complexity and
kernelization. Our main result is an algorithm that given an instance (G, k) of `-COC,
runs in polynomial time, and outputs an equivalent instance (G′, k′) such that k′ ≤ k and
|V (G′)| ≤ 2`k. This is called a kernel for `-COC with 2`k vertices. Our kernel significantly
improves over the previously best known kernel with O(`k(k + `)) vertices by Drange et
al. [8]. Indeed, for ` = 1 our kernel matches the size of the smallest known kernel for Vertex
Cover [3] that is based on the classic theorem of Nemhauser and Trotter [18].

Related Work. 1-COC, better known as Vertex Cover, is extremely well studied from
the perspective of approximation algorithms [22, 6], exact exponential time algorithms [10,
19, 24], parameterized algorithms [5, 4] and kernelization [3, 18]. The kernel with 2k
vertices for Vertex Cover is considered one of the fundamental results in the field of
kernelization. The 2-COC problem is also well studied, and has been considered under several
different names. The problem, or rather the dual problem of finding a largest possible
set S that induces a subgraph in which every connected component has order at most
2, was first defined by Yannakakis [25] under the name Dissociation Set. The problem
has attracted attention in exact exponential time algorithms [13, 23], the fastest currently
known algorithm [23] has running time O(1.3659n). 2-COC has also been studied from the
perspective of parameterized algorithms [2, 20] (under the name Vertex Cover P3) as well
as approximation algorithms [21]. The fastest known parameterized algorithm, due to Chang
et al. [2] has running time 1.7485knO(1), while the best approximation algorithm, due to Tu
and Zhou [21] has factor 2.

For the general case of `-COC, ` ≥ 1, Drange et al. [8] gave a simple parameterized
algorithm with running time (` + 1)knO(1), and a kernel with O(k`(` + k)) vertices. The
parameterized algorithm of Drange et al. [8] can be improved to (` + 0.0755)knO(1) by
reducing to the (`+ 1)-Hitting Set problem, and applying the iterative compression based
algorithm for (`+ 1)-Hitting Set due to Fomin et al. [9]. The reduction to (`+ 1)-Hitting
Set, coupled with the simple factor (`+ 1)-approximation algorithm for (`+ 1)-Hitting
Set [22] immediately also yields an (`+ 1)-approximation algorithm for `-COC. There has
also been some work on `-COC when the input graph is restricted to belong to a graph class,
for a discussion of this work see [8].

Comparing the existing results with our work, we see that our kernel improves over the
kernel of Drange et al. [8] from at most O(k`(`+ k)) vertices to at most 2k` vertices. Our
kernel is also the first kernel with a linear number of vertices for every fixed ` ≥ 2.

Our Methods. Our kernel for `-COC hinges on the concept of a reducible pair of vertex
sets. Essentially (this is not the formal definition used in the paper!), a reducible pair is a
pair (X,Y ) of disjoint subsets of V (G) such that N(Y ) ⊆ X, every connected component of
G[Y ] has size at most `, and every solution S to G has to contain at least |X| vertices from
G[X ∪ Y ]. If a reducible pair is identified, it is easy to see that one might just as well pick
all of X into the solution S, since any solution has to pay |X| inside G[X ∪ Y ], and after X



M. Kumar and D. Lokshtanov 20:3

is deleted, Y breaks down into components of size at most ` and is completely eliminated
from the graph.

At this point there are several questions. (a) How does one argue that a reducible pair is
in fact reducible? That is, how can we prove that any solution has to contain at least |X|
vertices from X ∪ Y ? (b) How big does G have to be compared to k before we can assert the
existence of a reducible pair? Finally, (c) even if we can assert that G contains a reducible
pair, how can we find one in polynomial time?

To answer (a) we restrict ourselves to reducible pairs with the additional property that
each connected component C of G[Y ] can be assigned to a vertex x ∈ N(C), such that for
every x ∈ X the total size of the components assigned to x is at least `. Then x together
with the components assigned to it form a set of size at least `+ 1 and have to contain a
vertex from the solution. Since we obtain such a connected set for each x ∈ X, the solution
has to contain at least |X| vertices from X ∪ Y . Again we remark that this definition of a
reducible pair is local to this section, and not the one we actually end up using.

To answer (b) we first try to use the q-Expansion Lemma (see [5]), a tool that has found
many uses in kernelization. Roughly speaking the Expansion Lemma says the following:
if q ≥ 1 is an integer and H is a bipartite graph with bipartition (A,B) and B is at least
q times larger than A, then one can find a subset X of A and a subset Y of B such that
N(Y ) ⊆ X, and an assignment of each vertex y ∈ Y to a neighbor x of y, such that every
vertex x in X has at least q vertices in Y assigned to it.

Suppose now that the graph does have an `-COC solution S of size at most k, and that
V (G) \ S is sufficiently large compared to S. The idea is to apply the Expansion Lemma
to the bipartite graph H, where the A side of the bipartition is S and the B side has one
vertex for each connected component of G− S. We put an edge in H between a vertex v in
S and a vertex corresponding to a component C of G− S if there is an edge between v and
C in G. If G− S has at least |S| · ` connected components, we can apply the `-Expansion
Lemma on H, and obtain a set X ⊆ S, and a collection Y of connected components of
G−X satisfying the following properties. Every component C ∈ Y satisfies N(C) ⊆ X and
|C| ≤ `. Furthermore, there exists an assignment of each connected component C to a vertex
x ∈ N(C), such that every x ∈ X has at least ` components assigned to it. Since x has at
least ` components assigned to it, the total size of the components assigned to x is at least
`. But then, X and Y =

⋃
C∈Y C form a reducible pair, giving an answer to question (b).

Indeed, this argument can be applied whenever the number of components of G− S is at
least ` · |S|. Since each component of G−S has size at most `, this means that the argument
can be applied whenever |V (G) \ S| ≥ `2 · |S| ≥ `2k.

Clearly this argument fails to yield a kernel of size 2`k, because it is only applicable
when |V (G)| = Ω(`2k). At this point we note that the argument above is extremely wasteful
in one particular spot: we used the number of components assigned to x to lower bound
the total size of the components assigned to x. To avoid being wasteful, we prove a new
variant of the Expansion Lemma, where the vertices on the B side of the bipartite graph
H have non-negative integer weights. This new Weighted Expansion lemma states that if
q,W ≥ 1 are integers, H is a bipartite graph with bipartition (A,B), every vertex in B has
a non-negative integer weight which is at most W , and the total weight of B is at least
(q+W −1) · |A|, then one can find a subset X of A and a subset Y of B such that N(Y ) ⊆ X,
and an assignment of each vertex y ∈ Y to a neighbor x of y, such that for every vertex in
X, the total weight of the vertices assigned to it is at least q. The proof of the Weighted
Expansion Lemma is based on a combination of the usual, unweighted Expansion Lemma
with a variant of an argument by Bezáková and Dani [1] to round the linear program for

IPEC 2016



20:4 A 2`k Kernel for `-Component Order Connectivity

Max-min Allocation of goods to customers.
Having the Weighted Expansion Lemma at hand we can now repeat the argument

above for proving the existence of a reducible pair, but this time, when we build H, we
can give the vertex corresponding to a component C of G − S weight |C|, and apply the
Weighted Expansion Lemma with q = ` and W = `. Going through the argument again,
it is easy to verify that this time the existence of a reducible pair is guaranteed whenever
|V (G) \ S| ≤ (2`− 1)k, that is when |V (G)| ≥ 2`k.

We are now left with question (c) - the issue of how to find a reducible pair in polynomial
time. Indeed, the proof of existence crucially relies on the knowledge of an (optimal) solution
S. To find a reducible pair we use the linear programming relaxation of the `-COC problem.
We prove that an optimal solution to the LP-relaxation has to highlight every reducible
pair (X,Y ), essentially by always setting all the variables corresponding to X to 1 and the
variables corresponding to Y to 0. For Vertex Cover (i.e 1-COC), the classic Nemhauser
Trotter Theorem [18] implies that we may simply include all the vertices whose LP variable is
set to 1 into the solution S. For `-COC with ` ≥ 2 we are unable to prove the corresponding
statement. We are however, able to prove that if a reducible pair (X,Y ) exists, then X

(essentially) has to be assigned 1 and Y (essentially) has to be assigned 0. We then give
a polynomial time algorithm that extracts X and Y from the vertices assigned 1 and 0
respectively by the optimal linear programming solution. Together, the arguments (b) and
(c) yield the kernel with 2`k vertices. We remark that to the best of our knowledge, after the
kernel for Vertex Cover [3] our kernel is the first example of a kernelization algorithm based
on linear programming relaxations.

Overview of the paper. In Section 2 we recall basic definitions and set up notations. The
kernel for `-COC is proved in Sections 3, 4 and 5. In Section 3 we prove the necessary
adjustment of the results on Max-Min allocation of Bezáková and Dani [1] that is suitable to
our needs. In Section 4 we state and prove our new Weighted Expansion Lemma, and in
Section 5 we combine all our results to obtain the kernel.

2 Preliminaries

Let N denote the set of positive integers {0, 1, 2, . . . }. For any non-zero t ∈ N, [t] :=
{1, 2, . . . , t}. We denote a constant function f : X → N such that for all x ∈ X, f(x) = c,
by f = c. For any function f : X → N and a constant c ∈ N, we define the function
f + c : X → N such that for all x ∈ X, (f + c)(x) = f(x) + c. We use the same symbol f to
denote the restriction of f over a subset of it’s domain, X. For a set {v} containing a single
element, we simply write v. A vertex u ∈ V (G) is said to be incident on an edge e ∈ E(G) if
u is one of the endpoints of e. A pair of edges e, e′ ∈ E(G) are said to be adjacent if there is
a vertex u ∈ V (G) such that u is incident on both e and e′. For any vertex u ∈ V (G), by
N(u) we denote the set of neighbors of u i.e. N(u) := {v ∈ V (G) | uv ∈ E(G)}. For any
subgraph X ⊆ G, by N(X) we denote the set of neighbors of vertices in X outside X, i.e.
N(X) := (

⋃
u∈X N(u)) \X. A pair of vertices u, v ∈ V (G) are called twins if N(u) = N(v).

An induced subgraph on X ⊆ V (G) is denoted by G[X].
A path P is a graph, denoted by a sequence of vertices v1v2 . . . vt such that for any

i, j ∈ [t], vivj ∈ E(P ) if and only if |i − j| = 1. A cycle C is a graph, denoted either by a
sequence of vertices v1v2 . . . vt or by a sequence of edges e1e2 . . . et, such that for any i, j ∈ [t]
uiuj ∈ E(C) if and only if |i − j| = 1 mod t or in terms of edges, for any i, j ∈ [t], ei is
adjacent to ej if and only if |i− j| = 1 mod t. The length of a path(cycle) is the number



M. Kumar and D. Lokshtanov 20:5

of edges in the path(cycle). A triangle is a cycle of length 3. In G, for any pair of vertices
u, v ∈ V (G) dist(u, v) represents the length of a shortest path between u and v. A tree is a
connected graph that does not contain any cycle. A rooted tree T is a tree with a special
vertex r called the root of T . With respect to r, for any edge uv ∈ E(T ) we say that v is
a child of u (equivalently u is parent of v) if dist(u, r) <dist(v, r). A forest is a collection
of trees. A rooted forest is a collection of rooted trees. A clique is a graph that contains
an edge between every pair of vertices. A vertex cover of a graph is a set of vertices whose
removal makes the graph edgeless.

Fixed Parameter Tractability. A parameterized problem Π is a subset of Σ∗ × N. A
parameterized problem Π is said to be fixed parameter tractable(FPT) if there exists an
algorithm that takes as input an instance (I, k) and decides whether (I, k) ∈ Π in time
f(k) · nc, where n is the length of the string I, f(k) is a computable function depending only
on k and c is a constant independent of n and k.

A kernel for a parameterized problem Π is an algorithm that given an instance (T, k)
runs in time polynomial in |T |, and outputs an instance (T ′, k′) such that |T ′|, k′ ≤ g(k) for
a computable function g and (T, k) ∈ Π if and only if (T ′, k′) ∈ Π. For a comprehensive
introduction to FPT algorithms and kernels, we refer to the book by Cygan et al. [5].

A data reduction rule, or simply, reduction rule, for a parameterized problem Q is a
function φ : Σ∗ × N→ Σ∗ × N that maps an instance (I, k) of Q to an equivalent instance
(I ′, k′) of Q such that φ is computable in time polynomial in |I| and k. We say that two
instances of Q are equivalent if (I, k) ∈ Q if and only if (I ′, k′) ∈ Q; this property of the
reduction rule φ, that it translates an instance to an equivalent one, is referred as the safeness
of the reduction rule.

3 Max-min Allocation

We will now view a bipartite graph G := ((A,B), E) as a relationship between “customers”
represented by the vertices in A and “items” represented by the vertices in B. If the graph
is supplied with two functions wa : A → N and wb : B → N, we treat these functions as a
“demand function” and a “capacity” function, respectively. That is, we consider each item
v ∈ B to have value wb(v), and every customer u ∈ A wants to be assigned items worth at
least wa(u). An edge between u ∈ A and v ∈ B means that the item v can be given to u.

A weight function f : E(G)→ N describes an assignment of items to customers, provided
that the items can be “divided” into pieces and the pieces can be distributed to different
customers. However this “division” should not create more value than the original value of
the items. Formally we say that the weight function satisfies the capacity constraint wb(v)
of v ∈ B if

∑
uv∈E(G) f(uv) ≤ wb(v). The weight function satisfies the capacity constraints

if it satisfies the capacity constraints of all items v ∈ B.
For each item u ∈ A, we say that f allocates

∑
uv∈E(G) f(uv) value to u. The weight

function f satisfies the demand wa(u) of u ∈ A if it allocates at least wa(u) value to u, and
f satisfies the demand constraints if it does so for all u ∈ A. In other words, the weight
function satisfies the demands if every customer gets items worth at least her demand. The
weight function f over-satisfies a demand constraint wa(u) of u if it allocates strictly more
than wa(u) to u.

We will also be concerned with the case where items are indivisible. In particular we
say that a weight function f : E(G)→ N is unsplitting if for every v ∈ B there is at most
one edge uv ∈ E(G) such that f(uv) > 0. The essence of the next few lemmas is that if

IPEC 2016



20:6 A 2`k Kernel for `-Component Order Connectivity

we have a (splitting) weight function f of items whose value is at most W , and f satisfies
the capacity and demand constraints, then we can obtain in polynomial-time an unsplitting
weight function f ′ that satisfies the capacity constraints and violates the demand constraints
by at most (W − 1). In other words we can make a splitting distribution of items unsplitting
at the cost of making each customer lose approximately the value of the most expensive item.

Allocating items to customers in such a way as to maximize satisfaction is well studied
in the literature. The lemmata 1 and 2 are very similar, both in statement and proof, to
the work of Bezáková and Dani [1][Theorem 3.2], who themselves are inspired by Lenstra et
al. [15]. However we do not see a way to directly use the results of Bezáková and Dani [1],
because we need a slight strengthening of (a special case of) their statement.

I Lemma 1. There exists a polynomial-time algorithm that given a bipartite graph G, a
capacity function wb : B → N, a demand function wa : A → N and a weight function
f : E(G) → N that satisfies the capacity and demand constraints, outputs a function
f ′ : E(G) → N such that f ′ satisfies the capacity and demand constraints and the graph
Gf ′ = (V (G), {uv ∈ E(G) | f ′(uv) > 0}) induced on the non-zero weight edges of G is a
forest.

Proof. We start with f and in polynomially many steps, change f into the required function
f ′. If Gf = (V (G), {uv ∈ E(G) | f(uv) > 0}) is a forest, then we return f ′ = f . Otherwise,
suppose that Gf contains a cycle C := e1e2e3 . . . e2s. Proceed as follows. Without loss of
generality, suppose c = f(e1) = min{f(e) | e ∈ C}, and note that c > 0. Compute the edge
weight function f? : E → R defined as follows. For ei ∈ C, we define f?(ei) = f(e)− c if i is
odd, and define f?(ei) = f(e) + c if i is even. For e /∈ C we define f?(ei) = f(e).

Every vertex of G is incident to either 0 or exactly 2 edges of C. If the vertex v is incident
to two edges of C then one of these edges, say e2i, has even index in C, and the other, e2i+1
has odd. For the edge e2i we have f?(e2i) = f(e2i) + c and for e2i+1 we have f?(e2i+1) =
f(e2i+1) − c. Thus we conclude that for all v ∈ V (G),

∑
u∈N(v) f

?(uv) =
∑

u∈N(v) f(uv),
and that therefore f? satisfies the capacity and demand constraints. Furthermore at least
one edge that is assigned non-zero weight by f is assigned 0 by f? and Gf? = (V (G), {uv ∈
E(G) | f?(uv) > 0}) has one less cycle than Gf . For a polynomial-time algorithm, repeatedly
apply the process described above to reduce the number of edges with non-zero weight, as
long as Gf? contains a cycle. J

I Lemma 2. There exists a polynomial-time algorithm with the following specifications. It
takes as input a bipartite graph G := ((A,B), E), a demand function wa : A→ N, a capacity
function wb : B → N, an edge weight function f : E(G)→ N that satisfies both the capacity
and demand constraints, and a vertex r ∈ A. The algorithm outputs an unsplitting edge
weight function h : E(G)→ N that satisfies the capacity constraints, satisfies the demands
w′a = wa − (W − 1) where W = maxv∈B wb(v), and additionally satisfies the demand wa(r)
of r.

Proof. Without loss of generality the graph Gf := (V (G), {uv ∈ E(G) | f(uv) > 0}) is a
forest. If it is not, we may apply Lemma 1 to f , and obtain a function f ′ that satisfies the
capacity and demand constraints, and such that Gf ′ = (V (G), {uv ∈ E(G) | f ′(uv) > 0}) is
a forest. We then rename f ′ to f . By picking a root in each connected component of Gf we
may consider Gf as a rooted forest. We pick the roots as follows, if the component contains
the special vertex r, we pick r as root. If the component does not contain r, but contains at
least one vertex u ∈ A, we pick that vertex as the root. If the component does not contain
any vertices of A then it does not contain any edges and is therefore a single vertex in B, we



M. Kumar and D. Lokshtanov 20:7

B

A

v

u

≥ wa(u)

≤ wb(v)

· · ·

f(e1) − c = 0

f(e2s) + c

f(e2) + c

f(e3) − c

f(e4) + c

B

A

v

u

≥ wa(u) − W + 1

wb(v)

v0

u

v2v1 v3

wb(v3)wb(v1)
wb(v2)

0
0

wb(v0)

≥ wa(u) − W + 1

Figure 1 Proof of Lemma 1 and 2. Cyclically shift smallest weight in a non-zero weight cycle to
obtain a forest. Root each tree in the forest at a vertex in A such that each vertex in B has a parent
in A. Assign the value of v ∈ B to its parent u ∈ A. In this new assignment, a non-root vertex
u ∈ A loses its parent v0 ∈ B and f(v0u) ≤ W − 1 which explains the cost of making a splitting
assignment into an unsplitting assignment.

pick that vertex as root. Thus, every item v ∈ B that is incident to at least one edge in Gf

has a unique parent u ∈ A in the forest Gf . We define the new weight function h. For every
edge uv ∈ E(G) with u ∈ A and v ∈ B we define h(uv) as follows.

h(uv) = wb(v) if u is the parent of v in Gf , and h(uv) = 0 otherwise.

Clearly h is unsplitting and satisfies the capacity constraints. We now prove that h also
satisfies the demand constraints w′a and satisfies the demand constraint wa(r) of r. Consider
the demand constraint w′a(u) for an arbitrary customer u ∈ A. There are two cases, either u
is the root of the component of Gf or it is not. If u is the root, then for every edge uv ∈ E(G)
such that f(uv) > 0 we have that uv ∈ E(Gf ) and consequently that u is the parent of
v. Hence h(uv) = wb(v) ≥ f(uv), and therefore h satisfies the demand wa(u) of u. Since
wa(u) ≥ w′a(u), we have that h satisfies the demand w′a(u). Furthermore, since r is the root
of its component this also proves that h satisfies the demand wa(r).

Consider now the case that u is not the root of its component in Gf . Then u has a unique
parent in Gf , call this vertex v? ∈ B. We first prove that f(uv?) ≤ wb(v?) − 1. Indeed,
since v? is incident to the edge uv? we have that v? has a parent u? in Gf , and that u? 6= u

because v? is the parent of u. We have that f(u?v?)+f(uv?) ≤ wb(v?) and that f(u?v?) ≥ 1,
because u?v? is an edge in Gf . It follows that f(uv?) ≤ wb(v?) − 1. We now proceed to
proving that h satisfies the demand w′a(u).

For every edge uv ∈ E(G) \ {uv?} such that uv ∈ E(G) such that f(uv) > 0 we
have that uv ∈ E(Gf ) and consequently that u is the parent of v. Hence we have that
h(uv) = wb(v) ≥ f(uv). Furthermore h(uv?) = 0 while f(uv?) ≤ wb(v?) − 1 ≤ W − 1.
Therefore h satisfies the demand w′a(u). J

IPEC 2016



20:8 A 2`k Kernel for `-Component Order Connectivity

4 The Weighted Expansion Lemma

Our kernelization algorithm will use “q-expansions” in bipartite graphs, a well known tool in
kernelization [5]. We begin by stating the definition of a q-expansion and review the facts
about them that we will use.

I Definition 3 (q-expansion). Let G := ((A,B), E) be a bipartite graph. We say that A has
q-expansion into B if there is a family of sets {Va | Va ⊆ N(a), |Va| ≥ q, a ∈ A} such that for
any pair of vertices ai, aj ∈ A,i 6= j, Vai

∩ Vaj
= ∅.

I Definition 4 (Twin graph). For a bipartite graph G := ((A,B), E) with a weight function
wb : B → N, the twin graph TAB := (A,B′) of G is obtained as follows: B′ contains |wb(v)|
twins of every vertex v ∈ B i.e. B′ := {v1, v2, . . . vwb(v) | v ∈ B} and edges in TAB such that
for all v ∈ B and i ∈ [wb(v)], N(vi) = N(v) i.e. E(TAB) := {avi|a ∈ A, vi ∈ B′, v ∈ B, av ∈
E(G)}.

I Lemma 5 ([5]). Let G be a bipartite graph with bipartition (A,B). Then there is a
q-expansion from A into B if and only if |N(X)| ≥ q|X| for every X ⊆ A. Furthermore, if
there is no q-expansion from A into B, then a set X ⊆ A with |N(X)| < q|X| can be found
in polynomial-time.

I Lemma 6 (Expansion Lemma [5]). Let q ≥ 1 be a positive integer and G be a bipartite
graph with vertex bipartition (A,B) such that |B| ≥ q|A|, and there are no isolated vertices in
B. Then there exist nonempty vertex sets X ⊆ A and Y ⊆ B such that there is a q-expansion
of X into Y , and no vertex in Y has a neighbor outside X, i.e. N(Y ) ⊆ X. Furthermore,
the sets X and Y can be found in time polynomial in the size of G.

I Lemma 7 (Folklore). There exists a polynomial-time algorithm that given a bipartite
graph G := ((A,B), E) and an integer q decides (and outputs in case yes) if there exist sets
X ⊆ A, Y ⊆ B such that there is a q-expansion of X into Y .

Proof. We describe a recursive algorithm. If A = ∅ or B = ∅, then output no and terminate.
Otherwise, construct the twin graph TBA with weight function w : A → N where for
all u ∈ A,w(u) = q and let M be a maximum matching in TBA. Consider the graph
G′ := (A,B) with edge set E(G′) := {uv, u ∈ A, v ∈ B | uiv ∈M}. Let A′ ⊆ A such that for
all u ∈ A′, dG′(u) ≥ q and let B′ ⊆ B such that B′ :=

⋃
u∈A′ NG′(u). If N(B′) ⊆ A′, then

return (A′, B′) and terminate. Otherwise, recurse on G[A′ ∪ (B \NG(A \A′))].
If there are no sets X,Y such that there is a q-expansion of X into Y , then for any pair

of sets A′ ⊆ A,B′ ⊆ B either N(B′) \ A′ 6= ∅ or |B′| < q|A′|. Since at each recursive step,
the size of the graph with which the algorithm calls itself decreases, eventually either A′
becomes empty or B \NG(A \A′) becomes empty. Hence, the algorithm outputs no. Now
we need to show that if there exist sets (A∗, B∗) such that there is a q-expansion of A∗
into B∗, then at each recursive call, we have that A∗ ⊆ A and B∗ ⊆ B. At the start of
the algorithm, A∗ ⊆ A and B∗ ⊆ B. Since N(B∗) ⊆ A∗ and for all u ∈ A∗ dG(u) ≥ q, we
have that A∗ ∪ B∗ ⊆ V (G′). If N(B′) ⊆ A′, then the algorithm of Lemma 6 when run on
G′, q will output (A∗, B∗). Note that B∗ ⊆ B′. At the recursive step, A∗ ⊆ A′ and since
B∗ ∩NG(A \A′) = ∅, we have that B∗ ⊆ B′ \NG(A \A′). Hence, G[A∗ ∪B∗] is a subgraph
of G[A′ ∪ (B \NG(A \A′))] which concludes the correctness of the algorithm. Since at each
recursive call the size of the graph decreases by at least 1, the total time taken by the above
algorithm is polynomial in n. J



M. Kumar and D. Lokshtanov 20:9

One may think of a q-expansion in a bipartite graph with bipartition (A,B) as an
allocation of the items in B to each customer in A such that every customer gets at least q
items. For our kernel we will need a generalization of q-expansions to the setting where the
items in B have different values, and every customer gets items of total value at least q.

I Definition 8 (Weighted q-expansion). Let G := ((A,B), E) be a bipartite graph with
capacity function wb : B → N. Then, a weighted q-expansion in G is an edge weight function
f : E(G) → N that satisfies the capacity constraints wb and also satisfies the demand
constraints wa = q. For an integer W ∈ N, the q-expansion f is called a W -strict q-expansion
if f allocates at least q +W − 1 value to at least one vertex r in A, and in this case we say
that f is W -strict at r. Further, a q-expansion f is strict (at r) if it is 1-strict (at r). If f is
unsplitting we call f an unsplitting q-expansion.

I Lemma 9. There exists a polynomial-time algorithm that given a bipartite graph G :=
((A,B), E), an integer q and a capacity function wb : B → N outputs (if it exist) two sets
X ⊆ A and Y ⊆ B along with a weighted q-expansion in G[X ∪ Y ] such that N(Y ) ⊆ X.

Proof. Construct the twin graph TAB := (A,B′) of G. Run the algorithm of Lemma 7 with
input TAB , q that outputs sets X ⊆ A and Y ′ ⊆ B′ such that X has q-expansion into Y ′
and N(Y ′) ⊆ X. Consider the set Y := {v ∈ B | vi ∈ Y ′}. Define a weight function f :
E(G[X ∪Y ])→ N as follows: for all uv ∈ E(G[X ∪Y ]) f(uv) = |{vi ∈ Y ′|vi matched to u}|.

Clearly, N(Y ) ⊆ X. Now we claim that f is a weighted q-expansion in G[X ∪ Y ] with
capacity function wb and demand function wa = q. For any vertex u ∈ A, there are at least q
vertices in Y ′ are matched to u. Hence for all u ∈ A, we have that

∑
v∈N(u) f(uv) ≥ q = wa.

At the same time, for any vertex v ∈ B, there are at most wb(v) copies of v in Y ′. Therefore,
for all v ∈ Y we have

∑
u∈N(v) f(uv) ≤ wb(v). J

I Lemma 10. There exists a polynomial-time algorithm that given a weighted q-expansion
f : E(G)→ N in G := ((A,B), E), a capacity function wb : B → N and an integer W such
that W = maxe∈E(G) f(e) outputs an unsplitting W -strict weighted (q−W + 1)-expansion in
G.

Proof. Run the algorithm of Lemma 2 with inputs G, f,wa = q, wb,W and a vertex u ∈ A.
In case f is strict, u is the vertex r that makes f strict. Let the function h : E(G) → N
be the output of Lemma 2. Now h is an unsplitting edge weight function that satisfies the
capacity constraints, satisfies the demands q−W + 1, and additionally satisfies the demand q
of u. Hence, h is the required unsplitting weighted W -strict (q−W + 1)-expansion in G. J

I Lemma 11 (Weighted Expansion Lemma). Let q,W ≥ 1 be positive integers and G be a
bipartite graph with vertex bipartition (A,B) and wb : B → {1, . . . ,W} be a capacity function
such that

∑
v∈B wb(v) ≥ (q + W − 1) · |A|, and there are no isolated vertices in B. Then

there exist nonempty vertex sets X ⊆ A and Y ⊆ B such that N(Y ) ⊆ X and there is an
unsplitting weighted W -strict q-expansion of X into Y . Furthermore, the sets X and Y can
be found in time polynomial in the size of G.

Proof. Construct the twin graph TAB from G and wb, the bipartition of TAB is (A,B′).
Now, obtain using the Expansion Lemma 6 with q′ = q +W − 1 on TAB sets X ⊆ A and
Y ′ ⊆ B′, such that N(Y ′) ⊆ X and there is a (q +W − 1)-expansion from X to Y ′ in TAB .

Let Y := {v ∈ B | vi ∈ Y ′} (here the vi ∈ Y ′ are as in Definition 4). Then N(Y ) ⊆ X and
the (q +W − 1)-expansion from X to Y ′ in TAB immediately yields a weighted (q +W − 1)-
expansion f from X to Y in G. Applying Lemma 10 on G[X ∪ Y ] using the weighted
(q +W − 1)-expansion f proves the statement of the lemma. J

IPEC 2016



20:10 A 2`k Kernel for `-Component Order Connectivity

5 Obtaining the Linear Kernel

I Definition 12. For a graph G and a pair of vertex-disjoint sets X,Y ⊆ V (G), we define
the weighted graph G̃XY as follows: V (G̃XY ) := X ∪ Ỹ such that there is a bijection
h : cc(G[Y ])→ Ỹ where cc(G[Y ]) is the set of connected components of G[Y ]. E(G̃XY ) :=
{xc | x ∈ X, c ∈ Ỹ , c = h(C) and x ∈ NG(C)}. We also define a weight function w : Ỹ → N
such that for all c ∈ Ỹ , w(c) = |h−1(c)|.

I Definition 13 (Reducible Pair). For a graph G, a pair of vertex-disjoint sets (X,Y ) where
X,Y ⊆ V (G) is called a (strict) reducible pair if N(Y ) ⊆ X, the size of every component in
G[Y ] is at most `, and there exists a (strict) weighted (2`− 1)-expansion in G̃XY .

I Definition 14. A reducible pair (X,Y ) is called minimal if there is no reducible pair
(X ′, Y ′) such that X ′ ⊂ X and Y ′ ⊆ Y .

I Lemma 15. There exists a polynomial-time algorithm that given an `-COC instance (G, k)
together with a vertex-disjoint set pair A,B ⊆ V (G) outputs (if it exists) a reducible pair
(X,Y ) where X ⊆ A and Y ⊆ B.

Proof. Construct G̃AB := (A, B̃) and run the algorithm of Lemma 9 with input G̃AB , w, q =
2`− 1 which outputs sets X ⊆ A and Y ′ ⊆ B̃ (if it exists) along with a weighted (2`− 1)-
expansion of X into Y ′ such that N(Y ′) ⊆ X. Now from Y ′ we obtain the set Y :=⋃

y∈Y ′ h−1(y). Clearly, N(Y ) ⊆ X and hence, (X,Y ) is the desired reducible pair. J

I Lemma 16. Given an `-COC instance (G, k), if |V (G)| ≥ 2`k and (G, k) is a yes-instance,
then there exists a reducible pair (X,Y ).

Proof. Without loss of generality, we can assume that G is a connected graph. Let S be
an `-COC solution of size at most k. Clearly, |V \ S| ≥ (2` − 1)k. We define A := S and
B := V \S and construct G̃AB = (A, B̃). We have the weight function wb : B̃ → N such that
for all v ∈ B̃, wb(v) = |h−1(v)| ≤ `, as the size of components in G[V \ S] is at most `. We
have that

∑
v∈B̃ wb(v) ≥ (2`− 1)|A| and there are no isolated vertices in B̃. Hence, (A,B)

is the desired reducible pair. J

I Lemma 17. Let (X,Y ) be a reducible pair. Then, there exists a partition of X ∪ Y into
C1, ..., C|X| such that (i) for all ui ∈ X, we have ui ∈ Cj if and only if i = j, (ii) for all
i ∈ [|X|], |Ci| ≥ `+ 1, (iii) for every component C in G[Y ], there exists a unique Ci such
that V (C) ⊆ Ci and ui ∈ N(C) and (iv) if (X,Y ) is a strict reducible pair, then there exists
Cj such that |Cj | ≥ 2`+ 1.

Proof. Construct G̃XY := (X, Ỹ ). Run the algorithm of Lemma 10 with input G̃XY , q =
2` − 1, and W = `(as the capacity of any vertex in Ỹ is at most `) which outputs an
unsplitting weighted `-expansion f ′ in G̃XY . In polynomial time, we modify f ′ such that if
there is a vertex v ∈ Ỹ such that ∀u ∈ N(v), f ′(uv) = 0, we choose a vertex u ∈ N(v) and set
f ′(uv) = wb(v). For each ui ∈ X define Ci := ui

⋃
f ′(uiv) 6=0 h

−1(v). Since f ′ is unsplitting,
the collection C1, . . . , C|X| forms a partition of X ∪ Y . By the definition of Ci, we have
that for any ui ∈ X, ui ∈ Cj if and only if i = j. For any component C in G[Y ], h(C) is
matched to a unique vertex ui ∈ X by f ′, we have that V (C) ⊆ Ci. As f ′ is a weighted
`-expansion, |Ci| = 1 +

∑
f ′(uiv)6=0 |h−1(v)| = 1 +

∑
f ′(uiv)6=0 f

′(uiv) ≥ 1 + `. Let (X,Y ) be
strict at uj ∈ X. Then, we can use Lemma 10 to obtain the expansion f ′ such that it is
strict at uj . Hence, |Cj | = 1 +

∑
f ′(ujv)6=0 |h−1(v)| = 1 +

∑
f ′(ujv) 6=0 f

′(ujv) > 1 + `+ (`− 1)
which implies |Cj | ≥ 2`+ 1. This concludes the proof of the lemma. J



M. Kumar and D. Lokshtanov 20:11

I Lemma 18. Let (X,Y ) be a reducible pair. If (G, k) is a yes-instance for `-COC, then
there exists an `-COC solution S of size at most k such that X ⊆ S and S ∩ Y = ∅.

Proof. By Lemma 17 we have that there are C1, . . . , C|X| ⊆ X ∪ Y vertex disjoint sets of
size at least `+ 1 such that for all i ∈ [|X|], G[Ci] is a connected set. Let S′ be an arbitrary
solution. Then, S′ must contain at least one vertex from each Ci. Let S := S′ \ (X ∪ Y )∪X.
We have that |S| ≤ |S′| − |X|+ |X| = |S′|. As any connected set of size `+ 1 that contains
a vertex in Y also contains a vertex in X and X ⊆ S, S is also an `-COC solution. J

Now we encode an `-COC instance (G, k) as an Integer Linear Programming instance.
We introduce n = |V (G)| variables, one variable xv for each vertex v ∈ V (G). Setting the
variable xv to 1 means that v is in S, while setting xv = 0 means that v is not in S. To
ensure that S contains a vertex from every connected set of size ` + 1, we can introduce
constraints

∑
v∈C xv ≥ 1 where C is a connected set of size `+ 1. The size of S is given by∑

v∈V (G) xv. This gives us the following ILP formulation:
minimize

∑
v∈V (G) xv,

subject to
∑

v∈C xv ≥ 1 for every connected set C of size `+ 1
0 ≤ xv ≤ 1 for every v ∈ V (G)
xv ∈ Z for every v ∈ V (G).

Note that there are nO(`) connected sets of size at most ` in a graph on n vertices. Hence,
providing an explicit ILP requires nO(`) time which forms the bottleneck for the runtime of
the kernelization algorithm that follows. We consider the Linear Programming relaxation of
above ILP obtained by dropping the constraint that x ∈ Z. By an optimal LP solution SL

with weight L we mean the set of values assigned to each variable, and optimal value is L.
For a set of vertices X ∈ V (G), X = 1 (X = 0) denotes that every variable corresponding to
vertices in X is set to 1 (0).

I Lemma 19. Let SL be an optimal LP solution for G such that xv = 1 for some v ⊆ V (G).
Then, SL − xv is an optimal LP solution for G− v of value L− 1.

Proof. Clearly, SL−xv is feasible solution for G−v of value L−1. Suppose it is not optimal.
Let SL′ be an optimal LP solution for G − v such that L′ < L − 1. Then, SL′ ∪ xv with
xv = 1 is an optimal LP solution for G with value < L− 1 + 1 = L contradicting that the
optimal solution value of LP for G is L. J

From now on by running LP after setting xv = 1 for some vertex v, we mean running the LP
algorithm for G− v and including xv = 1 in the obtained solution to get a solution for G.

I Lemma 20. Let (X,Y ) be a strict reducible pair. Then every optimal LP solution sets at
least one variable corresponding to a vertex in X to 1.

Proof. By Lemma 18, we have that every connected set of size `+ 1 in G[X ∪ Y ] contains
a vertex in X. Hence, from any LP solution SL, a feasible LP solution can be obtained by
setting X = 1 and Y = 0. Since, we have at least |X| many vertex disjoint LP constraints,
for each vi ∈ X, we have

∑
u∈Ci

xu = 1. By Lemma 17, there is a set Cj ⊆ X ∪ Y such that
|Cj | ≥ 2`+ 1. If xvj

6= 1, then there is a vertex w ∈ Cj such that xw > 0. Let w ∈ C ⊂ Cj

where G[C] is a connected component in G[Y ]. Since |C| ≤ `, there is a connected set C ′ of
size at least `+ 1 in G[Cj ]−C. But now

∑
u∈C′ xu < 1 contradicting that SL is feasible. J

I Lemma 21. Let (X,Y ) be a minimal reducible pair. If for any vertex v ∈ X, an optimal
LP solution sets xv = 1, then it also sets X = 1 and Y = 0.

IPEC 2016



20:12 A 2`k Kernel for `-Component Order Connectivity

Proof. We prove the lemma by contradiction. Let X ′ ⊂ X be the largest subset of X such
that X ′ = 1. Consider G̃XY . Let Y ′ ⊆ Ỹ be the set of vertices such that N(Y ′) ⊆ X ′. Let
Z :=

⋃
v∈Y ′ h−1(v). By the minimality of (X,Y ), we have that

∑
v∈Y ′ w(v) < (2`− 1)|X ′|.

Hence,
∑

v∈Ỹ \Y ′ w(v) > (2` − 1)|X \X ′|. Clearly, the weighted (2` − 1)-expansion in the
reducible pair (X,Y ) when restricted to (X \X ′, Y \Z) provides a weighted (2`−1)-expansion
of X \X ′ into Y \Z. This implies that (X \X ′, Y \Z) is a strict reducible pair in G−(X ′∪Z).
By Lemma 19, we have that the LP solution restricted to G− (X ′ ∪ Z) is optimal. Since
(X \X ′, Y \ Z) is a strict reducible pair, by Lemma 20, there is a vertex u ∈ X \X ′ such
that xu = 1, but this contradicts the maximality of X ′. Therefore, if for any vertex v ∈ X,
an LP solution sets xv = 1, then it sets X = 1 and Y = 0. J

I Lemma 22. There exists a polynomial time algorithm that given an integer ` and `-COC
instance (G, k) on at least 2`k vertices either finds a reducible pair (X,Y ) or concludes that
(G, k) is a no-instance.

Proof. If (G, k) is a yes-instance of `-COC, then by Lemma 16, there exists a reducible pair
(X,Y ). We use the following algorithm to find one:
Step 1. Run the LP algorithm. Let A = 1 and B = 0 in the LP solution.
Step 2. If both A and B are non-empty, then run the algorithm of Lemma 15 with input

(G, k), A,B. If it outputs a reducible pair (X,Y ), then return (X,Y ) and terminate.
Otherwise, go to step 3.

Step 3. Now we do a linear search for a vertex in X. For each vertex v ∈ V (G), do the
following: in the original LP introduce an additional constraint that sets the value of the
variable xv to 1 i.e. xv = 1 and run the LP algorithm. If the optimal value of the new
LP is the same as the optimal value of the original LP, then let A = 1 and B = 0 be the
sets of variables set to 1 and 0 respectively in the optimal solution of the new LP and go
to step 2.

Step 4. Output a trivial no-instance.
Step 1 identifies the set of variables set to 1 and 0 by the LP algorithm. By Lemma 21, we
have that if there is a minimal reducible pair (X,Y ) in G, then X ⊆ A and Y ⊆ B. So, in
Step 2 if the algorithm succeeds in finding one, we return the reducible pair and terminate
otherwise we look for a potential vertex in X and set it to 1. If (X,Y ) exists, then for at least
one vertex, setting xv = 1 would set X = 1 and Y = 0 (by Lemma 21) without changing
the LP value and we go to Step 2 to find it. If for each choice of v ∈ V (G), the LP value
changes when xv is set to 1, we can conclude that there is no reducible pair and output a
trivial no instance. Since, we need to do this search at most n times and each step takes only
polynomial time, the total time taken by the algorithm is polynomial in the input size. J

I Theorem 23. For every constant ` ∈ N, `-Component Order Connectivity admits a
kernel with at most 2`k vertices that takes nO(`) time.

References
1 Ivona Bezáková and Varsha Dani. Allocating indivisible goods. SIGecom Exchanges,

5(3):11–18, 2005.
2 Maw-Shang Chang, Li-Hsuan Chen, Ling-Ju Hung, Peter Rossmanith, and Ping-Chen Su.

Fixed-parameter algorithms for vertex cover p3. Discrete Optimization, 19:12–22, 2016.
doi:10.1016/j.disopt.2015.11.003.

3 Jianer Chen, Iyad A. Kanj, and Weijia Jia. Vertex cover: Further observations and further
improvements. J. Algorithms, 41(2):280–301, 2001. doi:10.1006/jagm.2001.1186.

http://dx.doi.org/10.1016/j.disopt.2015.11.003
http://dx.doi.org/10.1006/jagm.2001.1186


M. Kumar and D. Lokshtanov 20:13

4 Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved upper bounds for vertex cover. Theor.
Comput. Sci., 411(40-42):3736–3756, 2010.

5 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

6 Irit Dinur and Samuel Safra. On the hardness of approximating minimum vertex cover.
Annals of mathematics, pages 439–485, 2005.

7 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

8 Pål Grønås Drange, Markus Sortland Dregi, and Pim van ’t Hof. On the computational
complexity of vertex integrity and component order connectivity. In Algorithms and Com-
putation – 25th International Symposium, ISAAC 2014, Jeonju, Korea, December 15-17,
2014, Proceedings, pages 285–297, 2014. doi:10.1007/978-3-319-13075-0_23.

9 Fedor V. Fomin, Serge Gaspers, Dieter Kratsch, Mathieu Liedloff, and Saket Saurabh. It-
erative compression and exact algorithms. Theor. Comput. Sci., 411(7-9):1045–1053, 2010.

10 Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. A measure & conquer approach
for the analysis of exact algorithms. J. ACM, 56(5), 2009.

11 Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2010.

12 D. Gross, M. Heinig, L. Iswara, W. Kazmierczak, K. Luttrell, J. T. Saccoman, and C. Suffel.
A survey of component order connectivity models of graph theoretic networks. WSEAS
Transactions on Mathematics, 12:895–910, 2013.

13 Frantisek Kardos, Ján Katrenic, and Ingo Schiermeyer. On computing the minimum 3-path
vertex cover and dissociation number of graphs. Theor. Comput. Sci., 412(50):7009–7017,
2011. doi:10.1016/j.tcs.2011.09.009.

14 Stefan Kratsch. Recent developments in kernelization: A survey. Bulletin of the EATCS,
113, 2014.

15 Jan Karel Lenstra, David B. Shmoys, and Éva Tardos. Approximation algorithms for
scheduling unrelated parallel machines. Math. Program., 46:259–271, 1990.

16 John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary
properties is np-complete. J. Comput. Syst. Sci., 20(2):219–230, 1980. doi:10.1016/
0022-0000(80)90060-4.

17 Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Kernelization–preprocessing
with a guarantee. In The Multivariate Algorithmic Revolution and Beyond, pages 129–161.
Springer, 2012.

18 George L. Nemhauser and Leslie E. Trotter Jr. Properties of vertex packing and independ-
ence system polyhedra. Math. Program., 6(1):48–61, 1974. doi:10.1007/BF01580222.

19 J.M. Robson. Algorithms for maximum independent sets. J. Algorithms, 7(3):425–440,
1986.

20 Jianhua Tu. A fixed-parameter algorithm for the vertex cover p3 problem. Inf. Process.
Lett., 115(2):96–99, 2015.

21 Jianhua Tu and Wenli Zhou. A factor 2 approximation algorithm for the vertex cover p3
problem. Inf. Process. Lett., 111(14):683–686, July 2011. doi:10.1016/j.ipl.2011.04.
009.

22 David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, 2011.

23 Mingyu Xiao and Shaowei Kou. Faster computation of the maximum dissociation set and
minimum 3-path vertex cover in graphs. In Frontiers in Algorithmics – 9th International
Workshop, FAW 2015, Guilin, China, July 3-5, 2015, Proceedings, pages 282–293, 2015.
doi:10.1007/978-3-319-19647-3_26.

IPEC 2016

http://dx.doi.org/10.1007/978-3-319-13075-0_23
http://dx.doi.org/10.1016/j.tcs.2011.09.009
http://dx.doi.org/10.1016/0022-0000(80)90060-4
http://dx.doi.org/10.1016/0022-0000(80)90060-4
http://dx.doi.org/10.1007/BF01580222
http://dx.doi.org/10.1016/j.ipl.2011.04.009
http://dx.doi.org/10.1016/j.ipl.2011.04.009
http://dx.doi.org/10.1007/978-3-319-19647-3_26


20:14 A 2`k Kernel for `-Component Order Connectivity

24 Mingyu Xiao and Hiroshi Nagamochi. Exact algorithms for maximum independent set. In
Algorithms and Computation – 24th International Symposium, ISAAC 2013, Hong Kong,
China, December 16-18, 2013, Proceedings, pages 328–338, 2013.

25 Mihalis Yannakakis. Node-deletion problems on bipartite graphs. SIAM J. Comput.,
10(2):310–327, 1981. doi:10.1137/0210022.

http://dx.doi.org/10.1137/0210022


Structural Parameterizations of Feedback Vertex
Set
Diptapriyo Majumdar

The Institute of Mathematical Sciences, Chennai, HBNI, India
diptapriyom@imsc.res.in

Abstract
A feedback vertex set in an undirected graph is a subset of vertices whose removal results in an
acyclic graph. It is well-known that the problem of finding a minimum sized (or k-sized in case of
decision version of) feedback vertex set (FVS) is polynomial time solvable in (sub)-cubic graphs,
in pseudo-forests (graphs where each component has at most one cycle) and mock-forests (graphs
where each vertex is part of at most one cycle). In general graphs, it is known that the problem is
NP -complete, and has an O∗((3.619)k) fixed-parameter algorithm and an O(k2) kernel where k,
the solution size, is the parameter. We consider the parameterized and kernelization complexity
of feedback vertex set where the parameter is the size of some structure in the input. In particular,
we show that

FVS is fixed-parameter tractable, but is unlikely to have polynomial sized kernel when para-
meterized by the number of vertices of the graph whose degree is at least 4. This answers a
question asked in an earlier paper.
When parameterized by k, the number of vertices, whose deletion results in a pseudo-forest,
we give an O(k6) vertices kernel improving from the previously known O(k10) bound.
When parameterized by the number k of vertices, whose deletion results in a mock-d-forest,
we give a kernel consisting of O(k3d+3) vertices and prove a lower bound of Ω(kd+2) vertices
(under complexity theoretic assumptions). Mock-d-forest for a constant d is a mock-forest
where each component has at most d cycles.

1998 ACM Subject Classification G.2.2 Graph Algorithms, I.1.2 Analysis of Algorithms

Keywords and phrases Parameterized Complexity, Kernelization, Feedback Vertex Set, Struc-
tural Parameterization

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.21

1 Introduction

In the early years of parameterized complexity and algorithms, problems were almost always
parameterized by solution size. Recent research has focused on other parameterizations
based on structural properties of the input [16, 9, 15, 8], above or below guaranteed optimum
values [14]. Such ‘non-standard’ parameters are known to be small in practice. Also once a
problem is shown to be fixed-parameter tractable (and/or having a polynomial kernel) with
respect to a parameter, it is a natural question whether it has a fixed-parameter algorithm
or polynomial kernel with respect to a smaller parameter. Similarly, when a problem is
W -hard or has no polynomial kernel then it is interesting to ask whether it is fixed-parameter
tractable or admits a polynomial kernel when it is parameterized by a structurally larger
parameter. We study such ecology of parameterization for Feedback Vertex Set.

Feedback Vertex Set in an undirected graph G asks whether G has a subset S of
at most k vertices such that G \ S is a forest, for a given integer k. The set S is called
a feedback vertex set of the graph. The problem is known to be NP -complete even on

© Diptapriyo Majumdar;
licensed under Creative Commons License CC-BY

11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin; Article No. 21; pp. 21:1–21:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


21:2 Structural Parameterizations of Feedback Vertex Set

bipartite graphs [13] and in graphs of degree at most 4 [20], but is polynomial time solvable in
sub-cubic graphs [22, 6, 5], asteroidal triple free graphs [19] and chordal bipartite graphs [17].
The problem is easy (polynomial time) to solve in pseudo-forests (graphs in which each
component has at most one cycle), in mock-forests (graphs where each vertex is part of at
most one cycle), in cliques and disjoint union of cliques. This is also one of the well-studied
problems in parameterized complexity and when parameterized by solution size, it has an
algorithm with running time O∗(3.619k) [18]1 and a kernel with O(k2) vertices and edges [21].

Some parameterizations by the size of some structure in the input have already been
explored. Feedback Vertex Set parameterized by the size of maximum induced matching
(also maximum independent set and vertex clique cover) has been shown to be W [1]-Hard
but contained in XP (See [16, 1]). Bodlaender et al. [2] proved that Feedback Vertex
Set parameterized by deletion distance to a cluster graph (disjoint union of cliques) has no
polynomial kernel unless NP ⊆ coNP/poly. Jansen et al. [16] give a survey of results known
for such structural parameterization of feedback vertex set and show that

Feedback Vertex Set parameteirzed by Deletion Distance to chordal graph
is fixed-parameter tractable;
Feedback Vertex Set parameterized by Deletion Distance to Pseudo-forest
has an O(f10) kernel and a kernel lower bound of Ω(f4) where f is the size of the deletion
distance to pseudo-forest of the input graph.
Feedback Vertex Set parameterized by Deletion Distance to mock-forest has
no polynomial kernel unless NP ⊆ coNP/poly.

Our Results: Jansen et al. suggested in [16], “An interesting question in this direction is
whether Feedback Vertex Set is XP or FPT when parameterized by the vertex deletion
distance to sub-cubic graphs or alternatively, parameterized by the number of vertices of degree
more than 3". While the first question remains open, our first result is an answer to the
latter question (FVS-High-Degree defined below). We answer it positively by providing a
fixed-parameter algorithm running in time O∗(2k). We also prove that this problem has no
polynomial kernel unless NP ⊆ coNP/poly.

FVS-High-Degree Parameter: k

Input: An undirected graph G such that |{u ∈ V (G)|degG(u) > 3}| ≤ k and ` ∈ N.
Question: Does G have a feedback vertex set of size at most `?

Our next result is an improved kernel for the following problem for which an
O(k10) vertex kernel and a conditional lower bound of Ω(k4) were given by Jansen et
al. [16].

FVS-Pseudo-Forest Parameter: k

Input: An undirected graph G, S ⊆ V (G) of size at most k such that G[V (G) \ S] is a
graph in which every component has at most one cycle and an integer `.
Question: Does G have a feedback vertex set of size at most `?

We give a kernel on O(k6) vertices, narrowing the gap between upper and lower bound
for the size of the kernel. Note that every feedback vertex set is also a pseudo-forest deletion
set, but not all pseudo-forest deletion sets are feedback vertex sets. So, in this problem, our
parameter is smaller than the solution size.

1 O∗ notation suppresses polynomial factors.



D. Majumdar 21:3

Finally, we consider a variation of mock-forests (called mock-d-forest) where each com-
ponent has at most d cycles, where d is a constant, and consider the kernelization complexity
of FVS parameterized by the deletion distance to mock-d-forests. It is easy to see that FVS
is fixed-parameter tractable when parameterized by the deletion distance to mock-d-forest
(or any mock-forest) as any mock-forest has tree-width at most 2. Also, it is easy to see that
any pseudo-forest deletion set is also a mock-d-forest deletion set. But not all mock-d-forest
deletion sets are pseudo-forest deletion sets. So, our parameter for this problem is not just
smaller than solution size, it is even smaller than the parameter for FVS-Pseudo-Forest
problem. But, it is larger than the size of the mock-forest deletion set for which case there is
no polynomial kernel.

FVS-Mock-d-Forest where d ≥ 2 and d is a constant Parameter: k

Input: An undirected graph G, S ⊆ V (G) of size at most k such that G[V (G) \ S] is a
mock-forest where every component has at most d cycles and an integer `.
Question: Does G have a feedback vertex set of size at most `?

When d is not bounded, then we know that this problem has no polynomial kernel unless
NP ⊆ coNP/poly [16]. Here, we provide a O(k3d+3) vertex kernel for this problem when d
is a constant. And we also prove that a kernel consisting of O(kd+2−ε) is unlikely for any
ε > 0 unless NP ⊆ coNP/poly. We assume that for FVS-Pseudo-Forest, the deletion set
to pseudo-forest is given with the input. But, this is not a serious assumption as there are
constant factor approximation algorithms [10, 12] for computing a minimum vertex deletion
set to a pseudo-forest of a graph.

We organise our paper as follows. In Section 2, we introduce the notations. In Section 3,
we provide the FPT Algorithm for FVS-High-Degree and prove that it has no polynomial
kernel unless NP ⊆ coNP/poly. In Section 4, we provide the improved polynomial kernel for
FVS-Pseudo-Forest. In Section 5, we provide the polynomial kernel and a conditional
kernel lower bound of Ω(kd+2) for FVS-Mock-d-Forest.

2 Preliminaries and Notations

By [r], we mean the set {1, 2, . . . r}. Throughout the paper we denote the feedback vertex set
number (the size of a minimum feedback vertex set) by fvs(G). Let S be a set of vertices.
By

(
S
r

)
, we denote the family of subsets of S containing exactly r vertices. By

(
S
≤r
)
, we

denote the family of subsets of S containing at most r vertices. We call a pair of vertices
(u, v) a double edge if there are at least 2 edges between u and v. Otherwise we call (u, v) a
non-double-pair. For an edge (u, v) the multiplicity of (u, v) is the number of edges present
between u and v. Let G = (V,E) be a tree or a pseudo-forest or a mock-forest. Then a set
of vertices V ′ ⊆ V (G) is a degree-2-path if V ′ induces an acyclic path and every vertex of
the path has degree exactly 2 in G. A degree-2-path is maximal if no proper superset of V ′
is a degree-2-path. Let G be a graph where we contract an edge (u, v). Then we denote
G′ = G/(u, v) as the graph created by contraction of edge (u, v). Let uv be the contracted
vertex as a result of contraction. Then, NG′(uv) = NG(u) ∪NG(v). We denote G[B] by the
graph induced on the vertex set B ⊆ V (G). We say G[B] is a double-clique if there are at
least 2 edges between every pair of vertices in B.

We give the definitions of fixed-parameter tractability, kernelization, polynomial parameter
transformation and its related facts.

IPEC 2016



21:4 Structural Parameterizations of Feedback Vertex Set

2.1 Definitions and Properties
I Definition 1 (Fixed-Parameter Tractability). Let L ⊆

∑∗×N is a parameterized language.
L is said to be fixed-parameter tractable (or FPT ) if there exists an algorithm B, a constant
c and a computable function f such that ∀x, ∀k, B on input (x, k) runs in at most f(k).|x|c
time and outputs (x, k) ∈ L iff B([x, k]) = 1. We call the algorithm B as fixed-parameter
algorithm.

I Definition 2 (Slice-Wise Polynomial (XP )). Let L ⊆
∑∗×N is a parameterized language. L

is said to be Slice-Wise Polynomial (or in XP ) if there exists an algorithm B, a constant c and
computable functions f, g such that ∀x, ∀k, B on input (x, k) runs in at most f(k).|x|g(k)+c

time and outputs (x, k) ∈ L iff B([x, k]) = 1. We call the algorithm B as XP Algorithm.

I Definition 3 (Kernelization). Let L ⊆
∑∗×N be a parameterized language. Kernelization

is a procedure that replaces the input instance (I, k) by a reduced instance (I ′, k′) such that
k′ ≤ f(k), |I ′| ≤ g(k) for some function f, g depending only on k.
(I, k) ∈ L if and only if (I ′, k′) ∈ L.

The reduction from (I, k) to (I ′, k′) must be computable in poly(|I|+k) time. If g(k) = kO(1)

then we say that L admits a polynomial kernel.

I Definition 4 (Soundness/Safeness of Reduction Rule). A reduction rule that replaces an
instance (I, k) of a parameterized language L by a reduced instance (I ′, k′) is said to be
sound or safe if (I, k) ∈ L if and only if (I ′, k′) ∈ L.

I Definition 5 (Polynomial parameter transformation (PPT)). Let P1 and P2 be two para-
meterized languages. We say that P1 is polynomial parameter reducible to P2 if there exists
a polynomial time computable function (or algorithm) f :

∑∗×N → ∑∗×N, a polyno-
mial p : N → N such that (x, k) ∈ P1 if and only if f(x, k) ∈ P2 and k′ ≤ p(k) where
f((x, k)) = (x′, k′). We call f to be a polynomial parameter transformation from P1 to P2.

The following proposition gives the use of the polynomial parameter transformation for
obtaining kernels for one problem from another.

I Proposition 6 ([3]). Let P,Q ⊆ Σ∗ × N be two parameterized problems and assume that
there exists a PPT from P to Q. Furthermore, assume that classical version of P is NP-hard
and Q is in NP. Then if Q has a polynomial kernel then P has a polynomial kernel.

2.2 Initial Preprocessing Rules
For the algorithms in Section 3, 4, 5, we use the following well known reduction rules. See
Chapter 3, 4 of [6] for safeness of these Reduction Rules. Here ` is the size of the solution
(fvs) being sought.

I Reduction Rule 7. If there exists u ∈ V (G) such that u has a self loop, then G′ ←
G \ {u}, `′ ← `− 1.

I Reduction Rule 8. If there exists a vertex v such that degG(v) ≤ 1, then G′ ← G\v, `′ ← `.

I Reduction Rule 9. If there exists a vertex v such that NG(v) = {u,w}, then delete the
vertex v and add an edge (u,w) into G.

Note that Reduction Rule 9 can create parallel edges.

I Reduction Rule 10. If there exists an edge (u, v) whose multiplicity is more than 2, then
reduce its multiplicity to 2.



D. Majumdar 21:5

3 Feedback Vertex Set Parameterized by number of vertices of
degree more than 3

FVS-High-Degree Parameter: |{u ∈ V (G)|degG(u) > 3}| ≤ k

Input: An undirected graph G = (V,E) and an integer `.
Question: Does G have a feedback vertex set of size at most `?

Note that our input can be a multigraph. We prove that this problem is fixed-parameter
tractable and has no polynomial kernel unless NP ⊆ coNP/poly. First, we provide an
FPT Algorithm to answer a question asked in [16]. Then, we prove that this problem has
no polynomial kernel. Let S = {u ∈ V (G)|degG(u) > 3}. Throughout this section and in
Sections 4, and 5, we use F to denote G \ S.

3.1 Fixed-Parameter Algorithm

Now, we provide the FPT Algorithm for this problem. We first make the graph minimum
degree three. Then, we run over all possible subsets of S and for every subset S′ of S, we
reduce that instance to a polynomial time solvable problem.

I Theorem 11. There exists an algorithm that runs in O(2k · nO(1)) time for FVS-High-
Degree problem.

Proof. First we apply Reduction Rules 7, 8, 9, 10 in sequence and keep updating ` appropri-
ately. Then the algorithm works as follows (see Algorithm 1 for pseudo-code).

We guess a subset S′ ⊆ S that intersects S with an ` sized feedback vertex set we are
seeking for. If G[S \ S′] has a cycle, then we move on to the next guess. Otherwise, let
S′′ = S \ S′ and G[S′′] is a forest. Now, let F = G \ S. `′ = `− |S′|. Now, we have to find a
minimum feedback vertex set D of G \ S′ such that S′′ ∩D = ∅. Note that every vertex in F
has degree at most three in G and also in G\S′. Now, we subdivide every edge (u, v) ∈ E(F ),
by adding a new vertex eu,v and we add eu,v to S′′. We get T ′ = S′′ ∪ {eu,v|(u, v) ∈ E(F )}.
u and v are the only two neighbours of eu,v. Hence we have that for every vertex u ∈ V (F ),
u has no neighbour in F . Let the graph we have currently is G′′. Let R′ = V (G′′) \ T ′. Note
that R′ is an independent set. Our goal is to find a feedback vertex set of G′′ of at most `′
vertices that is disjoint from T ′. Now, we pre-process G′′ using the following reduction rules
(also available in [18]) so that every vertex in R′ has exactly three neighbours in T ′ and all
such neighbours appear in different components of G′′[T ′]. We need to apply these rules in
sequence. Safeness of first two of them are easy to see.

I Reduction Rule 12. If there exists u ∈ R′ such that degG′′(u) ≤ 1, then delete u.

I Reduction Rule 13. If there exists u ∈ R′ such that G′′[T ′ ∪ {u}] has a cycle, then delete
u from G′′ and reduce `′ by 1.

Notice that Reduction Rule 13 is also applicable when a vertex u ∈ R′ has exactly two
neighbours in T ′ that are in same component of G[T ′].

I Reduction Rule 14. If there exists a vertex u ∈ R′ such that u has exactly 2 neighbours
in T ′ and those two neighbours in different components of G′′[T ′], then move u to T ′.

IPEC 2016



21:6 Structural Parameterizations of Feedback Vertex Set

I Lemma 15 (?2). Reduction Rules 12, 13 and 14 are safe and can be implemented in
polynomial time.

When Reduction Rules 12, 13, 14 are not applicable, then our goal is to solve the following
problem.

Special Disjoint Feedback Vertex Set
Input: An undirected graph G = (V,E), S1 ∪ S2 = V (G), S1 ∩ S2 = ∅, G[S1] is a forest,
S2 is an independent set and every vertex of S2 has exactly 3 neighbours and all are in
different components of G[S1].
Goal: Find a minimum feedback vertex set W of G such that W ∩ S1 = ∅.

The following Lemma is due to Kociumaka and Pilipczuk [18] which uses matroid techniques.

I Lemma 16 ([18]). Let (G,S1, S2) be an instance of Special Disjoint Feedback Vertex
Set. Then there exists a polynomial time algorithm that finds a minimum feedback vertex
set W of G such that W ⊆ S2.

Now, if |W | ≤ `′, then we output Yes. Otherwise we repeat the above steps for another
subset of S. There are at most 2|S| many such subset S′ of S and after guessing subset, the
problem is polynomial time solvable. If for every subset of S, it is seen that |W | > `′, then
we output No. Therefore, we have an algorithm that runs in time O∗(2k). J

3.2 Kernelization Lower Bound
Now, to justify that FVS-High-Degree has no polynomial kernel unless NP ⊆ coNP/poly,
we use the following theorem and the construction that is used by Jansen et al. [16].

I Theorem 17 ([11]). Let φ be a boolean formula in CNF form with n variables and m
clauses. CNF-SAT parameterized by n has no polynomial kernel unless NP ⊆ coNP/poly.

Jansen et al. [16] provided a polynomial parameter transformation from CNF-SAT
parameterized by number of variables, n to Feedback Vertex Set parameterized by
deletion distance to Mock-Forest. In that construction, the size of the deletion distance to
Mock-Forest is at most 4n. In the same construction, the number of vertices of the graph
whose degree is at least 4 is 2n. For details, see Section 6 in [16]. So, the same transformation
is also a polynomial parameter transformation from CNF-SAT parameterized by number of
variables to FVS-High-Degree. Thus, we have the following corollary.

I Corollary 18. FVS-High-Degree has no polynomial kernel unless NP ⊆ coNP/poly.

4 Improved Polynomial Kernel for Parameterization by Deletion
Distance to Pseudo-Forest

FVS-Pseudo-Forest Parameter: k

Input: An undirected graph G, S ⊆ V (G) of size at most k such that G[V (G) \ S] is a
graph in which every component has at most one cycle, and an integer `.
Question: Does G have a feedback vertex set of size at most `?

2 Due to lack of space, the proofs of Lemmas and Observations marked ? will appear in the full version.



D. Majumdar 21:7

Algorithm 1: FVS-Param-High-Degree-Vertices
input :G = (V,E) and ` ∈ N
output : Yes if ∃C ⊆ V (G), |C| ≤ ` such that G \ C is a forest, No otherwise

1 S ← {u ∈ V (G)|degG(u) ≥ 4};
2 `′ ← `;
3 for every S′ ⊆ S do
4 if G[S \ S′] is a forest then
5 S′′ ← S \ S′;
6 `′ ← `− |S′|;
7 F = G \ S;
8 T = ∅;
9 for each (u, v) ∈ E(F ) do

10 T ← T ∪ {eu,v};
11 T ′ ← T ∪ S′′;
12 E′ = E(G[S′′]) ∪ {(u, eu,v)|(u, v) ∈ E(F )};
13 G′′ = (T ′, E′);
14 Apply Reduction Rules 12, 13, 14 in this sequence and keep updating `′

appropriately.;
15 When Reduction Rules 12, 13, 14 are not applicable, run algorithm for

Lemma 16 and get W ;
16 if |W | ≤ `′ then
17 Return Yes

18 Return No;

Throughout the section for input (G,S, `), we use F to denote G[V (G) \ S]. An O(k10)
vertex kernel is provided by Jansen et al. [16]. We provide here an improved kernel. We
first apply the Reduction Rules 7, 8, 9, 10. It is easy to see that these reduction rules can
be applied in polynomial time. When Reduction Rules 7, 8, 9, 10 are not applicable, then
every vertex of the graph has degree at least three and there are at most two edges between
every pair of vertices. In particular, every vertex in V (F ) has at least one neighbour in S.
We partition the vertices of F into H1, H2, H3. We also partition the components of F into
F1, F2, F3, F4. Formal notations are given as follows.

H1 = {u ∈ V (F )|degF (u) ≤ 1}.
H2 = {u ∈ V (F )|degF (u) = 2}.
H3 = {u ∈ V (F )|degF (u) ≥ 3}.
F1 – set of connected component of F that is a tree.
F2 – set of connected component of F that contains a vertex from H1 and also contains
a cycle. Let c2 be the number of such components.
F3 – set of connected component of F that are induced cycles consisting of two vertices.
Let c3 be the number of such components.
F4 – set of connected component of F that are induced cycles of length at least three.
Let c4 be the number of such components.

Let P be the collection of maximal degree-2-paths in F1 ∪ F2. Let M̂ be a maximum
matching in G[P ∪ F4]. Also let ĉ = c2 + c4. We will use these notations in the rest of the
section.

IPEC 2016



21:8 Structural Parameterizations of Feedback Vertex Set

4.1 General Reduction Rules
Our first step is to device some reduction rules to bound the number of vertices in H1. By
pseudo-forest property, the number of vertices in H3 becomes bounded. Now, to bound
the number of vertices in H2, we need to bound the number of edges in M , the number of
maximal degree-2-paths in P and c4. By pseudo-forest property, the number of maximal
degree-2-paths in P also becomes bounded once |H1| and |H3| are bounded. In order to
define such reduction rules, we need to use the fact crucially that the minimum degree of G
is at least 3. In particular, for every vertex v ∈ H1, either there exists x ∈ S such that (x, v)
is double-edge or there exists x, y ∈ NG(v) ∩ S. For every vertex v ∈ H1, there exists x ∈ S
such that (x, v) ∈ E(G). The reduction rules described in this subsection help to bound H1
and also M ∩ (E(F1) ∪ E(F2)). These reduction Rules also appear in [4] in different form.

I Reduction Rule 19. Let x ∈ S. Then G′ ← G \ {x}, `′ ← ` − 1 if any of the following
happens.

There are at least |S|+ 1 vertices in H1 that are connected to x by a double-edge.
There are at least |S| + ĉ + 1 vertices in F1 ∪ F2 ∪ F4 that are matched by M̂ and are
connected to x by a double-edge.
NG(x) contains both end points of at least |S|+ ĉ+ 1 edges in M̂ .

I Reduction Rule 20. Let x, y ∈ S such that (x, y) is not a double-edge. Then, make (x, y)
into a double-edge if one of the following happens.
|NG(x) ∩NG(y) ∩H1| ≥ |S|+ 2.
NG(x) ∪NG(y) contains both end points of at least |S|+ ĉ+ 2 edges of M̂ .

Even though Reduction Rule 20 does not reduce the size of the graph, it helps to capture
some constraints and also helps to apply some other reduction rules (for example Reduction
Rule 21).

I Reduction Rule 21.
If there exists a vertex u ∈ F such that degF (u) = 0, and there is no double edge attached
to u and if NG(u) ∩ S forms a double clique, then G′ ← G \ {u}.
If there exists u ∈ F such that degF (u) = 1, and there is no double edge attached to u and
NG(u) ∩ S forms a double clique, then G′ ← G/(u, v) where {v} = NG(u) ∩ F . However,
the multiple edges created because of contraction should not be deleted.
If there exists (u, v) ∈M such that NG(u)∩NG(v)∩S = ∅, and no double edge is attached
to either of u or v and G[(NG(u)∪NG(v))∩S] forms a double clique, then G′ ← G/(u, v).
However, multiple edges or self loops created because of contraction should not be deleted.

See Figure 1 for illustration.

4.2 Bounding |H1 ∪ H3|
Now, we proceed to bound the number of vertices in F that have degree at most one and at
least three. We know that F is a pseudo-forest. We need to use some structural properties
of a pseudo-forest and also in applicability of the Reduction Rules 7, 8, 9, 10 19, 20 21. Here
is an observation about pseudo-forest.

I Observation 22 (?). Let G = (V,E) be a pseudo-forest and let V1 = {v ∈ V (G)|degG(v) ≤
1} and V3 = {v ∈ V (G)|degG(v) ≥ 3}. Then, |V3| ≤ |V1|.

Using the Observation 22, we have the following lemma.



D. Majumdar 21:9

u uv vuv
uv

Figure 1 Illustration of Reduction Rule 21.

I Lemma 23. When Reduction Rules 7, 8, 9, 10, 19, 20 and 21 are not applicable, |H1∪H3| =
2k2 + 2(k + 1)

(
k
2
)
.

Proof. We know that H1∪H3 ⊆ V (F1∪F2). Since Reduction Rules 7, 8, 9 are not applicable,
every vertex in H1 has at least two neighbours in S. As Reduction Rule 21 is not applicable,
for every vertex v ∈ H1, we associate either z ∈ S when (x, z) is a double-edge. Otherwise
we associate (x, y) ∈

(
S
2
)
for v, when x, y ∈ NG(v) ∩ S and (x, y) is not a double-edge. As

Reduction Rule 19 is not applicable, for every z ∈ S, there are at most |S| vertices in H1 that
are connected by a double-edge. As Reduction Rule 20 is not applicable, for every (x, y) ∈

(
S
2
)

and (x, y) is not a double-edge, NG(x) ∩NG(y) contain at most |S|+ 1 vertices of H1. Then
|H1| ≤ k2 + (k + 1)

(
k
2
)
. By Observation 22, we know that |H3| ≤ |H1| ≤ k2 + (k + 1)

(
k
2
)
. So,

|H1 ∪H3| ≤ 2k2 + 2(k + 1)
(
k
2
)
. J

4.3 Bounding the number of components in F3 and F4

Now, what remains is to get an upper bound on |H2|. Towards that, we need to bound M̂
which requires to use an upper bound on the number of induced cycles, i.e. the number of
components in F4, i.e. c4. We also need to bound c3 to bound the number of vertices in H2.
In addition, we also need to use some facts from the earlier Subsection 4.1. By definition,
for any component of F3 and F4, no vertex has exactly one neighbour in F . In particular
the graph induced on the set of components of F3 and F4 is a two regular graph. To get an
upper bound on number of such components, we need to do a little more work. We recall
the following concept due to Jansen et al. [16].

I Definition 24. Let C be a connected component in F3 ∪ F4 and let X ⊆ NG(C) ∩ S. We
say that C can be resolved with respect to X if there exists u ∈ C such that C \ {u} is acyclic
and for every connected component C ′ in C \ {u}, |NG(C ′) ∩X| ≤ 1, |NG(X) ∩ C ′| ≤ 1 and
G[(C \ {u}) ∪X] has no cycle.

The idea is that if a component C can be resolved with respect to its neighbourhood in
S, then we can just delete that component and reduce the budget by 1. Every connected
component of F3 and F4 are just induced cycles. When Reduction Rules 8, 9, 10 are not
applicable, we show that the components in F3 and F4 have the following properties. A
variation of the following lemma is provided in [16]. Here we provide an improved version of
their lemma by using more facts that are useful for our purpose.

I Lemma 25 (?). Let C be a connected component in F3 ∪ F4 and Reduction Rules 8, 9 be
not applicable. Then, if there exists X ⊆ NG(C) ∩ S such that C can not be resolved with
respect to X then the followings statements are true.

IPEC 2016



21:10 Structural Parameterizations of Feedback Vertex Set

If C ∈ F3, then there exists X ′ ⊆ X, |X ′| ≤ 4 such that C can not be resolved with respect
to X ′.
If C ∈ F4, then there exists X ′ ⊆ X, |X ′| ≤ 3 such that C can not be resolved with respect
to X ′.

Now, the idea behind the proof of Lemma 25 is that if for some X ⊆ S, |X| ≤ 3 (or
|X| ≤ 4), there are a large number of components that can not be resolved with respect to X,
then any minimum feedback vertex set must intersect X. Therefore, we have the following
definition (also available in [16]).

I Definition 26. Let (G,S, `) be an instance of FVS-Pseudo-Forest. We say that
X ⊆ S, |X| ≤ 4 (respectively |X| ≤ 3), be such that at least t connected components in F3
(respectively F4) can not be resolved with respect to X, then we say that X is saturated by t
unresolvable components in F3 (respectively F4).

I Lemma 27 (?). Let (G,S, `) be an instance of FVS-Pseudo-Forest and A ⊆ S, |A| ≤
3 and A is saturated by |S|+ 4 components in F4, then any minimum feedback vertex set
of G must intersect A.
Let (G,S, `) be an instance of FVS-Pseudo-Forest and A ⊆ S, |A| ≤ 4 and A is
saturated by |S|+ 7 components in F3, then any minimum feedback vertex set of G must
intersect A.

Now, we have the following Reduction Rule that follows from Lemma 27.

I Reduction Rule 28.
Let C be a connected component of F3. If for each A ⊆

(
S∩NG(C)
≤4

)
, component C can be

resolved with respect to A or A is saturated by at least |S|+ 8 non-resolvable components
in F3, then delete C and reduce ` by 1
Let C be a connected component of F4. If for each A ⊆

(
S∩NG(C)
≤3

)
, component C can be

resolved with respect to A or A is saturated by at least |S|+ 5 non-resolvable components
in F4, then delete C and reduce ` by 1.

I Lemma 29 (?). Reduction Rules 19, 20, 21 and 28 are safe and can be implemented in
polynomial time.

Now, we have the following lemma when the above reduction rules are not applicable.

I Lemma 30. Recall that the number of components in F3, F4 are c3, c4 respectively. When
Reduction Rule 7, 8, 9, 10 28 are not applicable, then

c3 ≤ (k + 7)
4∑
i=1

(
k
i

)
.

c4 ≤ (k + 4)
3∑
i=1

(
k
i

)
.

Proof. Assume that the conditions hold. We prove the statement in the given order.
Since Reduction Rule 28 is not applicable, for each component C in F3, there is a set
A ∈

(
NG(C)∩S
≤4

)
⊆
(|S|

4
)
such that C can be resolved with respect to A and A is saturated

by at most |S|+ 7 components. Then, for each component C in F3, we choose one such
set A and charge C to A. Clearly we can charge to every set A at most |S|+ 7 times,
otherwise some set A would be saturated by |S|+ 8 components. Hence the number of

components in F3 is at most (|S|+ 7)
4∑
i=1

(|S|
i

)
≤ (k + 7)

4∑
i=1

(
k
i

)
.



D. Majumdar 21:11

Similarly we can show that the number of components in F4 is (|S| + 4)
3∑
i=1

(|S|
i

)
≤

(k + 4)
3∑
i=1

(
k
i

)
. J

The following is an easy consequence of the Lemma 30.

I Corollary 31. When Reduction Rule 7, 8, 9, 10 28 are not applicable, then, the number of

vertices in F3 is at most 2(k + 7)
4∑
i=1

(
k
i

)
.

4.4 Bounding |H2| and Putting Things together
Now, use the results in the earlier section and proceed to get an upper bound on the number
of vertices in H2. We need few more structural properties of pseudo-forests for that. As any
component in F2 has at least one vertex who has exactly one neighbour in F , number of
components in F2, i.e. c2 ≤ |H1|. So, we have the following lemma.

I Lemma 32. Recall that the number of components in F2 is c2. Then c2 ≤ |H1|.

Proof. Note that any component in F2 must have at least one vertex from H1. Therefore,
the number of components in F2 is at most |H1|. J

Recall that in order to bound |H2|, we also need an upper bound on the number of
degree-2-paths in P. The following is a structural property of pseudo-forest which helps to
do so.

I Observation 33 (?). Let G = (V,E) be a pseudo-forest where every component has at least
one vertex of degree 1. Let V1 = {v ∈ V (G)|degG(v) ≤ 1} and V3 = {v ∈ V (G)|degG(v) ≥ 3}
and P be the set of maximal degree-2-paths in G. Then, |P| ≤ |V3|+ |V1|.

I Lemma 34. If Reduction Rule 7, 8, 9, 10, 19, 20, 21, 28 are not applicable, then the
number of vertices in |H2| = O(k6).

Proof. By Corollary 31, we have that |V (F3)| = O(k5). Recall that by Lemma 32, we have
that c2 = O(k3). Also by Lemma 30, we have that c4 = O(k4). So, ĉ = c2 + c4 = O(k4).
Recall that M̂ be the maximum matching in P ∪ F4. As Reduction Rule 9 is not applicable,
every vertex in H2 has at least one neighbour in S. As Reduction Rule 21 is not applicable,
for every (u, v) ∈ M̂ , we associate z ∈ NG(u) ∩NG(v) ∩ S when NG(u) ∩NG(v) ∩ S 6= ∅ or
(u, z) is a double-edge. Otherwise, we associate x ∈ NG(u) ∩ S, y ∈ NG(v) ∩ S such that
(x, y) is not a double-edge. For any z ∈ S, define Matched(z) = {(u, v) ∈ M̂ |(u, z) is a
double-edge or u, v ∈ NG(z)}. As Reduction Rule 19 is not applicable, for every z ∈ S,
|Matched(z)| ≤ 2|S| + 2ĉ. Similarly as Reduction Rule 20 is not applicable, for every
x, y ∈

(
S
2
)
and (x, y) is not a double-edge, NG(x)∪NG(y) contain both end points of at most

|S|+ ĉ+1 edges of M̂ . Since ĉ = O(k4), we have that |M̂ | ≤ |S|(2|S|+2ĉ)+
(
S
2
)
(|S|+ ĉ+1) ≤

2k2 + 2k · O(k4) +
(
k
2
)
· O(k4) = O(k6). A maximal degree-2-path can also have only one

vertex which is not matched by M̂ . Recall that P be the collection of all maximal degree-
2-paths in F1 ∪ F2. Using Observation 33, we get that |P| ≤ |H1|+ |H3| = O(k3). So, the
number of vertices in H2 that are not matched by M̂ is at most |P| + |M̂ | = O(k6). So,
|H2| = O(k6). J

The following is the main theorem of this section and this is an easy consequence of Lemma 23
and Lemma 34.

I Theorem 35. FVS-Pseudo-Forest has a kernel consisting of O(k6) vertices.

IPEC 2016



21:12 Structural Parameterizations of Feedback Vertex Set

5 Kernelization of Feedback Vertex Set Parameterized by Deletion
distance to bounded Mock Forest

Now we consider the Feedback Vertex Set problem parameterized by the size of a deletion
set whose deletion results in a mock-d-forest. Recall that a graph is called mock-d-forest
when every vertex is contained in at most one cycle and every connected component has at
most d cycles. Formal definition of the problem is given below.

FVS-Mock-d-Forest for d ≥ 2 and d is a constant Parameter: k

Input: An undirected graph G, S ⊆ V (G) of size at most k such that G[V (G) \ S] is a
graph of which every vertex participates in at most most one cycle, every component
has at most d cycles for some constant d and an integer `.
Question: Does G have a feedback vertex set of size at most `?

When d is not bounded, then there is no polynomial kernel unless NP ⊆ coNP/poly. In
this section, we first provide a polynomial kernel for this problem when d is a constant and
d ≥ 2. After that we provide a lower bound for this problem.

5.1 Polynomial Kernel for FVS-Mock-d-Forest
Our kernelization algorithm follows along the line of the kernel for FVS-Pseudo-Forest in
the earlier section. Here, we need to use some special properties of mock-d-forest. We use
F = G\S throughout the section. Let PF be the collection of maximal acyclic degree-2-paths
in F . Let MF be a maximum matching in PF and set of induced cycles in F . Let ĉ be the
total number of cycles in F . We partition V (F ) into three parts as follows.

F1 = {u ∈ V (F )|degF (u) ≤ 1}.
F2 = {u ∈ V (F )|degF (u) = 2}.
F3 = {u ∈ V (F )|degF (u) ≥ 3}.

Our first step is to bound the number of vertices in F1. An upper bound on F1 along with
some properties of pseudo-forest, we get an upper bound on the number of vertices of F3.
Then, we have to bound the number of edges in MF and the number of maximal acyclic
degree-2-paths in PF . Now, we are ready to state the Reduction Rules. Our Reduction
Rules in this section are generalisations of the Reduction Rules in Section 4. We apply the
following two reduction rules that are more general variant of Reduction Rules 19, 20.

I Reduction Rule 36. Let x ∈ S. Then G′ ← G \ {x}, `′ ← ` − 1 if one of the following
conditions is satisfied.

There are at least |S|+ 1 vertices in F1 that are connected to x by a double-edge.
There are at least |S|+ ĉ+ 1 vertices in F2 that are matched by MF and are connected to
x by a double-edge.
NG(x) contains both end points of at least |S|+ ĉ+ 1 edges in MF .

I Reduction Rule 37. Let (x, y) ∈
(
S
2
)
. Then make (x, y) into a double-edge if one of the

following conditions is satisfied.
NG(x) ∩NG(y) contains at least |S|+ 1 vertices from F1.
NG(x) ∩NG(y) contains both end points of at least |S|+ ĉ+ 2 edges of MF .

We apply Reduction Rules 7, 8, 9, 10, 36, 37, 21 in the this order (Recall that we did
similar in Section 4).

I Lemma 38 (?). When Reduction Rules 7 8, 9, 10, 36, 37, 21 are not applicable, then
|F1| = O(k3).



D. Majumdar 21:13

We need to bound the number of vertices in F2 and F3. To have that, we need to bound
the number of components in F . We need to do little more work for that. In particular, we
need the following definition which is a generalisation of Definition 24.

I Definition 39. Let C be a connected component in F and let X ⊆ NG(C) ∩ S. We
say that C can be resolved with respect to X if there exists {u1, u2, . . . , ud} ⊆ C such
that C \ {u1, . . . , ud} is acyclic and for every connected component C ′ in C \ {u1, . . . , ud},
|NG(C ′) ∩X| ≤ 1, |NG(X) ∩ C ′| ≤ 1 and G[(C \ {u1, . . . , ud}) ∪X] has no cycle.

The following lemma is a generalisation of Lemma 25. It is useful to bound the number of
components in F .

I Lemma 40 (?). Let C be a connected component of F having exactly d cycles and let
X ⊆ NG(C) ∩ S such that C can not be resolved with respect to X. Then, there exists
X ′ ⊆ X, |X ′| ≤ 3d such that C can not be resolved with respect to X ′.

The following definition is a generalisation of Definition 26 in Section 4.

I Definition 41. Let A ⊆ S, |A| ≤ 3d be such that there are t components in F that can
not be resolved with respect to A. Then, we say that A is saturated by t components in F .

The following lemma is a property of mock-forest. We will need this to prove the safeness
of the Reduction Rule 43.

I Lemma 42 (?). Let (G,S, `) be an instance of FVS-Mock-d-Forest] and A ⊆ S, |A| ≤ 3d
and A is saturated by |S|+

(3d
2
)

+ 1 components in F , then any minimum feedback vertex set
of G must intersect A.

Now, we have just one more reduction rule to get an upper bound on the number of
components in F . And Lemma 45 is a consequence of inapplicability of Reduction Rule 43.

I Reduction Rule 43. Let C be a connected component in F that contains some cycle. If
for each A ∈

(
NG(C)∩X
≤3d

)
, component C can be resolved with respect to A or A is saturated by

|S|+
(3d

2
)

+ 2 components, then remove C and reduce ` by the number of cycles in C.

I Lemma 44 (?). Reduction Rules 36, 37 and 43 are safe and can be implemented in
polynomial time.

I Lemma 45. Let (G,S, `) be an irreducible instance with respect to Reduction Rule 43, then
number of components in F is at most O(|S|3d+1).

Proof. Consider any component C ∈ F . Reduction Rule 43 is not applicable, therefore,
there exists A ⊆ S, |A| ≤ 3d such that C can not be resolved with respect to A. Also, for
the same reason, A can be saturated by at most |S|+

(3d
2
)

+ 1 components. Therefore, the
number of components is at most (|S|+

(3d
2
)
)
(|S|

3d
)
≤ 9d2.|S|3d+1 = O(d2.|S|3d+1). J

We have bounded the number of components in F . We already have bounded the number
of vertices in F1. We are left to bound |F3 ∪ F2|. We need graph theoretic properties of
mock-d-forest to get an upper bound on |F3|. Recall that in Section 4, we used observations
about pseudo-forest. Similarly, in this section, we use observations about mock-forest when
there are at most d cycles in a mock-forest.

I Observation 46 (?). Let G = (V,E) be a mock forest with c components where every
component has at most d cycles. V1 = {v ∈ V (G)|degG(v) ≤ 1}, V2 = {v ∈ V (G)|degG(v) =
2}, V3 = {v ∈ V (G)|degG(v) ≥ 3}. Then |V3| ≤ |V1|+ 2cd− 2c.

IPEC 2016



21:14 Structural Parameterizations of Feedback Vertex Set

Using Lemma 38 and Observation 46, we have the following Lemma.

I Lemma 47. Let c be the number of components in F . Then, |F3| = O(k3d+1).

Proof. By Lemma 38, we know that |F1| = O(k3). Now, by Observation 46, we know that
|F3| ≤ |F1| + 2c(d − 1). Recall that c = O(k3d+1). Now, c(d − 1) ≤ ĉ = O(k3d+1). So,
|F3| = O(k3d+1). J

Now, what remains is to bound the number of vertices in F2. For that, we need to
bound MF and also the number of maximal acyclic degree-2-paths in PF . Using structural
properties of mock-d-forest, we have the following lemma that bounds the number of maximal
acyclic degree-2-paths in F , i.e. PF .

I Lemma 48 (?). |PF | = O(k3d+1) where c′ is the number of components in F that have at
least two cycles.

Using the above observations and lemmas we have the following lemma.

I Lemma 49 (?). |F2| = O(|S|3d+3).

Combining Lemma 38, 47, 49, we get the following theorem.

I Theorem 50. FVS-Mock-d-Forest has a kernel consisting of O(k3d+3) vertices.

5.2 Kernel Lower Bound for FVS-Mock-d-Forest
We provide a polynomial parameter transformation from (d+ 2)-CNF-SAT parameterized
by the number of variables to Feedback Vertex Set parameterized by deletion distance
to Mock-d-Forest where d ≥ 2. A polynomial parameter transformation from CNF-SAT
to FVS-Mock-Forest when every clause has exactly r literals where r is a power of 2 is
already known [16]. We modify the construction for a polynomial parameter transformation
from (d+ 2)-CNF-SAT to FVS-Mock-d-Forest where d is not necessarily a power of 2.

Let the clause Ci have di ≤ d+ 2 literals. We provide a clause gadget of height ji where
2ji−1 < di ≤ 2ji . We create d2 many copies for this gadget. In this gadget, the terminal
vertices are the corresponding vertices of literals (See figure 2). For clause Cq with its r’th
copy, we name literals as yq,r,1, . . . , yq,r,di

. And we create a variable gadget for variable xi
as a cycle of 3 vertices. Let {ti, fi, ei} are those vertices. We define S =

n⋃
i=1
{ti, fi, ei}. Let

yq,r,j be the j’th literal of clause Cq. Let the variable corresponding to that variable is xi.
Then, if the literal yq,r,j is x̄i, then we connect yq,r,j with fi. Otherwise we connect yq,r,j
with ti. We do the same for every r ∈ [d2]. We set ` = d2

m∑
i=1

(di − 2).

I Lemma 51 (?). Let φ be a (d + 2)-CNF formula. Let Gφ be the graph constructed
from φ using the construction above. Then φ is satisfiable if and only if (Gφ, S, `) is Yes-
Instance. Thus there is a polynomial parameter transformation from (d+ 2)-CNF-SAT to
FVS-Mock-d-Forest.

I Theorem 52. [[7]] d-CNF-SAT parameterized by n, the number of variables, has no
kernel of size O(nd−ε) for any d ≥ 3, ε > 0 unless NP ⊆ coNP/poly.

Using Lemma 51 and Theorem 52, we have the following theorem.

I Theorem 53. FVS-d-Mock-Forest has no kernel consisting of O(kd+2−ε) vertices for
every d ≥ 2, ε > 0 unless NP ⊆ coNP/poly.



D. Majumdar 21:15

Terminal Vertices

yq,r,1 yq,r,2
yq,r,3 yq,r,4 yq,r,5 yq,r,6

yq,r,7

Figure 2 Illustration of Clause Gadget Construction for 7 literals.

6 Conclusion

We have given a kernel with O(k6) vertices for FVS-Pseudo-Forest improving from an
earlier O(k10) bound [16], and narrowing the gap with the Ω(k4) conditional lower bound.
Bridging the gap further is an interesting problem. We proved that FVS-High-Degree is
fixed-parameter tractable. Status of Feedback Vertex Set parameterized by deletion distance
to a (sub)-cubic graph (a related problem) remains open, and we do not even know an
XP algorithm for the problem. We considered FVS parameterized by deletion distance
to mock-d-forest and proved an upper bound of O(k3d+3) and lower bound Ω(kd+2) under
complexity theoretic assumptions. Narrowing this gap is another interesting future direction.

References
1 E. Balas and C. S. Yu. On graphs with polynomially solvable maximum-weight clique

problem. Networks, 19(2):247–253, 1989.
2 H.L. Bodlaender, B.M.P. Jansen, and S. Kratsch. Kernelization lower bounds by cross-

composition. SIAM J. Discrete Math., 28(1):277–305, 2014.
3 H.L. Bodlaender, S. Thomassé, and Anders Yeo. Kernel bounds for disjoint cycles and

disjoint paths. Theor. Comput. Sci., 412(35):4570–4578, 2011.
4 H.L. Bodlaender and T.C. van Dijk. A cubic kernel for feedback vertex set and loop cutset.

Theory Comput. Syst., 46(3):566–597, 2010.
5 Y. Cao, J. Chen, and Y. Liu. On feedback vertex set: New measure and new structures.

Algorithmica, 73(1):63–86, 2015.
6 M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,

and S. Saurabh. Parameterized Algorithms. Springer, 2015.
7 H. Dell and D. van Melkebeek. Satisfiability allows no nontrivial sparsification unless the

polynomial-time hierarchy collapses. J. ACM, 61(4):23:1–23:27, 2014.
8 R.G. Downey and M.R. Fellows. Fundamentals of Parameterized Complexity. Texts in

Computer Science. Springer, 2013.
9 M.R. Fellows, B.M.P. Jansen, and F.A. Rosamond. Towards fully multivariate al-

gorithmics: Parameter ecology and the deconstruction of computational complexity. Eur.
J. Comb., 34(3):541–566, 2013.

10 F.V. Fomin, D. Lokshtanov, N. Misra, and S. Saurabh. Planar F-Deletion: Approximation,
Kernelization and Optimal FPT Algorithms. In Proceedings of FOCS, pages 470–479, 2012.

IPEC 2016



21:16 Structural Parameterizations of Feedback Vertex Set

11 L. Fortnow and R. Santhanam. Infeasibility of instance compression and succinct PCPs for
NP. J. Comput. Syst. Sci., 77(1):91–106, 2011.

12 T. Fujito. A unified approximation algorithm for node-deletion problems. Discrete Applied
Mathematics, 86(2-3):213–231, 1998.

13 M.R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

14 G. Gutin, E. J. Kim, M. Lampis, and V. Mitsou. Vertex cover problem parameterized above
and below tight bounds. Theory Comput. Syst., 48(2):402–410, 2011.

15 B.M.P. Jansen and S. Kratsch. Data reduction for graph coloring problems. Inf. Comput.,
231:70–88, 2013.

16 B.M.P. Jansen, V. Raman, and M. Vatshelle. Parameter ecology for feedback vertex set.
Tsinghua Science and Technology, 19(4):387–409, 2014.

17 T. Kloks, C. Liu, and S. Poon. Feedback vertex set on chordal bipartite graphs. CoRR,
abs/1104.3915v2, 2011.

18 T. Kociumaka and M. Pilipczuk. Faster deterministic feedback vertex set. Inf. Process.
Lett., 114(10):556–560, 2014.

19 D. Kratsch, H. Müller, and I. Todinca. Feedback vertex set on at-free graphs. Discrete
Applied Mathematics, 156(10):1936–1947, 2008.

20 R. Rizzi. Minimum weakly fundamental cycle bases are hard to find. Algorithmica,
53(3):402–424, 2009.

21 S. Thomassé. A 4k2 kernel for feedback vertex set. ACM Trans. Algorithms, 6(2), 2010.
22 S. Ueno, Y. Kajitani, and S. Gotoh. On the nonseparating independent set problem and

feedback set problem for graphs with no vertex degree exceeding three. Discrete Mathem-
atics, 72(1-3):355–360, 1988.



Randomised Enumeration of Small Witnesses
Using a Decision Oracle
Kitty Meeks

School of Mathematics and Statistics, University of Glasgow, Glasgow , UK
kitty.meeks@glasgow.ac.uk

Abstract
Many combinatorial problems involve determining whether a universe of n elements contains a
witness consisting of k elements which have some specified property. In this paper we investig-
ate the relationship between the decision and enumeration versions of such problems: efficient
methods are known for transforming a decision algorithm into a search procedure that finds a
single witness, but even finding a second witness is not so straightforward in general. In this
paper we show that, if the decision version of the problem belongs to FPT, there is a randomised
algorithm which enumerates all witnesses in time f(k) · poly(n) ·N , where N is the total number
of witnesses and f is a computable function. This also gives rise to an efficient algorithm to count
the total number of witnesses when this number is small.

1998 ACM Subject Classification F.2.0 Analysis of Algorithms and Problem Complexity, G.2.1
Combinatorial Algorithms

Keywords and phrases enumeration algorithms, parameterized complexity, randomized algorithms,
color coding

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.22

1 Introduction

Many well-known combinatorial decision problems involve determining whether a universe U
of n elements contains a witnessW consisting of exactly k elements which have some specified
property. Specifically, we are concerned with problems for which any decision algorithm can
be called with input universe X ⊂ U in order to determine whether there is a witness W for
the original problem (i.e. with universe U) such that W ⊆ X; we will call such problems
self-contained k-witness problems. Thus the well-studied problems k-Clique, k-Cycle and
k-Path are all self-contained k-witness problems, but others such as k-Vertex Cover and
k-Dominating Set are not (as we need to preserve information about the relationship of
any potential witness to the entire universe U).

While the basic decision versions of self-contained k-witness problems are of interest, it is
often not sufficient for applications to output simply “yes” or “no”: we need to find a witness.
The issue of finding a single witness using an oracle for the decision problem has previously
been investigated by Björklund, Kaski, and Kowalik [5], motivated by the fact that the
fastest known parameterised algorithms for a number of widely studied problems (such as
graph motif [4] and k-path [3]) are non-constructive in nature. Moreover, for some problems
(such as k-Clique or Independent Set [2] and p-Even Subgraph [15]) the only known
FPT decision algorithm relies on a Ramsey theoretic argument which says the answer must
be “yes” provided that the input graph avoids certain easily recognisable structures.

Following the first approach used in [5], we assume the existence of a deterministic “oracle”
(a black-box decision procedure), as follows.

© Kitty Meeks;
licensed under Creative Commons License CC-BY

11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin; Article No. 22; pp. 22:1–22:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.22
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


22:2 Randomised Enumeration of Small Witnesses Using a Decision Oracle

ORA(X)
Input: X ⊆ U
Output: 1 if some witness is entirely contained in X; 0 otherwise.

A naïve approach easily finds a single witness using Θ(n) calls to ORA: we successively
delete elements of the universe, following each deletion with an oracle call, and if the oracle
answers “no” we reinsert the last deleted element and continue. Assuming we start with a
yes-instance, this process will terminate when only k elements remain, and these k elements
must form a witness. In [5], ideas from combinatorial group testing are used to make a
substantial improvement on this strategy for the extraction of a single witness: rather than
deleting a single element at a time, large subsets are discarded (if possible) at each stage.
This gives an algorithm that extracts a witness with only 2k

(
log2

(
n
k

)
+ 2
)
oracle queries.

However, neither of these approaches for finding a single witness can immediately be
extended to find all witnesses, a problem which is of interest even if an efficient decision
algorithm does output a single witness; indeed, it is not even obvious how to find a second
witness. Both approaches for finding a first witness rely on the fact that we can safely delete
some subset of elements from our universe provided we know that what is left still contains
at least one witness; if we need to look for a second witness, the knowledge that at least
one witness will remain is no longer sufficient to guarantee we can delete a given subset. Of
course, for any self-contained k-witness problem we can check all possible subsets of size k,
and hence enumerate all witnesses, in time O(nk); indeed, if every set of k vertices is in fact
a witness then we will require this amount of time simply to list them all. However, we can
seek to do much better than this when the number of witnesses is small by making use of a
decision oracle.

The enumeration problem becomes straightforward if we have an extension oracle,1
defined as follows.

EXT-ORA(X,Y )
Input: X ⊆ U and Y ⊆ X
Output: 1 if there exists a witness W with Y ⊆W ⊆ X; 0 otherwise.

The existence of an efficient procedure EXT-ORA(X,Y ) for a given self-contained k-witness
problem allows us to use standard backtracking techniques to devise an efficient enumeration
algorithm. We explore a binary search tree of depth O(n), branching at level i of the tree
on whether the ith element of U belongs to the solution. Each node in the search tree then
corresponds to a specific pair (X,Y ) with Y ⊆ X ⊆ U ; we can call EXT-ORA(X,Y ) to
determine whether any descendant of a given node corresponds to a witness. Pruning the
search tree in this way ensures that no more than O(n ·N) oracle calls are required, where
N is the total number of witnesses.

Note that, with only the basic decision oracle, we can determine whether there is a
witness that does not contain some element x (we simply call ORA(U \ {x})), but we
cannot determine whether there is a witness which does contain x. However, as we will
show in Section 3, there are natural self-contained k-witness problems for which there is
no fpt-algorithm for the extension decision problem unless FPT=W[1]. This motivates the
development of enumeration algorithms that do not rely on such an oracle.

The main result of this paper is just such an algorithm; specifically, we prove the following
theorem.

1 Such an oracle is sometimes called an interval oracle, as in the enumeration procedure described by
Björklund, Kaski, Kowalik and Lauri [6] which builds on earlier work by Lawler [19].



K. Meeks 22:3

I Theorem 1.1. There is a randomised algorithm to enumerate all witnesses of size k
in a self-contained k-witness problem exactly once, whose expected number of calls to a
deterministic decision oracle is at most 2O(k) log2 n · N , where N is the total number of
witnesses. Moreover, if an oracle call can be executed in time g(k) ·nO(1) for some computable
function g, then the expected total running time of the algorithm is

2O(k) · g(k) · nO(1) ·N.

The key tool we use to obtain this algorithm is a colour coding method, using a family of
k-perfect hash functions. This technique was introduced by Alon, Yuster and Zwick in [1] and
has been widely used in the design of parameterised algorithms for decision and approximate
counting (see for example [14, Chapters 13 and 14] and [11, Chapter 8]), but to the best of
the author’s knowledge has not yet been applied to enumeration problems.

Theorem 1.1 is proved in Section 4, before some implications of our enumeration algorithm
for the complexity of related counting problems are discussed in Section 5. We begin in
Section 2 with some background on relevant complexity theoretic notions, before discussing
the hardness of the extension version of some self-contained k-witness problems in Section 3.

2 Parameterised enumeration

There are two natural measures of the size of a self-contained k-witness problem, namely
the number of elements n in the universe and the number of elements k in each witness, so
the running time of algorithms is most naturally discussed in the setting of parameterised
complexity. There are two main complexity issues to consider in the present setting: first of
all, as usual, the running time, and secondly the number of oracle calls required.

For general background on the theory of parameterised complexity, we refer the reader to
[11, 14]. The theory of parameterised enumeration has been developed relatively recently
[12, 8, 7], and we refer the reader to [8] for the formal definitions of the different classes
of parameterised enumeration algorithms. To the best of the author’s knowledge, this is
the first occurrence of a randomised parameterised enumeration algorithm in the literature,
and so we introduce randomised analogues of the four types of parameterised enumeration
algorithms introduced in [8] (for a problem with total input size n and parameter k, and
with f : N→ N assumed to be a computable function throughout):

an expected-total-fpt algorithm enumerates all solutions and terminates in expected time
f(k) · nO(1);
an expected-delay-fpt algorithm enumerates all solutions with expected delay at most
f(k)·nO(1) between the times at which one solution and the next are output (and the same
bound applies to the time before outputting the first solution, and between outputting
the final solution and terminating);
an expected-incremental-fpt algorithm enumerates all solutions with expected delay at
most f(k) · (n+ i)O(1) between outputting the ith and (i+ 1)th solution;
an expected-output-fpt algorithm enumerates all solutions and terminates in expected
time f(k) · (n+N)O(1), where N is the total number of solutions enumerated.

Under these definitions, Theorem 1.1 says that, if the decision version of a self-contained
k-witness problem belongs to FPT, then there is an expected-output-fpt algorithm for the
corresponding enumeration problem.

IPEC 2016



22:4 Randomised Enumeration of Small Witnesses Using a Decision Oracle

3 Hardness of the extension problem

Many combinatorial problems have a very useful property, often referred to as self-reducibility,
which allows a search or enumeration problem to be reduced to (smaller instances of) the
corresponding decision problem in a very natural way (see [8, 18, 21]). A problem is self-
reducible in this sense if the existence of an efficient decision procedure (equivalent to
ORA(X)) implies that there is an efficient algorithm to solve the extension decision problem
(equivalent to EXT-ORA(X)). While many self-contained k-witness problems do have this
property, we will demonstrate that there exist self-contained k-witness problems that do not
(unless FPT=W[1]), and so an enumeration procedure that makes use only of ORA(X) and
not EXT-ORA(X) is desirable.

In order to demonstrate this, we show that there exist self-contained k-witness problems
whose decision versions belong to FPT, but for which the corresponding extension decision
problem is W[1]-hard. We will consider the following problem, which is clearly a self-contained
k-witness problem.

p-Clique or Independent Set
Input: A graph G = (V,E) and k ∈ N.
Parameter: k.
Question: Is there a k-vertex subset of V that induces either a clique or an independent
set?

This problem is known to belong to FPT [2]: all sufficiently large input graphs are yes-
instances by Ramsey’s Theorem. We now turn our attention to the extension version of the
problem, defined as follows.

p-Extension Clique or Independent Set
Input: A graph G = (V,E), a subset U ⊆ V and k ∈ N.
Parameter: k.
Question: Is there a k-vertex subset S of V , with U ⊆ S, that induces either a clique or
an independent set?

It is straightforward to adapt the hardness proof for p-Multicolour Clique or Inde-
pendent Set [20, Proposition 3.7] to show that p-Extension Clique or Independent
Set is W[1]-hard.

I Proposition 3.1. p-Extension Clique or Independent Set is W[1]-hard.

Proof. We prove this result by means of a reduction from the W[1]-complete problem p-
Clique. Let (G, k) be the input to an instance of p-Clique. We now define a new graph G′,
obtained from G by adding one new vertex v, and an edge from v to every vertex u ∈ V (G).
It is then straightforward to verify that (G′, {v}, k + 1) is a yes-instance for p-Extension
Clique or Independent Set if and only if G contains a clique of size k. J

This demonstrates that p-Extension Clique or Independent Set is a problem for
which there exists an efficient decision procedure but no efficient algorithm for the extension
version of the decision problem (unless FPT=W[1]). The reduction given here can easily be
adapted to demonstrate that the following problem has the same property.

p-Induced Regular Subgraph
Input: A graph G = (V,E) and k ∈ N.
Parameter: k.
Question: Is there a k-vertex subset of V that induces a subgraph in which every vertex
has the same degree?



K. Meeks 22:5

Indeed, the same method can be applied to any problem in which putting a restriction on
the degree of one of the vertices in the witness guarantees that the witness induces a clique
(or some other induced subgraph for which it is W[1]-hard to decide inclusion in an arbitrary
input graph).

4 The randomised enumeration algorithm

In this section we describe and analyse our randomised witness enumeration algorithm, thus
proving Theorem 1.1.

As mentioned above, our algorithm relies on a colour coding technique. A family F of
hash functions from [n] to [k] is said to be k-perfect if, for every subset A ⊂ [n] of size k,
there exists f ∈ F such that the restriction of f to A is injective. We will use the following
bound on the size of such a family of hash functions, proved in [1].

I Theorem 4.1. For all n, k ∈ N there is a k-perfect family Fn,k of hash functions from [n]
to [k] of cardinality 2O(k) · logn. Furthermore, given n and k, a representation of the family
Fn,k can be computed in time 2O(k) · n logn.

Our strategy is to solve a collection of 2O(k) · logn colourful enumeration problems, one
corresponding to each element of a family F of k-perfect hash functions. In each of these
problems, our goal is to enumerate all witnesses that are colourful with respect to the relevant
element f of F (those in which each element is assigned a distinct colour by f). Of course, we
may discover the same witness more than once if it is colourful with respect to two distinct
elements in F , but it is straightforward to check for repeats of this kind and omit duplicate
witnesses from the output. It is essential in the algorithm that we use a deterministic
construction of a k-perfect family of hash functions rather than the randomised construction
also described in [1], as the latter method would allow the possibility of witnesses being
omitted (with some small probability).

The advantage of solving a number of colourful enumeration problems is that we can
split the problem into a number of sub-problems with the only requirement being that we
preserve witnesses in which every element has a different colour (rather than all witnesses).
This makes it possible to construct a number of instances, each (roughly) half the size of the
original instance, such that every colourful witness survives in at least one of the smaller
instances. More specifically, for each k-perfect hash function we explore a search tree: at
each node, we split every colour-class randomly into (almost) equal-sized parts, and then
branch to consider each of the 2k combinations that includes one (nonempty) subset of
each colour, provided that the union of these subsets still contains at least one witness (as
determined by the decision oracle). This simple pruning of the search tree will not prevent
us exploring “dead-ends” (where we pursue a particular branch due to the presence of a
non-colourful witness), but turns out to be sufficient to make it unlikely that we explore very
many branches that do not lead to colourful witnesses.

We describe the algorithm in pseudocode (Algorithm 1), making use of two subroutines.
In addition to our oracle ORA(X), we also define a procedure RANDPART(X) which we
use, while exploring the search tree, to obtain a random partition of a subset of the universe.

RANDPART(X)
Input: X ⊆ U
Output: A partition (X1, X2) of X with ||X1| − |X2|| ≤ 1, chosen uniformly at random
from all such partitions of X.

IPEC 2016



22:6 Randomised Enumeration of Small Witnesses Using a Decision Oracle

Algorithm 1: Randomised algorithm to enumerate all k-element witnesses in the
universe U , using a decision oracle.

1 Construct a family F = {f1, f2, . . . , f|F|} of k-perfect hash functions from U to [k];
2 for 1 ≤ r ≤ |F| do
3 Initialise an empty FIFO queue Q;
4 if ORA(U) = 1 then
5 Insert U into Q;
6 end if
7 while Q is not empty do
8 Remove the first element A from Q;
9 if |A| = k then

10 if A is not colourful with respect to fs for any s ∈ {1, . . . , r − 1} then
11 Output A;
12 end if
13 else
14 for 1 ≤ i ≤ k do
15 Set Ai to be the set of elements in A coloured i by fr;
16 Set (A(1)

i , A
(2)
i ) = RANDPART(Ai);

17 end for
18 for each j = (j1, . . . , jk) ∈ {1, 2}k do
19 if |A(j`)

i | > 0 for each 1 ≤ ` ≤ k then
20 Set Aj = A

(j1)
i ∪ · · · ∪A(jk)

i ;
21 if ORA(Aj) = 1 then
22 Add Aj to Q;
23 end if
24 end if
25 end for
26 end if
27 end while
28 end for

We prove the correctness of the algorithm in Section 4.1, and bound the expected running
time in Section 4.2.

4.1 Correctness of the algorithm
In order to prove that our algorithm does indeed output every witness exactly once, we
begin by showing that we will identify a given k-element subset X during the iteration
corresponding to the hash-function f ∈ F if and only if X is a colourful witness with respect
to f .

I Lemma 4.2. Let X be a set of k vertices in the universe U . In the iteration of Algorithm 1
corresponding to f ∈ F , we will execute 10 to 12 with A = X if and only if:
1. X is a witness, and
2. X is colourful with respect to f .

Proof. We first argue that we only execute lines 10 to 12 with A = X if X is a witness



K. Meeks 22:7

and is colourful with respect to f . We claim that, throughout the execution of the iteration
corresponding to f , every subset B in the queue Q has the following properties:
1. there is some witness W such that W ⊆ B, and
2. B contains at least one vertex receiving each colour under f .
Notice that we check the first condition before adding any subset A to Q (lines 4 and 27),
and we check the second condition for any A 6= U in line 25 (U necessarily satisfies condition
2 by construction of F), so these two conditions are always satisfied. Thus, if we execute
lines 10 to 12 with A = X, these conditions hold for X; note also that we only execute these
lines with A = X if |X| = k. Hence, as there is a witness W ⊆ X where |W | = |X| = k,
we must have X = W and hence X is a witness. Moreover, as X must contain at least one
vertex of each colour, and contains exactly k elements, it must be colourful.

Conversely, suppose that W = {w1, . . . , wk} is a witness such that f(wi) = i for each
1 ≤ i ≤ k; we need to show that we will at some stage execute lines 10 to 12 with A = W .
We argue that at the start of each execution of the while loop, if W has not yet been output,
there must be some subset B in the queue such that W ⊆ B. This invariant clearly holds
before the first execution of the loop (U will have been inserted into Q, as U contains at
least one witness W ). Now suppose that the invariant holds before starting some execution
of the while loop. Either we execute lines 10 to 12 with A = W on this iteration (in which
case we are done), or else we proceed to line 19. Now, for 1 ≤ i ≤ k, set ji to be either 1 or 2
in such a way that wi ∈ A(ji)

i . The subset Aj, where j = (j1, . . . , jk) will then pass both tests
for insertion into Q, and W ⊆ Aj by construction, so the invariant holds when we exit the
while loop. Since the algorithm only terminates when Q is empty, it follows that we must
eventually execute lines 10 to 12 with A = W . J

The key property of k-perfect families of hash functions then implies that the algorithm
will identify every witness; it remains only to ensure that we avoid outputting any witness
more than once. This is the purpose of lines 10 to 12 in the pseudocode. We know from
Lemma 4.2 that we find a given witness W while considering the hash-function f if and only
if W is colourful with respect to f : thus, in order to determine whether we have found the
witness in question before, it suffices to verify whether it is colourful with respect to any of
the colourings previously considered. (The most obvious strategy for avoiding repeats would
be to maintain a list of all the witnesses we have output so far, and check for membership of
this list; however, in general there might be as many as

(
n
k

)
witnesses, so both storing this

list and searching it would be costly.) Hence we see that every witness is output exactly
once, as required.

4.2 Expected running time

We know from Theorem 4.1 that a family F of k-perfect hash functions from U to [k], with
|F| = 2O(k) logn, can be computed in time 2O(k)n logn; thus line 1 can be executed in time
2O(k)n logn and the total number of iterations of the outer for-loop (lines 2 to 34) is at most
2O(k) logn.

Moreover, it is clear that each iteration of the while loop (lines 7 to 33) makes at most
2k oracle calls. If an oracle call can be executed in time g(k) · nO(1) for some computable
function g, then the total time required to perform each iteration of the while loop is at most
max{|F|, kn+ 2k · g(k) · nO(1)} = 2O(k) · g(k) · nO(1).

Thus it remains to bound the expected number of iterations of the while loop in any
iteration of the outer for-loop; we do this in the next lemma.

IPEC 2016



22:8 Randomised Enumeration of Small Witnesses Using a Decision Oracle

I Lemma 4.3. The expected number of iterations of the while-loop in any given iteration of
the outer for-loop is at most N (1 + dlogne), where N is the total number of witnesses in the
instance.

Proof. We fix an arbitrary f ∈ F , and for the remainder of the proof restrict our attention
to the iteration of the outer for-loop corresponding to f .

We can regard this iteration of the outer for-loop as the exploration of a search tree, with
each node of the search tree indexed by some subset of U . The root is indexed by U itself,
and every node has up to 2k children, each child corresponding to a different way of selecting
one of the two randomly constructed subsets for each colour. A node may have strictly
fewer than 2k children, as we use the oracle to prune the search tree (line 27), omitting
the exploration of branches indexed by a subset of U that does not contain any witness
(colourful or otherwise). Note that the search tree defined in this way has depth at most
dlogne: at each level, the size of each colour-class in the indexing subset is halved (up to
integer rounding).

In this search tree model of the algorithm, each node of the search tree corresponds to an
iteration of the while-loop, and vice versa. Thus, in order to bound the expected number of
iterations of the while-loop, it suffices to bound the expected number of nodes in the search
tree.

Our oracle-based pruning method means that we can associate with every node v of
the search tree some representative witness Wv (not necessarily colourful), such that Wv is
entirely contained in the subset of U which indexes v. (Note that the choice of representative
witness for a given node need not be unique.) We know that in total there are N witnesses;
our strategy is to bound the expected number of nodes, at each level of the search tree, for
which any given witness can be the representative.

For a given witness W , we define a random variable XW,d to be the number of nodes at
depth d (where the root has depth 0, and children of the root have depth 1, etc.) for which
W could be the representative witness. Since every node has some representative witness, it
follows that the total number of nodes in the search tree is at most

∑
W a witness

dlogne∑
d=0

XW,d.

Hence, by linearity of expectation, the expected number of nodes in the search tree is at most

∑
W a witness

dlogne∑
d=0

E [XW,d] ≤ N

dlogne∑
d=0

max
W a witness

E [XW,d] .

In the remainder of the proof, we argue that E[XW,d] ≤ 1 for all W and d, which will
give the required result.

Observe first that, if W is in fact a colourful witness with respect to f , then XW,d = 1
for every d: given a node whose indexing set contains W , exactly one of its children will
be indexed by a set that contains W . So we will assume from now on that W intersects
precisely ` colour classes, where ` < k.

If a given node is indexed by a set that contains W , we claim that the probability that
W is contained in the set indexing at least one of its children is at most 1

2
k−`. For this to

happen, it must be that for each colour i, all elements of W having colour i are assigned to
the same set in the random partition. If ci elements in W have colour i, the probability of
this happening for colour i is at most

( 1
2
)ci−1 (the first vertex of colour i can be assigned to

either set, and each subsequent vertex has probability at most 1
2 of being assigned to this



K. Meeks 22:9

same set). Since the random partitions for each colour class are independent, the probability
that the witness W survives is at most

∏
W∩f−1(i)6=∅

(
1
2

)ci−1
=
(

1
2

)k−|{i:W∩f−1(i)6=∅}|
=
(

1
2

)k−`
.

Moreover, if W is contained in the set indexing at least one of the child nodes, it will be
contained in the indexing sets for exactly 2k−` child nodes: we must select the correct subset
for each colour-class that intersects W , and can choose arbitrarily for the remaining k − `
colour classes. Hence, for each node indexed by a set that contains W , the expected number
of children which are also indexed by sets containing W is at most

( 1
2
)k−` · 2k−` = 1.

We now prove by induction on d that E [XW,d] ≤ 1 (in the case that W is not colourful).
The base case for d = 0 is trivial (as there can only be one node at depth 0), so suppose that
d > 0 and that the result holds for smaller values. Then, if E[Y |Z = s] is the conditional
expectation of Y given that Z = s,

E[XW,d] =
∑
t≥0

E[XW,d|XW,d−1 = t] P[XW,d−1 = t]

≤
∑
t≥0

t P[XW,d−1 = t]

= E[XW,d−1]
≤ 1,

by the inductive hypothesis, as required. Hence E[XW,d] ≤ 1 for any witness W , which
completes the proof. J

By linearity of expectation, it then follows that the expected total number of executions
of the while loop will be at most |F| ·N (1 + dlogne), and hence that the expected number of
oracle calls made during the execution of the algorithm is at most 2O(k) log2 n ·N . Moreover,
if an oracle call can be executed in time g(k) · nO(1) for some computable function g, then
the expected total running time of the algorithm is

2O(k) · g(k) · nO(1) ·N,

as required.

5 Application to counting

There is a close relationship between the problems of counting and enumerating all witnesses
in a self-contained k-witness problem, since any enumeration algorithm can very easily be
adapted into an algorithm that simply counts the witnesses. However, in the case that the
number N of witnesses is large, an enumeration algorithm necessarily takes time at least
O(N), whereas we might hope for much better if our goal is simply to determine the total
number of witnesses.

The family of self-contained k-witness problems studied here includes subgraph problems,
whose parameterised complexity from the point of view of counting has been a rich topic for
research in recent years [13, 16, 17, 9, 10, 20, 15]. Many such counting problems, including
those whose decision problem belongs to FPT, are known to be #W[1]-complete (see [14]
for background on the theory of parameterised counting complexity). In this section we
demonstrate how our enumeration algorithm can be adapted to give an efficient (randomised)

IPEC 2016



22:10 Randomised Enumeration of Small Witnesses Using a Decision Oracle

algorithm to solve the counting version of a self-contained k-witness problem when the total
number of witnesses is small. This complements the fact that a simple random sampling
algorithm can be used for approximate counting when the number of witnesses is very large
[20, Lemma 3.4], although there remain many situations which are not covered by either
result.

I Theorem 5.1. Let Π be a self-contained k-witness problem, and suppose that 0 <

δ ≤ 1
2 and M ∈ N. Then there exists a randomised algorithm which makes at most

2O(k) log2 n M log(δ−1) calls to a deterministic decision oracle for Π, and
1. if the number of witnesses in the instance of Π is at most M , outputs with probability at

least 1− δ the exact number of witnesses in the instance;
2. if the number of witnesses in the instance of Π is strictly greater than M , always outputs

“More than M .”
Moreover, if there is an algorithm solving the decision version of Π in time g(k) · nO(1) for
some computable function g, then the expected running time of the randomised algorithm is
bounded by 2O(k) · g(k) · nO(1) ·M · log(δ−1).

Proof. Note that our randomised enumeration algorithm can very easily be adapted to give
a randomised counting algorithm which runs in the same time as the enumeration algorithm
but, instead of listing all witnesses, simply outputs the total number of witnesses when
it terminates. We may compute explicitly the expected running time of our randomised
enumeration algorithm (and hence its adaptation to a counting algorithm) for a given self-
contained k-witness problem Π in terms of n, k and the total number of witnesses, N . We
will write T (Π, n, k,N) for this expected running time.

Now consider an algorithm A, in which we run our randomised counting algorithm for at
most 2T (Π, n, k,M) steps; if the algorithm has terminated within this many steps, A outputs
the value returned, otherwise A outputs “FAIL”. Since our randomised counting algorithm
is always correct (but may take much longer than the expected time), we know that if A
outputs a numerical value then this is precisely the number of witnesses in our problem
instance. If the number of witnesses is in fact at most M , then the expected running time of
the randomised counting algorithm is bounded by T (Π, n, k,M), so by Markov’s inequality
the probability that it terminates within 2T (Π, n, k,M) steps is at least 1/2. Thus, if we run
A on an instance in which the number of witnesses is at most M , it will output the exact
number of witnesses with probability at least 1/2.

To obtain the desired probability of outputting the correct answer, we repeat A a total of
dlog(δ−1)e times. If any of these executions of A terminates with a numerical answer that is
at most M , we output this answer (which must be the exact number of witnesses by the
argument above); otherwise we output “More than M .”

If the total number of witnesses is in fact less than or equal to M , we will output the
exact number of witnesses unless A outputs “FAIL” every time it is run. Since in this case
A outputs “FAIL” independently with probability at most 1/2 each time we run it, the
probability that we output “FAIL” on every one of the dlog(δ−1)e repetitions is at most
(1/2)dlog(δ−1)e ≤ 2log δ = δ. Finally, note that if the number of witnesses is strictly greater
than M , we will always output “More than M” since every execution of A must in this case
return either “FAIL” or a numerical answer greater than M .

The total running time is at most O
(
log(δ−1) · T (Π, n, k,M)

)
and hence, using the

bound on the running time of our enumeration algorithm from Theorem 1.1, is bounded by
2O(k) · g(k) · nO(1) ·M · log(δ−1), as required. J



K. Meeks 22:11

6 Conclusions and open problems

Many well-known combinatorial problems satisfy the definition of the self-contained k-witness
problems considered in this paper. We have shown that, given access to a deterministic oracle
for the decision version of a self-contained k-witness problem (answering the question “does
this subset of the universe contain at least one witness?”), there is a randomised algorithm
which is guaranteed to enumerate all witnesses and whose expected number of oracle calls is
at most 2O(k) log2 n ·N , where N is the total number of witnesses. Moreover, if the decision
problem belongs to FPT (as is the case for many self-contained k-witness problems), our
enumeration algorithm is an expected-output-fpt algorithm.

This result also has implications for counting the number of witnesses. In particular, if
the total number of witnesses is small (at most f(k) · nO(1) for some computable function
f) then our enumeration algorithm can easily be adapted to give an fpt-algorithm that
will, with high probability, determine exactly the number of witnesses in an instance of a
self-contained k-witness problem. This in fact satisfies the conditions for a FPTRAS (Fixed
Parameter Tractable Randomised Approximation Scheme, as defined in [2]), but without
requiring the full flexibility that this definition requires: with probability 1− δ we will output
the exact number of witnesses, rather than just an answer that is within a factor of 1± ε of
this quantity.

While the enumeration problem can be solved in a more straightforward fashion for self-
contained k-witness problems that have certain additional properties, we demonstrated that
several self-contained k-witness problems do not have these properties, unless FPT=W[1].
A natural line of enquiry arising from this work would be the characterisation of those
self-contained k-witness problems that do have the additional properties, namely those for
which an fpt-algorithm for the decision version gives rise to an fpt-algorithm for the extension
version of the decision problem.

Another key question that remains open after this work is whether the existence of an
fpt-algorithm for the decision version of a self-contained k-witness problem is sufficient to
guarantee the existence of an (expected-)delay-fpt or (expected-)incremental-fpt algorithm
for the enumeration problem. Finally, it would be interesting to investigate whether the
randomised algorithm given here can be derandomised.

References
1 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal of the ACM, 42(4):844–

856, 1995.
2 V. Arvind and Venkatesh Raman. Approximation algorithms for some parameterized count-

ing problems. In ISAAC 2002, volume 2518 of LNCS, pages 453–464. Springer-Verlag Berlin
Heidelberg, 2002.

3 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Narrow sieves for
parameterized paths and packings. arXiv:1007.1161 [cs.DS], 2010.

4 Andreas Björklund, Petteri Kaski, and Łukasz Kowalik. Probably Optimal Graph Motifs.
In 30th International Symposium on Theoretical Aspects of Computer Science (STACS
2013), volume 20 of LIPIcs, pages 20–31. Schloss Dagstuhl–Leibniz-Zentrum fuer Inform-
atik, Dagstuhl, Germany, 2013. doi:10.4230/LIPIcs.STACS.2013.20.

5 Andreas Björklund, Petteri Kaski, and Łukasz Kowalik. Fast witness extraction using a
decision oracle. In Algorithms – ESA 2014, volume 8737 of LNCS, pages 149–160. Springer
Berlin Heidelberg, 2014. doi:10.1007/978-3-662-44777-2_13.

6 Andreas Björklund, Petteri Kaski, Łukasz Kowalik, and Juho Lauri. Engineering mo-
tif search for large graphs. In 2015 Proc. of the Seventeenth Workshop on Algorithm

IPEC 2016

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.20
http://dx.doi.org/10.1007/978-3-662-44777-2_13


22:12 Randomised Enumeration of Small Witnesses Using a Decision Oracle

Engineering and Experiments (ALENEX), pages 104–118. SIAM, 2015. doi:10.1137/1.
9781611973754.10.

7 Nadia Creignou, Raïda Ktari, Arne Meier, Julian-Steffen Müller, Frédéric Olive, and
Heribert Vollmer. Parameterized enumeration for modification problems. In Language
and Automata Theory and Applications, volume 8977 of LNCS, pages 524–536. Springer
International Publishing, 2015. doi:10.1007/978-3-319-15579-1_41.

8 Nadia Creignou, Arne Meier, Julian-Steffen Müller, Johannes Schmidt, and Heribert
Vollmer. Paradigms for parameterized enumeration. In Mathematical Foundations of Com-
puter Science 2013, volume 8087 of LNCS, pages 290–301. Springer Berlin Heidelberg, 2013.
doi:10.1007/978-3-642-40313-2_27.

9 Radu Curticapean. Counting matchings of size k is #W[1]-hard. In Automata, Languages,
and Programming, volume 7965 of LNCS, pages 352–363. Springer Berlin Heidelberg, 2013.

10 Radu Curticapean and Dániel Marx. Complexity of counting subgraphs: Only the bounded-
ness of the vertex-cover number counts. In 55th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2014, 2014.

11 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Springer London, 2013.

12 Henning Fernau. On parameterized enumeration. In Computing and Combinatorics,
volume 2387 of LNCS, pages 564–573. Springer Berlin Heidelberg, 2002. doi:10.1007/
3-540-45655-4_60.

13 Jörg Flum and Martin Grohe. The parameterized complexity of counting problems. SIAM
Journal on Computing, 33(4):892–922, 2004.

14 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006.
15 Mark Jerrum and Kitty Meeks. The parameterised complexity of counting even and odd

induced subgraphs. arXiv:1410.3375 [math.CO], to appear in Combinatorica, 2014.
16 Mark Jerrum and Kitty Meeks. The parameterised complexity of counting connected sub-

graphs and graph motifs. Journal of Computer and System Sciences, 81(4):702–716, 2015.
doi:10.1016/j.jcss.2014.11.015.

17 Mark Jerrum and Kitty Meeks. Some hard families of parameterised counting problems.
ACM Transactions on Computation Theory, 7(3), June 2015. doi:10.1145/2786017.

18 Samir Khuller and Vijay V. Vazirani. Planar graph coloring is not self-reducible, assuming P
6= NP. Theoretical Computer Science, 88(1):183–189, 1991. doi:10.1016/0304-3975(91)
90081-C.

19 Eugene L. Lawler. A procedure for computing the k best solutions to discrete optimization
problems and its application to the shortest path problem. Management Science, 18(7):401–
405, 1972. doi:10.1287/mnsc.18.7.401.

20 Kitty Meeks. The challenges of unbounded treewidth in parameterised subgraph counting
problems. Discrete Applied Mathematics, 198:170–194, 2016. doi:10.1016/j.dam.2015.
06.019.

21 C.P. Schnorr. Optimal algorithms for self-reducible problems. In Proc. of the 3rd ICALP,
pages 322–337. Edinburgh University Press, 1976.

http://dx.doi.org/10.1137/1.9781611973754.10
http://dx.doi.org/10.1137/1.9781611973754.10
http://dx.doi.org/10.1007/978-3-319-15579-1_41
http://dx.doi.org/10.1007/978-3-642-40313-2_27
http://dx.doi.org/10.1007/3-540-45655-4_60
http://dx.doi.org/10.1007/3-540-45655-4_60
http://dx.doi.org/10.1016/j.jcss.2014.11.015
http://dx.doi.org/10.1145/2786017
http://dx.doi.org/10.1016/0304-3975(91)90081-C
http://dx.doi.org/10.1016/0304-3975(91)90081-C
http://dx.doi.org/10.1287/mnsc.18.7.401
http://dx.doi.org/10.1016/j.dam.2015.06.019
http://dx.doi.org/10.1016/j.dam.2015.06.019


Backdoors for Linear Temporal Logic∗

Arne Meier1, Sebastian Ordyniak2, Ramanujan Sridharan3, and
Irena Schindler4

1 Leibniz Universität Hannover, Germany
meier@thi.uni-hannover.de

2 TU Wien, Austria
sordyniak@gmail.com

3 TU Wien, Austria
ramanujan@ac.tuwien.ac.at

4 Leibniz Universität Hannover, Germany
schindler@thi.uni-hannover.de

Abstract
In the present paper, we introduce the backdoor set approach into the field of temporal logic
for the global fragment of linear temporal logic. We study the parameterized complexity of
the satisfiability problem parameterized by the size of the backdoor. We distinguish between
backdoor detection and evaluation of backdoors into the fragments of Horn and Krom formulas.
Here we classify the operator fragments of globally-operators for past/future/always, and the
combination of them. Detection is shown to be fixed-parameter tractable (FPT) whereas the
complexity of evaluation behaves differently. We show that for Krom formulas the problem is
paraNP-complete. For Horn formulas, the complexity is shown to be either fixed parameter
tractable or paraNP-complete depending on the considered operator fragment.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases Linear Temporal Logic, Parameterized Complexity, Backdoor Sets

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.23

1 Introduction

Temporal logic is one of the most important formalisms in the area of program verification
and validation of specification consistency. Most notable are the seminal contributions of
Kripke [21], Pnueli [30], Emerson, Clarke, and Halpern [14, 7] to name a few. There exist
several different variants of temporal logic from which, best known are the computation tree
logic CTL, the linear temporal logic LTL, and the full branching time logic CTL∗. In this
paper, we will consider the global fragment of LTL for formulas in separated normal form
(SNF) which has been introduced by Fisher [16]. This normal form is a generalization of
the conjunctive normal form from propositional logic to linear temporal logic with future
and past modalities interpreted over the flow of time, i.e., the frame of the integers (Z, <).
In SNF the formulas are divided into a past, a present, and a future part. Technically this
normal form is not a restriction since one can always translate an arbitrary LTL formula to
a satisfiability-equivalent formula in SNF in linear time in the original formula [16]. In fact,
the restriction to SNF normal form is crucial for us, because it is known that syntactical
restrictions of arbitrary LTL formulas such as Horn or Krom do not lead to tractability [4].

∗ The first and last author gratefully acknowledge the support by the German Research Foundation DFG
for their grant ME 4279/1-1.

© Arne Meier, Sebastian Ordyniak, M. S. Ramanujan, and Irena Schindler;
licensed under Creative Commons License CC-BY

11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin; Article No. 23; pp. 23:1–23:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


23:2 Backdoors for Linear Temporal Logic

Table 1 Results overview. The term “any” refers to any combination of �∗ ,�F,�P, whereas
“above” denotes that the lower bound from the cell above applies.

Problem Operators horn krom

Detection any FPT (Thm. 5) FPT (Thm. 6)
Evaluation �∗ FPT (Thm. 9) paraNP-c. (Thm. 10)

�F,�P paraNP-c. (Thm. 11) paraNP-c. (above)
one of �F,�P open paraNP-c. (Cor. 12)

LTL-SAT �∗ ,�F,�P P [2] NP-c. [2]
�∗ P [2] NL [2]

LTL and its two main associated computational problems LTL model checking and LTL
satisfiability have been deeply investigated in the past. In this work we focus on the LTL
satisfiability problem, i.e., given an LTL formula the question is whether there is a temporal
interpretation that satisfies the formula. Sistla and Clarke classified the computational
complexity of the satisfiability problem to be PSPACE-complete [34]. Then, later, several
restrictions of the unrestricted problem have been considered. These approaches considered
operator fragments [27], Horn formulas [4], temporal operator fragments, temporal depth,
and number of propositional variables [8], the use of negation [26], an XOR fragment [11],
an application of Post’s lattice [3], and the SNF fragment [2].

In contrast to LTL satisfiability where the search for fruitful parameterization has so far
been rather unsuccessful [25], various important parameterizations have been identified for
SAT [35, 5, 28]. One very prominent and well-studied structural parameterization for SAT
are so-called backdoor sets. Backdoors are small sets of variables of a SAT instance that
represent “clever reasoning shortcuts” through the search space. Backdoor sets have been
widely used in the areas of propositional satisfiability [36, 31, 9, 33, 20, 10, 19], and also for
material discovery [24], abductive reasoning [29], argumentation [13], planning [22, 23], and
quantified Boolean formulas [32]. A backdoor set is defined with respect to some fixed base
class for which the computational problem under consideration is polynomial-time tractable.
For instance, in the case of the propositional satisfiability problem, a backdoor set B for a
given CNF formula φ into the base class of Horn formulas is a set of variables such that for
every assignment of the variables in B it holds that the reduced formula, i.e., the formula
obtained after applying the assignment to φ, is Horn. Given such a backdoor set one can
decide the satisfiability of φ in time O(2|B|p(|φ|)) by enumerating the 2|B| assignments of
the variables in B and for each such assignment solving the remaining formula in time p(|φ|),
where p is a polynomial given by the base class. Hence, once a small backdoor set is identified
the satisfiability check is fixed-parameter tractable for the parameter backdoor size. Since
the backdoor set is usually not provided with the input, it is crucial that small backdoor
sets to a given base class can be found efficiently. When employing the backdoor approach
one therefore usually considers two subtasks the so-called detection and evaluation problem,
where the former is the task to identify a small backdoor set and the later concerns the
solution of the problem using the backdoor set.

Our Contribution. In this paper, we introduce a notion of backdoors for the global fragment
of LTL formulas that are given in SNF. Namely, we consider backdoor sets to the base classes
that have recently been identified by Artale et al. [2]. These base classes are defined by
both restrictions on the allowed temporal operators (i.e., to a subset of {�∗ ,�P,�F}) and



A. Meier, S. Ordyniak, M. S. Ramanujan, and I. Schindler 23:3

restrictions on the clauses to be either horn or krom. We show that surprisingly a notion
of backdoor sets very similar to the strong backdoor sets employed for SAT [18] can also be
successfully applied to LTL formulas. Whereas the detection of these backdoor sets can be
achieved via efficient fpt-algorithms for all the considered fragments (using algorithms similar
to the algorithms employed in the context of SAT), the evaluation of these backdoor sets
turns out to be much more involved. In particular, we obtain tractability of the evaluation
problem for horn formulas using only the always operator. In fact, LTL restricted to only the
always operator, is already quite interesting, since it allows one to express “Safety” properties
of a system. For almost all of the remaining cases we show that the evaluation problem is
paraNP-hard. Moreover, the techniques used to show these results are very different from
and more involved than the techniques employed for SAT, i.e., in the context of SAT the
backdoor set evaluation problem is trivial. Our results are summarized in Table 1.

2 Preliminaries

Parameterized Complexity. A good introduction into the field of parameterized complexity
is given by Downey and Fellows [12]. A parameterized problem Π is a tuple (Q, κ) such
that the following holds. Q ⊆ Σ∗ is a language over an alphabet Σ, and κ : Σ∗ → N is a
computable function; then κ also is called the parameterization (of Π).

If there is a deterministic Turing machine M and a computable function f : N → N
s.t. for every instance x ∈ Σ∗ (i) M decides correctly if x ∈ Q, and (ii) M has a runtime
bounded by f(κ(x)) · |x|O(1), then we say that M is an fpt-algorithm for Π and that Π is
fixed-parameter tractable (or in the class FPT). If M is non-deterministic, then Π belongs to
the class paraNP. One way to show paraNP-hardness of a parameterized problem (Q, κ) is to
show that Q is NP-hard for a specific, fixed value of κ, i.e., there exists a constant ` ∈ N
such that (Q, κ)` := {x | x ∈ Q and κ(x) = `} is NP-hard.

Temporal Logic. We assume familiarity with standard notions of propositional logic. Let
PROP be a finite set of propositions and ⊥/> abbreviate the constants false/true. The
syntax of the global fragment of LTL is defined by the following EBNF:

ϕ ::= ⊥ | > | p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | �P ϕ | �F ϕ | �∗ ϕ,

where p ∈ PROP. Here �P ϕ can be read as “ϕ holds in every point in the past”, �F ϕ

as “ϕ holds in every point in the future”, and �∗ ϕ as “ϕ holds always”. We also will make
use of well-known shortcuts such as →,↔. Now we define the semantics of these formulas.
Here, we interpret LTL formulas over the flow of time (Z, <) (for further information on this
approach, see, e.g., Gabbay et al. [17]). Note that all our results will also apply one-to-one if
the formulas are evaluated over the set of natural numbers instead of the set of all integers.

I Definition 1 (Temporal Semantics). Let PROP be a finite set of propositions. A temporal
interpretation M = (Z, <, V ) is a mapping from propositions to moments of time, i.e.,
V : PROP → P(Z). The satisfaction relation |= is then defined as follows where n ∈ Z,
ϕ,ψ ∈ LTL

M, n |= > always, and M, n |= ⊥ never,
M, n |= p iff n ∈ V (p),
M, n |= ¬ϕ iff M, n 6|= ϕ

M, n |= ϕ ∨ ψ iff M, n |= ϕ or M, n |= ψ

M, n |= ϕ ∧ ψ iff M, n |= ϕ and M, n |= ψ

IPEC 2016



23:4 Backdoors for Linear Temporal Logic

Table 2 Considered normal forms. Restrictions refer to equation (2).

class description restrictions on n,m

cnf no restrictions on (2) −
horn at most one positive temporal literal m ≤ 1
krom binary clauses n+m ≤ 2

M, n |= �F ϕ iff for all k > n it holds M, k |= ϕ

M, n |= �P ϕ iff for all k < n it holds M, k |= ϕ

M, n |= �∗ ϕ iff for all k ∈ Z it holds M, k |= ϕ

We say that ϕ is satisfiable if there is a temporal interpretation M such that M, 0 |= ϕ.
Then M is also referred to as a (temporal) model (of ϕ). Sometimes we also directly write
M(p) instead of V (p).

As shown by Fisher et al. every LTL formula considered over the frame (Z, <) has a
satisfiability-equivalent formula in the separated normal form SNF [15] (and can also be
constructed in linear time [16]). We follow the notation of SNF formulas by Artale et al. [2]
and directly restrict them to the relevant global fragment of this study:

λ ::= ⊥ | p | �F λ | �P λ | �∗ λ, (1)
ϕ ::= λ | ¬λ | ϕ ∧ ϕ | �∗ (¬λ1 ∨ · · · ∨ ¬λn ∨ λn+1 ∨ · · ·λn+m), (2)

where λ is called a temporal literal and ϕ is said to be in clausal normal form.
Note that the operator name G instead of �F often occurs in literature. Yet, in contrast

to Gϕ, for �F ϕ it is not required that ϕ holds in the present world. We distinguish fragments
of LTL by adding superscripts and subscripts as follows. If O ⊆ {�F,�P,�∗ } is an operator
subset then LTLO is the fragment of LTL consisting of formulas that are allowed to only
use temporal operators from O for temporal literals, i.e., it is a constraint on the allowed
operators in equation (1) from above. We also consider restrictions of the clausal normal
form in (2): �∗ (¬λ1 ∨ · · · ∨ ¬λn ∨ λn+1 ∨ · · ·λn+m). Table 2 lists the relevant cases for this
study. If α ∈ {cnf,horn,krom} then LTLα is the set of formulas where the subformulas of
the type �∗ (¬λ1 ∨ · · · ∨ ¬λn ∨ λn+1 ∨ · · ·λn+m) (3), obey the normal form α.

The following lemma shows a log-space constructible normal form which prohibits deep
nesting of temporal operators of the investigated formulas.

I Lemma 2 ([2, Lemma 2]). Let L ∈ {LTL�F,�P
α ,LTL�F

α ,LTL�P
α ,LTL�∗

α} be a formula class
for α ∈ {cnf,horn,krom}. For any formula ϕ ∈ L, one can construct, in log-space,
a satisfiability-equivalent L-formula Ψ ∧ �∗ Φ, where Ψ is a conjunction of propositional
variables from Φ, and Φ is a conjunction of clauses of the form (3) containing only �F,�P
for LTL�F,�P

α , �F for LTL�F
α , �P for LTL�P

α , and only �∗ for LTL�∗
α, in which the temporal

operators are not nested.

In the following sections we consider only formulas given in this normal form Ψ ∧�∗ Φ.

3 Introduction of backdoors for the global fragment of LTL

In the following, we will introduce a notion of backdoors for formulas in the global fragment
of linear temporal logic. The definition of these backdoors turns out to be very similar to



A. Meier, S. Ordyniak, M. S. Ramanujan, and I. Schindler 23:5

the definition of the so-called strong backdoor sets for propositional formulas [18]. The main
difference is that whenever a propositional variable is in the backdoor set then also all of
its temporal literals are required to be in the backdoor set as well. A consequence of this
is that in contrast to propositional formulas, where a backdoor set needs to consider all
assignments of the backdoor set variables, we only need to consider assignments that are
consistent between propositional variables and their temporal literals.

Let O be a set of operators. An assignment θ : Vars(φ)∪ {Ox | x ∈ Vars(φ)∧O ∈ O } →
{0, 1} is consistent if for every x ∈ Vars(φ) it holds that if θ(�∗ x) = 1, then also θ(�Px) = 1,
θ(�Fx) = 1, and θ(x) = 1.

I Definition 3 (Backdoors). Let C be a class of cnf-formulas, O be a set of operators, and φ
be an LTLOcnf formula. A set X ⊆ Vars(φ) is a (strong) (C,O)-backdoor if for every consistent
assignment θ : X ∪ {Ox | x ∈ X,O ∈ O} → {0, 1} it holds that φ[θ] is in C.

The reduct φ[θ] is defined similarly to that for standard cnf-formulas, i.e., all clauses that
contain a satisfied literal are deleted, and all falsified literals are deleted from their clauses.
Here empty clauses are substituted by false, and the empty formula by true. Sometimes if
the context of O is clear, we omit to state it and just mention the backdoor class C.

To exploit backdoor sets to obtain efficient fpt-algorithms for LTL one needs to accomplish
two tasks: first, one needs to find a small backdoor set, and then one needs to show how the
backdoor set can be exploited to efficiently evaluate the formula. This leads to the following
problem definitions for every class C of formulas and set of operators O.

Problem: EvalO(C) — Backdoor evaluation to LTLOC .
Input: LTLOcnf formula φ, strong (C,O)-backdoor X.
Parameter: |X|.
Question: Is φ satisfiable?

Problem: DetectO(C) — Backdoor detection to LTLOC .
Input: LTLOcnf formula φ, integer k ∈ N.
Parameter: k.
Task: Find a strong (C,O)-backdoor of size ≤ k if one exists.

Of course, this approach is only meaningful if one considers target classes that have
polynomial time solvable satisfiability problems. Artale et al. have shown [2] that satisfiability
for LTL�∗

horn and LTL�∗
krom are solvable in P. Adding �F,�P to the set of allowed operators

makes the krom fragment NP-complete whereas for horn formulas the problem stays in
P. Therefore we will consider in the following only krom and horn formulas. Moreover,
note that when considering arbitrary CNF formulas instead of horn or krom formulas, then
LTLOcnf is known to be NP-complete for any (even empty) subset O ⊆ {�F,�P,�∗ } [2].

4 Backdoor set detection

In this section, we show that finding strong C-backdoor sets (under the parameter size of
the set) is fixed-parameter tractable if C is either horn or krom. The algorithms that we
will present are very similar to the algorithms that are known for the detection of strong
backdoors for propositional CNF formulas [18].

We first show how to deal with the fact that we only need to consider consistent assign-
ments. The following observation is easily witnessed by the fact that if one of �P x,�F x, x

does not hold then ¬�∗ x is true.

IPEC 2016



23:6 Backdoors for Linear Temporal Logic

I Observation 4. Let φ := Ψ ∧ �∗ Φ be an LTL�P ,�F ,�∗ formula. Then any clause C of Φ
containing ¬�∗ x and (at least) one of �Px, �Fx or x for some variable x ∈ Vars(φ) is
tautological and can thus be removed from φ (without changing the satisfiability of φ).

Observe that the tautological clauses above are exactly the clauses that are satisfied by
every consistent assignment. It follows that once these clauses are removed from the formula,
it holds that for every clause C of φ there is a consistent assignment θ such that C is not
satisfied by θ. This observation will be crucial for our detection algorithms described below.

I Theorem 5. For every O ⊆ {�∗ ,�P ,�F }, DetectO(horn) is in FPT.

Proof. Let O ⊆ {�∗ ,�P ,�F }. We will reduce DetectO(horn) to the problem VertexCover
which is well-known to be fixed-parameter tractable (parameterized by the solution size)
and which can actually be solved very efficiently in time O(1.2738k + kn) [6], where k is
the size of the vertex cover and n the number of vertices in the input graph. Recall that
given an undirected graph G and an integer k, VertexCover asks whether there is a subset
C ⊆ V (G) of size at most k (which is called a vertex cover of G) such that C ∩e 6= ∅ for every
e ∈ E(G). Given an LTLO formula φ := Ψ ∧�∗ Φ, we will construct an undirected graph G
such that φ has a strong horn-backdoor of size at most k if and only if G has a vertex cover
of size at most k. The graph G has vertex set Vars(φ) and there is an edge between two
vertices x and y in G if and only if there is a clause that contains at least two literals from
{x, y} ∪ {Ox,Oy | O ∈ O }. Note that if x = y, the graph G contains a self-loop. We claim
that a set X ⊆ Vars(φ) is a strong horn-backdoor if and only if X is a vertex cover of G.

Towards showing the forward direction, let X ⊆ Vars(φ) be a strong horn-backdoor
set of φ. We claim that X is also a vertex cover of G. Suppose for a contradiction that X
is not a vertex cover of G, i.e., there is an edge {x, y} ∈ E(G) such that X ∩ {x, y} = ∅.
Because {x, y} ∈ E(G), we obtain that there is a clause C in Φ that contains at least two
literals from {x, y} ∪ {Ox,Oy | O ∈ O }. Moreover, because of Observation 4 there is a
consistent assignment θ : X ∪ {Ox | x ∈ X ∧ O ∈ O} → {0, 1} that falsifies all literals of
C over variables in X. Consequently, φ[θ] contains a sub-clause of C that still contains at
least two literals from {x, y} ∪ {Ox,Oy | O ∈ O }. Hence, φ[θ] /∈ horn, contradicting our
assumption that X is a strong horn-backdoor set of φ.

Towards showing the reverse direction, let X ⊆ V (G) be a vertex cover of G. We claim
that X is also a strong horn-backdoor of φ. Suppose for a contradiction that this is not
the case, then there is an (consistent) assignment θ : X ∪ {Ox | x ∈ X ∧ O ∈ O} → {0, 1}
and a clause C in φ[θ] containing two positive literals say over variables x and y. We obtain
that C contains at least two positive literals from {x, y} ∪ {Ox,Oy | O ∈ O } and hence G
contains the edge {x, y}, contradicting our assumption that X is a vertex cover of G. J

The proof of the following theorem can be found in the appendix.

I Theorem 6. For every O ⊆ {�∗ ,�P ,�F }, DetectO(krom) is in FPT.

Having shown that the detection problem is fixed-parameter tractable, we now proceed to
the backdoor set evaluation problem. We begin by investigating this problem for the class
horn and show that the problem lies in FPT.

5 Backdoor set evaluation

5.1 Formulas using only the always operator
We showed in the previous section that strong backdoors can be found to the classes horn
and krom in FPT time. In fact, this result holds independently of the considered temporal



A. Meier, S. Ordyniak, M. S. Ramanujan, and I. Schindler 23:7

operators. In this section, we will consider the question of efficiently using a backdoor set
to decide the satisfiability of a formula in the case of formulas restricted to the �∗ operator.
We will show that this problem is in FPT for the class of horn formulas but not for krom
formulas. Our fixed-parameter tractability result for horn formulas largely depends on the
special semantics of formulas restricted to the �∗ operators. Hence, we will start by stating
some properties of these formulas necessary to obtain our tractability result.

Let M = (Z, <, V ) be a temporal interpretation. We denote by Vars(M) the set of
propositions (in the following referred to as variables) for which V is defined. For a set of
variables X ⊆ Vars(M), we denote by M|X the projection of M onto X, i.e., the temporal
interpretation M|X = (Z, <, V|X), where V|X is only defined for the variables in X and
V|X(x) = V (x) for every x ∈ X. For an integer z, we denote by A(M, z) the assignment
θ : Vars(M)→ {0, 1} holding at world z in M, i.e., θ(v) = 1 if and only if z ∈M(v) for every
v ∈ Vars(M). Moreover, for a set of worlds Z ⊆ Z we denote by A(M, Z) the set of all
assignments occurring in some world in Z of M, i.e., A(M, Z) := {A(M, z) | z ∈ Z }. We
also set A(M) to be A(M,Z). For an assignment θ : X → {0, 1}, we denote by W(M, θ) the
set of all worlds z ∈ Z of M such that A(M, z) is equal to θ on all variables in X.

Let ϕ := Ψ ∧ �∗ Φ ∈ LTL�∗
cnf. We denote by CNF(Φ) the propositional CNF formula

obtained from Φ after replacing each occurrence of �∗ x in Φ with a fresh propositional
variable (with the same name). For a set of variables V and a set of assignments A of the
variables in V , we denote by G(A, V ) : {�∗ v | v ∈ V } → {0, 1} the assignment defined by
setting G(A, V )(�∗ v) = 1 if and only if α(v) = 1 for every α ∈ A. Moreover, if θ : V → {0, 1}
is an assignment of the variables in V , we denote by G(A, V, θ) the assignment defined by
setting G(A, V, θ)(v) = θ(v) and G(A, V, θ)(�∗ v) = G(A, V )(�∗ v) for every v ∈ V . For a set
A of assignments over V and an assignment θ : V ′ → {0, 1} with V ′ ⊆ V , we denote by A(θ)
the set of all assignments α ∈ A such that α(v) = θ(v) for every v ∈ V ′.

For a set A of assignments over some variables V and a subset V ′ ⊆ V , we denote by
A|V ′ the projection of A onto V ′, i.e., the set of assignments α ∈ A restricted to the variables
in V ′.

Intuitively the next lemma describes the translation of a temporal model into separate
satisfiability checks for propositional formulas.

I Lemma 7. Let ϕ := Ψ∧�∗ Φ ∈ LTL�∗. Then, ϕ is satisfiable if and only if there is a set A
of assignments of the variables in ϕ and an assignment α0 ∈ A such that: α0 satisfies Ψ and
for every assignment α ∈ A it holds that G(A,Vars(ϕ), α) satisfies the propositional formula
CNF(Φ).

Proof. Towards showing the forward direction assume that ϕ := Ψ ∧�∗ Φ is satisfiable and
let M be a temporal interpretation witnessing this. We claim that the set of assignments
A := A(M) together with the assignment α0 := A(M, 0) satisfy the conditions of the lemma.

Towards showing the reverse direction assume that A := {α0, . . . , α|A|} is as given in the
statement of the lemma. We claim that the temporal interpretation M defined below satisfies
the formula ϕ. Let Z<0 be the set of all integers smaller than 0 and let Z>|A| be the set of all
integers greater than |A|. Then for every variable v ∈ Vars(ϕ), the set M(v) contains the set
{ z | αz(v) = 1∧ 0 ≤ z ≤ |A| }. Moreover, if α0(v) = 1, M(v) also contains the set Z<0 and if
α|A|(v) = 1, M(v) additionally contains the set Z>|A|. It is easy to verify that M, 0 |= ϕ. J

Informally, the following lemma shows that for deciding the satisfiability of an LTL�∗

formula, we only need to consider sets of assignments A, whose size is linear (instead of
exponential) in the number of variables.

IPEC 2016



23:8 Backdoors for Linear Temporal Logic

I Lemma 8. Let ϕ := Ψ ∧�∗ Φ ∈ LTL�∗ and X ⊆ Vars(ϕ). Then ϕ is satisfiable if and only
if there is a set Θ of assignments of the variables in X, an assignment θ0 ∈ Θ, a set A of
assignments of the variables in Vars(ϕ), and an assignment α0 ∈ A such that:
(C1) the set Θ is equal to A|X ,
(C2) the assignment θ0 is equal to α0|X ,
(C3) A and α0 satisfy the conditions stated in Lemma 7, and
(C4) |A(θ)| ≤ |Vars(ϕ) \X|+ 1 for every θ ∈ Θ.

Proof. Note that the reverse direction follows immediately from Lemma 7, because the
existence of the set of assignments A and the assignment α0 satisfying condition (C3) imply
the satisfiability of ϕ.

Towards showing the forward direction assume that ϕ is satisfiable. Because of Lemma 7
there is a set A of assignments of the variables in ϕ and an assignment α0 ∈ A that satisfy
the conditions of Lemma 7. Let Θ be equal to A|X and θ0 be equal to α0|X . Observe that
setting Θ and θ0 in this way already satisfies (C1) to (C3). We will show that there is
a subset of A that still satisfies (C1)–(C3) and additionally (C4). Towards showing this
consider any subset A′ of A that satisfies the following three conditions: (1) α0 ∈ A′, (2) for
every θ ∈ Θ it holds that A′(θ) 6= ∅, and (3) for every variable v of ϕ and every b ∈ {0, 1} it
holds that there is an assignment α ∈ A with α(v) = i if and only if there is an assignment
α′ ∈ A′ with α′(v) = i. Note that conditions (1) and (2) ensure that A′ satisfies (C1) and
(C2) and condition (3) ensures (C3). Hence, any subset A′ satisfying conditions (1)–(3) still
satisfies (C1)–(C3). It remains to show how to obtain such a subset A′ that additionally
satisfies (C4). We define A′ as follows. Let A′0 be a subset of A containing α0 as well as one
arbitrary assignment α ∈ A(θ) for every θ ∈ Θ. Note that A′0 already satisfies conditions
(1) and (2) as well as condition (3) for every variable v ∈ X. Observe furthermore that if
there is a variable v of ϕ such that condition (3) is violated by A′0 then it is sufficient to add
at most one additional assignment to A′0 in order to satisfy condition (3) for v. Let A′ be
obtained from A′0 by adding (at most |Vars(ϕ) \X|) assignments in order to ensure condition
(3) for every variable v ∈ Vars(ϕ) \X. Then A′ satisfies the conditions of the lemma. J

We are now ready to show tractability for the evaluation of strong horn-backdoor sets.

I Theorem 9. Eval�∗(horn) is in FPT.

Proof. Let ϕ := Ψ ∧ �∗ Φ ∈ LTL�∗ and let X ⊆ Vars(ϕ) be a strong horn-backdoor of ϕ.
The main idea of the algorithm is as follows: For every set Θ of assignments of the variables
in X and every θ0 ∈ Θ, we will construct a propositional horn-formula FΘ,θ0 , which is
satisfiable if and only if there is a set A of assignments of the variables in Vars(ϕ) and an
assignment α0 ∈ A satisfying the conditions of Lemma 8. It then follows from Lemma 8
that ϕ is satisfiable if and only if there is such a set Θ of assignments and an assignment
θ0 ∈ Θ for which FΘ,θ0 is satisfiable. Because there are at most 22|X| such sets Θ and at most
2|X| such assignments θ0 and for each of these sets the formula FΘ,θ0 is a horn-formula, it
follows that checking whether there are Θ and θ0 such that the formula FΘ,θ0 is satisfied
(and therefore decide the satisfiability of ϕ) can be done in time O(22|X| · 2|X| · |FΘ,θ0 |). Since
we will show below that the length of the formula FΘ,θ0 can be bounded by an (exponential)
function of |X| times a polynomial in the input size, i.e., the length of the formula ϕ, this
implies that Eval�∗(horn) is in FPT.

The remainder of the proof is devoted to the construction of the formula FΘ,θ0 for a
fixed set of assignments Θ and a fixed assignment θ0 ∈ Θ (and to show that it enforces the
conditions of Lemma 8).



A. Meier, S. Ordyniak, M. S. Ramanujan, and I. Schindler 23:9

Let R := Vars(ϕ) \ X and r := |R| + 1. For a propositional formula F , a subset
V ⊆ Vars(F ), an integer i and a label s, we denote by copy(F, V, i, s) the propositional
formula obtained from F after replacing each occurrence of a variable v ∈ V with a novel
variable vis. We need the following auxiliary formulas. For every θ ∈ Θ \ θ0, let F θΘ,θ0

be the
formula:∧

1≤i≤r
copy(CNF(Φ[G(Θ, X, θ)]), R, i, θ).

Moreover, let F θ0
Θ,θ0

be the formula:

copy(Ψ[θ0] ∧CNF(Φ[G(Θ, X, θ0)]), R, 1, θ0) ∧
∧

2≤i≤r
copy(CNF(Φ[G(Θ, X, θ0)]), R, i, θ0).

Observe that because X is a strong horn-backdoor set (and the formula Ψ only consists
of unit clauses), it holds that the formula F θΘ,θ0

is horn for every θ ∈ Θ.
We also need the propositional formula Fconst that enforces the consistency between

the propositional variables �∗ x and the variables in {xiθ | θ ∈ Θ ∧ 1 ≤ i ≤ r } for every
x ∈ Vars(ϕ) \X. The formula Fconst consists of the following clauses: for every θ ∈ Θ, i with
1 ≤ i ≤ r, and v ∈ R, the clause �∗ v → viθ = ¬�∗ v ∨ viθ and for every v ∈ R the clause

¬�∗ v →
∨

θ∈Θ∧1≤i≤r
¬viθ = �∗ v ∨

∨
θ∈Θ∧1≤i≤r

¬viθ.

Observe that Fconst is a horn formula.
Finally the formula FΘ,θ0 is defined as:

∧
θ∈Θ F

θ
Θ,θ0
∧ Fconst.

Note that FΘ,θ0 is horn and the length of FΘ,θ0 is at most

|FΘ,θ0 | ≤
∑
θ∈Θ
|F θΘ,θ0

|+ |Fconst|

≤ 2|X|(|Vars(ϕ) \X|+ 1)(|Φ|+ |Ψ|) + 2 · 2|X| · (|Vars(ϕ) \X|+ 1)2

and consequently bounded by a function of |X| times a polynomial in the input size. It
is now relatively straightforward to verify that FΘ,θ is satisfiable if and only if there is a
set A of assignments of the variables in Vars(ϕ) and an assignment α0 ∈ A satisfying the
conditions of Lemma 8. Informally, for every θ ∈ Θ, each of the r copies of the formula
CNF(Φ[G(Θ, X, θ)]) represent one of the at most r assignments in A(θ), the formula F θ0

Θ,θ0

ensures (among other things) that the assignment chosen for α0 satisfies Ψ and the formula
Fconst ensures that the “global assignments” represented by the propositional variables
�∗ x are consistent with the set of local assignments in A represented by the variables in
{xiθ | θ ∈ Θ ∧ 1 ≤ i ≤ r } for every x ∈ Vars(ϕ) \X. J

Surprisingly, the next result will show that krom formulas turn out to be quite challenging.
Backdoor set evaluation of this class of formulas is proved to be paraNP-complete which
witnesses an intractability degree in the parameterized sense.

I Theorem 10. Eval�∗(krom) is paraNP-complete (the NP-completeness already holds for
backdoor sets of size two).

Proof. The membership in paraNP follows because the satisfiability of LTL�∗
cnf can be decided

in NP [2, Table 1].
We show paraNP-hardness of Eval�∗(krom) by giving a polynomial time reduction from

the NP-hard problem 3COL to Eval�∗(krom) for backdoors of size two. In 3COL one asks

IPEC 2016



23:10 Backdoors for Linear Temporal Logic

b1 b2 v1 v2 v3 eb1b2
v1v2 eb̄1b2

v1v2 eb1 b̄2
v1v2 eb1b2

v1v3 eb̄1b2
v1v3 eb1 b̄2

v1v3 eb1b2
v2v3 eb̄1b2

v2v3 eb1 b̄2
v2v3

1 0 0 0 1 1 1 0 – 1 – 0 – 1 0
2 1 0 1 0 1 1 0 – 1 – 0 – 1 0
3 0 1 1 1 0 1 0 – 1 – 0 – 1 0

Figure 1 Given a graph G = ({v1, v2, v3}, {{v1, v2}, {v1, v3}, {v2, v3}}) together with a 3-Coloring
f(vi) = i for 1 ≤ i ≤ 3, leads to the depicted temporal interpretation M satisfying M |= φ given as
a table. Each row of the table corresponds to a world as indicated by the first column of the table.
Each column represents the assignments of a variable as indicated in the first row. A “–” indicates
that the assignment is not fixed, i.e., the assignment does not influence whether M |= φ.

whether a given input graph G = (V,E) has a coloring f : V (G) → {1, 2, 3} of its vertices
with at most three colors such that f(v) 6= f(u) for every edge {u, v} of G. Given such a
graph G = (V,E), we will construct an LTL�∗

cnf formula φ := Ψ ∧�∗ Φ, which has a strong
krom-backdoor B of size two, such that the graph G has a 3-coloring if and only if φ is
satisfiable.

For the remainder we will assume that there exists an arbitrary but fixed ordering of
the vertices V (G) = {v1, . . . , vn}. Further for the construction we assume w.l.o.g. that any
undirected edge e = {vi, vj} ∈ E follows this ordering, i.e., i < j. The formula φ contains
the following variables:
(V1) The variables b1 and b2. These variables make up the backdoor set B, i.e., B := {b1, b2}.
(V2) For every i with 1 ≤ i ≤ n, the variable vi.
(V3) For every e = {vi, vj} ∈ E(G) with 1 ≤ i, j ≤ n the variables eb1b2

vivj
, eb̄1b2

vivj
, and eb1b̄2

vivj
.

We set Ψ to be the empty formula and the formula Φ contains the following clauses:
(C1) For every i with 1 ≤ i ≤ n, the clause ¬�∗ vi. Informally, this clause ensures that vi

has to be false at least at one world, which will later be used to assign a color to the
vertex vi of G. Observe that the clause is krom.

(C2) For every e = {vi, vj} ∈ E(G) with 1 ≤ i, j ≤ n, the clauses vi ∨ �∗ eb1b2
vivj
∨ b1 ∨ b2,

vi∨�∗ eb̄1b2
vivj
∨¬b1∨b2, and vi∨�∗ eb1b̄2

vivj
∨b1∨¬b2 as well as the clauses vj∨¬�∗ eb1b2

vivj
∨b1∨b2,

vj ∨ ¬�∗ eb̄1b2
vivj
∨ ¬b1 ∨ b2, and vj ∨ ¬�∗ eb1b̄2

vivj
∨ b1 ∨ ¬b2. Observe that all of these clauses

are krom after deleting the variables in B.
(C3) The clause ¬b1 ∨ ¬b2. Informally, this clause excludes the color represented by setting

b1 and b2 to true. Observe that the clause is krom.

It follows from the definition of φ that φ[θ] ∈ LTL�∗
krom for every assignment θ of the

variables in B. Hence, B is a strong krom-backdoor of size two of φ as required. Moreover,
since φ can be constructed in polynomial time, it only remains to show that G has a 3-Coloring
if and only if φ is satisfiable.

Towards showing the forward direction assume that G has a 3-Coloring and let f : V (G)→
{1, 2, 3} be such a 3-Coloring for G. We will show that φ is satisfiable by constructing a
temporal interpretation M such that M |= φ. M is defined as follows:

For every i with 1 ≤ i ≤ n, we set M(vi) = Z \ {f(vi)}.
We set M(b1) = {2} and M(b2) = {3}.
For every e = {vi, vj} ∈ E(G):

if f(vi) = 1 set M(eb1b2
vivj

) = Z, else set M(eb1b2
vivj

) = ∅.
if f(vi) = 2 set M(eb̄1b2

vivj
) = Z, else set M(eb̄1b2

vivj
) = ∅.

if f(vi) = 3 set M(eb1b̄2
vivj

) = Z, else set M(eb1b̄2
vivj

) = ∅.



A. Meier, S. Ordyniak, M. S. Ramanujan, and I. Schindler 23:11

An example for such a temporal interpretation resulting for a simple graph is illustrated
in Figure 1. Towards showing that M |= φ, we consider the different types of clauses given
in (C1)–(C3).

The clauses in (C1) hold because M, f(vi) 6|= vi for every i with 1 ≤ i ≤ n.
For every e = {vi, vj} ∈ E(G), we have to show that the clauses given in (C2) are satisfied
for every world. Because f is a 3-Coloring of G, we obtain that f(vi) 6= f(vj). W.l.o.g.
we assume in the following that f(vi) = 1 and f(vj) = 2. We first consider the clauses
given in (C2) containing vi. Because M(vi) = Z \ {1}, it only remains to consider the
world 1. In this world b1 and b2 are false. It follows that all clauses containing either ¬b1
or ¬b2 are satisfied in this world. Hence, it only remains to consider clauses of the form
vi ∨�∗ eb1b2

vivj
∨ b1 ∨ b2. But these are satisfied because f(vi) = 1 implies that M(eb1b2

vivj
) = Z.

Consider now the clauses given in (C2) that contain vj . Using the same argumentation
as used above for vi, we obtain that we only need to consider world 2 and moreover we
only need to consider clauses of the form vj ∨ ¬�∗ eb̄1b2

vivj
∨ ¬b1 ∨ b2. Because f(vi) = 1, we

obtain that M(eb̄1b2
vivj

) = ∅, which implies that these clauses are also satisfied.
The clause ¬b1 ∨ ¬b2 is trivially satisfied, because there is no world in which b1 and b2
hold simultaneously.

Towards showing the reverse direction assume that φ is satisfiable and let M be a temporal
interpretation witnessing this. First note that because of the clauses added by C1, it holds
that M(vi) 6= Z for every i with 1 ≤ i ≤ n. Let w : V (G)→ Z be defined such that for every
i with 1 ≤ i ≤ n, w(vi) is an arbitrary world in Z \M(vi). We define f : V (G)→ {1, 2, 3} by
setting:

f(vi) = 1 if M, w(vi) 6|= b1 ∨ b2,
f(vi) = 2 if M, w(vi) 6|= ¬b1 ∨ b2, and
f(vi) = 3 if M, w(vi) 6|= b1 ∨ ¬b2.

Note that because of the clause added by (C3), f assigns exactly one color to every
vertex vi of G. We claim that f is a 3-Coloring of G. To show this it suffices to show that
for every e = {vi, vj} ∈ E(G), it holds that f(vi) 6= f(vj). Assume for a contradiction
that this is not the case, i.e., there is an edge e = {vi, vj} ∈ E(G) such that f(vi) = f(vj).
W.l.o.g. assume furthermore that f(vi) = f(vj) = 1. Consider the clause vi ∨�∗ eb1b2

vivj
∨ b1 ∨ b2

(which was added by C2). Then, because of the definition of w and f , we obtain that
M, w(vi) 6|= vi ∨ b1 ∨ b2. It follows that M, w(vi) |= �∗ eb1b2

vivj
. Consider now the clause

vj ∨ ¬�∗ eb1b2
vivj
∨ b1 ∨ b2 (which was added by C2). Then, again because of the choice of w

and f , we obtain that M, w(vj) 6|= vj ∨ b1 ∨ b2. Hence, M, w(vj) |= ¬�∗ eb1b2
vivj

contradicting
M, w(vi) |= �∗ eb1b2

vivj
. This completes the proof of the theorem. J

5.2 Globally in the past and globally in the future
Now we turn to a more flexible fragment where we can talk about the past as well as about
the future and show it is possible to encode NP-complete problems into the horn-fragment
yielding a paraNP lower bound.

I Theorem 11. Eval�F ,�P (horn) is paraNP-complete (the NP-completeness already holds
for backdoor sets of size four).

Proof. The membership in paraNP follows because the satisfiability of LTL�F ,�P
cnf can be

decided in NP [2, Table 1].
We show paraNP-hardness of Eval�F ,�P (horn) by describing a polynomial time reduction

again from 3COL to Eval�F ,�P (horn) for backdoors of size four. Recall that in 3COL one

IPEC 2016



23:12 Backdoors for Linear Temporal Logic

asks whether a given input graph G = (V,E) has a coloring f : V (G) → {1, 2, 3} of its
vertices with at most three colors such that f(v) 6= f(u) for every edge {u, v} of G. Given
such a graph G = (V,E), we will construct an LTL�F ,�P

cnf formula φ := Ψ∧�∗ Φ, which has a
strong horn-backdoor B of size four, such that the graph G has a 3-coloring if and only if φ
is satisfiable.

For the remainder we will assume that V (G) = {v1, . . . , vn} and E(G) = {e1, . . . , em}.
The formula φ contains the following variables:
(V1) The variables c1, c2, c3, p′n . These variables make up the backdoor set B, i.e., B :=
{c1, c2, c3, p′n}.

(V2) The variable s, which indicates the starting world.
(V3) For every i with 1 ≤ i ≤ n, three variables v1

i , v
2
i , v

3
i .

(V4) For every i with 1 ≤ i ≤ n the variable pi.

We set Ψ to be the formula s and the formula Φ contains the following clauses:
(C1) The clauses c1∨c2∨c3, ¬c1∨¬c2∨¬c3, c1∨¬c2∨¬c3, ¬c1∨¬c2∨c3, and ¬c1∨c2∨¬c3.

Informally, these clauses ensure that in every world it holds that exactly one of the variables
c1, c2, c3 is true. Note that c1 ∨ c2 ∨ c3 is not horn, however, all of its variables are
contained in the backdoor set B.

(C2) For every i and c with 1 ≤ i ≤ n and 1 ≤ c ≤ 3, the clauses vci → �F vci = ¬vci ∨�F vci
and vci → �P vci = ¬vci ∨�P vci . Informally, these clauses ensure that the variable vci either
holds in every world or in no world for every i and c as above. Observe that both of these
clauses are horn.

(C3) Informally, the following set of clauses ensures together that for every i with 1 ≤ i ≤ n,
it holds that pi is true in every world apart from the i-th world (where pi is false). Here,
the first world is assumed to be the starting world.
(C3-1) The clauses s → ¬p1 = ¬s ∨ ¬p1, s → �F p1 = ¬s ∨ �F p1, and s → �P p1 =
¬s ∨�P p1. Informally, these ensure that p1 is only false in the starting world (and
otherwise true).

(C3-2) The clause pi ∧ �F pi → �F pi+1 = ¬pi ∨ ¬�F pi ∨ �F pi+1 for every i with
1 ≤ i < n. Informally, these clauses (together with the clauses from C3-1) ensure that
for every i with 2 ≤ i ≤ n, it holds that pi is true in every world after the i-th world.

(C3-3) The clause ¬pi → ¬�F pi+1 = pi∨¬�F pi+1 for every i with 1 ≤ i < n. Informally,
these clauses (together with the clauses from C3-1 and C3-2) ensure that for every i
with 2 ≤ i ≤ n, it holds that pi is false at the i-th world. Observe that the clauses
from C3-1 to C3-3 already ensure that ¬pi ∧�F pi holds if and only if we are at the
i-th world of the model for every i with 1 ≤ i ≤ n.

(C3-4) The clauses ¬pn ∧ �F pn → p′n = pn ∨ ¬�F pn ∨ p′n and ¬pn ∧ �F pn ← p′n =
¬pn ∧�F pn ∨ ¬p′n = (¬pn ∨ ¬p′n) ∧ (�F pn ∨ ¬p′n). Informally, these clauses (together
with the clauses from C3-1 to C3-3) ensure that p′n only holds in the n-th world of
the model. Observe that all these clauses are horn after removing the backdoor set
variable p′n.

(C3-5) The clause p′n → �P pn = ¬p′n ∨�P pn. Informally, this clause (together with the
clauses from C3-1 to C3-4) ensures that pn is only false in the n-th world of the model.

(C3-6) The clause pi ∧ �P pi → �P pi−1 = ¬pi ∨ ¬�P pi ∨ �P pi−1 for every i with
2 ≤ i ≤ n. Informally, these clauses (together with the clauses from C3-1 to C3-5)
ensure that pi is true before the i-th world for every i with 2 ≤ i < n.

Observe that all of the above clauses are horn or become horn after removing all
variables from B. Note furthermore that all the above clauses ensure that �P pi ∧�F pi
holds if and only if we are at the i-th world of the model for every i with 1 ≤ i ≤ n.



A. Meier, S. Ordyniak, M. S. Ramanujan, and I. Schindler 23:13

v1

1

v2

2

v3

3

sc1c2c3p
′
n v1

1 v
2
1 v

3
1 v1

2 v
2
2 v

3
2 v1

3 v
2
3 v

3
3 p1p2p3

< 1 0 – – – 0 1 0 0 0 1 0 0 0 1 1 1 1
1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 1
2 0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 0 1
3 0 0 0 1 1 1 0 0 0 1 0 0 0 1 1 1 0
> 3 0 – – – 0 1 0 0 0 1 0 0 0 1 1 1 1

Figure 2 Left: A graph G with vertices v1, v2, and v3 together with a 3-Coloring given by the
numbers above and below respectively of every vertex. Right: A temporal interpretation M that
corresponds to the given 3-Coloring of G and satisfies M |= φ given as a table. Each row of the
table corresponds to a world (or a set of worlds) as indicated by the first column of the table. Each
column represents the assignments of a variable as indicated in the first row. A “–” indicates that
the assignment is not fixed, i.e., the assignment does not influence whether M |= φ.

(C4) For every i and j with 1 ≤ i ≤ n and 1 ≤ j ≤ 3 the clauses �F pi ∧�P pi ∧ vji → cj =
¬�F pi ∨ ¬�P pi ∨ ¬vji ∨ cj and �F pi ∧ �P pi ∧ cj → vji = ¬�F pi ∨ ¬�P pi ∨ ¬cj ∨ vji .
Informally, these clauses ensure that in the i-th world for every 1 ≤ i ≤ n, the variables
c1, c2, c3 are a copy of the variables v1

i , v2
i , v3

i . Observe that all of these clauses are
horn.

(C5) For every edge e = {vi, vj} ∈ E(G) and every c with 1 ≤ c ≤ 3, the clause ¬vci ∨ ¬vcj .
Informally, these clauses ensure that the 3-partition (of the vertices of G) given by the
(global) values of the variables v1

1 , v
2
1 , v

3
1 , . . . , v

1
n, v

2
n, v

3
n is a valid 3-Coloring for G. Observe

that all of these clauses are horn.

It follows from the definition of φ that φ[θ] ∈ LTL�F ,�P
horn for every assignment θ of the

variables in B. Hence, B is a strong horn-backdoor of size four of φ as required. Moreover,
since φ can be constructed in polynomial time, it only remains to show that G has a 3-Coloring
if and only if φ is satisfiable.

Towards showing the forward direction assume that G has a 3-Coloring and let f : V (G)→
{1, 2, 3} be such a 3-Coloring for G. We will show that φ is satisfiable by constructing a
temporal interpretation M such that M |= φ. M is defined as follows:

For every j with 1 ≤ j ≤ 3, we set M(cj) = { i | f(vi) = j }.
We set M(p′n) = {n}.
For every i and c with 1 ≤ i ≤ n and 1 ≤ c ≤ 3, we set M(vci ) = Z if c = f(vi) and
otherwise we set M(vci ) = ∅.
For every i with 1 ≤ i ≤ n, we set M(pi) = Z \ {i}.

An example for such a temporal interpretation resulting for a simple graph is illustrated
in Figure 2. It is straightforward (but a little tedious) to verify that M |= φ by considering
all the clauses of φ.

Towards showing the reverse direction assume that φ is satisfiable and let M be a temporal
interpretation witnessing this. We will start by showing the following series of claims for M.
(M1) For every a ∈ Z exactly one of M, a |= c1, M, a |= c2, and M, a |= c3 holds.
(M2) For every i, c, a, and a′ with 1 ≤ i ≤ n, 1 ≤ c ≤ 3, and a, a′ ∈ Z, it holds that

M, a |= vci if and only if M, a′ |= vci .
(M3) For every i with 1 ≤ i ≤ n and every a ∈ Z, it holds that M, a |= pi if and only if

a 6= i.
(M4) For every i and j with 1 ≤ i ≤ n and 1 ≤ j ≤ 3, it holds that M, i |= cj if and only if

M, i |= vji .

IPEC 2016



23:14 Backdoors for Linear Temporal Logic

(M1) holds because of the clauses added by (C1). Towards showing (M2) consider the
clauses added by (C2) and assume for a contradiction that there are i, c, a, and a′ as in the
statement of (M2) such that w.l.o.g. M, a |= vci but M, a′ 6|= vci . Then, a 6= a′. If a < a′,
then we obtain a contradiction because of the clause vci → �F vci and if on the other hand
a′ < a, we obtain a contradiction to the clause vci → �P vci . This completes the proof of
(M2). We will show (M3) with the help of the following series of claims.
(M3-1) For every a ∈ Z it holds that M, a |= p1 if and only if a 6= 1 (here we assume that 1

is the starting world).
(M3-2) For every i and a with 1 ≤ i ≤ n, a ∈ Z, and a > i, it holds that M, a |= pi.
(M3-3) For every i with 1 ≤ i ≤ n, it holds that M, i 6|= pi.
(M3-4) For every a ∈ Z, it holds that M, a |= p′n if and only if a = n.
(M3-5) For every a ∈ Z, it holds that M, a 6|= pn if and only if a = n.

Because of the clause s→ ¬p1 (added by C3-1) and the fact that s ∈ Ψ, we obtain that
M, 1 6|= p1. Moreover, because of the clauses s → �F p1 and s → �P p1, we obtain that
M, a |= p1 for every a 6= 1. This completes the proof for (M3-1).

We show (M3-2) via induction on i. The claim clearly holds for i = 1 because of (M3-1).
Now assume that the claim holds for pi−1 and we want to show it for pi. Because of the
induction hypothesis, we obtain that M, i |= pi−1 ∧�F pi−1. Moreover, because φ contains
the clause pi−1∧�F pi−1 → �F pi (which was added by (C3-2)), we obtain that M, i |= �F pi.
This completes the proof of (M3-2).

We show (M3-3) via induction on i. The claim clearly holds for i = 1 because of (M3-1).
Now assume that the claim holds for pi−1 and we want to show it for pi. Because of the
induction hypothesis, we obtain that M, (i − 1) 6|= pi−1. Furthermore, because of (M3-2),
we know that M, i |= �F pi. Since φ contains the clause ¬pi−1 → ¬�F pi (which was added
by (C3-3)), we obtain M, (i − 1) |= ¬�F pi, which because M, i |= �F pi can only hold if
M, i 6|= pi. This completes the proof of (M3-3).

Towards showing (M3-4), first note that because of (M3-2) and (M3-3), we have that
M, a |= ¬pn ∧ �F pn if and only if a = n. Then, because of the clauses (added by C3-4)
ensuring that ¬pn ∧ �F pn ↔ p′n, the same applies to p′n (instead of ¬pn ∧ �F pn). This
completes the proof of (M3-4).

It follows from (M3-2) and (M3-3) that (M3-5) holds for every a ∈ Z with a ≥ n.
Moreover, because of (M3-4), we have that M, n |= p′i. Because of the clause p′n → �P pn
(which was added by (C3-5)), we obtain M, a |= pn for every a < n. This completes the
proof of (M3-5).

We are now ready to prove (M3). It follows from (M3-2) and (M3-3) that (M3) holds for
every i and a with a ≥ i. Furthermore, we obtain from (M3-5) that (M3) already holds if
i = n. We complete the proof of (M3) via an induction on i starting from i = n. Because of
the induction hypothesis, we obtain that M, i+ 1 |= pi+1 ∧�P pi+1. Hence, because of the
clause pi+1 ∧�P pi+1 → �P pi (added by (C3-6)), we obtain that M, i+ 1 |= �P pi, which
completes the proof of (M3).

Towards showing (M4) first note that it follows from (M3) that M, i |= �F pi ∧ �P pi.
Now suppose that there are i and j such that either M, i |= cj but M, i 6|= vji or M, i 6|= cj
but M, i |= vji . In the former case, consider the clause �F pi ∧�P pi ∧ cj → vji (which was
added by (C4)). Since M, i |= �F pi ∧�P pi, we obtain that M, i |= vji ; a contradiction. In
the later case, consider the clause �F pi ∧�P pi ∧ vji → cj (which was added by (C4)). Since
M, i |= �F pi ∧�P pi, we obtain that M, i |= cj ; again a contradiction. This completes the
proof of the claims (M1)–(M4).



A. Meier, S. Ordyniak, M. S. Ramanujan, and I. Schindler 23:15

It follows from (M1) and (M4) that for every i and a with 1 ≤ i ≤ n and a ∈ Z there is
exactly one c with 1 ≤ c ≤ 3, such that M, a |= vci . Moreover, because of (M2) the choice
of c is independent of a. Hence, the coloring f that assigns the unique color c to every
vertex vi such that M, a |= vci forms a partition of the vertex set of G. We claim that f is
also a valid 3-Coloring of G. Assume not, then there is an edge {vi, vj} ∈ E(G) such that
c = f(vi) = f(vj). Consider the clause ¬vci ∨ ¬vcj (which was added by C5). Because of the
definition of f , we obtain that M, a 6|= ¬vci ∨ ¬vcj for every a ∈ Z, a contradiction to our
assumption that M |= φ. J

I Corollary 12. Let O ∈ {�F,�P} then EvalO(krom) is paraNP-complete (the NP-com-
pleteness already holds for backdoor sets of size zero).

Proof. Satisfiability of LTLOkrom is NP-hard [2, Theorem 5]. J

6 Conclusion and discussion

We lift the well-known concept of backdoor sets from propositional logic up to the clausal
fragment of linear temporal logic LTL. From the investigated cases we exhibit a paramet-
erized complexity dichotomy for the problem of backdoor set evaluation. The evaluation
parameterized by the size of the backdoor into krom formulas becomes in all cases paraNP-
complete and thus is unlikely to be solvable in FPT whereas the case of backdoor evaluation
into the fragment horn behaves differently. While allowing only �∗ makes the problem
fixed-parameter tractable, allowing both, �F and �P, makes it paraNP-complete. The last
open case, i.e., the restriction to either �F or �P is open for further research and might yield
an FPT result. We want to note here that all of our results still hold if LTL is evaluated over
the natural numbers instead of the integers.

Satisfiability of LTL�∗
cnf is NP-complete, for horn/krom it is in P/NL [2]. With the help

of our backdoor notion, we achieved for a horn-backdoor an FPT membership. However,
for krom this surprisingly was not possible (paraNP-c., Theorem 10). For the “full global”
fragment only for horn satisfiability is in P and for krom it is NP-complete [2]. Here in
both cases, our notion of backdoors was not fruitful. This is, however, natural since applying
the backdoor approach to a novel problem is never a simple nor straightforward task. We see
our work as a first attempt to come up with such a notion for LTL, and, given the notorious
difficulty of the LTL-satisfiability problem, we believe our tractability result for LTL formulas
restricted to the always operator that are almost horn is an encouraging result that justifies
further investigation of this approach. As mentioned earlier, LTL restricted to the always
operator, is already pretty interesting, since it allows one to express “Safety” properties of a
system. Moreover, our intractability results for the remaining fragments of LTL indicate that
a different notion of “closeness” is required to obtain tractability results for these fragments.

References
1 F.N. Abu-Khzam. A kernelization algorithm for d-hitting set. Journal of Computer and

System Sciences, 76(7):524–531, 2010.
2 A. Artale, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev. The complexity of clausal

fragments of LTL. In Proc. 19th LPAR, volume 8312 of LNCS, 2013.
3 M. Bauland, T. Schneider, H. Schnoor, I. Schnoor, and H. Vollmer. The complexity of

generalized satisfiability for linear temporal logic. LMCS, 5(1), 2009.
4 C.-C. Chen and I.-P. Lin. The computational complexity of satisfiability of temporal Horn

formulas in propositional linear-time temporal logic. IPL, 45(3):131–136, 1993.

IPEC 2016



23:16 Backdoors for Linear Temporal Logic

5 J. Chen, B. Chor, M. Fellows, X. Huang, D. Juedes, I. Kanji, and G. Xia. Tight Lower
Bounds for Certain Parameterized NP-Hard Problems. Information and Computation,
201(2):216–231, 2005.

6 J. Chen, I. A. Kanj, and G. Xia. Improved upper bounds for vertex cover. Theoretical
Computer Science, 411(40–42):3736–3756, 2010.

7 E.M. Clarke and E.A. Emerson. Design and synthesis of synchronisation skeletons using
branching time temporal logic. In Logic of Programs, volume 131 of LNCS, pages 52–71.
Springer Verlag, 1981.

8 S. Demri and P. Schnoebelen. The complexity of propositional linear temporal logics in
simple cases. Information and Computation, 174(1):84–103, 2002.

9 B.N. Dilkina, C. P. Gomes, and A. Sabharwal. Tradeoffs in the complexity of backdoor
detection. In Proc. 13th CP, volume 4741 of Lecture Notes in Computer Science, pages
256–270. Springer Verlag, 2007.

10 B.N. Dilkina, C. P. Gomes, and A. Sabharwal. Backdoors in the context of learning. In
Proc. 12th SAT, volume 5584 of Lecture Notes in Computer Science, pages 73–79. Springer
Verlag, 2009.

11 C. Dixon, M. Fisher, and B. Konev. Tractable temporal reasoning. In Proc. of IJCAI,
pages 318–323, 2007.

12 R.G. Downey and M.R. Fellows. Fundamentals of Parameterized Complexity. Springer,
2013.

13 W. Dvorák, S. Ordyniak, and S. Szeider. Augmenting tractable fragments of abstract
argumentation. Artificial Intelligence, 186:157–173, 2012.

14 E. Allen Emerson and J.Y. Halpern. Decision procedures and expressiveness in the tem-
poral logic of branching time. Journal of Computer and System Sciences, 30(1):1–24, 1985.

15 M. Fisher, C. Dixon, and M. Peim. Clausal temporal resolution. ACM Transactions on
Computational Logic, 2(1):12–56, 2001.

16 Michael Fisher. A normal form for temporal logic and its application in theorem-proving
and execution. Journal of Logic and Computation, 7:429–456, 1997.

17 D.M. Gabbay, I. Hodkinsion, and M. Reynolds. Temporal logic: mathematical foundations
and computational aspects, volume 1. Oxford University Press, Inc. New York, USA, 1994.

18 S. Gaspers and S. Szeider. Backdoors to satisfaction. In The Multivariate Algorithmic
Revolution and Beyond – Essays Dedicated to Michael R. Fellows on the Occasion of His
60th Birthday, volume 7370 of LNCS, pages 287–317. Springer, 2012.

19 S. Gaspers and S. Szeider. Strong backdoors to bounded treewidth SAT. In Proc. 54th
FOCS, pages 489–498. IEEE Computer Society, 2013.

20 S. Kottler, M. Kaufmann, and C. Sinz. A new bound for an NP-hard subclass of 3-SAT
using backdoors. In Proc. 11th SAT, Lecture Notes in Computer Science, pages 161–167.
Springer Verlag, 2008.

21 S. Kripke. Semantical considerations on modal logic. In Acta philosophica Fennica,
volume 16, pages 84–94, 1963.

22 M. Kronegger, S. Ordyniak, and A. Pfandler. Backdoors to planning. In Proc. 28th AAAI,
pages 2300–2307. AAAI Press, 2014.

23 M. Kronegger, S. Ordyniak, and A. Pfandler. Variable-deletion backdoors to planning. In
Proc. 29th AAAI, pages 2300–2307. AAAI Press, 2014.

24 R. LeBras, R. Bernstein, C. P. Gomes, B. Selman, and R. Bruce van Dover. Crowdsourcing
backdoor identification for combinatorial optimization. In Proc. 23rd IJCAI. AAAI, 2013.

25 M. Lück and A. Meier. LTL Fragments are Hard for Standard Parameterisations. In Proc.
of TIME, pages 59–68, 2015. doi:10.1109/TIME.2015.9.

26 N. Markey. Past is for free: On the complexity of verifying linear temporal properties with
past. Acta Informatica, 40(6-7):431–458, 2004.

http://dx.doi.org/10.1109/TIME.2015.9


A. Meier, S. Ordyniak, M. S. Ramanujan, and I. Schindler 23:17

27 H. Ono and A. Nakamura. On the size of refutation Kripke models for some linear modal
and tense logics. Studia Logica, 39(325–333), 1980.

28 S. Ordyniak, D. Paulusma, and S. Szeider. Satisfiability of acyclic and almost acyclic CNF
formulas. Theoretical Computer Science, 481:85–99, 2013.

29 A. Pfandler, S. Rümmele, and S. Szeider. Backdoors to abduction. In Proc. 23rd IJCAI,
2013.

30 A. Pnueli. The temporal logic of programs. In Proc. of FOCS, pages 46–57. IEEE Comp.
Soc. Press, 1977.

31 Y. Ruan, H.A. Kautz, and E. Horvitz. The backdoor key: A path to understanding problem
hardness. In Proc. 19th IAAI, pages 124–130. AAAI Press, 2004.

32 M. Samer and S. Szeider. Backdoor sets of quantified Boolean formulas. Journal of Auto-
mated Reasoning, 42(1):77–97, 2009.

33 M. Samer and S. Szeider. Fixed-parameter tractability. In Armin Biere, Marijn Heule,
Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability, chapter 13, pages
425–454. IOS Press, 2009.

34 A. Sistla and E. Clarke. The complexity of propositional linear temporal logics. In Proc.
of STOC, pages 159–168. ACM, 1982.

35 S. Szeider. On fixed-parameter tractable parameterizations of SAT. In Proc. of SAT, pages
188–202, 2003. doi:10.1007/978-3-540-24605-3_15.

36 R. Williams, C. Gomes, and B. Selman. Backdoors to typical case complexity. In Proc.
18th IJCAI, pages 1173–1178. Morgan Kaufmann, 2003.

A Proof of Theorem 6

Let O ⊆ {�∗ ,�P ,�F }. We will reduce DetectO(krom) to the 3-HittingSet problem, which
is well-known to be fixed-parameter tractable (parameterized by the solution size) [1]. Recall
that given a universe U , a family F of subsets of U of size at most three, and an integer k,
3-HittingSet asks whether there is a subset S ⊆ U of size at most k (which is called a hitting
set of F) such that S ∩ F 6= ∅ for every F ∈ F . Given an LTLO formula φ := Ψ ∧�∗ Φ, we
will construct a family F of subsets (of size at most three) of a universe U such that φ has a
strong krom-backdoor of size at most k if and only if F has a hitting set of size at most k.
The universe U is equal to Vars(φ) and F contains the set Vars(C) for every set C of exactly
three literals contained in some clause of Φ. We claim that a set X ⊆ Vars(φ) is a strong
krom-backdoor if and only if X is a hitting set of F .

Towards showing the forward direction, let X ⊆ Vars(φ) be a strong krom-backdoor set
of φ and suppose for a contradiction that there is a set F ∈ F such that X ∩F = ∅. It follows
from the construction of F that Φ contains a clause C containing at least three literals over
the variables in F . Moreover, because of Observation 4 there is a consistent assignment
θ : X ∪ {Ox | x ∈ X ∧ O ∈ O} → {0, 1} that falsifies all literals of C over variables in X.
Consequently, φ[θ] contains a sub-clause of C that still contains at least three literals over
the variables in F . Hence, φ[θ] /∈ krom, contradicting our assumption that X is a strong
krom-backdoor set of φ.

Towards showing the reverse direction, let X ⊆ U be a hitting set of F and suppose for
contradiction that there is an (consistent) assignment θ : X ∪{Ox | x ∈ X ∧O ∈ O} → {0, 1}
and a clause C in φ[θ] containing at least three literals. Let C ′ be a set of at exactly three
literals from C. It follows from the construction of F , that F contains the set Vars(C ′),
however, Vars(C ′) ∩X = ∅ contradicting our assumption that X is a hitting set of G.

IPEC 2016

http://dx.doi.org/10.1007/978-3-540-24605-3_15




Improved Bounds for Minimal Feedback Vertex
Sets in Tournaments
Matthias Mnich∗1 and Eva-Lotta Teutrine2

1 Universität Bonn, Bonn, Germany
mmnich@uni-bonn.de

2 Universität Bonn, Bonn, Germany
eva.teutrine@uni-bonn.de

Abstract
We study feedback vertex sets (FVS) in tournaments, which are orientations of complete graphs.
As our main result, we show that any tournament on n nodes has at most 1.5949n minimal FVS.
This significantly improves the previously best upper bound of 1.6667n by Fomin et al. (STOC
2016). Our new upper bound almost matches the best known lower bound of 21n/7 ≈ 1.5448n,
due to Gaspers and Mnich (ESA 2010). Our proof is algorithmic, and shows that all minimal
FVS of tournaments can be enumerated in time O(1.5949n).

1998 ACM Subject Classification F2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Exponential-time algorithms, feedback vertex sets, tournaments

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.24

1 Introduction

The Minimum Feedback Vertex Set (FVS) problem in directed graphs is a fundamental
problem in combinatorial optimization: given a directed graph G, find a smallest set of
vertices in G whose removal yields an acyclic digraph. This problem belongs to Karp’s
original list of 21 NP-complete problems [8].

The Minimum FVS problem remains NP-complete even in tournaments [13], which are
orientations of complete undirected graphs. In other words, a tournament T is a digraph with
exactly one arc between any two of its vertices. Various approaches have been suggested to
solve the Minimum FVS problem on tournaments, including approximation algorithms [3, 10],
fixed-parameter algorithms [4, 9] as well as exact exponential-time algorithms [4, 5, 6]. In
particular, one approach that was used to find a minimum FVS is to list all inclusion-minimal
FVS of a given tournament using a polynomial-delay enumeration algorithm [6, 12]. The run
time of this approach is within a polynomial factor of the number M(T ) of minimal FVS
in T . Therefore, the complexity of the Minimum FVS problem is within a polynomial factor
of the maximum of M(T ) over all n-vertex tournaments, which we denote by M(n).

The first one to provide non-trivial bounds onM(n) was Moon [11], who in 1971 established
that 1.4757n ≤ M(n) ≤ 1.7170n. This was improved by Gaspers and Mnich [6] in 2010 to
1.5448n ≤M(n) ≤ 1.6740n. Very recently, an improvement on the upper bound was made
by Fomin et al. [5], who show that M(n) ≤ 1.6667n. The problem of exactly determining
M(n) was explicitly posed by Woeginger [15].

∗ Supported by ERC Starting Grant 306465 (BeyondWorstCase).

© Matthias Mnich and Eva-Lotta Teutrine;
licensed under Creative Commons License CC-BY

11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin; Article No. 24; pp. 24:1–24:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.24
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


24:2 Improved Bounds for Minimal Feedback Vertex Sets in Tournaments

Table 1 State of the art for lower and upper bounds on the number of minimal FVS in tournaments.

M(n) lower bound upper bound

Moon (1971) 1.4757n 1.7170n

Gaspers and Mnich (ESA 2010) 21n/7 ≈ 1.5448n 1.6740n

Fomin et al. (STOC 2016) 1.6667n

This paper 1.5949n

This paper, regular tournaments: 21n/7 ≈ 1.5448n

Our Contributions
In this paper we make significant progress on establishing better bounds for M(n). Our main
combinatorial result is as follows:

I Theorem 1. Any tournament of order n has at most M(n) ≤ 1.5949n minimal FVS.

We also consider regular tournaments (in which all vertices have the same out-degree),
because the best known lower bound onM(n) is attained by regular tournaments. For regular
tournaments, we show an upper bound on M(n) that matches the lower bound:

I Theorem 2. Any regular tournament of order n has at most 21n/7 minimal FVS, and this
is sharp: some regular tournament of order n has exactly 21n/7 minimal FVS.

Table 1 provides an overview on lower and upper bounds on M(n).
Our proof of Theorem 1 is inspired by the one of Gaspers and Mnich [6] for their

weaker upper bound. Their proof works by induction on the number n of nodes in the input
tournament T . Starting with T , they consider a vertex v with maximum out-degree ∆, and
depending on the value of ∆ and neighbors of v, they construct subtournaments by deleting
distinct vertices, such that each maximal transitive vertex set of T is contained in at least
one subtournament. Applying the induction hypothesis to the subtournaments then implies
their upper bound.

Here, we use a refined technique, that yields upper bounds on the number of inclusion-
maximal vertex sets with certain properties. Namely, in addition to deleting vertices to
generate subtournaments, we also keep fixed vertex sets. Within these subtournaments we only
consider maximal transitive vertex sets that contain all the fixed vertices. We introduce a new
function M(n, k) for the maximum number of maximal transitive vertex sets in a tournament
of order n containing a fixed set of k vertices, and we will show that M(n, k) ≤ 1.5949n−k
for all 0 ≤ k ≤ n. A similar approach has been used by Gupta et al. [7] to bound the number
of maximal r-regular induced subgraphs in undirected graphs.

Our combinatorial result has algorithmic consequences. First, our proof of Theorem 1 is
algorithmic, and shows that all minimal FVS of any tournament of order n can be listed in
time O(1.5949n). Second, using an algorithm by Gaspers and Mnich [6] to list all minimal
FVS of a tournament with polynomial delay and in polynomial space, we directly obtain the
following:

I Corollary 3. Given any tournament T of order n, all its minimal FVS can be listed in
time M(T ) · nO(1) = O(1.5949n) with polynomial delay and in polynomial space.

Enumerating the minimal FVS in tournaments has several interesting applications. For
example, Banks [1] introduced the notion “Banks winner” in a social choice context, which
is a vertex v with in-degree 0 in a subtournament induced by a maximal transitive vertex



M. Mnich and E. Teutrine 24:3

set. Brandt et al. [2] consider the problem of determining the “Banks set”, which is the set
of all Banks winners. As Woeginger [14] showed that deciding whether a vertex is a Banks
winner is NP-complete, a feasible approach to determine the Banks set is to enumerate all
minimal FVS. For this purpose, Brandt et al. [2] implemented the algorithm of Gaspers and
Mnich. Thus, our new algorithm in this paper can be used to compute the Banks set of a
tournament asymptotically faster.

2 Preliminaries

A tournament T = (V,A) is a directed graph with exactly one edge between each pair of
vertices. We denote the set of all tournaments with n vertices by Tn. A feedback vertex set
(FVS) of T is a set F ⊆ V (T ) such that T − F is free of (directed) cycles, where T − F is
the induced subgraph of T after removing all vertices in F . An FVS is minimal if none of its
proper subsets is an FVS.

Denote by M(T ) the number of minimal FVS in a tournament T , and define

M(n) = max
T∈Tn

M(T )

to be the maximum number of minimal FVS in tournaments of order n.
Let T = (V,A) be a tournament. For a set V ′ ⊆ V , let T [V ′] be the subtournament of T

induced by V ′. For each v ∈ V , let N−(v) = {u ∈ V | (u, v) ∈ A} and let N+(v) = {u ∈
V | (v, u) ∈ A}. We write v → u if u ∈ N+(v) and call v a predecessor of u and u a successor
of v. For each v ∈ V , its in-degree is d−(v) = |N−(v)| and its out-degree is d+(v) = |N+(v)|;
call T regular if all its vertices have the same out-degree. Let ∆+(T ) denote the maximum
out-degree over all vertices of T . Further, T is strong if there is a directed path from v to u for
each pair of vertices v, u ∈ V ; let T ?n denote the set of strong tournaments of order n. Note
that any tournament can uniquely be decomposed into strong subtournaments S1, . . . , Sr
such that v → u for all v ∈ V (Si), u ∈ V (Sj) for all i < j.

I Observation 4. For any tournament T , we obtain M(T ) = M(S1) · . . . ·M(Sr).

Therefore, we can bound M(n) from above by βn for some β by considering strong tourna-
ments of every order n.

Our proofs will use the following well-known observation about cycles in tournaments:

I Lemma 5. In a tournament, any vertex contained in a cycle is contained in a triangle.

Proof. Let v1, . . . , v` be a shortest cycle containing v1 with ` > 3, vi → vi+1 for all i ∈
{1, . . . , `− 1} and v` → v1. Depending on the orientation of the arc between v1 and v3, either
v1, v2, v3 form a triangle or v1, v3, v4, . . . , v` is a shorter cycle containing v1. J

We call a vertex set transitive if its induced subtournament is acyclic. Thus, a vertex set
is a maximal transitive vertex set if and only if its complement is a minimal FVS. Instead
of counting minimal FVS, we count maximal transitive vertex sets. The next property of
maximal transitive vertex sets was already used by Moon [11] and Gaspers and Mnich [6]:

I Lemma 6. For any tournament T , M(T ) ≤
∑
v∈V (T )M(d+(v)).

Proof. Any maximal transitive vertex set W of T has a vertex v with in-degree 0 in T [W ].
Hence,W is also a maximal transitive vertex set in T [N+(v)∪{v}]; this yields the bound. J

Lemma 6 allows us to effectively bound M(T ) in terms of a recurrence relation, in particular
in combination with the next lemma that extends Lemma 3 by Gaspers and Mnich [6]:

IPEC 2016



24:4 Improved Bounds for Minimal Feedback Vertex Sets in Tournaments

I Lemma 7. Let n ∈ N and let T ∈ T ?n . Then either T is regular, or for any d ∈ N at
most 2d vertices in T have out-degree at least n− d− 1.

Proof. Let Ṽ be the set of vertices in T with out-degree at least n− d− 1. Then any vertex
in Ṽ has in-degree at most d. Hence,∑

v∈Ṽ

|N−(v)| ≤ |Ṽ | · d . (1)

We may suppose that Ṽ 6= ∅, for otherwise the statement of the lemma holds. We
distinguish two cases.

Consider first the case that Ṽ 6= V (T ). Then, since T is strong and Ṽ 6= ∅, there
is some arc from V (T ) \ Ṽ to Ṽ . There are

(|Ṽ |
2
)
arcs between vertices in Ṽ . Therefore,∑

v∈Ṽ |N−(v)| ≥
(|Ṽ |

2
)

+ 1. Combining this inequality with (1) and solving for d ∈ N yields
|Ṽ | ≤ 2d.

Second, consider the case that Ṽ = V (T ). We may suppose that T is not regular, for
otherwise the statement of the lemma holds. Note that not every vertex of Ṽ = V (T ) can
have in-degree exactly d, since T is not regular. Hence, some vertex in Ṽ has in-degree at
most d− 1. Consequently,∑

v∈Ṽ

|N−(v)| ≤ (|Ṽ | − 1) · d+ (d− 1) .

There are
(|Ṽ |

2
)
arcs between vertices in Ṽ . Thus,

∑
v∈Ṽ |N−(v)| ≥

(|Ṽ |
2
)
. Combining these

two inequalities and solving for d ∈ N yields |Ṽ | ≤ 2d. J

We remark that a regular tournament may have more than 2d vertices of out-degree at least
n− d− 1, as witnessed for instance by the triangle and d = 1.

3 Improved Upper Bound on the Maximum Number of Minimal FVS

In this section we show that the maximum number M(n) of minimal FVS in any tournament
of order n is bounded from above by 1.5949n. For this purpose, for a tournament T and
V ′ ⊆ V (T ) let M(T, V ′) be the number of maximal transitive vertex sets in T that contain
all vertices in V ′. Also, let

M(n, k) = max
T∈Tn,V ′⊆V (T ),|V ′|=k

M(T, V ′) .

Note that M(n) = M(n, 0).

Example. To clarify the definition, we computeM(3, 1). Precisely, we show thatM(3, 1) = 2.
There are two non-isomorphic tournaments for n = 3:

T1:

• •

•

T2:

• •

•

The tournament T1 is acyclic and thus has only a single maximal transitive vertex set, V (T1).
Thus, M(T1, {v}) = 1 for all v ∈ V (T1). The tournament T2 has three maximal transitive
vertex sets, each consisting of exactly two vertices. Thus, each vertex of T2 is contained in



M. Mnich and E. Teutrine 24:5

exactly two maximal transitive vertex sets. This yields M(T2, {v}) = 2 for all v ∈ V (T2).
Summarizing, we get M(3, 1) = 2. J

Henceforth, fix β = 1.5949. We will show that M(n, k) ≤ βn−k for all n ∈ N and
k ∈ {0, . . . , n}. To this end, ideally we would like to prove the following statements:
(I) It holds M(n, k) ≤ βn−k for all n ≥ k > 0.
(II) It holds M(n, 0) ≤ βn.
Unfortunately, we are unable to do prove these directly. The reason is that our proof of
Statement (I) for a fixed pair (n, k) with n ≥ k > 0 depends on the validity of Statement (II)
for values ñ < n. Vice-versa, our proof of the validity of Statement (II) for fixed n ∈ N
depends on the validity of Statement (I).

We will therefore establish the following two lemmas:

I Lemma 8. Let n ∈ N. If M(ñ) ≤ βñ and M(ñ, k̃) ≤ βñ−k̃ holds for all 0 < k̃ ≤ ñ < n,
then M(n, k) ≤ βn−k for 0 < k ≤ n.

The proof of Lemma 8 is given in Sect. 4.

I Lemma 9. Let n ∈ N. If M(ñ) ≤ βñ, M(ñ, k̃) ≤ βñ−k̃ and M(n, k̃) ≤ βn−k̃ for all
0 < k̃ ≤ ñ < n, then M(n) ≤ βn.

The proof of Lemma 9 consists of a lengthy case analysis; we thus defer it to the full version
of this paper.

We are ready to prove Theorem 1.

Proof of Theorem 1. We show that for all n ∈ N, it holds M(n) ≤ 1.5949n. Clearly,
M(1) ≤ 1 ≤ 1.5949 and M(1, k) ≤ 1 ≤ 1.59491−k for all k ∈ {0, 1}. This yields our induction
hypothesis. Lemma 8 and Lemma 9 yield our inductive step and prove the desired bound on
M(n) for all n ∈ N. J

4 Proof of Lemma 8

In this section we prove Lemma 8. For sake of contradiction, suppose that the statement
of the lemma does not hold. Let (T, V ′) be a minimum counterexample, that is, T is a
tournament and V ′ ⊆ V (T ) such that |V (T )|− |V ′| is minimum and M(T, V ′) > β|V (T )|−|V ′|.
Throughout this section, write n = |V (T )| and k = |V ′| > 0.

We will distinguish several cases and show that M(T, V ′) ≤ βn−k for each of them; this
yields the desired contradiction (and hence the truth of the statement of the lemma). In each
case, we will use the minimality of (T, V ′) to bound M(T, V ′) from above.

Case 1: Three vertices in V ′ form a triangle. Then, as no transitive vertex set contains all
of these three vertices, M(T, V ′) = 0 ≤ βn−k.

Case 2: Two vertices in V ′ form a triangle with some vertex v ∈ V (T ) \ V ′. Any transitive
vertex set that contains all vertices in V ′ does not contain v. Hence,

M(T, V ′) = M(T − {v}, V ′) ≤M(n− 1, k) ≤ βn−k−1 ≤ βn−k .

IPEC 2016



24:6 Improved Bounds for Minimal Feedback Vertex Sets in Tournaments

Case 3: There is a vertex v ∈ V ′ that is not contained in any cycle of T . Then, a set
W ⊇ V ′ is a maximal transitive vertex set of T if and only if W \{v} ⊇ V ′ \{v} is a maximal
transitive vertex set of T − v. This yields

M(T, V ′) = M(T − {v}, V ′ \ {v}) ≤M(n− 1, k − 1) ≤ βn−k .

I Remark. We remark that it is this case where we rely on the validity of
Lemma 9, namely that M(ñ) < βñ for ñ < n. The reason is that possibly V ′ \ {v} = ∅, in
which case k − 1 = 0 and we need that M(n− 1, 0) ≤ βn−1.

Henceforth, consider pairs (T, V ′) to which Cases 1–3 do not apply.

I Observation 10. If Cases 1–3 do not apply to (T, V ′), then (i) any vertex of V ′ is contained
in at least one triangle (by Lemma 5), and (ii) any triangle contains at most one vertex
of V ′.

I Remark. We remark that with Case 1–3 we can already show a bound of M(T, V ′) ≤ βn−k0
for β0 = 1.6181 (under the conditions imposed by the lemma). By Observation 10, there is a
vertex v ∈ V ′ that forms a triangle with two vertices w1, w2 /∈ V ′. Any maximal transitive
vertex set W ⊇ V ′ (and thus containing v) cannot contain both w1 and w2. Therefore,
w1 ∈W implies w2 /∈W and we get

M(T, V ′) ≤ M(T − {w1}, V ′) +M(T − {w2}, V ′ ∪ {w1})
≤ M(n− 1, k) +M(n− 1, k + 1) ≤ βn−k−1

0 + βn−k−2
0 ,

which is bounded by βn0 for β0 = 1.6181.
The subsequent cases allow us to improve β0 = 1.6181 to β = 1.5949.

Case 4: There is a vertex w /∈ V ′ that is contained in two distinct triangles, both of which
contain a vertex from V ′ (possibly shared by both triangles). Then we are in one of two
cases, where vertices in V ′ are circled:

v

u1

w

u2

w u1

v1

u2

v2

Let (w, u1, v1), (w, u2, v2) be distinct triangles containing w, such that v1, v2 ∈ V ′ where
possibly v1 = v2. Let W be a maximal transitive vertex set of T containing V ′. Then either
w /∈W or w ∈W . Clearly, if w ∈W then u1, u2 /∈W . We therefore have

M(T, V ′) ≤ M(T − {w}, V ′) +M(T − {u1, u2}, V ′ ∪ {w})
≤ M(n− 1, k) +M(n− 2, k + 1) ≤ βn−k−1 + βn−k−3.

The last expression on the right-hand side is at most βn−k, since β ≥ 1.4656.

Case 5: There are vertices v ∈ V ′ and w1, w2 ∈ V (T )\V ′ that form a triangle, such that w1
also belongs to triangles (w1, u1, u2), (w1, u2, u3) for some u1, u2, u3 ∈ V (T ) \ {v, w2}.



M. Mnich and E. Teutrine 24:7

w1 w2

v

u1

u2

u3

Then we can assume that u1, u2, u3 ∈ V (T ) \ V ′, as otherwise Case 2 or Case 4 would apply.
Any transitive vertex set W ⊇ V ′ either contains w1 or not. If w1 ∈ W then w2 /∈ W .
Moreover, w1 ∈W implies that either u2 /∈W , or u2 ∈W but u1, u3 /∈W . Thus,

M(T, V ′) ≤ M(T − {w1}, V ′) +M(T − {w2}, V ′ ∪ {w1})
≤ M(T − {w1}, V ′) +M(T − {w2, u2}, V ′ ∪ {w1})

+M(T − {w2, u1, u3}, V ′ ∪ {w1, u2})
≤ M(n− 1, k) +M(n− 2, k + 1) +M(n− 3, k + 2)
≤ βn−k−1 + βn−k−3 + βn−k−5 .

The last expression on the right-hand side is at most βn−k, since β ≥ 1.5702.

Henceforth, we assume that Cases 1-5 do not apply to (T, V ′). Then some vertex v0 ∈ V ′
forms a triangle with some w1, w2 ∈ V (T ) \V ′, as Cases 1-3 do not apply. For i = 1, 2, let ∆i

be the set of triangles ti = (ui, vi, wi) that are disjoint from w3−i and for which T [{ui, vi, v′}]
is acyclic for all v′ ∈ V ′. Consequently, all triangles in ∆1∪∆2 are disjoint from V ′, as Case 4
does not apply. Further, all triangles in ∆i are pairwise edge-disjoint (as Case 5 does not
apply), and therefore intersect only in wi.

To prove an upper bound on M(T, V ′), we again distinguish the maximal transitive
vertex sets that contain w1 or w2, from those that do not contain either of them. Let W be
a maximal transitive vertex set of T containing V ′.

First consider that w1, w2 /∈ W . Then, T [W ∪ {wi}] contains a cycle for i = 1, 2, by
maximality of W . Thus, by Lemma 5, there is a triangle t = (wi, z1, z2) for some z1, z2 ∈W .
We have that t ∈ ∆i, since z1, z2 do not form a triangle with any v′ ∈ V ′ as z1, z2 ∈ W .
Thus, those W with w1, w2 /∈ W can be partitioned into |∆i| classes, where the r-th class
contains the sets W that contain the two vertices of the r-th triangle in ∆i.

To use this argument effectively, we need some further observations about the relation
among triangles in ∆1 ∪∆2. Consider two triangles tri = (uri , vri , wi), tsi = (usi , vsi , wi) ∈ ∆i:

wi

uri

vriusi

vsi

Since all triangles that contain wi are pairwise edge-disjoint (as Case 5 does not apply),
the edge between uri and vsi has to be directed from vsi to uri ; else, wi, uri , vsi would form a
triangle that is not edge-disjoint from the triangle wi, uri , vri . Likewise, the edge between usi
and vri has to be directed from vri to usi . Ignoring symmetries obtained by swapping the roles
of tri and tsi , there are only two possibilities how the two remaining edges (between uri , usi
and vri , vsi ) can be oriented:

IPEC 2016



24:8 Improved Bounds for Minimal Feedback Vertex Sets in Tournaments

wi

uri

vriusi

vsi

wi

uri

vriusi

vsi

We refer to the situation in the left figure as Case A, and to the situation in the right figure
as Case B. Note that in Case A, (uri , usi , vsi ) and (vri , usi , vsi ) form triangles; while in Case B,
triangles are formed by (uri , usi , vsi ) and (uri , vri , vsi ).

I Observation 11. In Case A, usi , vsi ∈W implies that uri , vri /∈W . In Case B, uri , vri ∈W
implies that vsi /∈W ; and usi , vsi ∈W implies that uri /∈W .

Thus, for each tri = (uri , vri , wi) ∈ ∆i let Vtr
i
be the set of vertices that are excluded from

those W with uri , vri ∈W due to Observation 11.
In Lemma 12, we will show that any two triangles in ∆1 and ∆2 are vertex-disjoint.

Therefore, for each tri ∈ ∆i, every vertex in Vtr
i
is not contained in any triangle of ∆3−i. This

implies that for any pair of triangles t1 ∈ ∆1, t2 ∈ ∆2 the sets Vt1 , Vt2 are disjoint. Altogether,
this means that we can bound the number of maximal transitive vertex sets W ⊇ V ′ not
containing w1, w2 from above by∑

t=(w1,u1,u2)∈∆1

∑
t′=(w2,u′

1,u
′
2)∈∆2

M(T − {w1, w2} − Vt − Vt′ , V ′ ∪ {u1, u2, u
′
1, u
′
2})

≤
∑
t∈∆1

∑
t′∈∆2

βn−2−|Vt|−|Vt′ |−(k+4) ≤ βn−k−6
∑
t∈∆1

β−|Vt|
∑
t′∈∆2

β−|Vt′ |

︸ ︷︷ ︸
(?)

. (2)

Thus, our goal is now to bound (?). Fix i ∈ {1, 2}. Let t1i , . . . , t
|∆i|
i be an ordering

of the triangles in ∆i such that |Vtr
i
| ≤ |Vts

i
| for 1 ≤ r < s ≤ |∆i|. Then for any pair

r, s ∈ {1, . . . ,∆i} with r 6= s, Observation 11 implies

|Vts
i
∩ {uri , vri }|+ |Vtri ∩ {u

s
i , v

s
i }| = 2 .

Thus, for any r < s, since β ≥ 1, we get

β
−|Vts

i
| + β

−|Vtr
i
| ≤ β

−(|Vts
i
∪{ur

i ,v
r
i }|) + β

−(|Vtr
i
\{us

i ,v
s
i }|) .

Thus, we can bound (?) by the case where for any r < s,

|Vts
i
∩ {uri , vri }| = 2 ∧ |Vtr

i
∩ {usi , vsi }| = 0 .

Hence, we can assume that |Vtr
i
| = 2(r − 1) for all r = 1, . . . , |∆i|. We obtain

∑
t∈∆i

β−|Vt| ≤
|∆i|−1∑
r=0

β−2r ≤
∞∑
r=0

β−2r = β2

β2 − 1 .

Consequently, (?) is bounded by ( β2

β2−1 ) · ( β2

β2−1 ) = β4

(β2−1)2 .
Let us now prove that indeed any triangle in ∆1 is disjoint from every triangle in ∆2.

I Lemma 12. Let v0, w1, w2,∆1 and ∆2 be defined as before. Then any triangle in ∆1 is
vertex-disjoint from every triangle in ∆2.



M. Mnich and E. Teutrine 24:9

Proof. First note that V ′ is a transitive set, as Case 1 does not apply. Thus, the vertices
in V ′ admit a topological order such that v′x → v′y for all v′x, v′y ∈ V ′ with x > y. Second,
for each vertex z ∈ V (T ) \ V ′ the set V ′ ∪ {z} is a transitive set, as Case 2 does not apply.
Therefore, the vertices of V (T ) \ V ′ can be partitioned into layers Z1, . . . , Z` such that for
each z ∈ Zr, z → v′s if and only if s < r.

We claim that for i = 1, 2, the vertices of any triangle (uri , vri , wi) ∈ ∆i all belong to the
same layer. This implies in particular that for i = 1, 2, all vertices in triangles of ∆i belong
to the same layer. Since w1 and w2 are in different layers (as v0 → w1, w2 → v0), this shows
that any triangle in ∆1 is vertex-disjoint from any triangle in ∆2.

To show the claim, let i ∈ {1, 2} and let (uri , vri , wi) ∈ ∆i be a triangle with wi →
uri , u

r
i → vri , v

r
i → wi. Suppose that uri ∈ Zu, vri ∈ Zv, wi ∈ Zw for some u, v, w ∈ {1, . . . , l}.

So we must show that u = v = w to prove the claim.
If u < w then wi, u

r
i , v
′
u form a triangle, contradicting that Case 4 does not apply. If

v > w then wi, vri , v′v form a triangle, again contradicting that Case 4 does not apply. Hence,
v ≤ w ≤ u holds. If v < u then uri , vri , v′v form a triangle, contradicting the definition of ∆i.
So indeed u = v = w, and the claim holds. J

To complete the proof of Lemma 8, we must also consider those W ⊇ V ′ that contain
exactly one of w1, w2 (recall that at most one of w1, w2 belongs to W as v0 ∈W , so wi ∈W
implies w3−i /∈W for i = 1, 2). Overall, if Cases 1–5 do not apply, with the obtained bound
on (?), by (2) we have

M(T, V ′) ≤ M(T − {w1}, V ′ ∪ {w2}) +M(T − {w2}, V ′ ∪ {w1}) + βn−6−k · β4

(β2 − 1)2

≤ 2 ·M(n− 1, k + 1) + βn−6−k · β4

(β2 − 1)2 ≤ 2 · βn−k−2 + βn−k−2

(β2 − 1)2 .

The last expression on the right-hand side is at most βn−k, since β ≥ 1.5703.
This completes the proof of Lemma 8. J

5 Discussion

In this paper we narrowed the gap between the lower and upper bounds for the maximum
number M(n) of minimal FVS in n-vertex tournaments, to 1.5448n ≤M(n) ≤ 1.5949n. It
remains to determine the growth of M(n) exactly—Gaspers and Mnich [6] conjectured that
M(n) ≤ 21n/7 ≈ 1.5448n for all n ∈ N, and we re-pose this conjecture here.

In a different direction, it would be interesting to prove non-trivial upper bounds of the
form cn for some constant c < 2, on the number of minimal FVS in general directed graphs.
As far as we know, currently only a bound of 2n/

√
n is known, implied by Sperner’s Lemma.

Acknowledgements. We thank the anonymous reviewers of an earlier version for helpful
remarks how we could improve the presentation of these results.

References
1 Jeffrey S. Banks. Sophisticated voting outcomes and agenda control. Soc. Choice Welf.,

1(4):295–306, 1985.
2 Felix Brandt, Andre Dau, and Hans Georg Seedig. Bounds on the disparity and separation

of tournament solutions. Discrete Appl. Math., 187:41–49, 2015.

IPEC 2016



24:10 Improved Bounds for Minimal Feedback Vertex Sets in Tournaments

3 Mao-Cheng Cai, Xiaotie Deng, and Wenan Zang. An approximation algorithm for feedback
vertex sets in tournaments. SIAM J. Comput., 30(6):1993–2007, 2001.

4 Michael Dom, Jiong Guo, Falk Hüffner, Rolf Niedermeier, and Anke Truss. Fixed-parameter
tractability results for feedback set problems in tournaments. J. Discrete Algorithms,
8(1):76–86, 2010.

5 Fedor V. Fomin, Serge Gaspers, Daniel Lokshtanov, and Saket Saurabh. Exact algorithms
via monotone local search. In Proc. STOC 2016, pages 764–775, 2016.

6 Serge Gaspers and Matthias Mnich. Feedback vertex sets in tournaments. J. Graph Theory,
72(1):72–89, 2013.

7 Sushmita Gupta, Venkatesh Raman, and Saket Saurabh. Maximum r-regular induced sub-
graph problem: fast exponential algorithms and combinatorial bounds. SIAM J. Discrete
Math., 26(4):1758–1780, 2012.

8 Richard M. Karp. Reducibility among combinatorial problems. In Complexity of computer
computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights,
N.Y., 1972), pages 85–103. Plenum, New York, 1972.

9 Mithilesh Kumar and Daniel Lokshtanov. Faster exact and parameterized algorithm for
feedback vertex set in tournaments. In Proc. STACS 2016, volume 47 of Leibniz Int. Proc.
Informatics, pages 49:1–49:13, 2016.

10 Matthias Mnich, Virginia Vassilevska Williams, and László A. Végh. A 7/3-approximation
for feedback vertex sets in tournaments. In Proc. ESA 2016, volume 57 of Leibniz Int. Proc.
Informatics, pages 67:1–67:14, 2016.

11 J.W. Moon. On maximal transitive subtournaments. Proc. Edinburgh Math. Soc. (2),
17:345–349, 1970/71.

12 Benno Schwikowski and Ewald Speckenmeyer. On enumerating all minimal solutions of
feedback problems. Discrete Appl. Math., 117(1-3):253–265, 2002.

13 Ewald Speckenmeyer. On feedback problems in digraphs. In Proc. WG 1989, volume 411
of Lecture Notes Comput. Sci., pages 218–231. Springer, 1990.

14 Gerhard J. Woeginger. Banks winners in tournaments are difficult to recognize. Soc. Choice
Welf., 20(3):523–528, 2003.

15 Gerhard J. Woeginger. Open problems around exact algorithms. Discrete Appl. Math.,
156(3):397–405, 2008.



Ground Reachability and Joinability in Linear
Term Rewriting Systems are Fixed Parameter
Tractable with Respect to Depth
Mateus de Oliveira Oliveira∗

Department of Informatics, University of Bergen, Norway
mateus.oliveira@uib.no

Abstract
The ground term reachability problem consists in determining whether a given variable-free term
t can be transformed into a given variable-free term t′ by the application of rules from a term
rewriting system R. The joinability problem, on the other hand, consists in determining whether
there exists a variable-free term t′′ which is reachable both from t and from t′. Both problems
have proven to be of fundamental importance for several subfields of computer science. Never-
theless, these problems are undecidable even when restricted to linear term rewriting systems.
In this work, we approach reachability and joinability in linear term rewriting systems from the
perspective of parameterized complexity theory, and show that these problems are fixed para-
meter tractable with respect to the depth of derivations. More precisely, we consider a notion
of parallel rewriting, in which an unbounded number of rules can be applied simultaneously to
a term as long as these rules do not interfere with each other. A term t1 can reach a term t2 in
depth d if t2 can be obtained from t1 by the application of d parallel rewriting steps. Our main
result states that for some function f(R, d), and for any linear term rewriting system R, one can
determine in time f(R, d) · |t1| · |t2| whether a ground term t2 can be reached from a ground term
t1 in depth at most d by the application of rules from R. Additionally, one can determine in time
f(R, d)2 · |t1| · |t2| whether there exists a ground term u, such that u can be reached from both
t1 and t2 in depth at most d. Our algorithms improve exponentially on exhaustive search, which
terminates in time 2|t1|·2O(d) · |t2|, and can be applied with regard to any linear term rewriting
system, irrespective of whether the rewriting system in question is terminating or confluent.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems, F.2 Analysis
of Algorithms and Problem Complexity

Keywords and phrases Linear Term Rewriting Systems, Ground Reachability, Ground Joinabil-
ity, Fixed Parameter Tractability

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.25

1 Introduction

Term rewriting systems have played a major role in several fields of computer science,
such as, functional programming languages, specification of abstract data types, symbolic
computation and automated theorem proving [16, 1, 2]. Many practical and theoretical
aspects of the theory of term rewriting system revolve around two fundamental problems:
ground reachability, and ground joinability. In the former, given a rewriting system R and

∗ The author is currently supported by the Bergen Research Foundation. This work was concluded while
the author was at the Czech Academy of Sciences, supported by the European Research Council (grant
number 339691).

© Mateus de Oliveira Oliveira;
licensed under Creative Commons License CC-BY

11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin; Article No. 25; pp. 25:1–25:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.25
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


25:2 Reachability in Linear Term Rewriting Systems

two ground terms t and t′ one is asked to determine whether t′ can be reached from t by the
application of a sequence of rewriting rules from R. In the latter, joinability, one is asked
whether there is a ground term u which can be reached from both t and t′. Both problems
are known to be decidable for several restricted classes of rewriting systems, such as ground
rewriting systems, right-ground systems, shallow right-linear systems, and left-linear growing
systems [13, 14, 15, 18]. On the other hand, ground reachability and joinability on linear
term rewriting systems are known to be undecidable if no other restriction is imposed [20].
Indeed, it can be shown that for each Turing machine M , there exists a linear term rewriting
system RM such that the halting problem for M can be reduced to ground reachability
(joinability) in RM [20].

A rewriting system R is said to be linear if it contains only rules of the form l → r

where var(r) ⊆ var(l) and each variable occurs at most once in l, and at most once in
r. For instance, the associativity rule x · (y · z) → (x · y) · z is linear. In this work, we
show that despite the undecidability of ground state reachability and joinability for linear
term rewriting systems, both problems are fixed parameter tractable with respect to the
depth of derivations. In this context, we consider a notion of parallel rewriting in which an
unbounded number of rules can be applied simultaneously to a term, as long as these rules
do not interfere with each other [19, 4]. Such a simultaneous application of independent
rewriting rules is known in term-rewriting theory literature as multi-step. We say that a
term t can reach a term t′ in depth at most d if t′ can be obtained from t by the application
of d multi-steps.

I Theorem 1 (Main Theorem). There is a function f(R, d) such that for any set of linear
term rewriting rules R, and any ground terms t and t′ over Σ,

one can determine in time f(R, d) · |t| · |t′| whether t′ can be reached from t in depth at
most d.
one can determine in time f(R, d)2 · |t| · |t′| whether there exists a ground term u such
that u is reachable in depth at most d from both t and t′.

Our algorithms improve substantially on the running time of exhaustive search. We
note that given a term t of size |t|, there may be up to 2O(|t|) possible ways of applying
simultaneous rewriting rules to t. Additionally, if a term t′ is obtained from t in depth d,
then the size of t′ may be as large as |t| · 2O(d). Therefore, as many as 2|t|·2O(d) distinct terms
may be derived from a term t in depth at most d. Indeed this upper bound is asymptotically
tight and can be matched even in ground rewriting systems. Consider for instance, a ranked
alphabet Σ = {g, a} consisting of one binary function symbol g, one constant symbol a, and
a term rewriting system R consisting of a single rewriting rule a → g(a, a). Then for any
term t over Σ, one can derive at least 2|t|·2Ω(d) distinct terms from t in depth at most d.
In other words, even when d is a constant, determining whether a term t′ can be reached
from a term t in depth at most d by exhaustive search takes time exponential in t in the
worst case, while using our approach, this problem can be solved in time f(R, d) · |t| · |t′|.
We also should note that it is straightforward to define infinite families of pairs of terms
(tn, t′n) such that t′n can be reached from tn in a single multi-step, but which require the
application of an unbounded number of sequential individual rewriting steps. For instance,
consider the term tn = a1 + b1 + a2 + b2 + ...+ an + bn where ai = 1 , bi = 2 and + is an
associative commutative binary function symbol. Then in one multi-step one can reach the
term t′n = b1 + a1 + b2 + a2 + ... + bn + an, whereas one would need to use n individual
rewriting steps to derive t′ from t. Note that the larger the n, the larger is the number of
individual rewriting rules necessary to reach t′ from t, while a single multi-step is sufficient
for any n.



M. de Oliveira Oliveira 25:3

2 Term Rewriting and Tree Automata

In this section we define standard notions from term rewriting systems and tree automata.
Extensive treatments of term rewriting theory can be found in [1, 7] and on tree-automata
theory can be found in [5, 12].

2.1 Terms
The set of natural numbers, excluding 0, is denoted by N. We let N0 = N ∪ {0}. A ranked
alphabet is a finite set Σ of function symbols together with an arity function a : Σ → N0.
Intuitively the arity a(f) of a symbol f ∈ Σ specifies the number of inputs of f . A function
symbol of arity 0 is called a constant symbol. We let a(Σ) = max{a(f) | f ∈ Σ} be the
maximum arity of a symbol in Σ. Let X be a finite set of variables and Σ be a ranked
alphabet. The set Ter(Σ ∪X) of all terms over Σ ∪X is inductively defined as follows:

If x is a variable in X then x is a term in Ter(Σ ∪X)
if f ∈ Σ and t1, ..., ta(f) are terms in Ter(Σ ∪ X) then f(t1, t2, ..., ta(f)) is a term in
Ter(Σ ∪X).

If f is a function symbol of arity 0 then we write simply f to denote the term f(). A
position for a term t is a string over N. The empty string is denoted by ε. The set of positions
for a term t is inductively defined as follows.

Pos(t) = {ε} if t ∈ X.
Pos(f(t1, ..., ta(f))) = {ε} ∪ {i.p | 1 ≤ i ≤ a(f), p ∈ Pos(ti)}

We note that if t is either a variable or a function symbol of arity 0, then Pos(t) = {ε}.
We let |t| = |Pos(t)| denote the size of the term t. The subterm t|p of t at position p is
inductively defined as follows. At the base case, t|ε = t. Now, if t = f(t1, t2, ..., ta(f)), then
for each j ∈ {1, ..., a(f)} and each position jp ∈ Pos(t), t|jp = tj |p.

Let t = f(t1, ..., ta(f)) be a term in Ter(Σ ∪X). We let rs(t) = f be the root symbol of t.
If t = x for a variable x ∈ X then we set rs(t) = x. For each p ∈ Pos(t), we let t(p) = rs(t|p)
denote the root symbol of the subterm of t at position p.

We denote by var(t) the set of variables occurring in t. A ground term is a term t such
that var(t) = ∅. In other words, a term t is ground if it contains no variables. In some places
we may write t ∈ Ter(Σ) to indicate that t is a ground term.

A substitution is a function σ : X → Ter(Σ ∪X) mapping variables in X to terms in
Ter(Σ ∪X). If t is a term, and σ is a substitution, then we denote by tσ the term that is
obtained from t by replacing each variable x ∈ X with the term σ(x). If t and s are terms
and p is a position in Pos(t) then we denote by t[s]p the term that is obtained from t by
replacing the subterm t|p with the term s.

2.2 Term Rewriting
A rewriting rule is a pair l→ r where l and r are terms in Ter(Σ ∪X) with var(r) ⊆ var(l).
We say that a rule l → r is linear if each variable occurs at most once in l and at most
once in r. Note that this definition of linearity allows var(l) ∩ var(r) 6= ∅. A term rewriting
system is any finite set R of rewriting rules. We say that R is linear if each rewriting rule
l→ r in R is linear.

Let t be a term in Ter(Σ ∪X), p be a position in Pos(t), and l → r be a rewriting
rule in R. We say that l → r can be applied to t at position p if there is a substitution
σ : X → Ter(Σ ∪X) such that t|p = lσ. In this case, we let t′ = t[rσ]p be the term that is
obtained from t by the application of the rewriting rule l→ r at position p. We write t→R t′

IPEC 2016



25:4 Reachability in Linear Term Rewriting Systems

to denote that t′ can be obtained from t by the application of some rewriting rule l→ r ∈ R

at some position p of t. We say that →R is the relation induced by R on Ter(Σ ∪X). We
let →∗R be the transitive closure of →R. In other words, t→∗R t′ if and only if t′ is obtained
from t by the application of a finite number of rewriting rules from R.

2.3 Tree Automata
Let Q be a finite set of symbols of arity 0 called states. The elements of the set Ter(Σ ∪Q)
are called configurations. A transition is a rewriting rule of the form f(q1, ..., qa(f))→ q for
some function symbol f ∈ Σ and states q1, ..., qa(f), q ∈ Q. A (bottom-up non-deterministic)
finite tree-automaton over Σ is a tuple A = (Q,Σ, F,∆) where F ⊆ Q is a set of final states
and δ is a set of transitions. Note that ∆ should be regarded as a term rewriting system
acting on terms in Ter(Σ ∪Q). We may write →A to denote the rewriting relation induced
by the transitions ∆. Analogously, we may write →∗A to denote →∗∆. The tree language
recognized by a state q in A is defined as

L(A, q) = {t ∈ Ter(Σ) | t→∗A q}.

Intuitively, L(A, q) is the set of all ground terms in Ter(Σ) that can be reduced to the state
q by the application of transitions (rewriting rules) in ∆. The tree language accepted by A
is defined as L(A) =

⋃
q∈F L(A, q). As an abuse of notation we will often write q ∈ A and

t→ q ∈ A to denote respectively that q ∈ Q and t→ q ∈ ∆.
The size of A, which is defined as |A| = |Q| + |∆|, measures the number of states in

Q plus the number of transitions in ∆. If f(q1, ..., qa(f))→ q is a transition in ∆, then we
say that q is the consequent of f(q1, ..., qa(f)) → q, while each state in {q1, ..., qa(f)} is an
antecedent of f(q1, ..., qa(f))→ q. We say that q is incident with a transition if it is either
an antecedent or a consequent of the transition. The in-degree of a state q in Q, denoted
by δ(q) is the number of transitions in ∆ that have q as a consequent. The maximum state
in-degree of A, defined as δ(A) = maxq∈Q δ(q), is the maximum in-degree of a state in A.
We say that A is reachable if for each state q ∈ Q the language L(A, q) is non-empty.

I Lemma 2 (Membership [10]). Let A be a tree automaton over Σ, and let t be a ground
term in Ter(Σ). One can determine in time O(|t| · |A|) whether t ∈ L(A).

I Lemma 3 (Emptiness of Intersection [10]). Let A and A′ be two tree automata over Σ.
One can determine in time O(|A| · |A′|) whether L(A) ∩ L(A′) = ∅.

2.4 Simultaneous Rewriting via Multi-Steps
In this work we will be interested in a notion of rewriting that allows for the simultaneous
application of several rules to a term as long as these rules do not interfere with each other.
Such a notion of simultaneous rewriting can be formalized via the notion of multi-step
[19]. A more detailed treatment rewriting by multi-steps can be found in [4] (Chapter 4).
When restricted to the setting of rewriting on ground terms the notion of multi-step can be
formalized as in Definition 4.

I Definition 4 (Multi-Step). Let R be a term rewriting system. The multi-step relation
⊆ Ter(Σ)× Ter(Σ) induced by R is inductively defined as follows.

1. f(t1, ..., ta(f)) f(t′1, ..., t′a(f)) if f ∈ Σ and ti t′i for each i ∈ {1, ..., a(f)}.
2. lσ rθ if l→ r ∈ R, and σ, θ : X → Ter(Σ) are substitutions such that σ(x) θ(x)

for each variable x ∈ var(l).



M. de Oliveira Oliveira 25:5

Figure 1 The application of a multi-step t t′ where t = (((a·b)·c)·d)·e and t′ = (a·(b·c))·(d·e).
This multi-step t t′ intuitively corresponds to the simultaneous application of two instances of
the associativity rule (x · y) · z → x · (y · z) to t. The regions surrounded by red curves indicate the
portions of the term identifying a match for the left-hand side of the rule. The multistep can be
decomposed in two ways as a sequence of individual rewriting rules: either as t→R t1 →R t′ or as
t→R t2 →R t′.

Note that the base case of the inductive definition is embedded in Condition 1. More
precisely, for each function symbol f ∈ Σ of arity 0, we have that f f . We note that a
multi-step t t′ may be decomposed in several different ways as sequences of applications
of individual rewriting rules from R. For instance, in Figure 1 we depict the application of a
multi-step to a term t. Intuitively, this multi-step t t′ corresponds to the simultaneous
application of two instances of the associativity rule (x · y) · z → x · (y · z). There are
two different ways of decomposing t t′ into sequences of individual rewriting rules:
t→R t1 →R t′ and t→R t2 →R t′.

We say that a term t′ is derived from a term t in depth at most d if there is a sequence of
multi-steps t0 t1 ... td such that t0 = t and td = t′. We write t d

t′ to denote
that t′ can be obtained from t in depth at most d.

3 Tree Automata Completion for Multi-Steps

Tree Automata completion is a powerful set of techniques which has found many applications
in the field of termination analysis of rewriting systems [9, 11, 17, 8]. In this section we show
that completion techniques, which have been so far used only in the context of sequential
term rewriting, can be used to characterize derivability in one multi-step on linear term
rewriting systems. More precisely, given a tree-automaton A and a linear term rewriting
system R, we use a special instance of the tree-automata completion algorithm introduced in
[9] in the context of sequential rewriting to construct a particular tree-automaton N (A,R).
Subsequently, in Lemma 7 we show that the language accepted by N (A,R) consists precisely
of the set of terms that can be obtained from terms in L(A) by the application of one
multi-step. A crucial aspect of our construction is that the size of the tree automaton
N (A,R) is upper bounded by g(R, δ) · |A| where g(R, δ) is a function that depends only on
the term rewriting system R and on the maximum state in-degree δ of A. In other words,

IPEC 2016



25:6 Reachability in Linear Term Rewriting Systems

Figure 2 Graphical representation of the tree automata associated with terms l, r, t and t′

respectively. The symbols x, y and z are variables. The symbol � is a function symbol of arity 2,
and a, b, c are constants (function symbols of arity 0). States are denoted by black dots.

the size of N (A,R) grows linearly with the size of A. This linear growth will be crucial for
our fixed parameter tractability results.

I Definition 5 (Tree Automaton Associated with a Term). Let t be a term in Ter(Σ ∪X).
The tree automaton associated with t, denoted by A(t) = (Q,Σ, F,∆) is defined as follows.

Q = {qtp | p ∈ Pos(t)} F = {qtε}

∆ = {f(qtp.1, ..., qtp.a(f))→ qtp | t(p) = f}
(1)

Intuitively, if t is a ground term, then A(t) is the ’simplest’ (but not necessarily minimal)
tree automaton that accepts t and no other term. On the other hand, if t has some variable
then the language of A(t) is empty. Nevertheless, this is not relevant, since in this case
these tree-automata will be glued to other tree-automata in order to define a meaningful
tree-language. In Figure 2 we depict tree-automata associated with several terms with and
without variables.

Let A = (Q,Σ, F,∆) be a tree automaton and let l be a term in Ter(Σ ∪X). A state-
substitution for l is a function γ : var(l)→ Q that associates with each variable x ∈ var(l) a
state γ(x) ∈ Q. Note that the term lγ obtained from l by replacing each variable x with the
state γ(x) is a configuration in Ter(Σ ∪Q). Also note that if l is a ground term in Ter(Σ),
then the only state-substitution for l is the empty function γ :→ Q. In this case, lγ = l. We
say that a state-substitution γ : var(l) → Q is good for a pair (q, l) if lγ →∆ q. In other
words, γ is good for (q, l) if the configuration lγ can be reduced to state q by the application
of transitions in ∆. We letM(A, q, l) be the set good state-substitutions for (q, l).

Let l→ r be a linear term rewriting rule over Σ. We let qlε denote the unique accepting
state of A(l), and qrε denote the unique accepting state of A(r). Additionally, for each
variable x ∈ var(l) ∩ var(r), we let qlx denote the unique state of A(l) corresponding to
the variable x, and we let qrx denote the unique state of A(r) corresponding to the variable
x. Now let A be a tree automaton over Σ, and γ : var(l) → Q be a state-substitution in
M(A, q, l). We denote by C(A, q, l→ r, γ) the tree automaton which is obtained by creating
a fresh copy of A(r), and by renaming the minimal and maximal states of A(r) as follows.

1. Rename the state qrε in A(r) to the state q.
2. For each variable x ∈ var(l) ∩ var(r), rename the state qrx of A(r) to the state γ(x).

Now consider the tree automaton A ∪ C(A, q, l→ r, γ). Intuitively, this tree automaton
is obtained by creating a copy of A(r) and subsequently, by identifying its accepting state qrε
with the state q of A, and by identifying, for each variable x ∈ var(l) ∩ var(r), the state qrx
with the state γ(x). This process is illustrated in Figure 3.



M. de Oliveira Oliveira 25:7

Figure 3 Let l = (x · y) · z and r = x · (y · z). Left: The disjoint union of a tree automaton A
with the tree automaton A(r). The state-substitution γ maps the state qlx to q1 the state qly to q2

and the state qlz to q3. The portion of A in blue shows that the configuration lγ can be reduced
to the state q using transitions of A. Right: The tree automaton A ∪ C(A, γ, l → r) obtained by
identifying qrε with q, qrx with q1, qry with q2, and qrz with q3. The tree automaton C(A, q, l→ r, γ) is
illustrated in red.

I Definition 6 (Next Layer Operator). Let R be a linear term rewriting system and A be a
reachable tree automaton. The tree automaton N (A,R) is defined as follows.

N (A,R) = A ∪
⋃

q ∈ Q, l→ r ∈ R
γ ∈ M(A, q, l)

C(A, q, l→ r, γ). (2)

We say that each sub-automaton C(A, q, l → r, γ) of N (A,R) is a right-component of
N (A,R). Intuitively, N (A,R) may be regarded as being constructed by adding one right
component C(A, q, l→ r, γ) to A at a time, in any desired order (See Figure 4).

The next lemma states that N (A,R) accepts precisely those terms that can be reached
from terms in L(A) by the application of one multi-step.

I Lemma 7. Let R be a linear term rewriting system, and let A be a tree automaton over
Σ. The tree automaton N (A,R) accepts the following language.

L(N (A,R)) = {t′ | ∃t ∈ L(A), t t′}. (3)

Proof. Let A = (Q,Σ, F,∆) and N (A,R) = (Q ∪Q′, Σ, F,∆ ∪∆′) where Q ∩Q′ = ∅ and
∆ ∩∆′ = ∅. Note that the final states of N (A,R) are the same as those of A.

Completeness Proof

First we show that L(N (A,R)) ⊇ {t′ | ∃t ∈ L(A), t t′}. It is enough to show that for
each state q ∈ Q if t ∈ L(A, q) and t t′ then t′ ∈ L(N (A,R), q). The proof of this claim
is by induction on the structure of t, using Definition 4.

In the base case of Condition 1 of Definition 4, t = a where a is a function symbol of
arity 0 and t′ = a. In this case the claim follows trivially. In the base case of Condition 2 of
Definition 4, both t and t′ are ground terms and t→ t′ belongs to R. Let γ : ∅ → Q be the
empty substitution. Since the term t′ reaches the state q in C(A, q, a→ t′, γ) we have that
t′ ∈ L(N (A,R), q).

For the inductive step of Condition 1, let t = f(t1, ..., ta(f)) and t′ = f(t′1, ..., t′a(f))
where ti t′i for each i ∈ {1, ..., a(f)}. Since t ∈ L(A, q), there exists a transition

IPEC 2016



25:8 Reachability in Linear Term Rewriting Systems

Figure 4 Left: A tree automaton A which recognizes the language L(A) = {(((a · b) · c) · d) · e}.
Right: The tree automaton N (A,R) which recognizes the language L(N (A,R)) = {(((a · b) · c) ·
d) · e, ((a · (b · c)) · d) · e, ((a · b) · (c · d)) · e, ((a · b) · c) · (d · e), (a · (b · c)) · (d · e)}. The three right
components of N (A,R) are depicted in red.

(q1, ..., qa(f), f)→ q in A such that ti reaches qi for each i ∈ {1, ..., a(f)}. By the induction
hypothesis, since ti t′i, we have that t′i ∈ L(N (A,R), qi). Therefore, f(t′1, ..., t′a(f)) ∈
L(N (A,R), q).

For the inductive step of Condition 2, let t = lσ for some substitution σ : X → Ter(Σ),
and let t′ = rθ where for each variable x ∈ var(l), σ(x) θ(x). Since t ∈ L(A, q), there
exists a state substitution γ : var(l)→ Q such that lγ →∗∆ q. By the induction hypothesis,
θ(x) ∈ L(N (A,R), γ(x)) for each x ∈ var(l). Additionally, rγ →∗∆′ q in the right component
C(A, q, l→ r, γ). This implies that t′ ∈ L(N (A,R), q).

Soundness Proof

Now we show that L(N (A,R)) ⊆ {t′ | ∃t ∈ L(A), t t′}. It is enough to show that for
each state q of A, if t′ ∈ L(N (A,R), q) then there is a ground term t ∈ L(A, q) such that
t t′. The proof is by well founded induction with terms ordered by the strict subterm
relation.

Let q ∈ Q and let t ∈ L(N (A,R), q). In the base case, let t′ = a for some function
symbol a of arity 0. Let a → q be a transition in N (A,R). If a → q belongs to ∆ then
a ∈ L(A, q) and additionally, by the base case of Condition 1 of Definition 4, we have that
a a. If a → q belongs to ∆′, then there is some rewriting rule l → r in R and some
state-substitution γ : var(l) → Q such that a → q is a transition in C(A, q, l → r, γ). Let
σ : var(l) → Ter(Σ) be a substitution that associates with each variable x ∈ var(l) an
arbitrary term in L(A, γ(x)). Note that such term is guaranteed to exist, since by assumption
A is reachable. Then the term lσ belongs to L(A, q). Additionally, by Condition 2 of
Definition 4, we have that lσ aτ where τ : ∅ → Ter(Σ) is the empty substitution. This
verifies the claim in the base case.

Now let t′ = f(t′1, ..., t′a(f)) where f has arity at least 1. Then there exists a transition
f(q1, ..., qa(f))→ q in ∆ ∪∆′ such that t′i ∈ L(N (A), qi) for each i ∈ {1, ..., a(f)}. There are
two cases to be analysed.
1. If f(q1, ..., qa(f)) → q belongs to ∆ then all states q1, ..., qa(f) belong to Q. In this

case, by the induction hypothesis, there exists terms t1, ..., ta(f) such that ti t′i and
ti ∈ L(A, qi) for each i ∈ {1, ..., a(f)}. This implies that the term t = f(t1, ..., ta(f)) is in
L(A, q) and additionally, by Condition 1 of Definition 4, we have that t t′.



M. de Oliveira Oliveira 25:9

2. If f(q1, ..., qa(f)) → q belongs to ∆′ then the states q1, ..., qa(f) belong to some right
component of N (A,R). In other words, there is some rewriting rule l → r in R, some
substitution θ : var(r) → Ter(Σ) and some state-substitution γ : var(l) → Q such
that t′ = rθ, lγ →∗∆ q and rγ →∗∆′ q and such that θ(x) ∈ L(N (A,R), γ(x)) for each
x ∈ var(r). By the induction hypothesis, for each x ∈ var(r) ⊆ var(l) there is a term
sx which belongs to L(A, γ(x)) and sx θ(x). Additionally, since A is reachable,
for each variable y ∈ var(l)\var(r) there is at least one term sy in L(A, γ(y)). Let
σ : var(l)→ Ter(Σ) be a substitution that sets σ(x) = sx for each variable x ∈ var(r),
and which sets σ(y) = sy for each variable y ∈ var(l)\var(r). Then the term lσ belongs
to L(A, q) and additionally, by Condition 2 of Definition 4, lσ rθ. J

4 Bounding the Size of N (A,R)

In this section we will establish an upper bound for the size of the tree automaton N (A,R) in
terms of the size of A, the maximum state in-degree of A, and several parameters extracted
from the term rewriting system R. Subsequently, we will use Lemma 7, together with the size
upper bound mentioned above to establish the fixed parameter tractability of reachability
and joinability in depth d.

A morphism from a tree automaton A = (Q,Σ, F,∆) to a tree automaton A′ =
(Q′, Σ, F ′, ∆′) is a function µ : Q→ Q′ such that for each transition f(q1, ..., qa(f))→ q in
∆, the transition f(µ(q1), ..., µ(qa(f))) → µ(q) is in ∆′. As an abuse of notation we write
µ : A → A′ to denote such a morphism.

Let l ∈ Ter(Σ ∪X) and A(l) be the tree automaton associated with l. We say that a
morphism µ : A(l) → A from A(l) to A is rooted at a state q ∈ A if µ(qlε) = q where qlε
is the unique maximal state of A(l). Each such morphism µ defines a state-substitution
γ : var(l) → Q which is defined by setting γ(x) = µ(qlx) for each variable x ∈ var(l).
Intuitively, the morphism µ specifies a run of the automaton A (i.e. a sequence of transitions
from A) which are applied to reduce the configuration lγ to the state q.

For each tree automaton A, each state q of A, and each positive integer s, we denote by
η(A, q, s) the set of all pairs (l, µ) where l is a term in Ter(Σ ∪X) of size at most s, and µ
is a morphism from A(l) to A rooted at q.

In the following lemma we show an upper bound on the size of η(A, q, s) in terms of the
maximum state in-degree of A.

I Lemma 8. Let A be a tree-automaton over Σ of maximum state in-degree δ, q be a state
of A, and s be a positive integer. Let a be the maximum arity of a function symbol in Σ.
Then |η(A, q, s)| ≤ (e ·max{δ, a})2s+1.

Proof. Let T (δ) be the rooted infinite δ-regular tree. Let bk,δ be the number of rooted
subtrees of T (δ) of size k. It is well known that bk,δ ≤

(
δ·k
k

)
(See for instance [6, 3]). Using

the inequality
(
n
k

)
≤
(
e·n
k

)k (where e ≈ 2.71 is the Euler number) we have that bk,δ ≤ (e · δ)k.
This implies that the number ck,δ of rooted subtrees of T (δ) of size at most k is upper
bounded by ck,δ ≤ (e · δ)k+1.

Now let U(A, q) be the unfolding of A rooted at q. Since the maximum in-degree of A is
δ, we have that U is a rooted infinite tree of degree at most max{a, δ}. Additionally, if l is a
term in Ter(Σ ∪X) of size s, then for each pair (l, µ) ∈ η(A, q, s) the image of A(l) under µ
on A corresponds unequivocally to a rooted subtree of U(A, q) of size at most 2s. Therefore,
the number of possible morphisms rooted at q from A(t) to A where t is a term of size s is
upper bounded by the number of rooted subtrees of U(A, q) of size at most 2s. This implies
that |η(A, q, s)| ≤ (e · δ)2s+1 if δ ≥ a, and |η(A, q, s)| ≤ (e · a)2s+1 if a ≥ δ. J

IPEC 2016



25:10 Reachability in Linear Term Rewriting Systems

The next lemma establishes an upper-bound for the size and for the state in-degree of
N (A,R) in terms of the size of A, state in-degree of A, and several parameters extracted
from the term rewriting system R.

I Lemma 9. Let A be a tree automaton of maximum in-degree δ. Let R be a linear term
rewriting system. Let s1 be the maximum size of the left-hand side of a rule in R, and s2
be the maximum size of a right-hand side of a rule in R. Let ρ be the maximum number of
rules in R with the same left-hand side.
1. The maximum in-degree of N (A,R) is at most δ + ρ · (e ·max{a, δ})2s1+1.
2. The size of N (A,R) is at most |A|+ 2 · s2 · ρ · (e ·max{a, δ})2s1+1 · |A|.
3. N (A,R) can be constructed in time O

(
s2 · ρ · (e ·max{a, δ})2s1+1 · (log |R|) · |A|

)
.

Proof.
1. Let q be a state of A. The in-degree of q in N (A,R) is equal to the in-degree of q in
A plus the number of right-components C(A, q, l→ r, γ) of N (A,R) rooted at q, where
l → r is a rule in R and γ is a good state-substitution for (q, l). By Lemma 8 there is
at most (e ·max{a, δ})2s1+1 pairs of the form (l, µ) where where l is a term of size at
most s1 and µ : A(l) → A is a morphism from A(l) to A rooted at q. Therefore the
number of components C(A, q, l→ r, γ) is upper bounded by (e ·max{a, δ})2s1+1. Since
the number of rules with same left-hand side is upper bounded by ρ, we have that each
pair (l, µ) ∈ η(A, q, s1) gives rise to at most ρ right components rooted at q. Therefore,
the in-degree of q in N (A,R) is at most δ + ρ · (e ·max{a, δ})2s1+1.

2. As argued in the previous item, the number of right components of N (A,R) rooted at q
is upper bounded by ρ · (e ·max{a, δ})2s1+1. Since each right-component C(A, γ, l→ r)
is isomorphic to A(r), we have that such component has size at most 2 · |r| ≤ 2 · s2.
Therefore, the size of N (A,R) is upper bounded by |A|+2 ·s2 ·ρ · (e ·max{a, δ})2s1+1 · |A|.

3. Assume that R is specified as a lexicographically ordered list of rules. For each state q
of A, we can enumerate in time O((e ·max{a, δ})2s1+1) the set of all pairs (l, γ) where
l ∈ Ter(Σ ∪X) and γ is a morphism from A(l) to A. For each of these pairs, we use
binary search to look up for the existence of a rule in R having l as left-hand side. Each
such look up takes time O(log |R|). Finally, for each rule l → r in R, we create the
right component C(A, q, l → r, γ). The addition of each such component takes time
O(|r|) ≤ O(s2). Since there are at most ρ rules with right-hand side l, the total amount
of time to construct the automaton is O

(
s2 · ρ · (e ·max{a, δ})2s1+1 · (log |R|) · |A|

)
. J

Now let t ∈ Ter(Σ) be a ground term over Σ, and let R be a linear term rewriting system.
Let A(t) be the tree automaton associated with t. For each d ∈ N we inductively define the
tree automaton A(t,R, d) as follows.

A(t,R, d) =


A(t) if d = 0

N (A(t,R, d− 1), R) if d ≥ 1.
(4)

Note that L(A(t,R, 0)) = L(A(t)) = {t}. Additionally, from Lemma 7 it follows
straightforwardly by induction on d that A(t,R, d) is a tree automaton recognizing precisely
the ground terms in Ter(Σ) that can be reached from t in depth at most d. Let a be the
maximum arity of a function symbol in Σ. Then the maximum in-degree of a vertex of
A(t,R, 0) is a, while the size of A(t,R, 0) is 2 · |t|. The next proposition establishes upper
bounds for the size and maximum in-degree of the tree automaton A(t,R, d).



M. de Oliveira Oliveira 25:11

I Proposition 10. Let a be the maximum arity of a function symbol in Σ. Let s1 be the
maximum size of the left-side of a rule in R, s2 be the maximum size of the right-side of a
term in R, and ρ be the maximum number of rules in R with the same left-hand side.

The maximum in-degree of A(t,R, d) is at most (e · ρ · a)s2·d
1 .

The size of A(t,R, d) is at most sd2 · (e · ρ · a)s2·d
1 · |t|.

A(t,R, d) can be constructed in time sd2 · (e · ρ · a)s2·d
1 · (log |R|) · |t|.

We omit the proof of Proposition 10 since it follows straightforwardly from Lemma 9 by
induction on d. Finally, we are in a position to prove Theorem 1.

Proof of Theorem 1

1. Reachability. Let f(R, d) = sd2 · (e · ρ · a)s2d
1 · (log |R|). Given two ground terms t and

t′ we want to determine whether t′ can be derived from t in depth at most d. First,
we construct in time f(R, d) · |t| the tree automaton A(t,R, d), whose size is at most
f(R, d) · |t|. Then we determine whether A(t,R, d) accepts the term t′. By Lemma 2 this
membership test can be performed in time f(R, d) · |t| · |t′|.

2. Joinability. Given two ground terms t and t′ we want to determine whether there exists
a term u such that u can be derived both from t and from t′ in depth at most d. First
we construct the tree automata A(t,R, d) and A(t′,R, d) whose sizes are respectively
upper bounded by f(R, d) · |t| and f(R, d) · |t′|. We have that there exists a term u that
can be reached by both t and t′ in depth at most d if and only if A(t,R, d) ∩ A(t′,R, d)
is non-empty. By Lemma 3, this emptiness of intersection test can be realized in time
f(R, d)2 · |t| · |t′|.

5 Conclusion

In this work we have shown that reachability and joinability in linear term rewriting systems
are fixed parameter tractable with respect to the depth of derivations. More precisely,
we showed that given a linear term rewriting system R, and ground terms t and t′ one
can determine in time f(R, d) · |t| · |t′| whether t′ is reachable from t in depth at most d,
and in time f(R, d)2 · |t| · |t′| whether t and t′ are joinable in depth at most d. We note
that the function f(R, d) depends double exponentially on d. We leave open the problem
of determining whether the dependence on d in the function f(R, d) can be substantially
improved.

References
1 Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge university press,

1999.
2 Leo Bachmair. Rewrite techniques in theorem proving. In Proc. of the 5th International

Conference on Rewriting Techniques and Applications, LNCS, pages 1–1, 1993.
3 Andrew Beveridge, Alan Frieze, and Colin McDiarmid. Random minimum length spanning

trees in regular graphs. Combinatorica, 18(3):311–333, 1998.
4 Marc Bezem, Jan Willem Klop, and Roel de Vrijer. Terese. term rewriting systems. Cam-

bridge Tracts in Theoretical Computer Science, 55, 2003.
5 H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison, and

M. Tommasi. Tree automata techniques and applications. Available on: http://www.
grappa.univ-lille3.fr/tata, 2007. release October, 12th 2007.

IPEC 2016

http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata


25:12 Reachability in Linear Term Rewriting Systems

6 Colin Cooper and Alan Frieze. Component structure of the vacant set induced by a random
walk on a random graph. Random Structures & Algorithms, 42(2):135–158, 2013.

7 N. Dershowitz and J. P. Jouannaud. Rewrite systems. Handbook of Theoretical Computer
Science (Chapter 6), pages 243–320, 1990.

8 Bertram Felgenhauer and René Thiemann. Reachability analysis with state-compatible
automata. In Proc. of the 8th International Conference on Language and Automata Theory
and Applications, LNCS, pages 347–359. Springer, 2014.

9 Guillaume Feuillade, Thomas Genet, and Valérie Viet Triem Tong. Reachability analysis
over term rewriting systems. Journal of Automated Reasoning, 33(3-4):341–383, 2004.

10 Ferenc Gécseg and Magnus Steinby. Tree languages. In Handbook of formal languages,
pages 1–68. Springer, 1997.

11 Thomas Genet. Decidable approximations of sets of descendants and sets of normal forms.
In Proc. of the 9th International Conference on Rewriting Techniques and Applications,
LNCS, pages 151–165, 1998.

12 Rémy Gilleron and Sophie Tison. Regular tree languages and rewrite systems. Fundamenta
informaticae, 24(1, 2):157–175, 1995.

13 Guillem Godoy, Robert Nieuwenhuis, and Ashish Tiwari. Classes of term rewrite systems
with polynomial confluence problems. ACM Transactions on Computational Logic (TOCL),
5(2):321–331, 2004.

14 Guillem Godoy, Ashish Tiwari, and Rakesh Verma. Characterizing confluence by rewrite
closure and right ground term rewrite systems. Applicable Algebra in Engineering, Com-
munication and Computing, 15(1):13–36, 2004.

15 Lukasz Kaiser. Confluence of right ground term rewriting systems is decidable. In Found-
ations of Software Science and Computational Structures, pages 470–489. Springer, 2005.

16 Jan Willem Klop, Marc Bezem, and RC De Vrijer. Term rewriting systems. Cambridge
University Press, 2001.

17 Martin Korp and Aart Middeldorp. Match-bounds revisited. Information and Computation,
207(11):1259–1283, 2009.

18 Takashi Nagaya and Yoshihito Toyama. Decidability for left-linear growing term rewrit-
ing systems. In Proc. of the 10th International Conference on Rewriting Techniques and
Applications, LNCS, pages 256–270, 1999.

19 Vincent van Oostrom. Normalisation in weakly orthogonal rewriting. In Proc. of the 10th
International Conference on Rewriting Techniques and Applications, LNCS, pages 60–74,
1999.

20 Rakesh M Verma, Michael Rusinowitch, and Denis Lugiez. Algorithms and reductions for
rewriting problems. Fundamenta Informaticae, 46(3):257–276, 2001.



Edge Bipartization Faster Than 2k∗

Marcin Pilipczuk1, Michał Pilipczuk2, and Marcin Wrochna3

1 Institute of Informatics, University of Warsaw, Poland
malcin@mimuw.edu.pl

2 Institute of Informatics, University of Warsaw, Poland
michal.pilipczuk@mimuw.edu.pl

3 Institute of Informatics, University of Warsaw, Poland
m.wrochna@mimuw.edu.pl

Abstract
In the Edge Bipartization problem one is given an undirected graph G and an integer k, and
the question is whether k edges can be deleted from G so that it becomes bipartite. In 2006, Guo
et al. [6] proposed an algorithm solving this problem in time O(2k ·m2); today, this algorithm is
a textbook example of an application of the iterative compression technique. Despite extensive
progress in the understanding of the parameterized complexity of graph separation problems in
the recent years, no significant improvement upon this result has been yet reported.

We present an algorithm for Edge Bipartization that works in time O(1.977k ·nm), which
is the first algorithm with the running time dependence on the parameter better than 2k. To
this end, we combine the general iterative compression strategy of Guo et al. [6], the technique
proposed by Wahlström [18] of using a polynomial-time solvable relaxation in the form of a
Valued Constraint Satisfaction Problem to guide a bounded-depth branching algorithm, together
with an involved Measure&Conquer analysis of the recursion tree.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases edge bipartization, FPT algorithm

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.26

1 Introduction

The Edge Bipartization problem asks, for a given graph G and integer k, whether one
can turn G into a bipartite graph using at most k edge deletions. Together with its close
relative Odd Cycle Transversal (OCT), where one deletes vertices instead of edges,
Edge Bipartization was one of the first problems shown to admit a fixed-parameter (FPT)
algorithm using the technique of iterative compression. In a breakthrough paper [17] that
introduces this methodology, Reed et al. showed how to solve OCT in time O(3k · kmn)1.
In fact, this was the first FPT algorithm for OCT. Following this, Guo et al. [6] applied
iterative compression to show fixed-parameter tractability of several closely related problems,

∗ Mi. Pilipczuk and M. Wrochna have been supported by the Polish National Science Centre grant
DEC-2013/11/D/ST6/03073. Mi. Pilipczuk has been supported by Foundation for Polish Science via
the START stipend program. During the work on these results, Mi. Pilipczuk has been holding a
post-doc position of Warsaw Centre of Mathematics and Computer Science. Ma. Pilipczuk has been
supported by the Centre for Discrete Mathematics and its Applications (DIMAP) at the University of
Warwick and by Warwick-QMUL Alliance in Advances in Discrete Mathematics and its Applications.

1 Even though Reed et al. [17] state their running time as O(4k · kmn), it is not hard to adjust the
analysis to show that the algorithm in fact works in time O(3k · kmn); see e.g. [7, 15].

© Marcin Pilipczuk, Michał Pilipczuk, and Marcin Wrochna;
licensed under Creative Commons License CC-BY

11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin; Article No. 26; pp. 26:1–26:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.26
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


26:2 Edge Bipartization Faster Than 2k

including an algorithm for Edge Bipartization with running time O(2k ·m2). Today, both
results are textbook examples of the iterative compression technique.

Iterative compression is in fact a simple idea that boils down to an algorithmic usage
of induction. In case of Edge Bipartization, we introduce edges of G one by one, and
during this process we would like to maintain a solution F to the problem, i.e., F ⊆ E(G) is
such that |F | ≤ k and G− F is bipartite. When the next edge e is introduced to the graph,
we observe that F ∪ {e} is a solution of size at most k + 1, that is, at most one too large.
Then the task reduces to solving Edge Bipartization Compression: given a solution that
exceeds the budget by at most one, we are asked to find a solution that fits into the budget.

Surprisingly, this simple idea leads to great algorithmic gains, as it reduces the matter to a
cut problem. Guo et al. [6] showed that a simple manipulation of the instance reduces Edge
Bipartization Compression to the following problem that we call Terminal Separation:
We are given an undirected graph G with a set T of k + 1 disjoint pairs of terminals, where
each terminal is of degree 1 in G. The question is whether one can color one terminal of
every pair white and the second black in such a way that the minimum edge cut between
white and black terminals is at most k. Thus, the algorithm of Guo et al. [6] boils down
to trying all the 2k+1 colorings of terminals and solving a minimum edge cut problem. For
OCT, we similarly have a too large solution X ⊆ V (G) of size k + 1, and we are looking for
a partition of X into (L,R,Z), where the size of the minimum vertex cut between L and R
in G− Z is at most k − |Z|. Thus it suffices to solve 3k+1 instances of a flow problem.

The search for FPT algorithms for cut problems has been one of the leading directions in
parameterized complexity in the recent years. Among these, Odd Cycle Transversal
and Edge Bipartization play a central role; see for instance [6, 12, 14, 17] and references
therein. Of particular importance is the work of Kratsch and Wahlström [12], who gave the
first (randomized) polynomial kernelization algorithms for both problems. The main idea is
to encode the cut problems that arise when applying iterative compression into a matroid
with a representation that takes small space. The result sparked a line of further work on
applying matroids in parameterized complexity.

Another thriving area in parameterized complexity is the optimality program, probably
best defined by Marx in [16]. The goal of it is to systematically investigate the optimum
complexity of algorithms for parameterized problem by proving possibly tight lower and
upper bounds. For the lower bounds methodology, the standard complexity assumptions used
are the Exponential Time Hypothesis (ETH ) and the Strong Exponential Time Hypothesis
(SETH ). In the recent years, the optimality program has achieved a number of successes.
For instance, under the assumption of SETH, we now know the precise bases of exponents
for many classical problems parameterized by treewidth [13]. To explain the complexity of
fundamental parameterized problems for which natural algorithms are based on dynamic
programming on subsets, Cygan et al. [1] introduced a new hypothesis resembling SETH,
called the Set Cover Conjecture (SeCoCo). See [13, 16] for more examples.

For our techniques, the most important is the line of work of Guillemot [5], Cygan et
al. [3], Lokshtanov et al. [14], and Wahlström [18] that developed a technique for designing
parameterized algorithm for cut problems called LP-guided branching. The idea is to use
the optimum solution to the linear programming (LP) relaxation of the considered problem
in order to measure progress. Namely, during the construction of a candidate solution by
means of a backtracking process, the algorithm achieves progress not only when the budget
for the size of the solution decreases (as is usual in branching algorithms), but also when
the LP lower bound on the optimum solution increases. Using this concept, Cygan et al. [3]
showed a 2knO(1)-time algorithm for Node Multiway Cut. Lokshtanov et al. [14] further



M. Pilipczuk, M. Pilipczuk, and M. Wrochna 26:3

refined this technique and applied it to improve the running times of algorithms for several
important cut problems. In particular, they obtained a 2.315knO(1)-time algorithm for Odd
Cycle Transversal, which was the first improvement upon the classic O(3k · kmn)-time
algorithm of Reed et al. [17]. From the point of view of the optimality program, this showed
that the base 3 of the exponent was not the final answer for Odd Cycle Transversal.

In [3, 14] it was essential that the considered LP relaxation is half-integral, which restricts
the applicability of the technique. Recently, Wahlström [18] proposed to use stronger relax-
ations in the form of certain polynomial-time solvable Valued Constraint Satisfaction Problems
(VCSPs). Using this idea, he showed efficient FPT algorithms for node and edge deletion
variants of Unique Label Cover, for which natural LP relaxations are not half-integral.

Despite substantial progress on the node deletion variant, for Edge Bipartization there
has been no improvement since the classic algorithm of Guo et al. [6] that runs in time
O(2k ·m2). The main technical contribution of Lokshtanov et al. [14] is a 2.315knO(1)-time
algorithm for Vertex Cover parameterized by the excess above the value of the LP
relaxation (VC-above-LP); the algorithm for OCT then follows from folklore reductions
from OCT to VC-above-LP via the Almost 2-SAT problem. Thus the algorithm for OCT
in fact relies on the LP relaxation for Vertex Cover, which has very strong combinatorial
properties; in particular, it is half-integral. No such strong and simple relaxation is available
for Edge Bipartization. The natural question stemming from the optimality program,
whether the 2k term for Edge Bipartization can be improved, was asked repeatedly in the
parameterized complexity community, e.g. by Daniel Lokshtanov at WorKer’13 [2].

Our results and techniques. In this paper we answer this question in affirmative:

I Theorem 1.1. Edge Bipartization can be solved in time O(1.977k · nm).

To prove this, we begin with the approach of Guo et al. [6], using iterative compression
to reduce solving Edge Bipartization to solving Terminal Separation (see Section 2
for a formal definition of the latter). This problem has two natural parameters: |T |, the
number of terminal pairs, and p, the bound on the size of the cut between white and black
terminals. The approach of Guo et al. is to use a simple O(2|T | · pm) algorithm that tries all
colorings of terminal pairs and computes the size of a minimum cut between the colors.

The observation that is crucial to our approach is that one can express Terminal
Separation as a very restricted instance of the Edge Unique Label Cover problem.
More precisely, in this setting the task is to assign each vertex of G a label from {A,B}. Pairs
of T present hard (of infinite cost) inequality constraints between the labels of terminals
involved, while edges of G present soft (of unit cost) equality constraints between the
endpoints. The goal is to minimize the cost of the labeling, i.e., the number of soft constraints
broken. An application of the results of Wahlström [18] (with further improvements of Iwata,
Wahlström, and Yoshida [8] regarding linear dependency on the input size) immediately gives
an O(4p ·m) algorithm for Terminal Separation.

Thus, we have in hand two substantially different algorithms for Terminal Separation.
If we plug in |T | = k + 1 and p = k, as is the case in the instance that we obtain from Edge
Bipartization Compression, then we obtain running times O(2k · km) and O(4k ·m),
respectively. The idea now is that these two algorithms present two complementary approaches
to the problem, and we would like to combine them to solve the problem more efficiently. To
this end, we need to explain more about the approach of Wahlström [18].

The algorithm of Wahlström [18] is based on measuring the progress by means of the
optimum solution to the relaxation of the problem (in the form of a Valued CSP instance).

IPEC 2016



26:4 Edge Bipartization Faster Than 2k

In our case, this relaxation of Terminal Separation has the following form: We assign
each vertex a label from {⊥,A,B}, where ⊥ is an additional marker that should be thought
of as not yet decided. The hard constraints have zero cost only for labelings (A,B), (B,A)
and (⊥,⊥), and infinite cost otherwise. The soft constraints have cost 0 for equal labels on
the endpoints, 1 for unequal from {A,B}, and 1

2 when exactly one endpoint is assigned ⊥.
Based on previous results of Kolmogorov, Thapper, and Živný [11], Wahlström observed
that this relaxation is polynomial-time solvable, and moreover it is persistent: whenever the
relaxation assigns A or B to some vertex, then it is safe to perform the same assignment in
the integral problem (i.e., not relaxed, only with the “integral” labels A,B). The algorithm
constructs an integral labeling with a backtracking process that fixes labels of consecutive
vertices of the graph. During this process, it maintains an optimum solution to the relaxation
that is moreover maximal, in the sense that one cannot extend the current labeling by fixing
integral labels on some undecided vertices without increasing the cost. This can be done by
dint of persistence and polynomial-time solvability: we can check in polynomial time whether
a non-trivial extension exists, and then it is safe to fix the labels of vertices that get decided.
Thus, when the algorithm considers the next vertex u and branches into two cases, fixing
label A or B on it, the optimum cost of the relaxation increases by at least 1

2 in each branch.
Hence the recursion tree can be pruned at depth 2p, and we obtain a 4pnO(1)-time algorithm.

Our algorithm for Terminal Separation applies a similar branching strategy, where
at each point we maintain some labeling of the vertices with A, B, and ⊥ (undecided).
Every terminal pair is either already resolved (assigned (A,B) or (B,A)), or unresolved
(assigned (⊥,⊥)). Using the insight of Wahlström we can assume that this labeling is
maximal. Intuitively, we look at unresolved pairs from T and try to identify a pair (s, t) for
which branching into labelings (A,B) and (B,A) leads to substantial progress. Here, we
measure progress in terms of a potential µ that is a linear combination of three components:

t, the number of unresolved terminal pairs;
k, the current budget for the cost of the sought integral solution;
ν, the difference between k and the cost of the current solution to the relaxation.

These ingredients are taken with weights αt = 0.59950, αν = 0.29774, and αk = 1−αt−αν =
0.10276. Thus, the largest weight is put on the progress measured in terms of the number of
resolved terminal pairs: We want to argue that if we can identify a possibility of recursing
into two instances, where in each of them at least one new terminal pair gets resolved, but in
one of them we resolve two terminal pairs, then we can pursue this branching step.

Therefore, we are left with the following situation: when branching on any terminal pair,
only this terminal pair gets resolved in both branches. Then the idea is to find a branching
step where the decrease of the auxiliary components of the potential, namely ν and k, is
significant enough to ensure the promised running time of the algorithm. Here we apply an
extensive combinatorial analysis of the instance to show that finding such a branching step
is always possible. In particular, our analysis can end up with a branching not on a terminal
pair, but on the label of some other vertex; however, we make sure that in both branches
some terminal pair gets eventually resolved. Also, in some cases we localize a part of the
input that can be simplified (a reduction step), and then the analysis is restarted.

To sum up, we would like to highlight two aspects of our contribution. First, we answer
a natural question stemming from the optimality program, showing that 2k is not the final
dependency on the parameter for Edge Bipartization. Second, our algorithm can be seen
as a “proof of concept” that the LP-guided branching technique, even in the more abstract
variant of Wahlström [18], can be combined with involved Measure&Conquer analysis of the
branching tree. Note that in the past Measure&Conquer and related techniques led to rapid
progress in the area of moderately-exponential algorithms [4].



M. Pilipczuk, M. Pilipczuk, and M. Wrochna 26:5

We remark that the goal of the current paper is clearly improving the 2k term, and not
optimizing the dependence of the running time on the input size. However, we do estimate it.
Using the tools prepared by Iwata, Wahlström, and Yoishida [8], we are able to implement
the algorithm so that it runs in time O(1.977k ·nm). Naively, this seems like an improvement
over the algorithm of Guo et al. [6] that had quadratic dependence on m, however this is not
the case. We namely use the recent approximation algorithm for Edge Bipartization of
Kolay et al. [9] that in time O(kO(1) ·m) either returns a solution F apx of size at most O(k2),
or correctly concludes that there is no solution of size k. Then we start iterative compression
from G− F apx and introduce edges of F apx one by one, so we need to solve the Terminal
Separation problem only O(k2) times. In our case each iteration takes time O(1.977k ·nm),
but for the approach of Guo et al. it would take time O(2k · km). Thus, by using the same
idea based on [9], the algorithm of Guo et al. can be adjusted to run in time O(2k · k3m).

2 Overview of the algorithm

As announced in the introduction, the application of iterative compression and the reduction
to a Terminal Separation instance closely follows the approach of [6]; in this extended
abstract, we give only an overview of the branching algorithm for Terminal Separation.

Let us start with some notation. Consider a graph G with a family T of disjoint pairs of
vertices in G; we call those vertices terminals. A terminal separation is a pair (A,B) with
A,B ⊆ V (G) such that A∩B = ∅ and, for every terminal pair P , either one of the terminals
in P belongs to A and the second to B, or P ⊆ V (G)\ (A∪B). A terminal separation (A,B)
is integral if A ∪B = V (G).2 A terminal separation (A′, B′) extends (A,B) if A ⊆ A′ and
B ⊆ B′. The cost of a terminal separation (A,B) is defined as c(A,B) = (d(A) + d(B))/2,
where d(X) is the number of edges between X and V (G) \X, for X ⊆ V (G). Note that if
(A,B) is integral, then we have c(A,B) = d(A) = d(B). We say that a terminal separation
(A,B) is maximal if every other separation extending it has strictly larger cost.

Terminal Separation
Input: A graph G with a set of disjoint terminal pairs T such that every terminal is of
degree at most one in G; a terminal separation (A◦, B◦); and an integer k.
Goal: Find an integral terminal separation (A,B) extending (A◦, B◦) of cost at most k,
or report that no such separation exists.

We borrow the basic toolbox from [18, 8], in the form of the following two statements.

I Theorem 2.1 (persistence [18]). Let (G, T , (A◦, B◦), k) be a Terminal Separation
instance, and let (A,B) be a terminal separation in G of minimum cost among separations
that extend (A◦, B◦). Then there exists an integral separation (A∗, B∗) that has minimum
cost among all integral separations extending (A◦, B◦), with the additional property that
(A∗, B∗) extends (A,B).

I Theorem 2.2 (polynomial-time solvability, [18, 8]). Given a Terminal Separation in-
stance (G, T , (A◦, B◦), k) with c(A◦, B◦) ≤ k, one can in O(kO(1)m) time find a maximal ter-
minal separation (A,B) in G that has minimum cost among all separations extending (A◦, B◦).

2 The word integral stems from the fact that an integral separation corresponds to a solution to the
relaxed Terminal Separation problem that actually does not use the relaxed value ⊥. In fact, it also
corresponds to an integral solution of an LP formulation underlying the algorithmic results of [11].

IPEC 2016



26:6 Edge Bipartization Faster Than 2k

From Theorems 2.1 and 2.2 it follows that, while working on a Terminal Separation
instance (G, T , (A◦, B◦), k), we can always assume that (A◦, B◦) is a maximal separation: If
that is not the case, we can obtain an extending separation (A,B) via Theorem 2.2, and set
(A◦, B◦) := (A,B); the safeness of the last step is guaranteed by Theorem 2.1.

2.1 The potential to measure progress of the algorithm
Let I = (G, T , (A◦, B◦), k) be a Terminal Separation instance, where (A0, B0) is a
maximal terminal separation; we henceforth call such an instance maximal. We are interested
in keeping track of the following partial measures:

tI is the number of unresolved terminal pairs;
νI = k − c(A◦, B◦);
kI = k.

TheO(2kkm)-time algorithm used in [6] can be interpreted in our framework as anO(2tIkIm)-
time algorithm for Terminal Separation, while the generic LP-branching algorithm for
Edge Unique Label Cover of [18, 8] can be interpreted as an O(4νIm)-time algorithm.
Our main goal is to blend the two, by analyzing the cases where both perform badly.

An important insight is that all these inefficient cases happen when A◦ and B◦ increase
their common boundary. If this is the case, a simple reduction rule is applicable that also
reduces the allowed budget k.

I Reduction 2.3 (Boundary Reduction). If there exists an edge ab with a ∈ A◦, b ∈ B◦, then
delete the edge ab and decrease k by one. If there exist two edges va, vb with a ∈ A◦, b ∈ B◦,
and v /∈ A◦ ∪B◦, then delete both edges va and vb, and decrease k by one.

In some sense, with this reduction rule the budget k represents the yet undetermined
part of the boundary between A∗ and B∗ in the final integral solution (A∗, B∗). For this
reason, we also include the budget k in the potential.

Formally, we fix three constants αt = 0.59950, αν = 0.29774, and αk = 1 − αt − αν =
0.10276 and define a potential of an instance I as

µI = αt · tI + αν · νI + αk · kI .

Our main technical result is the following.

I Theorem 2.4. A Terminal Separation instance I can be solved in time O(cµInm) for
some c < 1.977.

We remark that instances of Terminal Separation we encounter while solving an Edge
Bipartization instance (G, k) satisfy tI = k + 1, νI = k, and αk = k, hence µI < k + 1.
Consequently, Theorem 1.1 follows from Theorem 2.4 by using it in the general iterative
compression approach proposed by Guo et al. [6].

The algorithm of Theorem 2.4 follows a typical outline of a recursive branching algorithm.
At every step, the current instance is analyzed, and either it is reduced, or some two-way
branching step is performed. The potential µI is used to measure the progress of the
algorithm and to limit the size of the branching tree.

Observe that the Boundary Reduction reduces already determined parts of the boundary
between A∗ and B∗ for the minimum-cost solution (A∗, B∗), and hence the integer kI , present
in the potential µI , represents the yet unknown part of this boundary. It is easy to see
that every application of the Boundary Reduction decreases the potential by exactly αk;
in multiple branches we show that a sufficient number of Boundary Reductions follow the
branching step to ensure the promised running time bound.



M. Pilipczuk, M. Pilipczuk, and M. Wrochna 26:7

2.2 Structure of a branching step
In every branching step, we identify two terminal separations (A1, B1) and (A2, B2) extending
(A◦, B◦), and branch into two subcases; in subcase i we replace (A◦, B◦) with (Ai, Bi).
We always argue the correctness of a branch by showing that there exists an integral
solution (A∗, B∗) extending (A◦, B◦) of minimum cost, with the additional property that
(A∗, B∗) extends (Ai, Bi) for some i = 1, 2. In subcase i, we apply the algorithm of
Theorem 2.2 to (G, T , (Ai, Bi), k) to obtain a maximal separation (A◦i , B◦i ), and pass the
instance Ii = (G, T , (A◦i , B◦i ), k) to a recursive call.

To show the running time bound for a branching step, we analyze how the measure µI
decreases in the subcases, taking into account the reductions performed in the subsequent
recursive calls. More formally, we say that a branching case fulfills a branching vector
[t1, ν1, k1; t2, ν2, k2] if, in subcase i = 1, 2, at least ti terminal pairs become resolved or
reduced with one of the reductions, the cost of the separation (A◦i , B◦i ) grows by at least νi/2,
and the Boundary Reduction gets applied at least ki times in the instance (G, T , (A◦i , B◦i ), k).

A branching vector [t1, ν1, k1; t2, ν2, k2] is good if

1.977−αtt1−ανν1/2−αkk1 + 1.977−αtt2−ανν2/2−αkk2 < 1.

Standard arguments for branching algorithms show that, if in every case we perform a
branching step that fulfills some good branching vector, the branching tree originated from
an instance I has O(cµI ) leaves for some c < 1.977. To simplify further exposition, we gather
in the next lemma good branching vectors used in the analysis; the fact that they are good
can be checked by direct calculations.

I Lemma 2.5. The following branching vectors are good:

[1, 1, 0; 2, 1, 0] [1, 1, 1; 1, 2, 3] [1, 2, 0; 1, 3, 1] [1, 1, 0; 1, 4, 3] [1, 1, 2; 1, 2, 2]
[1, 1, 1; 1, 3, 2] [1, 3, 0; 1, 3, 0] [1, 1, 0; 1, 5, 2] [1, 2, 1; 1, 2, 2] [1, 1, 1; 1, 4, 1]

Let us stop here to comment that the vectors in Lemma 2.5 explain our choice of constants
αt, αν , αk. The constant αt is sufficiently large to make the vector [1, 1, 0; 2, 1, 0] good;
intuitively speaking, we are always done when in one branch we manage to resolve or reduce
at least two terminal pairs. The choice of αν and αk represents a very delicate tradeoff that
makes both [1, 1, 1; 1, 2, 3] and [1, 2, 0; 1, 3, 1] good; note that setting αν = 1− αt and αk = 0
makes the first vector not good, while setting αν = 0 and αk = 1 − αt makes the second
vector not good. Arguably, the possibility of a tradeoff that makes both the second and the
third vector of Lemma 2.5 good at the same time is one of the critical insights in our work.

2.3 Low-excess sets
A set A ⊆ V (G) is an A◦-extension if A◦ ⊆ A ⊆ V (G) \B◦. It is terminal-free if A \A◦ does
not contain any terminal. We denote by ∆(A) := d(A)− d(A◦) the excess of an A◦-extension
A. An A◦-extension A is compact if A \A◦ is connected and E(A \A◦, A◦) 6= ∅.

One of the main technical tools for analysis is the study of extensions of small excess.
We show that their structure can be reduced to have a relatively simple picture. While in
this section we focus on supersets of the set A◦, by symmetry the same conclusion holds if
we swap the roles of A◦ and B◦.

First, since (A◦, B◦) is maximal, we have that A◦ is the only terminal-free A◦-extension
of nonpositive excess. As for excess 1, one can show the following.

IPEC 2016



26:8 Edge Bipartization Faster Than 2k

A◦

c1 c2

A◦

sd

c1 c2 c3

Figure 1 Examples of sets of excess 2 after reductions (dotted lines are non-edges). On the right
a strict (non-null) extension As of A◦ ∪ {s} with excess 1 is shown. For any such extension, As \ {s}
is a set of excess 2 in which the vertex d, obtained from contracting the set D of the decomposition,
is the only neighbor of the terminal s.

I Lemma 2.6. If A is a terminal-free A◦-extension of excess 1, then there exists a minimum
cost integral terminal separation (A∗, B∗) extending (A◦, B◦), such that (A \ A◦) is either
completely contained in A∗ or completely contained in B∗.

Hence, one can collapse into a single vertex the set A \ A◦ for every terminal-free A◦-
extension A of excess 1. For extensions of excess 2, one can describe them similarly, and
collapse into a single vertex any set D as in the following lemma.

I Lemma 2.7. Assume that every terminal-free A◦-extension of excess 1 has been collapsed to
a single vertex, and that G contains no nonterminal degree-1 vertices. If A is a terminal-free
A◦-extension of excess 2, then there exists a partition A \A◦ = D ] C1 ] C2 ] . . . ] Cr for
some r ≥ 0 (] meaning union of disjoint sets), such that:
1. there exists a minimum cost integral terminal separation (A∗, B∗) extending (A◦, B◦),

such that one of the following holds:
(A \A◦) ∩A∗ = ∅;
(A \A◦) ∩A∗ = Ci for some 1 ≤ i ≤ r; or
A ⊆ A∗.

2. for every 1 ≤ i ≤ r, the sets Ci and E(Ci, A◦) are nonempty, and A◦∪Ci is a terminal-free
A◦-extension of excess 1;

3. if D 6= ∅, then for every 1 ≤ i ≤ r the set E(Ci, D) is nonempty and A \A◦ is connected;
4. if D = ∅, then r = 2;
5. for every 1 ≤ i < j ≤ r, there are no edges between Ci and Cj.

2.4 Basic branching step
Let T ′ := T \ (A◦ ∪B◦) be the set of unresolved terminal pairs. In the basic branching step
of our algorithm we take a pair {s, t} ∈ T ′ and try to assign s and t to the different sides
of the separation. That is, we apply the algorithm of Theorem 2.2 twice: once for terminal
separation (A◦∪{s}, B◦∪{t}), and the second time for terminal separation (A◦∪{t}, B◦∪{s}).
In this manner we obtain two maximal terminal separations (As, Bt) and (At, Bs) that extend
(A◦∪{s}, B◦∪{t}) and (A◦∪{t}, B◦∪{s}) respectively. Of course, the number of unresolved
pairs decreases by at least one in both (As, Bt) and (At, Bs), due to resolving {s, t}.

If the number of unresolved pairs either in (As, Bt) or in (At, Bs) decreases by more than
one, then performing a branching step (A1, B1) = (As, Bt) and (A2, B2) = (At, Bs) leads to
the branching vector [1, 1, 0; 2, 1, 0] or a better one, which is good; the corresponding decrease
in the measure νI follows from the assumption that (A◦, B◦) is maximal. We can test in



M. Pilipczuk, M. Pilipczuk, and M. Wrochna 26:9

O(kO(1)m) time whether this holds for any pair {s, t} ∈ T ′, and if so then we pursue the
branching step.

If this is not the case, we are left with the extensive analysis of the sets As, Bs, At,
and Bt. As we could always pick As = A◦ ∪ {s}, and similarly for the other sets, we have
that the excess of any of these four sets is at most one. Furthermore, the maximality of
(A◦, B◦) implies that also neither of these excesses is negative: if, say, ∆(As) < 0, then since
∆(Bt) ≤ 1, we have c(As, Bt) ≤ c(A◦, B◦), contradicting the maximality of (A◦, B◦). Thus,
we are left with excesses 0 and 1, giving different cases for analysis.

Let us first consider the case when As = A◦ ∪ {s}, At = A◦ ∪ {t}, Bs = B◦ ∪ {s},
and At = B◦ ∪ {t}, that is, the situation when both branching steps colored only the
terminals. If s or t is an isolated vertex in G, it is easy to reduce the pair {s, t} without
branching. Otherwise, let s′ be the unique neighbor of s and t′ be the unique neighbor
of t. Since both s and t are of degree one in G, it is easy to argue that there exists a
minimum-cost solution (A∗, B∗) that does not cut the edge ss′. Consequently, we can
strengthen the basic branch by forcing s′ to be in the same side of the separation as s. More
precisely, we consider branches (Ass′→A, Bss′→A) and (Ass′→B , Bss′→B) that are minimum-
cost terminal separations extending (A◦ ∪ {s, s′}, B◦ ∪ {t}) and (A◦ ∪ {t}, B◦ ∪ {s, s′}),
computed using Theorem 2.2. It is easy to see that, unless some simple reduction is applicable
or another terminal pair gets resolved, we have ∆(Ass′→A) ≥ 2 and ∆(Bss′→B) ≥ 2 while
still ∆(Bss′→A),∆(Ass′→B) ≥ 1. This gives a good branching vector [1, 3, 0; 1, 3, 0].

In the analysis of remaining cases we rely on our understanding of low-excess extensions
in the following way. Assume that, say, As is a strict superset of A◦ ∪ {s}. Then As
contains s′ and A := As \ {s} is a terminal free A◦-extension of excess ∆(As) + 1 ∈ {1, 2}.
Thus, Lemma 2.6 or 2.7 applies, giving us a good insight into the set A \ A◦, capturing
the neighborhood of s. Observe that the structure of an excess-1 or excess-2 extension in
particular guarantees that A lies “closely” to the set A◦, giving grounds for possibly multiple
Boundary Reductions in a subcase in a branching step when some vertices of A are assigned
to the B-side of the separation.

An extensive case analysis, provided in the full version of the paper, shows that in all
cases, if the basic branching resolves only one terminal pair, then one can gather a sufficient
number of Boundary Reductions stemming from the understanding of low-excess extensions
and sufficient increase in the cost of the separation (A◦, B◦) to obtain a good branching
vector. This proves Theorem 2.4. In the remainder of this section, we illustrate how the
low-excess extensions work by sketching one particular subcase of the case ∆(As) = 1 and
∆(Bs) = 0. This illustration is quite representative for the kind of reasoning we need to
perform in other cases as well.

2.5 Example subcase of the case ∆(As) = 1, ∆(Bs) = 0
We define R = V (G) \ (As ∪ Bs), Ã = As \ Bs and B̃ = Bs \ As; note that Ã and B̃ are
terminal-free extensions of A◦ and B◦, respectively. By posimodularity of the cuts we infer:

d(As) + d(Bs) = d(Ã) + d(B̃) + 2|E(As ∩Bs, R)| ≥ d(A◦) + d(B◦) + 2|E(As ∩Bs, R)|.

We infer that in our case |E(As ∩Bs), R)| = 0 and ∆(Ã) + ∆(B̃) = 1. In this overview we
consider the subcase ∆(Ã) = 1 and ∆(B̃) = 0.

By maximality of (A◦, B◦) we have B̃ = B◦; by Lemma 2.6 we can assume Ã = A◦ ∪ {a}
for some vertex a; in particular As ) A◦ ∪ {s}. Let s′ be the unique neighbor of s; we have
s′ ∈ As, as otherwise As \ {s} is a nontrivial A◦-extension of excess 0, a contradiction. As
∆(As) = 1, the set As\{s} is a terminal-free A◦-extension of excess 2: we can apply Lemma 2.7

IPEC 2016



26:10 Edge Bipartization Faster Than 2k

B◦

A◦

ss′

a
p

p

p+ x

x+ 1

Figure 2 Subcase (∆(As), ∆(Bs)) = (∆(Ã), ∆(B̃)) = (1, 0). Extensions As, Bs are highlighted.

to obtain a decomposition As \ {s} = A◦ ] {d, c1, c2, . . . , cr} or As \ {s} = A◦ ] {c1, c2}
(vertices d and ci are sets D and Ci from Lemma 2.7 collapsed into single vertices due
to reduction rules). From the fact that s′ ∈ As and (As, Bt) is a separation extending
(A◦ ∪ {s}, B◦ ∪ {t}) of minimum-cost, we infer that s′ is actually the vertex d: if s′ = ci for
some i, then (A◦ ∪ {s, ci}, Bt) would have strictly smaller cost. In particular, we are dealing
with the decomposition of the form As \ {s} = A◦ ] {d, c1, c2, . . . , cr}.

Since ∆(Bs) = 0 but ∆(B◦ ∪ {s}) = 1, we infer that Bs ) B◦ ∪ {s}, which implies that
s′ ∈ Bs. Furthermore, we can assume that As ∩Bs = {s, s′}: if there were more vertices in
As ∩Bs, it is easy to see that we can safely reduce the graph by collapsing (As ∩Bs) \ {s}
into a single vertex. Consequently, as Ã = A◦ ∪ {a} and B̃ = B◦, we have Bs = B◦ ∪ {s, s′}
and As = A◦ ∪ {a, s′, s} (i.e., r = 1 and c1 = a).

From Lemma 2.7 we have p := |E(a, s′)| ≥ 1 and |E(a,A◦)| ≥ 1, thus E(a,B◦) = ∅ since
Boundary Reduction does not apply to a. By using the assumptions on excesses of sets, we
have that a is incident on: p edges to s′, x+1 edges to V (G)\(As∪B◦), p+x edges to A◦ and
no other edges, for some x ≥ 0. Since Bs = B◦ ∪ {s′, s} is an excess-0 set and E(s′, R) = ∅,
we have that |E(s′, B◦)| = p+ |E(s′, A◦)|. In particular |E(s′, B◦)| > 0, so since Boundary
Reductions do not apply to s′, we have E(s′, A◦) = ∅ and hence |E(s′, B◦)| = p. See Fig. 2.

Consider first case x = 0. Then a has a unique edge aa′ with a′ ∈ R. If a′ is a terminal,
it is easy to either reduce the case without branching (if a′ = t) or provide a branching step
that resolves two terminal pairs (if a′ belongs to other terminal pair), so assume otherwise.
We claim that it is a safe reduction to contract the edge aa′; to prove this claim, it suffices
to show that there exists an optimum integral terminal separation extending (A◦, B◦) where
a and a′ belong to the same side. Take any such integral terminal separation (A∗, B∗), and
assume that a and a′ are on opposite sides. Clearly it cannot happen that a ∈ B∗ and
a′ ∈ A∗, because then moving a from B∗ to A∗ would decrease the cost of the separation.
Hence a ∈ A∗ and a′ ∈ B∗. If s′ ∈ B∗, then moving a from A∗ to B∗ would decrease the
cost of the separation, so also s′ ∈ A∗. Construct a new integral separation (A∗m, B∗m) from
(A∗, B∗) by moving {a, s′} from A∗ to B∗. Then the cost of (A∗m, B∗m) is not larger than
that of (A∗, B∗) (we could have broken the edge s′s instead of aa′), while both endpoints of
aa′ belong to A∗m. This resolves the case x = 0.

In the case x > 0, we claim that branching on the membership of a leads to a good
branch. That is, we recurse into two branches (Aa→A, Ba→A) and (Aa→B , Ba→B) that are
minimum-cost maximal terminal separations extending (A◦ ∪ {a}, B◦) and (A◦, B◦ ∪ {a}),
respectively. For X ∈ {A,B}, let ta→X , νa→X , ka→X be the changes of the components of
the potential in respective branches, as we denote them in branching vectors.

Consider first the branch (Aa→A, Ba→A). Then p Boundary Reductions are triggered on
vertex s′ (regardless of whether it is added or not to one of the sets Aa→A, Ba→A). Hence
ka→A ≥ p. Moreover, the terminal pair {s, t} either is already resolved by (Aa→A, Ba→A)



M. Pilipczuk, M. Pilipczuk, and M. Wrochna 26:11

or is easily reducible after applying the Boundary Reductions. Hence ta→A ≥ 1. Finally,
since (A◦, B◦) was maximal, we have that νa→A ≥ 1. So the part of the branching vector
corresponding to the branch (Aa→A, Ba→A) is [1, 1, p], or better.

Consider now the second branch (Aa→B , Ba→B). Then at least |E(a,A◦)| = p + x

Boundary Reductions are triggered, hence ka→B ≥ p+ x. Since p ≥ 1 and t is of degree 1,
s′ ∈ Ba→B and w.l.o.g. we can assume s ∈ Ba→B and t ∈ Aa→B. Hence ta→B ≥ 1. If
actually ta→A ≥ 2 or ta→B ≥ 2, then we arrive at a good branching vector [1, 1, p; 2, 1, p] or
better, so assume that ta→A = ta→B = 1, that is, only the pair {s, t} gets resolved.

We now claim that ∆(Aa→B) ≥ 1 and ∆(Ba→B) ≥ 1. For the latter claim, note that
if ∆(Ba→B) ≤ 0, then Ba→B \ {s} is a terminal-free B◦-extension of excess at most one,
while a, s′ ∈ Ba→B; a contradiction to the assumption that every terminal-free extension
of excess one has been collapsed into a single vertex. For the former claim, suppose for
the sake of contradiction that d(Aa→B) = d(A◦) (case d(Aa→B) < d(A◦) can easily be
excluded by the maximality of (A◦, B◦)). Recall that also d(Bs) = d(B◦), which means that
d(Aa→B) + d(Bs) = c(A◦, B◦). From the posimodularity of cuts it now follows that one of
the terminal separations (Aa→B \Bs, Bs) and (Aa→B , Bs \Aa→B) has cost not larger than
(A◦, B◦), while both of them resolve the terminal pair {s, t}. This is a contradiction with
the maximality of (A◦, B◦). Hence ∆(Aa→B) ≥ 1 and ∆(Ba→B) ≥ 1, and so νa→B ≥ 2.

Thus, branching into separations (Aa→A, Ba→A) and (Aa→B , Ba→B) leads to a branching
vector [1, 1, p; 1, 2, p+x] or better. Recalling that p, x > 0, observe that this branching vector
can be not good only if p = x = 1 and ∆(Ba→B) = 1. Let us now analyze this case.

Since ∆(Ba→B) = 1, we have that Ba→B \ {s} is a terminal-free set of excess 2, and
hence we can apply Lemma 2.7 to it: assuming excess-2 sets have been reduced, we have that
Ba→B \ {s} has a decomposition of the form B◦ ] {c1, c2} or B◦ ] {d, c1, . . . , cr}. Note that
B◦ ∪ {s′} is an excess-1 set, so it is not hard to argue that s′ = ci for some i. As a ∈ Ba→B ,
a is adjacent to s′, and ci-s are pairwise non-adjacent, we must have that a = d and we are
dealing with a decomposition of the form B◦ ] {d, c1, . . . , cr}. Observe that B◦ ∪ {a, s′} is a
B◦-extension of excess at least 1 + (x+ 1) = 3 (counting edge ss′ and edges between a and
A◦); hence Ba→B ) B◦ ∪ {a, s′, s}, and in particular r > 1. Hence there exists some vertex
cj 6= ci = s′. By Lemma 2.7 we have that cj is adjacent both to B◦ and to a. Hence, in the
branch (Aa→A, Ba→A) at least one Boundary Reduction is applied to cj , regardless whether
cj is assigned to Aa→A, or Ba→A, or neither of these sets. We did not include this Boundary
Reduction in the previous calculations; this shows that we in fact pursue a branch with a
branching vector [1, 1, 2; 1, 2, 2] or better, which is a good branching vector.

3 Conclusions

In this work we have developed an algorithm for Edge Bipartization with running time
O(1.977k ·nm), which is the first one to achieve the dependence on the parameter better than
2k. Thus, in the case of Edge Bipartization the constant 2 in the base of the exponent is
not the ultimate answer, as is conjectured for CNF-SAT. Also, it improves some recent works
where the FPT algorithm for Edge Bipartization is used as a black-box [10]. However,
our work leaves some open questions that we would like to highlight.

Reducing the dependence on the parameter from 2k to 1.977k can be only considered a
“proof of concept” that such an improvement is possible. We put forward the question of
designing a reasonably simple algorithm with significant improvement in the base of the
exponent, hopefully decreasing the polynomial dependence from O(nm) to (near-)linear.
Our approach can be summarized as follows: having observed that Terminal Separa-
tion admits a simple O?(2|T |)-time algorithm and an O?(4k)-time algorithm using the

IPEC 2016



26:12 Edge Bipartization Faster Than 2k

CSP-guided technique of Wahlström [18], we develop an algorithm for a joint parameteri-
zation (|T |, k) that for |T | = k + 1 achieves running time O?(1.977k). Can Terminal
Separation be solved in time O?(c|T |) for some c < 2?

References
1 Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx, Jesper Nederlof, Yoshio

Okamoto, Ramamohan Paturi, Saket Saurabh, and Magnus Wahlström. On problems
as hard as CNF-SAT. ACM Trans. Algorithms, 12(3):41, 2016. doi:10.1145/2925416.

2 Marek Cygan, Łukasz Kowalik, and Marcin Pilipczuk. Open problems from the update
meeting on graph separation problems, Workshop on Kernels, Warsaw, 2013. http://
worker2013.mimuw.edu.pl/slides/update-opl.pdf.

3 Marek Cygan, Marcin Pilipczuk, Michał Pilipczuk, and Jakub Onufry Wojtaszczyk. On
Multiway Cut parameterized above lower bounds. TOCT, 5(1):3, 2013. doi:10.1145/
2462896.2462899.

4 Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2010. doi:10.1007/978-3-642-16533-7.

5 Sylvain Guillemot. FPT algorithms for path-transversal and cycle-transversal problems.
Discrete Optimization, 8(1):61–71, 2011. doi:10.1016/j.disopt.2010.05.003.

6 Jiong Guo, Jens Gramm, Falk Hüffner, Rolf Niedermeier, and Sebastian Wernicke.
Compression-based fixed-parameter algorithms for feedback vertex set and edge biparti-
zation. J. Comput. Syst. Sci., 72(8):1386–1396, 2006.

7 Falk Hüffner. Algorithm engineering for optimal Graph Bipartization. J. Graph Algorithms
Appl., 13(2):77–98, 2009.

8 Yoichi Iwata, Magnus Wahlström, and Yuichi Yoshida. Half-integrality, lp-branching, and
FPT algorithms. SIAM J. Comput., 45(4):1377–1411, 2016. doi:10.1137/140962838.

9 Sudeshna Kolay, Pranabendu Misra, M. S. Ramanujan, and Saket Saurabh. Parameter-
ized approximations via d-Skew-Symmetric Multicut. In Proc. MFCS’14, volume 8635
of Lecture Notes in Computer Science, pages 457–468. Springer, 2014. doi:10.1007/
978-3-662-44465-8_39.

10 Sudeshna Kolay, Fahad Panolan, Venkatesh Raman, and Saket Saurabh. Parameterized
algorithms on perfect graphs for deletion to (r, l)-graphs. In Piotr Faliszewski, Anca
Muscholl, and Rolf Niedermeier, editors, Proc. MFCS’14, volume 58 of LIPIcs, pages 75:1–
75:13. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.
MFCS.2016.75.

11 Vladimir Kolmogorov, Johan Thapper, and Stanislav Živný. The power of linear program-
ming for general-valued CSPs. SIAM J. Comput., 44(1):1–36, 2015.

12 Stefan Kratsch and Magnus Wahlström. Compression via matroids: A randomized polyno-
mial kernel for Odd Cycle Transversal. ACM Trans. Algorithms, 10(4):20:1–20:15, 2014.

13 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the Expo-
nential Time Hypothesis. Bulletin of the EATCS, 105:41–72, 2011.

14 Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket
Saurabh. Faster parameterized algorithms using linear programming. ACM Trans. Algo-
rithms, 11(2):15:1–15:31, 2014. doi:10.1145/2566616.

15 Daniel Lokshtanov, Saket Saurabh, and Somnath Sikdar. Simpler parameterized algorithm
for OCT. In Jirí Fiala, Jan Kratochvíl, and Mirka Miller, editors, Proc. IWOCA 2009,
Revised Selected Papers, volume 5874 of Lecture Notes in Computer Science, pages 380–
384. Springer, 2009. doi:10.1007/978-3-642-10217-2_37.

16 Dániel Marx. What’s next? Future directions in Parameterized Complexity. In The Mul-
tivariate Algorithmic Revolution and Beyond, volume 7370 of Lecture Notes in Computer
Science, pages 469–496. Springer, 2012.

http://dx.doi.org/10.1145/2925416
http://worker2013.mimuw.edu.pl/slides/update-opl.pdf
http://worker2013.mimuw.edu.pl/slides/update-opl.pdf
http://dx.doi.org/10.1145/2462896.2462899
http://dx.doi.org/10.1145/2462896.2462899
http://dx.doi.org/10.1007/978-3-642-16533-7
http://dx.doi.org/10.1016/j.disopt.2010.05.003
http://dx.doi.org/10.1137/140962838
http://dx.doi.org/10.1007/978-3-662-44465-8_39
http://dx.doi.org/10.1007/978-3-662-44465-8_39
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.75
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.75
http://dx.doi.org/10.1145/2566616
http://dx.doi.org/10.1007/978-3-642-10217-2_37


M. Pilipczuk, M. Pilipczuk, and M. Wrochna 26:13

17 Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Oper.
Res. Lett., 32(4):299–301, 2004.

18 Magnus Wahlström. Half-integrality, LP-branching and FPT algorithms. In Proc.
SODA’14, pages 1762–1781. SIAM, 2014.

IPEC 2016





Cut and Count and Representative Sets on
Branch Decompositions
Willem J. A. Pino1, Hans L. Bodlaender∗2, and
Johan M. M. van Rooij3

1 Department of Information and Computing Sciences, Utrecht University,
Utrecht, The Netherlands
w.j.a.pino@students.uu.nl

2 Department of Information and Computing Sciences, Utrecht University,
Utrecht, The Netherlands, and
Department of Mathematics and Computer Science, Eindhoven University of
Technology, Eindhoven, The Netherlands
H.L.Bodlaender@uu.nl

3 Department of Information and Computing Sciences, Utrecht University,
Utrecht, The Netherlands, and
Consultants in Quantitative Methods, Eindhoven, The Netherlands
jmmrooij@cs.uu.nl

Abstract
Recently, new techniques have been introduced to speed up dynamic programming algorithms
on tree decompositions for connectivity problems: the ‘Cut and Count’ method and a method
called the rank-based approach, based on representative sets and Gaussian elimination. These
methods respectively give randomised and deterministic algorithms that are single exponential
in the treewidth, and polynomial, respectively linear in the number of vertices. In this paper,
we adapt these methods to branch decompositions yielding algorithms, both randomised and
deterministic, that are in many cases faster than when tree decompositions would be used.

In particular, we obtain the currently fastest randomised algorithms for several problems on
planar graphs. When the involved weights are O(nO(1)), we obtain faster randomised algorithms
on planar graphs for Steiner Tree, Connected Dominating Set, Feedback Vertex Set
and TSP, and a faster deterministic algorithm for TSP. When considering planar graphs with
arbitrary real weights, we obtain faster deterministic algorithms for all four mentioned problems.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory, I.2.8 Problem Solving, Control Methods, and Search

Keywords and phrases Graph algorithms, Branchwidth; Treewidth, Dynamic Programming,
Planar Graphs

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.27

1 Introduction

It is well known that many problems that are NP-hard on general graphs, become polynomial
or linear time solvable on graphs where the treewidth or branchwidth is bounded by a
constant. More precisely, many problems are fixed parameter tractable with treewidth or
branchwidth as parameter. For an overview regarding treewidth, e.g., see [1] .

∗ Hans L. Bodlaender was partially supported by the Networks project, funded by the Dutch Ministry of
Education, Culture and Science through NWO.

© Willem J.A. Pino, Hans L. Bodlaender, and Johan M.M. van Rooij;
licensed under Creative Commons License CC-BY

11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin; Article No. 27; pp. 27:1–27:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.27
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


27:2 Cut and Count and Representative Sets on Branch Decompositions

Table 1 Our results using the ‘Cut and Count’ (randomised) and rank-based (exact) techniques.

Problem Randomised Deterministic
Steiner Tree O(3 ω

2 bwnO(1)) O(n((1 + 2ω)
√

5)bwbwO(1))
Connected Dominating Set O(4 ω

2 bwnO(1)) O(n((2 + 2ω)
√

6)bwbwO(1))
Feedback Vertex Set O(3 ω

2 bwnO(1)) O(n((1 + 2ω)
√

5)bwbwO(1))
Hamilton Cycle / TSP O(4 ω

2 bwnO(1)) O(n(5 + 2
ω+2

2 )bwbwO(1))
Planar Steiner Tree O(23.991

√
n) O(28.039

√
n)

Planar Connected Dominating Set O(25.036
√

n) O(28.778
√

n)
Planar Feedback Vertex Set O(23.991

√
n) O(28.039

√
n)

Planar Hamilton Cycle / TSP O(25.036
√

n) O(26.570
√

n)

It was long known that many graph problems with a local nature (e.g., Independent
Set, Dominating Set) can be solved on graphs given with a tree decomposition of width k

in time, that is single exponential in k and linear in the number of vertices n, e.g., see [17]. For
several problems with a global ‘connectivity’ property in it, it was open whether there existed
O(2O(k)nO(1)) time algorithms. This was resolved by Cygan et al. [5] with the ‘Cut and
Count’ method; this approach gives fast randomised algorithms that are single-exponential in
the treewidth and polynomial in the number of vertices for various problems, e.g., Feedback
Vertex Set, Hamiltonian Circuit, TSP, Connected Dominating Set. At the cost of
a higher constant in the base of the exponential factor, Bodlaender et al. [2] gave deterministic
algorithms that are single-exponential in the treewidth and linear in the number of vertices
for these connectivity problems, with a technique, based on representative sets and Gaussian
elimination, called the rank-based approach. This algorithm was experimentally evaluated
by Fafianie et al. [9], showing that in the case of the Steiner Tree problem, the method
gives a significant speedup over naive dynamic programming. An alternative method that
gives similar time bounds, based on representative sets and matroids, was given by Fomin et
al. [11]. Later, Fomin et al. [10] showed how to use matroids to speed up the computation at
join nodes in these algorithms leading, for several connectivity problems with Steiner Tree
as flagship example, to the currently fastest algorithms on graphs of bounded treewidth.

Branchwidth is another well studied graph parameter, with strong relations to treewidth.
The branchwidth and treewidth of a graph are bounded by each other in the following
way: bw ≤ tw + 1 ≤ b 3

2bwc. The transformation from a tree decomposition to a branch
decomposition or vice versa, fulfilling these bounds can be executed in linear time. This
implies that a running times of the form O(cknO(1)) for graphs of treewidth k or branchwidth
k follow from each other, except for a possibly different value for the base of the exponent c.

In this paper, we show that ‘Cut and Count’ and the rank-based approach can be used
directly on branch decompositions. As a result, we obtain, in several cases, improvements
compared to using tree decompositions instead. For an overview of our results, see Table 1.

Two other techniques to speed up dynamic programming algorithms on tree and branch
decompositions are the following: Dorn [6] showed how to use matrix multiplication to speed
up algorithms on branch decompositions and van Rooij et al. [3, 18] showed how to speed up
algorithms on tree, branch and clique decompositions using (generalised) subset convolutions.
In this paper, we build upon these works applying these techniques where possible.

For a comparison of our results to the current best treewidth algorithms, see Table 2
and Table 3. Here, ω < 2.373 [14] is the matrix multiplication exponent. Our branch
decomposition based results improve known treewidth results for parts of the range bw ≤
tw + 1 ≤ b 3

2bwc (note that ω
2 < 3

2 ). In case of deterministic algorithms for TSP with



W. J. A. Pino, H. L. Bodlaender, and J.M.M. van Rooij 27:3

Table 2 Comparison of our results with best known results on treewidth [5] for randomised
algorithms on problems where the weights are O(nO(1)).

Problem Treewidth Branchwidth
Steiner Tree O(3twnO(1)) O(3 ω

2 bwnO(1))
Connected Dominating Set O(4twnO(1)) O(4 ω

2 bwnO(1))
Feedback Vertex Set O(3twnO(1)) O(3 ω

2 bwnO(1))
Hamilton Cycle / TSP O(4twnO(1)) O(4 ω

2 bwnO(1))

Table 3 Comparison of our results with best known results on treewidth for deterministic
algorithms on problems with arbitrary real weights.

Problem Treewidth Branchwidth
Steiner Tree O(n23.134tw) [10] O(n23.790bw)
Connected Dominating Set O(n23.628tw) [2] O(n24.137bw)
Feedback Vertex Set O(n23.134tw) [10] O(n23.790bw)
Hamilton Cycle / TSP O(n23.257tw) [2] O(n23.257bw)

arbitrary real weights, our algorithms even give the advantage of using lower width branch
decompositions compared to tree decompositions without the additional cost of a higher
constant in the base of the exponent of the running time.

As planar graphs have branchwidth at most 2.122
√

n, and such a branch decomposition
can be constructed in polynomial time [12] (or we use the ratcatcher algorithm that exactly
computes the branchwidth of planar graphs in O(n3) time [15, 16]), we can apply our
algorithms to solve connectivity problems on planar graphs. This leads to the currently
fastest algorithms on planar graphs for several problems improving upon the best known
results, due to Dorn [6, 7]. When considering randomised algorithms, we improve the currently
fastest algorithms for all considered problems when weights are bounded by O(nO(1)). When
considering determinstic algorithms, we improve the currently fastest algorithms for all
considered problems with arbitrary real weights, and the currently fastest algorithm for
Hamilton Cycle and TSP when weights are bounded by O(nO(1)).

2 Preliminaries

Let G(V, E) be a graph with |V | = n vertices and |E| = m edges. For a vertex set X ⊆ V

the induced subgraph is denoted by G[X], i.e., G[X] = G(X, E ∩ (X ×X)). Likewise, the
induced subgraph of an edge set Y ⊆ E is denoted as G[Y ], i.e., G[Y ] = G(V (Y ), Y ) where
V (Y ) stands for all endpoints of edges in Y . A cut in a graph is a tuple of two vertex sets
(X1, X2) for which it holds that X1 ∪X2 = V and X1 ∩X2 = ∅.

Throughout the paper the Iverson bracket notation is used. This notation denotes a
number that is 1 if the condition between the brackets is satisfied and 0 otherwise, e.g.,
[1 = 1]42 = 42 and [1 = 2]42 = 0. We also use this notation in combination with sets S, then
this denotes [True]S = S and [False]S = ∅.

This paper considers dynamic programming algorithms on branch decompositions.

I Definition 1 (Branch decomposition). A branch decomposition of a graph G is a tree T in
which every internal node has degree 3 together with a bijection between the leaves of T and
the edges of G.

As such, every leaf of T is assigned an edge of G and every edge of G is in exactly one leaf.

IPEC 2016



27:4 Cut and Count and Representative Sets on Branch Decompositions

Table 4 Comparison of our results on planar graphs with best known results. The column
‘Dorn (nO(1))’ states deterministic results by Dorn [6] when weights are O(nO(1)); the column ‘Dorn
(R)’ states deterministic results by Dorn [7] for arbitrary real weights; the column ‘Randomised’
states our randomised results when weights are O(nO(1)); and the column ‘Deterministic’ states
our deterministic results that also apply to arbitrary real weights. We note that the mentioned
results by Dorn [6, 7] have not been adjusted for the recently slightly improved matrix multiplication
constant ω [14].

Problem Dorn (nO(1)) Dorn (R) Randomised Deterministic
Planar Steiner Tree O(27.16

√
n) O(28.49

√
n) O(23.991

√
n) O(28.039

√
n)

Planar Connected Dom. Set O(28.11
√

n) O(29.82
√

n) O(25.036
√

n) O(28.778
√

n)
Planar Feedback Vertex Set O(27.56

√
n) O(29.26

√
n) O(23.991

√
n) O(28.039

√
n)

Planar Hamilton Cycle/TSP O(28.15
√

n) O(29.86
√

n) O(25.036
√

n) O(25.63
√

n)

The removal of an edge x in a branch decomposition T divides the edges of G in two
parts E1 and E2, namely the edges assigned to the leaves of the resulting subtrees T1 and T2
of T. For an edge x in T, the associated middle set is the vertex subset Bx ⊆ V consisting of
all vertices both in G[E1] and in G[E2], i.e., Be = V1 ∩ V2 where V1 and V2 are the vertices
in G[E1] and G[E2], respectively. The width assigned to the edge x is the size of the middle
set Bx. The width of a branch decomposition T is the maximum width over all edges of the
decomposition, and the branchwidth of a graph G is the minimum width over all possible
branch decompositions of G.

To simplify the presentation, we only consider rooted branch decompositions. One
obtains a rooted branch decomposition by splitting an arbitrary edge (u, v) in the branch
decomposition into (u, w) and (w, v), adding a root node r, and adding the edge (w, r). The
middle sets of these three edges are defined to be B(u,w) = B(w,v) = B(u,v) and B(w,r) = ∅.
On rooted branch decompositions, we can define a leaf edge to be an edge of T connected to
a leaf of T, the root edge to be the edge (w, r) to the root r, and an internal edge to be any
other edge of T. Additionally, for a non-leaf edge x of T, we can now define its left child y

and right child z in T by ordering the two edges below x in T.
A dynamic programming algorithm on branch decompositions typically computes a

table Ax for every edge x of the branch decomposition T in a bottom-up fashion. Such
a table Ax usually contains a set of partial solutions (or the number of partial solutions)
on G[Ex] where Ex is the set of the edges assigned to the leaves below the edge x in T. In
the case that x is the root edge, the table Ax contains (the number of) complete solutions.

When considering a non-leaf edge x of a branch decomposition T, it is convenient to
define a well-known partitioning on the three middle sets involved.

I Definition 2 (Partioning of middle sets). Consider a non-leaf edge x in a branch decompos-
ition T. Let x have left child y and right child z, and let the associated middle sets be Bx,
By, and Bz. We now define the following partitioning of Bx ∪By ∪Bz (see Figure 1):

Intersection vertices: I = Bx ∩By ∩Bz.
Forget vertices: F = (By ∩Bz) \Bx.
Left vertices: L = (Bx ∩By) \Bz.
Right vertices: R = (Bx ∩Bz) \By.

I Lemma 3 (Constraints on size of middle set partitions). Given a branch decomposition T
of width bw, the following inequalities on the sizes of the middle-set partitions hold for all
non-leaf edges in T:
|I|+ |L|+ |R| ≤ bw.
|I|+ |L|+ |F | ≤ bw.
|I|+ |F |+ |R| ≤ bw.



W. J. A. Pino, H. L. Bodlaender, and J.M.M. van Rooij 27:5

Figure 1 The partitioning of the middle sets.

Finally, to obtain our results on planar graphs, we need the following lemma that relates
planar graphs to branch decompositions:

I Lemma 4 (Branch decompositions of planar graphs [8, 12, 15, 16]). Given a planar graph G,
a branch decomposition T of G of minimal width can be computed in O(n3) time. Furthermore,
the computed branch decomposition T has width at most 2.122

√
n, and for every non-leaf

edge x in T the middle set partitions satisfy |I| ≤ 2.

3 Cut and Count and Branch Decompositions

In this section, we will discuss how to use ‘Cut and Count’ [5] on branch decompositions.
We will illustrate this approach using the unweighted variant of the Steiner Tree problem.
Our results on other problems use the same ideas, however these proofs are omit due to
space restrictions.

The ‘Cut and Count’ technique of Cygan et al. [5] has two parts, the cut part and the
count part. In the cut part, the problem is reformulated and transformed into a counting
problem on consistently-cut candidate solutions where the connectivity constraint is relaxed.
In the count part, this counting problem is solved using dynamic programming. In this paper,
we summarise the cut part for Steiner Tree in Lemma 5 and refer to [5] for more details.

For a subset X ⊆ V , Cygan et al. [5] define a consistent cut of G[X] to be a cut (X1, X2)
such that there is no edge (u, v) in G[X] with u ∈ X1 and v ∈ X2. Since we consider
the unweighted version of Steiner Tree, we can let a solution be a subset of vertices
X ⊆ V such that T ⊆ X and G[X] is connected. A consistently-cut (possibly disconnected)
candidate solution then is a pair (X, (X1, X2)) consisting of a candidate solution X and a
consistent cut (X1, X2) of G[X].

I Lemma 5 (based on [5]). Suppose we are given an algorithm Count that, given a graph G,
a terminal set T , some fixed terminal t0 ∈ T , and a weight function w : V → [0, ..., W ],
computes the values A(i, w) defined below, for all 0 ≤ i ≤ k and 0 ≤ w ≤ kW :

A(i, w) =
∣∣∣∣{(X, (X1, X2))

∣∣∣∣ X ⊆ V, (X1, X2) a consistent cut of G[X],
T ⊆ X, t0 ∈ X1, |X| = i, w(X) = w

}∣∣∣∣ (mod 2)

Then, there exists a Monte-Carlo algorithm that solves Steiner Tree on G, that cannot give
false-positives and may give false negatives with probability at most 1/2. The running time
of this algorithm is dominated by the running time of the Count algorithm with W = O(n).

We will omit the modulo two in the description of our counting algorithms and take the
modulus afterwards, doing all computations modulo two requires slightly less time and space.

For easier exposition, we first prove the following theorem. Next, we will improve this
using fast matrix multiplication in Theorem 7.

IPEC 2016



27:6 Cut and Count and Representative Sets on Branch Decompositions

I Theorem 6. There exist a Monte-Carlo algorithm that, given a graph G and a branch
decomposition T of G of width bw, solves Steiner Tree in time O(3 3

2 bwnO(1)).

Proof. The result follows from Lemma 5 if we can give an algorithm that computes the
required values A(i, w) in O(3 3

2 bwnO(1)) time. We give this algorithm below.
We compute A(i, w) by bottom-up dynamic programming on the branch decomposition T.

For each edge x of T, we count partial-solution-cut pairs (X, (X1, X2)), where we call X

a partial solution in G[Ex] if all terminals in G[Ex] are in X, and where the cut (X1, X2)
is a consistent cut of the subgraph of G[Ex] induced by X (i.e., a cut in (G[Ex])[X]) with
additionally that if t0 ∈ X then t0 ∈ X1. To count these pairs, we define a labelling using
labels 0, 11 and 12 on the vertices in the middle set Bx associated to an edge x of T.
These labels identify the situation of the vertex in a partial-solution-cut pair (X, (X1, X2)):
label 0 means not in X, and labels 11 and 12 mean in X and on side X1 and X2 of the cut,
respectively.

In a bottom-up fashion, we associate to each edge x of T a table Ax(i, w, s) with entries
for all 0 ≤ i ≤ k, 0 ≤ w ≤ kW , and s ∈ {0, 11, 12}Bx . Such an entry Ax(i, w, s) counts the
number of partial-solution-cut pairs (X, (X1, X2)) as defined above that satisfy the constrains
imposed by the states s on Bx and that satisfy |X| = i and w(X) = w.

For a leaf edge x of the branch decomposition T, we have that Bx = {u, v} for some edge
(u, v) in E. The table Ax associated to x can be filled as follows (all other entries are zero):

Ax(0, 0, 0 0) = 1[u /∈ T ∧ v /∈ T ]
Ax(1, w(u), 11 0) = 1[v /∈ T ]
Ax(1, w(v), 0 11) = 1[u /∈ T ]
Ax(1, w(u), 12 0) = 1[u 6= t0 ∧ v /∈ T ]
Ax(1, w(v), 0 12) = 1[u /∈ T ∧ v 6= t0]

Ax(2, w(u) + w(v), 11 11) = 1
Ax(2, w(u) + w(v), 12 12) = 1[u 6= t0 ∧ v 6= t0]

Here, we enforce that the cut is consistent, that every terminal t ∈ T is in the partial
solution X, that t0 is on the correct side of the cut (t0 ∈ X1), and that |X| = i and
w(X) = w.

For an internal edge x of the branch decomposition T with children y and z, we fill the
table Ax by combining the counted number of partial-solution-cut pairs from the tables for y

and z. For this, we say that labellings sx of Bx, sy of By, and sz of Bz are compatible if and
only if sL

x = sL
y ∧ sR

x = sR
z ∧ sF

y = sF
z ∧ sI

x = sI
y = sI

z (where we denote by sL
x the labelling sx

restricted to middle set partition L; for the middle set partitions see Definition 2).
We fill Ax by means of the following formula, where iZ denotes the number of vertices

with state 1 in middle set partition Z, and wZ denotes the sum of the weights of the vertices
with state 1 in middle set partition Z (for Z equals F , or I):

Ax(ix, wx, sx) =
∑

sx, sy, sz

compatable
labellings

∑
ix=iy+iz−iI−iF

∑
wx=wy+wz−wI−wF

Ay(iy, wy, sy)·Az(iz, wz, sz) .

This counts the total number of partial-solution-cut pairs (X, (X1, X2)) that satisfy the
constraints as the summations combine all compatible entries from Ay and Az and the
multiplication combines the individual counts. To see that exactly these entries are compatible,



W. J. A. Pino, H. L. Bodlaender, and J.M.M. van Rooij 27:7

note that the consistency of the cut, the fact that T ⊆ X, and that t0 ∈ X1 are all enforced at
the leaves and maintained by enforcing compatible labels. Furthermore, the partial-solution
size i and weight w is the sum of both underlying partial solutions minus the doubling on
the middle set partitions F and I.

By computing Ax for all edges in the branch decomposition T in the above way, we can
find the required values A(i, w) at the root edge r of T where Br = ∅.

Consider the time required for computing table Ax. This table has at most 3|L|3|R|3|I|k2W

entries, and for each entry we have to inspect at most 3|F |k2W combinations of entries from
Ay and Az, thus requiring O(3|L|+|R|+|I|+|F |k4n2) time using W = O(n). This leads to a
worst-case running time of O(3 3

2 bwnO(1)) under the constraints in Lemma 3. J

This result can be improved by using fast matrix multiplication similar to Dorn et al. [6].

I Theorem 7. There exist a Monte-Carlo algorithm that, given a graph G and a branch
decomposition T of G of width bw, solves Steiner Tree in time O(3 ω

2 bwnO(1)), where ω is
the matrix multiplication exponent.

Proof. The algorithm is similar to the proof of Theorem 6, however, we evaluate the formula
for the table Ai(ix, wx, sx) associated to an internal edge of the branch decomposition in
a more efficient way. Instead of first fixing all labellings, we now first only fix compatible
a labelling on I and fix ix, iy, wx and wy. Then, we can compute the contribution to
Ai(ix, wx, sx), given the fixed values and fixed partial state, for all compatible states sx ∈
{0, 11, 12}Bx using a single matrix multiplication.

To do so, we construct two matrices B and C. In matrix B there is a row for each
labelling of L and a column for each labelling of F , and in matrix C there is a row for each
labelling of F and a column for each labelling of R. As the labellings on I are fixed, each
entry in B can be associated to a full labelling of the middle set By, and each entry in C

can be associated to a complete labelling of the middle set Bz. Moreover, each entry in the
matrix product BC can be associated to a full labelling of Bx, corresponding to the row of B

(labelling of L) and column of C (labelling of R). If we fill matrix B with the corresponding
values Ay(iy, wy, sy), and matrix C with the corresponding values Az(iz, wz, sz) (note that
we did not fix iz and wz, but these follow from all other fixed values and labellings), then
matrix BC holds the contribution to Ax(ix, wx, sx) given the fixed labellings and values.

In the above way, we perform 3|I|k2W 2 matrix multiplications of a 3|L|× 3|F | matrix and
a 3|F | × 3|R| matrix. These rectangular matrices can be multiplied in O(3(ω−1)|L|3|F |nO(1))
time (see also [6, 13]), where we use that we can assume |L| = |R| in a worst-case analysis
for symmetry reasons. Under the constraints of Lemma 3, the worst-case arises when
|L| = |R| = |F | = 1

2bw resulting in a running time of O(3 ω
2 bwnO(1)). J

I Corollary 8. There exist a Monte-Carlo algorithm that, given a planar graph G, solves
Planar Steiner Tree in time O(23.991

√
n).

Proof. Combine Theorem 7 with Lemma 4 and use ω < 2.373 [14]. J

The other randomised results in Table 1 follow in a similar fashion and are omitted due to
space restrictions. However, for some problems we need to use (generalised forms of) subset
convolution to obtain the claimed time bounds. For the generalised subset convolution, we
refer the reader to [18], and for an exposition on how to apply this in the setting of branch
decompositions to [3].

IPEC 2016



27:8 Cut and Count and Representative Sets on Branch Decompositions

4 Representative Sets and Branch Decompositions

In this section, we will discuss how to use the rank-based approach based on representative
sets and Gaussian elimination [2] on branch decompositions. We will illustrate this approach
using the weighted variant of the Steiner Tree problem. Our results on other problems
use the same ideas, however the proofs are omitted due to space restrictions.

We need some definitions and notion regarding partitions. The set of all partitions of a
set U is denoted by Π(U). An element of a partition is also called a block. For p ∈ Π(U), the
term |p| denotes the amount of blocks in the partition, where we let the empty partition in
Π(∅) have zero blocks. For p, q ∈ Π(U), pt q is obtained from p and q by iteratively merging
blocks in p that contain elements that are in the same block in q and vice versa. Also, p u q

is the partition that contains all blocks that are a non-empty intersection of a block in p

and a block in q. If X ⊆ U , then p↓X ∈ Π(X) is formed by removing all elements not in X

from the partition p and possibly removing empty blocks. In the same way, if U ⊆ X, then
p↑X ∈ Π(X) is formed by adding a singleton to p for every element in X \ U .

A set of weighted partitions over U is a set F ⊆ (Π(U)×N), i.e., a set of pairs consisting
of a partition of U and a non-negative integer that is the weight of the partition. We use the
following operators from [2] on a set of weighted partitions F ⊆ (Π(U)× N):

Remove: Define rmc(F) = {(p, w) ∈ F | @(p, w′) ∈ F ∧ w′ < w}. This operator removes
non-minimal weight copies.
Union: For G ⊆ (Π(U) × N), define F ] G = rmc(F ∪ G). This operator combines the
two sets of weighted partitions and discards non-minimal weight copies.
Project: For X ⊆ U , let X̄ = U \X and define proj(X,F) ⊆ Π(X̄)× N as

proj(X,F) = rmc({(p↓X̄ , w) | (p, w) ∈ F , |p↓X̄ | = |p| ∨ (X = ∅ ∧ |p| = 1)}) .

This operator removes all elements from X from each partition and discards a partition
if the amount of blocks in it decreases because of this, unless there is only one partition
which is projected upon the empty set.
Join: For a set U ′ and G ⊆ Π(U ′), let Û = U ∪ U ′, we define any pair of partitions
(p, w1) ∈ F , (q, w2) ∈ G to be compatible, unless (p, w1) or (q, w1) is the empty partition
with non-zero weight. In that case, the pair is compatible, if and only if, the other
partition is the empty partition with zero weight.
Now we define join(F ,G) ⊆ (Π(Û)× N) as:

join(F ,G) = rmc({(p↑Û t q↑Û , w1 + w2) | (p, w1) ∈ F , (q, w2) ∈ G compatible}) .

This operator extends all partitions to the same base set Û . It then combines each
compatible pair of partitions by means of the t operator and assigns the sum of the
weights as a new weight. We will need pairs to be compatible to keep solutions connected.

We will start by giving a naive algorithm for weighted Steiner Tree on branch decom-
positions. Thereafter, we will show how to use representative sets and Gaussian elimination
to improve the time complexity. We note that, different from Section 3, we now let (partial)
solutions be sets of edges connecting the terminals T .

The Naive Algorithm for Steiner Tree on Branch Decompositions

In a bottom-up fashion, the naive algorithm computes a table Ax for each edge x of the
branch decomposition T. This table keeps track of all possible partial solutions Y ⊆ Ex

on G[Ex] that can be extended to a minimal weight solution on G. These partial solutions



W. J. A. Pino, H. L. Bodlaender, and J.M.M. van Rooij 27:9

are subsets Y ⊆ Ex such that all terminals in G[Ex] are incident to an edge in Y , and
all connected components in G[Y ] either contain an edge incident to Bx or connect all
terminals T in G.

Each entry Ax(s) in the table is indexed by a labelling s ∈ {0, 1}Bx on the vertices in Bx

and contains a set of weighted partitions. The label 1 means that the vertex will be incident
to the solution edge set, which is the case when the vertex is a terminal or when the vertex is
incident to an edge in the partial solution Y . The label 0 means that it will not be incident
to the solution edge set. The set of weighted partitions Ax(s) is a set of weighted partitions
on all vertices with label 1 in s. Ax(s) represents all partial solutions on G[Ex] consistent
with the labelling s in the following way: the weight of the partition corresponds to the
weight of the partial-solution Y ; and vertices are in the same block of the partition p that
represents that solution Y , if and only if, the vertices are in the same connected component
in G[Y ].

For a leaf edge x of the branch decomposition T, we have that Bx = {u, v} for an edge
(u, v) in E. The table Ax associated to x can be filled as follows:

A(0 0) = {(∅, 0)}[u /∈ T ∧ v /∈ T ]
A(1 0) = {({{u}}, 0)}[v /∈ T ]
A(0 1) = {({{v}}, 0)}[u /∈ T ]
A(1 1) = {({{u}, {v}}, 0), {{u v}}, w((u, v)))}

Here, we make sure that terminal vertices in T correspond to 1 labels, and that vertices
incident to an edge in the partial solution correspond to 1 labels. We also make sure that
the partition corresponds to the connected components on the vertices with a 1 label, and
that the weight of the partition equals the weight of the partial solution.

For an internal edge x of the branch decomposition T with children y and z, we fill the
table Ax by means of the following formula:

Ax(sx) =
⊎

sF∈{0,1}F

proj
(
F, join(Ay(sL

x sI
xsF ), Az(sR

x sI
xsF ))

)
.

Here sL
x sI

xsF stands for the concatenation of the labelling sx restricted to L, the labelling sx

restricted to I, and the labelling sF on F (note that this gives a valid labelling on By).
For every labelling sF on F , the above formula combines all entries with compatible

weighted partitions from Ay(sL
x sI

xsF ) and Az(sR
x sI

xsF ). Partitions in the computed set Ax(s)
now correspond to the connected components of the partial solution, by definition of the
join and proj operations. This is because, the resulting entries in which vertices in F are
in separate blocks (separate connected components in G[Ex]) are discarded by the project
operation. Also, we require compatible weighted partitions in the join operation to make sure
that no connected components that do not contain vertices in Bx are combined, i.e., these do
not result in new non-empty partitions. The weights of the partitions in Ax(s) correspond to
the weights of the partial solutions, as we choose edges from G in a partial solution in leaf
edges of the branch decomposition and the join operation sums up the weights.

By computing Ax for all edges in the branch decomposition T in the above way, we can
find the weight of the minimum weight solution to Steiner Tree at the root edge r of T
where Br = ∅ as the weight of the empty partition.

Using Representative Sets

The essence of the rank-based approach lies in the Reduce procedure from [2]. This procedure
reduces the size of the tables used in the dynamic program without loss of representation.

IPEC 2016



27:10 Cut and Count and Representative Sets on Branch Decompositions

I Definition 9 (Representation [2]). For sets of weighted partitions F ,F ′ ⊆ (Π(U)× N) and
a partition q ∈ Π(U), define:

opt(q,F) = min{w | (p, w) ∈ F ∧ p t q = {U}} .

We say that F ′ represents F , if for all q ∈ Π(U), it is the case that opt(q,F ′) = opt(q,F).

I Theorem 10 ([2]). There exists an algorithm Reduce that, given a set of weighted partitions
F ⊆ (Π(U)×N), outputs a set of weighted partitions F ′ ⊆ F , such that F ′ represents F and
|F ′| ≤ 2|U |−1, in O(|F|2(ω−1)|U ||U |O(1)) time.

We apply the above theorem at each step of the naive algorithm for Steiner Tree and
carefully analyse the resulting running time to obtain the following result.

I Theorem 11. There exist an algorithm that, given a graph G and a branch decomposition T
of G of width bw, solves Steiner Tree in time O(n((1 + 2ω)

√
5)bwbwO(1)).

Proof. The algorithm computes the tables Ax in a bottom-up fashion over the branch
decomposition T according to the formulae in the description of the naive algorithm. Directly
after the algorithm finishes computing a table Ax for any edge x in the branch decomposition,
the Reduce algorithm is applied to each entry Ax(sx) of the table to control the sizes of the
sets of weighted partitions. Because the naive algorithm is correct and the Reduce procedure
maintains representation (Theorem 10), we conclude that the new algorithm is correct also.

To prove the running time, consider a non-leaf edge x in the branch decomposition T
with left child y and right child z. The operations in the naive algorithm used to compute,
for a labelling sx ∈ {0, 1}Bx , the set of weighted partitions Ax(sx) can be implemented in
O(bwO(1)) time times the number of combinations of entries from Ay and Az involved. This
can be done using the straightforward implementations (see also [2]). As each combination
of entries from Ay and Az can lead to an entry in Ax(sx) before the Reduce step is applied,
the running time is dominated by the time required by the Reduce algorithm.

For a fixed sx ∈ {0, 1}Bx , let j be the amount of vertices in sx with label 1, which we will
also denote by j = |s−1

x (1)|. For the set of weighted partitions Ax(sx), Reduce takes time:

O
(
|Ax(sx)|2(ω−1)jjO(1)) .

The size of Ax(sx) is the result of combining, for every labelling sF ∈ {0, 1}F , every entry
of Ay(sL

x sI
xsF ) with every entry of Az(sR

x sI
xsF ). Using sy = sL

x sI
xsF and sz = sR

x sI
xsF , the

sizes of Ay(sy) and Az(sz) are bounded by 2|s
−1
y (1)| and 2|s−1

z (1)|, respectively, since these
table were reduced after computing Ay and Az. Therefore, the total time it takes to reduce
the sets of partitions for all entries in Axis:

O
( |I∪R∪L|∑

j=0

(
|I ∪R ∪ L|

j

)
2(ω−1)j |Ax(sj)|jO(1)) .

The sum and the binomial coefficient consider all possible labellings using j for the number
of 1 labels. This is the only information needed about the labellings. As such, we will slightly
abuse notation and denote any labelling with j vertices with label 1 as sj . Also, we will
denote by si,l,f any labelling with i vertices with label 1 on I, l vertices with label 1 on L,
and f vertices with label 1 on F .



W. J. A. Pino, H. L. Bodlaender, and J.M.M. van Rooij 27:11

We can now expand the sum, differentiating between I, L and R, and use that Ay(sy)
and Az(sz) are bounded by 2|s

−1
y (1)| and 2|s−1

z (1)|, respectively:

O
( |I∪R∪L|∑

j=0

(
|I ∪R ∪ L|

j

)
2(ω−1)j |Ax(sj)|jO(1)) =

O
( |I|∑

i=0

|R|∑
r=0

|L|∑
l=0

(
|I|
i

)(
|R|
r

)(
|L|
l

)
2(ω−1)(i+r+l)|Ax(si,r,l)|(i + r + l)O(1)) =

O
( |I|∑

i=0

|R|∑
r=0

|L|∑
l=0

(
|I|
i

)(
|R|
r

)(
|L|
l

)
2(ω−1)(i+r+l)

|F |∑
f=0

(
|F |
f

)
|Ay(si,l,f )||Az(si,r,f )|bwO(1)) ≤

O
( |I|∑

i=0

|R|∑
r=0

|L|∑
l=0

(
|I|
i

)(
|R|
r

)(
|L|
l

)
2(ω−1)(i+r+l)

|F |∑
f=0

(
|F |
f

)
2i+l+f 2i+r+f bwO(1)) .

Next, we rearrange the terms and repeatedly apply the binomial theorem to obtain a more
simple expression:

O
( |I|∑

i=0

(
|I|
i

)
2(ω+1)i

|R|∑
r=0

(
|R|
r

)
2ωr

|L|∑
l=0

(
|L|
l

)
2ωl

|F |∑
f=0

(
|F |
f

)
22f bw)O(1)) ≤

O
(
(1 + 2ω+1)|I|(1 + 2ω)|R|(1 + 2ω)|L|5|F |bwO(1)) .

If we maximize this under the constraints in Lemma 3, then we find a worst-case running
time of:

O(((1 + 2ω)
√

5)bwbwO(1)) .

In this case |R| = |L| = |F | = 1
2bw and |I| = 0. Taking into consideration that this must

be done for every edge in the branch decomposition, we find the time-complexity from the
statement of theorem. J

The other deterministic result in Table 1 follow in a similar fashion but are omitted due to
space restrictions. These omitted proofs, use besides (generalised forms of) subset convolution,
also the fact that the Reduce procedure can be modified to output a set of weighted partitions
of size at most 2|U |/2 in case of the Hamilton Cycle and TSP problems [4].

5 Conclusion

In this paper, we have shown two things. First of all, we have shown that cut and count and
the rank-based approach can be used not only on tree decompositions but also on branch
decompositions. This means the techniques are more powerful than they were known to be.
Perhaps these techniques can also be used in combination with other width measures.

We have also given fast algorithms, especially on planar graphs, for several connectivity
problems. These algorithms use branch decompositions and therefore affirm the use of this
type of decomposition as a solid foundation for algorithms.

References
1 Hans L. Bodlaender. Treewidth: Structure and algorithms. In Proceedings of the 14th

International Colloquium on Structural Information and Communication Complexity, SI-
ROCCO 2007, volume 4474 of Lecture Notes in Computer Science, pages 11–25. Springer
Verlag, 2007.

IPEC 2016



27:12 Cut and Count and Representative Sets on Branch Decompositions

2 Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic
single exponential time algorithms for connectivity problems parameterized by treewidth.
Information and Computation, 243:86–111, 2015.

3 Hans L. Bodlaender, Erik Jan van Leeuwen, Johan M.M. van Rooij, and Martin Vatshelle.
Faster algorithms on branch and clique decompositions. In Proceedings of the 35th Interna-
tional Symposium on Mathematical Foundations of Computer Science, MFCS 2010, volume
6281 of Lecture Notes in Computer Science, pages 174–185. Springer Verlag, 2010.

4 Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Fast Hamiltonicity checking via bases
of perfect matchings. In Symposium on Theory of Computing Conference, STOC’13, Palo
Alto, CA, USA, June 1-4, 2013, pages 301–310. ACM, 2013.

5 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth
in single exponential time. In IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 150–159, 2011.

6 Frederic Dorn. Dynamic programming and fast matrix multiplication. In Proceedings of
the 14th Annual European Symposium on Algorithms, ESA 2006, volume 4168 of Lecture
Notes in Computer Science, pages 280–291. Springer Verlag, 2006.

7 Frederic Dorn. Designing Subexponential Algorithms: Problems, Techniques & Structures.
PhD thesis, Institutt for informatikk, Universitetet i Bergen, 2007.

8 Frederic Dorn, Eelko Penninkx, Hans L. Bodlaender, and Fedor V. Fomin. Efficient exact
algorithms on planar graphs: exploiting sphere cut decompositions. Algorithmica, 58:790–
810, 2010.

9 Stefan Fafianie, Hans L. Bodlaender, and Jesper Nederlof. Speeding up dynamic program-
ming with representative sets: an experimental evaluation of algorithms for steiner tree on
tree decompositions. Algorithmica, 71(3):636–660, 2015.

10 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Representative
sets of product families. In Algorithms – ESA 2014 – 22th Annual European Symposium,
Wroclaw, Poland, September 8-10, 2014. Proceedings, volume 8737 of Lecture Notes in
Computer Science, pages 443–454. Springer, 2014.

11 Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Efficient computation of repres-
entative sets with applications in parameterized and exact algorithms. In Proceedings of the
24th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, pages 142–151,
2014.

12 Fedor V. Fomin and Dimitrios M. Thilikos. New upper bounds on the decomposability of
planar graphs. Journal of Graph Theory, 51:53–81, 2006.

13 François Le Gall. Faster algorithms for rectangular matrix multiplication. In 53rd Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ,
USA, October 20-23, 2012, pages 514–523. IEEE Computer Society, 2012.

14 François Le Gall. Powers of tensors and fast matrix multiplication. In International Sym-
posium on Symbolic and Algebraic Computation, ISSAC, pages 296–303, 2014.

15 Qian-Ping Gu and Hisao Tamaki. Optimal branch-decomposition of planar graphs in O(n3)
time. ACM Trans. Algorithms, 4(3), 2008.

16 Paul D. Seymour and Robin Thomas. Call routing and the ratcatcher. Combinatorica,
14(2):217–241, 1994.

17 Jan Arne Telle and Andrzej Proskurowski. Algorithms for vertex partitioning problems on
partial k-trees. SIAM J. Discr. Math., 10:529–550, 1997.

18 Johan M.M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith. Dynamic programming
on tree decompositions using generalised fast subset convolution. In Proceedings of the 17th
Annual European Symposium on Algorithms, ESA 2009, volume 5757 of Lecture Notes in
Computer Science, pages 566–577. Springer Verlag, 2009.



A Fast Parameterized Algorithm for Co-Path Set∗

Blair D. Sullivan1 and Andrew van der Poel2

1 Dept. of Computer Science, North Carolina State University, Raleigh, USA
blair_sullivan@ncsu.edu

2 Dept. of Computer Science, North Carolina State University, Raleigh, USA
ajvande4@ncsu.edu

Abstract
The k-Co-Path Set problem asks, given a graph G and a positive integer k, whether one can
delete k edges from G so that the remainder is a collection of disjoint paths. We give a linear-time,
randomized fpt algorithm with complexity O∗(1.588k) for deciding k-Co-Path Set, significantly
improving the previously best known O∗(2.17k) of Feng, Zhou, and Wang (2015). Our main tool
is a new O∗(4tw(G)) algorithm for Co-Path Set using the Cut&Count framework, where tw(G)
denotes treewidth. In general graphs, we combine this with a branching algorithm which refines
a 6k-kernel into reduced instances, which we prove have bounded treewidth.

1998 ACM Subject Classification G.2.2 Graph Algorithms

Keywords and phrases co-path set, parameterized complexity, treewidth, fixed-parameter tract-
able complexity

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.28

1 Introduction

We study parameterized versions of Co-Path Set [3, 16], an NP-complete problem asking
for the minimum number of edges whose deletion from a graph results in a collection of
disjoint paths (the deleted edges being a co-path set – see Figure 1). Specifically, we are
concerned with k-Co-Path Set, which uses the natural parameter of the number of edges
deleted.

k-Co-Path Set
Input: A graph G = (V,E) and a non-negative integer k.
Parameter: k
Problem: Does there exist F ⊆ E of size exactly k such that G[E \ F ] is a set of disjoint
paths?

These problems are naturally motivated by determining the ordering of genetic markers
in DNA using fragment data created by breaking chromosomes with gamma radiation (a
technique known as radiation hybrid mapping) [4, 13, 15]. Unfortunately, human error in
distinguishing markers often means the constraints implied by markers’ co-occurrence on
fragments are incompatible with all possible linear orderings, necessitating an algorithm to
find the “best” ordering (that violates the fewest constraints). Co-Path Set solves the

∗ This work supported in part by the Gordon & Betty Moore Foundation under DDD Investigator
Award GBMF4560 and the DARPA GRAPHS program under SPAWAR Grant N66001-14-1-4063. Any
opinions, findings, and conclusions or recommendations expressed in this publication are those of the
author(s) and do not necessarily reflect the views of DARPA, SSC Pacific, or the Moore Foundation.

© Blair D. Sullivan and Andrew van der Poel;
licensed under Creative Commons License CC-BY

11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin; Article No. 28; pp. 28:1–28:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.28
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


28:2 A Fast Parameterized Algorithm for Co-Path Set

Figure 1 Three co-path sets (dashed edges), including one of minimum size (rightmost).

special case where each DNA fragment contains exactly two genetic markers (corresponding
to an edge in the graph); any linear ordering of the markers must correspond to some set of
paths, and we minimize the number of unsatisfied constraints (edges in the co-path set).

Recent algorithmic results related to Co-Path Set include a (10/7)-approximation
algorithm [2], and two parameterized algorithms deciding k-Co-Path Set [6, 7], the faster
of which [7] has time complexity1 O∗(2.17k). However, as written, both parameterized
results [6, 7] contain a flaw in their analysis which invalidates their probability of a correct
solution in the given time2. The best known bound prior to [6] is an O∗(2.45k) algorithm [16].
In this paper, we prove:

I Theorem 1. k-Co-Path Set is decidable in O∗(1.588k) linear-fpt time with probability
at least 2/3.

We note that standard amplification arguments apply, and Theorem 1 holds for any success
probability less than 1. Further, if f is an increasing function with limn→∞ f(n) = 1, we can
solve k-Co-Path Set with success probability at least f(n) in O(1.588knpolylog(n)).

The remainder of this paper is organized as follows: after essential definitions and notation
in Section 2, we start in Section 3 by giving a new O∗(4tw(G)) algorithm tw-copath for
solving Co-Path Set parameterized by treewidth (tw) using the Cut&Count framework [5].
Finally, Section 4 describes the linear-fpt algorithm referenced in Theorem 1, which solves
k-Co-Path Set on general graphs in O∗(1.588k) by applying tw-copath to a set of “reduced
instances” generated via kernelization and a branching procedure3 deg-branch.

2 Preliminaries

Let G(V,E) be the graph with vertex set V and edge set E. Unless otherwise noted, we
assume |V | = n and |E| = m; we let N(v) denote the set of neighbors of a vertex v, and let
deg(v) = |N(v)|. Given a graph G(V,E) and F ⊆ E, we write G[F ] for the graph G(V, F ).

Our tw-copath algorithm in Section 3 uses dynamic programming over a tree decom-
position, and its running time depends on the related measure of treewidth [14], which we
denote tw(G). To simplify the dynamic programming, we will use a variant of nice tree
decompositions [10, 5] where each node in the tree has one of five specific types: leaf, introduce

1 Throughout this paper, we use the notation O∗(f(k)) for the fpt (fixed-parameter tractable) complexity
O(f(k)nO(1)); we say an algorithm is linear-fpt if the complexity is O(f(k)n).

2 Step 2.11 in both versions of Algorithm R-MCP checks if a candidate co-path set F has size ≤ k1 (as
they are sweeping over all possible sizes of candidates and want to restrict the size accordingly). If F
is too large, the algorithm discards it and continues to the next iteration. However, in order for their
analysis to hold, the probability that the candidate is contained in a co-path set must be ≥ (1/2.17)k1

(or (1/2.29)k1 in [6]) for every iteration. Candidates which are too large may have significantly smaller
probability of containment, yet are counted in the exponent of the analysis.

3 The properties of our reduced instances guarantee we can find a tree decomposition of small width in
poly(k) time.



B.D. Sullivan and A. van der Poel 28:3

vertex, introduce edge, forget vertex, or join. The “introduce edge” nodes are labelled with
an edge uv and have one child (with an identical bag); we require that each edge in E

is introduced exactly once. Additionally, we enforce that the root node is of type “forget
vertex” (and thus has an empty bag). A tree decomposition can be transformed into a nice
decomposition of the same width in time linear in the size of the input graph [5].

When describing the dynamic programming portion of the algorithm we use Iverson’s
bracket notation: if p is a predicate we let JpK be 1 if p is true and 0 otherwise. We also
use the shorthand f [x→ y] to denote updating a function f so that f(x) = y and all other
values are unchanged.

Finally, we use fast subset convolution [1] to reduce the complexity of handling join nodes
in the nice tree decomposition (Section 3). This technique maps functions of the vertices in
a join bag to values in Zp = Z/pZ (where p is chosen based on the application). The key
complexity result we rely on uses the Zp product, which is defined below. We write ZBp for
the set of all vectors t of length |B| assigning a value t(b) ∈ Zp to each element of b ∈ B.

I Definition 2 (Zp product). Let p ≥ 2 be a fixed integer and let B be a finite set. For
t1, t2, t ∈ ZBp we say that t1 + t2 = t if t1(b) + t2(b) = t(b) (in Zp) for all b ∈ B. For a ring R
and functions f, g : ZBp → R, define the Zp product, ∗px as

(f ∗px g)(t) =
∑

t1+t2=t
f(t1)g(t2) .

Fast subset convolution guarantees that certain Zp products can be computed quickly.

I Lemma 3 (Cygan et al. [5]). Let R = Z or R = Zq for some constant q. The Z4 product
of functions f, g : ZB4 → R can be computed in 4|B||B|O(1) time and ring operations.

3 An O∗(4tw(G)) Algorithm via Cut&Count

We start by giving an fpt algorithm for Co-Path Set parameterized by treewidth. Our
primary tool is the Cut&Count framework, which enables ctwnO(1) one-sided Monte Carlo
algorithms for connectivity-type problems with constant probability of a false negative.
Cut&Count has previously been used to improve the best-known bounds for several well-
studied problems, including Connected Vertex Cover, Hamiltonian Cycle, and
Feedback Vertex Set [5]. Pilipczuk showed that an O∗(ctw) algorithm for some constant
c can be designed with the Cut&Count approach for Co-Path Set because the problem
can be expressed in the specialized graph logic known as ECML+C [12]. However, since our
end goal is to improve on existing algorithms for k-Co-Path Set in general graphs using a
bounded treewidth kernel, we need to develop a specialized dynamic programming algorithm
with a small value of c. We show:

I Theorem 4. There exists a one-sided fpt Monte Carlo algorithm tw-copath deciding
k-Co-Path Set for all k in a graph G in O∗(4tw(G)) time with failure probability ≤ 1/3,
when a tree decomposition of width tw is given as input.

The Cut&Count technique has two main ingredients: an algebraic approach to counting
which uses arithmetic in Z2 (enabling faster algorithms) alongside a guarantee that undesirable
objects are seen an even number of times (so a non-zero result implies a desired solution
has been seen), and the idea of defining the problem’s connectivity requirement through
consistent cuts. In this context, a consistent cut is a partitioning (V1, V2) of the vertices of a
graph into two sets such that no edge uv has u ∈ V1 and v ∈ V2 and all vertices of degree 0

IPEC 2016



28:4 A Fast Parameterized Algorithm for Co-Path Set

are in V1 . Since each connected component must lie completely on one side of any consistent
cut, we see that a graph G has exactly 2cc(G)−nI(G) such cuts, where cc(G) is the number of
connected components and nI(G) is the number of isolates (vertices with degree 0). In order
to utilize parity with the number of consistent cuts, we introduce markers, which create
even numbers of consistent cuts for graphs that are not collections of disjoint paths. Our
counting algorithm tw-copath, which computes the parity of the size of the collection of
subgraphs with consistent cuts which adhere to specific properties pertaining to Co-Path
Set, employs dynamic programming over a nice tree decomposition. We further use weights
and the Isolation Lemma to bound the probability of a false negative arising from multiple
valid markings of a solution. We use fast subset convolution [1] to reduce the complexity
required for handling join bags in the dynamic programming. In the remainder of this section,
we present the specifics for applying these techniques to solve Co-Path Set.

3.1 Cutting
We first provide formal definitions of markers and marked consistent cuts, which we use to
ensure that sets of disjoint paths are counted exactly once during our dynamic programming.

I Definition 5. A triple (V1, V2,M) is a marked consistent cut of a graph G if (V1, V2) is
a consistent cut and M ⊆ E(G[V1]). We refer to the edges in M as the markers. A marker
set is proper if it contains at least one edge in each connected component of G which is not
an isolate.

Note that if a marked consistent cut contains a proper marker set, all vertices are on the
V1 side of the cut. This is because by the definition of a consistent cut, all isolates are on the
V1 side, and if every connected component contains a marker then all connected components
must fall entirely on the V1 side as well. Therefore for any proper marker set there exists
exactly one consistent cut, while all marker sets which are not proper will be paired with
an even number of consistent cuts because unmarked components may lie in V1 or V2. We
use proper marker sets to distinguish desired subgraphs by assigning markers in such a way
that when we prune the dynamic programming table for solutions (as described later in the
section), the only subgraphs we consider which may have a proper marker set are collections
of disjoint paths. We know because the marker set is proper that the subgraph has a unique
consistent cut, and thus these collections of disjoint paths will only be counted once in some
entry of the dynamic programming table, while all other subgraphs will be counted an even
number of times. Note that we are not claiming that all collections of disjoint paths will
have proper marker sets.

We refer to the complement of a co-path set (the edges in the disjoint paths) as a
cc-solution, and call it a marked-cc-solution when paired with a proper marker set of size
exactly equal to its number of non-isolate connected components. While cc-solutions can
be viewed as solutions due to their complementary nature, being marked is crucial in our
counting algorithm and thus subgraphs which are marked-cc-solutions are what correspond
to solutions in the dynamic programming table.

We now describe our use of the Isolation Lemma, which guarantees we are able to use
parity to distinguish solutions. Let f(X) denote

∑
x∈X f(x).

I Isolation Lemma ([11]). Let F ⊆ 2U be a non-empty set family over universe U . A
function ω : U → Z is said to isolate F if there is a unique S ∈ F with ω(S) = minF∈F ω(F ).
Assign weights ω : U → {1, 2, ..., N} uniformly at random, where the value of N is of the
reader’s choice. Then the probability that ω isolates F is at least 1− |U |/N .



B.D. Sullivan and A. van der Poel 28:5

Intuitively, if F is the set of solutions (or complements of solutions) to an instance of
Co-Path Set and |F| is even, then tw-copath would return a false negative. This is because
while each solution is counted an odd number of times in tw-copath, because there are an
even number of solutions the total count of solutions is even, making the combined count of
solutions and non-solutions even and the algorithm would incorrectly determine a solution
does not exist (a false negative). The Isolation Lemma allows us to partition F based on
the weight of each solution (as assigned by ω), and guarantees at least one of the partition’s
blocks has odd size with constant probability. We let U contain two copies of every edge
e ∈ E: one representing e as a marker and one as an edge in the cc-solution. Then 2U
denotes all pairs of edge subsets (potential marked-cc-solutions), and we set N = 3|U | = 6E
(selected to achieve success probability in Theorem 1). Each copy of an edge is assigned
a weight in [1, N ] uniformly at random by ω and the probability of finding an isolating ω
is thus 2/3. We denote the values assigned by ω to the set of marker copies by ωM , and
likewise to the set of edge-in-cc-solution copies by ωE .

3.2 Counting
A marked-cc-solution C of a graph G corresponds to a co-path set of size k when the number
of edges and markers in C match specific values which depend on k and |E(G)|. These
values are easily deduced because we know the deletion of a co-path set solution of size k will
leave |E(G)| − k edges in a cc-solution. Furthermore, because a forest has n−m connected
components, the number of markers in C needs to be at most |V (C)| − |E(G)| + k. All
isolates from a forest can be removed and the resulting graph is still a forest, and thus the
actual number of markers necessary in C is |V (C)| − nI(C)− |E(G)|+ k.

We now describe a dynamic programming (DP) algorithm over a nice tree decomposition
which returns mod 2 the number of appropriately sized marked-cc-solutions in the root’s
subtree (for a fixed k). Since no-instances have no appropriately sized marked-cc-solutions,
and yes-instances have at least one, odd parity for the number of marked-cc-solutions of size
corresponding to k implies a solution to the k-Co-Path Set instance must exist.

During the DP algorithm we actually count (for all values (m, e)) the number of cc-
candidates, which are subgraphs G′ ⊆ G with maximum degree 2, exactly e edges, and a
marked consistent cut with m markers. The following lemma justifies counting cc-candidates
in place of marked-cc-solutions. Note that the weight of a marked-cc-solution or a cc-candidate
is equal to the sum of its marker weights and its edge weights.

I Lemma 6. The parity of the number of marked-cc-solutions in G with e edges and
weight w is the same as the parity of the number of cc-candidates G′ ⊆ G with e edges,
|V (G′)| − e− nI(G′) markers, and weight w.

Proof. Consider a subgraph G′ ⊆ G with maximum degree 2 and e edges. Let M ′ be a
marking of G′ such that ωE(E(G′)) + ωM (M ′) = w. Assume first that G′ is a collection of
paths. We know that G′ has |V (G′)| − e− nI(G′) non-isolate connected components. If M ′
is a proper marker set of G′, then |M ′| = |V (G′)| − e− nI(G′) and (G′,M ′) has exactly one
consistent cut. Therefore (G′,M ′) contributes one to both the number of marked-cc-solutions
and the number of cc-candidates, respectively.

If otherwiseM ′ is not a proper marker set, then (G′,M ′) contains an unmarked connected
component and has an even number of consistent cuts, and therefore contributes an even
number to the count of cc-candidates and zero to the number of marked-cc-solutions. Finally,
if G′ contains at least one cycle then cc(G′) > |V (G′)| − e − nI(G′). Therefore at least
one connected component does not contain a marker, and the number of consistent cuts is
even, so the contribution to the count of cc-candidates is again even and the contribution

IPEC 2016



28:6 A Fast Parameterized Algorithm for Co-Path Set

Table 1 Dynamic programming table parameters and upper bounds.

Variable Parameter Maximum value

a # of non-isolated vertices n

e # of edges n2

m # of markers n2

w weight of edges and markers 4n4

to the count of marked-cc-solutions is zero. We conclude that the parity of the number of
marked-cc-solutions and the parity of the number of cc-candidates is the same. J

Our dynamic programming algorithm is a bottom-up approach over a nice tree decom-
position. We build cc-candidates for all values of m and e (encoding the option to add/not
add edges and select/not select edges as markers), and keep track of various parameters
ensuring that when pruning the DP table we only consider cc-candidates which could be valid
solutions to the k-Co-Path Set instance. We use the number of edges to ensure our solution
is of the correct size, and the number of markers and non-isolate vertices to determine when
a subgraph is acyclic. The weight parameter allows us to distinguish between solutions and
decreases the likelihood of a false negative occurring via the Isolation Lemma.

Finally, we need a parameter that encodes the degree information required to properly
combine cc-candidates as we iterate up the tree. We call this parameter a degree-function
and define it on the vertices V of a bag as f : V → Σ = {0, 11, 12, 2}, where f(v) corresponds
to v’s degree in the associated cc-candidates of the table entry — for vertices of degree 1,
their value 1j denotes which side of the partition (V1, V2) they are on. Vertices with degree
0 are on the V1 side of the cut by definition and degree 2 vertices cannot gain additional
incident edges, so we need not keep track of their side of the cut. In summary, we have table
entries Ax(a, e,m,w, s) counting the number of cc-candidates with a non-isolated vertices,
e edges, m markers, weight w, and degree-function s, where all vertices which have been
introduced in the subtree rooted at x are present and only edges which have been introduced
in this subtree may be present.

In the following description of the dynamic programming algorithm over a nice tree
decomposition T , we let z1, z2 denote the children of a join node; otherwise, the unique child
is denoted y.

Leaf:

Ax(0, 0, 0, 0, ∅) = 1; Ax(a, e,m,w, s) = 0 for all other inputs.

Introduce vertex v:

Ax(a, e,m,w, s[v → 0]) = Ay(a, e,m,w, s); Ax(a, e,m,w, s[v → i]) = 0, ∀i 6= 0.

Introduce edge uv:

Ax(a, e,m,w, s) = Ay(a, e,m,w, s) +
∑

αt∈subs(s(t))
t∈{u,v}

Jφ2(αu, αv)KAy(a′, e− 1,m,w′, s′)

+
∑

αt∈subs(s(t))
t∈{u,v}

Jφ1(αu, αv)K
(
Ay(a′, e− 1,m,w′, s′) +Ay(a′, e− 1,m− 1, w′′, s′)

)
,



B.D. Sullivan and A. van der Poel 28:7

where φj(αu, αv) = (αu = 1j ∨ s(u) = 1j) ∧ (αv = 1j ∨ s(v) = 1j), a′ = a − (|{11, 12} ∩
{s(u), s(v)}|), w′ = w − ωE(uv), w′′ = w − ωE(uv) − ωM (uv), s′ = s[u → αu, v → αv],
and the subs function returns all the values the degree-function in child node y could have
assigned to vertices u and v based on current degree-function s (summarized below).

s(v) 0 11 12 2

subs(s(v)) ∅ 0 0 {11, 12}

We now argue this formula’s correctness. The term Ay(a, e,m,w, s) handles the case
when uv is excluded from the cc-solution. We handle the case when uv is added to the
cc-solution by iterating over all possible subs values for each endpoint, only considering
counts in child y’s entries where u and v have the appropriate subs values (preventing us
from ever having a vertex with degree greater than 2). Note that we use the φj function to
guarantee that if s labels u or v as an isolate, we do not use the introduced edge. We have a
summation for both possible j values in order to consider uv falling on either side of the cut.
The formulation of a′ assures that each endpoint of degree 1 is now included in the count of
non-isolates (i.e. when u and/or v had degree 0 in y). We utilize the marker weight of uv
to distinguish when we choose it as a marker (only if on V1 side of cut), and increment m
accordingly. In either case, we update w appropriately (with w′ if no marker, w′′ if marker
introduced).

Forget vertex h:

Ax(a, e,m,w, s) =
∑

α∈{0,11,12,2}

Ay(a, e,m,w, s[h→ α]).

As a forgotten vertex can have degree 0, 1 or 2 in a cc-candidate, we must consider all
possible values that s assigns to h in child bag y. Note that cc-candidates in which h is
both not an isolate and not a member of a connected component that contains a marker will
cancel mod 2, as h can be on either side of the cut and all parameters will be identical.

Join: We compute Ax from Az1 and Az2 via fast subset convolution [1] taking care to only
combine table entries whose degree-functions are compatible, ensuring that only joins which
preserve the constraints of the degree-functions of the children nodes occur.

I Definition 7. At a join node x with children z1 and z2, the degree-functions s1 from
Az1 , s2 from Az2 , and s from Ax are compatible if one of the following holds for every
vertex v in x: (i) si(v) = 0 and sl(v) = s(v), i 6= l or (ii) s1(v) = s2(v) = 1j and s(v) = 2 for
i, j, l ∈ [1, 2].

In order to apply Lemma 3, we let B be the bag at x, and transform the values assigned
by the degree function s to values in Z4. Let φ : {0, 11, 12, 2} → Z4 and ρ : {0, 11, 12, 2} → Z
be defined as in the table below, extending to vectors by component-wise application.

0 11 12 2

φ 0 1 3 2
ρ 0 1 1 2

We use φ to apply Lemma 3, while the function ρ (which corresponds to a vertex’s degree) is
used in tandem to ensure the compatibility requirements are met: if φ(s1) + φ(s2) = φ(s),

IPEC 2016



28:8 A Fast Parameterized Algorithm for Co-Path Set

then necessarily ρ(s1) + ρ(s2) ≥ ρ(s). From the above table it is easy to verify that
φ(s1)+φ(s2) = φ(s) and ρ(s1)+ρ(s2) = ρ(s) together imply that s1, s2 and s are compatible.
We sum over both functions when computing values for join nodes, to make sure that solutions
from the children are combined only when there is compatibility.

Assign t1 = φ(s1), t2 = φ(s2), and t = φ(s) in accordance with Lemma 3. Let ρ(s) =∑
v∈B ρ(s(v)); that is ρ(s) is the sum of the degrees of all the vertices in the join node, as

assigned by degree-function s. By defining functions f and g as follows:

f 〈d,a,e,m,w〉(φ(s)) = Jρ(s) = dKAz1(a, e,m,w, s),

g〈d,a,e,m,w〉(φ(s)) = Jρ(s) = dKAz2(a, e,m,w, s),

and writing ~ri for the vector 〈di, ai, ei,mi, wi〉 in order to consider all ways to split the
parameter values of x between the two children nodes, we can now compute

Ax(a, e,m,w, s) =
∑

~r1+~r2=〈ρ(s),a′,e,m,w〉

(f ~r1 ∗4x g ~r2)(φ(s))

where a′ = a+ |s−1
1 {11, 12} ∩ s−1

2 {11, 12}|. We point out that∑
~r1+~r2=〈ρ(s),a′,e,m,w〉

(f ~r1 ∗4x g ~r2)(φ(s)) = 1

only if both φ(s1) + φ(s2) = φ(s) and ρ(s1) + ρ(s2) = ρ(s); that is, exactly when s1, s2 and s
are compatible.

We conclude this section by describing how we search the DP table for marked-cc-solutions
at the root node r. By Lemma 6, the parity of the number of marked-cc-solutions with |E|−k
edges and weight w is the same as the parity of the number of cc-candidates G′ with |E| − k
edges, |V (G′)| − (|E| − k)− nI(G′) markers and weight w. These candidates are recorded
in the table entries Ar(a, |E| − k, a− |E|+ k,w, ∅), where a is the number of non-isolates.
Therefore, if there exists some a and w so that Ar(a, |E| − k, a − |E| + k,w, ∅) = 1, then
we have a yes-instance of k-Co-Path Set. Note that the degree-function is ∅ in this entry
because there are no vertices contained in the root node by definition.

By Lemma 3, the time complexity of tw-copath for a join node B is O∗(4|B|), which is
O∗(4tw). Note that for the other four types of bags, as we only consider one instance of s
per table entry, the complexity for each is O∗(4tw). We point out that the size of the table is
polynomial in n because there are a linear number of bags and a polynomial number of entries
(combinations of parameters) for each bag. Since the nice tree decomposition has size linear
in n, the bottom-up dynamic programming runs in total time O∗(4tw). This complexity
bound combined with the correctness of tw-copath discussed above proves Theorem 4.

4 Achieving O∗(1.588k) in General Graphs

In order to use tw-copath to solve k-Co-Path Set in graphs with unbounded treewidth,
we combine kernelization and a branching procedure to generate a set of reduced instances –
bounded treewidth subgraphs of the input graph G. Specifically, we begin by constructing
a kernel of size at most 6k as described in [7]. Our reduced instances are bounded degree
subgraphs of the kernel given by a branching technique. We prove that (1) at least one
reduced instance is an equivalent instance; (2) we can bound the number of reduced instances;
and (3) each reduced instance has bounded treewidth. Finally, we analyze the overall
computational complexity of this process.



B.D. Sullivan and A. van der Poel 28:9

Algorithm 1: Generating reduced instances
1 Algorithm deg-branch(G, k, `,D, b)
2 Let v be a vertex of maximum degree in G
3 if deg(v) ≥ D + 1 and b ≥ D − 1 then
4 Arbitrarily select vertices u1, . . . uD+1 from N(v)
5 R = ∅, Ev = {{v, ui}|i ∈ [1, D + 1]}
6 for e1, e2 ∈ Ev, e1 6= e2 do
7 E′v = Ev \ {e1, e2}
8 R = R ∪ deg-branch(G \ E′v, k, `,D, b− (D − 1))
9 return R

10 else if b = 0 and deg(v) ≤ D then return {(G, k − `)}
11 else return ∅ // Discard G

4.1 Kernelization and Branching
We start by describing our branching procedure deg-branch (Algorithm 1), which uses a
degree-bounding technique similar to that of Zhang et al. [16]. Our implementation takes an
instance (G, k) of Co-Path Set and two non-negative integers ` and D, and returns a set of
reduced instances {(Gi, k − `)} so that (1) each Gi is a subgraph of G with exactly |E| − `
edges and maximum degree at most D; and (2) at least one (Gi, k−`) is an equivalent instance
to (G, k). The size of the output (and hence the running time) of deg-branch depends
on both input parameters ` and D. We will select D to achieve the desired complexity in
copath in Section 4.3. We also make use of a budget parameter b, which keeps track of how
many more edges can be removed per the constraints of ` (b is initially set to `).

Our branching procedure leverages the observation that if a co-path set S exists, then
every vertex has at most two incident edges not in S. Specifically, for every vertex of degree
greater than D, we branch on pairs of incident edges which could remain after removing a
valid co-path set (calling each pair a candidate), creating a search tree of subgraphs.

Algorithm 1 returns a set of reduced instances which have had exactly ` edges removed.
The size of the set is at most the number of leaves in the search tree of the branching process
(inequality can result from the algorithm discarding branches in which the number of edits
necessary to branch on a vertex exceeds the number of allowed deletions remaining). We
now give an upper bound on the size of this set.

I Lemma 8. Let T be a search tree formed by deg-branch(G, `,D, k, b). The number of
leaves of T is at most

(
D+1

2
)`/(D−1).

Proof of Lemma 8. The number of children of each interior node of T is
(
D+1

2
)
, resulting in

at most
(
D+1

2
)depth(T ) leaves. The depth of T is limited by the second condition of the if on

line 3 of Algorithm 1. For each recursive call, b is decremented by (D − 1), until b ≤ D − 1.
As b is initially set to `, this implies depth(T ) ≤ `/(D − 1), proving the claim. J

Finally, we argue that at least one member of the set of reduced instances returned by
deg-branch is equivalent to the original. Consider a solution F to k-Co-Path Set in the
original instance (G, k). Every vertex has at most two incident edges in G[E\F ], and since
all candidates are considered at every high-degree vertex, at least one branch correctly keeps
all of these edges.

IPEC 2016



28:10 A Fast Parameterized Algorithm for Co-Path Set

Table 2 Numerically obtained constants cd, 3 ≤ d ≤ 17, used in Lemma 9; originally given in
Table 6.1 of [9].

d 3 4 5 6 7 8 9 10
cd 0.1667 0.3334 0.4334 0.5112 0.5699 0.6163 0.6538 0.6847

d 11 12 13 14 15 16 17
cd 0.7105 0.7325 0.7514 0.7678 0.7822 0.7949 0.8062

4.2 Treewidth of Reduced Instances
Our algorithm deg-branch produces reduced instances with bounded degree; in order to
bound their treewidth, we make use of the following result, which originated from Lemma 1
in [8] and was extended in [9].

I Lemma 9. For ε > 0, there exists nε ∈ Z+ s.t. for every graph G with n > nε vertices,

tw(G) ≤
( 17∑
i=3

cini

)
+ n≥18 + εn,

where ni is the number of vertices of degree i in G for i ∈ {3, . . . , 17}, n≥18 is the number of
vertices of degree at least 18, and ci is given in Table 2. Moreover, a tree decomposition of
the corresponding width can be constructed in polynomial time in n.

Since the structure of k-Co-Path Set naturally provides some constraints on the degree
sequence of yes-instances, we are able to apply Lemma 9 to our reduced instances to effectively
bound treewidth. We first find an upper bound on the number of degree-3 vertices in any
yes-instance of k-Co-Path Set.

I Lemma 10. Let ni be the number of vertices of degree i in a graph G for any i ∈ Z+,
and ∆ be the maximum degree of G. If (G, k) is a yes-instance of k-Co-Path Set, then
n3 ≤ 2k − (

∑∆
i=4 (i− 2)ni).

Proof. Since (G, k) is a yes-instance, removing some set of at most k edges results in a graph
of maximum degree 2. For a vertex of degree j ≥ 3, at least j − 2 incident edges must be
removed. Thus, n3 + 2n4 + 3n5 + . . .+ (∆− 2)n∆ ≤ 2k (each removed edge counts twice –
once for each endpoint). J

I Lemma 11. Let (G, k) be an instance of k-Co-Path Set such that G has n vertices and
max degree at most ∆ ∈ {3, . . . , 17}. If (G, k) is a yes-instance, then the treewidth of G is
upper bounded by k/3 + εn+ c, for any ε > 0 and constant c = nε as defined in Lemma 9. A
tree decomposition of the corresponding width can be constructed in polynomial time in n.

Proof. Let nε be defined as in Lemma 9. Let G′ be the graph formed by adding N = nε
isolates to G. By Lemma 9, because G′ has maximum degree at most ∆, tw(G′) ≤
(1/6)n3 + (1/3)n4 + . . . + c∆n∆ + ε(N + n). We can substitute the bound for n3 from
Lemma 10, which yields:

tw(G′) ≤
2k − (

∑∆
i=4 (i− 2)ni)

6 + n4

3 + . . .+ c∆n∆ + ε(N + n)

≤ k

3 + ε(n+N).



B.D. Sullivan and A. van der Poel 28:11

Algorithm 2: Deciding k-Co-Path Set
1 Algorithm copath (G,k)
2 (G′, k′) = 6k-kernel(G, k)
3 for k1 ← 0 to k′ do
4 Qk1 = deg-branch(G′, k′, k1, 10, k1)
5 foreach (Gi, k2) ∈ Qk1 do
6 if tw-copath(Gi, k2) then return true

7 return false

Note that the inequality holds because we can pair the negative terms of (
∑∆
i=4 (i− 2)ni)/6

with the corresponding terms of n4/3 + . . .+ c∆n∆ and the value of cjnj − (j − 2)(nj)/6 is
non-positive for all j ∈ [4, 17]. Since N = nε is a constant, we have tw(G′) ≤ k/3 + εn+ c.
Since G ⊆ G′ and treewidth is monotone under subgraph inclusion, this proves the claim. J

We point out that when applying Lemma 11 to reduced instances, computing the desired
tree decomposition is polynomial in k (since they are subgraphs of a 6k-kernel).

4.3 The Algorithm copath

This section describes how we combine the above techniques to prove Theorem 1. As shown
in Algorithm 2, we start by applying 6k-kernel [7] to find G′, a kernel of size at most 6k;
this process deletes k − k′ edges. We then guess the number of edges k1 ∈ [0, k′] to remove
during branching, and use deg-branch to create a set of reduced instances Qk1 , each of
which have k′ − k1 edges. Note that deg-branch considers all possible reduced instances,
and thus if a (cc-)solution exists, it is contained in at least one reduced instance. To ensure
the complexity of finding the reduced instances does not dominate the running time, we
set the degree bound D of the reduced instances to be 10 (any choice of 10 ≤ D ≤ 17 is
valid). By considering all possible values of k1, we are assured that if (G, k) is a yes-instance,
some Qk1 contains a yes-instance. Each reduced instance is then passed to tw-copath, which
correctly decides the problem with probability 2/3.

Proof of Theorem 1. We now analyze the running time of copath, as given in Algorithm 2.
By Lemma 8, the size of each Qk1 is O(1.561k1). For each reduced instance (Gi, k2) in Qk1 ,
we have tw(Gi) ≤ k2/3 + ε(6k) + c by Lemma 11.

Applying Theorem 4, tw-copath runs in time O∗(4k2/3+ε6k) for each reduced instance
(Gi, k2) in Qk1 (with success probability at least 2/3). Each iteration of the outer for loop
can then be completed in time

O∗(1.561k14k2/3+ε6k) = O∗(4k/3+ε6k) = O∗(1.588k),

where we use that k1 + k2 = k′ ≤ k, and choose ε < 10−5. Since this loop runs at most k + 1
times, this is also a bound on the overall computational complexity of copath. Additionally
copath is linear-fpt, as the kernelization of [7] is O(n), and the kernel has size O(k), avoiding
any additional poly(n) complexity from the tw-copath subroutine. Note that by Lemma 9
the tree decomposition can be found in polynomial time in the size of the reduced instance.
Since reduced instances are subsets of 6k-kernels, the linearity is unaffected because the
graph has size polynomial in k. J

IPEC 2016



28:12 A Fast Parameterized Algorithm for Co-Path Set

5 Conclusion

This paper gives an O∗(4tw) fpt algorithm for Co-Path Set. By coupling this with
kernelization and branching, we derive an O∗(1.588k) linear-fpt algorithm for deciding k-
Co-Path, significantly improving the previous best-known result of O∗(2.17k). We believe
that the idea of combining a branching algorithm which guarantees equivalent instances
with bounds on the degree sequence from the problem’s constraints can be applied to other
problems in order to obtain a bound on the treewidth (allowing treewidth-parameterized
approaches to be extended to general graphs).

One natural question is whether similar techniques extend to the generalization of Co-
Path Set to k-uniform hypergraphs (as treated in Zhang et al. [16]). It is also open whether
the combined parameterization asking for a co-path set of size k resulting in ` disjoint paths
is solvable in sub-exponential fpt time.

Acknowledgements. We thank two anonymous reviewers for providing a simplification of
our previous branching algorithm and pointing out the result from [9] enabling us to branch
on vertices with degree greater than 7. We also thank Felix Reidl for helpful suggestions on
an earlier draft that significantly improved the presentation of the results.

References
1 A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Fourier meets Möbius: fast subset

convolution. In Proceedings of STOC, pages 67–74, 2007. doi:10.1145/1250790.1250801.
2 Z. Chen, G. Lin, and L. Wang. An approximation algorithm for the minimum co-path set

problem. Algorithmica, 60(4):969–986, 2011.
3 Y. Cheng, Z. Cai, R. Goebel, G. Lin, and B. Zhu. The radiation hybrid map construction

problem: recognition, hardness, and approximation algorithms. Unpublished Manuscript,
2008.

4 D. Cox, M. Burmeister, E. Price, S. Kim, and R. Myers. Radiation hybrid mapping: a
somatic cell genetic method for constructing high-resolution maps of mammalian chromo-
somes. Science, 250:245–50, 1990.

5 M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J. van Rooij, and J. Wojtaszczyk.
Solving connectivity problems parameterized by treewidth in single exponential time. In
FOCS, pages 150–159. IEEE, 2011.

6 Q. Feng, Q. Zhou, and S. Li. Randomized parameterized algorithms for co-path set problem.
In FAW, pages 82–93. Springer, 2014.

7 Q. Feng, Q. Zhou, and J. Wang. Kernelization and randomized parameterized algorithms
for co-path set problem. J. Comb. Optim., 2015. in press, DOI 10.1007/s10878-015-9901-y.
URL: http://dx.doi.org/10.1007/s10878-015-9901-y.

8 F. Fomin, S. Gaspers, S. Saurabh, and A. Stepanov. On two techniques of combin-
ing branching and treewidth. Algorithmica, 54(2):181–207, April 2009. doi:10.1007/
s00453-007-9133-3.

9 S. Gaspers. Exponential Time Algorithms – Structures, Measures, and Bounds. VDM, 2010.
URL: http://bora.uib.no/bitstream/handle/1956/3436/Dr.thesis_Serge_Gaspers.
pdf.

10 T. Kloks. Treewidth, Computations and Approximations, volume 842 of LNCS. Springer,
1994. doi:10.1007/BFb0045375.

11 K. Mulmuley, U. Vazirani, and V. Vazirani. Matching is as easy as matrix inversion. In
Proceedings of STOC, pages 345–354. ACM, 1987. doi:10.1145/28395.383347.

http://dx.doi.org/10.1145/1250790.1250801
http://dx.doi.org/10.1007/s10878-015-9901-y
http://dx.doi.org/10.1007/s00453-007-9133-3
http://dx.doi.org/10.1007/s00453-007-9133-3
http://bora.uib.no/bitstream/handle/1956/3436/Dr.thesis_Serge_Gaspers.pdf
http://bora.uib.no/bitstream/handle/1956/3436/Dr.thesis_Serge_Gaspers.pdf
http://dx.doi.org/10.1007/BFb0045375
http://dx.doi.org/10.1145/28395.383347


B.D. Sullivan and A. van der Poel 28:13

12 M. Pilipczuk. Solving connectivity problems parameterized by treewidth in single exponen-
tial time. In MFCS, pages 520–531, 2011.

13 C. Richard III, D. Withers, T. Meeker, S. Maurer, G. Evans, R. Myers, and D. Cox. A
radiation hybrid map of the proximal long arm of human chromosome 11 containing the
multiple endocrine neoplasia type 1 (men-1) and bcl-1 disease loci. Am. J. Hum. Genet.,
49(6):1189–1196, 1991.

14 N. Robertson and P. Seymour. Graph minors. II. Algorithmic aspects of tree-width. J.
Algorithms, 7(3):309–322, 1986.

15 D. Slonim, L. Kruglyak, L. Stein, and E. Lander. Building human genome maps with
radiation hybrids. J. Comp. Biol., 4(4):487–504, 1997.

16 C. Zhang, H. Jiang, and B. Zhu. Radiation hybrid map construction problem parameterized.
Journal of Combinatorial Optimization, 27(1):3–13, 2014.

IPEC 2016





Clifford Algebras Meet Tree Decompositions∗

Michał Włodarczyk

University of Warsaw, Faculty of Mathematics, Informatics, and Mechanics,
Warsaw, Poland
m.wlodarczyk@mimuw.edu.pl

Abstract
We introduce the Non-commutative Subset Convolution – a convolution of functions useful when
working with determinant-based algorithms. In order to compute it efficiently, we take advantage
of Clifford algebras, a generalization of quaternions used mainly in the quantum field theory.

We apply this tool to speed up algorithms counting subgraphs parameterized by the treewidth
of a graph. We present an O∗((2ω + 1)tw)-time algorithm for counting Steiner trees and an
O∗((2ω + 2)tw)-time algorithm for counting Hamiltonian cycles, both of which improve the pre-
viously known upper bounds. The result for Steiner Tree also translates into a deterministic
algorithm for Feedback Vertex Set. All of these constitute the best known running times of
deterministic algorithms for decision versions of these problems and they match the best obtained
running times for pathwidth parameterization under assumption ω = 2.

1998 ACM Subject Classification F.2.2 [Nonnumerical Algorithms and Problems] Computations
on Discrete Structures, G.2.2 [Graph Theory] Graph Algorithms

Keywords and phrases fixed-parameter tractability, treewidth, Clifford algebra, algebra iso-
morphism

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.29

1 Introduction

The concept of treewidth has been introduced by Robertson and Seymour in their work
on graph minors [13]. The treewidth of a graph is the smallest possible width of its tree
decomposition, i.e. a tree-like representation of the graph. Its importance follows from the
fact that many NP-hard graph problems become solvable on trees with a simple dynamical
programming. A similar idea of pathwidth captures the width of a graph in case we would
like to have a path decomposition. Formal definitions can be found in Section 2.2.

A bound on the graph’s treewidth allows to design efficient algorithms using fixed-
parameter tractability. An algorithm is called fixed-parameter tractable (FPT) if it works
in time complexity f(k)nO(1) where k is a parameter describing hardness of the instance
and f is a computable function. We also use notation O∗(f(k)) that suppresses polynomial
factors with respect to the input size. Problems studied in this work are parameterized by
the graph’s pathwidth or treewidth. To distinguish these cases we denote the parameter
respectively pw or tw.

It is natural to look for a function f that is growing relatively slow. For problems with
a local structure, like Vertex Cover or Dominating Set, there are simple FPT algorithms
with single exponential running time. They usually store ctw states for each node of the

∗ This work is partially supported by Foundation for Polish Science grant HOMING PLUS/2012-6/2 and
a project TOTAL that has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No 677651).

© Michał Włodarczyk;
licensed under Creative Commons License CC-BY

11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin; Article No. 29; pp. 29:1–29:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.29
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


29:2 Clifford Algebras Meet Tree Decompositions

decomposition and take advantage of the Fast Subset Convolution [2] to perform the join
operation in time O∗(ctw). As a result, time complexities for pathwidth and treewidth
parameterizations remain the same. The Fast Subset Convolution turned out helpful in
many other problems, e.g. Chromatic Number, and enriched the basic toolbox used for
exponential and parameterized algorithms.

Problems with connectivity conditions, like Steiner Tree or Hamiltonian Cycle,
were conjectured to require time 2Ω(tw log tw) until the breakthrough work of Cygan et al. [8].
They introduced the randomized technique Cut & Count working in single exponential
time. The obtained running times were respectively O∗(3tw) and O∗(4tw). Afterwards,
a faster randomized algorithm for Hamiltonian Cycle parameterized by the pathwidth
was presented with running time O∗((2 +

√
2)pw) [7]. This upper bound as well as O∗(3pw)

for Steiner Tree are tight modulo subexponential factors under the assumption of Strong
Exponential Time Hypothesis [7, 8].

The question about the existence of single exponential deterministic methods was answered
positively by Bodlaender et al. [4]. What is more, presented algorithms count the number of
Steiner trees or Hamiltonian cycles in a graph. However, in contrast to the Cut & Count
technique, a large gap emerged between the running times for pathwidth and treewidth
parameterizations – the running times were respectively O∗(5pw), O∗(10tw) for Steiner
Tree and O∗(6pw), O∗(15tw) for Hamiltonian Cycle. This could be explained by a lack
of efficient algorithms to perform the join operation, necessary only for tree decompositions.
Some efforts have been made to reduce this gap and the deterministic running time for
Steiner Tree has been improved to O∗((2ω−1 · 3 + 1)tw) [9].

1.1 Our contribution

The main contribution of this work is creating a link between Clifford algebras, objects not
being used in algorithmics to the best of our knowledge, and fixed-parameter tractability. As
the natural dynamic programming approach on tree decompositions uses the Fast Subset
Convolution (FSC) to perform efficiently the join operation, there was no such a tool for
algorithms based on the determinant approach.

Our first observation is that the FSC technique can be regarded as an isomorphism
theorem for some associative algebras. To put it briefly, a Fourier-like transform is being
performed in the FSC to bring computations to a simpler algebra. Interestingly, this kind
of transform is just a special case of the Artin-Wedderburn theorem [1], which seemingly
is not widely reported in computer science articles. The theorem provides a classification
of a large class of associative algebras, not necessarily commutative (more in Appendix A).
We use this theory to introduce the Non-commutative Subset Convolution (NSC) and speed
up multiplication operations in an algebra induced by the join operation in determinant-
based dynamic programming on tree decomposition. An important building block is a fast
Fourier-like transform for a closely related algebra [11]. We hope our work will encourage
researchers to investigate further algorithmic applications of the Artin-Wedderburn theorem.

1.2 Our results

We apply our algebraic technique to determinant approach introduced by Bodlaender et al. [4].
For path decomposition, they gave an O∗(5pw)-time algorithm for counting Steiner trees
and an O∗(6pw)-time algorithm for counting Hamiltonian cycles. The running times for tree
decomposition were respectively O∗(10tw) and O∗(15tw). These gaps can be explained by



M. Włodarczyk 29:3

the appearance of the join operation in tree decompositions which could not be handled
efficiently so far.

By performing NSC in time complexity O∗(2 ωn
2 ) we partially solve an open problem

about the different convolution from [6]. Our further results may be considered similar to
those closing the gap between time complexities for pathwidth and treewidth parameter-
izations for Dominating Set by switching between representations of states in dynamic
programming [14]. We improve the running times to O∗((2ω + 1)tw) for counting Steiner
trees and O∗((2ω + 2)tw) for counting Hamiltonian cycles, where ω denotes the matrix
multiplication exponent (currently it is established that ω < 2.373 [15]). These are not
only the fastest known algorithms for counting these objects, but also the fastest known
deterministic algorithms for the decision versions of these problems. The deterministic
algorithm for Steiner Tree can be translated into a deterministic algorithm for Feedback
Vertex Set [4] so our technique provides an improvement also in this case.

Observe that the running times for pathwidth and treewidth parameterizations match
under the assumption ω = 2. Though we do not hope for settling the actual value of ω, this
indicates there is no further space for significant improvement unless pure combinatorial
algorithms (i.e. not based on matrix multiplication) are invented or the running time for
pathwidth parameterization is improved.

1.3 Organization of the paper
Section 3 provides a brief introduction to Clifford algebras. The bigger picture of the employed
algebraic theory can be found in Appendix A. In Section 4 we define the NSC and design
efficient algorithms for variants of the NSC employing the algebraic tools. Sections 5 and 6
present how to apply the NSC in counting algorithms for Steiner Tree and Hamiltonian
Cycle. They contain main ideas improving the running times, however in order to understand
the algorithms completely one should start from Section 4 (Determinant approach) in [4]. The
algorithm for Hamiltonian Cycle is definitely more complicated and its details, formulated
as two isomorphism theorems, are placed in Appendix C.

2 Preliminaries

We will start with notation conventions.

1. A ]B = C stands for (A ∪B = C) ∧ (A ∩B = ∅).
2. A4B = (A\B) ∪ (B\A).
3. [α] equals 1 if condition α holds and 0 otherwise.
4. For permutation f of a linearly ordered set U

sgn(f) = (−1)|{(a,b)∈U×U ∧ a<b∧ f(a)>f(b)}|.

5. For A,B being subsets of a linearly ordered set

IA,B = (−1)|{(a,b)∈A×B ∧ a>b}|. (1)

Let us note two simple properties of I.

I Claim 1. For disjoint A,B

IA,BIB,A = (−1)|A||B|.

I Claim 2. For A ∩B = ∅ and C ∩D = ∅

IA∪B,C∪D = IA,CIA,DIB,CIB,D.

IPEC 2016



29:4 Clifford Algebras Meet Tree Decompositions

2.1 Fast Subset Convolution
Let us consider a universe U of size n and functions f, g : 2U −→ Z.

I Definition 3. The Möbius transform of f is function f̂ defined as

f̂(X) =
∑
A⊆X

f(A).

I Definition 4. Let f ∗ g denote a subset convolution of f, g defined as

(f ∗ g)(X) =
∑

A]B=X
f(A)g(B).

I Theorem 5 (Björklund et al. [2]). The Möbius transform, its inverse, and the subset
convolution can be computed in time O∗(2n).

2.2 Pathwidth and treewidth
I Definition 6. A tree (path) decomposition of a graph G is a tree T (path P) in which each
node x is assigned a bag Bx ⊆ V (G) such that
1. for every edge uv ∈ E(G) there is a bag Bx containing u and v,
2. for every vertex v the set {x | v ∈ Bx} forms a non-empty subtree (subpath) in the

decomposition.
The width of the decomposition is defined as maxx |Bx| − 1 and the treewidth (pathwidth)
of G is a minimum width over all possible tree (path) decompositions.

If a graph admits a tree decomposition of width t then it can be found in time n ·2O(t3) [3]
and a decomposition of width at most 4t+ 1 can be constructed in time poly(n) · 2O(t) [10].
We will assume that a decomposition of the appropriate type and width is given as a part of
the input.

I Definition 7. A nice tree (path) decomposition is a decomposition with one special node r
called the root and in which each bag is one of the following types:
1. Leaf bag: a leaf x with Bx = ∅,
2. Introduce vertex v bag: a node x having one child y for which Bx = By ] {v},
3. Forget vertex v bag: a node x having one child y for which By = Bx ] {v},
4. Introduce edge uv bag: a node x having one child y for which u, v ∈ Bx = By,
5. Join bag: (only in tree decomposition) a node x having two children y, z with

condition Bx = By = Bz.
We require that every edge from E(G) is introduced exactly once and Br is an empty bag.
For each x we define Vx and Ex to be sets of respectively vertices and edges introduced in
the subtree of the decomposition rooted at x.

Given a tree (path) decomposition we can find a nice decomposition in time n·twO(1) [8, 10]
and we will work only on these. When analyzing running time of algorithms working on tree
decompositions we will estimate the bag sizes from the above assuming |Bx| = tw.

2.3 Problems definitions
Steiner Tree
Input: graph G, set of terminals K ⊆ V (G), integer k
Decide: whether there is a subtree of G with at most k edges connecting all vertices
from K



M. Włodarczyk 29:5

Hamiltonian Cycle
Input: graph G
Decide: whether there is a cycle going through every vertex of G exactly once

Feedback Vertex Set
Input: graph G, integer k
Decide: whether there is a set Y ⊆ V of size at most k such that every cycle in G

contains a vertex from Y

In the counting variants of problems we ask for a number of structures satisfying the given
conditions. This setting is at least as hard as the decision variant.

3 Clifford algebras

Some terms used in this section originate from advanced algebra. For better understanding
we suggest reading Appendix A.

I Definition 8. The Clifford algebra Clp,q(R) is a 2p+q-dimensional associative algebra over
a ring R. It is generated by x1, x2 . . . , xp+q.

These are rules of multiplication of generators:
1. e is a neutral element of multiplication,
2. x2

i = e for i = 1, 2, . . . , p,
3. x2

i = −e for i = p+ 1, p+ 2, . . . , p+ q,
4. xixj = −xjxi if i 6= j.

All 2p+q products of ordered sets of generators form a basis of Clp,q(R) (e is treated as
a product of an empty set). We provide a standard addition and we extend multiplication
for all elements in an associative way.

We will be mainly interested only in Cln,0(Z) 1 and its natural embedding into Cln,0(R).
As q = 0, we can neglect condition 3 when analyzing these algebras.

For A = {a1, a2, . . . , ak} ⊆ [1 . . . n] where a1 < a2 < · · · < ak let xA = xa1xa2 · · ·xak
.

Each element of Cln,0(R) can be represented as
∑
A⊆[1...n] aAxA, where aA are real coefficients.

Using condition 4 we can deduce a general formula for multiplication in Cln,0(R) : ∑
A⊆[1...n]

aAxA

 ∑
B⊆[1...n]

bBxB

 =
∑

C⊆[1...n]

 ∑
A4B=C

aAbBIA,B

xC (2)

where the meaning of IA,B is explained in (1).
As a Clifford algebra over R is semisimple, it is isomorphic to a product of matrix algebras

by the Artin-Wedderburn theorem (see Theorem 31). However, it is more convenient to first
embed Cln,0(R) in a different Clifford algebra that is isomorphic to a single matrix algebra.
As a result, we obtain a monomorphism φ : Cln,0(R) −→M2m(R) (see Definition 28) where
m = n

2 +O(1) and the following diagram commutes (∗ stands for multiplication).

Cln,0(R)
φ

−−−−−−−−−−−−−−−→ M2m(R)
↓ ∗ ↓ ∗

Cln,0(R)
φ

−−−−−−−−−−−−−−−→ M2m(R)

(3)

1 Clifford algebras with q = 0 appear also in geometric literature as exterior algebras.

IPEC 2016



29:6 Clifford Algebras Meet Tree Decompositions

Thus, we can perform multiplication in the structure that is more convenient for us.
For a, b ∈ Cln,0(Z) we can treat them as elements of Cln,0(R), find matrices φ(a) and φ(b),
multiply them efficiently, and then revert the φ transform. The result always exists and
belongs to Cln,0(Z) because Cln,0(Z) is closed under multiplication. The monomorphism
φ : Cln,0(R) −→ M2m(R) can be performed and reverted (within the image) in O∗(2n)
time [11]. However, the construction in [11] is analyzed in the infinite precision model. For
the sake of completeness, we revisit this construction and prove the following theorem in
Appendix B.

I Theorem 9. The multiplication in Cln,0(Z), with coefficients having poly(n) number of
bits, can be performed in time O∗(2 ωn

2 ).

In order to unify the notation we will represent each element of Cln,0(Z) , that is∑
A⊆[1...n] aAxA, as a function f : 2[1...n] −→ Z, f(A) = aA. We introduce �S convolution

as an equivalence of multiplication in Cln,0(Z) . The equation (2) can be now rewritten in
a more compact form

(f �S g)(X) =
∑

A4B=X
f(A)g(B)IA,B . (4)

4 Non-commutative Subset Convolution

We consider a linearly ordered universe U of size n and functions f, g : 2U −→ Z.

I Definition 10. Let f � g denote Non-commutative Subset Convolution (NSC) of functions
f, g defined as

(f � g)(X) =
∑

A]B=X
f(A)g(B)IA,B .

I Theorem 11. NSC on an n-element universe can be performed in time O∗(2 ωn
2 ).

Proof. Observe that condition A ]B = X is equivalent to A4B = X ∧ |A|+ |B| = |X| so

(f � g)(X) =
∑

i+j=|X|
i,j≥0

∑
A4B=X

f(A)
[
|A| = i

]
g(B)

[
|B| = j

]
IA,B .

Alternatively, we can write

(f � g)(X) =
∑

i+j=|X|
i,j≥0

(fi �S gj)(X),

where fi(X) = f(X)
[
|X| = i

]
and likewise for g. The �S convolution, introduced in (4), is

equivalent to multiplication in Cln,0(R) . This means we reduced NSC to O(n2) multiplica-
tions in Cln,0(R) which could be performed in time O(2 ωn

2 ) according to Theorem 9. J

I Observation 12. The technique of paying polynomial factor for grouping the sizes of sets
will turn useful in further proofs. We will call it size-grouping.

In our applications we will need to compute a slightly more complex convolution.



M. Włodarczyk 29:7

I Definition 13. When f, g are of type 2U ×2U −→ Z we can define f �2 g (NSC2) as follows

(f �2 g)(X,Y ) =
∑

X1]X2=X
Y1]Y2=Y

f(X1, Y1)g(X2, Y2)IX1,X2IY1,Y2 .

I Theorem 14. NSC2 on an n-element universe can be performed in time O∗(2ωn).

Proof. Let us introduce a new universe U ′ = UX ∪ UY of size 2n consisting of two copies
of U with an order so each element of UY is greater than any element of UX . To underline
that X ⊆ UX , Y ⊆ UX we will use ] notation when summing subsets of UX and UY . In
order to reduce NSC2 to NSC on the universe U ′ we need to replace factor IX1,X2IY1,Y2 with
IX1]Y1,X2]Y2 . The latter term can be expressed as IX1,X2IY1,Y2IX1,Y2IY1,X2 due to Claim 2.
As all elements from Xi ⊆ UX compare less to elements from Yi ⊆ UY then IX1,Y2 = 1 and
IY1,X2 depends only on the sizes of Y1 and X2. To summarize,

IX1,X2IY1,Y2 = IX1]Y1,X2]Y2(−1)|Y1||X2|.

To deal with factor (−1)|Y1||X2| we have to split the convolution into 4 parts for different
parities of |Y1| and |X2|. We define functions f ′, f ′0, f ′1, g′, g′0, g′1 : 2U ′ −→ Z as

f ′(X ] Y ) = f(X,Y ),

f ′0(X ] Y ) = f(X,Y )
[
|Y | ≡ 0 mod 2

]
,

f ′1(X ] Y ) = f(X,Y )
[
|Y | ≡ 1 mod 2

]
,

g′(X ] Y ) = g(X,Y ),

g′0(X ] Y ) = g(X,Y )
[
|X| ≡ 0 mod 2

]
,

g′1(X ] Y ) = g(X,Y )
[
|X| ≡ 1 mod 2

]
.

Now we can reduce NSC2 to 4 simpler convolutions.

(f �2 g)(X,Y ) =
∑

X1]X2=X
Y1]Y2=Y

f ′(X1 ] Y1)g′(X2 ] Y2)IX1]Y1,Y2]X2(−1)|Y1||X2| =

= (f ′0 � g′0)(X ] Y ) + (f ′0 � g′1)(X ] Y ) + (f ′1 � g′0)(X ] Y )− (f ′1 � g′1)(X ] Y )

We have shown that computing NSC2 is as easy as NSC on a universe two times larger.
Using Theorem 11 directly gives us the desired complexity. J

5 Counting Steiner trees

We will revisit the theorem stated in the aforementioned work.

I Theorem 15 (Bodlaender et al. [4]). There exist algorithms that given a graph G count
the number of Steiner trees of size i for each 1 ≤ i ≤ n − 1 in O∗(5pw) time if a path
decomposition of width pw is given, and in O∗(10tw) time if a tree decomposition of width tw
is given.

Both algorithms use dynamic programming over tree or path decompositions. We
introduce some decomposition-based order on V and fix vertex v1. Let A = (av,e)v∈V,e∈E
be an incidence matrix, i.e. for e = uv, u < v we have au,e = 1, av,e = −1 and aw,e = 0 for

IPEC 2016



29:8 Clifford Algebras Meet Tree Decompositions

any other vertex w. For each node x of the decomposition we define a function Ax with
arguments 0 ≤ i ≤ n− 1, sY , s1, s2 ∈ {0, 1}Bx . The idea is to express the number of Steiner
trees with exactly i edges as Ar(i+ 1, ∅, ∅, ∅).

Ax(i, sY , s1, s2) =

=
∑
Y⊆Vx

|Y |=i
(K∩Vx)⊆Y

Y ∩Bx=s−1
Y

(1)

∑
X⊆E(Y,Y )∩Ex

∑
f1:X1−1→ Y \{v1}\s−1

1 (0)

f2:X1−1→ Y \{v1}\s−1
2 (0)

sgn(f1)sgn(f2)
∏
e∈X

af1(e),eaf2(e),e (5)

As observed in [4] condition sY (v) = 0 implies that either s1(v) = s2(v) = 0 or
Ax(i, sY , s1, s2) = 0. This means there are at most n5tw triples for which Ax returns
a nonzero value.

If a node x has a child y and is of type introduce vertex, introduce edge, or forget vertex,
then the function Ax can be computed from Ay in linear time with respect to the number of
non-trivial states. Saying this is just a reformulation of Theorem 15 for path decompositions.
The only thing that is more difficult for tree decompositions is that they include also join
nodes having two children each. Here is the recursive formula2 for Ax for a join node x
having children y, z.

Ax(i, sY , s1, s2) =
∑

iy+iz=i+|s−1
Y

(1)|
s1,y+s1,z=s1
s2,y+s2,z=s2

Ay(iy, sY , s1,y, s2,y)Az(iz, sY , s1,z, s2,z)
Is−1

1,y(1),s−1
1,z(1)Is−1

2,y(1),s−1
2,z(1)

(6)

The next lemma, however not stated explicitly in the discussed work, follows from the
proof of Theorem 15 (Theorem 4.4 in [4]).

I Lemma 16. Assume there is an algorithm computing all nonzero values of Ax given by (6)
with running time f(tw). Then the number of Steiner trees of size i in a graph G can be
counted in O∗(max(f(tw), 5tw)) time if a tree decomposition of width tw is given.

We will change notation for our convenience. Each function si will be matched with a set
s−1
i (1). Let us replace functions Ax, Ay, Az with hi, fi, gi having first argument fixed and
operating on triples of sets. In this setting, the convolution can we written as

hi(A,B,C) =
∑

iy+iz=i+|A|
By]Bz=B
Cy]Cz=C

fiy (A,By, Cy)giz (A,Bz, Cz)IBy,Bz
ICy,Cz

. (7)

Observe that size-grouping allows us to sacrifice a polynomial factor and neglect the restric-
tions for i, iy, iz. Hence, we can work with a simpler formula

h(A,B,C) =
∑

By]Bz=B
Cy]Cz=C

f(A,By, Cy)g(A,Bz, Cz)IBy,Bz
ICy,Cz

. (8)

The only triples (sY (v), s1(v), s2(v)) allowed for each vertex v are (0, 0, 0), (1, 0, 0), (1, 0, 1),
(1, 1, 0), (1, 1, 1). In terms of set notation we can say that if f(A,B,C) 6= 0 then B ∪ C ⊆ A.
Let fA : 2A × 2A −→ Z be f with the first set fixed, i.e. fA(B,C) = f(A,B,C).

2 As confirmed by the authors [5], the formula in [4] for the join node is missing the first argument to the
Ax function tracking the number of vertices of a Steiner tree, hence we present a corrected version of
this formula.



M. Włodarczyk 29:9

I Lemma 17. For fixed A all values h(A,B,C) can be computed in time O∗(2ω|A|).

Proof. We want to compute

hA(B,C) =
∑

By]Bz=B
Cy]Cz=C

fA(By, Cy)gA(Bz, Cz)IBy,Bz
ICy,Cz

= (fA �2 gA)(B,C),

what can be done in time O∗(2ω|A|) according to Theorem 14. J

I Lemma 18. The convolution (7) can be performed in time O∗((2ω + 1)tw).

Proof. We use size-grouping to reduce the problem to computing (8). Then we iterate
through all possible sets A and take advantage of Lemma 17. The total number of operations
(modulo polynomial factor) is bounded by

∑
A⊆U

2ω|A| =
tw∑
k=0

(
tw

k

)
2ωk = (2ω + 1)tw. J

Keeping in mind that (6) and (7) are equivalent and combining Lemmas 16, 18, we obtain
the following result.

I Theorem 19. The number of Steiner trees of size i in a graph G can be computed in
O∗((2ω + 1)tw) time if a tree decomposition of width tw is given.

I Remark. The space complexity of the algorithm is O∗(5tw).
Solving the decision version of Feedback Vertex Set can be reduced to the Maximum

Induced Forest problem [4]. As observed in [4] the join operation for Maximum Induced
Forest is analogous to (6).

I Corollary 20. The existence of a feedback vertex set of size at most i in a graph G can be
determined in O∗((2ω + 1)tw) time if a tree decomposition of width tw is given.

6 Counting Hamiltonian cycles

Likewise in the previous section, we will start with a previously known theorem.

I Theorem 21 (Bodlaender et al. [4]). There exist algorithms that given a graph G count the
number of Hamiltonian cycles in O∗(6pw) time if a path decomposition of width pw is given,
and in O∗(15tw) time if a tree decomposition of width tw is given.

For each node x of the decomposition a function Ax is defined with arguments s1, s2 ∈
{0, 1}Bx and sdeg ∈ {0, 1, 2}Bx . The idea and notation is analogous to (5). The number of
Hamiltonian cycles can be expressed as Ar(∅, ∅, ∅)/n.

Ax(sdeg, s1, s2) =

=
∑
X⊆Ex

∀v∈(Vx\Bx)degX(v)=2
∀v∈BxdegX(v)=sdeg(v)

∑
S⊆X

∑
f1:S1−1→ Vx\{v1}\s−1

1 (0)

f2:S1−1→ Vx\{v1}\s−1
2 (0)

sgn(f1)sgn(f2)
∏
e∈S

af1(e),eaf2(e),e (9)

As observed in [4] we can restrict ourselves only to some subspace of states. When
sY (v) = 0 then all non-zero summands in the (9) satisfy s1(v) = s2(v) = 0. When sY (v) = 2
then we can neglect all summands except for those satisfying s1(v) = s2(v) = 1.

IPEC 2016



29:10 Clifford Algebras Meet Tree Decompositions

This time there are at most 6tw triples for which Ax returns a nonzero value. We again
argue that introduce vertex, introduce edge, and forget vertex nodes can be handled the same
way as for the path decomposition and the only bottleneck is formed by join nodes. We
present a formula for Ax if x is a join node with children y, z.

Ax(sdeg, s1, s2) =
∑

sdeg,y+sdeg,z=sdeg

s1,y+s1,z=s1
s2,y+s2,z=s2

Ay(sdeg,y, s1,y, s2,y)Az(sdeg,z, s1,z, s2,z)
Is−1

1,y(1),s−1
1,z(1)Is−1

2,y(1),s−1
2,z(1)

(10)

Analogously to the algorithm for Steiner Tree, we formulate our claim as a lemma
following from the proof of Theorem 21 (Theorem 4.3 in [4]).

I Lemma 22. Assume there is an algorithm computing all nonzero values of Ax given
by (10) with running time f(tw). Then the number of Hamiltonian cycles in a graph G can
be counted in O∗(max(f(tw), 6tw)) time if a tree decomposition of width tw is given.

The only allowed triples of (sdeg(v), s1(v), s2(v)) for each vertex v are (0, 0, 0), (1, 0, 0),
(1, 0, 1), (1, 1, 0), (1, 1, 1), (2, 1, 1).

I Lemma 23. Assume the equation (10) holds. Then it remains true after the following
translation of the set of allowed triples (sdeg(v), s1(v), s2(v)).

0, 0, 0 −→ 0, 0, 0
1, 0, 0 −→ 1, 0, 0
1, 0, 1 −→ 1, 0, 1
1, 1, 0 −→ 0, 1, 0
1, 1, 1 −→ 0, 1, 1
2, 1, 1 −→ 1, 1, 1

Proof. The I.,. factors do not change as we do not modify the coordinates given by functions
s1, s2. Triples that match in (10) translate into matching triples as the transformation keeps
their additive structure. This fact can be seen on the tables below.

000 100 101 110 111 211

000 000 100 101 110 111 211
100 100 X X X 211 X
101 101 X X 211 X X
110 110 X 211 X X X
111 111 211 X X X X
211 211 X X X X X

000 100 101 010 011 111

000 000 100 101 010 011 111
100 100 X X X 111 X
101 101 X X 111 X X
010 010 X 111 X X X
011 011 111 X X X X
111 111 X X X X X

J

Therefore we can treat sdeg functions as binary ones. We start with unifying the notation
binding functions si with sets s−1

i (1). Let us replace functions Ax, Ay, Az with their equi-
valences h, f, g operating on triples of sets. In this setting, the convolution looks as follows.

h(A,B,C) =
∑

A1]A2=A
B1]B2=B
C1]C2=C

f(A1, B1, C1)g(A2, B2, C2)IB1,B2IC1,C2 (11)



M. Włodarczyk 29:11

Performing convolution (11) within the space of allowed triples is noticeably more
complicated than computations in Section 5. Therefore the proof of the following lemma is
placed in Appendix C.

I Lemma 24. The convolution (11) can be computed in time O∗((2ω + 2)tw).

This result, together with Lemmas 22 and 23, leads to the main theorem of this section.

I Theorem 25. The number of Hamiltonian cycles in a graph G can be computed in
O∗((2ω + 2)tw) time if a tree decomposition of width tw is given.

I Remark. The space complexity of the algorithm is O∗(6tw).

7 Conclusions

We have presented the Non-commutative Subset Convolution, a new algebraic tool in
algorithmics based on the theory of Clifford algebras. This allowed us to construct faster
deterministic algorithms for Steiner Tree, Feedback Vertex Set, and Hamiltonian
Cycle, parameterized by the treewidth. As the determinant-based approach applies to all
problems solvable by the Cut & Count technique [4, 8], the NSC can improve running times
for a larger class of problems.

The first open question is whether the gap between time complexities for the decision
and counting versions of these problems could be closed. Or maybe one can prove this gap
inevitable under a well-established assumption, e.g. SETH?

The second question asked is if it is possible to prove a generic theorem so the lemmas
like 18 or 24 would follow from it easily. It might be possible to characterize convolution
algebras that are semisimple and algorithmically construct isomorphisms with their canonical
forms described by the Artin-Wedderburn theorem.

The last question is what other applications of Clifford algebras and Artin-Wedderburn
theorem can be found in algorithmics.

Acknowledgements. I would like to thank Marek Cygan for pointing out the bottleneck of
the previously known algorithms and for the support during writing this paper. I would also
like to thank Paul Leopardi for helping me understand the fast Fourier-like transform for
Clifford algebras.

References
1 John A. Beachy. Introductory lectures on rings and modules, volume 47. Cambridge Uni-

versity Press, 1999.
2 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Fourier meets

Möbius: Fast subset convolution. In Proceedings of the 39th Annual ACM Symposium on
Theory of Computing, STOC’07, pages 67–74, New York, NY, USA, 2007. ACM. doi:
10.1145/1250790.1250801.

3 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on computing, 25(6):1305–1317, 1996.

4 Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic
single exponential time algorithms for connectivity problems parameterized by treewidth.
Inf. Comput., 243(C):86–111, August 2015. doi:10.1016/j.ic.2014.12.008.

5 Marek Cygan. Private communication, 2016.

IPEC 2016

http://dx.doi.org/10.1145/1250790.1250801
http://dx.doi.org/10.1145/1250790.1250801
http://dx.doi.org/10.1016/j.ic.2014.12.008


29:12 Clifford Algebras Meet Tree Decompositions

6 Marek Cygan, Fedor Fomin, Bart MP Jansen, Lukasz Kowalik, Daniel Lokshtanov, Dániel
Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Open problems for fpt
school 2014. URL: http://fptschool.mimuw.edu.pl/opl.pdf.

7 Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Fast hamiltonicity checking via bases
of perfect matchings. In Proceedings of the 45th Annual ACM Symposium on Theory of
Computing, pages 301–310. ACM, 2013.

8 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michał Pilipczuk, Johan M.M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth
in single exponential time. In Foundations of Computer Science (FOCS), 2011 IEEE 52nd
Annual Symposium on, pages 150–159. IEEE, 2011.

9 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Representative
sets of product families. In Algorithms – ESA 2014, pages 443–454. Springer, 2014.

10 Ton Kloks. Treewidth: computations and approximations, volume 842. Springer Science &
Business Media, 1994.

11 Paul Leopardi. A generalized FFT for Clifford algebras. Bulletin of the Belgian Mathem-
atical Society, 11(5):663–688, 03 2005.

12 David K. Maslen and Daniel N. Rockmore. Generalized ffts – a survey of some recent results.
In Groups and Computation II, volume 28, pages 183–287. American Mathematical Soc.,
1997.

13 Neil Robertson and Paul D. Seymour. Graph minors. III. Planar tree-width. Journal of
Combinatorial Theory, Series B, 36(1):49–64, 1984.

14 Johan M.M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith. Dynamic Program-
ming on Tree Decompositions Using Generalised Fast Subset Convolution, pages 566–577.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. doi:10.1007/978-3-642-04128-0_
51.

15 Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd. In
Proceedings of the 44th Annual ACM Symposium on Theory of Computing, pages 887–898.
ACM, 2012.

A Associative algebras

This section is not crucial to understanding the paper but it provides a bigger picture of the
applied theory. We assume that readers are familiar with basic algebraic structures like rings
or fields. More detailed introduction can be found, e.g. in [1].

I Definition 26. A linear space A over a field K (or, more generally, a module over a ring
K) is called an associative algebra if it admits a multiplication operator A×A→ A satisfying
the following conditions:
1. ∀a,b,c∈A a(bc) = (ab)c,
2. ∀a,b,c∈A a(b+ c) = ab+ ac, (b+ c)a = ba+ ca,
3. ∀a,b∈A,k∈K k(ab) = (ka)b = a(kb).

A set W ⊆ A is called a generating set if every element of A can be obtained from W

by addition and multiplication. The elements of W are called generators. It is easy to see
that multiplication defined on a generating set extends in an unambiguous way to the whole
algebra. We will often abbreviate the term associative as we will study only such algebras.

I Definition 27. The product of algebras A1, A2, . . . , Am is an algebra A1 ⊗A2 ⊗ · · · ⊗Am
with multiplication performed independently on each coordinate.

I Definition 28. For algebras A,B over a ring K, function φ : A → B is called a
homomorphism of algebras if it satisfy the following conditions:

http://fptschool.mimuw.edu.pl/opl.pdf
http://dx.doi.org/10.1007/978-3-642-04128-0_51
http://dx.doi.org/10.1007/978-3-642-04128-0_51


M. Włodarczyk 29:13

1. ∀a,b∈A φ(a+ b) = φ(a) + φ(b),
2. ∀a,b∈A φ(ab) = φ(a)φ(b),
3. ∀a∈A,k∈K φ(ka) = kφ(a).
If φ is reversible within its image then we call it a monomorphism and if additionally
φ(A) = B then we call φ an isomorphism

Monomorphisms of algebras turn out extremely useful when multiplication in algebra
B is simpler than multiplication in A, because we can compute ab as φ−1(φ(a)φ(b)

)
. This

observation is used in Theorem 9 and Lemmas 24, 32. For a better intuition, we depict the
various ways of performing multiplication on diagrams (3), (14).

I Definition 29. A subset M of algebra A is called a simple left module if
1. ∀a∈A,b∈M ab ∈M ,
2. ∀b,c∈M b+ c ∈M ,
and the only proper subset of M with these properties is {0}.

The next definition is necessary to exclude some cases of obscure algebras.

I Definition 30. An algebra A is called semisimple if there is no non-zero element a so for
every simple left module M ⊆ A the set aM = {ab | b ∈M} is {0}.

The theorem below was proven in full generality for algebras over arbitrary rings but we
will formulate its simpler version for fields.

I Theorem 31 (Artin-Wedderburn [1]). Every finite-dimensional associative semisimple
algebra A over a field K is isomorphic to a product of matrix algebras

A ∼= Mn1(K1)⊗Mn2(K2)⊗ · · · ⊗Mnm
(Km),

where Ki are fields containing K.

The related isomorphism is called a generalized Fourier transform (GFT) for A. If
we are able to perform GFT efficiently then we can reduce computations in A to matrix
multiplication. For some classes of algebras, e.g. abelian group algebras [12], there are known
algorithms for GFT with running time O(n logn) where n = dimA.

If the field K is algebraically closed (e.g. C) then all Ki = K and
∑m
i=1 n

2
i equals the

dimension of A. If the algebra A is commutative then all ni = 1 and A is isomorphic to
a product of fields. This is actually the case in the Fast Subset Convolution [2] where the
isomorphism is given by the Möbius transform.

B Proof of Theorem 9

Proof. The transformation φ can be computed and reverted (within the image) in time
O∗(2n) assuming infinite precision and O(1) time for any arithmetic operation [11]. In order
to compute φ accurately, we need to look inside the paper [11].

Transformation φ can be represented as φ = γ ◦ υ where υ is a monomorphic embedding
into another Clifford algebra and γ is an isomorphism with the matrix algebra. We modify
isomorphism diagram (3) to show these mappings in more detail.

Cln,0(Z) ↪→ Cln,0(R) υ−→ Clm,m(R) γ−→ M2m(R)
↓ ∗ ↓ ∗ ↓ ∗ ↓ ∗

Cln,0(Z) ↪→ Cln,0(R) υ−→ Clm,m(R) γ−→ M2m(R)

IPEC 2016



29:14 Clifford Algebras Meet Tree Decompositions

We begin with embedding υ : Cln,0(R) −→ Clm,m(R) where m = n
2 +O(1) (see Definition

4.4 in [11]). Transformation υ is just a translation of basis so no arithmetic operations are
required.

For the sake of disambiguation, we indicate the domain of the function γ with a lower
index: γk : Clk,k(R) −→ M2k (R). In the k-th step, we construct a matrix representa-
tion of y ∈ Clk,k(R). Let y+, y− denote the projections of y onto subspaces spanned by
products of respectively even and odd number of generators. Of course, y = y+ + y− and
γk(y) = γk(y+) + γk(y−). Such an element y can be represented as y = a+bx−+cx++dx−x+
for x+,x− being the first and the last generator (x2

+ = e, x2
− = −e) and a, b, c, d ∈

Clk−1,k−1(R). Now we can apply the recursive formula from Theorem 5.2 in [11]:

γk(y+) = γk−1

([
a+ − d+ −b− − c−
−b− − c− a+ + d+

])
, γk(y−) = γk−1

([
a− − d− −b+ + c+

b+ + c+ −a− − d−
])

,

where γk−1(M) stands for a block matrix with γk−1 applied to each element of M .
We see that computing

(
γk(y+), γk(y−)

)
can be reduced to computing 4 analogous pairs

for k − 1 and combining them using addition and subtraction. Hence, the coefficients of the
obtained matrix will also be integers with poly(n) number of bits and the total number of
arithmetic operations is O(m4m) = O(n2n).

The inverse transform γ−1 is also computed in m steps and we continue using lower index
to indicate the domain alike for the forward transform. Let Y ∈M2k (Z) and

Y =
[
Y11 Y12
Y21 Y22

]
, yij = γ−1

k−1(Yij).

Then from Theorem 7.1 in [11] we know that

γ−1
k (Y ) = 1

2
(
( ˆy22 + y11) + ( ˆy21 − y12)x− + ( ˆy21 + y12)x+ + ( ˆy22 − y11)x−x+

)
,

where ŷ = y+ − y− and the rest of notation is as above. We can reduce computing
γ−1
k to 4 queries from (k − 1)-th step so the total number of arithmetic operations is
O(m4m) = O(n2n).

This time the coefficients at each step are given as sums of elements from the previous
step divided by 2. We do not need to prove that they remain integer at all steps because we
can postpone the division until the last step. As long as γ−1(Y ) is a product of two elements
from Clm,m(Z), it is guaranteed that the numbers in the last step would be divisible by 2m.
What is more, if we know that γ−1(Y ) ∈ υ(Cln,0(Z)) then we can revert the υ transform
and obtain φ−1(Y ).

We have proven that we can switch representation between Cln,0(Z) and M2m(Z) in time
O∗(2n). The multiplication in M2m(Z) for inputs of poly(n) size can be performed in time
complexity O∗(2ωm) = O∗(2 ωn

2 ) and the resulting matrix also contains only poly(n)-bits
integers. This proves that the multiplication in Cln,0(Z) admits an algorithm with running
time O∗(2 ωn

2 ). J

C Proof of Lemma 24

This section reduces the complicated algorithm for Hamiltonian Cycle to two isomorphism
theorems and we suggest reading Appendix A first. Our goal is to compute values of h for the
allowed triples assuming that non-zero values of f, g also occur only for the allowed triples.

h(A,B,C) =
∑

A1]A2=A
B1]B2=B
C1]C2=C

f(A1, B1, C1)g(A2, B2, C2)IB1,B2IC1,C2 (12)



M. Włodarczyk 29:15

Taking advantage of the size-grouping technique (see Observation 12) we can replace condition
A1 ]A2 = A with A1 ∪A2 = A and focus on the following convolution.

(f � g)(A,B,C) =
∑

A1∪A2=A
B1]B2=B
C1]C2=C

f(A1, B1, C1)g(A2, B2, C2)IB1,B2IC1,C2 (13)

Let Ham be a subspace of 2U × 2U × 2U −→ Z given by functions admitting only the
allowed triples (see Lemma 23), i.e. f ∈ Ham ∧ f(A,B,C) 6= 0 implies A ∩ (B4C) = C\B.
Observe that Ham is closed under the � operation so it can be regarded as a 6tw-dimensional
algebra. Let HD be an algebra over space 2U\D × 2D × 2D −→ Z with multiplication given
by the � operator defined as

(f � g)(E,B,C) =
∑

E1]E2=E
B1]B2=B
C1]C2=C

f(E1, B1, C1)g(E2, B2, C2)IB1,B2IC1,C2(−1)|E1|(|B2|+|C2|).

We want to show that Ham is isomorphic (see Definition 28) with a product of all HD for
D ⊆ U (see Definition 27). In particular, diagram (14) commutes.

Ham
τ

−−−−−−−−−−−−−−−→
⊗
D⊆U

HD

↓ � ↓ �
Ham

τ
−−−−−−−−−−−−−−−→

⊗
D⊆U

HD

(14)

where τD : Ham −→ HD is given as

(τDf)(E,B,C) = IB,EIC,E
∑
A⊆D

f(A,B ∪ E,C ∪ E).

I Lemma 32. Transform τ and its inverse can be performed in time O∗(6tw).

I Corollary 33. Transformation τ is reversible.

I Lemma 34. Given f, g ∈ HD we can compute f � g in time O∗(2ω|D|2|U\D|).

I Lemma 35. Diagram (14) commutes, i.e. τ is a homomorphism of algebras.

I Corollary 36. Transformation τ is an isomorphism of algebras.

As for the Clifford algebras, we can switch the representation of the algebra to perform
multiplication in the simpler one, and then revert the isomorphism to get the result. The
most time consuming part of the algorithm is performing the � convolutions. Total number
of operations modulo polynomial factor can be bounded with Lemma 34 by

∑
D⊆U

2ω|D|2|U\D| =
tw∑
k=0

(
tw

k

)
2ωk2tw−k = (2ω + 2)tw. (15)

The rest of the appendix is devoted to proving Lemmas 32, 34, 35.

Proof of Lemma 32. For fixed sets B,C let H = B ∩C, F = B4C, B1 = B\C, C1 = C\B.
Observe that every allowed triple (A,B,C) must satisfy A ∩ F = C1. Therefore we can
represent Ham as a union of sets

TB1,C1,H =
{

(A1 ∪ C1, B1 ∪H,C1 ∪H)
∣∣∣A1 ⊆ U\(B1 ∪ C1)

}
.

IPEC 2016



29:16 Clifford Algebras Meet Tree Decompositions

for all pairwise disjoint triples B1, C1, H ⊆ U . Functions over TB1,C1,H can be parameterized
with only the A1 argument. Consider following transformation over function space on
TB1,C1,H .

(γB1,C1,Hf)(A1) =
∑

A0⊆A1

f(A0 ∪ C1, B1 ∪H,C1 ∪H)

Transform γB1,C1,H is just the Möbius transform, therefore it can be performed and
reverted in time O∗(2|U\(B1∪C1)|) (see Theorem 5). Values of γf correspond directly to
values of τf .

(τDf)(E,B,C) = IB,EIC,E
∑
A⊆D

f(A,B ∪ E,C ∪ E) =

= IB,EIC,E
∑
A⊆D

f(A,B1 ∪H ∪ E,C1 ∪H ∪ E) =

= IB,EIC,E
∑

A0⊆D\F

f(A0 ∪ C1, B1 ∪H ∪ E,C1 ∪H ∪ E) =

= IB,EIC,E(γB1,C1,H∪Ef)(D\F )

(γB1,C1,Hf)(A1) =
∑

A0⊆A1

f(A0 ∪ C1, B1 ∪H,C1 ∪H) =

=
∑

A0⊆A1∪C1

f(A0, B1 ∪H,C1 ∪H) =

=
∑

A0⊆A1∪C1

f
(
A0, B2 ∪ (H\A1), C2 ∪ (H\A1)

)
=

= (τA1∪C1f)(E,B2, C2)IB2,EIC2,E

where E = H\A1, B2 = B1 ∪ (H ∩A1), C2 = C1 ∪ (H ∩A1) are valid arguments of τA1∪C1 .
To estimate the total number of operations consider all choices of F . The partition into

F = B1 ]C1 can be done in 2|F | ways, the set H can be chosen in 2|U\F | ways, and for such
triple we have to perform the γB1,C1,H transform (or its inverse) what involves O∗(2|U\F |)
operations. Hence, the total running time (modulo polynomial factors) is

∑
F⊆U

2|F |4|U\F | =
tw∑
k=0

(
tw

k

)
2k4tw−k = 6tw. J

Proof of Lemma 34. Applying the size-grouping (see Observation 12) allows us to neglect
the (−1)|E1|(|B2|+|C2|) factor and replace condition E1]E2 = E with E1∪E2 = E. Therefore
it suffices to perform the � convolution on HD (the same as in (13)).

(f � g)(E,B,C) =
∑

E1∪E2=E
B1]B2=B
C1]C2=C

f(E1, B1, C1)g(E2, B2, C2)IB1,B2IC1,C2 .

Let us denote

(µEf)(B,C) =
∑
F⊆E

f(F,B,C).

Transform µ and its inverse can be computed using Möbius transform (see Theorem 5) in
time O∗(2|U\D|) for all E and a fixed pair of sets B,C. We perform it for all 4|D| such pairs.



M. Włodarczyk 29:17

It turns out that µ is an isomorphism between (HD,�) and a product of all algebras
given by images of µE for E ⊆ U\D (see Definitions 27, 28) with multiplication given by
NSC2, i.e. (µEf) �2 (µEg) = µE(f � g). We can again switch the representation of the
algebra, multiply the elements, and then revert the isomorphism. The computations below
show that µ is a homomorphism of algebras and we know already that µ is reversible.(

(µEf) �2 (µEg)
)
(B,C) =

=
∑

B1]B2=B
C1]C2=C

(µEf)(B1, C1)(µEg)(B2, C2)IB1,B2IC1,C2 =

=
∑

E1,E2⊆E
B1]B2=B
C1]C2=C

f(E1, B1, C1)g(E2, B2, C2)IB1,B2IC1,C2 =

=
∑
F⊆E

∑
E1∪E2=F
B1]B2=B
C1]C2=C

f(E1, B1, C1)g(E2, B2, C2)IB1,B2IC1,C2 =

=
(
µE(f � g)

)
(B,C)

To perform multiplication of µ(a) and µ(b), where a, b ∈ HD, we have to perform NSC2(
O∗(2ω|D|) time complexity, see Theorem 14

)
for each E ⊆ U\D, what results in desired

running time. J

Proof of Lemma 35. We need to show that for each B,C ⊆ D,D ∩ E = ∅ it is (τD(f �
g))(E,B,C) = ((τDf)�(τDg))(E,B,C). Let us start with unrolling the formula for τD(f�g).
Keeping in mind that B ∩ E = C ∩ E = ∅ we can see that

(τD(f � g))(E,B,C) =

=
∑
A⊆D

(f � g)(A,B ∪ E,C ∪ E)IB,EIC,E =

=
∑

A1,A2⊆D
B1]B2=B
E1]E2=E
C1]C2=C
F1]F2=E

f(A1, B1 ∪ E1, C1 ∪ F1)g(A2, B2 ∪ E2, C2 ∪ F1)
IB1∪E1,B2∪E2IC1∪F1,C2∪F2IB,EIC,E .

(16)

On the other hand, we have

((τDf)� (τDg))(E,B,C) =

=
∑

E1]E2=E
B1]B2=B
C1]C2=C

(τDf)(E1, B1, C1)(τDg)(E2, B2, C2)IB1,B2IC1,C2(−1)|E1|(|B2|+|C2|) =

=
∑

A1,A2⊆D
E1]E2=E
B1]B2=B
C1]C2=C

f(A1, B1 ∪ E1, C1 ∪ E1)g(A2, B2 ∪ E2, C2 ∪ E2)
IB1,B2IC1,C2IB1,E1IC1,E1IB2,E2IC2,E2(−1)|E1|(|B2|+|C2|).

(17)

We want to argue that all non-zero summands of (16) satisfy E1 = F1, E2 = F2. Indeed,
let us assume v ∈ F1\E1. As v ∈ E so v 6∈ D ⊇ A,B,C and

(
[v ∈ A1], [v ∈ B1 ∪ E1],

[v ∈ C1 ∪F1]
)

= (0, 0, 1) which is not a valid triple what implies f(A1, B1 ∪E1, C1 ∪F1) = 0.

IPEC 2016



29:18 Clifford Algebras Meet Tree Decompositions

Assumption v ∈ E1\F1 leads to
(
[v ∈ A1], [v ∈ B1 ∪ E1], [v ∈ C1 ∪ F1]

)
= (0, 1, 0) but

v ∈ E = E1 ] E2 = F1 ] F2 so
(
[v ∈ A2], [v ∈ B2 ∪ E2], [v ∈ C2 ∪ F2]

)
= (0, 0, 1) and

g(A2, B2 ∪ E2, C2 ∪ F1) = 0. The same arguments can be used if v ∈ E24F2.
Now we just need to prove that for E1 = F1, E2 = F2 the I factors in (16) and (17) are

equivalent. We apply Claim 2 to IB1∪E1,B2∪E2IC1∪E1,C2∪E2 . We can omit factor I2
E1,E2

= 1
as well as IB1,B2IC1,C2 appearing also in (17). What is left to prove is that

IB1,E2IE1,B2IB,E = IB1,E1IB2,E2(−1)|E1||B2|,

IC1,E2IE1,C2IC,E = IC1,E1IC2,E2(−1)|E1||C2|.

According to Claim 1 we can replace IE1,B2(−1)|E1||B2| with IB2,E1 what reduces the
formula in the first row to Claim 2 for B = B1 ] B2, E = E1 ] E2. Applying analogous
observation to the second row finishes the proof. J



The First Parameterized Algorithms and
Computational Experiments Challenge
Holger Dell1, Thore Husfeldt2, Bart M. P. Jansen3, Petteri Kaski4,
Christian Komusiewicz5, and Frances A. Rosamond6

2 Saarland University, Saarbrücken, Germany; and
Cluster of Excellence “Multimodal Computing and Interaction” (MMCI),
Saarbrücken, Germany
hdell@mmci.uni-saarland.de

2 ITU Copenhagen, Denmark, and Lund University, Sweden
thore@itu.dk

3 Eindhoven University of Technology, The Netherlands
b.m.p.jansen@tue.nl

4 Aalto University, Finland
petteri.kaski@aalto.fi

5 Friedrich-Schiller-University Jena, Germany
christian.komusiewicz@uni-jena.de

6 University of Bergen, Norway
frances.rosamond@uib.no

Abstract
In this article, the steering committee of the Parameterized Algorithms and Computational Ex-
periments challenge (PACE) reports on the first iteration of the challenge. Where did PACE
come from, how did it go, who won, and what’s next?

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, K.7.2 Organi-
zations

Keywords and phrases treewidth, feedback vertex set, contest, implementation challenge, FPT

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.30

1 Introduction

The Parameterized Algorithms and Computational Experiments Challenge (PACE) was
conceived in Fall 2015 when many FPT researchers gathered at the Simons Institute for the
Theory of Computing at UC Berkeley. A talk there [14] explored the practical implementabil-
ity of theoretically tight FPT results, which seemed to offer an area for further investigation.
PACE was born from a belief that a challenge could help deepen the relationship between
parameterized algorithmics and practice. It was partially inspired by the success of SAT-
solving competitions in neighboring communities. The goal of PACE is to investigate the
applicability of algorithmic ideas studied and developed in the subfields of multivariate,
fine-grained, parameterized, or fixed-parameter tractable algorithms. In particular, it aims
to:
1. Bridge between algorithm design and analysis theory and algorithm engineering practice.
2. Inspire new theoretical developments.
3. Investigate the competitiveness of analytical and design frameworks developed in the

communities.
© Holger Dell, Thore Husfeldt, Bart M.P. Jansen, Petteri Kaski, Christian Komusiewicz, and
Frances A. Rosamond;
licensed under Creative Commons License CC-BY

11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin; Article No. 30; pp. 30:1–30:9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.30
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


30:2 The First Parameterized Algorithms and Computational Experiments Challenge

4. Produce universally accessible libraries of implementations and repositories of benchmark
instances.

5. Encourage dissemination of the findings in scientific papers.

Discussions throughout the community led to a website [18], a steering committee, and
two challenge tracks for 2016 with program committees: Track A (Treewidth) and Track
B (Feedback Vertex Set). The winners were announced at IPEC 2016 in Aarhus.

2 Competition track A: Treewidth

The treewidth of a graph is an important graph parameter, the theory and complexity of
which has been intensely study in graph minor theory and fixed-parameter tractability (FPT).
Given a graph G and an integer k, it is NP-complete to determine whether the treewidth of G

is at most k, but there is an O(nk+2)-time algorithm [1]. The problem can also be solved in
FPT-time 2O(k3)n [3], and a factor-5 approximation can be obtained in time 2O(k)n [4]. It is
unknown whether the problem has a polynomial-time approximation scheme (PTAS).

Treewidth implementations are used in various contexts. For example, compilers allocate
registers by computing proper colorings on control flow graphs, which turn out to have
small treewidth in practice (e.g. [24]). Data structures for shortest path queries can use tree
decompositions in a preprocessing phase (e.g. [5]). Graph theory can be guided by treewidth
implementations when attempting to rigorously determine the treewidth of specific graph
families (e.g. [15]). Finally, many problems in probabilistic inference use tree decompositions
in a preprocessing phase (e.g. [13]).

While some treewidth implementations existed before PACE 2016, they were not easily
accessible and sometimes buggy (as in the case of the Python SAGE implementation, which
can produce non-optimal solutions), and their performances have never been compared in
public. For PACE, we imposed a unified input/output format for the challenge and required
all implementations to be made available on GitHub. Moreover, the details and raw data of
all results mentioned in this document can be found in the GitHub repository [25] that we
published. Using the tools and benchmark instances in the repository, it is a trivial matter
to reproduce the results.

2.1 Submissions
The list of all implementation submissions is available online [16]. Two researchers submitted
real-world instances for benchmarking:
1. Johannes Fichte (TU Wien) submitted transit networks.
2. Ben Strasser (Karlsruhe Institute of Technology) submitted road graphs.

Track A was subdivided into two tracks, based on the distinction between exact algorithms
and heuristics. Each track was further subdivided into two subchallenges, based on the
distinction between parallel and sequential algorithms. Since the best sequential exact
algorithm outperformed the best parallel exact algorithm, the exact parallel subchallenge
was discarded.

2.2 Sequential algorithms for computing treewidth exactly
The goal of this challenge was to compute a tree decomposition of minimum width. Three
teams participated in this track, and two PACE co-organizers jointly contributed a further
implementation. Figure 1 summarizes the results. In total, we used 200 instances in the



H. Dell, T. Husfeldt, B.M. P. Jansen, P. Kaski, C. Komusiewicz, and F. A. Rosamond 30:3

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0  10  20  30  40  50  60

R
un

ni
ng

 ti
m

e 
(s

ec
on

ds
)

Treewidth+1

Performance of exact sequential submissions (Treewidth vs. Running time)

Frankfurt University

Utrecht University

Luebeck University

Meiji University

Figure 1 Results for exact sequential algorithms for computing treewidth. This plot shows one
data point per solver-instance pair. The x-coordinate corresponds to the treewidth of the instance
and the y-coordinate corresponds to the running time. We aborted the computation after a timeout
of 100 seconds for most instances; some instances had a timeout of 1000 and 3600 seconds.

exact competition. The instances are samples of named graphs [21], control flow graphs [20],
and DIMACS graph coloring instances [7]. The outcome of this challenge is:

1st prize, 350e: Hisao Tamaki (Meiji University) solved 199 of 200 instances. The submis-
sion is written in C++ and is based on a modified version of the brute force approach of
Arnborg et al. [1]. [https://github.com/TCS-Meiji/treewidth-exact]

2nd prize, 125e: Hans Bodlaender and Tom Van der Zanden (Utrecht University) solved 173
of 200 instances. The submission is written in C# / Mono and relies on balanced separators
as well as dynamic programming. [https://github.com/TomvdZanden/BZTreewidth]

3rd prize, 75e: Max Bannach, Sebastian Berndt, and Thorsten Ehlers (Luebeck University)
solved 166 of 200 instances. The submission is written in Java 8 and relies on a SAT-solver
to find the optimal elimination order. [https://github.com/maxbannach/Jdrasil]

The implementation by Larisch and Salfelder from the track A program committee (Frankfurt
University) solved 171 of 200 instances.

2.3 Heuristic algorithms for computing treewidth
The goal of this challenge was to compute a good tree decomposition in a given fixed timeout.
We set the timeout to 100 seconds for every instance. We used the 200 instances from the
exact competition and 81 additional, harder instances from the same sources; arguably, the
instances were generally too easy for the heuristic challenge. Seven teams participated in this
track. In total, 6 sequential programs and 3 parallel programs were submitted. Some teams
submitted multiple programs, in which case we only kept the best-performing submission

IPEC 2016

https://github.com/TCS-Meiji/treewidth-exact
https://github.com/TomvdZanden/BZTreewidth
https://github.com/maxbannach/Jdrasil


30:4 The First Parameterized Algorithms and Computational Experiments Challenge

 0

 50

 100

 150

 200

 250

 300

 1  10  100  1000  10000

Fr
eq

ue
nc

y 
(c

um
ul

at
iv

e)

Treewidth+1

Histogram integral (Treewidth counts)

ben-strasser/flow-cutter-pace16

elitheeli/2016-pace-challenge

mabseher/htd

mfjones/pace2016

maxbannach/Jdrasil

mrprajesh/pacechallenge

Figure 2 Results for heuristic sequential algorithms for computing treewidth. This plot shows,
for every sequential submission and every x, the number y of instances for which the submission
computed a tree decomposition of width at most x within the given time limit.

of each team in the ranking. For the evaluation, we viewed each instance as a voter and
determined its ranking for the implementations from the width of the tree decomposition
produced by the implementation after 100 seconds. We combined these votes using the
Schulze method [23]. This process can be inspected in the testbed repository [22].

2.3.1 Sequential heuristic algorithms for computing treewidth
Figure 2 shows the results for sequential heuristic algorithms. As can be seen, the top three
submissions nearly converge on the employed metric; this is perhaps explained by the fact
that all three implement the basic minimum fill-in heuristic (tweaked in different ways). The
other three submissions use more interesting techniques from FPT. The final ranking is:

1st prize, 350e: Ben Strasser (Karlsruhe Institute of Technology) [https://github.com/
ben-strasser/flow-cutter-pace16]

2nd prize, 125e: Eli Fox-Epstein (Brown University) [https://github.com/elitheeli/
2016-pace-challenge]

3rd prize, 75e: Michael Abseher, Nysret Musliu, and Stefan Woltran (TU Wien) [https:
//github.com/mabseher/htd]

4th place: Serge Gaspers, Joachim Gudmundsson, Mitchell Jones, Julian Mestre, and Stefan
Rümmele (UNSW and University of Sidney) [https://github.com/mfjones/pace2016]

5th place: Max Bannach, Sebastian Berndt, and Thorsten Ehlers (Luebeck University)
[https://github.com/maxbannach/Jdrasil]

6th place: Kaustubh Joglekar, Akshay Kamble, and Rajesh Pandian (IIT Madras) [https:
//github.com/mrprajesh/pacechallenge]

https://github.com/ben-strasser/flow-cutter-pace16
https://github.com/ben-strasser/flow-cutter-pace16
https://github.com/elitheeli/2016-pace-challenge
https://github.com/elitheeli/2016-pace-challenge
https://github.com/mabseher/htd
https://github.com/mabseher/htd
https://github.com/mfjones/pace2016
https://github.com/maxbannach/Jdrasil
https://github.com/mrprajesh/pacechallenge
https://github.com/mrprajesh/pacechallenge


H. Dell, T. Husfeldt, B.M. P. Jansen, P. Kaski, C. Komusiewicz, and F. A. Rosamond 30:5

 0

 50

 100

 150

 200

 250

 300

 1  10  100  1000

Fr
eq

ue
nc

y 
(c

um
ul

at
iv

e)

Treewidth+1

Histogram integral (Treewidth counts)

willmlam/CVO2

ben-strasser/flow-cutter-pace16

maxbannach/Jdrasil

Figure 3 Results for heuristic parallel algorithms for computing treewidth. This plot shows,
for every sequential submission and every x, the number y of instances for which the submission
computed a tree decomposition of width at most x within the given time limit.

2.3.2 Parallel heuristic algorithms for computing treewidth
The results for parallel heuristic algorithms can be found in Figure 3. It leads to the following
ranking:

1st prize, 350e: Kalev Kask and William Lam (University of California at Irvine) [https:
//github.com/willmlam/CVO2]

2nd prize, 125e: Ben Strasser (Karlsruhe Institute of Technology) [https://github.com/
ben-strasser/flow-cutter-pace16]

3rd prize, 75e: Max Bannach, Sebastian Berndt, and Thorsten Ehlers (Luebeck University)
[https://github.com/maxbannach/Jdrasil]

3 Competition track B: Feedback Vertex Set

In the (undirected) Feedback Vertex Set problem we are given an undirected graph G

and want to compute a smallest vertex set S such that removing S from G results in a forest,
that is, a graph without cycles. Feedback Vertex Set is NP-complete [12] and one of the
most prominent problems in parameterized algorithmics. Most fixed-parameter algorithms
use the parameter solution size k = |S|.

Virtually all fixed-parameter algorithms make use of the fact that vertices of degree at
most two can be easily removed from the graph. After this initial removal, a range of different
techniques were used in the fixed-parameter algorithms. The first constructive fixed-parameter
algorithm branches on a shortest cycle in the resulting graph. This cycle has length at
most 2k in a yes-instance, which results in an overall running time of (2k)knO(1) [8]. By using

IPEC 2016

https://github.com/willmlam/CVO2
https://github.com/willmlam/CVO2
https://github.com/ben-strasser/flow-cutter-pace16
https://github.com/ben-strasser/flow-cutter-pace16
https://github.com/maxbannach/Jdrasil


30:6 The First Parameterized Algorithms and Computational Experiments Challenge

a randomized approach on the resulting graph, a running time of 4knO(1) can be obtained [2].
The first deterministic approaches to achieve running times of the form 2O(k)nO(1) use the
iterative compression technique. It iteratively builds up the graph by adding one vertex
at a time, and makes use of the fact that a size-k solution can be stored during this
computation [6, 9]. Other fixed-parameter algorithms for this problem can be obtained by
branching on a vertex of maximum degree or by LP-based techniques [11].

3.1 Challenge setup and participation
We collected 230 graphs, which were mostly from various application fields such as social
networks, biological networks, road networks, or incidence graphs of CNF-SAT formulas.
The graphs were selected so that there was a steady progression from easy to hard instances.
The set of public training and hidden test instances is available in a GitHub repository [19].

To determine the winners, we counted the number of instances that could be solved within
the given time limit. To avoid overemphasizing low-level improvements of the algorithms, we
set the time limit to 30 minutes per instance. To identify programs that report non-optimal
solutions we precomputed the optimal solutions for some instances using an ILP that was
given at least 30 minutes on each instance. This ILP is based on cycle constraints. More
precisely, we add constraints enforcing that for each cycle at least one vertex must be deleted
by any solution. Since the number of constraints is usually exponential, they are added in
a lazy fashion, that is, we compute a solution with only some initial constraints and check
whether the solution is a feedback vertex set. If this is the case, then we have found an
optimal solution, otherwise we add constraints for some of the remaining cycles and compute
a new solution until a feedback vertex set is found.

Overall, 14 teams registered out of which seven eventually submitted a program. From
those teams that submitted a program, three were from Germany, one from India, one from
Japan, one from Poland, and one from Russia.

3.2 Results
In the following, we give for each team further details such as the number of solved instances,
a brief algorithm description, the names of the participants, and a link to the code repository.
All submissions apply a reduction rule that removes all vertices of degree at most two. The
final ranking for track B is:

1st prize, 500e: Yoichi Iwata (NII) and Kensuke Imanishi (University of Tokyo). This
submission solved 84 out of 130 instances. The algorithm utilizes an LP-based branch-
ing [11] and an LP-based kernelization [10]. The program is written in Java. [https:
//github.com/wata-orz/fvs]

2nd prize, 300e: Marcin Pilipczuk (University of Warsaw). This submission solved 66
out of 130 instances. The algorithm branches on a vertex of maximum degree. In
addition, instances with small treewidth are solved by dynamic programming on tree
decompositions and subcubic instances are solved by a polynomial-time algorithm that is
based on a reduction to the graphic matroid parity problem. The program is written in
C++. [https://bitbucket.org/marcin_pilipczuk/fvs-pace-challenge]

3rd prize, 200e: Ruben Becker, Karl Bringmann, Dennis Gross, Erik Jan van Leeuwen,
and Natalie Wirth (MPI Saarbrücken). This submission solved 50 out of 130 instances.
The algorithm also branches on vertices of the highest degree. The search tree is pruned
by computing upper and lower bounds. The program is written in C++. [https:
//github.com/erikjanvl/FVS_MPI]

https://github.com/wata-orz/fvs
https://github.com/wata-orz/fvs
https://bitbucket.org/marcin_pilipczuk/fvs-pace-challenge
https://github.com/erikjanvl/FVS_MPI
https://github.com/erikjanvl/FVS_MPI


H. Dell, T. Husfeldt, B.M. P. Jansen, P. Kaski, C. Komusiewicz, and F. A. Rosamond 30:7

1 2 3 4 5 6 7
0

20

40

60

80

team rank

#
o
f
so
lv
ed

in
st
a
n
ce
s

Team Moscow

Team Bonn

Team Chennai

Team Kiel

Team Saarbrücken

Team Warsaw

Team Tokyo

ILP

Figure 4 Results for track B. The figure shows, for each participating team, the number of instances
for which an optimal solution was found within 30 minutes. The leftmost column corresponds to the
Gurobi-based ILP used by the program committee.

4th place: Niklas Paulsen, Kevin Prohn, Malin Rau, and Lars Rohwedder (Kiel University).
This submission solved 47 out of 130 instances. The algorithm is based on the combination
of iterative compression with an improved branching strategy. Subcubic graphs are
solved again by reduction graphic matroid parity. The program is written in C#.
[https://git.informatik.uni-kiel.de/npau/FFF]

5th place: Shivam Garg (IIT Bombay), G. Philip, and Apoorva Tamaskar (Chennai Math-
ematical Institute). This submission solved 41 out of 130 instances. The algorithm
branches on a shortest cycle. This program is written in Python. [https://bitbucket.
org/gphilip_bitbucket/pace-code]

6th place: Fabian Brand, Simon Gehring, Florian Nelles, Kevin Wilkinghoff, and Xianghui
Zhong (University of Bonn). This submission solved 34 out of 130 instances. The algorithm
is based on iterative compression and also solves subcubic instances in polynomial
time. The program is written in C++. Xianghui Zhong received a travel award of
780e to be able to attend the award ceremony. [https://github.com/s-gehring/
feedback-vertex-set]

7th place: Svyatoslav Feldsherov (Moscow State University). This submission solved 22 out
of 130 instances. The algorithm uses the randomized approach with running time 4knO(1).
An improvement is gained for the case where two vertices are connected by a multi-edge.
In this case, the algorithm branches directly on these two vertices. The program is written
in C++. [https://github.com/feldsherov/pace2016]

As a final remark, the ILP used by the program committee solved 81 out of 130 instances
within the time limit. Thus, the best FPT approaches were competitive with this particular
ILP formulation. Since alternative ILP formulations are possible, a more thorough comparison
with further ILP-based approaches would be necessary to gain insight into the relative
performance of FPT-based and ILP-based approaches for Feedback Vertex Set.

IPEC 2016

https://git.informatik.uni-kiel.de/npau/FFF
https://bitbucket.org/gphilip_bitbucket/pace-code
https://bitbucket.org/gphilip_bitbucket/pace-code
https://github.com/s-gehring/feedback-vertex-set
https://github.com/s-gehring/feedback-vertex-set
https://github.com/feldsherov/pace2016


30:8 The First Parameterized Algorithms and Computational Experiments Challenge

4 PACE organization

The PACE steering committee consists of the present authors, with Frances Rosamond as
chair. The program committees for the two tracks in 2016 consisted of:

Track A:

Isolde Adler University of Leeds
Holger Dell (Chair) Saarland University & Cluster of Excellence
Thore Husfeldt ITU Copenhagen & Lund University
Lukas Larisch University of Leeds
Felix Salfelder Goethe University Frankfurt

Track B: Falk Hüffner Industry
Christian Komusiewicz Friedrich-Schiller-University Jena

5 The future of PACE

As organizers, we consider the first iteration of PACE to be a huge success: we had great
submissions building on existing and new theoretical ideas, which led to fast programs that
performed well on the real-word inputs to which they were applied. The award ceremony at
IPEC was very well attended, and many of the ALGO 2016 participants showed an interest
in the competition.

To continue driving the transfer of algorithmic ideas from theory to practice, we intend
PACE to become an annual event. The target problem(s) will change whenever relevant, but
the same problem may be used for several consecutive years when there are indications that
further developments are possible. Plans for the next iteration of PACE can be found on the
challenge website [18].

We thank all the participants for their enthusiastic participation and look forward to
many interesting iterations of the challenge in the future. We also thank all members of the
community for their input in formulating the goals and setup of the challenge. We welcome
anyone who is interested to add their name to the mailing list on the website [18] to receive
PACE updates and join the discussion.

Acknowledgments. Prize money and travel grants were given through the generosity of
Networks [17], an NWO Gravitation project of the University of Amsterdam, Eindhoven
University of Technology, Leiden University, and the Center for Mathematics and Computer
Science (CWI). The steering committee thanks the two program committees for their hard
work in making PACE a success. In particular, we are grateful to Felix Salfelder for his help
in preparing plots of the results.

References
1 Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity of finding em-

beddings in a k-tree. SIAM J. Algebra. Discr., 8:277–284, 1987. doi:10.1137/0608024.
2 Ann Becker, Reuven Bar-Yehuda, and Dan Geiger. Randomized algorithms for the loop

cutset problem. J. Artif. Intell. Res. (JAIR), 12:219–234, 2000. doi:10.1613/jair.638.
3 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small

treewidth. SIAM J. Comput., 25(6):1305–1317, 1996. doi:10.1137/S0097539793251219.
4 Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lok-

shtanov, and Michal Pilipczuk. A ckn 5-approximation algorithm for treewidth. SIAM J.
Comput., 45(2):317–378, 2016. doi:10.1137/130947374.

5 Krishnendu Chatterjee, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis. Optimal reacha-
bility and a space-time tradeoff for distance queries in constant-treewidth graphs. In Proc.

http://dx.doi.org/10.1137/0608024
http://dx.doi.org/10.1613/jair.638
http://dx.doi.org/10.1137/S0097539793251219
http://dx.doi.org/10.1137/130947374


H. Dell, T. Husfeldt, B.M. P. Jansen, P. Kaski, C. Komusiewicz, and F. A. Rosamond 30:9

24th ESA, volume 57 of LIPIcs, pages 28:1–28:17, 2016. doi:10.4230/LIPIcs.ESA.2016.
28.

6 Frank K.H.A. Dehne, Michael R. Fellows, Michael A. Langston, Frances A. Rosamond,
and Kim Stevens. An O(2O(k)n3) FPT algorithm for the undirected feedback vertex set
problem. Theory Comput. Syst., 41(3):479–492, 2007. doi:10.1007/s00224-007-1345-z.

7 DIMACS graph coloring instances. URL: http://mat.gsia.cmu.edu/COLOR/instances.
html.

8 Rodney G. Downey and Michael R. Fellows. Parameterized computational feasibility. In
Feasible Mathematics II, pages 219–244. Birkhauser, 1994.

9 Jiong Guo, Jens Gramm, Falk Hüffner, Rolf Niedermeier, and Sebastian Wernicke.
Compression-based fixed-parameter algorithms for feedback vertex set and edge biparti-
zation. J. Comput. Syst. Sci., 72(8):1386–1396, 2006. doi:10.1016/j.jcss.2006.02.001.

10 Yoichi Iwata. Linear-time kernelization for feedback vertex set. CoRR, abs/1608.01463,
2016. URL: http://arxiv.org/abs/1608.01463.

11 Yoichi Iwata, Magnus Wahlström, and Yuichi Yoshida. Half-integrality, LP-branching, and
FPT algorithms. SIAM J. Comput., 45(4):1377–1411, 2016. doi:10.1137/140962838.

12 Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and
James W. Thatcher, editors, Proc. of a Symp. on the Complexity of Computer Computa-
tions, IBM Research Symposia Series, pages 85–103. Plenum Press, New York, 1972.

13 Kalev Kask, Andrew Gelfand, Lars Otten, and Rina Dechter. Pushing the power of stochas-
tic greedy ordering schemes for inference in graphical models. In Wolfram Burgard and
Dan Roth, editors, Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intel-
ligence, AAAI 2011. AAAI Press, 2011. URL: http://www.aaai.org/ocs/index.php/
AAAI/AAAI11/paper/view/3771.

14 Petteri Kaski. Engineering motif search for large graphs, 2015. URL: https://simons.
berkeley.edu/talks/petteri-kaski-2015-11-05.

15 Masashi Kiyomi, Yoshio Okamoto, and Yota Otachi. On the treewidth of toroidal grids.
Discrete Applied Mathematics, 198:303–306, 2016. doi:10.1016/j.dam.2015.06.027.

16 List of all submissions for track A, 2016. URL: https://github.com/holgerdell/
PACE-treewidth-testbed/blob/github/pace2016-submissions.yaml.

17 Networks project, 2016. URL: http://www.thenetworkcenter.nl.
18 Parameterized Algorithms and Computational Experiments website, 2015. URL: http:

//pacechallenge.wordpress.com.
19 Repository of all hidden and public inputs for track B on GitHub, 2016. URL: https:

//github.com/ckomus/PACE-fvs.
20 Repository of control flow graphs on GitHub, 2016. URL: https://github.com/freetdi/

CFGs.git.
21 Repository of named graphs on GitHub, 2016. URL: https://github.com/freetdi/

named-graphs.
22 Schulze rankings of heuristic treewidth implementations, 2016. URL: https:

//github.com/holgerdell/PACE-treewidth-testbed/blob/github/logs/2016-08-13.
02-08-25/ranks-he-se.txt.

23 Markus Schulze. A new monotonic, clone-independent, reversal symmetric, and Condorcet-
consistent single-winner election method. Social Choice and Welfare, 36(2):267–303, 2011.
doi:10.1007/s00355-010-0475-4.

24 Mikkel Thorup. All structured programs have small tree-width and good register allocation.
Inf. Comput., 142(2):159–181, 1998. doi:10.1006/inco.1997.2697.

25 Treewidth testbed on GitHub, 2016. URL: https://github.com/holgerdell/
PACE-treewidth-testbed.

IPEC 2016

http://dx.doi.org/10.4230/LIPIcs.ESA.2016.28
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.28
http://dx.doi.org/10.1007/s00224-007-1345-z
http://mat.gsia.cmu.edu/COLOR/instances.html
http://mat.gsia.cmu.edu/COLOR/instances.html
http://dx.doi.org/10.1016/j.jcss.2006.02.001
http://arxiv.org/abs/1608.01463
http://dx.doi.org/10.1137/140962838
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3771
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3771
https://simons.berkeley.edu/talks/petteri-kaski-2015-11-05
https://simons.berkeley.edu/talks/petteri-kaski-2015-11-05
http://dx.doi.org/10.1016/j.dam.2015.06.027
https://github.com/holgerdell/PACE-treewidth-testbed/blob/github/pace2016-submissions.yaml
https://github.com/holgerdell/PACE-treewidth-testbed/blob/github/pace2016-submissions.yaml
http://www.thenetworkcenter.nl
http://pacechallenge.wordpress.com
http://pacechallenge.wordpress.com
https://github.com/ckomus/PACE-fvs
https://github.com/ckomus/PACE-fvs
https://github.com/freetdi/CFGs.git
https://github.com/freetdi/CFGs.git
https://github.com/freetdi/named-graphs
https://github.com/freetdi/named-graphs
https://github.com/holgerdell/PACE-treewidth-testbed/blob/github/logs/2016-08-13.02-08-25/ranks-he-se.txt
https://github.com/holgerdell/PACE-treewidth-testbed/blob/github/logs/2016-08-13.02-08-25/ranks-he-se.txt
https://github.com/holgerdell/PACE-treewidth-testbed/blob/github/logs/2016-08-13.02-08-25/ranks-he-se.txt
http://dx.doi.org/10.1007/s00355-010-0475-4
http://dx.doi.org/10.1006/inco.1997.2697
https://github.com/holgerdell/PACE-treewidth-testbed
https://github.com/holgerdell/PACE-treewidth-testbed



	p00-frontmatter
	Preface

	p01-Bjoerklund
	p01-ZZZ-Blank
	p02-Agrawal
	Introduction
	Preliminaries
	FPT Algorithm for Independent Feedback Vertex Set
	Algorithm for Disjoint Independent Feedback Vertex Set
	A family of counter examples to Song's Algorithm for Independent Feedback Vertex Set

	Conclusion

	p03-Bacso
	Introduction
	Preliminaries
	Algorithm for MIS on P-t-free graphs
	Algorithm for Scattered Set on P-t-free graphs
	Lower bounds for Scattered Set
	Conclusion

	p04-Bannach
	Introduction
	Classes of Fixed-Parameter Parallelism
	Parallel Computation of Tree Decompositions
	Parallel Evaluation of Tree Automata
	Parallel Second-Order Model Checking
	Applications
	Conclusion
	Technical Appendix: Proofs

	p04-ZZZ-Blank
	p05-Bevern
	Introduction
	s-t-Separator
	Secluded s-t-Separator
	Small Secluded s-t-Separator

	q-Dominating Set
	F-free Vertex Deletion
	Secluded F-free Vertex Deletion
	Small Secluded F-free Vertex Deletion

	Feedback Vertex Set
	Secluded Feedback Vertex Set
	Small Secluded Feedback Vertex Set

	Independent Set
	Summary and Future Work

	p06-Blaesius
	Introduction
	Notation and Problems
	Parameterized Complexity
	Dependencies in Relational Databases

	Unique Column Combinations and Functional Dependencies
	Inclusion Dependencies
	IND is in W[3]
	IND is W[3]-hard

	Conclusion

	p06-ZZZ-Blank
	p07-Bodlaender
	Introduction
	Preliminaries
	Graph theoretic observations
	Solving Pseudoforest Deletion on tree decompositions
	Main algorithm
	Outline
	Graphs with a large maximal matching
	Improved graphs with many simplicial vertices
	Implementation and time analysis

	Concluding remarks

	p08-Borradaile
	Introduction
	Generalization to r-domination
	Notation
	Upper and lower bounds for r-dominating set
	Upper and lower bounds for connected r-dominating set

	Motivation

	Algorithm for r-dominating Set
	Lower Bound for r-dominating Set
	Algorithm for Connected r-dominating Set
	Cutting
	Counting

	Lower Bound for Connected r-dominating Set
	Details of the Dynamic Programming Algorithm for r-dominating Set
	 Counting Algorithm for connected r-dominating set

	p08-ZZZ-Blank
	p09-Brand
	Introduction
	The Tutte polynomial under #ETH
	#CSP over the Boolean domain under #ETH

	Preliminaries
	Counting forests is #ETH-hard
	The multivariate forest polynomial

	Counting solutions to Boolean CSPs under #ETH
	Counting Independent Sets in Bipartite Graphs is #ETH-hard
	The Boolean CSP dichotomy


	p10-Bredereck
	Introduction
	Preliminaries
	The Framework
	Fixed-parameter tractability with respect to (s,Delta-D)
	Bounding the solution size s polynomially in Delta*

	Applications
	Digraph Degree Constraint Completion
	Digraph Degree Sequence Completion
	Degree Anonymity

	Conclusion

	p11-Chandran
	Introduction
	Our contribution
	Preliminaries

	FPT algorithm for BicliquePartition
	FPT and kernel lower bounds for BicliqueCover
	Approximation of BicliqueCover and BicliquePartition

	p11-ZZZ-Blank
	p12-Elbassioni
	Introduction
	Basic Notation and Main Result
	Solving Proper-Lambda-Coloring in time nO(k3)mO(k2log2 m)
	Solving Proper-Lambda-Coloring in time (nm)o(k2log(n m))

	p12-ZZZ-Blank
	p13-Gaspers
	Introduction
	Preliminaries
	Local Search Variants of the Treewidth Problem
	Turbocharged Treewidth Heuristics
	Experimental Evaluation
	Random instances
	Benchmark instances

	Conclusion and Future Work

	p13-ZZZ-Blank
	p14-Gaspers
	Introduction
	k-interval Bigraphs
	Merging Linear Orders
	Proof of Theorem 9
	Proof of Theorem 6
	Discussion

	p15-Gisannopoulou
	Introduction
	Preliminaries
	Bucket interfaces
	Obstruction sizes and linked orderings
	An algorithm for computing cutwidth
	Conclusions

	p15-ZZZ-Blank
	p16-Husfeldt
	Introduction
	Related work

	Algorithm
	Preliminaries
	Distance profiles
	Maintaining distance profiles over neighbouring cuts
	Tree decompositions

	Vertex-linear time
	Conclusion

	p16-ZZZ-Blank
	p17-Jansen
	Introduction
	Preliminaries
	Characterizing equivalence classes for Independent Set
	Defining graphs with given boundary characteristics
	Counting t-representative functions
	Defining planar graphs with given boundary characteristics
	Lower bound for protrusion replacement
	Conclusion

	p18-Kobayashi
	Introduction
	Preliminaries
	Kernelization
	Fixed-Parameter Algorithm
	Conclusion

	p18-ZZZ-Blank
	p19-Krithika
	Introduction
	Dynamic Pi-Deletion
	Dynamic Vertex Cover
	Dynamic Connected Vertex Cover
	Dynamic Feedback Vertex Set
	Dynamic Dominating Set
	Dynamic Connected Dominating Set
	Conclusion

	p20-Kumar
	Introduction
	Preliminaries
	Max-min Allocation
	The Weighted Expansion Lemma
	Obtaining the Linear Kernel

	p21-Majumdar
	Introduction
	Preliminaries and Notations
	Definitions and Properties
	Initial Preprocessing Rules

	Feedback Vertex Set Parameterized by number of vertices of degree more than 3
	Fixed-Parameter Algorithm
	Kernelization Lower Bound

	Improved Polynomial Kernel for Parameterization by Deletion Distance to Pseudo-Forest
	General Reduction Rules
	Bounding |H-1 cup H-3|
	Bounding the number of components in F-3 and F-4
	Bounding |H-2| and Putting Things together

	Kernelization of Feedback Vertex Set Parameterized by Deletion distance to bounded Mock Forest
	Polynomial Kernel for FVS-Mock-d-Forest
	Kernel Lower Bound for FVS-Mock-d-Forest

	Conclusion

	p22-Meeks
	Introduction
	Parameterised enumeration
	Hardness of the extension problem
	The randomised enumeration algorithm
	Correctness of the algorithm
	Expected running time

	Application to counting
	Conclusions and open problems

	p23-Meier
	Introduction
	Preliminaries
	Introduction of backdoors for the global fragment of LTL
	Backdoor set detection
	Backdoor set evaluation
	Formulas using only the always operator
	Globally in the past and globally in the future

	Conclusion and discussion
	Proof of Theorem 6

	p23-ZZZ-Blank
	p24-Mnich
	Introduction
	Preliminaries
	Improved Upper Bound on the Maximum Number of Minimal FVS
	Proof of Lemma 8
	Discussion

	p25-Oliveira
	Introduction
	Term Rewriting and Tree Automata
	Terms
	Term Rewriting
	Tree Automata
	Simultaneous Rewriting via Multi-Steps

	Tree Automata Completion for Multi-Steps
	Bounding the Size of N(A, R)
	Conclusion

	p26-Pilipczuk
	Introduction
	Overview of the algorithm
	The potential to measure progress of the algorithm
	Structure of a branching step
	Low-excess sets
	Basic branching step
	Example subcase of the case Delta(A_s)=1, Delta(B_s)=0

	Conclusions

	p26-ZZZ-Blank
	p27-Pino
	Introduction
	Preliminaries
	Cut and Count and Branch Decompositions
	Representative Sets and Branch Decompositions
	Conclusion

	p28-Sullivan
	Introduction
	Preliminaries
	An O*(exp(4,tw(G))) Algorithm via Cut&Count
	Cutting
	Counting

	Achieving O*(exp(1.588,k)) in General Graphs
	Kernelization and Branching
	Treewidth of Reduced Instances
	The Algorithm copath

	Conclusion

	p28-ZZZ-Blank
	p29-Wlodarczyk
	Introduction
	Our contribution
	Our results
	Organization of the paper

	Preliminaries
	Fast Subset Convolution
	Pathwidth and treewidth
	Problems definitions

	Clifford algebras
	Non-commutative Subset Convolution
	Counting Steiner trees
	Counting Hamiltonian cycles
	Conclusions
	Associative algebras
	Proof of Theorem 9
	Proof of Lemma 24

	p30-Dell
	Introduction
	Competition track A: Treewidth
	Submissions
	Sequential algorithms for computing treewidth exactly
	Heuristic algorithms for computing treewidth
	Sequential heuristic algorithms for computing treewidth
	Parallel heuristic algorithms for computing treewidth


	Competition track B: Feedback Vertex Set
	Challenge setup and participation
	Results

	PACE organization
	The future of PACE

	p30-ZZZ-Blank

