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Preface

This volume contains the papers presented at IPEC 2016: the 11th International Symposium
on Parameterized and Exact Computation held during August 24-26, 2016, in Aarhus,
Denmark. IPEC was held togeter with seven other algorithms conferences as part of the
annual ALGO congress.

The International Symposium on Parameterizd and Previous IPECs
Exact Computation (IPEC, formerly IWPEC) is a 2004 Bergen, Norway

series of international symposia covering research in 2006  Ziirich, Switzerland
all aspects of parameterized and exact algorithms 2008 Victoria, Canada

and complexity. Started in 2004 as a biennial work- 2009 Copenhagen, Denmark
shop, it became an annual event in 2009. 2010  Chennai, India

In response to the call of papers, 48 papers were 2011  Saarbriicken, Germany
submitted. Each submission was reviewed by at 2012  Ljubljana, Slovenia
least 3 reviewers. The reviews came from the 14 2013  Sophia Antipolis, France
members of the program committee, and from 84 2014 Wroctaw, Poland
external reviewers contributing 107 external reviews. 2015 Patras, Greece

The program committee held electronic meetings
through the EasyChair.

The program committee felt that the median submission quality was very high, and in the
end selected 28 of the submissions for presentation at the symposium and for inclusion in the
proceedings volume. The program committee presented the IPEC 2016 Best Paper Awards
to Michal Wlodarczyk for the paper Clifford Algebras Meet Tree Decompositions, Kitty
Meeks for the paper Randomised Enumeration of Small Witnesses Using a Decision Oracle,
and Archontia Giannopoulou, Michal Pilipczuk, Jean-Florent Raymond, Dimitrios Thilikos,
and Marcin Wrochna for the paper Cutwidth: Obstructions and Algorithmic Aspects. The
program committee also presented the IPEC 2016 Excellent Student Paper Awards to Michal
Wilodarczyk for the paper Clifford Algebras Meet Tree Decompositions and R. Krithika,
Abhishek Sahu, and Prafullkumar Tale for the paper Dynamic Parameterized Problems.

IPEC invited one plenary speaker to the ALGO meeting, Andreas Bjorklund, as part of
the award ceremony for the 2016 EATCS-IPEC Nerode Prize for outstanding papers in the
area of multvariate algorithmics. The award was given by a committee consisting of Jan Arne
Telle, David Eppstein, and Dédniel Marx to Andreas Bjorklund for his paper Determinant
Sums for Undirected Hamiltonicity [STAM J. Comput., 43(1), 2014]. We thank Andreas for
accepting our invitation and for contributing an excellent talk to IPEC 2016.

We would like to thank the program committee, together with the external reviewers
for their commitment in the whole paper reviewing process. We also thank all authors who
submitted their work for consideration. Finally, we are grateful to the local organizers of
ALGO, chaired by Gerth Stglting Brodal, for the efforts, which made chairing IPEC an
enjoyable experience.

Jiong Guo and Danny Hermelin
Jinan and Beer-Sheva, October 2016
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Determinant Sums for Hamiltonicity

Andreas Bjorklund

Department of Computer Science, Lund University, Lund, Sweden
andreas.bjorklund@cs.lth.se

—— Abstract

The best worst case guarantee algorithm to see if a graph has a Hamiltonian cycle, a closed tour
visiting every vertex exactly once, for a long time was based on dynamic programming over all
the vertex subsets of the graph. In this talk we will show some algebraic techniques that can be
used to see if a graph has a Hamiltonian cycle much faster. These techniques utilize sums over
determinants of matrices.

In particular we will show how you can find out if an undirected graph has a Hamiltonian
cycle much faster, but we will also talk about some partial results for the directed case and
modular counting.

1998 ACM Subject Classification G.2.2 Graph Algorithms, 1.1.2 Analysis of Algorithms

Keywords and phrases Hamiltonian cycle, exact algorithm, matrix determinant, algebraic tech-
niques

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.1

Category Invited Talk
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Improved Algorithms and Combinatorial Bounds
for Independent Feedback Vertex Set*

Akanksha Agrawal', Sushmita Gupta2, Saket Saurabh?, and
Roohani Sharma*

1 Department of Informatics, University of Bergen, Norway
akanksha.agrawal@uib.no

2 Department of Informatics, University of Bergen, Norway
sushmita.gupta@uib.no

3 Institute of Mathematical Sciences, HBNI, Chennai, India
saket@imsc.res.in

4  Institute of Mathematical Sciences, HBNI, Chennai, India
roohani@imsc.res.in

—— Abstract

In this paper we study the “independent” version of the classic FEEDBACK VERTEX SET problem
in the realm of parameterized algorithms and moderately exponential time algorithms. More
precisely, we study the INDEPENDENT FEEDBACK VERTEX SET problem, where we are given an
undirected graph G on n vertices and a positive integer k, and the objective is to check if there
is an independent feedback vertex set of size at most k. A set S C V(@) is called an independent

feedback vertex set (ifvs)if S is an independent set and G\ S is a forest. In this paper we design two
deterministic exact algorithms for INDEPENDENT FEEDBACK VERTEX SET with running times
0*(4.1481%)! and 0*(1.5981"). In fact, the algorithm with O*(1.5981™) running time finds the
smallest sized ifvs, if an ifvs exists. Both the algorithms are based on interesting measures and
improve the best known algorithms for the problem in their respective domains. In particular,
the algorithm with running time 0*(4.1481%) is an improvement over the previous algorithm that
ran in time O*(5%). On the other hand, the algorithm with running time O*(1.5981") is the first
moderately exponential time algorithm that improves over the naive algorithm that enumerates
all the subsets of V(G). Additionally, we show that the number of minimal ifvses in any graph
on n vertices is upper bounded by 1.7485™.

1998 ACM Subject Classification G.2.2 Graph Algorithms, 1.1.2 Analysis of Algorithms

Keywords and phrases independent feedback vertex set, fixed parameter tractable, exact al-
gorithm, enumeration

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.2

1 Introduction

FEEDBACK VERTEX SET (FVS) is one of the classic NP-complete problems. In fact, it is one
of the problems in the Karp’s famous list of twenty one NP-complete problems [21]. FVS
together with several of its variants have been extensively studied from both combinatorial
as well as algorithmic view points. Indeed, FVS is one of the central problems in any

* The research leading to these results has received funding from the European Research Council (ERC)
via grant PARAPPROX, reference 306992.
1 The O*() notation suppresses polynomial factors in the running-time expression.
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algorithmic paradigm that has to cope with NP-hardness, examples being : approximation
algorithms, moderately exponential time algorithms, enumeration algorithms and paramet-
erized algorithms [2, 3, 4, 7, 8, 11, 14, 16, 20, 22, 23, 28, 29, 33]. The goal of this article
is to study the independent set version of FVS in the realm of parameterized complexity,
moderately exponential time algorithms and combinatorial upper bounds.

We begin by formally defining the problem. The formal description of the problem being
studied is as follows.

INDEPENDENT FEEDBACK VERTEX SET (IFVS) Parameter: &
Input: An undirected graph G on n vertices and a positive integer k.
Question: Is there an independent feedback vertex set of size at most k7

IFVS and Parameterized Complexity. FVS together with VERTEX COVER is one of the
most well studied problem in the field of parameterized complexity [3, 4, 22, 28]. The
other variants of FVS on undirected graphs that have been studied extensively, include,
SuBSET FVS [8, 23, 33], GRouP FVS [7, 20, 33], CONNECTED FVS [25], SIMULTANEOUS
FVS [1] and indeed IFVS [24, 30, 31]. The current champion algorithms for FVS are: a
randomized algorithm with running time O*(3*) [6] and a deterministic algorithm running
in time O*(3.619%) [22]. Misra et al. [24] introduced IFVS in 2011 (in the conference version
of the cited paper) as a generlization of FVS and gave an algorithm with running time
O*(5%). They also designed a polynomial kernel of size O(k?) for the problem. Later, Song
claimed a deterministic algorithm with running time O*(4%) for the problem [30]. However,
the algorithm of Song [30] does not seem to be correct.? Tamura et al. [31] studied IFVS
on special graph classes and showed that the problem remains NP-complete even on planar
bipartite graphs of maximum degree four. They also designed linear time algorithms for
graphs of bounded treewidth, chordal graphs and cographs. Finally, they gave an algorithm
with running time (9(20(‘/%10g k)n) for IFVS on planar graphs. We refer the reader to
the recent book on parameterized algorithms for more details regarding the paradigm of
parameterized complexity, as well as about the literature on the FVS problem [5]. Our first
main result is the following result regarding IFVS.

» Theorem 1. There is an algorithm for IFVS running in time O*(4.1481%).

Our new algorithm is based on iterative compression and the subroutine for iterative
compression is based on branching. The branching algorithm itself exploits (a) the fact
that once we select a vertex in the independent feedback vertex set then all its neighbors
must be in the forest; and (b) an interesting variation of the measure used for analyzing
the fastest known deterministic algorithm for FVS [22]. Finally, we also observe that the
randomized algorithm designed for FVS, running in time O*(3*) [6], can be adapted to
design a randomized O*(3*) time algorithm for IFVS.

IFVS and Moderately Exponential Time Algorithms. In moderately exponential time
algorithms (or exact algorithms for short), the objective is to design an algorithm for
optimization version of a problem that is better than the naive brute force algorithm. In
particular, for FVS the goal will be to design an algorithm that runs in time ¢, ¢ < 2 a
constant, and finds a minimum sized set S such that G — S is a forest. We refer to the book

2 'We have approached the author with concrete questions but he has not yet responded. Furthermore, we
give a family of counter-examples to his algorithm in the Section 3.2.
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of Fomin and Kratsch for more details regarding moderately exponential time algorithms [17].
Obtaining a non-trivial exact algorithm for F'VS was open for quite some time before Razgon
obtained an algorithm with running time (0(1.8899™) [29]. Later this algorithm was improved
to O*(1.7347™) [18]. Recently, Fomin et al. [13] obtained an interesting result relating
parameterized algorithms and exact algorithms. Roughly speaking, they showed that if
a problem (satisfying some constraints) has O*(c¥) time algorithm parameterized by the
solution size, then there is an exact algorithm running in time O*((2 — %)n). Both FVS and
IFVS satisfies the required constraints and thus we immediately obtain the following exact
algorithm for IFVS: (a) a randomized algorithm running in time O*((2 — %)n) = 0*(1.6667™);
and (b) a deterministic algorithm running in time O*((2 — ﬁ)n) = O*(1.7590™). We
give a recursive algorithm based on classical measure and conquer [15, 17] and design faster
algorithm than both the mentioned algorithms. In particular, we prove the following theorem.

» Theorem 2. There is an algorithm for IFVS running in time O*(1.5981").

Combinatorial Upper Bounds. In our final section we address the following question: How
many minimal ifvses are there in any graph on n vertices? Proving an upper bound on the
number of combinatorial structures is an old and vibrant area. Some important results in
this area include an upper bound of

3"/3 on the number of maximal independent sets in a graph [26].

1.667™ on the number of minimal feedback vertex sets in a tournament [13].

1.8638™ on the number of minimal feedback vertex sets in a graph [14, 16].
One can easily observe that every minimal ifvs is also a minimal feedback vertex set. Thus,
an upper bound of 1.8638™ on the number of minimal ifvses in any graph on n vertices
follows by [14]. As our final result, we give an improved upper bound on the number of
minimal ifvses in any graph on n vertices. We obtain this result by applying reduction
rules and branching rules with a carefully choosen measure. At the base case we prove that
counting the number of spanning trees is same as counting the number of minimal ifvses.
For bounding the number of spanning trees we use the result of Grimmett [19].

» Theorem 3. A graph G on n vertices has at most 1.7485™ minimal ifvses.

Let n be divisible by 3 and G be a graph that is union of n/3 vertex disjoint triangles.
Then any minimal ifvs must contain exactly one vertex from each of n/3 triangles and thus
G has 3™/3 minimal ifvses. Closing the gap between 3"/3 and 1.7485" remains an interesting
open problem. The proofs of Theorem 2 and 3 are omitted due to space constraints.

2 Preliminaries

In this section, we state some basic definitions and introduce terminology from graph theory
and algorithms. We also establish some of the notations that will be used throughout.

We denote the set of natural numbers by N. To describe the running times of our
algorithms, we will use the O* notation. Given f : N — N, we define O*(f(n)) to be
O(f(n) - p(n)), where p(-) is some polynomial function. That is, the O* notation suppresses
polynomial factors in the running-time expression.

Graphs. We use standard terminology from the book of Diestel [9] for those graph-related
terms which are not explicitly defined here. We only consider finite graphs possibly having
loops and multi-edges. For a graph G, by V(G) and E(G) we denote the vertex and edge sets
of the graph G, respectively. For a vertex v € V(G), we use dg(v) to denote the degree of v,

2:3
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i.e the number of edges incident on v, in the (multi) graph G. We also use the convention
that a loop at a vertex v contributes two to its degree. For a vertex subset S C V(G), G[S]
and G\ S are the graphs induced on S and V(G) \ S, respectively. For an edge subset
S C E(G), by G\ S, we denote the graph obtained after removing edges in S from G. For a
vertex subset S C V(G), we let Ng(S) and Ng[S] denote the open and closed neighbourhood
of S in G. That is, Ng(S) = {v | (u,v) € E(G),u € S} \ S and Ng[S] = Ng(S)U S. We
drop the sub-script G from dg(v), Ng(S), Ng[S] whenever the context is clear. For a graph
G and an edge e € E(G), G/e denotes the graph obtained after contracting e in G.

A path in a graph is a sequence of distinct vertices v, v1, ..., vy such that (v;,v;41) is
an edge for all 0 < i < £. A cycle in a graph is a sequence of distinct vertices vy, vy, ..., Vg
such that (vi, V(i41) mod (¢+1)) is an edge for all 0 < i < £. We note that both a double edge
and a loop are cycles. A tree T rooted at r € V(T') is called as a star if E(T) = {(v,r) |v €
V(T)\ {r}}.

Let W C V(G) and H = G\ W. We define certain useful vertices in V(H). We call a
vertex v € V(H), a nice vertex if dg(v) = 0 and dg(v) = 2, i.e. both the neighbours of v
belong to the set W. Similarly, we call a vertex v € V(H), a tent if dg(v) = 0 and dg(v) = 3.
A feedback vertex set is a subset S C V(G) such that G\ S is a forest.

Parameterized Complexity. A parameterized problem IT is a subset of I'* x N, where T is
a finite alphabet. An instance of a parameterized problem is a tuple (z, k), where z is a
classical problem instance, and k is called the parameter. A central notion in parameterized
complexity is fized-parameter tractability (FPT) which means, for a given instance (z, k),
decidability in time f(k) - p(|z|), where f is an arbitrary function of k and p is a polynomial
in the input size. For more details on parameterized complexity, we refer the reader to the
books of Downey and Fellows [10], Flum and Grohe [12], Niedermeier [27], and the more
recent book by Cygan et al. [5].

When we say that we branch on a vertex v, we mean that we recursively generate two
instances, one where v belongs to the solution, the other where v does not belong to the
solution. This is a standard method of exhaustive branching.

Bounded Search Trees. The running time of an algorithm that uses bounded search
trees can be analyzed as follows (see, e.g., [5, 10]). Suppose that the algorithm executes
a branching rule which has ¢ branching options (each leading to a recursive call with the
corresponding parameter value), such that, in the i*" branch option, the current value of
the parameter decreases by b;. Then, (by,ba,...,bs) is called the branching vector of this
rule. We say that « is the root of (b1, by, ..., by) if it is the (unique) positive real root of
2V =gt 0 b b 4 g e where b = max{by, by, ..., by}. If r > 0 is the initial
value of the parameter, and the algorithm (a) returns a result when (or before) the parameter
is negative, and (b) only executes branching rules whose roots are bounded by a constant
¢ > 0, then its running time is bounded by O*(¢").

A reduction rule is a polynomial time algorithm that replaces an instance (I, k) of a
parameterized language L by a new instance (I',k'). It is said to be safe if (I, k) € L if and
only if (I’ k') € L.

3 FPT Algorithm for Independent Feedback Vertex Set

In this section we give an FPT algorithm for IFVS running in time O*(4.1481%). Given an
input (G, k), the algorithm starts by computing a feedback vertex set Z in G. A feedback
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vertex set in G of size at most k (if it exists) can be computed in time O*(3.619%) using the
algorithm given in [22]. If there is no feedback vertex set of size at most k, then we conclude
that (G, k) is a NO instance of ifvs since an ifvs is also a feedback vertex set in G.

We let H = G\ Z. The algorithm either outputs an ifvs in G of size at most k or correctly
conclude that (G, k) is a NO-instance of IFVS. The algorithm guesses a subset Z' C Z,
such that for an ifvs X in G, X N Z = Z’'. For each of the guess Z’, the algorithm does
the following. If G[Z’] is not an independent set then it concludes that there is no ifvs
X in G such that Z’ C X. Otherwise, G[Z'] is an independent set. Let W = Z\ Z’. If
G[W] is not a forest, then their is no ifvs X such that, X N Z = Z’. Therefore, the guess
7' is not correct and the algorithm rejects this guess. Otherwise, it deletes the vertices in
Z' and tries to find an ifvs S C V(H) \ W of size at most k — |Z’|. Note that any vertex
v € Ny (Z') cannot be part of the solution. Therefore, the algorithm adds the vertices in
Ny (Z') to a set R. The set R consists of those vertices which cannot be included in ifvs in
order to maintain the independence of the vertices included in the solution. The algorithm
calls the sub-routine DISJOINT INDEPENDENT FEEDBACK VERTEX SET (D1s-IFVS) on the
instance (G \ Z', W, R,k —|Z'|) to find an ifvs X C V(G \ Z’) \ (W UR). In Section 3.1 we
give an algorithm for Dis-IFVS, which given an instance (G, W, R,k) either finds an ifvs
S CV(G)\ (WUR) of size at most k or correctly concludes that there does not exits such
an ifvs. Moreover, the algorithm for Dis-IFVS runs in time O*(3.1481%).

» Theorem 1 (restated). There is an algorithm for IFVS running in time O*(4.1481%).

Proof. Given an instance (G, k) of IFVS, the algorithm computes a feedback vertex set
Z in G of size at most k (if it exists) in time O*(3.619%). If there is no feedback vertex
set of size at most k, it correctly concludes that (G, k) is a NO instance. Otherwise, for
each Z' C Z, either it correctly concludes that Z’ is a wrong guess (for extending it to
an ifvs) or runs the algorithm for DIS-IFVS on the instance (G \ Z',W, R,k — |Z']).
Here, the instance (G \ Z/,W, R,k — |Z'|) is created as described above in the description
of the algorithm. The correctness of the algorithm follows from the correctness of the
algorithm for Di1s-IFVS and the fact that all possible intersections of the solution with
Z are considered. The running time of the algorithm is given by the following equation:
3.619% - n®M £ 37 (%) 3.1481F7 . n©1) < 4.1481% . n®M). This concludes the proof. <«

3.1 Algorithm for Disjoint Independent Feedback Vertex Set

We give an algorithm for DISJOINT INDEPENDENT FEEDBACK VERTEX SET running in time
0*(3.1481%).

DiSJOINT INDEPENDENT FEEDBACK VERTEX SET (DIs-IFVS) Parameter: £
Input: An undirected (multi) graph G, a fvs W in G, R C V(G) \ W and, an integer k.
Question: Does G have an ifvs S C V(G) \ (W UR) such that |S| < k?

The algorithm for Dis-IFVS either applies some reduction rules or branches on a vertex
in V(G) \ W. The algorithm branches on a vertex in V(G) \ W only when (a) none of the
reduction rules are applicable; and (b) we are not in the case where we can solve the problem
in polynomial time. Let H = G\ W. We arbitrary root the trees in H at some vertex
(preferably a vertex v with dy(v) > 2). We will be using the following measure p associated
with the instance (G, W, R, k) to bound the number of nodes of the search tree.

= (G, W, R, k) = 2k + p(W) — (n + 27).
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Figure 1 Reduction Rule 2.

Here, p(W) is the number of components in W, 1 denotes the number of nice vertices in
V(H)\ R and 7 denotes the number of tents in V(H) \ R. We note that here nice vertices
and tents are defined with respect to the set W. See preliminaries for the definitions of a
nice vertex and a tent.

Now we describe all the reduction rules that will be used by the algorithm. The first two
reduction rules get rid of vertices of degree at most one and consecutive vertices of degree
two in the graph. The safeness of these reduction rules follow from [24].

Reduction Rule 1. Delete vertices of degree at most one since they do not participate in
any cycle.

Reduction Rule 2. Let u, v be two adjacent degree two vertices in the input graph G which
are not nice in H, and x,y be the other neighbors of u, v respectively. Delete the vertex
u and add the edge (z,v). Here, if one of u, v belongs to R, say v € R then we delete v
and add an edge between its neighbors (see Figure 1).

When applying Reduction Rule 2, if both the degree two vertices belong to R, then the
choice of deleting one of them and adding an edge between its neighbors is arbitrary.
Observe that the measure p does not increase after the application of Reduction Rules 1
and 2.

Reduction Rule 3. If k < 0, then return that (G, W, R, k) is a NO instance.

Reduction Rule 4. If there is a vertex v € R such that v has two neighbors in the same
component of W, then return that (G, W, R, k) is a NO instance.

Reduction Rule 5. If there is a vertex v € R such that v has a neighbor in W, then remove
v from R and add v to W. That is, we solve the instance (G, WU{v}, R\ {v}, k). Observe
that by moving v to W we do not increase the number of components of G[W U {v}].
Reduction Rule 6. If there is a vertex v € V/(H) \ R such that v has at least two neighbors
in the same component of W, then remove v from G and add the vertices in Ny (v) to R.
That is, the resulting instance is (G \ {v}, W, R U Ng(v),k — 1). In this case it is easy to
observe that v must belong to any ifvs.

Reduction Rule 7. If there is a vertex u € R such that there is a leaf v in H adjacent
to u and dy (v) < 2. Then remove u from R and include w in W i.e. the resulting
instance is (G, W U {u}, R \ {u}, k). Observe that moving u to W increases the number
of components in W, but it also makes v either a nice vertex or a tent.

Reduction Rule 8. Let T be a tree in H and u € V(T) N (V(H) \ R) such that the tree,
Ty, rooted at u is a star. That is, all the children of u are leaves of T'. Furthermore, each
vertex in V,, = V(Ty,) \ {u} (all the children of u) has exactly one neighbor in W and
1 < |V,| < 2. Finally, assume that either V(T') \ V(7)) = 0 or the parent z of u is in R.
Then include the vertices in V,, U {z} to W and remove z from R (if it exists) i.e. the
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Figure 2 Illustration of Reduction Rule 8.

resulting instance is (G, W UV, U {z}, R\ {z},k). Here, {z} =0, if x does not exists.
(see Figure 2)

» Lemma 4. Reduction Rule 4 is safe.

Proof. Let x,y be two neighbors of v € R that are present in the same component of W.
Since z,y belong to the same component of W, there is a path P in W from z to y. But
then, G[V(P) U {v}] contains a cycle, with v being the only vertex not in W. Therefore,
there cannot exist an ifvs, S C V(G) \ (W UR) in G. This concludes the proof. <

» Lemma 5. Reduction Rule 5 is safe. Furthermore, the measure . does not increase after
application of Reduction Rule 5.

Proof. Let v € R be a vertex such that v has a neighbor in W. Note that any ifvs,
S CV(G)\(WUR) in G does not contain v. Moreover, since v has a neighbor in W, adding
v to W does not increase the number of components in W. This implies that p does not
increase. <

» Lemma 6. Reduction Rule 6 is safe. Furthermore, the measure p does not increase after
application of Reduction Rule 6.

Proof. Let v € V(H) \ R be a vertex such that v has 2 neighbors, say z,y, in the same
component of W. Since z,y belong to the same component of W, there is a path P in W
from x to y. But then, G[V(P) U {v}] contains a cycle, with v being the only vertex not in
W. Therefore, any ifvs S C W must include v and hence avoid Ny (v).

When we delete v from G and decrease k by 1, the number of components in W remains
the same. If v was either a nice vertex or a tent then n + 27 can decrease at most by 2.
Therefore, the measure p in the resulting instance can not increase. This concludes the
proof. <

» Lemma 7. Reduction Rule 7 is safe and the measure p does not increase after its applica-
tion.
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Proof. Let u € R be a vertex such that there is a leaf v in H adjacent to u such that
dw (v) < 2. Observe that no solution to DIs-IFV'S can contain w. Therefore, we only need to
show that the measure u does not increase. When we add u to W, the number of components
in W can increase by 1. But then v becomes either a nice vertex or a tent. Therefore, n + 27
decreases at least by 1. This together with the fact that k& remains the same imply that pu
cannot increase. <

» Lemma 8. Reduction Rule 8 is safe and the measure j does not increase after its applica-
tion.

Proof. Let T be a tree in H and v € V(T) N (V(H) \ R) such that the tree, T, rooted
at u is a star. That is, all the children of u are leaves of T. Furthermore, the vertices in
Vi = V(T,) \ {u} (all the children of u) have exactly one neighbor in W and 1 < |V, | < 2.
Also, either V(T')\ V(T,,) = 0 or the parent z of u is in R. To prove the lemma, we will show
that if (G, W, R, k) is a YES instance of DIs-IFV'S then there is an ifvs, S C V(H)\ (WUR),
of size at most k in G such that SNV, = 0. Observe that z (if it exists) cannot belong to S.

Let S CV(H)\ (W UR) be an ifvs in G of size at most k. If SNV, = 0 then S is the
desired solution. Otherwise, let S’ = (S'\ V,,) U {u}. Since SNV, # (), we have that u does
not belong to S and thus the size of S’ is also at most k. We claim that S’ is an ifvs of the
desired form. Notice that S’ C V(H)\ (W UR) holds. Also, S’ is an independent set since
neighbors of u do not belong to S and S\ V,, is an independent set. Therefore, we only need
to prove that S’ is a feedback vertex set in G. Suppose not, then there is a cycle C'in G\ S’.
If C does not contain any vertex from V,, U{z}, then C is also a cycle in G\ S, contradicting
that S in an ifvs in G. If C' contains x, but does not contain any other vertex from V,,, then
we can conclude that C' is a cycle in G \ S, since z ¢ S. Otherwise, C' contain a vertex say,
v € V,,. Note that v is a degree 2 vertex in G. This implies that any cycle containing v must
contain both the neighbors of v. But then u belongs to C' contradicting that C' is a cycle in
G\ S’. This proves the safeness of the reduction rule.

When we add V,, U {z} to W the number of components can increase at most by 1. Note
that none of the vertices in V;, U {x} is a tent. Therefore, the number of nice vertices or tents
does not decrease and u becomes a nice vertex or a tent. This implies that the measure p
does not increase. This concludes the proof. |

Algorithm Description. We give an algorithm only for the decision variant of the problem.
It is straightforward to modify the algorithm so that it actually finds a solution, provided
there exists one.

We will follow a branching strategy with a nontrivial measure function. Let (G, W, R, k) be
the input instance. The algorithm first applies Reduction Rules 1-8, in this order, exhaustively.
That is, at any point of time we apply the lowest numbered applicable Reduction Rule. For
clarity we denote the reduced instance (the one on which Reduction Rules 1-8 do not apply)
by (G, W, R, k).

We now check whether every vertex in V/(G) \ (W UR) is either a nice vertex or a tent.
If this is the case, then in polynomial time we can check whether or not there is an ifvs
contained in V(G) \ (W UR) that is of size at most k; and return accordingly as described
by Lemma 9.

» Lemma 9. Let (G, X) be an instance of IFVS where every vertex in V(G)\ X is either a
nice vertex or a tent. Then in polynomial time we can find a minimum sized ifvs S C V(G)\ X
in G.
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The proof of Lemma 9 follows from Lemma 4.10 in [5], which is based on a polynomial
time algorithm for FV'S in subcubic graphs by Ueno et at. [32] and the fact that the algorithm
described in [5] for finding feedback vertex set on the instances of described type always
returns an independent feedback vertex set (if it exists).

Finally, we move to the branching step of the algorithm. We never branch on a nice
vertex or a tent. We will branch on the vertices in V(H) \ R based on certain criteria. We
consider the following three scenarios.

Scenario A. There is a vertex which in not a tent and has at least 3 neighbors in W.

Scenario B. There is a leaf which is not a nice vertex and has exactly 2 neighbors in W,

but no leaf has more than 2 neighbors in W.

Scenario C. All the leaves have exactly one neighbor in W.

Scenario A. If there is a vertex v € V(H) which is not a tent and has at least 3 neighbors
in W. Note that v ¢ R as the Reduction Rule 5 is not applicable. In this case we branch on
v as follows.
When v belongs to the solution, then all the vertices in Ny (v) cannot belong to the
solution. Therefore, we add all the vertices in Ny (v) to the set R. The resulting instance
is (G\{v},W,RUN (v),k —1). In this case k decreases by 1 and p(W),n, T remains the
same. Therefore, pu decreases by 2.
When v does not belong to the solution, then we add v to W. The resulting instance
is (G,W U {v}, R, k). Note that v cannot have two neighbors in the same component of
W, otherwise Reduction Rule 6 would be applicable. Therefore, G[W U {v}] has at most
p(W) — 2 components. Also, k& does not change and 1, 7 does not decrease. Therefore, u
decreases at least by 2.
The resulting branching vector for this case is (2,2). When none of the Reduction Rules are
applicable and we cannot branch according to Scenario A, then we can assume that there is
no vertex v € V(H), such that v has more than 2 neighbors in W. Of course a tent could
have three neighbors in W but as stated before we never branch on a nice vertex or a tent.
For each tree T' (a component) in H, for a vertex v € V(T') we define the level ¢(v) of v to
be the distance of v from the root of T. The root r in a tree has £(r) = 0. We call a leaf
vertex v € V(T') as a deep leaf if £(v) # 0 and for all leaves v' € V(T)), £(v') < £(v).

Scenario B. Let v be a leaf in some tree T in H with the unique neighbor u € V/(H) such
that v has exactly two neighbors in W. Observe that u ¢ R since Reduction Rule 7 is not
applicable. We branch on u as follows.
When u belongs to the solution, then all the vertices in Ny (u) cannot belong to the
solution. We add all the vertices in Ny (u) \ {v} to the set R. We add the vertex v to
W. The resulting instance is (G \ {u}, W U{v}, RU (Ng(u)\ {v}),k —1). In this case k
decreases by 1, and 7,7 do not decrease. The number of components in G[W U {v}] is
p(W) — 1, since v has 2 neighbors in different components of W. Therefore, p decreases
by 3.
When u does not belong to the solution, then we add u to W. The resulting instance is
(G, W U{u}, R, k). Note that when we add u to W then v becomes a tent. The number
of components in G[W U {u}] is at most p(WW) + 1. Note that k does not increase, n does
not decrease and 7 increases at least by 1. Therefore, p decreases by at least 1.
The resulting branching vector for this case is (3, 1).
We now assume that all the leaves in H have exactly one neighbor in W.
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Scenario C. Let v be a deep leaf in some tree T in H. Let the unique neighbor of v in
H be u. We note that the sub-tree T, rooted at u is a star, i.e. u is the only vertex in T,
which can possibly have degree more than one. This follows from the fact that v is a deep
leaf. Also, u ¢ R since Reduction Rule 7 is not applicable. We consider the following cases
depending on the number of leaves in the sub-tree T, rooted at u.

Case 1. If T, has at least two more leaves, say x,y other than v. We branch on the vertex

u as follows.
When u belongs to the solution, then the vertices in Ny (u) does not belong to the
solution. We add all the vertices in Ny (u) to the set R. The resulting instance is
(G\ {u}, W;RUNg(u),k —1). In this case k decreases by 1 and 7, 7, p(W) does not
change. Therefore, p decreases at least by 2.
When u does not belong to the solution, we add u to W. The resulting instance is
(G, W U{u}, R, k). Observe that when we add u to W then, v, z, y becomes nice vertices
and the number of components in G[W U{u}] is at most p(W)+ 1. Therefore, o decreases
at least by 2.

The resulting branching vector for this case is (2, 2).

Case 2. If T, has at most one more leaf other than v. We let = to be the parent of w in T'.
Note that x exists and « ¢ R because each leaf has exactly one neighbor in W and Reduction
Rules 2 and 8 are not applicable. In this case we branch on =x.
When z belongs to the solution, then the vertices in Ny (z) do not belong to the solution.
We add all the vertices in N (x)\ {u} to the set R and add u to the set W. The resulting
instance is (G \ {z}, W U{u}, RU (Ng(x) \ {u}),k —1). Observe that Reduction Rule 2
is not applicable. Therefore, at least one of the following holds.
u has a neighbor in W.
u has one more leaf v' (not in W') adjacent to it in other than wv.
In the former case, when we add u to W, the number of components in G[W U {u}] is at
most p(W). Also, v becomes a nice vertex. Therefore, 7 increases at least by 1 and 7
does not decrease. Therefore, 1 decreases at least by 3. In the latter case when we add u
to W, v,v’ becomes nice vertices. In this case k decreases by 1, i increases by 2, 7 does
not decrease, and p(WW) can increase at most by 1. Therefore, u decreases at least by 3.
When z does not belong to the solution, we add x to W. But then T, is a star and u
does not have a parent. Therefore, we can apply the Reduction Rule 8. That is, we can
add v,v’ to W. The resulting instance would be (G, W U {z,v,v'}, R, k). Observe that u
becomes a tent. In this case k, p remains the same, while 7 increases by 1 and p(W) can
increase at most by 1. Therefore, u decreases at least by 1.
The resulting branching vector for this case is (3,1).
This completes the description of the algorithm.

Analysis and Correctness of the Algorithm. The following Lemma which will be used to
prove the correctness of the algorithm.

» Lemma 10. For an instance I = (G,W,R,k) of DIs-IFVS, if u < 0, then I is a NO
instance.

Proof. Let us assume for contradiction that I is a YES instance and pu < 0. Let S C
V(G)\ (W UR) be an ifvs in G of size at most k. Therefore, F = G\ S is a forest.
Let NCV(G)\(WUR), T CV(G)\ (WUTR) be the set of nice vertices and tents in
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Table 1 The branch vectors and the corresponding running times.

Scenario Cases Branch Vector ct
Scenario A (2,2) 1.4142+
Scenario B (3,1) 1.4656*

C 1 2,2 1.4142#
Scenario C ase (2,2)
Case 2 | (3,1) 1.4656*

V(G)\ (W UR), respectively. Since F' is a forest we have that G’ = G[(WUNUT)\ S| is a

forest. In G’, we contract each of the components in W to a single vertex to obtain a forest F'.

Observe that F has at most |V (F)| < p(W) +|N\ S| + |T'\ S| vertices and thus can have at
most p(W)+|N\ S|+ |T\ S| — 1 many edges. The vertices in (NUT)\ S C V(G)\ (WUR)
forms an independent set in F', since they are nice vertices or tents. The vertices in N \ S
and 7'\ S have degree 2 and degree 3 in F, respectively, since their degree cannot drop while
contracting the components of G[W]. This implies that,

2IN\S|+3[T\ S| <|E(F) < p(W)+|N\S|+|T\S|-1.
Therefore, [N\ S|+ 2|7\ S| < p(W). But NNT = ) and thus
IN|+2T| < p() +2IS] < p(W) + 2k 1)

However, by our assumption, u(I) = p(W) + 2k — (|[N| +2|T|) < 0 and thus [N| 4+ 2|T'| >
p(W) + k. This, contradicts the inequality given in Equation 1 contradicting our assumption
that I is a YES instance. |

» Lemma 11. The algorithm presented for Di1s-IFVS is correct.

Proof. Let I = (G, W, R, k) be an instance of D1s-IFVS. We prove the correctness of the
algorithm by induction on p = p(I) = 2k + p(W) — (9 + 27). The base case occurs in one of
the following cases.
@ < 0. By Lemma 10, when p < 0, we can correctly conclude that I is a NO instance.
k < 0. By Reduction Rule 3 it follows that when k£ < 0, we can correctly conclude that I
is a NO instance.
When none of the Reduction Rules and Branching Rules are applicable. In this case we
are able to solve the instance in polynomial time.
By induction hypothesis we assume that for all p < [, the algorithm is correct. We will
now prove that the algorithm is correct when p = [ + 1. The algorithm does one of the
following. Either applies one of the Reduction Rules if applicable. By Lemma 4 to Lemma 8
we know that the Reduction Rules correctly concludes that I is a NO instance or produces an
equivalent instance I’ with pu(I') < p(I). If p(I') < p(I), then by induction hypothesis and

safeness of the Reduction Rules the algorithm correctly decides if I is a yes instance or not.

Otherwise, u(I") = p(I). If none of the Reduction Rules are applicable then the algorithm
applies one of the Branching Rules. Branching Rules are exhaustive and covers all possible
cases. Furthermore, p decreases in each of the branch by at least one. Therefore, by the
induction hypothesis, the algorithm correctly decides whether I is a YES instance or not. <«

» Theorem 12. The algorithm presented solves DISJOINT INDEPENDENT FEEDBACK VERTEX
SET in time O*(3.1481%).
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Proof. The Reduction Rules 1 to 8 can be applied in time polynomial in the input size. Also,
at each of the branch we spend a polynomial amount of time. At each of the recursive calls in
a branch, the measure p decreases at least by 1. When p < 0, then we are able to solve the
remaining instance in polynomial time or correctly conclude that the corresponding branch
cannot lead to a solution. At the start of the algorithm p < 3k. The worst-case branching
vector for the algorithm is (3,1) (see Table 1). The recurrence for the worst case branching
vector is:

T(p) <T(p—3)+T(p—1).

The running time corresponding to the above recurrence relation is 3.1481%. |

3.2 A family of counter examples to Song’s Algorithm for Independent
Feedback Vertex Set

Let F be the family of even cycles. For any C' € F, let (Cw,Cq) be a bipartition of C.
Given a graph G and a feedback vertex set F' in G, Lemma 3.1 of [30] claims to output a
minimum IFVS in G. But for G = C and F = Cy, where C € F, the algorithm of Lemma
3.1 always returns ().

4  Conclusion

In this paper we studied the INDEPENDENT FEEDBACK VERTEX SET problem in the realm of
parameterized algorithms, moderately exponential time algorithms and combinatorial upper
bounds. We gave the fastest known deterministic algorithms for the problem running in times
O*(4.1481%) and O*(1.5981™), respectively. Finally, we showed that the number of minimal
ifvses in any graph on n vertices is upper bounded by 1.7485™. We also complemented the
upper bound result by obtaining a family of graphs where the number of minimal ifvses is
at least 3"/3. Improving running time of all our algorithms is an interesting question. We
conclude the paper with few concrete open problems.

Does INDEPENDENT FEEDBACK VERTEX SET admit a kernel of size O(k?)?

Could we close the gap (or even bring closer) between the upper bound and the lower

bounds on the number of minimal ifvses in any graph on n vertices?
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—— Abstract

It is an old open question in algorithmic graph theory to determine the complexity of the MAX-
IMUM INDEPENDENT SET problem on P;-free graphs, that is, on graphs not containing any
induced path on ¢ vertices. So far, polynomial-time algorithms are known only for ¢ < 5 [Lok-
shtanov et al., SODA 2014, pp. 570-581, 2014]. Here we study the existence of subexponential-
time algorithms for the problem: by generalizing an earlier result of Randerath and Schiermeyer
for t = 5 [Discrete Appl. Math., 158 (2010), pp. 1041-1044], we show that for any ¢ > 5, there is
an algorithm for MAXIMUM INDEPENDENT SET on Pi-free graphs whose running time is subex-
ponential in the number of vertices.

SCATTERED SET is the generalization of MAXIMUM INDEPENDENT SET where the vertices
of the solution are required to be at distance at least d from each other. We give a complete
characterization of those graphs H for which d-SCATTERED SET on H-free graphs can be solved
in time subexponential in the size of the input (that is, in the number of vertices plus number of

edges):
If every component of H is a path, then d-SCATTERED SET on H-free graphs with n vertices
and m edges can be solved in time 2(”“”)170(1”‘/“{”), even if d is part of the input.
Otherwise, assuming ETH, there is no 2°("*+™)_time algorithm for d-SCATTERED SET for any

fixed d > 3 on H-free graphs with n-vertices and m-edges.
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1 Introduction

The MAXIMUM INDEPENDENT SET problem (MIS, for short) is one of the fundamental
problems in discrete optimization. It takes a graph G as input, and asks for the maximum
number a(G) of mutually nonadjacent (i.e., independent) vertices in G. On unrestricted
input, it is not only NP-hard (its decision version “Is a(G) > k?” being NP-complete), but
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APX-hard as well, and, in fact, even not approximable within O(n!~¢) in polynomial time
for any & > 0 unless P=NP, as proved by Zuckerman [21]. For this reason, classes of graphs
are of definite interest on which MIS becomes tractable. One direction of this area is to
study the complexity of MIS on H -free graphs, that means graphs not containing any induced
subgraph isomorphic to a given graph H.

What do we know about the complexity of MIS on H-free graphs? One the hardness
side, it is easy to see that if G’ is obtained from G by subdividing each edge with 2t new
vertices, then «(G’) = a(G) + t|E(G)| holds. This can be used to show that MIS is NP-hard
on H-free graphs whenever H is not a forest, and also if H contains a tree component with
at least two vertices of degree larger than 2 (first observed in [2], see, e.g., [11]). As MIS is
known to be NP-hard on graphs of maximum degree at most 3, the case when H contains a
vertex of degree at least 4 is also NP-hard.

The only case not covered by the above observations is when every component of H is
either a path, or a tree with exactly one degree-3 vertex ¢ with three paths of arbitrary
lengths starting from c. Even this collection means infinitely many cases. For decades, on
these graphs H only partial results have been obtained, proving polynomial-time solvability
in some cases. A classical algorithm of Minty [16] and its corrected form by Sbihi [19] solved
the problem when H is a claw (3 paths of length 1 in the model above). This happened
in 1980. Much later, in 2004, Alekseev [3] generalized this result by an algorithm for H
isomorphic to a fork (2 paths of length 1 and one path of length 2).

Somewhat embarrassingly, even the seemingly easy case of P;-free graphs is poorly
understood (where P; is the path on ¢ vertices). MIS on P;-free graphs is not known to be
NP-hard for any t; for all we know, it could be polynomial-time solvable for every fixed ¢ > 1.
Py-free graphs (also known as cographs) have very simple structure, which can be used to
solve MIS in way that is very simple, but does not generalize to P;-free graphs for larger t.
In 2010, it was a breakthrough when Randerath and Schiermeyer [17] stated that MIS was
solvable in subexponential time, more precisely within O(C"H) for any constants C' > 1
and € < 1/4, on Ps-free graphs. Designing an algorithm based on deep results, Lokshtanov
[11] finally proved that MIS is polynomial-time solvable on Ps-free graphs. More recently, a
quasipolynomial (nl(’go(l) "-time) algorithm was found for Ps-free graphs [13].

In this paper, we explore MIS and some variants on H-free graphs from the viewpoint of
subexponential-time algorithms. That is, instead of aiming for algorithms with running time
nPM on n-vertex graphs, we ask if 2°(") algorithms are possible. Our first result shows that
there is indeed such an algorithm for P;-free graphs.

» Theorem 1. For cvery fized t > 5, MIS on n-vertex P;-free graphs is subexponential,
namely, it can be solved by a 90(n! VLT e algorithm.

In particular, for ¢ = 5, this improves the result of Randerath and Schiermeyer [17]. The
algorithm is based on the obsevation that a connected P;-free graph always has a high-degree
vertex, which can be used for efficient branching. However, the algorithm does not seem to
be extendable to H-free graphs where H is the subdivision of a K 3, hence the existence of
subexponential-time algorithms on such graphs remains an open question.

SCATTERED SET (also known under other names such as dispersion or distance-d in-
dependent set [14, 20, 1, 18, 6, 9]) is the natural generalization of MIS where the vertices
of the solution are required to be at distance at least d from each other; the size of the
largest such set will be denoted by aq(G). We can consider with d being part of the input,
or assume that d > 2 is a fixed constant, in which case we call it d-SCATTERED SET.
Clearly, MIS is exactly the same as 2-SCATTERED SET. Despite its similarity to MIS, the
branching algorithm of Theorem 1 cannot be generalized: we give evidence that there is
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no subexponential-time algorithm for 3-SCATTERED SET on Ps-free graphs. For the lower
bound, we assume the Exponential-Time Hypothesis (ETH) of Impagliazzo, Paturi, and
Zane, which can be informally stated as n-variable 3SAT cannot be solved in 2°(™) time (see
[7, 12, 10]).

» Theorem 2. Assuming ETH, there is no 2°™ -time algorithm for d-SCATTERED SET with
d = 3 on Ps-free graphs with n vertices.

In light of the negative result of Theorem 2, we slightly change our objective by aiming
for an algorithm that is subexponential in the size of the input, that is, in the total number of
vertices and edge of the graph G. As the number of edges of G can be up to quadratic in the
number of vertices, this is a weaker goal: an algorithm that is subexponential in the number
of edges is not necessarily subexponential in the number of vertices. We give a complete
characterization when such algorithms are possible for SCATTERED SET.

» Theorem 3. For every fized graph H, the following holds.

1. If every component of H is a path, then d-SCATTERED SET on H-free graphs with n
vertices and m edges can be solved in time 2("+m)170(1/‘v(m|), even if d is part of the
mput.

2. Otherwise, assuming ETH, there is no 2°"t™) _time algorithm for d-SCATTERED SET
for any fixed d > 3 on H-free graphs with n-vertices and m-edges.

The algorithmic side of Theorem 3 is based on the combinatorial observation that the
treewidth of P;-free graphs is sublinear in the number of edges, which means that standard
algorithms on bounded-treewidth graphs can be invoked to solve the problem in time
subexponential in the number of edges. It has not escaped our notice that this approach is
completely generic and could be used for many other problems (e.g., HAMILTONIAN CYCLE,
3-COLORING, ... ) where 20() . nO() or even 2t10e”" ¢ . O()_time algorithms are known on
graphs of treewidth ¢. For the lower bound part of Theorem 3, we need to examine only two
cases: claw-free graphs and Cy-free graphs (where C; is the cycle on ¢ vertices); the other
cases then follow immediately.

The algorithm described in Section 3 implies Theorem 1, while Theorems 2 and 3 are
implied by Sections 4 and 5.

2 Preliminaries

This work investigates simple undirected graphs throughout. The vertex set of graph G will
be denoted by V(G), the edge set by E(G). When we deal with a fixed graph, we write
simply V' and F respectively.

A graph is H-free if it does not contain H as an induced subgraph.

A distance-d set (d-scattered) set) in a graph G is a vertex set S C V(@) such that for
every pair of vertices in S, the distance between them is at least d in the graph. For d = 2,
we obtain the traditional notion of independent set (stable set). For d > ¢, a distance-d set
is a distance-c set as well, for example, any distance-d set is independent for d > 2.

The algorithmic problem WEIGHTED INDEPENDENT SET is the problem of maximizing
the sum of weights in a graph with nonnegative vertex weights w. The maximum is denoted
by ., (G). For a weight w everywhere 1, we obtain the usual problem Independent Set (MIS)
with maximum «(G).

Several definitions are used in the literature under the name subexponential function.
Each of them means some condition: this function (with variable p > 1, called the parameter)
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may not be larger than some bound, depending on p. Here we use two versions, where the
bound is of type exp(o(p)) and exp(p'~¢) respectively, with some € > 0. (Clearly, the second
one is the more strict.) Throughout the paper, we state our results emphasizing, which
version we mean.

An algorithm A is subexponential in parameter p > 1 if the number of steps executed by
A is a subexponential function of the parameter p. We will use here this notion for graphs,
mostly in the following cases: p is the number n of vertices, the number m of edges, or
p =n + m (which is considered to be the size of the input generally).

A problem II is subexponential if there exists some suberponential algorithm solving II.

The notation dg(z,y) and diam(G) will have the usual meaning. For a vertex z of
G, its radius rg(z) is max{dg(z,y)ly € V(G)} and for the radius of graph G, r(G) :=
min{rg(z)|xz € V(G))}. A(G) is the maximal degree in G.

P, (C}) is the chordless path (cycle) on ¢ vertices.

3 Algorithm for MIS on P;-free graphs

The method used here will be similar to that of [17]. There a special dominating set is found
(applying [5]), here a vertex of small radius will help. More precisely, the algorithm is based
on the observation that a connected P;-free graph always has a high-degree vertex. The
following definition formalizes this property.

» Definition 4. For a fixed real § > 0 and a natural number ng, let C := C(ng,d) be the
class of graphs G with the following property: For every connected induced subgraph G’ of
G with k := |V(G")| > no, A(G") > k°.

Clearly, each class C := C(ng, d) is contained in the class of P-free graphs for ¢ = ng. But if
we extend C, the result below will be stronger than a statement merely for graphs without
some long induced path.

» Definition 5. For a fixed real 6 > 0 and a natural number ng, let G := G(ng, d) be the
class of graphs G with the following property: For every connected induced subgraph G’ of
G having maximum degree at least 3, with k := |V(G’)| > ng, A(G') > k°.

The following result presents the connection of Pifree graphs with the classes above.

» Lemma 6. For every t > 5, every Pi-free graph is in C(Ny,d) (and thus in G(Np,d) as
well) with § = [t/2]™" and an appropriate No = Ny(t).

Proof. Every connected P;-free graph has radius at most diam(G) < t — 2. To obtain
stronger constants, we use a result of Erdés, Saks, and Sés [8, Theorem 2.1], which states, in
an alternative formulation, that every connected Pi-free graph has radius at most [¢/2].!

Assuming that G is connected and has maximum degree A, the number of vertices at
distance i from a vertex ¢ with minimal radius is at most A - (A — 1)1, Thus, if G is
connected, P;-free, moreover it has n vertices and maximum degree A = A(G), then for any
t > 6, we have

n<14+A) (A-1)7h <Al (1)
=1

1A subset of the present authors [4] established a stronger property which is equivalent to being P;-free.



G. Bacs6, D. Marx, and Zs. Tuza

Algorithm 1 Algorithm DEGALPHA
Input: a graph G
1. If |V(G)| =1 then a(G) = 1.
2. If [V(G)| > 1 and G is disconnected:
a. Determine a connected component G’ of G, and set G = G — G'.
b. Determine a(G’) and a(G"), calling Algorithm DEGALPHA for G’ and G” separately,
and write a(G) = a(G’) + a(G").
3. If [V(G)| > 1 and G is connected:
a. Determine a vertex v of maximum degree, dg(v) = A(G).

b. A(G) < 2 then «(G) is the maximal size of independent set in the corresponding path
or cycle respectively.

c. Determine a(G — v) and (G — N[v]) where N[v] is the closed neighborhood of v,
calling Algorithm DEGALPHA for G — v and G — N|[v] separately, and write a(G) =
max(a(G —v), a(G — N[v]) + 1).

which corresponds to the standard Moore bound (see, e.g., inequality (1) on page 8 of [15]).
As a consequence, for ¢t > 6, we obtain

A(G) > nlt/2™ (2)

For t = 5, we get the slightly weaker bound n < 1+ A + A(A — 1) = A% + 1. However, with
additional arguments, we can show that n < A? holds if A > 2, thus the statement is true if
n > 5. (Sketch of the proof: the only way that n = A% + 1 can hold is when ¢ has exactly A
neighbors, each of which has exactly A — 1 neighbors at distance two from ¢, and they do
not share any of these neighbors. Let u and v be two neighbors of c. If a neighbor v’ # ¢
of u is nonadjacent to a neighbor v’ # ¢ of v, then v, u, ¢, v, v’ form an induced Ps. This
shows that u’ has degree at least 1+ (A — 1)?, which is more than A if A > 2.) <

Next we show that subexponential-time algorithms exists for the class G(ng, 9).

» Remark. The class G(ng,d) with appropriate parameters contains non-P;-free graphs for
any t.

» Lemma 7. For any fized real 0 < 6 < 1 and a natural number ng, the independent set
problem is subexponential (in the strong sense) for the class G(ng,d), namely, it can be solved
by an algorithm executing at most O(exp(c(8) - n'=% -1Inn)) steps, where c¢(8) is any real
constant greater than 1%6.
Proof. The conditions lead to a simple exact algorithm solving MIS (see Algorithm 1),
which is also the basis for the analysis in [17] (except that here we need not deal with
isolated vertices separately) and whose variants also appear in enumeration algorithms for
independent sets.

It is a direct consequence of the definitions that Algorithm DEGALPHA properly de-
termines the independence number of G.

Time analysis. We may and will assume that the number n of vertices is larger than a
suitably fixed threshold value ng = ng(d). Connectivity test and separation of a connected
component — as well as the determination of a maximum-degree vertex — can be performed
in O(n?) steps. Therefore, a non-decreasing integer function f(n) surely is a valid upper
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bound on the running time of Algorithm 1 on any input graph G on n vertices whenever, for
any n > ng and all integers n’ in the range n/2 < n’ < n, we have

fn) = kn®+ f(n')+ f(n—n') (3)
f(n) > kn®+ f(n—1)+ f(n—[n]) (4)

where k is a suitably chosen (not large) constant. Throughout this proof, square brackets | ]
will be used as parentheses, with the same meaning as ( ), for making some expressions more
transparent.

Note that the time bound in Lemma 7 is superpolynomial, therefore writing f in the form

f(n) =g(n) +kn*/3
requires the same growth order for f and g. Let us define
9(x) = exp(h(z))
where
h(z) = c(d) - 2'7° - Inx.
By the observations above, (3) and (4) will follow if we prove the inequalities
g9(x) = g(@") +glx -2 ()
g(x) > glz —1)+g(z —2°) (6)

for every real x large enough and every o’ with 2/2 < 2/ < z — 1. We can immediately
observe that (5) is a consequence of (6) as

g(z) — g(a') > g(a) — gz — 1) > g(z — 2°) > g(x/2) > g(z — 2/)

if x is large enough with respect to J, because g is an increasing function and ¢ is a constant
smaller than 1. Therefore only (6) remains to be proved.
We shall need the derivatives of g and h, which can be computed as

g'(x) = (exp[h(2)))" = exp[h(x)] - h'(2) = g(x) - I (x)
and
W(z) = (c(d) -z'° In x)/
= ¢(0) 270 [(1-08)Inz+1]. (7)
It is important to note for later use that
W(z—1)=(1+o0(1)) h'(z)

as z — oo. Moreover, g and h are increasing, while i’ is decreasing, except on a bounded
part of the domain.

Next, we apply Cauchy’s Mean value theorem in three steps, first for both g and h to
estimate g(z) — g(z — 1), and second for h to estimate g(x — z°), as follows. For some & and
& withz — 1 <&, <z we have

glx) =gz —=1) = ¢'(§) = exp(h(§))-1'(§)

> explh(z — 1) W (x)
= exp[h(z) = W' (£)] - M'(x)
> exp[h(x) — W (x —1)]-h'(x)

I
[¢]
»
e}
=
—~
&
|
—~
—_
+
2
—_
~—
~—
=
—
&
=
&
—~
X
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On the other hand, for some ¢ with z — 2° < ¢ < z we have h(z — 2°) = h(x) —2° - B/(£"),
therefore

gle—a’) = explh(z) —a’ - W'(")]
explh(z) — 2 1 ()] )

IN

Thus, to prove (6), it suffices to show that (8) is not smaller than (9). Taking logarithms
this means

h(z) — (14 o0(1)) - W (z) +Ink'(z) > h(z)—a2° K (z).

Or equivalently
[0 —1—0o(1)]-W(z) > —Inh'(z).

Using (7), we obtain that it is enough to prove
(c(d)+o0(1)-(1—=06)-Inxz > (6+0(1)) Inz.

This is implied by the condition on ¢(d) (even with strict inequality), completing the proof
of the lemma. |

Theorem 1 follows immediately from putting together Lemmas 6 and 7.

4  Algorithm for Scattered Set on P;-free graphs

The algorithm for SCATTERED SET for P;-free graphs hinges on the following combinatorial
bound.

» Lemma 8. For every t > 2 and for every P;-free graph with m edges, we have that G has
treewidth at most 3m*—1/(t+2),

Proof. Let n be the number of vertices of G. We may ignore components of G that are trees
or isolated vertices and hence we can assume that n < m. We consider two cases. Suppose
first that m > n!T/ @+ Then we have

A=V (42) > 1/ (D) A-1/(4+2) _ .

Obviously, n is an upper bound on the treewidth of G, and hence the claim follows.
Suppose now that m < n'T/+D  Let X be the subset of vertices of G with degree
at least n?/(#+1D The degree sum of the vertices in X is at most 2m, hence we have
|X| < 2m/n?/(tH1D) < 2p1=1/(+1) By the definition of X, the graph G' — X has maximum
degree less than n2/(t+1) . Thus each component of X is a P,-free graph with maximum degree
less than n?/(*+1) and hence Lemma 6 implies that each component of G — X has at most
n/@+HE/2] < p1=1/(t+1) vertices. In particular, this implies that G — X has treewidth at
most n'~1/ (1) As removing a vertex can decrease treewidth at most by one, it follows that
G has treewidth at most n!=1/(+1) 4| X| = 3p!~1/(H) < 31 -1/ (D) < gpl=1/(42) 1 4

It is known that SCATTERED SET can be solved in time d°®) . n®M) on graphs of
treewidth w using standard dynamic programming techniques (cf. [20, 14]). By Lemma 8, it
follows that SCATTERED SET on P;-free graphs can be solved in time

dgml—l/(t+2> 00 _ O(m!' =1/ (D) logm) _ om! 1/ (2o
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(taking into account that we may assume n = O(m) and d < n). Observe that if every
component of H is a path, then H is an induced subgraph of Py (g, which implies that
H-free graphs are Py () |-free. Thus the algorithm described here for P;-free graphs implies
the first part of Theorem 3.

5 Lower bounds for Scattered Set

A standard consequence of ETH and the so-called Sparsification Lemma is that there is no
subexponential-time algorithm for MIS even on graphs of bounded degree (see, e.g., [7]):

» Theorem 9. Assuming ETH, there is no 2°0") -time algorithm for MIS on n-vertex graphs
of maximum degree 3.

A very simple reduction can reduce MIS to 3-SCATTERED SET for Ps-free graphs, showing
that, assuming ETH, there is no algorithm subexponential in the number of vertices for the
latter problem. This proves Theorem 2 stated in the Introduction.

Proof (Theorem 2). Given an n-vertex m-edge graph G with maximum degree 3 and an
integer k, we construct a graph G’ with n +m = O(n) vertices such that o(G) = a3(G’).
This reduction proves that a 2°(™)-time algorithm for 3-SCATTERED SET could be used to
obtain a 2°("-time algorithm for MIS on graphs of maximum degree 3, and this would violate
ETH by Theorem 9.

The graph G’ contains one vertex for each vertex of G and additionally one vertex for
each edge of G. The m vertices of G’ representing the edges of G' form a clique. Moreover,
if the endpoints of an edge e € E(G) are u,v € V(G), then the vertex of G’ representing e
is connected with the vertices of G’ representing u and v. This completes the construction
of G'. Tt is easy to see that G’ is Ps-free: an induced path of G’ can contain at most two
vertices of the clique corresponding to E(G) and the vertices of G’ corresponding to the
vertices of G form an independent set.

If S is an independent set of G, then we claim that the corresponding vertices of G’
are at distance at least 3 from each other. Indeed, no two such vertices have a common
neighbor: if u,v € S and the corresponding two vertices in G’ have a common neighbor, then
this common neighbor represents an edge e of G whose endpoints are u and v, violating the
assumption that S is independent. Conversely, suppose that S’ C V(G’) is a set of k vertices
with pairwise distance at least 3 in G'. If k > 2, then all these vertices represent vertices of
G: observe that for every edge e of G, the vertex of G’ representing e is at distance at most 2
from every other non-isolated vertex of G'. We claim that S’ corresponds to an independent
set of G. Indeed, if u,v € S’ and there is an edge ¢ in G’ with endpoints v and v, then the
vertex of G’ representing e is a common neighbor of v and v, a contradiction. |

Next we give negative results on the existence of algorithms for SCATTERED SET that
have running time subexponential in the number of edges. To rule out such algorithms, we
construct instances that have bounded degree: then being subexponential in the number
of vertices or the number of edges are the same. We consider first claw-free graphs. The
key insight here is that SCATTERED SET with d = 3 in line graphs (which are claw-free) is
essentially the INDUCED MATCHING problem, for which it is easy to prove hardness results.

» Theorem 10. Assuming ETH, d-SCATTERED SET does not have a 2°™ algorithm on
n-vertex claw-free graphs of maximum degree 4 for any fized d > 3.
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Proof. Given an n-vertex graph G with maximum degree 3, we construct a claw-free graph
G’ with O(dn) vertices and maximum degree 4 such that ag(G’) = a(G). Then by Theorem 9,
a 2°(")_time algorithm for d-SCATTERED SET for n-vertex claw-free graphs of maximum
degree 4 would violate ETH.

The construction is slightly different based on the parity of d; let us first consider the case
when d is odd. Let us construct the graph G by attaching a path @, of £ = (d —1)/2 edges
to each vertex v € V(G); let us denote by €41, ..., €, the edges of this path such that e, 1
is incident with v. The graph G’ is defined as the line graph of GT, that is, each vertex of
G’ represents an edge of G and two vertices of G/ are adjacent if the corresponding two
vertices share an endpoint. It is well known that line graphs are claw-free. As G* has O(dn)
edges and maximum degree 4 (recall that G has maximum degree 3), the line graph G’ has
O(dn) vertices an edges. Thus an algorithm for SCATTERED SET with running time 2°(")
on n-vertex claw-free graphs of maximum degree 3 could be used to solve MIS on n-vertex
graphs with maximum degree 3 in time 2°("), contradicting ETH.

If there is an independent set S of size k in G, then we claim that the set S" = {e, 0 | v € S}
is a d- scattered set of size k in G’. To see this, suppose for a contradiction that there are
two vertices u,v € S such that the vertices of G’ representing e, ¢ and e, ¢ are at distance
at most d — 1 from each other. This implies that there is a path in G that has at most d
edges and whose first and last edges are e, ¢ and e, ¢, respectively. However, such a path
would need to contain all the ¢ edges of path @, and all the ¢ edges of @,, hence it can
contain at most d — 2¢ = 1 edges outside these two paths. But u and v are not adjacent in
G™ by assumption, hence more than one edge is needed to complete @, and @, to a path, a
contradiction.

Conversely, let S’ be a distance-d scattered set in G’, which corresponds to a set St of
edges in GT. Observe that for any v € V(G), at most one edge of ST can be incident to the
vertices of Q,: otherwise, the corresponding two vertices in the line graph G’ would have
distance at most £ < d. It is easy to see that if ST contains an edge incident to a vertex of
(v, then we can always replace this edge with e, ¢, as this can only move it farther away from
the other edges of ST. Thus we may assume that every edge of S is of the form e, . Let
us construct the set S = {v | e, ¢ € ST}, which has size exactly k. Then S is independent in
G: if u,v € S are adjacent in G, then there is a path of 2¢ + 1 = d edges in G whose first
an last edges are e, ¢ and e, ¢, respectively, hence the vertices of G’ corresponding to them
have distance at most d — 1.

If d > 4 is even, then the proof is similar, but we obtain the graph G by first subdividing
each edge and attaching paths of length ¢ = d/2 — 1 to each original vertex. The proof
proceeds in a similar way: if v and v are adjacent in G, then G has a path of 204+ 2 =d
edges whose first and last edges are e, ¢ and e, g, respectively, hence the vertices of G’
corresponding to them have distance at most d — 1. <

There is a well-known and easy way of proving hardness of MIS on graphs with large
girth: subdivide edges increases girth and the size of the largest independent set changes in
a controlled way.

» Lemma 11. If there is an 2°")-time algorithm for MIS on n-vertex graphs of mazimum
degree 3 and girth more than g for any fized g > 0, then ETH fails.

Proof. Let g be a fixed constant and let G be a simple graph with n vertices, m edges, and
maximum degree 3 (hence m = O(n)). We construct a graph G’ by subdividing each edge
with 2g new vertices. We have that G’ has n’ = O(n + gm) = O(n) vertices, maximum
degree 3, and girth at least 3(2¢g + 1). It is known and easy to show that subdividing the
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edges this way increases the size of the maximum independent set exactly by gm. Thus a
20(n")_ time algorithm for n’-vertex graphs of maximum degree 3 and girth at least g could
be used to give a 2°(")-time algorithm for n-vertex graphs of maximum degree g, hence ETH
would fail by Theorem 9. <

We use the lower bound of Lemma 11 to prove lower bounds for SCATTERED SET on
Ci-free graphs.

» Theorem 12. Assuming ETH, d-SCATTERED SET does not have a 2°™ algorithm on
n-vertex Cy-free graphs with mazimum degree 8 for any fired t > 3 and d > 2.

Proof. Let G be an n-vertex m-edge graph of maximum degree 3 and girth more than
t. We construct a graph G’ the following way: we subdivide each edge of G with d — 2
new vertices to create a path of length d — 1, and attach a path of length d — 1 to each of
the (d — 2)m = O(dn) new vertices created. The resulting graph has maximum degree 3,
O(d?n) vertices and edges, and girth more than (d — 1)¢ (hence it is Cj-free). We claim that
2q(G") = a(G) +m(d — 2) holds. This means that an 2°(*")-time algorithm for SCATTERED
SET n/-vertex Cy-free graphs with maximum degree 3 would give a 2°(")-time algorithm for
n-vertex graphs of maximum degree 3 and girth more than ¢ and this would violate ETH by
Lemma 11.

To see that aq(G') = a(G) + m(d — 2) holds, consider first an independent set S of G.
When constructing G’, we attached m(d — 2) paths of length d — 1. Let S” contain the
degree-1 endpoints of these m(d — 2) paths, plus the vertices of G’ corresponding to the
vertices of S. It is easy to see that any two vertices of S’ has distance at least d from each
other: S is an independent set in GG, hence the corresponding vertices in G’ are at distance
at least 2(d — 1) from each other, while the degree-1 endpoints of the paths of length d — 1
are at distance at least d from every other vertex that can potentially be in S’. This shows
aq(G") > a(G) + m(d — 2) Conversely, let S’ be a set of vertices in G’ that are at distance at
least d from each other. The set S’ contains two types of vertices: let S7 be the vertices that
correspond to the original vertices of G and let S} be the m(d — 2)d new vertices introduced
in the construction of G'. Observe that S5 can be covered by m(d — 2) paths of length
d — 1 and each such path can contain at most one vertex of S’, hence at most m(d — 2)
vertices of S’ can be in S5. We claim that 5] can contain at most «(G) vertices, as S’ N S}
corresponds to an independent set of G. Indeed, if v and v are adjacent vertices of G, then
the corresponding two vertices of G’ are at distance d — 1, hence they cannot be both present
in §’. This shows aq(G’) < a(G) + m(d — 2), completing the proof of the correctness of the
reduction. <

As the following corollary shows, putting together Theorems 10 and 12 implies The-
orem 3(2).

» Corollary 13. If H is a graph having a component that is not a path, then, assuming ETH,
d-SCATTERED SET has no 2°"t™) _time algorithm on n-vertex m-edge H-free graphs for any
fixed d > 3.

Proof. Suppose first that H is not a forest and hence some cycle C; for t > 3 appears as
an induced subgraph in H. Then the class of H-free graphs is a superset of Ci-free graphs,
which means that statement follows from Theorem 12 (which gives a lower bound for a more
restricted class of graphs).

Assume therefore that H is a forest. Then it has to have a component that is a tree, but
not a path, hence it has a vertex v of degree at least 3. The neighbors of v are independent in
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the forest H, which means that the claw K 3 appears in H as an induced subgraph. Then the
class of H-free graphs is a superset of claw-free graphs, which means that statement follows
from Theorem 10 (which gives a lower bound for a more restricted class of graphs). |

6 Conclusion

In spite of our results, it remains an open problem for an infinite class of graphs H, whether a
subexponential or even a polynomial algorithm exists for MIS on H-free graphs. Namely, as
indicated in the Introduction, among connected graphs these are the ones in which the triple
of lengths of paths starting from the unique vertex of degree three is (i, j, k) with ¢ < j <k
and with (4,4, k) # (1,1,1),(1,1,2). Moreover, for paths, it is an unsolved question whether
the problem is polynomial-time solvable for H = P;, t > 6.

Our subexponential algorithm uses simple branching which clearly works for WEIGHTED
INDEPENDENT SET as well.

For SCATTERED SET, we have seen that on P;-free graphs there are algorithms subexpo-
nential in the number of edges, and Theorem 2 shows that polynomial-time algorithms are
unlikely. But can one give a tight lower bound on the subexponential running time, perhaps
showing that 1 — O(1/t) in the exponent of the exponent is in some sense best possible?

After the acceptance of this manuscript we learned that independently and simultaneously
Brause (Ch. Brause, “A subexponential-time algorithm for the Maximum Independent Set
in P-free graphs”, Discrete Applied Mathematics, DOI:10.1016/j.dam.2016.06.016) also
proved the subexponentiality of MIS on Pi-free graphs. (His time bound is weaker than
the one in this paper.) Moreover, an unpublished result of Lokshtanov, Pilipczuk, and van
Leuwen yields an algorithm with much better bound on the running time.
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—— Abstract

Fixed-parameter tractability is based on the observation that many hard problems become tract-
able even on large inputs as long as certain input parameters are small. Originally, “tractable”
just meant “solvable in polynomial time,” but especially modern hardware raises the question
of whether we can also achieve “solvable in polylogarithmic parallel time.” A framework for this
study of parallel fixed-parameter tractability is available and a number of isolated algorithmic
results have been obtained in recent years, but one of the unifying core tools of classical FPT
theory has been missing: algorithmic meta-theorems. We establish two such theorems by giv-
ing new upper bounds on the circuit depth necessary to solve the model checking problem for
monadic second-order logic, once parameterized by the tree width and the formula (this is a
parallel version of Courcelle’s Theorem) and once by the tree depth and the formula. For our
proofs we refine the analysis of earlier algorithms, especially of Bodlaender’s, but also need to
add new ideas, especially in the context where the parallel runtime is bounded by a function of
the parameter and does not depend on the length of the input.
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1 Introduction

Algorithmic meta-theorems bound the computational resources needed to solve problems
defined in a certain logic for inputs from a specific class of structures. The prime example is
Courcelle’s Theorem [5], which states that monadic second-order (MSO) definable problems
can be solved in linear time on structures with bounded tree width. This yields, for instance,
a linear time algorithm for the feedback vertex set problem on graphs of bounded tree width.
Other examples are a “logspace version” [6] or a theorem for structures of bounded tree
depth, where constant depth circuits (AC?) suffice [7]; many more versions can be found in
the surveys by Grohe and Kreutzer [10] and Kreutzer [12].

With the rise of multivariate algorithms, algorithmic meta-theorems have become useful
tools for establishing parameterized upper bounds. The prime example is again Courcelle’s
Theorem, which actually gives a linear-time FPT-algorithm when the tree width of the input
structure is the parameter. Since the tree width of a graph with a feedback vertex set of
size k is at most k + 1, the theorem shows that the naturally parameterized feedback vertex
set problem can be solved in parameterized linear time.

The field of parameterized complexity is renowned for its ability to find algorithms that
solve NP- or even PSPACE-complete problems in reasonable time. Unfortunately, “reasonable
time” is not quite the same as “fast” and, furthermore, the instances in typical applications
for these algorithms are huge. We may thus wish to speedup the computation by taking
? Max Bannach and.Till Tantau; .
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advantage of the multiple cores and powerful GPUs present in modern hardware. In order
to do so, we need parallel fixed-parameter algorithms. A first step in this direction was
taken by us in [1], where we showed that the vertex cover problem, among several other
problems, allows fast parallel fixed-parameter algorithms; but for many problems, including
the feedback vertex set problem, the parallel parameterized complexity remains open. In
particular, results concerning the parallel fixed-parameter tractability of problems have been
obtained on a problem-by-problem basis without an overarching, unifying approach — which
is exactly what the present paper tries to remedy.

Our Contributions. We formulate and prove different parallel parameterized meta-theorems,
which unify previous results and allow us to obtain new algorithms for natural problems. Our
meta-theorems are obtained by translating the logspace and circuit versions of Courcelle’s
Theorem from [6, 7] into parameterized counter parts, but we must point out already at
this point that this is harder than one might expect: Unlike the original linear-time version
of Courcelle’s Theorem, which is “a theorem about parameterized complexity in disguise,”
the logspace and circuit versions just state that problems lie in the classes XL and XACP.
However, these latter classes are presumably not even contained in FPT, let alone in parallel
subclasses thereof and, thus, are not the classes we are looking for.

To establish the parallel parameterized meta-theorem, we need to study the parameterized
parallel complexity of computing tree decomposition of parameterized width and possibly
also depth. At the heart of Courcelle’s Theorem and related versions are tree automata
that process the tree decomposition of the input. We provide fast parallel algorithms to
evaluate parameter-sized tree automata on arbitrary trees and on trees of parameterized
depth. By combining these algorithms with the parallel algorithms for computing tree
decompositions, we obtain parallel algorithms for monadic second-order model checking on
graphs of parameterized tree width or parameterized tree depth (pg 1d/tw-MC(MSO)). The
logic is defined as usual, for instance the following MSO-sentence describes that a graph is
colorable with three colors:

¢ =3R3GIBVx (R(x) V G(x) V B(x))
AV, y (E(z,y) = (7R(z) V ~R(y)) A (=G (2) V ~G(y)) A (-B(z) V ~B(y))).

The model checking problem asks, given a logical structure (for instance a graph), and a
logical formula, whether or not the structure is a model for the formula. For example, we
have 2§ = ¢, but I [~ ¢. For an introduction to the field, we refer to [8]. Our main results
are stated in form of the following theorems (para-AC°"T contains problems decidable by
“FPT-sized” circuits whose depth depends only on the parameter, detailed definition follow
later):

» Theorem 1. pyq-MC(MSO) € para-ACOT.
» Theorem 2. p, ,-MC(MSO) € para-NC?*.

Armed with these new meta-theorems, we settle the parallel parameterized complexity of
different natural problems, including the feedback vertex set problem.

Related Work. The prime example of algorithmic meta-theorems is Courcelle’s Theorem [5]
which becomes powerful in combination with Bodlaender’s linear-time algorithm for comput-
ing optimal tree decompositions of graphs of bounded tree width [4]. Since the release of
this theorem, many other meta-theorems, which place many problems in P, were presented,
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see [10, 12] for surveys. For Courcelle’s Theorem there are versions for other classes: a
LOGCFL-version by Wanke [15], which was later improved to an L-version by Elberfeld,
Jakoby, and the last author [6], who also prove an AC%-version [7]. While most meta-theorems
that place problems in P place the parameterized version of the problem in para-P = FPT,
this is not the case for the last-mentioned versions: The L- and AC°-versions of Courcelle’s
Theorem place problems in XL and XAC® and not, as we would like, in para-L and para-ACP.
Early studies on the parallel complexity of computing tree decompositions for graphs of
bounded tree width where made by Bodlaender [3]. However, the algorithm does not ob-
tain “FPT-work” in the parameterized setting and only yields a XNC-algorithm. Lagergren
provided a parallel O(log®n) time algorithm using O(n) processors for this problem in the
CRCW model [13], which translates into a para-NC algorithm for parameterized problems.
Bodlaender and Hagerup later provided a parallel algorithm with optimal speedup running
in time O(log?n) using O(n) operations on the EREW model [2]. This algorithm readily
translates into a para-NC algorithm, but only the careful analysis done in this paper shows
that it is actually a para-NC?*€ algorithm.

Organization of This Paper. In Section 2 we define our basic terminology and recap the
definition of classes of fixed-parameter parallelism. In Section 3 we provide parallel algorithms
to compute tree decompositions of graphs with parameterized tree width or parameterized
tree depth. In Section 4 we provide parallel algorithms to evaluate tree automata on arbitrary
trees and on trees of parameterized depth. Putting it all together, we provide parallel
algorithms for monadic second-order model checking on graphs of parameterized tree width
or depth in Section 5. We close the paper by studying the parallel complexity of certain
parameterized problems with the help of these meta-theorems in Section 6. Due to lack of
space, proofs have been moved to the appendix.

2 Classes of Fixed-Parameter Parallelism

We use standard terminology of parameterized complexity theory, see for instance [8]. A
parameterized problem is a tuple (@, k) of a language @ C X* and a parameterization
k: X" = N. As we deal with small parameterized circuit classes, we require the parameter
to be computable in DLOGTIME-uniform AC? or, equally, to be first-order computable.! We
denote parameterized problems by a leading “p-” as in p-VERTEX-COVER, and, whenever the
parameter is not clear from the context, we add it as index as in pgy-DISTANCE.

A parameterized problem (Q, k) is called fized-parameter tractable if there is a language
R decidable in polynomial time (P) and a computable function f: N — N such that z € @
if, and only if, (x,17(*(#)) € R. That is, the problem is decidable in polynomial time after
an arbitrarily complex pre-computation on the parameter. The resulting complexity class
is called FPT or para-P. If we replace P in this definition by subclasses of P, we obtain
subclasses of FPT, which inherit their inclusion structure from their classical counter parts:

para—ACO - para—TC0 - para—NC1 C para-L C para-NL C para—A01 C para-P.

In order to explicitly define what the parameterized circuit classes contain, we use the
definition from [1]:

L Sometimes this definition is to restrictive, for instance the tree width of a graph is computable in FPT,
but probably not in P, and certainly not in AC?. In such cases we assume that the input is extended
by an upper bound on the parameter, which can easily be extracted in AC®. However, in this case any
algorithm deciding the problem has to verify this parameter by itself.
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» Definition 3 (Classes of Parallel Fixed-Parameter Tractability). Let d: N> — N be a depth
bounding function and s: N2 — N be a size bounding function which both map each pair
of an input length and a parameter to a number. We define para-AC[d, s] as the class of
parameterized problems (@, ) for which there exists a DLOGTIME-uniform? family (Cy, k) ken
of AC-circuits (only NOT-, AND-, and OR-gates are allowed, AND- and OR- gates may have
unbounded fan-in) such that: (1) For all € ¥*, the circuit C\z|,r(x) evaluates to 1 on input
x if, and only if, z € Q. (2) The depth of each C,, j is at most d(n, k). (3) The size of each
Ch, i is at most s(n, k).

We define the classes para-AC’ as para-ACY = para-AC[O(1), f(k(x)) - |z|°V] and for
i > 0 para-AC* = para-AC[O(log’ |z|), f(k(z)) - |2|°M] (in slight abuse of notation, as its
actually the union of this class over all computable functions f). However, there are also
interesting new classes, namely the “up-”classes, defined in [1]:

para-AC'T = para-AC[f (k(x)) ~logi ||, f(k(x)) - \x|0(1)].

Note that para-AC°T captures exactly the problems that can be solved by a circuit of depth
depending only on the parameter, and “FPT”-size. Notice, furthermore, that the “up-”classes
can be strictly more powerful than the underlying classes (para-ACY C para-AC®T [1]), but
that a slight increase of the depth in dependence on |z| compensates this effect: We have
para-AC? C para-AC'T C para-AC'T¢. These definitions and observations can, of course,
also be applied to circuits of bounded fan-in (NC), and to circuits that are equipped with
threshold-gates (TC).

To get familiar with parameterized circuits, let us consider an important technique from
the design of parallel algorithms: symmetry breaking, that is, the ability to find parts of the
input that can be processed in parallel. For graph algorithms in the PRAM model, this is
often achieved by computing maximal independent-sets. In the lemma, as in the rest of the
paper, f is an appropriate computable function and c is an appropriate constant.

» Lemma 4. There is a DLOGTIME-uniform family of AC-circuits of depth f(k) + log™ |V
and size f(k)-|V|° that, on input of an undirected graph G = (V, E) and an integer k, outputs
either that the maximum degree of G exceeds k or a maximal independent set I of G.

Notice that, in sense of circuit classes, the lemma yields a para-AC%t¢ C para-NC!*¢
circuit for computing maximal independent sets with respect to the parameter “maximum
degree.”

3 Parallel Computation of Tree Decompositions

In our algorithmic meta-theorems, the tree width and tree depth of the input graphs are of
special interest: First, they are parameters and, second, our algorithms work on the tree
decompositions underlying the input graphs. Thus, it is of particular interest how such tree
decompositions can be computed in parallel.

Recall the definition of a tree decomposition (T, ¢) of a graph G = (V, E). Tt is a rooted
tree T together with a mapping ¢ from the nodes of T to subsets of V' (which we call bags)
such that for each vertex v € V' and for each edge {v,w} € E there is (1) at least one node n
in T with v € ¢(n), (2) at least one node n in T with {v,w} C ¢(n), and (3) the set of nodes of

2 In this context, this means that the circuit Cy x can be computed in time f(k) + O(logn) by a
deterministic Turing machine that obtains 1"#1’“ as input.
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T that contain v in their bag is connected. The width of a tree decomposition is the maximum
size of its bags minus 1, its depth is the maximum of its width and the depth of the tree T.
For a graph G, we define tw(G) to be the minimum width each tree decomposition of G has
to have, and we define td(G) in a similar way for the tree depth.® For many algorithms it is
useful to have a certain form of a tree decomposition: A nice tree decomposition is a tuple
(T, t,n) such that (T,:) is a tree decomposition and n: V(T') — {leaf, introduce, join, forget }
is a labeling function of the nodes. The nodes that are labeled as leaf are exactly the leafs
and the root of T, and the bags of these nodes are empty. Introduce- and forget-nodes
n have one child x such that there is one v € V with v € «(z) and ¢(n) = «(z) U {v}, or
v € (z) and ¢(n) = t(x) \ {v}, respectively. Join-nodes n have two children = and y with
t(n) = (z) = 1(y). A tree decomposition (T),¢) is called balanced if T is a balanced tree;
a nice tree decomposition (T, ¢,7n) is balanced if the tree obtained from T by contracting
introduce and forget nodes is balanced. We refer to the textbook from Flum and Grohe for a
more detailed introduction into the field [8].

Computing Depth-Bounded Tree Decompositions. We first study the case that we deal
with graphs parameterized by their tree depth. This class of graphs is well suited for
parallel algorithms, as a parallel algorithm can traverse the whole decomposition in time
depending only on the parameter. We will see in this section that we can also compute a
tree decomposition of parameterized depth within this time bound.

» Theorem 5. There is a DLOGTIME-uniform family of AC-circuits of depth f(k) and size
f(k)-|G|¢ that, on input of an undirected graph G = (V, E) and an integer k, either determines
td(G) > k or outputs a tree decomposition (T,1) of G with depth bounded by O(2:4(%)).

In order to prove Theorem 5 we will use known facts about the relation of bounded-
depth tree decompositions and depth-first search trees [14]. To use these facts, we need
a representation of a depth-first search tree that is suitable for our circuit model. Let
G = (V, E) be a graph with s € V, and let T be a depth-first search tree of G starting at s,
a depth-first search labeling is a mapping As: V' — N such that As(v) is the distance from s
to v in T. The figure below shows from left to right: an example graph, a depth-first search
tree starting at vy, and a corresponding depth-first search labeling.

V1 V1 (f 0
" 3
Vg
v v %\ 1
N
U3 V3 \[,‘ 2
I
Vs vs O O 4 3

In a similar way, we can define a breadth-first search labeling with respect to a breadth-first
search tree. Notice that in this case the labeling is actually the (path) distance from s to the
other vertices.

» Lemma 6. There is a DLOGTIME-uniform family of AC-circuits of depth f(k) and size
f(k) -|G|¢ that, on input of an undirected graph G = (V, E), a vertex s € V, and an integer
k, either correctly detects that the longest path in G is longer than 2F, or that output a
depth-first and a breadth-first search labeling starting at s.

3 Note that the common definition of tree depth is slightly different, but that it is an upper bound for the
definition we use.
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Proof of Theorem 5. It is a well-known fact [14] that the length of the longest path in a
graph G is bounded by 2t4(&) A direct consequence is that a depth-first search tree can
be used to obtain a tree decomposition (7',:) of width and depth bounded by 2td(&): et us
assume G is connected and let T be a depth-first search tree rooted at an arbitrary start
vertex r € V. For all v € V define «(v) = { w | w lies on the unique path from v to r in T }.
The depth of T is naturally bounded by 2°4(%) and, therefore, we also have |¢(v)| < 2t4(¢)
for each v € V. Since bags extend along the paths from the root to the leaves of T, all the
conditions of a tree decomposition are satisfied by (T, ¢).

A circuit with the desired size and depth can compute a depth-first search labeling using
Lemma 6, and either conclude that the length of the longest path exceeds k, and therefore
td(G) > k, or it can compute the bags of the decomposition in parallel. For each v € V' the
circuit initializes the bag ¢(v) = {v}. As long as r ¢ ¢(v), the circuit repeats the following
sequentially: let w € 1(v) the vertex that minimizes A(w) in ¢(v), the circuits adds the unique
w’ € N(w) that satisfies A(w’) = AM(w) — 1 to ¢(v). To complete the proof, we have to handle
the case that GG is not connected. The circuit can compute all connected components of
G using a breadth-first search labeling (Lemma 6). Afterwards, the circuit can apply the
algorithm from above to each connected component. Finally, the circuit adds a new empty
root bag that is connected to the roots of all constructed tree decompositions. This operation
does not increase the width and increases the depth only by one. |

Computing Width-Bounded Tree Decompositions. We will now handle the case that the
input graph is parameterized by tree width. In this case the depth of a tree decomposition
is not bounded by any function in the parameter and, thus, it seems unlikely that parallel
algorithms running in time depending only on the parameter exist. And, indeed, deciding
if a graph has tree width at most k for a fixed k is already L-complete and, hence, the
parameterized version of this problem cannot lie in para-ACY or para-ACYT.

» Theorem 7. There is a DLOGTIME-uniform family of NC-circuits with depth f(k) +
log?*® |G| and width f(k) - |G|¢ that, on input of an undirected graph G = (V,E) and an
integer k, either determines tw(G) > k or outputs a tree decomposition of G of width at
most k.

The proof of Theorem 7 is essentially a new analysis of a parallel algorithm from
Bodlaender and Hagerup [2]. They provide an O(log®n) time and O(n) work algorithm on
the EREW-PRAM model to compute optimal tree decompositions of graphs with bounded tree
width, from which one can derive that the problem of computing a tree decomposition lies
somewhere in para-NC. Our main contribution in the following is a careful analysis regarding
the exact circuit class the algorithm achieves: It is para-NC?*¢ for all € > 0.

The idea of the algorithm is as follows: If G = (V| E) is small enough, we can compute
an optimal tree decomposition via “brute-force”, otherwise we try to reduce the graph until
it has a suitable size. We call two vertices u,v € V' reduction partner if they are adjacent or
twins (i:@o) We can reduce the size of G by 1 if we contract the two vertices, that is, if we

remove v from G after connecting all neighbors of v to u (without creating multi-edges: $o—o).
Let G’ be the resulting graph, and let (7”,:") be a recursively computed tree decomposition
of G’ of width at most k ( ). We can compute a tree decomposition (T',¢) of G of
width at most k + 1 by injecting v into (T”,:'), that is, by adding v to all bags that contain
U ( ). The resulting tree decomposition is most likely not optimal, but its width
is bounded by a function in k and we can use it to compute an implicit representation of
an optimal tree decomposition of G. This implicit representation, called path labeled tree
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representation, is a binary tree T' in which for every v € V' exactly two vertices are labeled
with v, i.e., the vertices of V' correspond to paths in T (500). If we consider the nodes
as bags, each bag that lies on the unique path between two nodes labeled width v will
contain v. Each node may be labeled with multiple vertices, but of course with at most
k + 1. Given such an implicit representation, we can compute a tree decomposition of width
k(T3 {D2):

As we seek for a circuit of polylogarithmic depth, we can not only contract one reduction
pair in every round, as we would require O(|V]) rounds. Fortunately, there are always multiple
reduction partners that can be contracted in parallel. The correctness of the algorithm is
shown in [2]. For us, it remains to show that we can implement the algorithm in para-NC?*<,
a task for which we have to show that each subfunction of the algorithm can be realized by
circuits of logarithmic depth and polynomial size. The following lemmas show that all parts
of a single iteration of the algorithm can be computed by a para-NC!*¢-circuit.

» Lemma 8. There is a DLOGTIME-uniform family of NC-circuits of depth f(k)+log'™|V|
and size f(k) - |V|¢ that, on input of a graph G = (V,E) and k € N, outputs a set I of
1/g(k) - |V| pairs of vertices that can be contracted in parallel, or that concludes tw(G) > k.

» Lemma 9. There is a DLOGTIME-uniform family of NC-circuits of depth f(k)-log|V| and
size f(k)-|V|¢ that, on input of a graph G = (V, E), a set of pairs of vertices I, a graph
G' = (V' E’) that is obtained from G by contracting the pairs in I, and a tree decomposition
(T, of G' of width k, outputs a balanced and nice tree decomposition (T,t,n) of G of width
at most 8k + 3 and depth (16k + 6) - log |V| + 1.

» Lemma 10. There is a DLOGTIME-uniform family of NC-circuits of depth f(k) -log|V|
and size f(k)-|V|¢ that, on input of a graph G = (V| E), an integer k, and of a balanced and
nice tree decomposition (T,¢,n) of G of width at most £ < f(k), outputs either tw(G) >k or
a width-k tree decomposition of G.

Proof of Theorem 7. The circuit first checks whether the size of the input graph is bounded
by k. If this is the case, an optimal tree decomposition can be computed via “brute-force”.
Otherwise, the circuit computes a set of 1/f(k) - |V] reduction pairs using Lemma 8, or
concludes that the tree width of G exceeds k. The circuit reduces G to G’ by contracting
the reduction pairs (the lemma guarantees that this is possible in parallel) and recursively
computes a tree decomposition of G’. This tree decomposition can be transformed to a
nice and balanced decomposition of G of width bounded by a function in k£ using Lemma 9.
Finally, the circuit can reduce the width of the decomposition to k or conclude tw(G) > k
using Lemma 10.

Since Lemma 8 provides us with 1/f(k) - |[V| reduction pairs, f(k) - log|V| rounds of
the algorithm are sufficient to reduce the graph to a size depending only on the parameter.
Considering each round as a subcircuit, each subcircuit has to execute the algorithms from
the lemmas 8, 9, and 10. The most expensive part is Lemma 8, as the circuit needs depth
f(k)+1log' ™€ here, for the lemmas 9 and 10 circuits of depth f(k)-log|V| < f(k) +log' < |V|
are sufficient. The complete circuit has, therefore, a total depth of f(k)log |V |- (f(k) +
log!'** V) < f(k) + log?*¢|V|, and is, hence, a para-NC?*¢-circuit. <

4 Parallel Evaluation of Tree Automata

A key aspect of modern algorithmic meta-theorems is the simulation of tree automata, since
such theorems commonly translate a tree decomposition of the input structure into a labeled
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tree that is accepted by a certain tree automaton if, and only if, the structure was a model
for the input formula. “Classical” translations produce degree-bounded trees that are then
processed by classical tree automata. However, this approach may increase the depth of
the tree decomposition by up to a logarithmic factor, which is unacceptable if we wish to
handle the tree in parallel time depending on the depth of the tree. As a solution, the
authors of [7] suggest the use of multiset automata. A multiset M is a set S together with a
multiplicity function #5;: S — N. The multiplicity of M is max.cs #n(€). We denote by
P, (S) the class of all multisets of S and by P,,,(.S) the class of all multisets of multiplicity
at most m € N of S. Notice that P;(S5) is just the standard power set of S. For a multiset
M € P,(S) and a number m € N, the capped version M|, of M is defined by setting
#n(e) = min(#ps(e),m) for alle € S.

» Definition 11 (Multiset Automaton). A nondeterministic (bottom-up) multiset automaton
is a tuple A = (X,Q, Qq, A, m) consisting of an alphabet X, a state set @) with accepting
states Q, C @, a state transition relation A C X X P, (Q) X @, and a multiplicity bound
m € N. The automaton is deterministic if for every o € ¥ and every M € P,,(Q) there is
exactly one g € Q with (o, M, q) € A; in this case we can view A as state transition function

§: ZxPp(Q) — Q.

» Definition 12 (Computation of a Multiset Automaton). Let (¥, A) be a labeled tree, where
A: V(%) — X is the labeling function, and let 2 = (X, Q, Qq, A, m) be a multiset automaton.
A computation of A on (T, \) is a partial assignment ¢: V(¥) — @ such that for every
node n € V(%) for which g(n) is defined, we have that (a) the value g(c) is defined for
each child ¢ of n in ¥ and (b) for the multiset M = {¢(c) | cis a child of n} we have
(A(n), M |m,q(n)) € A. A computation is accepting if ¢(r) € Q, holds for the root node r of
%. The tree language L(2) contains all labeled trees accepted by 2.

» Fact 13 ([7]). The following statements hold and are constructive:

1. For all multiset automata A and B there is a multiset automaton € with L(€) = L(2A) N
L(B);

2. For every nondeterministic multiset automaton A there is a deterministic multiset auto-
maton B with L(A) = L(B);

3. For every multiset automaton A there is a multiset automaton B accepting the complement

of L(2A).

The actual aim of this section is to study the parallel parameterized complexity of
the simulation of a multiset automaton. Since we will need such simulations in different
scenarios, instead of classifying the problem into complexity classes, we identify circuit
families depending on different parameters.

» Lemma 14. Let Sy q be the set of labeled trees (T, ) of mazimal depth d and maximal
degree k. There is a DLOGTIME-uniform family of circuits over the standard base (only AND-,
OR-, and NOT-gates) with fan-in k, depth f(|2A]) - d and size f(|2U]) - |Z| that, on input of a
labeled tree (T, \) € Skq and a multiset automata A = (X, Q, Qq, A, m), decides whether or
not (T,\) € L(A) holds.

As used later on, we will mention two special cases of Lemma 14: The simulation of
multiset automata can be performed (a) in para-AC°T for trees of depth bounded by the
parameter and (b) in para-NC!T for balanced binary trees. Here, the size of the automata is
the parameter.
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5 Parallel Second-Order Model Checking

The goal of this section is to actually prove Theorem 1 and Theorem 2. The classical way of
proving variants of Courcelle’s Theorem is as follows: On input of a logical structure S and
a Mso-formula ¢, we first compute a tree decomposition (7', ¢) of S. This tree decomposition
is then translated into a s-tree-structure 7 and ¢ is translated to a new MSO-formula 1 such
that S = ¢ & T = 9. To decide T = 9, the s-tree-structure 7T is transformed into a labeled

tree (T, ) and ¢ is turned into a multiset automata 2 such that 7 ¢ < (%, ) € L(2).

Here, an s-tree-structure is a structure 7 = (V, E7, P}, ..., PT) over the signature 7, t;cc =
(B2, P}, ..., Py where (V,ET) is a directed tree.

» Fact 15 (Implicit in [7]). There are functions hy, ha, hs and hy performing the following

mappings:

1. The input for hy are a structure S together with a width-w tree decomposition (T,t) of S
and an MSO-formula ¢. The output is an s-tree-structure T .

2. The input for ho are an MSO-formula ¢ and a tree width w. The output is an MSO-formula
formula .

3. The input for hg are an s-tree-structure T and an MSO-formula v. The output is a labeled
tree (X, ) of the same depth.

4. The input for hy is an MSO-formula 1. The output is a multiset automaton 2.

The following holds for the values computed by these functions:

SE¢ = TEY < (T, eL®).

All h; are computable and hy and hs are even computable by DLOGTIME-uniform AC-circuits
of depth O(1) and size f(¢,w)|S||T).

Since the size of ¢ and the tree depth or width of the input structure are parameters in our
setting, we can use Fact 15 to prove Theorem 1 and Theorem 2:

Proof of Theorem 1. On input of a logical structure S and an MsO-formula ¢, a para-AC°T-

circuit can compute a tree decomposition (T, ¢) of the Gaifman graph of S (the graph that
uses the universe of S as vertex-set and that contains an edge between two elements if,
and only if, the two elements stand in any relation) using Theorem 5. Given the tuple
(8,(T,¢), @), the circuit can then compute a labeled tree (¥, \) and a multiset automaton 2
using Fact 15. The depth of ¥ is bounded by the depth of (T',:) and, hence, bounded by the
parameter. Furthermore, we have [2| < f(|y| + td(S)) for a computable function f. Hence,
a para-AC%T_circuit can now invoke Lemma 14 and output the result. |

Proof of Theorem 2. The proof is almost identical to the proof of Theorem 1. On input
of a logical structure S and a Mso-formula ¢, a para-NC?*“-circuit can compute a tree
decomposition (T,:) of the Gaifman graph of S using Theorem 7. At this point a problem
arises, as the depth of (T, ¢) is not bounded. This can be overcome as follows: Let the width
of (T,t) be w, then a FTC-circuit can compute a balanced tree decomposition (7", (") of
width at most 4w + 3 [7]. Given this decomposition, we can proceed as in the proof of
Theorem 1 and compute the labeled tree (¥, ) and a multiset automaton 2. Since (T, \) is
balanced, it is binary and of logarithmic depth, and, therefore, Lemma 14 can be invoked by
a para-NC!T-circuit which presents the result as output. <

4:9

IPEC 2016



4:10

Parallel Multivariate Meta-Theorems

6 Applications

Most graph problems studied in complexity theory can be described in monadic second
order logic, including vertex cover, dominating set, independent set, or clique, and, thus,
our algorithmic meta-theorems apply to them. For instance, we get corollaries like py -
DOMINATING-SET € para-NC?**¢ and pyq -DOMINATING-SET € para-ACT.

It is, however, worth to take a closer look, as we are naturally interested in more precise
parameterizations than in the combined parameter td/tw + k. Although the tree width
and depth are fairly sensible parameters, we are even more interested in the complexity of
the problems without restrictions on these parameters (but, perhaps still with other, more
natural parameters). Sometimes this is possible, as the tree width is parameterized indirectly.
For the feedback vertex set problem (given an undirected graph G = (V, E) and a parameter
k, decide whether there exists a set S C V' with |S| < k such that G[V'\ 5] is acyclic) the
existence of such a set implies that the tree width of G is at most k + 1: Since G[V'\ S] is a
tree, adding S to each bag of a tree decomposition of G[V \ S] yields a tree decomposition
of G of width at most k + 1.

» Corollary 16. p,-FEEDBACK-VERTEX-SET € para-NC2t¢,

The above corollary is currently the best result on the parallel parameterized complexity
of the feedback vertex set problem. In other scenarios the opposite is possible, i.e., the tree
width indirectly parameterizes the solution size. A well known example is the clique problem,
as any graph with tree width at most w can not contain a clique bigger than w + 1.

» Corollary 17. pq-CLIQUE € para-ACYT, p,,-CLIQUE € para-NC2*¢,

On the other hand, there are problems where we can not hope for such effects. For instance,
the dominating-set problem is well known to be W[2]-complete and, hence, we can not hope
to get rid of the parameter tree width. Since the tree width does not bound % in this case
either, we do not get rid of this parameter as well. Nevertheless, our meta-theorems at least
improve the known upper bound for the dominating-set problem with combined parameter.
In contrast, for the vertex cover problem we do need both parameters as well and obtain
Ptw.k-VERTEX-COVER € para-NC2T¢ (pyq x-VERTEX-COVER € para-AC°T), but one can show
directly [1] that pg-VERTEX-COVER € para-AC? holds. In other words, our algorithmic
meta-theorems do not yield an optimal bound on the vertex cover problem, a “less generic”
approach yields better bounds.

Reachability Problems. The charm of studying parameterized parallel complexity is that
it is not only interesting to consider NP- or even PSPACE-hard problems, but also problems
that lie within P. For instance, the classical reachability problem in directed graphs REACH =
{(G,s,t) | in G is a path from s to ¢} is a natural NL-complete problem. If we consider
graphs with parameterized tree depth, the complexity of the problem can be lowered by
Theorem 1.

» Corollary 18. piq-REACH € para-AC°T,

From the point of view of parallel complexity, we are especially interested in P-complete
problems, since it is believed that such problems are inherent sequential. A natural P-complete
version of the reachability problem is the alternating reachability problem [11], which is
based on the following definition of alternating paths: Given a directed graph G = (V, E)
and a partition V = V3 U V4, an alternating path from s to t is a set S of paths in G, all of
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Figure 1 Examples of input graphs for the alternating reachability problem. In left graph there
is an alternating path from s to ¢ and the alternating distance is 5, in the right one there is not.

which end at ¢, such that (1) exactly one of them starts at s; (2) when a path in S starts
at some v € V5 \ {t}, then there is for some w with (v,w) € E a path in S starting at w;
and (3) when a path in S starts at some v € V5 \ {¢}, then for all w with (v,w) € E there is
a path in S starting at w (and there is at least one such w). The length of an alternating
path is the maximum length of any path in the set S. The alternating distance between two
vertices is the minimum distance of any alternating path between them.

» Problem 19 (p.,-AREACH, ptq-AREACH).

Instance: A directed graph G = (V, E), a partition V = V3 U V4, and two vertices s,t € V.
Parameter: Tree width or tree depth of G.

Question: Is there an alternating path from s tot in G ¢

» Problem 20 (p;y, 4-ADISTANCE, pid,q-ADISTANCE).

Instance: A directed graph G = (V, E), a partition V = V3 U Vg, two vertices s,t €V, a
distance d.

Parameter: Tree width or tree depth of G as well as d.

Question: Is the alternating distance from s to t in G at most d?

It is a standard exercise to describe the alternating reachability and distance problems
using a monadic second order formula and, thus, our algorithmic meta-theorems yield the
following:

» Corollary 21. p,-AREACH € para-NC?T¢, p, 4-ADISTANCE € para-NC?T.
» Corollary 22. pyq-AREACH € para-AC%T, pyq 4-ADISTANCE € para-ACOT.

It turns out that, as for the vertex cover problem, for the alternating distance problem we
can do better, but also, that the classes we study are the “right” classes for these problems:

» Theorem 23. p4-ADISTANCE is complete for para-AC’T under para-AC?-reduction.

7 Conclusion

Algorithmic meta-theorems play a key role in modern complexity theory. We have seen that
this powerful tool can also be applied to the study of parameterized parallel algorithms.
Indeed, the results state that MSO-definable problems on graphs with parameterized tree
width do not only allow linear time dynamic programs, but that these problems also allow
fast parallel algorithms as well. The theorems show that problems definable in monadic
second order logic can be solved in parallel time f(k) or f(k) -logn if a tree decomposition
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of parameterized depth or width is given. In the first case, we have seen that such a
decomposition can be computed in the same time. However, in the second case it turns out
that the bottleneck is the computation of such a decomposition, since we were only able to
show that this can be done in time f(k) + log>™“n. A reasonable research goal is therefore

to seek an algorithm between para-L and para-NC2?*¢ that computes a tree decomposition of

a given graph with parameterized tree width. A first step would be to reduce the circuit
depth to para-NC2T.
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A  Technical Appendix: Proofs

For the readers convenience, the claims of the proofs given in this appendix are repeated
before the proofs.

Claim of Lemma 4. There is a DLOGTIME-uniform family of AC-circuits of depth f(k) +
log™ |V| and size f(k)-|V|¢ that, on input of an undirected graph G = (V, E) and an integer
k, outputs either that the mazimum degree of G exceeds k or a mazimal independent set I

of G.

Proof. As the circuit may have depth f(k), it can count the degree of each vertex and can
directly reject if any degree exceeds k [1]. Otherwise, the circuit implements the algorithm
from Goldberg, Plotkin, and Shannon to compute a maximal independent set in degree-
bounded graphs [9]. The circuit interprets G as directed graph G by considering each edge
{u,v} as two directed edges (u,v) and (v, u). The edge set of this graph is partitioned into k
sets F1, ..., Ey such that each of the graphs G_; = (V, E;) has only vertices of out-degree at
most 1. This partition can be computed in depth f(k) as the circuit has essentially to count
up to k.

The circuit now performs the following operations on all G; in parallel: First, in constant
depth, an initial coloring of C?Z is computed by assigning each vertex v; the color ¢ € N, which
needs at most log [V/| bits. This coloring can be improved to a coloring with log |V| colors in
constant depth: Replace the color ¢ of each vertex v by 2k 4+ b, where k is the position of the
lowest bit on which ¢ differs from the color of the unique successor of v, and where b is the
value of this bit. Computing this improvement consecutively log™ |V'| times yields a coloring
with 6 colors [9].

Given the colorings of the k graphs éi, the circuit can compute a 6 coloring of G by
assigning to each vertex the k-tuple of colors that this vertex has in the different Gi. Finally,
the circuit initializes a set I = (), iterates over the colors and, in parallel, adds all vertices of
the current color that do not have a neighbor in I to I. As each step can be performed in
a constant number of AC-layers, the set I can be computed in f(k) AC-layers. The circuit
outputs I, as the final value of I is a maximal independent-set. The total depth of the circuit
is f(k) +log™ |V|. <

Claim of Lemma 6. There is a DLOGTIME-uniform family of AC-circuits of depth f(k)
and size f(k)-|G|¢ that, on input of an undirected graph G = (V, E), a vertex s € V, and an
integer k, either correctly detects that the longest path in G is longer than 2%, or that output
a depth-first and a breadth-first search labeling starting at s.

Proof. We first handle the breadth-first search labeling, which yields a natural parallel
algorithm. Owur circuit starts by assigning color 0 to s. The circuit is build up of layers,
where layer ¢ + 1 assigns color 7 + 1 to each vertex that is not colored yet and that has at
least one vertex of color ¢ as neighbor. The algorithm stops if all vertices are colored, or
at the very last after 2¥ layers. In the later case, the circuit can report that the length of
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the longest path exceeds 2F. After a run of the algorithm, each vertex that has obtained
a color is in the same connected component as s and, furthermore, the colors constitute a
breadth-first search labeling starting at s.

Computing a depth-first search labeling turns out to be more complicated, since an
AC-circuit of the desired depth cannot simply follow a path of the search tree and “backtrack”
once it reaches a leaf, as the depth of the circuit would not be bounded by the longest path
in this case. Instead, we have to compute the vertices which have more than one child
in the depth-first search tree in advance. Once we know these vertices, we can perform a
fork and compute the depth-first search labeling for all of there children in parallel. Since
we have seen how the circuit can compute a breadth-first search labeling, we can assume
that we have access to a subcircuit that computes the connected components of G. In
order to compute the depth-first search labeling, the circuit first computes these connected
components and checks if the the longest path in all these components is bounded by 2.
Afterwards, the following algorithm, which we call a phase, is executed in parallel on all
connected components with color ¢ = 0 as argument. Fach phase does nothing if all vertices
are colored, this is the end of the recursion. If ¢ = 0, an arbitrary vertex is selected and
colored with ¢, otherwise an arbitrary vertex that is not colored, but that has a neighbor
of color ¢ — 1, is selected and colored with ¢. At the end of a phase the vertices of G are
partitioned in colored vertices C' and the uncolored vertices V' \ C. The circuit computes the
connected components of G[V '\ C], which we denote by V1,...,V, CV \ C. Afterwards, a
new phase is started recursively on each graph G[V; U C]. If all phases are completed, the
coloring constitutes a depth-first search labeling starting at s.

0

1 0% 3
0 0 0/2§\0
FoopTy 7
20, %~
15 3
2

3

Since this algorithm never performs backtracking, the number of consecutive phases is
bounded by the length of the longest path, which is bounded by 2*. For each phase, a circuit
of depth f(k) is sufficient, since the most expensive part is clearly the computation of the
connected components. Thus, a depth first-search labeling can be computed by an AC-circuit
of depth f(k). <

Claim of Lemma 8. There is a DLOGTIME-uniform family of NC-circuits of depth f(k) +
log' ™ |V| and size f(k) - |V|° that, on input of a graph G = (V,E) and k € N, outputs a
set I of 1/g(k) - |V| pairs of vertices that can be contracted in parallel, or that concludes
tw(G) > k.

Proof. We call two vertices u, v reduction partners if we have either {u,v} € E, or if they
are twins, i.e., N(u) = N(v). Let us call a vertex v d-small if 6(v) < d.

Let d = 2574 (54k + 54) and ¢ = 1/(8(27k + 27)?). If tw(G) < k, then there are at least
¢|V'|/2 distinct pairs {u, v} of d-small vertices that are reduction partners [2]. Since a circuit
of the desired size can check all pairs of vertices in parallel, it can compute in the desired
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depth a set S of reduction partners. Furthermore, the circuit can check whether |S| < ¢|V]/2
holds, and can reject otherwise.

We cannot contract all pairs in S simultaneously, as pairs may share a vertex, may be
adjacent, or may have a common neighbor. Since all these properties are first-order definable,
a circuit of the desired size and depth can easily check for each pair of reduction partners if
they are in conflict. By doing so, the circuit can compute a conflict graph C' whose node set
is S and whose edges indicate conflicts. As the degree of each vertex appearing in a pair
in S is bounded by d, the degree of C' is bounded by g(k) for a computable function g.

Since each maximal independent set I in a graph of maximum degree A has size at
least |V|/(A + 1), it is sufficient to use the reduction partners that constitute a maximal
independent set in C. The circuit can compute such a set using Lemma 4. <

Claim of Lemma 9. There is a DLOGTIME-uniform family of NC-circuits of depth f(k)-log |V|
and size f(k)-|V|¢ that, on input of a graph G = (V, E), a set of pairs of vertices I, a graph
G' = (V', E’) that is obtained from G by contracting the pairs in I, and a tree decomposition
(T",!) of G' of width k, outputs a balanced and nice tree decomposition (T,t,m) of G of width
at most 8k + 3 and depth (16k 4 6) - log |V| + 1.

Proof. Let (1”,/) be the given tree decomposition. An AC°-circuit can compute (7', t) by
adding for each pair {u,v} € I the vertex v to every bag that contains w. This can be done
in parallel for all vertices and all bags. Since the number of vertices in each bag is at most
doubled, (7, ¢) has width at most 2k.

This decomposition can be transformed into a balanced one of width at most 8k + 3 by
a TCC-circuit [7]. The last thing we have to do is to transform this decomposition into a
nice decomposition (7', ¢,7). In order to do so, the circuit first adds an empty bag to each
leaf, which is labeled as leaf node. Then, each node n with two children x and y is replaced
by nodes n, n;, and n, such that n;, n, are the children of n, = is a child of n;, and y a
child of n,. The node n is labeled as join node. This operation doubles the depth of the
decomposition. Finally, for every node x with child y, the circuit computes a chain of forget
nodes from x to a new node z with ¢(z) N ¢(y) = ¢(z), and a chain of introduce nodes from z
to y. This will increase the depth of the decomposition at most by a factor of 8k + 3.

Since making a balanced tree decomposition nice will result in a balanced decomposition
again, the above algorithm produced a nice, balanced tree decomposition of width at most
2k and depth at most (16k + 6) log |V| + 1. <

Claim of Lemma 10. There is a DLOGTIME-uniform family of NC-circuits of depth f(k) -
log |V| and size f(k) - |V that, on input of a graph G = (V,E), an integer k, and of a
balanced and nice tree decomposition (T',t,m) of G of width at most £ < f(k), outputs either
tw(G) > k or a width-k tree decomposition of G.

Proof. The original algorithm by Bodlaender and Hagerup [2] computes a path labeled tree
representation of a tree decomposition of width k of G, or correctly detects tw(G) > k. This

algorithm “bubbles up” the nice tree decomposition and spends f(k) time on every node.

Since the depth of the tree is f(k)log|V|, the desired circuit can implement this algorithm
without modification.

After the execution of the above algorithm, the circuit may either reject if the algorithm
reports that the tree width exceeds k, or obtains a path labeled tree representation. Recall
that this implicit representation is a labeled binary tree T where exactly two nodes are
labeled with each vertex of G. The idea is that the unique path between these two nodes
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defines the bags in which the vertex (used as label) lies. Since the “real” tree decomposition
we try to extract from this implicit representation uses the same tree, the rest of the lemma
boils down to the following algorithmic task: Given a tree T = (V, E) and three nodes
s,x,t € V, decide whether or not x lies on the unique path between s and ¢. This property is
clearly expressible in MSO and, since 7T is a tree (of tree width 1), decidable in NC! [7]. <

Claim of Lemma 14. Let Sk q be the set of labeled trees (T, ) of mazimal depth d and
mazimal degree k. There is a DLOGTIME-uniform family of circuits over the standard base
(only AND-, OR-, and NOT-gates) with fan-in k, depth f(|]) - d and size f(|U]) - |Z|° that,
on input of a labeled tree (T, ) € Sk.q and a multiset automata A = (£, Q, Qq, A, m), decides
whether or not (T, \) € L(A) holds.

Proof. Since both, the depth and the size of the circuit, depend on the size of 2 by an
arbitrary computable function f, we can assume that 2 is deterministic, since if this is not
the case we can compute an equivalent deterministic automaton using Fact 13. The circuit
has d layers, each of which consists of circuits of depth f(|2]). The i-th layer will assign
states to the nodes of the (d — i)-th layer of T. The first layer simply assigns states to the
leafs of ¥. Layer ¢ then has access to the assigned states of layer ¢ — 1. In order to compute
the state ¢(n) for a node n the circuit computes the multiset M = { ¢(c) | ¢ is a child of n }
using the result of the last layer. Now the circuit has to cap M to compute M]|,,. In order
to do so, the circuit has to count up to m. Since we have m < |2, the value m is bounded
by the parameter and, therefore, a para-AC? layer is sufficient for this task [1]. Once M|,, is
computed, the circuit can compute g(n) by a lookup of (A(n), M|,,) in the description of 4.
The circuit outputs 1 if, and only if, after the evaluation of the d layers the root r of T is
assigned with ¢(r) € Q,.

Clearly, the depth of the circuit is bounded by f(|2]) - d. To see that the fan-in of the
circuit does only depend on the maximal degree of ¥, observe the following: The subcircuit of
a layer computing g(n) for a node n has size bounded by f(|2|) and, hence, can be replaced
by a circuit of fan-in two without violating the depth bound of f(|2]). The bigger fan-in
is only needed to transmit the multiset M = {q(c) | ¢ is a child of n} to the subcircuit
computing g(n), but since we have |M| < k the claim follows. <

Claim of Theorem 23. p;-ADISTANCE is complete for para-ACYT under para-ACP-reduction.

Proof. For containment consider a circuit that performs a backward breadth-first search
starting at ¢, similar to Lemma 6. The circuit handles the graph in d layers, computing
in layer i the vertices that have alternating distance i to ¢. In the first layer, vertex ¢ is
colored. In layer ¢, all vertices x € V5 that have one colored neighbor, and all y € V4 that
have only colored neighbors (and at least one) are colored. There is an alternating path of
distance at most d from s to t if, and only if, s is colored after d layers. The correctness
of the circuit follows by a simple induction: in layer 1 we color exactly the vertices with
alternating distance 1, and it is easy to see that coloring a vertex in layer i is only possible if
it has a neighbor (or all its neighbors) with alternating distance ¢ — 1.

For completeness let us reduce any problem L € para-AC°T to ps-ADISTANCE. As L is
in para-AC°T, there is a fixed family of circuits deciding L. Let C be such a circuit. We
may assume that C' is monotone since one can always replace a non-monotone circuit by a
monotone one (using the standard argument used in showing that the circuit value problem
reduces to its monotone version).
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We translate the monotone circuit C' into an alternating graph as follows: The vertices
of the graph are the gates, and the wires are edges directed from the unique output gate
towards the input bits. For each input bit there is a vertex as well. We label the output gate
as s, add a new vertex t, and we add edges from all input bits that are set to 1 towards t.
We partition the vertices such that V3 is the set of OR -gates joined by ¢ and the input
bits; and such that V4 is the set of AND -gates. The constructed graph with s and ¢, and
with d as distance, constitutes an instance of p;-ADISTANCE. An alternating path from s to
t corresponds to wires that are set to true during the evaluation of the circuit and, hence,
such a path can only exist if the circuit evaluates to true. Since, furthermore, the depth of
the circuit is bounded by d, such a path has length at most d as well. <
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1 Introduction

In many optimization problems on graphs, one searches for a minimum or maximum cardi-
nality subset of vertices and edges satisfying certain properties, like a minimum s-t path, a
maximum independent set, or a minimum dominating set. In several applications, however,
it is important to also limit the exposure of the solution [5, 17]. For instance, we may want to
find a way to send sensitive information that we want to protect from a vertex s to a vertex ¢
in a network. If we assume that the information is exposed to all vertices on the way and
all of their neighbors, limiting the exposure means to find an s-¢ path with a small closed
neighborhood [5]. Another example is the search for segragated communities in social net-
works [17]. Herein, we search for dense subgraphs which are exposed to few neighbors in the
rest of the graph. In addition to being a natural constraint in these applications, restricting
the exposure of the solution may also yield more efficient algorithms [14, 16, 17, 18].

In accordance with previous work, we call a solution secluded if it has a small exposure [5].
Secluded paths and Steiner trees have been studied before [5, 11]. Our aim in this paper is to
study the constraint of being secluded on the complexity of diverse vertex-subset optimization
problems.

Inspired by Chechik et al. [5], we first measure the exposure of a solution S by the size
of the closed neighborhood Ng[S] = SUJ,cg Na(v) of S in the input graph G. Given a
predicate II(G, S) that determines whether S is a solution for input graph G, we hence study
the following problem.

SECLUDED II
Input: A graph G = (V, F) and an integer k.
Question: TIs there a subset S C V of vertices such that S satisfies II(G, S) and |Ng[S]| < k?

It makes sense to also control the size of the solution and its neighborhood in the graph
directly. For example, when sending sensitive information from s to ¢t as above, we may
simultaneously aim to optimize latency, that is, minimize the number of vertices in the
communication path and limit the exposure. Hence, our second measure of exposure of the
solution is the size of the open neighborhood N¢(S) = N¢g[S]\ S. This leads to the following
problem formulation.

SMALL (LARGE) SECLUDED II

Input: A graph G = (V, E) and two integers k, ¢.

Question: Is there a subset S C V of vertices of G such that S satisfies II(G, S), |S| < k,
and |Ng(S)] < £ (resp. |S| > k, and |[Ng(S)| < £)?

We study both problems in the framework of parameterized complexity. As a parameter for
SECLUDED II we use the size k of the closed neighborhood and as parameters for SMALL
SECLUDED II we use the size k of the solution as well as the size ¢ of the open neighborhood.

The predicates II(G, S) that we study are s-t SEPARATOR, FEEDBACK VERTEX SET
(FVS), F-FREE VERTEX DELETION (F-FVD) (for an arbitrary finite family F of graphs),
encompassing CLUSTER VERTEX DELETION, for example, and INDEPENDENT SET (IS).
Perhaps surprisingly, we find that SECLUDED s-t-SEPARATOR. is polynomial-time solvable,
whereas SMALL SECLUDED s-t SEPARATOR becomes NP-complete. The remaining problems
are NP-complete. For them, roughly speaking, we prove that fixed-parameter tractability
results for I parameterized by the solution size carry over to SECLUDED II parameterized
by k. For SMALL SECLUDED II parameterized by ¢, however, we mostly obtain W[1]-hardness.
On the positive side, for SMALL SECLUDED F-FVD we prove fixed-parameter tractability
when parameterized by k + /.
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Table 1 Overview of our results. PK stands for polynomial kernel. The results marked by an
asterisk follow by a straightforward reduction from the non-secluded variant.

Complexity Parameterized Complexity / Kernelization
Secluded Small Secl. | Secluded Small Secluded

Problem k k l k+¢
s-t-separator P NP-c. P W[1]-h.  WJ[1]-h. ?/noPK
F-free VD NP-c. NP-c.” FPT/PK 7 ? FPT/?

FVS NP-c. NP-c.” FPT/PK  ? W[i}-h. ?/?
¢-DS, 2p < ¢ NP-c. NP-c.” W/[2]-h. — — W/[2]-h.

g¢-DS, 2p > q NP-c. NP-¢." FPT/noPK 7 ? FPT/noPK

Large Secluded IS NP-c.” ‘ — — WI1]-h.

We also study, for two integers p < ¢, the p-secluded version of g-DOMINATING SET
(¢-DS): a vertex set S is a g-dominating set if every vertex of V'\ S has distance at most ¢
to some vertex in S. Herein, by p-secluded we mean that we upper bound the size of the
distance-p-neighborhood of the solution S. Interestingly, this problem admits a complexity
dichotomy: Whenever 2p > ¢, (SMALL) p-SECLUDED ¢-DOMINATING SET is fixed-parameter
tractable with respect to k (with respect to k + £), but it is W[2]-hard otherwise.

We also study polynomial-size problem kernels for our secluded problems. Here we observe
that the polynomial-size problem kernels for FEEDBACK VERTEX SET and F-FREE VERTEX
DELETION carry over to their SECLUDED variants, but otherwise we obtain mostly absence
of polynomial-size problem kernels unless the polynomial hierarchy collapses.

A summary of our results is given in Table 1.

Related work. SECLUDED PATH and SECLUDED STEINER TREE were introduced and
proved NP-complete by Chechik et al. [5]. They obtained approximation algorithms for both
problems with approximation factors related to the maximum degree. They also showed that
SECLUDED PATH is fixed-parameter tractable with respect to the maximum vertex degree of
the input graph, whereas vertex weights lead to NP-hardness for maximum degree four.
Fomin et al. [11] studied the parameterized complexity of SECLUDED PATH and SECLUDED
STEINER TREE, showing that both are fixed-parameter tractable even in the vertex-weighted
setting. Furthermore, they showed that SECLUDED STEINER TREE is fixed-parameter
tractable with respect to r+p, where r = k—s, k is the desired size of the closed neighborhood

of the solution, s is the size of an optimum Steiner tree, and p is the number of terminals.

On the other hand this problem is co-W[1]-hard when parameterized by r only.

The small secluded concept can be found in the context of cut problems in graph [21, 12].

Fomin et al. [12] introduced the CUTTING AT MOST k VERTICES problem, which asks,
given a graph G = (V, E) and two integers k > 1 and ¢ > 0, whether there is a non-empty

set S C V such that |S| < k, and |[Ng(X)| < ¢, thus resembling our small secluded concept.

Both works [12, 21] study the parameterized complexity of related cut problems in graphs.

The concept of isolation can be found in the context of cuts [7] and was thoroughly
explored for finding dense subgraphs [14, 16, 17, 18]. Herein, chiefly the constraint that
the vertices in the solution shall have maximum/minimum/average outdegree bounded by
a parameter was considered [14, 17, 18], leading to various parameterized tractability and
hardness results. Also the overall number of edges outgoing the solution has been studied
recently [16].
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Preliminary observations. Concerning classical computational complexity, the SMALL
(LARGE) SECLUDED variant of a problem is at least as hard as the nonsecluded prob-
lem, by a simple reduction in which we set £ = n, where n denotes the number of vertices in
the graph. Since this reduction is a parameterized reduction with respect to k, parameterized
hardness results for this parameter transfer, too. Furthermore, observe that hardness also
transfers from SECLUDED II to SMALL SECLUDED II for all problems II, since SECLUDED II
allows for a parameterized Turing reduction to SMALL SECLUDED II: try out all k" and ¢’ with
k =k +¢'. Additionally, many tractability results (in particular polynomial time solvability
and fixed-parameter tractability) transfer from SMALL SECLUDED II parameterized by (k -+ ¢)
to SECLUDED II parameterized by k.

» Observation 1.1. SECLUDED II parameterized by k is parameterized Turing reducible to
SMALL SECLUDED II parameterized by (k + £) for all predicates II.

Therefore, for the SMALL (LARGE) SECLUDED variants of the problems the interesting cases
are those where the base problem is tractable (deciding whether input graph G contains a
vertex set S of size k that satisfies II(G, S)) or where ¢ is a parameter.

Notation. We use standard notation from parameterized complexity and graph theory. All
graphs in this paper are undirected. We denote dg(u,v) the distance between vertices u
and v in G, that is, the number of edges of a shortest u-v path in G. For a set V' of vertices
and a vertex v € V we let the distance of v from V' be dg(v,V’) := min{dg(u,v) | u € V'}.
We use NE[V'] = {v | dg(v,V') < d} and N&(V') = NL[V']\ V' for any d > 0 (hence
N& (V') = 0). We omit the index if the graph is clear from context and also use N[V'] for
N[V’ and N(V') for N*(V'). If V' = {v}, then we write N%[v] in place of N¢[{v}].

Organization. We dedicate one section to each studied problem. We study s-t-SEPARATOR
in Section 2, ¢-DOMINATING SET in Section 3, F-FREE VERTEX DELETION in Section 4,
FEEDBACK VERTEX SET in Section 5, and INDEPENDENT SET in Section 6. Section 7
summarizes results and gives directions for future research. We remark that some proofs and
proof details (marked with (x)) are deferred to a full version of this paper.

2  s-t-Separator

In this section, we show that SECLUDED s-t-SEPARATOR is in P, while SMALL SECLUDED
$-t-SEPARATOR. is NP-hard and W[1]-hard with respect to the size of the open neighborhood,
or the size of the solution. Moreover, we also exclude the existence of polynomial-size kernels
for the latter problem with respect to the sum of the bounds.

2.1 Secluded s-t-Separator

In this subsection we show that the following problem can be solved in polynomial time.

SECLUDED $-t-SEPARATOR
Input: A graph G = (V, E), two distinct vertices s,t € V, and an integer k.
Question: Is there an s-t separator S C V' \ {s,t} such that |[Ng[S]| < k?

» Theorem 2.1. SECLUDED s-{-SEPARATOR can be solved in polynomial time.

Proof. We reduce the problem to the problem of finding an ordinary s-t separator in an
auxiliary graph. Let (G = (V, E), s,t, k) be the input instance and G” be a graph obtained
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from G by adding two vertices s’ and ¢’ and making s’ only adjacent to s and ¢’ only adjacent to
t’. Now let G’ = (V’, E’) be the third power of G”, that is, V' = V(G') = V(G") = VU{s,t'}
and {u,v} € E’ if and only if dg (u,v) < 3.

We claim that there is an s-t-separator S in G with |N[S]| < k if and only if there is
an s'-t’-separator S’ in G’ with |S’| < k. The theorem then follows as we can construct G’
and find the minimum s’-#’-separator in G’ in polynomial time using standard methods, for
example, based on network flows.

“=7: Let S be an s-t-separator in G with |N[S]| < k. Observe that S then also constitutes
an s'-t’-separator in G” as every path in G” from s’ must go through s and every path to
t’ must go through t. We claim that S = N[S] is an s'-t’-separator in G’. Suppose for
contradiction that there is an §'-t' path P = pg,p1,...,p, in G’ — S'. Let A’ be the set of
vertices of the connected component of G’ — S containing s’ and let a be the last index
such that p, € A’ (note that p = s’ € A’ and p, = t' ¢ A’ by definition). It follows that
Pat+1 ¢ A" and, since {pq, pa+1} € F’, there is a ps-pa+1 path P’ in G” of length at most 3.
As we have p, € A’ and p, 1 € V' \ (A’ US’) and G[A'] is a connected component of G” — S,
there must be a vertex z of S on P’. Since neither p, nor p,1 is in S’ = N[S], it follows
that dg(pa, ) > 2 and dg(pa+1, ) > 2. This contradicts P’ having length at most 3.

“<7: Let S’ be an s'-t'-separator in G’ of size at most k. Let A’ be the vertex set of the
connected component of G’ — S’ containing s’. Consider the set S = {v € §' | dg~ (v, A’) = 2}.
We claim that S is an s-t-separator in G and, moreover, that N[S] C S’ and, hence, |N[S]| < k.
As to the second part, we have S C S’ by definition. Suppose for contradiction that there
was a vertex u € N(S)\ S’ that is a neighbor of v € S. Then, since dg (v, A") = 2, we
have dgr (u, A’) < 3, u has a neighbor in A’ in G’ and, thus u is in A’. This implies that
dgr (v, A") =1, a contradiction. Hence, |[N[S]| < k.

It remains to show that S is an s-t-separator in . For this, we prove that S is an
s'-t’-separator in G”. Since it contains neither s nor ¢, it follows that it must be also an
s-t-separator in GG. Assume for contradiction that there is an s’-¢' path in G” — S. This
implies that d(gr_g)(t', A") is well defined (and finite). Let q := d(gv_g)(t', A’) and P be
the corresponding shortest path in G” — S. Let us denote P = py,...,p, with p, = ¢/
and pg € A'. If dgr (¥, A’) < 3, then t' has a neighbor in A’ in G’, and therefore it is in
A’ contradicting our assumption that S’ is an §'-t’-separator in G'. As t' = p,, we have
g > 3. Since dg (po, A") =0, dg (pg, A") > 3, and dgr (pit1, A") < dgr(pi, A’) + 1 for every
1 €{0,...q— 1}, there is an a such that dg (pa, A’) = 2. If p, is not in S’; then p, is in A’,
contradicting our assumptions on P and ¢ as a > 2. Therefore we have dg»(p,, A’) = 2 and
Do is in S’. Tt follows that p, is in S, a contradiction. <

2.2 Small Secluded s-t-Separator

In this subsection we prove hardness results for the following problem.
SMALL SECLUDED s-t-SEPARATOR

Input: A graph G = (V, F), two distinct vertices s,t € V, and two integers k, £.
Question: Is there an s-t separator S C V' \ {s,t} such that |S| < k and |Ng(S)| < €7

We show that, in contrast to SECLUDED s-t-SEPARATOR, the above problem is NP-hard.
Moreover, at the same time, we show parameterized hardness with respect to k and with
respect to /.

» Theorem 2.2. SMALL SECLUDED $-t-SEPARATOR is NP-hard and W 1]-hard when pa-
rameterized by k or by /.
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In the proof of the theorem, we reduce from the CUTTING AT MOST k VERTICES WITH
TERMINAL [12] problem, which asks, given a graph G = (V, E), a vertex s € V, and two
integers k > 1, £ > 0, whether there is a set S C V such that s € S, |S] < k, and |[Ng(X)| < L.
Fomin et al. [12] proved that CUTTING AT MOST k& VERTICES WITH TERMINAL is NP-hard
and W([1]-hard when parameterized by k or by £.

Proof. We give a polynomial-parameter transformation from CUTTING AT MOST k VERTICES
WITH TERMINAL to SMALL SECLUDED $-t-SEPARATOR.

Construction. Let 7T := (G = (V, E), s, k,{) be an instance of CUTTING AT MOST k
VERTICES WITH TERMINAL. We construct an instance 7' := (G',s',t/, k', ') of SMALL
SECLUDED s-t-SEPARATOR equivalent to Z as follows. To obtain G’ from G we add to G
two vertices s’ and ¢ and two edges {s’, s} and {s,t'}. Note that G = G’ — {s,t'}. We set
k' =k and ¢/ = £+ 2. Hence, we ask for an s'-t’ separator S C V(G’) in G’ of size at most
k" and |Ng/(S)] < ¢'. Clearly, the construction can be carried out in polynomial time.

Correctness. We show that 7 is a yes-instance of CUTTING AT MOST k VERTICES WITH
TERMINAL if and only if Z’ is a yes-instance of SMALL SECLUDED $-{-SEPARATOR.

“=7: Let Z be a yes-instance and let S C V(G) be a solution to Z, that is, s € 5,
|S] <k, and |Ng(S)| < £. We claim that S is also a solution to Z'. Since s € S and s’ and ¢/
are both only adjacent to s, S separates s’ from t' in G'. Moreover, |S| < k = k' and, as
Ng/(S) = Ng(S) U {s,t'}, we have |[Ng/(S)| < £+ 2 ={. Hence, S’ is a solution to Z’, and
7' is a yes-instance.

“«<": Let Z’ be a yes-instance and let S” C V(G’) be an s'-t’ separator in G' with |S’| < &’
and |Ng/(S)] < ¢'. We claim that S’ is also a solution to Z. Note that |S’| < k' = k. Since
S’ is an s'-t’ separator in G’ and s’ and ¢’ are both adjacent to s, it follows that s € S’ and
s',t" € Ngi(S'). Thus, we have s € §" and |[Ng(S")| = [N/ —{s 13 (S")| = [N (8')| =2 <
¢ —2 ={. Hence, S’ is a solution to Z and Z is a yes-instance.

Note that, in the reduction, k' and ¢’ only depend on k and ¢, respectively. Since CUTTING
AT MOST k VERTICES WITH TERMINAL parameterized by k or by ¢ is W[1]-hard [12], it
follows that SMALL SECLUDED s-t-SEPARATOR parameterized by k or by ¢ is W[1]-hard. <«

It would be interesting to know whether SMALL SECLUDED s-t-SEPARATOR is FPT when
parameterized by k 4+ ¢. We conjecture that this is the case. However, under standard
assumptions, the problem does not admit a polynomial-size kernel with respect to this
parameter:

» Theorem 2.3 (x). Unless NP C coNP/poly, SMALL SECLUDED s-t-SEPARATOR parame-
terized by k + £ does not admit a polynomial kernel.

3 g-Dominating Set

In this section, for two constants p,q € N with 0 < p < ¢, we study the following problems:

p-SECLUDED ¢-DOMINATING SET
Input: A graph G = (V, E) and an integer k.
Question: Is there a set S C V such that V' = NZ[S] and |NZ[S]| < k?

SMALL p-SECLUDED ¢-DOMINATING SET
Input: A graph G = (V, E) and two integers k, ¢.
Question: Is there a set S C V such that V' = NZ[S], |S| < k, and |[NE(S)| < €7
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For p = 0, the size restrictions in both cases boil down to |S| < k. This is the well-known
case of ¢-DOMINATING SET (also known as ¢-CENTER) which is NP-hard and W[2]-hard
with respect to k (see Lokshtanov et al. [20], for example). Therefore, for the rest of the
section we focus on the case p > 0. Additionally, by a simple reduction from g-DOMINATING
SET, letting ¢ = |V (G)|, we arrive at the following observation.

» Observation 3.1. For any 0 < p < ¢, SMALL p-SECLUDED ¢-DOMINATING SET is
W I2]-hard with respect to k.

We now go on to show NP-hardness and W[2]-hardness with respect to k for p-SECLUDED
g-DOMINATING SET. We reduce from the following problem:

SET COVER
Input: A finite universe U, a family FF C 2V, and an integer k.
Question: Is there a subset X C F such that |X| <k and J,cx z = U?

We write (J X short for (J, . y #. It is known that SET COVER is NP-complete, W([2]-hard with

respect to k, and admits no polynomial kernel with respect to |F'|, unless NP C coNP /poly [6].

» Theorem 3.2. For any 0 < p < ¢, p-SECLUDED ¢-DOMINATING SET is NP-hard. Moreover,
it does not admit a polynomial kernel with respect to k, unless NP C coNP/poly.

Proof. We give a polynomial-parameter transformation from SET COVER parameterized
by |F|. Let (U, F, k) be an instance of SET COVER. Without loss of generality we assume
that 0 < k < |F]|.

Construction. Let k' =p+ 1+ |F|-p+ k. We construct the graph G of a p-SECLUDED
g-DOMINATING SET instance (G, k') as follows. We start the construction by taking two
vertices s and r and three vertex sets Vy = {u | w € U}, Vp = {va | A € F}, and
Vi ={vy | A € F}. We connect vertex r with vertex s by a path of length exactly ¢g. For
each A € F we connect vertices v4 and r by an edge and vertices vq and vy by a path
ot 7t£‘ of length exactly p, where t{' = v4 and t;‘ = v/,. All introduced paths are
internally disjoint and the internal vertices are all new. We connect a vertex v/, € Vi with a
vertex u € Vy by an edge if and only if u € A. Furthermore, we introduce a clique Cy of
size k' and make all its vertices adjacent to each vertex in V. U Vy.

If ¢ —p > 2, then for each u € U, we create a path by, b, ...,by_, 5 of length exactly
g —p — 2 such that b = u and the other vertices are new. Furthermore, in this case, for each
h e€{0,...,qg—p—2} we introduce a clique C}* of size ¥’ and make all its vertices adjacent
to vertex bj. If ¢ — p =1 we do not introduce any new vertices.

One can show that the original instance of SET COVER is a yes-instance if and only if
the constructed instance of p-SECLUDED ¢g-DOMINATING SET is. We defer the proof of the
equivalence to a full version of the paper. <

In the following, we observe that the parameterized complexity of both problems varies for
different choices of p and gq.

» Theorem 3.3 (x). For any 0 < p < ¢, p-SECLUDED ¢-DOMINATING SET is W(2]-hard
with respect to k.

For SMALL p-SECLUDED ¢-DOMINATING SET, we remark that we can adapt the reduction
for Theorem 3.2: instead of restricting the size of the closed neighborhood of the g-dominating
set to at most p+ 1+ |F|-p+ k, we restrict the size of the g-dominating set to at most k + 1
and the size of its open neighborhood to at most p + |F| - p. Analogously, we can adapt the
reduction for Theorem 3.3. This yields the following hardness results.
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» Corollary 3.4. For any 0 < p < q, SMALL p-SECLUDED ¢-DOMINATING SET is NP-hard.
Moreover, it does not admit a polynomial kernel with respect to (k+£) unless NP C coNP/poly.
For any 0 < p < %q, SMALL p-SECLUDED ¢-DOMINATING SET is W|[2]-hard with respect to
(k+2).

Now we look at the remaining choices for p and ¢, that is all p, ¢ with p > %q. In these cases
we can show fixed-parameter tractability.

» Theorem 3.5. For any p > %q, SMALL p-SECLUDED ¢-DOMINATING SET can be solved in
O(mk**2(k + £)7%) time and, hence, it is fized-parameter tractable with respect to k + (.

Proof. Consider a solution S for an instance (G, k, £) of SMALL p-SECLUDED ¢-DOMINATING
SET. If x € S, then |NP[z]| < k44, since |S| < k and |[NP(S)| < £. Moreover, |[NP[z]| < k+¢
implies |N[v]| < k + £ for every v € NP~1[x]. Tt follows that, if [NP[y]| < k+¢and y ¢ S,
then for each € N4y] N S every vertex on every x-y path of length at most 2p — 1 > ¢ has
degree at most k + £ — 1, since each such vertex has distance at most p — 1 to x or y.

If k+ ¢ =1, then either G has at most one vertex or (G, k, ¢) is a no-instance. Hence,
in the following, we assume k + ¢ > 2. We call vertices v and v linked, if there is a path of
length at most ¢ between u and v in G such that the degree of every vertex on the path is
at most k + ¢ — 1. Let Bu] = {v | v and v are linked}. One can show |B[v]| < (k + ¢)? for
any v (we defer the proof to a full version of the paper).

Let Y = {y | IN?[y]| < k + ¢}. Obviously, we have S C Y, since |[NP[S]| < k+ ¢. If
y € Y\ S, then there is € S such that z and y are linked. It follows that y € B[z] and,
thus, Y C U, g Blz]. Hence, [Y| < k- (k+ )7 < (k+ £)7+L.

This suggests the following algorithm for SMALL p-SECLUDED ¢-DOMINATING SET: Find
theset Y. If |Y| > k- (k+¢)9, then answer “no”. Otherwise, for each k' < k and each size-%’
subset S’ of Y, check whether S’ is a p-secluded g-dominating set in G. If any such set is
found, return it. Otherwise, answer “no”. Since S C Y, this check is exhaustive.

As to the running time, the set Y can be determined in O(n(k + £)) time by running a
BFS from each vertex and stopping it after it discovers k + ¢ vertices or all vertices in distance
at most p, whichever occurs earlier. Then, there are k - (k'(k;'@q) < KMk 4 £)9% candidate
subsets of Y. For each such set S’ we can check whether it is a p-secluded ¢-dominating
set in G by running a BFS from each vertex of S’ and marking the vertices which are in
distance at most p and at most g, respectively. This takes O(mk) time. Hence, in total, the
algorithm runs in O(mk**2(k + £)7%) time. <

By Observation 1.1, the previous result transfers to p-SECLUDED ¢-DOMINATING SET
parameterized by k.

» Corollary 3.6. For any p > %q, p-SECLUDED ¢-DOMINATING SET s fized-parameter
tractable with respect to k.

4  F-free Vertex Deletion

In this section, we study the F-FREE VERTEX DELETION (F-FVD) problem for families F
of graphs with at most a constant number c¢ of vertices, that is, the problem of destroying all
induced subgraphs isomorphic to graphs in F by at most k£ vertex deletions. The problem
can, in particular, model various graph clustering tasks [3, 15], where the secluded variants
can be naturally interpreted as removing a small set of outliers that are weakly connected to
the clusters.
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4.1 Secluded F-free Vertex Deletion

In this section, we prove a polynomial-size problem kernel for SECLUDED F-FREE VERTEX
DELETION, where F is a family of graphs with at most a constant number ¢ of vertices:

SECLUDED F-FREE VERTEX DELETION
Input: A graph G = (V, F) and an integer k.
Question: Is there a set S C V such that G — S is F-free and |N¢g[S]| < k?

Henceforth, we call a set S C V such that G — S is F-free an F-free vertex deletion set.

Note that SECLUDED F-FREE VERTEX DELETION can be polynomial-time solvable for
some families F for which F-FVD is NP-hard: VERTEX COVER (where F contains only the
graph consisting of a single edge) is NP-hard, yet any vertex cover S satisfies N[S] = V.
Therefore, an instance to SECLUDED VERTEX COVER is a yes-instance if and only if £ > n. In
general, however, one can show that SECLUDED F-FREE VERTEX DELETION is NP-complete
for every family F that includes only graphs of minimum vertex degree two (Theorem 4.1).
We mention in passing that, from this peculiar difference of the complexity of VERTEX
CoVER and SECLUDED VERTEX COVER, it would be interesting to find properties of F
which govern whether SECLUDED F-FREE VERTEX DELETION is NP-hard or polynomial-time
solvable along the lines of the well-known dichotomy results [9, 19].

» Theorem 4.1 (x). For each family F containing only graphs of minimum vertez degree
two, SECLUDED JF-FREE VERTEX DELETION is NP-complete.

It is easy to see that SECLUDED F-FREE VERTEX DELETION is fixed-parameter tractable.
More specifically, it is solvable in ¢* - poly(n) time: simply enumerate all inclusion-minimal
F-free vertex deletion sets S of size at most k using the standard search tree algorithm
described by Cai [4] and check |N[S]| < k for each of them. This works because, for any
F-free vertex deletion set S with |N[S]| < k, we can assume that S is an inclusion-minimal
F-free vertex deletion set since |[N[S']| < |N[S]| for every S’ C S.

We complement this observation of fixed-parameter tractability by the following kernel-
ization result.

» Theorem 4.2. SECLUDED JF-FREE VERTEX DELETION has a problem kernel comprising
O(ktL) wvertices, where c is the mazimum number of vertices in any graph of F.

Our proof of Theorem 4.2 exploits ezpressive kernelization algorithms for d-HITTING SET [1,
2, 8], which preserve inclusion-minimal solutions and that return subgraphs of the input
hypergraph as kernels: Herein, given a hypergraph H = (U,C) with |C| < d for each C € C,
and an integer k, d-HITTING SET asks whether there is a hitting set S C U with |S| < k, that
is, C' NS # () for each C € C. Our kernelization for SECLUDED JF-FREE VERTEX DELETION
is based on transforming the input instance (G, k) to a d-HITTING SET instance (H, k),
computing an expressive d-HITTING SET problem kernel (H’, k), and outputting a SECLUDED
F-FREE VERTEX DELETION instance (G’, k), where G’ is the graph induced by the vertices
remaining in H’ together with at most k + 1 additional neighbors for each vertex in G.

» Definition 4.3. Let (G = (V,E),k) be an instance of SECLUDED F-FREE VERTEX
DELETION. For a vertex v € V, let Nj(v) € Ng(v) be j arbitrary neighbors of v, or
Nj(v) := N¢(v) if v has degree less than j. For a subset S C V, let N;(S) :=J,cq N;j(v).
Moreover, let

veS

¢:= maxper |V(F)| be the maximum number of vertices in any graph in F,
H = (U,C) be the hypergraph with U :=V and C := {S C V | G[S] € F},
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H' = (U’,C’) be a subgraph of H with |U’| € O(k¢) such that each set S C U with

|S| < k is an inclusion-minimal hitting set for H if and only if it is for H’, and

G’ = (V', E') be the subgraph of G induced by U’ U N1 (U’).
To prove Theorem 4.2, we show that (G’, k) is a problem kernel for the input instance (G, k).
The subgraph H' exists and is computable in linear time from H [2, 8]. Moreover, for
constant ¢, one can compute H from G and G’ from H’ in polynomial time. It is obvious
that the number of vertices of G’ is O(k°*!). Hence, it remains to show that (G, k) is a
yes-instance if and only if (G, k) is. This is achieved by the following two lemmas.

» Lemma 4.4. For any S C U’ with [N/ [S]| < k, it holds that Ng[S] = Ng/[S].

Proof. Since S C U’ C V'NV and since G’ is a subgraph of G, it is clear that Ng[S] 2 Ng-[S].
For the opposite direction, observe that each v € S has degree at most k in G’. Thus, v has
degree at most k in G since, otherwise, k + 1 of its neighbors would be in G’ by construction.
Thus, Ng/(v) 2 Ni41(v) = Ng(v) for all v € S and, thus, Ng/[S] 2 Ng[S]. <

» Lemma 4.5 (x). Graph G allows for an F-free vertex deletion set S with |Ng[S]| < k if
and only if G allows for an F-free vertex deletion set S with |[Ng/[S]| < k.

4.2 Small Secluded F-free Vertex Deletion

In this subsection, we present a fixed-parameter algorithm for the following problem parame-
terized by £ + k.

SMALL SECLUDED F-FREE VERTEX DELETION
Input: A graph G = (V, E) and two integers k, ¢.
Question: Is there a subset S C V such that G — S is F-free, |S| < k, and |Ng(5)| < €7

As before, we call a set S C V such that G — S is F-free an F-free vertex deletion set.

In the previous section, we discussed a simple search tree algorithm for SECLUDED F-FREE
VERTEX DELETION that was based on the fact that we could assume that our solution is an
inclusion-minimal F-free vertex deletion set. However, an F-free vertex deletion set .S with
|S] < k and |Ng(S)| < ¢ is not necessarily inclusion-minimal: some vertices may have been
added to S just in order to shrink its open neighborhood. However, the following simple
lemma limits the number of possible candidate vertices that can be used to enlarge S in
order to shrink N(S), which we will use in a branching algorithm.

» Lemma 4.6. Let S be an F-free vertex deletion set and S’ O S such that |S'| < k and
|Na(S")| < ¢, then |Ng(S)| < £+ k.

Proof. [Na(S)| = |[Na[S]\ S| < [NG[S]\ S| < |Ng[S']| < [Na(S")U S| < €+ k. <

» Theorem 4.7. SMALL SECLUDED JF-FREE VERTEX DELETION can be solved in max{c, k+
0}* - poly(n)-time, where c is the maximum number of vertices in any graph of F.

Proof. First, enumerate all inclusion-minimal F-free vertex deletion sets S with |S| < k.

This is possible in ¢* - poly(n) time using the generic search tree algorithm described by

Cai [4]. For each k' < k, this search tree algorithm generates at most ¢* sets of size k. For

each enumerated set S of k' elements, do the following:

1. If [Ng(S)| < ¢, then output S as our solution.

2. If |Ng(S)| > £+k, then S cannot be part of a solution S” with Ng(S") < ¢ by Lemma 4.6,
we proceed with the next set.
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3. Otherwise, initiate a recursive branching: recursively branch into at most £+ k possibilities
of adding a vertex from Ng(S) to S as long as |S| < k.

The recursive branching initiated at step 3 stops at depth k — k’ since, after adding k —

k' vertices to S, one obtains a set of size k. Hence, the total running time of our algorithm is

k k
poly(n)- Z &0+ k) = poly(n)- Z max{c, {+k}* = poly(n) -max{c, £+ k}*. <
k=1 k=1

Given Theorem 4.7, a natural question is whether the problem allows for a polynomial kernel.

5 Feedback Vertex Set

In this section, we study secluded versions of the FEEDBACK VERTEX SET (F'VS) problem,
which asks, given a graph G and an integer k, whether there is a set W C V(G), [W| <k,
such that G — W is cycle-free.

5.1 Secluded Feedback Vertex Set

We show in this subsection that the problem below is NP-hard and admits a polynomial kernel.

SECLUDED FEEDBACK VERTEX SET (SFVS)
Input: A graph G = (V, F) and an integer k.
Question: Is there a set S C V such that G — S is cycle-free and |Ng[S]| < k?

» Theorem 5.1 (x). SECLUDED FEEDBACK VERTEX SET is NP-hard.

The proof is by a reduction from the FVS problem and works by attaching to each vertex
in the original graph a large set of new degree-one neighbors. On the positive side, SF'VS
remains fixed-parameter tractable with respect to k:

» Theorem 5.2. SECLUDED FEEDBACK VERTEX SET admits a kernel with O(k®) vertices.

In the remainder of this section, we describe the data reduction rules that yield the polynomial-
size problem kernel. The running time and correctness proofs, as well as the kernel-size
bound of Theorem 5.2 is deferred to a full version of this paper. The reduction rules are
inspired by the kernelization algorithm for the TREE DELETION SET problem given by
Giannopoulou et al. [13].

We start by introducing the following notation. A 2-core [22] of a graph G is a maximum
subgraph H of G such that, for each v € V(H), we have degy(v) > 2. Note that a 2-core H
of a given graph G is unique and can be found in polynomial time [22]. If H is a 2-core of G,
then we use degyo(v) to denote degy (v) if v € V(H) and degpo(v) =0 if v ¢ V(H).

» Observation 5.3. Let G be a graph, H its 2-core, and C' a connected component of G=V (H).
Then IN(C)NV(H)| <1 and |IN(H)NV(C)| < 1.

Proof. We only show the first statement. The second statement follows analogously. Towards
a contradiction, assume that |[N(C) NV (H)| > 2. Then, there are vertices x,y € V(H)
with « # y such that x and y have neighbors a,b € V(C). If a = b, then G’ = G[V(H)U{a}]
is a subgraph of G such that degq, (v) > 2 for every v € V(G’), contradicting the choice
of H as the 2-core of G. If a # b, then, since C is connected, there is a path Pg in C
connecting a and b. Thus, G’ = G[V(H)UV(P¢)] is a subgraph of G such that degq/ (v) > 2
for every v € V(G’), again contradicting the choice of H as the 2-core of G. <
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Note that only the vertices in the 2-core are involved in cycles of G. However, the vertices
outside the 2-core can influence the size of the closed neighborhood of the feedback vertex set.
Next, we apply the following reduction rules to our input instance with G given its 2-core H.

» Reduction Rule 1. If degyo(v) =0 for every v € Nlu], then delete u.

Note that, if Reduction Rule 1 has been exhaustively applied, then deg Hm(v) = 0 implies
that v has exactly one neighbor, which is in the 2-core of the graph.

» Reduction Rule 2. If vg,v1,...,vp,v041 1S a path in the input graph such that ¢ > 3,
degpo(vi) = 2 for every i € {1,...,}, degyo(vo) > 2, and degyo(vet1) > 2, then let
r = min{degq(v;) | i € {1,...,£}} — 2 and remove vertices v1,...,ve and their neighbors not
in the 2-core. Then introduce two new vertices uy and us with edges {vo,u1}, {u1,us}, and
{ua,vi41} and 2r further new vertices and connect uy with v of them and uy with another r
of them.

For z € V(G), we denote by petal(z) the maximum number of cycles only intersecting in z.

» Reduction Rule 3. If there is a vertex x € V(G) such that petal(z) > [%], then output
that (G, k) is a no-instance of SFVS.

» Reduction Rule 4. Ifv € V(G) is a vertex such that deg(v) > k, but deg o (v) < degg(v),
then remove one of its neighbors not in the 2-core.

» Reduction Rule 5. Let x,y be two vertices of G. If there are at least k internally vertex
disjoint paths of length at least 2 between x and y in G, then output that (G, k) is a no-instance
of SFVS.

Note that Reduction Rules 1, 2, 4, and 5 can be applied trivially in polynomial time.
Reduction Rule 3 can be applied exhaustively in polynomial time due to Thomassé [23].

After applying the reduction rules above exhaustively, one can show that the resulting
instance is either a no-instance, or the number of vertices is O(k®).

5.2 Small Secluded Feedback Vertex Set

In contrast to restricting the closed neighborhood of a feedback vertex set, restricting the
open neighborhood by a parameter yields a W[1]-hard problem.

SMALL SECLUDED FEEDBACK VERTEX SET
Input: A graph G = (V, E) and two integers k, £.
Question: Is there a set S C V such that G — S is cycle-free, |S| < k, and |Ng(S)| < £7

» Theorem 5.4. SMALL SECLUDED FEEDBACK VERTEX SET is W/[I]-hard with respect to £.

Proof. We provide a parameterized reduction from MULTICOLORED INDEPENDENT SET
(MIS): given a k-partite graph G = (V, E) and its partite sets V1 U...UV}, = V| the question
is whether there is an independent set I of size k such that I N'V; # 0 for each i € {1,... k}.
MIS is W[1]-hard when parameterized by the size k of the independent set [10].

Let G = (V, E) with partite sets V; UVo U ... UV, =V be an instance of MIS. We can
assume that for each i € {1,...,k} we have |V;| > 2 and there is no edge {v,w} € E with
v,w € V;. We create an instance (G', k', £) of SMALL SECLUDED FEEDBACK VERTEX SET
(SSFVS) with ¥’ = |V| —k and £ = k + 1 as follows.

Construction: Refer to Figure 1 for an sketch of the following construction. Initially,
let G := G. For each i € {1,...,k} turn V; into a clique, that is, add the edge sets
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#E +1

Vi Vi

iff {v},v?} € E(G) cee

R

Figure 1 Sketch of the construction in proof of Theorem 5.4. The circles refer to cliques with
vertex set Vi, i € {1,...,k}.

{{a,b} | a,b € V;,a # b}. Next, add to G’ a vertex u and a set L of k' + £ vertices. Finally,
connect each vertex in V U L to u by an edge.

Correctness: We show that (G, k) is a yes-instance of MIS if and only if (G',k’,¢) is a
yes-instance of SSFVS.

“=": Let (G, k) be a yes-instance of MIS and let I C V with |I| = k be a multicolored
independent set in G. We delete all vertices in S := V(G')\ (I UL U {u}) from G’. Observe
that |S| = |V| — k = k’. Moreover, Ng:(S) = k4 1 = £. Since there is no edge between any
two vertices in I, G — S forms a star with center v and k¥’ + ¢ + 1 + k vertices. Since every
star is acyclic, (G', k', ¢) is a yes-instance of SSFVS.

“<=7: Let (G', K, ) be a yes-instance of SSFVS and let S C V(G’) be a solution. Observe
that G'[V; U {u}] forms a clique of size |V;|+ 1 for each i € {1,...,k}. Since the budget does
not allow for deleting the vertex u (i.e. u ¢ S), all but one vertex in each V; must be deleted.
Since k' = |V| —k and |V;| > 2 for all i € {1,...,k}, S contains exactly |V;| — 1 vertices of
V; for each i € {1,...,k}. Hence, |S| = |V|—k and Ng'(S) =k+1=1¢ Let F:=V\ S
denote the set of vertices in V not contained in S. Recall that |F| = k and |[FNV;| =1
for all 4 € {1,...,k}. Next, suppose there is an edge between two vertices v,w € F. Since
u & S and w is incident to all vertices in V, the vertices u, v, w form a triangle in G’. This
contradicts the fact that S is a solution for (G', k', ), that is, that G’ — S is acyclic. It
follows that E(G’'[F]) = 0, that is, no two vertices in F' are connected by an edge. Together
with |F| =k and |[FNV;| =1foralli e {1,...,k}, it follows that F forms a multicolored
independent set in G. Thus, (G, k) is a yes-instance of MIS. <

6 Independent Set

For INDEPENDENT SET, it makes little sense to bound the size of the closed neighborhood
from above, as in this case the empty set always constitutes a solution. One might ask
for an independent set with closed neighborhood as large as possible. However, for any
inclusion-wise maximal independent set S, one has N[S] = V. Hence, this question is also
trivial. Therefore, in this section we only consider the following problem.

LARGE SECLUDED INDEPENDENT SET (LSIS)
Input: A graph G = (V, E) and two integers k, £.
Question: Is there an independent set S C V such that |S| > k and |Ng(S)| < €7
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€ d

Figure 2 Example of the construction in Theorem 6.1. The left-hand side shows the original
graph, the right-hand side the graph constructed by the reduction, where the newly introduced
edges between each pair of vertices of the original graph are drawn in grey. The vertices introduced
for each edge of the original graph are filled red and black, the corresponding new edges are drawn
in black. Note that the blue vertices of the original graph form a clique and that the vertices
corresponding to the edges of said clique (filled red) form an independent set in the new graph.

The case £ = |V| equals INDEPENDENT SET and, thus, LSIS is W{[1]-hard with respect to k.
We show that LSIS is also W[1]-hard when parameterized by k + ¢.

» Theorem 6.1. LARGE SECLUDED INDEPENDENT SET is W[l]-hard with respect to k + £.

Proof. We provide a polynomial-parameter transformation from CLIQUE parameterized by
the solution size k.

Construction. Let (G, k) be an instance of CLIQUE and assume without loss of generality
that k < |[V(G)| — 1 (otherwise, solve the instance in polynomial time). We construct
an equivalent instance (G',k’,¢') of LARGE SECLUDED INDEPENDENT SET as follows (see
Figure 2 for an example).

Initially, let G’ be an empty graph. Add all vertices of G to G’. Denote the vertex set
by V. If two vertices of G are adjacent, we add a vertex to G’, that is, G’ additionally to V'
contains the vertex set X := {x, | {u,v} € E}. Next, connect z,, to v and v, that is, add
the edge set ' = {{u, Tyy }, {v, Zuo } | {u,v} € E}. Finally, connect any two vertices in V'
by an edge. Graph G’ consists of the vertex set VU X and of the edge set E' U (‘2/) Observe
that X forms an independent set in G’. Set k’ := (g) and ¢’ := k. We claim that (G, k) is
a yes-instance of CLIQUE if and only if (G’,k,¢') is a yes-instance of LARGE SECLUDED
INDEPENDENT SET.

“=7: Let C C V(G) be aclique of size k = |C|in G. We claim that X' := {x,,,, | u,v € C}
forms an independent set of size (g) with [N(X')| =k =¢in G'. Since X' C X, X' forms
an independent set. Moreover, since C' is a clique of size k, there are (g) edges in G[C], and
thus | X'| = (g) By construction, each vertex in X is only adjacent to vertices in C. Hence,
IN(X")| = |C|] = k. Therefore, X' witnesses that (G’,k’,¢) is a yes-instance of LARGE
SECLUDED INDEPENDENT SET.

“<”: Let U C V(G') form an independent set of size k' with open neighborhood of size
upper-bounded by ¢'. Suppose that v € V' is contained in U (observe that U contains at most
one vertex of V, as otherwise it would not be independent). Then |[N(U)| > |V|—-1> k=¥,
which contradicts the choice of U. It follows that U NV = @, and hence U C X. By
construction, for each xz,,, € U, the vertices u, v are contained in N(U). Since each vertex in
U corresponds to an edge in GG, we have (g) edges incident with at most k vertices. The only
graph that fulfills this property is the complete graph on k vertices. Hence, G contains a
clique of size k, and thus (G, k) is a yes-instance of CLIQUE(k). <

We remark that the proof above is similar to the W[l]-hardness proof for CuTTING ¢
VERTICES [21].
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7 Summary and Future Work

In this paper, we studied the problem of finding sets of vertices in a graph that fulfill
certain properties and have a small neighborhood. We presented computational complexity
results for secluded and small secluded variants of s-t-SEPARATOR, ¢-DOMINATING SET,
FEEDBACK VERTEX SET, F-FREE VERTEX DELETION, and for the large secluded variant
of INDEPENDENT SET. In the case of s-t-SEPARATOR, we leave as an open question the
parameterized complexity of SMALL SECLUDED s-t-SEPARATOR with respect to k + £. We
conjecture that it is fixed-parameter tractable. Concerning SECLUDED F-FREE VERTEX
DELETION, we would like to point out that it is an interesting question which families F
exactly yield NP-hardness as opposed to polynomial-time solvability.

A natural way to generalize our results would be to consider vertex-weighted graphs
and directed graphs. This generalization was already investigated by Chechik et al. [5] for
SECLUDED PATH and SECLUDED STEINER TREE. Furthermore, we would like to mention
that replacing the bound on the open neighborhood in the case of small secludedness by a
bound on the outgoing edges of a solution would be an interesting modification of the problem.
The variation follows the idea of the concept of isolation as used, e.g., in [14, 16, 17, 18]. As
the number of outgoing edges is at least as large as the open neighborhood, this might offer
new possibilities for fixed-parameter algorithms.
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—— Abstract

We study the parameterized complexity of classical problems that arise in the profiling of rela-
tional data. Namely, we characterize the complexity of detecting unique column combinations
(candidate keys), functional dependencies, and inclusion dependencies with the solution size as
parameter. While the discovery of uniques and functional dependencies, respectively, turns out
to be W[2]-complete, the detection of inclusion dependencies is one of the first natural problems
proven to be complete for the class W[3]. As a side effect, our reductions give insights into the
complexity of enumerating all minimal unique column combinations or functional dependencies.
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1 Introduction

Data profiling is the process of gathering metadata from a given database, which in turn
facilitates various tasks such as data cleansing, normalization and integration as well as
query optimization. A common problem in data profiling is the detection of different
types of dependencies between pieces of data, most notably unique column combinations,
functional dependencies, and inclusion dependencies. Due to their practical relevance, these
three problems have received much attention, which lead to numerous detection as well as
enumeration algorithms, see e.g. the survey by Abedjan, Golab and Naumann [1]. Despite
the fact that these algorithms perform well in practice, there are usually no theoretical
performance guarantees. This is not very surprising as all three problems are known to be
intractable: finding a minimum unique column combination is NP-complete [3] and cannot
be approximated within a factor of 1/4 logn (under reasonable complexity assumptions) [2],
finding a minimum functional dependency is also NP-complete [7] and finding a maximum
inclusion dependency is NP-complete even for restricted cases [14].

One approach to overcome these difficulties is to exploit properties that are usually
observed in realistic data to design algorithms that guarantee a polynomial run time in
case these features are present in the problem instance. Consider for example the his-
tograms in Figure 1, showing the size distribution of minimal unique column combinations,
minimal functional dependencies, and maximal inclusion dependencies in the MusicBrainz
database [18]. Usually the majority of functional dependencies (as well as unique column
? Thomas Blasius, rI‘.obias F‘riedrich,.and Martin Schirneck;
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Figure 1 The number of minimal unique column combinations, minimal functional dependencies
and maximal inclusion dependencies for given solution sizes in the MusicBrainz database.

combinations and inclusion dependencies) are rather small. Beside surrogate keys, giving rise
to multiple functional dependencies of size 1, natural causalities also lead to small functional
dependencies. For example, the name of an event together with the year in which it starts
determines the year in which it ends, implying a functional dependency of size 2. Note that
the starting year alone is not enough to infer this information. The name of the action,
however, seems to indicate whether the event ends in the starting year or the following one.

Although the size k of the minimum functional dependency can in principle be (almost)
as large as the total number of attributes, it appears to be a reasonable assumption that
k is significantly smaller. It is thus very natural to ask whether the problem of finding a
minimum functional dependency is fized-parameter tractable (FPT) with respect to k, i.e.,
whether it can be solved in time O(f(k) - p(n)), where p is a polynomial in the input size n,
while f is an arbitrary function in the parameter k, but not in n. Note that the running
time of an FPT-algorithm in general can still be superpolynomial. However, when assuming
the parameter k to be bounded by a constant, one obtains a polynomial running time, in
O(p(n)), whose order of growth does not depend on k. Hence, one can think of parameterized
complexity as being a more fine-grained approach to complexity theory.

Parameterized complexity has been a great success in the design and analysis of algo-
rithms [11, 5]. Nevertheless, its techniques have rarely been employed in the context of
database theory so far. A notable exception is the complexity of database queries. Papadim-
itriou and Yannakakis [17] considered this problem for different query languages using the
size of the query or alternatively the number of variables as the parameter. They showed
that presumably none of the variants admits an FPT-algorithm, as the resulting problems
are at least W[1]-hard (some are actually Wt]-hard for any positive integer ¢, W[SAT]-hard
or even W[P]-hard). For further results on the parameterized complexity of database queries
see the survey by Grohe [13]. Besides queries, we are not aware of any algorithmic database
problems that have been considered through the lens of parameterized complexity.

Our Contribution and Outline. We show that detecting minimum unique column combi-
nations and minimum functional dependencies are both W [2]-complete problems. Also, we
prove that finding maximum inclusion dependencies is W[3]-complete. Thereby we completely
settle the parameterized complexity of these problems with the solution size as parameter.
We would like to point out that the completeness for the class W3] of a well-studied problem
like the discovery of inclusion dependencies is quite surprising as natural problems are rarely
W [3]-complete. In fact, besides a result by Chen and Zhang [4] related to supply chain
management, we are not aware of any natural W[t]-complete problem for ¢ > 2.
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In Section 2 we give basic definitions and formal problem statements. In Section 3,
we examine the detection of minimum unique column combinations as well as minimum
functional dependencies. For the latter, we actually consider two variants, one for which the
right hand side of the functional dependency is fixed and one in which it is variable. We
show that all three problems are W[2]-complete. As a byproduct, our reductions (involving
the problem HITTING SET) have certain implications on the computational hardness of
enumerating all unique column combinations or functional dependencies of a given relation.
See the end of Section 3 for more details. In Section 4 we show that finding minimum
inclusion dependencies for a pair of relations is W/[3]-complete. We also show that the
problem remains W [3]-complete if both relations are defined over the same schema together
with a fixed mapping between the columns of the tables. In Section 5, we conclude this paper
by discussing alternative parameter choices as well as possible future research in general.

2 Notation and Problems

2.1 Parameterized Complexity

For an instance I of a decision problem and a parameter k& € N1, the pair (I, k) is an instance
of the corresponding parameterized problem. The running time of an algorithm is then
considered not only in terms of the input size || but also in terms of k. A parameterized
problem is fized-parameter tractable, i.e., it belongs to the complexity class FPT, if a given
instance can be solved in time O(f(k)-p(|I|)), where p is a polynomial while f is an arbitrary
computable function. We then also say that the algorithm runs in FPT-time.

Let P and P’ be two parameterized problems. A parameterized reduction from P to P’
is an algorithm running in FPT-time that maps an instance (I, k) of P to an equivalent
instance (I', k') of P’ such that the parameter k' depends only on the value of k& (and not on
|I]). Note that an (hypothetical) FPT-algorithm for P’ would also yield an FPT-algorithm
for P via this reduction. Hence, considering their parameterized complexity, P is at most as
hard as P’, which we denote by P <ppr P’. If conversely P’ <gpr P also holds, we say that
P and P’ are FPT-equivalent.

The parameterized reduction leads to a hierarchy of complexity classes, the so-called
W -hierarchy, by specifying a complete problem for each class. To define the desired family of
problems, we employ Boolean formulas in propositional logic. Let ¢ be such a formula. A
satisfying truth assignment for ¢ has Hamming weight k if exactly k variables are set to TRUE
in this assignment; we also call the set of these k variables a solution for . The formula
@ is t-normalized if it can be written as a conjunction of disjunctions of conjunctions of
disjunctions (and so on) of literals with ¢ —1 alternations between conjunction and disjunction.
Observe that a Boolean formula is 2-normalized if it is in conjunctive normal form (CNF)
and 3-normalized if it is a conjunction of subformulas in disjunctive normal form (DNF).

The problem WEIGHTED #-NORMALIZED SATISFIABILITY is to decide for a given t-nor-
malized formula ¢ and a positive integer k whether ¢ has a weight k satisfying assignment;
here k serves as the parameter. For any ¢t > 1, a parameterized problem P is said to be in
the complexity class W[t] in case P <gpr WEIGHTED {-NORMALIZED SATISFIABILITY.!

The classes FPT C W[1] C W[2] C ... form an ascending hierarchy and all inclusion are
assumed to be proper, which is however still unproven [11]. The higher a problem ranks in
the W-hierarchy the lower we consider the chances of finding an FPT-algorithm to solve it.

1 We tacitly avoid the classical definition of Wt] via weft-t-depth-d-families of decision circuits. This is
justified by the Normalization Theorem by [9, 10].
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2.2 Dependencies in Relational Databases

If not explicitly stated otherwise, notation regarding relational databases follows the survey
by Abedjan et al. [1]. We let R and S be relational schemata, i.e., sets of columns; each
column is associated with a set of admissible values. Symbols X, Y refer to sets of columns
and symbols A, B refer to a single column, an attribute. We denote with r;,7; tuples whose
entries, respectively, are indexed by some schema R and, for any subset X C R of columns,
we let r;[X] denote the sub-tuple of r; consisting only of the entries indexed by X. In
particular, r;[A] denotes the value of attribute A in ;. A set r of such tuples is an instance
of schema R if, for any r; € r and A € R, value r;[A] is admissible for attribute A. Instances
of schematas are called relations or relational databases (over the corresponding schema).
With r[X] we denote the collection of all sub-tuples r;[X] for r; € r.

Let  be an instance of schema R. A collection X C R of columns is called a unique column
combination or unique if, for any two distinct tuples r; # r; in r, we have ;[ X]| # r;[X].
So the combination of values for X fully identifies a tuple of relation r. Otherwise, X is
called a non-unique. The size of a unique X is the cardinality | X|. Clearly, any superset of a
unique is unique and any subset of a non-unique is again non-unique. The problem UNIQUE
is to decide for a given relational database r and a positive integer k whether r has a unique
column combination of size at most k. UNIQUE is known to be NP-complete [3].

A functional dependency (FD) over a schema R is an expression of the form X — A
for some set X C R of columns and an attribute A € R. The set X is called the left-hand
side (LHS) of the dependency and attribute A the right-hand side (RHS). A functional
dependency X — A holds in an instance r (of schema R) if any pair of tuples that agree on
X also agree on A, i.e., if r;[X] = r;[X] implies r;[A] = r;[A] for any two tuples r;,7; € r.
Otherwise, the FD is said to fail in r. A functional dependency is non-trivial if A ¢ X
(X — A evidently holds if A € X). The size of an FD is the cardinality of its LHS. The
problem FD is to decide for a given relational database r and a positive integer k whether
there is a non-trivial functional dependency of size at most k that holds in 7. The problem
FD fizeq is to decide for a given attribute A € R, whether there is such a functional dependency
with right-hand side A. The restricted variant FDfyeq is known to be NP-complete [7].

At last we define inclusions between columns among different relations. Let r be an
instance of schema R and s be an instance of S. For some X C R, let 0: X — S be an
injective map. Then the pair (X, o) is an inclusion dependency (IND) if, for each tuple r; € r,
there exists a tuple s; € s such that r;[A] = s;[0(A)] for every A € X, i.e., r[X] C s[o(X)].
If the map o is given in the input, we simply say that X is the inclusion dependency. The
size of an inclusion dependency is | X|. The problem IND is to decide for two relations r and
s (over schemata R and S, respectively) and a positive integer k& whether there is an inclusion
dependency (X, o) of size at least k. In case of R = S and o being the identity mapping over
R, the problem IND g4 is to decide whether there is an inclusion dependency X of size at
least k. Detecting an inclusion dependency in a relational database is NP-complete [14].

Note that the decision problems defined above do not depend upon asking for a solution
of size at most/at least k as opposed to one of size exactly k. A functional dependency stays
valid when adding arbitrary additional columns to the LHS. The same holds for unique
column combinations. Conversely, if a pair of relations admits an inclusion dependency of
size at least k, one can obtain one comprising exactly k columns by removing dispensable
attributes. In this paper, we consider all the decision problems to be parameterized by the
size of the respective solution. Thus, UNIQUE, FD, FDggeq, IND and IND g4.q4 refer to the
corresponding parameterized problems with parameter k.
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Figure 2 (a) An instance of HITTING SET and its equivalent instance of UNIQUE. (b) An instance
r of problem FDggeq with fixed RHS A and the resulting instance r’ of problem FD. Note that the
functional dependency AB — D holds in 7 but not in 7.

3 Unique Column Combinations and Functional Dependencies

It is a well-known phenomenon that throughout the fields of database design and data
profiling theoreticians as well as practitioners are frequently confronted with the task of
finding an inclusion-minimal collection of items that has a non-empty intersection with each
member of a prescribed family of sets [1, 6, 16]. Thus, they aim to solve instances of the
so-called HITTING SET problem. In this section we show that this encounter is somewhat
inevitable in the sense that detecting uniques or functional dependencies is both ezactly as
hard as finding a hitting set in terms of parameterized complexity.

HITTING SET is formally defined as follows. For a finite system of subsets Z C P(U) of
some finite ground set U, a set H C U is called hitting set iff for all Z € Z, HNZ # (). The
problem HITTING SET is to decide for a positive integer k whether there is a hitting set H
with |H| < k. HITTING SET is NP-complete [15] and W[2]-complete with respect to k [11].
Hence, we can utilize it to show the W2]-completeness of the dependency problems at hand.

More precisely, in this section we establish a (seemingly ascending) chain of problems via
parameterized reductions. This chain consists of problems HITTING SET, UNIQUE, FD s34,
FD and WEIGHTED 2-NORMALIZED SATISFIABILITY in that order. As the first and last
problem are both W2]-complete and thus FPT-equivalent, this in fact proves equivalence
(and hence W[2]-completeness) for the other problems as well. Due to space constraints, we
only sketch key ideas for the first three reductions (HITTING SET to UNIQUE, UNIQUE to
FDfigea and FDggeq to FD)

» Lemma 1. HITTING SET <gpp UNIQUE <ppr FDgyeq <ppr FD.

Proof (sketch). The first reduction regarding HITTING SET and UNIQUE is a straight-
forward translation of the sets to hit into tuples of a relational database, cf. Figure 2.(a).
For the second reduction, the main idea is to add an extra column serving as a tuple ID and
to subsequently show that a column combination is unique just in case it is the LHS of a
functional dependency pointing to this ID. The last reduction is established by adding to a
given relation copies of an already present tuple, “ruling out” a different entry in each 