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Abstract
This report summarizes Dagstuhl Seminar 16452 “Beyond-Planar Graphs: Algorithmics and
Combinatorics” and documents the talks and discussions. The seminar brought together 29
researchers in the areas of graph theory, combinatorics, computational geometry, and graph
drawing. The common interest was in the exploration of structural properties and the develop-
ment of algorithms for so-called beyond-planar graphs, i.e., non-planar graphs with topological
constraints such as specific types of crossings, or with some forbidden crossing patterns. The
seminar began with three introductory talks by experts in the different fields. Abstracts of these
talks are collected in this report. Next we discussed and grouped together open research problems
about beyond planar graphs, such as their combinatorial structures (e.g, thickness, crossing num-
ber, coloring), their topology (e.g., string graph representation), their geometric representations
(e.g., straight-line drawing, visibility representation, contact representation), and applications
(e.g., algorithms for real-world network visualization). Four working groups were formed and a
report from each group is included here.
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Relational data sets, containing a set of objects and relations between them, are commonly
modeled by graphs/networks, with the objects as the vertices and the relations as the edges.
A great deal is known about the structure and properties of special types of graphs, in
particular planar graphs. The class of planar graphs is fundamental for both Graph Theory
and Graph Algorithms, and extensively studied. Many structural properties of planar graphs
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are known and these properties can be used in the development of efficient algorithms for
planar graphs, even where the more general problem is NP-hard.

Most real world graphs, however, are non-planar. In particular, many scale-free networks,
which can be used to model web-graphs, social networks and biological networks, consists of
sparse non-planar graphs. To analyze and visualize such real-world networks, we need to solve
fundamental mathematical and algorithmic research questions on sparse non-planar graphs,
which we call beyond-planar graphs. The notion of beyond-planar graphs has been established
as non-planar graphs with topological constraints such as specific types of crossings or with
some forbidden crossing patterns, although it has not been formally defined. Examples of
beyond-planar graphs include:

k-planar graphs: graphs which can be embedded with at most k crossings per edge.
k-quasi-planar graphs: graphs which can be embedded without k mutually crossing edges.
bar k-visibility graphs: graphs whose vertices are represented as horizontal segments
(bars) and edges as vertical lines connecting bars, intersecting at most k other bars.
fan-crossing-free graphs: graphs which can be embedded without fan-crossings.
fan-planar graphs: graphs which can be embedded with crossings sharing the common
vertices.
RAC (Right Angle Crossing) graphs: a graph which has a straight-line drawing with right
angle crossings.

The aim of the seminar was to bring together world-renowned researchers in graph
algorithms, computational geometry and graph theory, and collaboratively develop a research
agenda for the study of beyond-planar graphs. The plan was to work on specific open
problems about the structure, topology, and geometry of beyond-planar graphs. One of the
outcomes of the workshop might be an annotated bibliography of this new field of study.

On Sunday afternoon, 29 participants met at Dagstuhl for an informal get-together.
Fortunately, there were no cancelations and everybody who registered was able to attend. On
Monday morning, the workshop officially kicked off. After a round of introductions, where
we discovered that eight participants were first-time Dagstuhl attendees, we enjoyed three
overview talks about beyond-planar graphs from three different points of view. First, Géza
Tóth from the Rényi Institute in Budapest talked about the combinatorics of beyond-planar
graphs in connection to graph theory. Next, Giuseppe Liotta from the University of Perugia
gave an overview about the connections between graph drawing and beyond-planar graphs
and presented a taxonomy of related topics and questions. Finally, Alexander Wolff from
the University of Würzburg discussed beyond-planar graphs in the context of geometry and
geometric graph representations.

On Monday afternoon, we had lively open problem sessions, where we collected 20
problems covering the most relevant topics. The participants split into four groups based
on common interest in subsets of the open problems. The last three days of the seminar
were dedicated to working group efforts. Most of the groups kept their focus on the original
problems as stated in the open problem session, while one group modified and expanded
the problems; see Section 4. We had two progress reports sessions, including one on Friday
morning, where group leaders were officially designated and plans for follow-up work were
made. Work from one of the groups has been submitted to an international conference, and
we expect further research publications to result directly from the seminar.

Arguably the best, and most-appreciated, feature of the seminar was the opportunity
to engage in discussion and interactions with experts in various fields with shared passion
about graphs, geometry and combinatorics. We received very positive feedback from the
participants (e.g., scientific quality: 10.5/11, inspired new ideas: 23/25, inspired joint projects:
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21/25) and it is our impression that the participants enjoyed the unique scientific atmosphere
at the seminar and benefited from the scientific program. In summary, we regard the seminar
as a success, and we are grateful for having had the opportunity to organize it and take this
opportunity to thank the scientific, administrative, and technical staff at Schloss Dagstuhl.
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3 Overview of Talks

3.1 Graph Drawing Beyond Planarity
Giuseppe Liotta (University of Perugia, IT)

License Creative Commons BY 3.0 Unported license
© Giuseppe Liotta

It is well known that drawings of graphs with many edge crossings are hard to read. On the
other hand, edge crossings are simply unavoidable when the graph to be drawn is not planar.
As a consequence a number of relaxations of the notion of graph planarity relaxation have
been proposed in the literature. They allow edge crossings but forbid specific configurations
which would affect the readability of the graph representation. For each such relaxation,
different research questions can be asked having both algorithmic and combinatorial nature.
Aim of the invited talk “Graph Drawing Beyond Planarity” was to briefly survey this rapidly
growing research area by pointing out some of its most investigated questions and some of
the most prominent open questions.

Graph Drawing Beyond Planarity

The classical literature on graph drawing showcases elegant algorithms and sophisticated
data structures under the assumption that the input relational data set can be displayed
as a network where no two edges cross (see, e.g., [5, 10, 11, 14]), i.e. the input is a planar
graph. Unfortunately, almost every graph is non-planar in practice and the question on
how to simplify the visual analysis of non-planar networks has become a central topic in the
graph drawing research agenda.

We recall that planar graphs can be expressed in terms of forbidden subgraphs: A graph G
is planar if and only if it does not contain a subdivision of K5 or K3,3. Then, a fundamental
natural step towards understanding non-planar graphs is to consider realizations where
some types of crossings are forbidden while some other types are allowed. For example, we
recall a sequence of HCI experiments by Huang et al. [7, 8, 9] proving that crossing edges
significantly affect human understanding if they form acute angle, while crossing that form
angles from about π

3 to π
2 guarantee good readability properties. Hence it makes sense to

explore complexity issues related to drawings of graphs where such “sharp angle crossings”
are forbidden. In addition to these results, Purchase et al. [16, 17, 18]) prove that an edge is
difficult to read if it is crossed by many other edges; hence, the current research agenda on
graph drawing beyond planarity includes the study of representations where every edge is
crossed by at most k other edges, for a given constant k.

Examples of “beyond planar” graphs and problems

A drawing of a graph G:
(i) injectively maps each vertex u of G to a geometric body pu in the plane;
(ii) maps each edge (u, v) of G to a Jordan arc connecting pu and pv that does not pass

through any other vertex;
(iii) is such that any two edges have at most one point in common.
A drawing of a graph is a straight-line drawing if every edge is a straight-line segment, it
is a poly-line drawing if the edges are polygonal chains and may contain bends. Vertices
are typically mapped to points in the plane, but in some cases they can be other geometric
objects; for example, in a rectangle visibility representation each vertex is represented as
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no crossing angle

no fan crossing

α

smaller thanα

no edge with k crossings

with bounded vertex degree
Straight−line drawability for graphs

edges
no three mutually crossing 

Compute compact drawings of planar
graphs with lmited number of
crossings per edge

of graph pairs
Compute simultaneous emebddings 

Complexity of the recognition 
problem

Forbidden configuration Algorithmic question

Figure 1 A table with some forbidden crossing configurations and related computational questions.

a rectangle and each edge corresponds to a horizontal or vertical line of sight between its
end-vertices. Rectangle visibility representations guarantees that edge crossings form π

2
angles and also that the edges are straight-line segments.

The “beyond planarity” research area could be briefly described as the (potentially
uncountable) collection of problems of the type depicted in Figure 1, where the column
“Forbidden” describes a forbidden crossing configuration in the drawing of a graph and the
column “Question” describes a corresponding computational question of interest in graph
drawing. We remark that both the forbidden configurations and the computational questions
of Figure 1 are mere examples within a much larger research framework. The interested
reader is referred, for example, to recent proceedings of the International Symposium on
Graph Drawing [19] for more results and more open problems on the “beyond planarity”
topic. (See also http://www.graphdrawing.org/symposia.html.)

For reasons of space we shall make just one concrete example in the next section about
how the research on a specific problem has evolved.

http://www.graphdrawing.org/symposia.html
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A Research Stream Example: Edge Partitions of 1-planar Graphs

A 1-planar drawing is a drawing where each edge is crossed at most once. A graph is 1-planar
if it admits a 1-planar drawing. A 1-planar embedding is an embedding that represents an
equivalence class of 1-planar drawings. A 1-plane graph is a graph with a fixed 1-planar
embedding. A 1-planar graph G with n vertices has at most 4n− 8 edges [3, 15], which is
a tight bound; namely those 1-planar graphs having n vertices and 4n− 8 edges are called
optimal 1-planar graphs.

An edge partition of a 1-planar graph G is an edge coloring of G with two colors, say red
and blue, such that both the graph formed by the red edges, called the red graph, and the
graph formed by the blue edges, called the blue graph, are planar. Note that, given a 1-planar
embedding of G, an edge partition of G can be constructed by coloring red an edge for each
pair of crossing edges, and by coloring blue the remaining edges. Czap and Hudák [4] proved
that every optimal 1-planar graph admits an edge partition such that the red graph is a
forest. This result has been later extended to all 1-planar graphs by Ackerman [1].

Motivated by visibility representations of 1-planar graphs (see, e.g., [2, 13, 13]), Lenhart
et al. [12] and Di Giacomo et al. [6] studied edge partitions such that the red graph has
maximum vertex degree that is bounded by a constant independent of the size of the graph.
Namely, Lenhart et al. [12] proved that if G is an n-vertex optimal 1-plane graph with a
an edge partition with the red graph GR being a forest, then GR has n vertices and it is
composed of two trees. Based on this finding, they proved that for any constant c, there
exists an optimal 1-plane graph such that in any edge partition with the red graph GR being
a forest, the maximum vertex degree of GR is at least c. On the positive side, if we drop
the acyclicity requirement, then every optimal 1-planar graph admits an edge partition such
that the red graph has maximum vertex degree at most four, and degree four is sometimes
needed [12]. Also, every 3-connected 1-planar graph admits an edge partition such that the
red graph has maximum vertex degree at most six, and degree six is sometimes needed,
as shown by Di Giacomo et al. [6]. Finally, for every n > 0 there exists an O(n)-vertex
2-connected 1-planar graph such that in any edge partition the red graph has maximum
vertex degree Ω(n) [6].
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Figure 2 Edge {x, y} cannot be added.
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3.2 Saturated Topological Graphs
Géza Tóth (Alfréd Rényi Institute of Mathematics – Budapest, HU)
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A simple topological graph G is a graph drawn in the plane so that any pair of edges have
at most one point in common, which is either an endpoint or a proper crossing. G is called
saturated if no further edge can be added so that it remains a simple topological graph.
Obviously, if G is a complete simple topological graph, then it is saturated.

The simple topological graph G1 on Figure 2, found by Kynčl, [7], has six vertices and if
we connect x and y by any curve as an edge, two edges with a common endpoint will cross
each other. So the resulting topological graph is not simple anymore. All other egdes can be
added, so we obtain a saturated simple topological graph of 6 vertices and 14 edges. From

http://creativecommons.org/licenses/by/3.0/
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Figure 3 Edge {x, y} cannot be added.

this we can construct a saturated simple topological graph of n vertices and
(
n
2
)
− bn/6c

edges.
It is a natural question to ask, whether every saturated simple topological graph with n

vertices must have Ω(n2) edges. It turned out, that there are examples with only a linear
number of edges.

I Theorem 1 (Kynčl, Pach, Radoičić, Tóth, [6]). For any n ≥ 4, let s(n) be the minimum
number of edges that a saturated simple topological graph on n vertices can have. Then

1.5n ≤ s1(n) ≤ 17.5n.

The upper bound construction is an iterated version of the topological graph G2 on
Figure 3. It is a simple topological graph, but if we connect vertex x in region X, and vertex
y in Y by a curve, it will cross one of the edges of G2 at least twice.

For the lower bound, it is proved that in a saturated simple topological graph each vertex
has degree at least three. Therefore, the number of edges is at least 1.5n.

The upper bound has been improved recently by Hajnal, Igamberdiev, Rote, and Schulz
[5]. For the lower bound, a natural way to improve it is to show that in a saturated simple
topological graph each vertex has degree at least four, or five, or even more. In [5] it is also
shown, that we can not expect too much improvement from this simple approach, there could
be a vertex of degree four, or many vertices of degree five.

I Theorem 2 (Hajnal, Igamberdiev, Rote, and Schulz [5]).
(i) s(n) ≤ 7n.
(ii) For every n ≥ 6 there is a saturated simple topological graph on n vertices with a vertex

of degree 4.
(iii) For every m ≥ 1 there is a saturated simple topological graph on 10m vertices with m

vertices of degree 5.

I Problem 3. Is there a saturated simple topological graph with a vertex of degree three?

I Problem 4. Construct a saturated simple topological graph with many vertices of degree
four.

I Problem 5. Improve the bounds for s(n).

In general, for any positive integer k, a topological graph is called k-simple if any two
edges have at most k points in common. We also assume that in a k-simple topological graph

16452
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Table 1 Upper bounds on the minimum number of edges in saturated k-simple topological graphs.

k 1 2 3 4 5 6 7 8 9 10 ≥ 11
upper bound [6] 17.5n 16n 14.5n 13.5n 13n 9.5n 10n 9.5n 7n 9.5n 7n

upper bound [5] 7n 14.5n

no edge crosses itself. A 1-simple topological graph is exactly a simple topological graph. It
is not obvious at all how to construct non-complete saturated k-simple topological graphs for
k > 1.

I Theorem 6 (Kynčl, Pach, Radoičić, Tóth, [6]). For any positive integers k and n ≥ 4,
let sk(n) be the minimum number of edges that a saturated k-simple topological graph on n
vertices can have. Then for k > 1 we have

n ≤ sk(n) ≤ 16n.

For k = 2, the upper bound was improved by Hajnal, Igamberdiev, Rote, and Schulz [5].

I Theorem 7 (Hajnal, Igamberdiev, Rote, and Schulz [5]). s2(n) ≤ 14.5n.

For the best upper bounds see Table 1.
In a graph G, an isolated triangle is a triangle (K3) which is not connected to any other

vertices. In the proof of the lower bound s(n) ≥ 1.5n, an essential step is that we prove that
there is no isolated triangle in a saturated simple topological graph. The proof does not work
for saturated k-simple topological graphs, for k > 1, therefore, in this case we can prove only
that every vertex has degree at least 2, which implies sk(n) ≥ n.

I Problem 8. For k > 1, can a saturated k-simple topological graph contain an isolated
triangle?

But unlike in the case of simple topological graphs, even if we knew that a saturated
k-simple topological graph can not contain an isolated triangle, we still can not prove that in
a saturated k-simple topological graph all vertices have degree at least 3.

I Problem 9. Is there a saturated k-simple topological graph for some k > 1 with a vertex
of degree two?

Probably the most natural and exciting problem in this topic is the following.

I Problem 10. Is it true that every saturated k-simple topological graph is connected?

The answer might depend on the value of k, and we do not know the answer for any k.
We assumed that in a k-simple topological graph, no edge can cross itself. For any k, a

graph drawn in the plane is called a k-complicated topological graph if any two edges have at
most k points in common, and an edge is allowed to cross itself, at most k times. Somewhat
surprisingly, for saturated k-complicated topological graphs we cannot even prove that every
vertex has degree at least two! We can only prove that a saturated k-complicated topological
graph does not have isolated vertices. Therefore, the best lower bound we have for the
minimum number of edges of a saturated k-complicated topological graph is ck(n) ≥ n/2.

I Problem 11. Is there a saturated k-complicated topological graph with a vertex of degree
one, for every k ≥ 1?
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Now we study a slightly different problem. It is an easy consequence of Euler’s Formula,
that every planar graph of n vertices has at most 3n− 6 edges. If it has exactly 3n− 6 edges,
then it is a triangulation. If it has less edges and it is drawn in the plane without crossings,
than we can extend it to a triangulation.

A topological graph is 1-plane, if each edge is crossed at most once. A graph is 1-planar,
if it has a 1-plane drawing. It is known that the maximum number of edges of a 1-plane or
1-planar graph is 4n− 8. Brandenburg et al. [3] and independently Eades et al. [4] observed
a very interesting phenomenon. They noticed that maximal 1-plane or maximal 1-planar
graphs can have much fewer edges.

I Theorem 12 (Brandenburg, Eppstein, Gleissner, Goodrich, Hanauer, Reislhuber [3]). Let e1(n)
(resp. e′1(n)) denote the minimum number of edges of a maximal 1-plane (resp. 1-planar)
graph of n vertices. Then we have

2.1n ≤ e1(n) ≤ 2.33n, 2.15n ≤ e′1(n) ≤ 2.64n.

Both lower bounds were recently improved to 2.22n [2].

I Problem 13. Improve the bounds for e1(n) and e′1(n).

For any n, e1(n) ≤ e′1(n) since any maximal 1-planar graph has a maximal 1-plane
drawing. Now the best known lower bounds are the same.

I Problem 14. Is it true that for every n e1(n) = e′1(n)?

In general, for every k ≥ 1, a topological graph is k-plane, if each edge is crossed at most
k times. A graph is k-planar, if it has a k-plane drawing. Let ek(n) (resp. e′k(n)) denote the
minimum number of edges of a maximal k-plane (resp. k-planar) graph of n vertices.

Auer et al. [1] proved that e2(n) ≤ 1.33n and e′2(n) ≤ 2.63n. It is not hard to see, that
ek(n) ≤ cn/k for some c > 0.

I Problem 15. Establish some nontrivial bounds for ek(n) and e′k(n).
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3.3 Drawing Graphs: Geometric Aspects Beyond Planarity
Alexander Wolff (Universität Würzburg, DE)
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Long before Graph Drawing has been established as scientific field, researchers have been
studying ways to draw planar graphs. A particularly intriguing question is whether any
planar graph can be drawn straight-line, that is, by mapping the vertices to points and the
edges to non-crossing line segments between their endpoints. This question was answered in
the affirmative, independently by Wagner [25], Fáry [15], and Stein [22]. Koebe [18] showed
an even stronger result by proving that any planar graph is a coin graph, that is, the vertices
can be mapped to pairwise interior-disjoint disks such that two disks touch if and only if the
corresponding vertices are adjacent. In a beautiful paper entitled “How to draw a graph”,
Tutte [23] gave a first constructive, efficient algorithm for drawing any (triconnected) planar
graph with straight-line edges (and convex faces). It is easy, however, to give examples
(such as the nested-triangles graph) where Tutte’s algorithm produces a drawing with an
exponential ratio between the lengths of the longest and the shortest edge. This led to the
question whether planar graphs can always been drawn straight-line on a grid of polynomial
size. Again, this was answered in the affirmative; independently by de Fraysseix et al. [5]
and by Schnyder [20].

Few graphs, however, are actually planar. Therefore, researchers in graph drawing and
related areas have recently become very interested in studying classes of close-to-planar
graphs. For example, Huang et al. [16] did a user study that showed that the crossing angle
has a strong influence on the readability of a graph drawing. Based on the results of this
user study, Didimo et al. [7] introduced the class of RAC graphs, that is, graphs that can be
drawn straight-line into the plane such that all crossings are at right angles.

In this abstract, I consider geometric aspects of the recent “beyond planarity” direction in
graph drawing. I focus on drawing graphs with low visual complexity. By visual complexity I
mean the number of geometric primitives needed to represent the graph; for example, slopes,
line segments and circular arcs, or lines and, in 3-space, planes (see following sections).

Other obvious geometric aspects “beyond planarity” are ways of dealing with crossings;
namely by making crossings nicer (such as insisting on large crossing angles [7] or using
edge casing [14]) or by eliminating crossings (such as confluent drawings where edges are
represented by the existence of locally-monotone curves between their endpoints [6] or partial
edge drawings where only fractions of each edge are drawn [2]). The layout of graphs can also
be subject to other geometric restrictions (such as tracks for the vertices [9]). In this short
overview, I will not deal with any of these aspects nor with topological graphs, nor with
graph representations beyond dot-link diagrams (such as intersection, contact, or visibility
representations, map graphs etc.).

Slope Number

Why are metro maps often drawn with a restricted set of slopes, for example, orthogonal,
hexagonal, or, most commonly, octilinear? Arguably, because such drawings have low visual
complexity, that is, they appear simpler and clearer than drawings where the number of
slopes is not restricted; especially if slopes are chosen such that the angular resolution – the
smallest angle between two edges incident to the same vertex – is large. For example, in an
octilinear drawing (where edge directions are multiples of 45◦), the angular resolution is at
least 45◦.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Seok-Hee Hong, Michael Kaufmann, Stephen G. Kobourov, and János Pach 47

Motivated by similar observations, Wade and Chu [24] introduced, for a given graph G, its
slope number, slope(G), as the minimum number of distinct slopes in a straight-line drawing
of G. Among others, they showed that, for n ≥ 3, slope(Kn) = n. Later, Dujmović et al. [10]
identified two simple lower bounds, namely slope(G) ≥ ∆(G)/2 and slope(G) ≥ δ(G), where
∆(G) is the maximum degree and δ(G) is the minumum degree of G. They asked whether
there is some universal function f such that, for any graph G, its slope number can be
upperbounded by f(∆(G)), independently of the size of G. Their question was answered to
the negative by Pach and Pálvögyi [19] and, independently, by Barát et al. [1]. Pach and
Pálvögyi [19] showed that for any sufficiently large integer n and ∆ ≥ 5, there is an n-vertex
graph G of maximum degree ∆ whose slope number is larger than n1/2−O(1/∆). This bound
was later improved to n1−O(1/∆) by Dujmović et al. [11]. They also proved positive results for
restricted graph classes; namely for interval, co-comparability, and AT-free graphs. Dujmović
et al. also showed that, if every edge can have a bend, ∆(G)+1 slopes suffice for any graph G.
To name another positive result, Jelínek et al. [17] showed that, for any planar partial 3-tree,
(∆(G))5 slopes suffice.

Segment Number and Arc Number

Another way to keep the visual complexity of a graph drawing low is to use few line segments.
This idea is captured by the segment number of a graph, that is, the smallest number of
line segments that together constitute a straight-line drawing of the given graph. The arc
number of a graph is defined analogously with respect to circular arcs. For a graph G, we
denote its segment number by seg(G) and its arc number by arc(G). So far, both numbers
have only been studied for planar graphs. Again, two obvious lower bounds for seg(G) are
known [8]; the slope number of G and η(G)/2, that is, the number of odd-degree vertices
of G over 2. Dujmović et al. [8], who introduced the segment number, showed that trees can
be drawn such that optimum segment number and slope number are achieved simultaneously.
In other words, any tree T admits a drawing with seg(T ) = η(T )/2 and slope(T ) = ∆(T )/2.
Unfortunately, these drawings need exponential area. Therefore, Schulz [21] suggested to
study the arc number of planar graphs. He showed that any tree with m edges can be
drawn on a polynomial-size grid (O(n1.81)× n) using at most 3m/4 arcs. Upper bounds for
segment number and arc number (as fractions of the number of edges, ignoring small additive
terms) are known for series-parallel graphs (3/4 vs. 1/2), planar 3-trees (2/3 vs. 11/18), and
triconnected planar graphs (5/6 vs. 2/3) [8, 21]. The upper bound on the segment number
for triconnected planar graphs has been improved for the special cases of triangulations and
4-connected triangulations (from 5/6 to 7/9 and 3/4, respectively) by Durocher and Mondal
[12]. Durocher et al. [13] showed that the segment number is NP-hard to compute, even in
the special case of arrangement graphs.

Line Cover Number and Plane Cover Number

The affine cover number ρd` (G) of a graph G is a generalization of planarity. It asks how
many `-dimensional planes are needed to cover a straight-line, crossing-free drawing of G
in d-dimensional space. Clearly, any graph can be drawn without crossings in 3-space, so
only the cases ` ∈ {1, 2} are interesting. As it turns out, host spaces of dimension greater
than three don’t help to reduce the affine cover number. Hence, only three combinations
of ` and d are worth studying for a given graph G: the plane cover number ρ3

2(G), the line
cover number ρ3

1(G) in 3-space, and, for any planar graph G, the line cover number ρ2
1(G)

in the plane. Chaplick et al. [4] introduced the affine cover number and related it to many
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known graph parameters. The also study the weak affine cover number where only the
vertices (but not the edges) of the given graph need to be covered. Concerning computational
complexity, Chaplick et al. [3] showed that deciding, for a given graph G and integer k,
whether ρ2

3(G) ≤ k, ρ1
3(G) ≤ k, or ρ1

2(G) ≤ k is (at least) NP-hard. On the positive side,
they showed that the two versions of the line cover number are fixed-parameter tractable.
For the plane cover number, however, the decision problem is NP-hard even for any fixed k;
hence, this problem is not fixed-parameter tractable.
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4.1 Working group A: Generalization of the Crossing Lemma
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The crossing number is a well-studied quantification on how far a given graph is from being
planar. The Crossing Lemma yields a lower bound on the crossing number. The lemma
has found many important applications to problems in incidence geometry, to sum-product
estimates and other Erdős problems. The lemma was discovered by Ajtai, Chvátal, Newborn,
Szemerédi [2], and, independently, by Leighton [1]. Twenty years ago an elegant proof based
on randomized amplification was found.

The crossing number cr(G) of a graph G = (V,E) is the smallest number of crossings
over all drawings of G in the plane, that is, vertices are represented by points and edges are
represented by curves connecting the corresponding points.

I Lemma 1 (Crossing Lemma). Let G = (V,E) be a simple graph (no loops and multiple
edges). If |V | = n, |E| = m and m ≥ 4n, then for the crossing number cr(G) we have
cr(G) ≥ cm3/n2 for some constant c > 0.

Since there are planar multi-graphs with a fixed number of vertices and an arbitrary
number of edges, there is no analog of the Crossing Lemma for general multi-graphs. In the
working group we were looking at a special case, where we only consider drawings which
are
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(i) simple, that is, edges are drawn as simple curves such that any two edges have at most
one point in common, a crossing or a common endpoint, and

(ii) non-homotopic, that is, the drawing has no pair of homotopic parallel edges, i.e. , for any
pair e1, e2 of parallel edges, both of the two regions bounded by e1 ∪ e2 in the drawing
contains at least one vertex of G.

Note that with these two assumptions, the maximum number of edges of a planar (multi)graph
of n vertices is still 3n− 6. We call such drawings of (multi-)graphs simple non-homotopic.

I Question. Does the Crossing Lemma still hold for multigraphs with simple non-homotopic
drawings? That is, are there constants c′, d > 0 such that if |V | = n, |E| = m and m ≥ dn,
then any simple non-homotopic drawing of G has at least c′m3/n2 crossings?

It was observed that the restriction to simple drawings is necessary. The following is a
description of a non-homotopic, but non-simple drawing where the Crossing Lemma fails: Let
G be the vertex-disjoint union of an independent set {c1, . . . , cn} and a complete bipartite
graph with bipartition classes {a1, . . . , an} and {b1, . . . , bn} where each edge has multiplicity
n. Hence G has 3n vertices and n3 edges. The vertices of G are placed on three horizontal
rows, with {a1, . . . , an} on top, {c1, . . . , cn} in the middle, and {b1, . . . , bn} below. For each
pair (ai, bj), 1 ≤ i, j ≤ n, the k-th edge between ai and bj , 1 ≤ k ≤ n, is routed using
two straight segments: the first from ai to a point between ck and ck+1, and the second
from that point to bj . This way every region defined by parallel edges contains at least
one vertex ck, i.e., no two parallel edges are homotopic. Clearly, each pair of independent
edges crosses at most twice and any two adjacent edges cross at most once. Thus the
number of crossings in the drawing of G is less than twice its number of edges squared, i.e.,
cr < 2n6 = O(n6). On the other hand the Crossing Lemma would predict a lower bound of
Ω(m3/n2) = Ω(n9/n2) = Ω(n7), which is not true for our example.

In this regime of topological non-homotopic drawings we can prove the following partial
results.

The Crossing Lemma still holds for any simple non-homotopic drawing of G in which
each edge is an x-monotone curve.
The Crossing Lemma still holds for any simple non-homotopic drawing of G with the
additional property that parallel edges cross exactly the same edges.
There exist constants c′, d > 0 such that if |V | = n, |E| = m and m ≥ dn, then any
simple non-homotopic drawing of G has at least c′m2.5/n1.5 crossings.

There is a lack of constructions for topological non-homotopic drawings with high edge
multiplicities. Inspired by Moon’s drawing of the complete graph [3] we could find drawings
of multi-matchings with |V | = 2n, |E| = 2n(n− 1) and cr ≈ n4.
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(a) (b) (c) (d) (e) (f)

Figure 4 (a) A crossing configuration that is forbidden in a 3-planar topological graph (the
thick edge is crossed more than three times). (b) A 3-planar topological graph. (c) A crossing
configuration that is forbidden in a 4-quasi planar topological graph. (d) A 4-quasi planar topological
graph obtained from the one of Figure (c) by suitably rerouting the thick edge. (e) An untangled
3-crossing; all vertices belong to the same face of the arrangement (the outer face). (f) A tangled
3-crossing; the circled vertices and the solid vertices belong to distinct faces of the arrangement.

4.2 Working group B1: On the Relationship between k-Planar and
k-Quasi Planar Graphs

Patrizio Angelini (Universität Tübingen, DE), Michael Bekos (Universität Tübingen, DE),
Franz J. Brandenburg (Universität Passau, DE), Giordano Da Lozzo (University of California
– Irvine, US), Giuseppe Di Battista (Roma Tre University, IT), Walter Didimo (University of
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Introduction and Preliminaries

Drawings of graphs are used in a variety of application domains. The aim of a graph
visualization is to clearly convey the structure of the data and their relationships, in order to
support users in their analysis tasks. In this respect, there is a general consensus that graph
layouts with many edge crossings are hard to read, as also witnessed by several user studies
on the subject (see e.g. [9]). An emerging research area, informally recognized as beyond
planarity, concentrates on different models of graph planarity relaxations, which allow edge
crossings but forbid specific configurations that would affect the readability too much.

Two of the most popular families in this context are the k-planar and the k-quasi planar
graphs, which are usually defined in terms of topological graphs, i.e., graphs with a geometric
representation in the plane with vertices as points and edges as Jordan arcs connecting their
endpoints. Namely, a topological graph is k-planar (k ≥ 1) if each edge is crossed at most
k times, while it is k-quasi planar (k ≥ 2) if it contains no k pairwise crossing edges. The
2-quasi planar graphs coincide with the planar graphs; also, 3-quasi planar graphs are simply
called quasi planar. If G and G′ are two isomorphic graphs, we write G ' G′. A graph G′ is
k-planar (k-quasi planar) if there exists a k-planar (k-quasi planar) topological graph G such
that G ' G′. Figure 4a shows a crossing configuration that is forbidden in a 3-planar graph.
Figure 4b depicts a 3-planar topological graph that is not 2-planar (the thick edge is crossed
three times). Figure 4c shows a crossing configuration that is forbidden in a 4-quasi planar
graph. Figure 4d depicts a 4-quasi planar topological graph that is not 3-quasi planar.

The k-planarity and k-quasi planarity hierarchies have been widely explored in graph
theory, graph drawing, and computational geometry, mostly in terms of edge density. Pach
and Tóth [7] proved that an n-vertex k-planar simple topological graph has at most 1.408

√
kn
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edges. For k ≤ 4, they established a finer bound of (k + 3)(n− 2), which is tight for k ≤ 2.
For k = 3, the best known upper bound is 5.5n− 11, which is tight up to a constant [4, 5].

Concerning k-quasi planar graphs, a 20-year-old conjecture by Pach, Shahrokhi, and
Szegedy [6] asserts that, for every fixed k, the maximum number of edges in a k-quasi-planar
graph with n vertices is O(n). However, so far, linear bounds have been proven only for
k ≤ 4; see the works of Agarwal et al. [3], Pach et al. [5], Ackerman and Tardos [2], and
Ackerman [1]. For k ≥ 5, several authors proved super-linear upper bounds; the most recent
results are due to Suk and Walczak [8], who proved that any k-quasi planar simple topological
graph on n vertices has at most ckn logn edges, where ck is a number depending only on k.

During this Dagstuhl Seminar, we studied inclusion relationships between the hierarchies
of k-planar graphs and of k-quasi planar graphs. Note that some results on this relationship
can be immediately derived from the definition of the two classes and from the previous
results on their maximum edge density. For example, 3-quasi planar graphs can be denser
than 3-planar graphs, and thus there are infinitely many 3-quasi planar graphs that are not
3-planar. On the other hand, for any k ≥ 1, every k-planar graph is (k + 2)-quasi planar, as
in a set of k + 2 mutually crossing edges every edge is crossed at least k + 1 times. In this
work we ask whether every k-planar simple graph is (k + 1)-quasi planar, and prove that
this is true for any k ≥ 3. Note that for k = 1 the answer is trivially negative, since 2-quasi
planar graphs are planar. We thus leave the question open for k = 2.

Basic Definitions

Two edges cross if they share one interior point and alternate around it. Two edges intersect
if they either cross or share a common endpoint. A graph is almost simple if any two edges
cross at most once, and simple if any two edges intersect at most once. A graph divides the
plane into connected regions, called faces. The unbounded region is the outer face.

Given a subgraph X of a graph G, the arrangement of X, denoted by AX , is the
arrangement of the curves corresponding to the edges of X. We denote the vertices and
edges of X by V (X) and E(X). A node of AX is either a vertex or a crossing point of X. A
segment of AX is a part of an edge of X that connects two nodes, i.e., a maximal uncrossed
part of an edge of X. A fan is a set of edges that share a common endpoint. A set of k
vertex-disjoint mutually crossing edges in a topological graph G is called a k-crossing. A
k-crossing X is untangled if in the arrangement AX of X all nodes corresponding to vertices
in V (X) are incident to a common face. Otherwise, it is tangled. For example, the 3-crossing
in Figure 4e is untangled, whereas the one in Figure 4f is tangled. We observe the following.

I Observation 1. Let G = (V,E) be a k-planar simple topological graph and let X be a
(k + 1)-crossing in G. An edge in E(X) cannot be crossed by any other edge in E \ E(X).
In particular, for any two distinct (k + 1)-crossings X and Y in G, E(X) ∩ E(Y ) = ∅ holds.

Edge Rerouting Operations and Proof Strategy

The strategy of our proof works as follows. Let G be any k-planar simple topological graph.
First, we show that it is possible to assume that every (k + 1)-crossing in G is untangled.

For this, we provide a technique to locally redraw the edges of any (k + 1)-crossing without
creating any other crossing, which may be of independent interest; see Figure 5c and 5d.

Second, we define an edge rerouting operation to redraw a single edge e = {u, v} ∈ E(X)
of an untangled (k + 1)-crossing X of a k-planar simple topological graph G in order to
remove this (k + 1)-crossing while not introducing any new one. This operation is illustrated
in Figure 5a and 5b and formally defined as follows. Consider a vertex w ∈ V (X) \ {u, v}.
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Figure 5 The rerouting operation for dissolving untangled k-crossings. (a) An untangled k-crossing
X. (b) The rerouting of the dashed edge (u, v) around the marked vertex w. The arrangement A′

X

is thin red, the removed nodes and segments are gray. Note that the dashed curve is part of A′
X .

Illustration of the untangling procedure. (c) A 3-planar simple topological graph with a 4-crossing
X. (d) The topological graph resulting from the procedure that untangles X.

Denote by A′X the arrangement obtained from the original arrangement AX of X by removing
all nodes corresponding to vertices in V (X) \ {u, v, w}, together with their incident segments,
and by removing edge (u, v). The operation of rerouting e = {u, v} around w consists of
redrawing e sufficiently close to the boundary of the outer face of A′X , choosing the routing
that passes close to w, in such a way that e does not cross any edge in E \ E(X) except for
the fan incident to w. More precisely, let D be a topological disk that encloses all crossing
points of X and such each that edge in E(X) crosses the boundary of D exactly twice. Then,
the rerouted edge keeps unchanged the parts of e that go from u to the boundary of D and
from v to the boundary of D. We call the unchanged parts of a rerouted edge its tips and
the part that routes around w its hook.

We can prove the topological graph G′ ' G obtained by applying this operation has fewer
(k + 1)-crossings than G and is almost-simple. However, G′ may be not simple and may be
not k-planar any longer. While simplicity can be later obtained by suitably redrawing some
edges in G′, as we will discuss later, the fact that G′ is not k-planar does not allow us to use
an algorithm in which the (k + 1)-crossings are removed one-by-one by repeatedly applying
this operation.

We thus define a global rerouting operation, which picks an edge from each (k+1)-crossing
in G and applies the rerouting operation simultaneously for all of these edges. Note that
the global rerouting is well-defined since the (k + 1)-crossings are pairwise edge-disjoint by
Observation 1. As discussed above, we proved that a single edge rerouting operation yields an
almost-simple graph with fewer (k + 1)-crossings. We now discuss the analogous properties
for a global rerouting. In terms of (k+ 1)-crossings, all those that were present in the original
graph have been removed by the single operations composing the global rerouting. Further,
we can prove that no new (k + 1)-crossing can be created by any global rerouting, and hence
that the resulting topological graph G′ ' G is (k + 1)-quasi planar. We remark that this is
the only argument that fails when k = 2, and is the reason why we can state the result only
for k ≥ 3. In order to ensure that G′ is also almost-simple, on the other hand, we cannot
perform any global rerouting, but we have to be careful in the choice of the edges to reroute
and of the vertices around which these edges are rerouted. We discuss the conditions for G′
to be almost simple in the following lemma.

I Lemma 2. Graph G′ is an almost-simple topological graph if and only if the following
conditions hold.
C.1 No two edges are rerouted around the same vertex; see Figure 6a.
C.2 There is no pair of edges e, d such that e is rerouted around an endpoint of d and d is

rerouted around an endpoint of e; see Figure 6b.
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Figure 6 (a–b) Topological graphs that are not almost simple, arising from a global rerouting.
(c) Avoiding the non-simplicity in (b) by redrawing one the two rerouted in edges. The vertices used
for rerouting are filled green. Dotted parts of the drawing may consist of several vertices and edges.
(d) Illustration for the redrawing technique to obtain simplicity.

In order to satisfy Condition C.2, we model the problem of choosing the vertices around
which the edges have to be rerouted as a matching problem on a suitably defined bipartite
graph, and prove that such a matching always exists by using the Hall’s theorem.

Hence, after applying the global rerouting, if two edges cross more than once, then
this is due to Condition C.2. In this case, we prove that it is possible to redraw one of
these two edges, namely its portion between the two crossing points, without creating new
(k + 1)-crossings and without crossing any other edge more than once; see Figure 6b and 6c.

Once all the pairs of edges that cross more than once have been resolved, hence obtaining
an almost-simple topological graph G′ that is still (k + 1)-quasi planar, it only remains to
make G′ simple, by resolving the possible pairs of adjacent edges that cross with each other.
To do so, we again employ suitable redrawing techniques that do not break (k + 1)-quasi
planarity and do not introduce undesired crossings; see Figure 6d for an example.

As a final result of this work, we hence obtain the following theorem.

I Theorem 3. For any k ≥ 3, every k-planar graph is (k + 1)-quasi planar.
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4.3 Working group B2: Beyond-Planarity of Graphs with Bounded
Degree

Muhammad Jawaherul Alam (University of California – Irvine, US), Kathrin Hanauer (Uni-
versität Passau, DE), Seok-Hee Hong (The University of Sydney, AU), Stephen G. Kobourov
(University of Arizona – Tucson, US), Quan Nguyen (The University of Sydney), Sergey
Pupyrev (Facebook – Menlo Park, US), and Md. Saidur Rahman (Bangladesh University of
Eng.& Technology, BD)

License Creative Commons BY 3.0 Unported license
© Muhammad Jawaherul Alam, Kathrin Hanauer, Seok-Hee Hong, Stephen G. Kobourov, Quan
Nguyen, Sergey Pupyrev, and Md. Saidur Rahman

We consider several problems related to beyond-planar graphs, that is, non-planar graphs
with topological constraints such as specific types of crossings, or with some forbidden
crossing patterns. In this context, we study graphs of bounded maximum degree.

Let G = (V,E) be a graph with maximum vertex degree ∆. Furthermore, G is . . .
cubic if every vertex of G has degree exactly three.
quasi-planar if G has an embedding so that there are no three pairwise crossing edges.
outer-quasi-planar if G is quasi-planar with the additional restriction that all vertices are

incident to the outer face.
2-layer quasi-planar if G is outer-quasi-planar with the vertices being predefined to reside

on exactly one of two layers.
1-sided 2-layer quasi-planar if G is 2-layer quasi-planar and the ordering on one layer is

fixed.
right-angle crossing (RAC) if G has a straight-line drawing in the plane so that all crossings

have a 90 degree angle.
fan-crossing-free if G has an embedding so that no edge crosses two or more other edges

that have a common end vertex.

Known Related Results

If G has geometric thickness of at most two, it can be embedded as two stacked planar
graphs, which cannot produce a pairwise crossing of more than two edges.

I Proposition 1. Every graph with a geometric thickness of at most two is quasi-planar.

I Proposition 2 ([2]). Leveled-planarity testing is NP-hard.

I Proposition 3 ([1]). Every hamiltonian cubic graph is RAC.

Discussed Questions

I Question 4. What is the computational complexity of recognizing quasi-planar graphs with
maximum degree ∆?

As the (geometric) thickness of graphs with ∆ ≤ 4 is known to be two, all such graphs are
quasi-planar by Proposition 1. An interesting case is ∆ = 5. A possibly useful observation is
that the graphs of maximum degree five have linear arboricity three, that is, they can be
decomposed into three sets of edge-disjoint linear forests (every forest is a set of paths).

I Question 5. What is the complexity of recognizing outer-quasi-planar or 2-layer quasi-
planar graphs with maximum degree ∆?
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As leveled-planarity testing is NP-hard (see Proposition 2) and every leveled-planar graph
is outer-quasi-planar, also testing 2-layer quasi-planarity might be NP-hard. However, the
other direction of the reduction is unclear.

The general outer-quasi-planar case remains open.

I Question 6. For what values of ∆ are the graphs of bounded maximum degree RAC? What
is the complexity of recognizing RAC graphs of bounded maximum degree?

Since K6 does not admit a RAC drawing and graphs with ∆ = 2 are cycles, the above
question is interesting for ∆ = 3 and ∆ = 4.

Bekos et al. show how to construct a RAC drawing for a hamiltonian cubic graph
(Proposition 3), but the general case is open.

Note that every RAC drawing is quasi-planar as well as fan-crossing-free (graphs which
can be embedded without fan-crossings). Hence, in order to answer Question 6, we first need
to resolve the following one:

I Question 7. Is it true that every graph of maximum degree ∆ = 3 (∆ = 4) admits a
(non-geometric, that is, with curves) both quasi-planar and fan-crossing-free drawing?

Question 7 seems to be straightforward for ∆ = 3 (at least for 3-connected cubic graphs that
admit a decomposition into three matchings) but less so for ∆ = 4.

Another set of questions is related to the density of non-planar graphs:

IQuestion 8. What is the minimum density of maximal quasi-planar/outer-quasi-planar/RAC
graphs?
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Orthogonal drawings date back to the 80’s, with Valiant’s [8], Leiserson’s [6] and Leighton’s [7]
work on VLSI layouts and floor-planning applications and have been extensively studied over
the years. The quality of an orthogonal drawing can be judged based on several aestetics
criteria such as the required area, the total edge length, the total number of bends or
maximum number of bends per edge. Towards the direction of “smoothening” an orthogonal
drawing and improving its readability, Bekos et al. [4] introduced smooth orthogonal drawings
that combine the clarity of orthogonal layouts and the artistic style of Lombardi drawings [5]
by “replacing” the bends of the edges with smooth circular arcs.
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(a) OC3-layout (b) SC1-layout

Figure 7 Different 2-planar drawings of K5.

To the best of our knowledge, smooth orthogonal drawings have only been considered for
planar graphs. We are interested in orthogonal and smooth orthogonal layouts of non-planar
graphs such as 1-planar graphs that admit a drawing with at most one crossing per edge.
Our goal is to study how typical aesthetics criteria for planar (smooth) orthogonal drawings,
e.g., edge complexity, extend to non-planar drawings. We consider drawings, where vertices
are mapped to points in R2 and edges are mapped to curves of the following two types.
Orthogonal Layout: Each edge is drawn as a sequence of vertical and horizontal line segments.

Two segments meet in a bend.
Smooth Orthogonal Layout [4]: Each edge is drawn as a sequence of vertical and horizontal

line segments as well as circular arcs: quarter circles, semicircles, and three-quarter circles.
Where segments meet, they must have a common tangent.

The curve complexity of a drawing is the maximum number of segments used for an edge.
An OCk-layout is an orthogonal layout with curve complexity k, i.e., an orthogonal layout
with at most k − 1 bends per edge. A SCk-layout is a smooth orthogonal layout with curve
complexity k. We concentrate on graphs with a fixed embedding, i.e., a fixed rotation system
and a fixed outer face.

As already mentioned, smooth orthogonal drawings have only been considered for planar
graphs. Moreover, the vertex degree is usually restricted to four since every vertex has four
available ports (North, South, East, West), where the edges enter and leave a vertex with
horizontal or vertical tangents. In addition, the usual model insists that no two segments
incident to the same vertex can use the same port. Note that using the same port necessarily
causes overlaps only in the case of straight-line segments.

Biedl and Kant [3] presented a linear-time and -space algorithm that draws any connected
graph of maximum degree four orthogonally on a grid of size n × n with at most 2n + 2
bends, where each edge is bent at most twice. Note that their approach introduces crossings
to the produced drawing. For the case that the given graph is planar, they describe how to
obtain a planar orthogonal drawing with at most two bends per edge, except possibly for
one edge on the outer face.

The smallest non-planar graph is K5, which is 1-planar. Following the general algorithm
of Biedl and Kant, we get an orthogonal drawing of K5 with edge-complexity three (two
bends per edge) as in Figure 7a. The resulting drawing is 2-planar. Bekos et al. [2] have
shown that any biconnected graph of maximum degree four admits a (non-planar) SC1-layout.
For a (2-planar) SC1-drawing of K5, see Figure 7b.

We focus on 1-planar (and 1-plane) graphs. In the following, we examine the curve
complexity of 1-plane drawings in the orthogonal and smooth orthogonal drawing style.
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(a) OC4-layout of K5

a b

c

(b) OC4-layout of a 9-vertex graph

Figure 8 Biconnected 1-plane graphs that do not admit an OC3-layout.

Orthogonal 1-Plane Drawings

In this section, we examine the case of orthogonal 1-plane drawings and we present one
negative and one positive result. Namely, we show using a counterexample that not every
biconnected graph of maximum degree four with a fixed embedding admits an OC3-layout,
whereas we prove that every biconnected 1-planar graph of maximum degree four admits an
OC5-layout.

I Theorem 1. Not every biconnected graph of maximum degree four with a fixed embedding
admits an OC3-layout.

Proof. The complete graph on five vertices has the above property (Figure 8a). For another
example refer to Figure 8b: Vertices a, b and c create a triangle T and all vertices have their
two remaining ports in the interior of T . Then, T has at least seven bends, and therefore at
least one edge of T has at least three bends and edge-complexity four. J

I Corollary 2. There is a biconnected 1-planar graph of maximum degree four with n vertices
and a given embedding that has O(n) edges with at least three bends in any OC4-layout
respecting the embedding.

Proof. We use t copies of the graph of Figure 8b in a column by connecting the gray vertices.
The graph has n = 9t vertices and O(n) edges. J

I Theorem 3. Every biconnected 1-planar graph of maximum degree four admits an OC5-
layout.

Proof. Our algorithm is a slight modification of the algorithm of Biedl and Kant [3]. First
we planarize the given 1-planar embedding by introducing dummy vertices at crossings.

By the algorithm of Biedl and Kant, all edges have at most two bends, except possibly
for one edge on the outer face that can have three bends. We only have to make sure that
we do not introduce more than four bends in any edge adjacent to the outer face. All other
crossing edges have at most four bends and therefore edge-complexity five.

The algorithm of Bield and Kant computes the drawing incrementally based on an
st-numbering of the vertices of the graph i.e., each edge must have at least one predecessor
(except s) and at least one successor (except t). Also, since our graph is biconnected, for
any s, t ∈ V , there exists an st-numbering such that s is the sink vertex and t is the source
vertex. We claim that we can choose s and t so that no edge has four bends. We consider
the following three cases.
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Figure 9 Different cases for the outer face.

(a) (b) (c) (d)

Figure 10 (a) SC1-layouts for K4 and (b)–(c) for K4− e with restricted ports. (d) A biconnected
outer-1 plane graph that does not have an SC1-layout.

The outer face has at least two crossings. Let s and t be the dummy vertices at the cross-
ings. Then the crossing edge that enters t from above (s from below) had at most three
bends before entering and at most one after entering; see Figures 9a-9b respectively.

The outer face has one crossing. Let t be the dummy vertex at the crossing. For t we can
argue as above. Let s be any vertex on the outer face. If s has degree less than four, we
don’t use the bottom port of s, and there is no problem. Otherwise s has degree four;
there is at least one neighbor s′ 6= t on the outer face. We route the edge (s, s′) through
the bottom port of s. It has no crossing, hence it gets at most three bends.

The outer face has no crossings. No problem (see Figure 9c).
J

Smooth Orthogonal 1-Plane Drawings

We focus on outerplane 1-planar graphs (in short: outer-1 plane graphs), and start with the
following observation. The complete graph on four vertices with free ports towards its outer
face has a unique SC1-layout, shown in Figure 10a. Removing one edge, and restricting all
ports towards its outer face, there exist two SC1-layouts, shown in Figures 10b and 10c.

I Theorem 4. Not every biconnected outer-1 plane graph has an SC1-layout.

Proof. Take the graph in Fig. 10d. It has two subgraphs isomorphic to K4−e (with restricted
ports) that share a vertex. It is not possible to combine any of the two possible SC1-layouts
for one copy of K4 − e with any SC1-layout for the other copy. J

I Theorem 5. Every biconnected outer-1 plane graph has an SC4-layout.

Proof. Planarize and apply the algorithm of Bekos et al. [1] that produces an SC2-layout. J

I Theorem 6. Every biconnected outer-1 plane graph where the endpoints of any two crossing
edges induce a K4 has an SC1-layout.
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(a) (b) (c)

Figure 11 Example.

Proof. In this case all copies of K4 are vertex-disjoint. We remove all pairs of crossing edges,
producing a biconnected outerplane graph. This turns each copy of K4 into a face of length
four. We use the algorithm of Bekos et al. [1]. Whenever we want to add a “special” face of
length four, we use the SC1-layout of Figure 10a. We have to check and prove that invariants
are preserved, that the algorithm can start, and that the diagonal stripes are well-defined.
The area can be exponential. J

Future Work

Can this be extended to all outer-1 plane graphs where crossings are vertex-disjoint?

In Figure 11a we have a face defined by vertices and crossing points, and in Figure 11c
its SC1-layout. The free ports, force components attached to the face with two edges, to
be drawn before the diagonal.
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