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Abstract
Many practical scenarios make it necessary to evaluate top-k queries over data items with par-
tially unknown values. This paper considers a setting where the values are taken from a numerical
domain, and where some partial order constraints are given over known and unknown values: un-
der these constraints, we assume that all possible worlds are equally likely. Our work is the first
to propose a principled scheme to derive the value distributions and expected values of unknown
items in this setting, with the goal of computing estimated top-k results by interpolating the un-
known values from the known ones. We study the complexity of this general task, and show tight
complexity bounds, proving that the problem is intractable, but can be tractably approximated.
We then consider the case of tree-shaped partial orders, where we show a constructive PTIME
solution. We also compare our problem setting to other top-k definitions on uncertain data.
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1 Introduction

Many data analysis tasks involve queries over ordered data, such as maximum and top-k
queries, which must often be evaluated in presence of unknown data values. This problem
occurs in many real-life scenarios: retrieving or computing exact data values is often expensive,
but querying the partially unknown data may still be useful to obtain approximate results,
or to decide which data values should be retrieved next. In such contexts, we can often make
use of order constraints relating the data values, even when they are unknown: for instance,
we know that object A is preferred to object B (though we do not know their exact rating).

This paper thus studies the following general problem. We consider a set of numerical
values, some of which are unknown, and we assume a partial order on these values: we may
know that x > y should hold although the values x or y are unknown. Our goal is to estimate
the unknown values, in a principled way, and to evaluate top-k queries, namely find the
items with (estimated) highest values.

Without further information, one may assume that every valuation compatible with
the order constraints is equally likely, i.e., build a probabilistic model where valuations are
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5:2 Top-k Querying of Unknown Values under Order Constraints
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Figure 1 Sample catalog taxonomy with compatibility scores.

uniformly distributed. Indeed, uniform distributions in the absence of prior knowledge is a
common assumption in probabilistic data management [1, 12, 34] for continuous distributions
on data values within an interval; here we generalize to a uniform distribution over multiple
unknown values. Though the distribution is uniform, the dependencies between values lead
to non-trivial insights about unknown values and top-k results, as we will illustrate.

Illustrative example. We consider a specific application setting where our problem occurs.
Consider a scenario where products are classified in a catalog taxonomy (Figure 1) using
human input: the relevance of a product to any category is captured by a compatibility
score. Assessing this compatibility is often left to human judgement rather than attempting
to derive it from records or statistics [49, 9, 40]. Thus we assume scores are obtained via
questions to domain experts or to a crowd of unqualified users1. Our goal is to assign the
product to the top-k most compatible categories among a set of end categories (in yellow
with a solid border), as opposed to virtual categories (dashed border). The virtual categories
generalize the end categories, and allow us to ask broader questions to experts, but we do not
try to assign products to them, e.g., they do not have a dedicated page in our online store.

Imagine now that the product to classify is a smartwatch, and that we want to find
the top-2 end categories for it. We asked an expert for its compatibility score with some
categories (both end and virtual categories), which we indicate in Figure 1. Because expert
input is costly, however, we wish to choose the top-2 end categories based on the incomplete
information that we have. The naïve answer is to look only at categories with known scores,
and to identify Wearable Devices and Diving Watches as the best end categories.

In this scenario, however, we can impose a natural partial order over the scores, both
known and unknown: any product that belongs to a specific category (e.g., Smartphones)
conceptually also belongs to each of the more general categories (e.g., Cell Phones). We can
thus require that if a category x is a sub-category of y, then the product’s compatibility
score for x should be at most its score for y. This can be explained in the instructions to the
humans providing the scores, and enforced by the user interface. Beyond this constraint, we
do not make any further assumption on the scores.

Now, note that due to order constraints, the scores of Watches and Diving Gear, while
unknown, cannot be lower than that of Diving Watches; so either of the two could replace
Diving Watches in the top-2 answer. To choose between these categories, we observe that
the score of Diving Gear must be exactly 0.5 (which bounds it from above and below). In
contrast, as the score of Wearable Devices is 0.9, Clothing has a score of at least 0.9, so the
score of Watches can be anything between 0.5 and an unknown value which is > 0.9. A

1 In the latter case, we aggregate the answers of multiple workers to obtain the compatibility score.
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better top-2 answer is thus Wearable Devices and Watches, the latter being likely to have a
higher score than Diving Watches (or Diving Gear).

Other application domains. Beyond the crowdsourcing example that we illustrate, our
setting is relevant to many other application domains involving different types of unknown
data. For instance, in the domain of Web services [46], one may wish to find the k-most
relevant apartments for a user, given user-provided criteria on the apartment (price range,
location, size, etc.) but no precise way to aggregate them into a relevance function. In this
case, order constraints may be imposed on the unknown relevance of apartments, whenever
one apartment dominates another (i.e., is better for each criterion); exact-value constraints
may capture user-provided ratings to viewed apartments; and a top-k query could be used,
e.g., to select the most relevant apartments among those available for sale.

As another example, in the context of top-k queries over sensor data [25, 35], one may
wish to find the k-fastest drivers in a certain region given partial data from speedometers
and street cameras; comparing the progress and locations of vehicles may yield partial order
constraints on their speed. Other domains include, e.g., data mining [3], managing preference
data [48], or finding optimal values of black-box functions expressing cost, running time, etc.

Contributions. As previously mentioned, we assume a uniform probability distribution over
valuations of unknown items, which we capture formally in our model via possible-world
semantics. We then use the expected values of items as an estimate of their unknown values,
for the sake of top-k computation (see Section 2). Our work presents three main contributions
using this general model, as follows.

First, in Section 3 we present a general and principled scheme to interpolate unknown
values from known ones under partial order constraints, and thereby obtain the top-k such
values. We implement this in an algorithm that is polynomial in the number of possible
item orderings, and consequently show that in the worst case it is in FP#P in the size of the
input.2 The problem of finding expected values has a geometric characterization as centroid
computation in high-dimensional polytopes (as we explain further); however, our FP#P

membership result goes beyond existing computational geometry results since the constraints
that we consider, namely, partial order and exact-value constraints, correspond to special
classes of polytopes not studied in the context of geometry. Indeed, centroid computation is
generally not in FP#P [32, 42]. Our work also departs from previous work on top-k queries
over incomplete or probabilistic data [15, 28, 46]: we do not make the simplifying assumption
that item distributions are independent and given, but rather study the effect of constraints
on individual item distributions.

Our second main contribution, in Section 4, is to establish hardness results, and specifically,
a matching lower FP#P bound for top-k computation. While the #P-hardness of computing
expected values follows from the geometric characterization of the problem [42], we show
that top-k is hard even without computing expected values. Hence the FP#P bound is
tight for both interpolation and top-k; this shows that the assumption regarding variable
independence in previous work, that enables PTIME solutions [15, 28, 46], indeed simplifies
the problem. To complete the picture we discuss possible approximation schemes for the
interpolation and top-k problems, again by the connection to centroid computation.

2 #P is the class of counting problems that return the number of solutions of NP problems. FP#P is the
class of function problems that can be computed in PTIME using a #P oracle.
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Our third main contribution, in Section 5, is the study of tractable cases, following the
hardness of the general problem and the high complexity of approximation. We devise a
PTIME algorithm to compute expected values and top-k results when the order constraints
are tree-shaped or decomposable to trees. This class of constraints is commonly encountered
in the context of unknown values (e.g., taxonomies of products are often trees rather than
DAGs); yet, to our knowledge, the corresponding polytopes have no equivalents in the context
of computational geometry.

Our results also include a review of existing definitions for top-k over uncertain data,
which motivates our particular choice of definition (in Section 6). We survey related work in
more depth in Section 7 and conclude in Section 8. Full proofs of our results can be found
in [5], an extended version of this paper.

2 Preliminaries and Problem Statement

This section introduces the formal definitions for the problem that we study in this paper.
We model known and unknown item values as variables, and order constraints as equalities
and inequalities over them. Then we define the possible valuations for the variables via
possible-world semantics, and use this semantics to define a uniform distribution where all
worlds are equally likely. The problem of top-k querying over unknown values can then be
formally defined with respect to the expected values of variables in the resulting distribution.

2.1 Unknown Data Values under Constraints

Our input includes a set X = {x1, . . . , xn} of variables with unknown values v(x1), . . . , v(xn),
which we assume3 to be in the range [0, 1]. We consider two kinds of constraints over them:

order constraints, written xi 6 xj for xi, xj ∈ X , encoding that v(xi) 6 v(xj);
exact-value constraints to represent variables with known values, written4 xi = α for
0 6 α 6 1 and for xi ∈ X , encoding that v(xi) = α.

In what follows, a constraint set with constraints of both types is typically denoted C. We
assume that constraints in C are not contradictory (e.g., we forbid x = 0.1, y = 0.2, y 6 z,
and z 6 x), and that they are closed under implication: e.g., if x = α, y = β are given,
and α 6 β, then x 6 y is implied and thus should also be in C. We can check in PTIME
that C is non-contradictory by simply verifying that it does not entail a false inequality on
exact values (e.g., 0.2 6 0.1 as in our previous example). The closure of C can be found in
PTIME as a transitive closure computation [27] that also considers exact-value constraints.
We denote by Xexact the subset of X formed of variables with exact-value constraints.

I Example 1. In the product classification example from the Introduction, a variable xi ∈ X
would represent the compatibility score of the product to the i-th category. If the score is
known, we would encode it as a constraint xi = α. In addition, C would contain the order
constraint xi 6 xj whenever category i is a sub-category of j (recall that the score of a
sub-category cannot be higher than that of an ancestor category).

3 Our results extend to other bounded, continuous ranges, because we can rescale them to fall in [0, 1].
4 The number α is written as a rational number, represented by its numerator and denominator.
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2.2 Possible World Semantics
The unknown data captured by X and C makes infinitely many valuations of X possible
(including the true one). We model these options via possible world semantics: a possible
world w for a constraint set C over X = {x1, . . . , xn} is a vector of values w = (v1, . . . , vn) ∈
[0, 1]n, corresponding to setting v(xi) := vi for all i, such that all the constraints of C hold
under this valuation. The set of all possible worlds is denoted by pwX (C), or by pw(C) when
X is clear from context.

Notice that C can be encoded as a set of linear constraints, i.e., a set of inequalities
between linear expressions on X and constants in [0, 1]. Thus, following common practice in
linear programming, the feasible region of a set of linear constraints (pw(C) in our setting) can
be characterized geometrically as a convex polytope, termed the admissible polytope: writing
n := |X |, each linear constraint defines a feasible half-space of Rn (e.g., the half-space where
x 6 y), and the convex polytope pw(C) is the intersection of all half-spaces. In our setting
the polytope pw(C) is bounded within [0, 1]n, and it is non-empty by our assumption that C
is not contradictory. With exact-value constraints, or order constraints such as xi 6 xj and
xj 6 xi, it may be the case that the dimension of this admissible polytope is less than |X |.
Computing this dimension can easily be done in PTIME (see, e.g., [44]).

I Example 2. Let X = {x, y, z}. If C = {x 6 y}, the admissible polytope has dimension 3
and is bounded by the planes defined by x = y, x = 0, y = 1, z = 0 and z = 1. If we add
to C the constraint y = 0.3, the admissible polytope is a 2-dimensional rectangle bounded by
0 6 x 6 0.3 and 0 6 z 6 1 on the y = 0.3 plane. We cannot add, for example, the constraint
x = 0.5, because C would become contradictory.

2.3 Probability Distribution
Having characterized the possible worlds of pw(C), we assume a uniform probability distri-
bution over pw(C), as indicated in the Introduction. This captures the case when all possible
worlds are equally likely, and is a natural choice when we have no information about which
valuations are more probable.

Since the space of possible worlds is continuous, we formally define this distribution via a
probability density function (pdf), as follows. Let X and C define a d-dimensional polytope
pwX (C) for some integer d. The d-volume (also called the Lebesgue measure [29] on Rd) is a
measure for continuous subsets of d-dimensional space, which coincides with length, area,
and volume for dimensions 1, 2, and 3, respectively. We denote by Vd(C) the d-volume of the
admissible polytope, or simply V (C) when d is the dimension of pw(C).

I Definition 3. The uniform pdf p maps each possible world w ∈ pw(C) to the constant
p(w) := 1/V (C).

2.4 Top-k Queries
We are now ready to formally define the main problem studied in this paper, namely, the
evaluation of top-k queries over unknown data values. The queries that we consider retrieve
the k items that are estimated to have the highest values, along with their estimated values,
with ties broken arbitrarily. We further allow queries to apply a selection operator σ on the
items before performing the top-k computation. In our example from the Introduction, this
is what allows us to select the top-k categories among only the end categories. We denote
the subset of X selected by σ as Xσ.

ICDT 2017
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If all item values are known, the semantics of top-k queries is clear. In presence of
unknown values, however, the semantics must be redefined to determine how the top-k items
and their values are estimated. In this paper, we estimate unknown items by their expected
value over all possible worlds, i.e., their expected value according to the uniform pdf p defined
above on pw(C). This corresponds to interpolating the unknown values from the known ones,
and then querying the result. We use these interpolated values to define the top-k problem
as computing the k variables with the highest expected values, but we also study on its own
the interpolation problem of computing the expected values.

To summarize, the two formal problems that we study on constraint sets are:
Interpolation. Given a constraint set C over X and variable x ∈ X , the interpolation problem

for x is to compute the expected value of x in the uniform distribution over pwX (C).
Top-k. Given a constraint set C over X , a selection predicate σ, and an integer k, the top-k

computation problem is to compute the ordered list of the k maximal expected values of
variables in Xσ (or less if |Xσ| 6 k), with ties broken arbitrarily.

We review other definitions of top-k on uncertain data in Section 6, where we justify our
choice of semantics.

Alternate phrasing. The Interpolation problem can also be defined geometrically, as the
computation of the centroid (or center of mass) of the admissible polytope: the point G such
that all vectors relative to G originating at points within the polytope sum to zero. The
constraints that we study correspond to a special kind of polytopes, for which we will design
a specific algorithm in the next section, and derive an FP#P membership bound which does
not hold for general polytopes (as explained in the Introduction). However, the geometric
connection will become useful when we study the complexity of our problem in Section 4.1.

3 An Algorithm for Interpolation and Top-k

Having defined formally the problems that we study, we begin our complexity analysis by
designing an algorithm that computes the expected value of variables.

The algorithm enumerates all possible orderings of the variables (to be defined formally
below), but it is still nontrivial: we must handle exact-value constraints specifically, and we
must compute the probability of each ordering to determine its weight in the overall expected
value computation. From the algorithm, we will deduce that our interpolation and top-k
problems are in FP#P.

Eliminating ties. To simplify our study, we will eliminate from the start the problem of
ties, which will allow us to assume that values in all worlds are totally ordered. We say that
a possible world w = (v1, . . . , vn) of C has a tie if vi = vj for some i, j. Note that occasional
ties, not enforced by C, have an overall probability of 0: intuitively, if the admissible polytope
is d-dimensional, then all the worlds where vi = vj correspond to a (d − 1)-dimensional
hyperplane bounding or intersecting the polytope. A finite set of such hyperplanes (for every
pair of variables) has total d-volume 0. Since our computations (volume, expected value)
involve integrating over possible worlds, a set of worlds with total probability 0 does not
affect the result.

What is left is to consider ties enforced by C (and thus having probability 1). In such
situations, we can rewrite C by merging these variables to obtain an equivalent constraint set
where ties have probability 0. Formally:
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I Lemma 4. For any constraint set C, we can construct in PTIME a constraint set C′ such
that the probability that the possible worlds of C′ have a tie (under the uniform distribution)
is zero, and such that any interpolation or top-k computation problem on C can be reduced in
PTIME to the same type of problem on C′.

Hence, we assume from now on that ties have zero probability in C, so that we can ignore
possible worlds with ties without affecting the correctness of our analysis. Note that this
implies that all of our results also hold for strict inequality constraints, of the forms x < y

and x 6= y.
Under this assumption, we first study in Section 3.1 the case where C is a total order.

We then handle arbitrary C by aggregating over possible variable orderings, in Section 3.2.

3.1 Total Orders
In this section we assume C is a total order Cn1 (α, β) defined as x0 6 x1 6 · · · 6 xn 6 xn+1,
where x0 = α and xn+1 = β are variables with exact-value constraints in Xexact.

We first consider unfragmented total orders, where x1, . . . , xn 6∈ Xexact. In this case, we
can show that the expected value of xi, for 1 6 i 6 n, corresponds to a linear interpolation
of the unknown variables between α and β, namely: i

n+1 · (β − α) + α. This can be shown
formally via a connection to the expected value of the order statistics of samples from a
uniform distribution, which follows a Beta distribution [22].

Now consider the case of fragmented total orders, where C is allowed to contain more
exact-value constraints than the ones on α and β. We observe that we can split the total
order into fragments: by cutting at each variable that has an exact-value constraint, we
obtain sub-sequences of variables which follow an unfragmented total order. We can then
compute the expected values of each fragment independently, and compute the total order
volume as the product of the fragment volumes. The correctness of this computation follows
from a more general result (Lemma 12) stated and proven in Section 5.

Hence, given a constraint set C imposing a (possibly fragmented) total order, the expected
value of xi can be computed as follows. If xi ∈ Xexact, analysis is trivial. Otherwise, we
consider the fragment Cq−1

p+1(vp, vq) that contains xi; namely, p is the maximal index such
that 0 6 p < i and xp ∈ Xexact, and q is the minimal index such that i < q 6 n + 1 and
xq ∈ Xexact. The expected value of xi can then be computed within Cq−1

p+1(vp, vq) using linear
interpolation.

The following proposition summarizes our findings:

I Proposition 5. Given a constraint set C implying a total order, the expected value of any
variable xi ∈ X can be computed in PTIME.

3.2 General Constraint Sets
We can now extend the result for total orders to an expression of the expected value for a
general constraint set C. We apply the previous process to each possible total ordering of the
variables, and aggregate the results. To do this, we define the notion of linear extensions,
inspired by partial order theory:

I Definition 6. Given a constraint set C over X , we say that a constraint set T is a linear
extension of C if (i) T is a total order; (ii) the exact-value constraints of T are exactly those
of C; and (iii) C ⊆ T , namely every constraint x 6 y in C also holds5 in T .

5 The linear extensions of C in this sense are thus exactly the linear extensions of the partial order on X
imposed by C: this partial order is indeed antisymmetric because C has no ties.
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Algorithm 1: Compute the expected value of a variable.
Input: Constraint set C on variables X with n := |X | where ties have probability 0

and where value range [0, 1] is enforced by constraints; variable x ∈ X
Output: Expected value of x

1 if x is in Xexact, i.e., has an exact-value constraint in C to some v then return v;
2 EC [x]← 0; V (C)← 0;
3 m← |Xexact|;
4 Write x0 < · · · < xm−1 the variables of Xexact and v0 < · · · < vm−1 their values;
5 foreach linear extension T of C do
6 Write i0 < · · · < im−1 the indices in T of variables x0, . . . , xm−1 in Xexact;
7 Write k the index in T of the variable x;
8 Write ij , ij+1 the indices of variables from Xexact s.t. ij < k < ij+1;
9 ET [x]← ExpectedValFrag(ij , ij+1, k, vj , vj+1) ; // Expected value of x in T

10 V (T )←
∏m−2
l=0 VolumeFrag(il, il+1, vl, vl+1) ; // Volume of T

11 EC [x]← EC [x] + V (T )× ET [x]; // Sum exp. value of x weighted by V (T )
12 V (C)← V (C) + V (T ); // Sum of total order volumes

13 return EC [x]
V (C) ;

14 Function ExpectedValFrag(p, q, k, α, β)
Input: p < q: indices; k: requested variable index; α < β: exact values at p, q resp.
Output: Expected value of variable xk in the fragment Cq−1

p+1(α, β)
15 n← q − p− 1 ; // num. of variables in the fragment which are 6∈ Xexact

16 return k−p
n+1 · (β − α) + α ; // linear interpolation (see Section 3.1)

17 Function VolumeFrag(p, q, α, β)
Input: p < q: indices; α < β: exact values at p, q resp.
Output: V (Cq−1

p+1(α, β)): volume of the total order fragment between indices p, q
18 n← q − p− 1 ; // num. of variables in the fragment which are 6∈ Xexact

19 return (β−α)n

n! ; // Volume of [α, β]n divided by num. of total orders

Algorithm 1 presents our general scheme to compute the expected value of a variable
x ∈ X under an arbitrary constraint set C, assuming the uniform distribution on pw(C).

The algorithm iterates over each linear extension T of C, and computes the expected
value of x in T and the overall probability of T in pw(C). A linear extension is a total order,
so x is within a particular fragment of it, namely, between the indices of two consecutive
variables with exact-value constraints, ij and ij+1. The expected value of x in T , denoted by
ET [x], is then affected only by the constraints and variables of this fragment, and can be
computed using linear interpolation by the function ExpectedValFrag (line 9).

Now, the final expected value of x in C is the average of all ET [x] weighted by the
probability of each linear extension T , i.e., the volume of pw(T ) divided by the volume
of pw(C). Recall that, by Lemma 4, worlds with ties have total volume 0 and do not affect
this expected value. We compute the volume of T as the product of volumes of its fragments
(line 10). The volume of a fragment, computed by function VolumeFrag, is the volume of
[α, β]n, i.e., all assignments to the n variables of the fragment in [α, β], divided by the number
of orderings of these variables, to obtain the volume of one specific order (line 19).

The complexity of Algorithm 1 is polynomial in the number of linear extensions of C, as we
can enumerate them in constant amortized time [41]. However, in the general case, there may
be up to |X |! linear extensions. To obtain an upper bound in the general case, we note that
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we can rescale all constraints so that all numbers are integers, and then nondeterministically
sum over the linear extensions. This yields our FP#P upper bound:

I Theorem 7. Given a constraint set C over X and x ∈ X (resp., and a selection predicate σ,
and an integer k), determining the expected value of x in pw(C) under the uniform distribution
(resp., the top-k computation problem over X , C, and σ) is in FP#P.

The FP#P membership for interpolation does not extend to centroid computation in
general convex polytopes, which is not in FP#P [32, 42]. Our algorithm thus relies on the fact
that the polytope pw(C) is of a specific form, defined with order and exact-value constraints.
The same upper bound for the top-k problem immediately follows. We will show in Section 4
that this FP#P upper bound is tight.

We also provide a complete example to illustrate the constructions of this section.

x

y′ = γy

zFull Example. We exemplify our scheme on variables X = {x, y, y′, z}
and on the constraint set C generated by the order constraints x 6 y,
y 6 z, x 6 y′, y′ 6 z and the exact-value constraint y′ = γ for some
fixed 0 < γ < 1. Remember that we necessarily have 0 6 x and z 6 1
as well. The constraints of C are closed under implication, so they also
include x 6 z. The figure shows the Hasse diagram of the partial order
defined by C on X . Note that ties have a probability of zero in pw(C).

The two linear extensions of C are T1 : x 6 y 6 y′ 6 z and T2 : x 6 y′ 6 y 6 z. Now,
T1 is a fragmented total order, and we have pw(T1) = pw{x,y}(C′) × {γ} × [γ, 1] where C′
is defined on variables {x, y} by 0 6 x 6 y 6 γ. We can compute the volume of pw(T1) as
α1 = γ2

2 × (1− γ). Similarly the volume of pw(T2) is α2 = γ × (1−γ)2

2 .
Let us compute the expected value of y for C. In T1 its expected value is µ1 = ET1 [y] =

2
3 · (γ − 0) + 0 = 2

3γ. In T2 its expected value is µ2 = ET2 [y] = 1
3 · (1− γ) + γ = 1+2γ

3 . The
overall expected value of y is the average of these expected values weighted by total order
probabilities (volumes fractions), namely EC [y] = α1µ1+α2µ2

α1+α2
.

4 Hardness and Approximations

We next show that the intractability of Algorithm 1 in Section 3 is probably unavoidable.
We first show matching lower bounds for interpolation and top-k in Section 4.1. We then
turn in Section 4.2 to the problem of approximating expected values.

4.1 Hardness of Exact Computation
We now analyze the complexity of computing an exact solution to our two main problems.
We show below a new result for the hardness of top-k. But first, we state the lower bound
for the interpolation problem, which is obtained via the geometric characterization of the
problem. In previous work, centroid computation is proven to be hard for order polytopes,
namely, polytopes without exact-value constraints, which are a particular case of our setting:

I Theorem 8. ([42], Theorem 1). Given a set C of order constraints and x ∈ X , determining
the expected value of x in pw(C) under the uniform distribution is FP#P-hard.

We now show a new lower bound for top-k queries: interestingly, these queries are
FP#P-hard even if they do not have to return the expected values. Recall that σ is the
selection operator (see Section 2.4), which we use to compute top-k among a restricted subset
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of variables. We can show hardness even for top-1 queries, and even when σ only selects two
variables:

I Theorem 9. Given a constraint set C over X , a selection predicate σ, and an integer k,
the top-k computation problem over X , C and σ is FP#P-hard even if k is fixed to be 1,
|Xσ| is 2, and the top-k answer does not include the expected value of the variables.

Proof sketch. To prove hardness in this case, we reduce from interpolation. We show that
a top-1 computation oracle can be used as a comparison oracle to compare the expected
value of a variable x to any other rational value α, by adding a fresh element x′ with an
exact-value constraint to α and using σ to compute the top-1 among {x, x′}. What is more
technical is to show that, given such a comparison oracle, we can perform the reduction and
determine exactly the expected value v of x (a rational number) using only a polynomial
number of comparisons to other rationals. This follows from a bound on the denominator
of v, and by applying the rational number identification scheme of [39]. J

In settings where we do not have a selection operator (i.e., Xσ = X ), we can similarly
show the hardness of top-k (rather than top-1). See [5] for details.

4.2 Complexity of Approximate Computation

In light of the previous hardness results, we now review approximation algorithms, again
via the geometric characterization of our setting. In Section 5, we will show a novel exact
solution in PTIME for specific cases.

The interpolation problem can be shown to admit a fully polynomial-time randomized
approximation scheme (FPRAS). This result follows from existing work [31, 7], using a
tractable almost uniform sampling scheme for convex bodies.

I Proposition 10 ([31], Algorithm 5.8). Let C be a set of constraints with variable set X and
x ∈ X . There is an FPRAS that determines an estimate ÊC [x] of the expected value EC [x] of
x in pw(C) under the uniform distribution.

This result is mostly of theoretical interest, as the polynomial is in |X |7 (see [7], Table 1),
but recent improved sampling algorithms [37] may ultimately yield a practical approximate
interpolation technique for general constraint sets (see [36, 21]).

For completeness, we mention two natural ways to define randomized approximations for
top-k computation:

We can define the approximate top-k as an ordered list of k items whose expected value
does not differ by more than some ε > 0 from that of the item in the actual top-k at the
same rank. An FPRAS for this definition of approximate top-k can be obtained from
that of Proposition 10.
It is highly unlikely that there exists a PTIME algorithm to return the actual top-k with
high probability, even without requiring it to return the expected values. Indeed, such an
algorithm would be in the BPP (bounded-error probabilistic time) complexity class; yet
it follows from Theorem 9 above that deciding whether a set of variables is the top-k is
NP-hard, so the existence of the algorithm would entail that NP ⊆ BPP.



A. Amarilli, Y. Amsterdamer, T. Milo, and P. Senellart 5:11

5 Tractable Cases

Given the hardness results in the previous section and the impracticality of approximation, we
now study whether exact interpolation and top-k computation can be tractable on restricted
classes of constraint sets. We consider tree-shaped constraints (defined formally below) and
generalizations thereof: they are relevant for practical applications (e.g., classifying items
into tree- or forest-shaped taxonomies), and we will show that our problems are tractable
on them. We start by a splitting lemma to decompose constraint sets into “independent”
subsets of variables, and then define and study our tractable class.

5.1 Splitting Lemma
We will formalize the cases in which the valuations of two variables in X are probabilistically
dependent (the variables influence each other), according to C. This, in turn, will enable us
to define independent subsets of the variables and thus independent subsets of the constraints
over these variables. This abstract result will generalize the notion of fragments from total
orders (see Section 3.1) to general constraint sets. In what follows, we use xi ≺ xj to
denote the covering relation of the partial order 6, i.e., xi 6 xj is in C but there exists no
xk /∈ {xi, xj} such that xi 6 xk and xk 6 xj are in C.

I Definition 11. We define the influence relation x↔ y between variables of X\Xexact as
the equivalence relation obtained by the symmetric, reflexive, and transitive closure of the ≺
relation on X\Xexact.

The uninfluenced classes of X under C is the partition of X\Xexact as the subsets
X1, . . . ,Xm given by the equivalence classes of the influence relation.

The uninfluence decomposition of C is the collection of constraint sets C1, . . . , Cm of C
where each Ci has as variables Xi t Xexact and contains all exact-value constraints of C and
all order constraints between variables of Xi t Xexact.

We assume w.l.o.g. that m > 0, i.e., there are unknown variables in X\Xexact; otherwise
the uninfluence decomposition is meaningless but any analysis is trivial. Intuitively, two
unknown variables x, x′ are in different uninfluenced classes if in every linear extension there
is some variable from Xexact between them, or if they belong to disconnected (and thus
incomparable) parts of the partial order. In particular, uninfluenced classes correspond to
the fragments of a total order: this is used in Section 3.1. The uninfluence decomposition
captures only constraints between variables that influence each other, and constraints that
can bound the range of a variable by making it comparable to variables from Xexact. We
formally prove the independence of C1, . . . , Cm via possible-world semantics: every possible
world of C can be decomposed to possible worlds of C1, . . . , Cm, and vice versa.

I Lemma 12. Let C1, . . . , Cm be the uninfluence decomposition of C. There exists a bijective
correspondence between pw(C) and pw(C1)× · · · × pw(Cm).

I Example 13. Let X be {x, y, y′, z, w}, and let C be defined by y′ = 0.5 and x 6 y 6 y′ 6 z.
The uninfluence classes are X1 = {x, y}, X2 = {z}, and X3 = {w}. The uninfluence
decomposition thus consists of C1, with variables X1 t {y′}, and constraints x 6 y 6 y′ and
y′ = 0.5; C2, with variables X2 t {y′}, and constraints y′ 6 z and y′ = 0.5; and C3, with
variables X3 t {y′}, and constraint y′ = 0.5.

We next use this independence property to analyse restricted classes of constraint sets.
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5.2 Tree-Shaped Constraints
We define the first restricted class of constraints that we consider: tree-shaped constraints.
Recall that a Hasse diagram is a representation of a partial order as a directed acyclic graph,
whose nodes correspond to X and where there is an edge (x, y) if x ≺ y. An example of such
a diagram is the one used in Section 3.2.

I Definition 14. A constraint set C over X is tree-shaped if the probability of ties is zero,
the Hasse diagram of the partial order induced on X by C is a directed tree, the root has
exactly one child, and exactly the root and leaves are in Xexact. Thus, C imposes a global
minimal value, and maximal values at each leaf, and no other exact-value constraint.

We call C reverse-tree-shaped if the reverse of the Hasse diagram (obtained by reversing
the direction of the edges) is tree-shaped.

Tree-shaped constraints are often encountered in practice, in particular in the context
of product taxonomies. Indeed, while our example from Figure 1 is a DAG, many real-life
taxonomies are trees: in particular, the Google Product Taxonomy [23] and ACM CCS [2].

We now show that for a tree-shaped constraint set C, unlike the general case, we can
tractably compute exact expressions of the expected values of variables. In the next two
results, we assume arithmetic operations on rationals to have unit cost, e.g., they are
performed up to a fixed numerical precision. Otherwise, the complexities remain polynomial
but the degrees may be larger. We first show:

I Theorem 15. For any tree-shaped constraint set C over X , we can compute its volume
V (C) in time O(|X |2).

Proof sketch. We process the tree bottom-up, propagating a piecewise-polynomial function
expressing the volume of the subpolytope on the subtree rooted at each node as a function
of the value of the parent node: we compute it using Lemma 12 from the child nodes. J

This result can be applied to prove the tractability of computing the marginal distribution
of any variable x ∈ X\Xexact in a tree-shaped constraint set, which is defined as the pdf
px(v) := Vd−1(C ∪ {x = v})/Vd(C), where d is the dimension of pw(C):

I Theorem 16. For any tree-shaped constraint set C on variable set X , for any variable
x ∈ X\Xexact, the marginal distribution for x is piecewise polynomial and can be computed
in time O(|Xexact| × |X |2).

Proof sketch. We proceed similarly to the proof of Theorem 15 but with two functions:
one for x and its descendants, and one for all other nodes. The additional |Xexact| factor is
because the second function depends on how the value given to x compares to the leaves. J

We last deduce that our results for tree-shaped constraints extend to a more general
tractable case: constraint sets C whose uninfluence decomposition C1, . . . , Cm is such that
every Ci is (reverse-)tree-shaped. By Lemma 12, each Ci (and its variables) can be considered
independently, and reverse-tree-shaped trees can be easily transformed into tree-shaped ones.
Our previous algorithms thus apply to this general case, by executing them on each constraint
set of the uninfluence decomposition that is relevant to the task (namely, containing the
variable x to interpolate, or top-k candidates from the selected variables Xσ):

I Corollary 17. Given any constraint set C and its uninfluence decomposition C1, . . . , Cm,
assuming that each Ci is a (reverse-)tree-shaped constraint set, we can solve the interpolation
problem in time O(maxi |Xi|3) and the top-k problem in PTIME.
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On large tree-shaped taxonomies (e.g., the Google Product Taxonomy [23]), in an
interactive setting where we may ask user queries (e.g., the one in the Introduction), we
can improve running times by asking more queries. Indeed, each answer about a category
adds an exact-value constraint, and reduces the size of the constraint sets of the uninfluence
decomposition, which decreases the overall running time, thanks to the superadditivity of
x 7→ x3. We do not study which variables should be queried in order to reduce the running
time of the algorithm; see, e.g., [40] for tree-partitioning algorithms.

6 Other Variants

We have defined top-k computation on constraint sets by considering the expected value of
each variable under the uniform distribution. Comparing to different definitions of top-k on
unknown values that have been studied in previous work, our definition has some important
properties [15]: it provides a ready estimation for unknown values (namely, their expected
value) and guarantees an output of size k. Moreover, it satisfies the containment property
of [15], defined in our setting as follows:

I Definition 18. A top-k definition satisfies the containment property if for any constraint
set C on variables X , for any predicate σ (where we write Xσ the selected variables), and for
any k < |Xσ|, letting Sk and Sk+1 be the ordered lists of top-k and top-(k + 1) variables, Sk
is a strict prefix of Sk+1.

The containment property is a natural desideratum: computing the top-k for some k ∈ N
should not give different variables or order for the top-k′ with k′ < k. Our definition clearly
satisfies the containment property (except in the case of ties). By contrast, we will now
review prominent definitions of top-k on uncertain data from related work [47, 15, 52], and
show that they do not satisfy the containment property when we apply them to the possible
world distributions studied in our setting. We focus on two prominent definitions, U-top-k
and global-top-k and call our own definition local-top-k when comparing to them; we also
discuss other variants in [5].

U-top-k. The U-top-k variant does not study individual variables but defines the output
as the sequence of k variables most likely to be the top-k (in that order), for the uniform
distribution on pw(C). We call this alternative definition U-top-k by analogy with [47, 15].
Interestingly, the U-top-k and local-top-k definitions sometimes disagree in our setting:

I Lemma 19. There is a constraint set C and selection predicate σ such that local-top-k and
U-top-k do not match, even for k = 1 and without returning expected values or probabilities.

We can easily design an algorithm to compute U-top-k in PSPACE and in polynomial
time in the number of linear extensions of C: compute the probability of each linear extension
as in Algorithm 1, and then sum on linear extensions depending on which top-k sequence
they realize (on the variables selected by σ), to obtain the probability of each answer. Hence:

I Proposition 20. For any constraint set C over X , integer k and selection predicate σ, the
U-top-k query for C and σ can be computed in PSPACE and in time O(poly(N)), where N
is the number of linear extensions of C.

Unlike Theorem 7, however, this does not imply FP#P-membership: when selecting the
most probable sequence, the number of candidate sequences may not be polynomial (as k is
not fixed). We leave to future work an investigation of the precise complexity of U-top-k.

We show that in our setting U-top-k does not satisfy the containment property of [15].
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I Lemma 21. There is a constraint set C without ties such that U-top-k does not satisfy the
containment property for the uniform distribution on pw(C).

Global-top-k. We now study the global-top-k definition [52], and show that it does not
respect the containment property either, even though it is defined on individual variables:

I Definition 22. The global-top-k query, for a constraint set C, selection predicate σ, and
integer k, returns the k variables that have the highest probability in the uniform distribution
on pw(C) to be among the variables with the k highest values, sorted by decreasing probability.

I Lemma 23. There is a constraint set C without ties such that global-top-k does not satisfy
the containment property for the uniform distribution on pw(C).

7 Related Work

We extend the discussion about related work from the Introduction.

Ranking queries over uncertain databases. A vast body of work has focused on providing
semantics and evaluation methods for order queries over uncertain databases, including top-k
and ranking queries (e.g., [15, 19, 25, 26, 28, 33, 43, 46, 50, 51]). Such works consider two
main uncertainty types: tuple-level uncertainty, where the existence of tuples (i.e., variables)
is uncertain, and hence affects the query results [15, 19, 26, 28, 33, 43, 50, 51]; and attribute-
level uncertainty, more relevant to our problem, where the data tuples are known but some
of their values are unknown or uncertain [15, 25, 28, 46]. Top-k queries over uncertain data
following [46] was recently applied to crowdsourcing applications in [13]. These studies are
relevant to our work as they identify multiple possible semantics for order queries in presence
of uncertainty, and specify desired properties for such semantics [15, 28]; our definition of
top-k satisfies the desiderata that are relevant to attribute-level uncertainty [28].

We depart from this existing work in two main respects. First, existing work assumes that
each variable is given with an independent function that describes its probability distribution.
We do not assume this, and instead derive expressions for the expected values of variables in
a principled way from a uniform prior on the possible worlds. Our work is thus well-suited
to the many situations where probability distributions on variables are not known, or where
they are not independent (e.g., when order constraints are imposed on them). For this reason,
the problems that we consider are generally computationally harder. For instance, [46] is
perhaps the closest to our work, since they consider the total orders compatible with given
partial order constraints. However, they assume independent marginal distributions, so they
can evaluate top-k queries by only considering k-sized prefixes of the linear extensions; in
our setting even computing the top-1 element is hard (Theorem 9).

The second key difference is that other works do not try to estimate the top-k values,
because they assume that the marginal distribution is given: they only focus on ranks. In
our context, we need to compute missing values, and need to account, e.g., for exact-value
constraints and their effect on the probability of possible worlds and on expected values
(Section 3).

We also mention our previous work [4] which considers the estimation of uncertain values
(expectation and variance), but only in a total order, and did not consider complexity issues.

Partial order search. Another relevant research topic, partial order search, considers queries
over elements in a partially ordered set to find a subset of elements with a certain property [3,
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17, 20, 24, 40]. This relates to many applications, e.g., crowd-assisted graph search [40],
frequent itemset mining with the crowd [3], and knowledge discovery, where the unknown
data is queried via oracle calls [24]. These studies are complementary to ours: when the
target function can be phrased as a top-k or interpolation problem, if the search is stopped
before all values are known, we can use our method to estimate the complete output.

Computational geometry. Our work reformulates the interpolation problem as a centroid
computation problem in the polytope of possible worlds defined by the constraint set. This
problem has been studied independently by computational geometry work [42, 31, 38].

Computational geometry mostly studies arbitrary convex polytopes (corresponding to
polytopes defined by arbitrary linear constraint sets), and often considers the task of volume
computation, which is related to the problem of computing the centroid [42]. In this context,
it is known that computing the exact volume of a polytope is not in FP#P because the output
is generally not of polynomial size [32]. Nevertheless, several (generally exponential) methods
for exact volume computation [11] have been developed. The problem of approximation has
also been studied, both theoretically and practically [31, 45, 18, 16, 36, 21]. Our problem of
centroid computation is studied in [38], whose algorithm is based on the idea of computing
the volume of a polytope by computing the lower-dimensional volume of its facets. This
is different from our algorithm, which divides the polytope along linear extensions into
subpolytopes, for which we apply a specific volume and centroid computation method.

Some works in computational geometry specifically study order polytopes, i.e., the poly-
topes defined by constraint sets with only order constraints and no exact-value constraints.
For such polytopes, volume computation is known to be FP#P-complete [10], leading to a
FP#P-hardness result for centroid computation [42]. However, these results do not apply to
exact-value constraints, i.e., when order polytopes can only express order relations, between
variables which are in [0, 1]. Exact-value constraints are both highly relevant in practice (to
represent numerical bounds, or known information, e.g., for crowdsourcing), allow for more
general polytopes, and complicate the design of Algorithm 1, which must perform volume
computation and interpolation in each fragmented linear order.

Furthermore, to our knowledge, computational geometry works do not study the top-k
problem, or polytopes that correspond to tree-shaped constraint sets, since these have no
clear geometric interpretation.

Tree-shaped partial orders. Our analysis of tractable schemes for tree-shaped partial orders
is reminiscent of the well-known tractability of probabilistic inference in tree-shaped graphical
models [8], and of the tractability of probabilistic query evaluation on trees [14] and treelike
instances [6]. However, we study continuous distributions on numerical values, and the
influence between variables when we interpolate does not simply follow the tree structure; so
our results do not seem to follow from these settings.

8 Conclusion

In this paper, we have studied the problems of top-k computation and interpolation for
data with unknown values and order constraints. We have provided foundational solutions,
including a general computation scheme, complexity bounds, and analysis of tractable cases.

One natural direction for future work is to study whether our tractable cases (tree-shaped
orders, sampling) can be covered by more efficient PTIME algorithms, or whether more
general tractable cases can be identified: for instance, a natural direction to study would be
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partial orders with a bounded-treewidth Hasse diagram, following recent tractability results
for the related problem of linear extension counting [30]. Another question is to extend our
scheme to request additional values from the crowd, as in [3, 13], and reduce the expected
error on the interpolated values or top-k query, relative to a user goal. In such a setting, how
should we choose which values to retrieve, and could we update incrementally the results of
interpolation when we receive new exact-value constraints? Finally, it would be interesting
to study whether our results generalize to different prior distributions on the polytope.
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