VCDC: The Virtualized Complicated Device
Controller

Zhe Jiang! and Neil Audsley?

1 Department of Computer Science, University of York, York, UK
zj577@york.ac.uk

2 Department of Computer Science, University of York, York, UK
neil.audsley@york.ac.uk

—— Abstract

I/0 virtualization enables time and space multiplexing of I/O devices, by mapping multiple lo-
gical I/O devices upon a smaller number of physical devices. However, due to the existence of
additional virtualization layers, requesting an I/O from a guest virtual machine requires complic-
ated sequences of operations. This leads to I/O performance losses, and makes precise timing of
I/O operations unpredictable.

This paper proposes a hardware 1/0 virtualization system, termed the Virtualized Complic-
ated Device Controller (VCDC(C'). This I/0 system allows user applications to access and operate
I/0O devices directly from guest VMs, and bypasses the guest OS, the Virtual Machine Monitor
(VMM) and low layer I/O drivers. We show that the VCDC efficiently reduces the software
overhead and enhances the I/O performance and timing predictability. Furthermore, VCDC also
exhibits good scalability that can handle I/O requests from variable number of CPUs in a system.

1998 ACM Subject Classification C.3 Real-time and Embedded Systems
Keywords and phrases many-core system, I/O virtualization, real-time I/O, hardware manager

Digital Object Identifier 10.4230/LIPIcs. ECRTS.2017.5

1 Introduction

In the last decade, virtualization technology has been widely used not only in server and
desktop platforms, but also in embedded systems [23]. Using virtualization brings superior
benefits for the whole system, including increased resource utilization, reduced volume and
cost of hardware, and a better load balance in cores [23, 1, 19].

In real-time systems, the primary benefits offered by virtualization are isolation and
security. Specifically, guest virtual machines (VMs) are logical isolated, which means the
applications executed in one guest VM can never affect the other virtual machines, even if it
breaks down. The feature of isolation also brings significant support for the timing analysis
of the tasks in a virtual machine [8].

In real-time systems, the I/O performance is often a bottleneck of an I/O-bounded system
[3], which mainly results from the very slow processing speed of normal I/O devices compared
to CPUs. This results in a performance reduction for the whole system.

When it comes to multi-core and many-core systems, these issues are magnified, because
of CPU scheduling and contention over I/0O resources. For example, in a traditional bus-based
multi-CPU system, if an I/O operation is requested by a user application, the system should
deal with the scheduling of cores inside one CPU as well as the I/O resource scheduling
among all the CPUs.

? Zhe Jiang and Nei% Audsley;)

5v icensed under Creative Commons License CC-BY
29th Euromicro Conference on Real-Time Systems (ECRTS 2017).
Editor: Marko Bertogna; Article No. 5; pp. 5:1-5:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECRTS.2017.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2

VCDC: The Virtualized Complicated Device Controller

Virtual Machines

Applications

User » User Guest VM | | Guest VM | e | Guest VM |
Application Application
H VMM

—— Guest 05|
Virtual-to-physical translation
Buffer Cache
Interpose/Transform
1/0 Scheduler
1/0 Scheduler
_Device Driver

Virtual Hardware| :
. Physical Hardware
/o H Physical
: | 1/0 |

Figure 1 Flow of I/O Request in Traditional Virtualization System.

These issues are magnified with virtualization technology. When an application invokes
an I/0 request from a guest Virtual Machine (VM), this I/O request will be transmitted via
low layer drivers to the guest OS, Virtual Machine Monitor (VMM) and Host OS, which
results in a serious loss of the system and I/O performance, see Figure 1.

In real-time systems, it is often vital for applications to access I/O devices at specific
times in order to achieve the accurate control over I1/O required. For example, the control
of an automotive engine often requires I/O at accurate times in order to inject fuel at the
optimal time [18]. Also, in a 3D printer, precise control of I/O is required [33]. This I/O
operation must be occur at an exact time, i.e. be timing-accurate — it can be neither late
nor early (within a small error bound). In a single-core system, latencies caused by device
drivers and application process scheduling make timing-accurate I/O control problematic. In
many-core systems, these issues are magnified: the transmission latencies from a processor
to an I/O controller can be substantial and variable due to the communication bottlenecks
and contention.

These issues are magnified even further with virtualization technology. Virtualizing one
physical I/O to multiple virtual I/Os, complex I/O resource management (e.g. scheduling
and prioritization) and the complicated path of an I/O request worsen the transmission
latencies from a processor to an I/O controller. Hence, it is difficult for an application from
a guest VM to issue an I/O operation that will result in a timing-accurate device level 1/O
operation.

Virtualization relies on hardware support, therefore today’s chip manufacturers have
promoted different technologies for I/O virtualization in order to mitigate these issues. Intel’s
Virtualization Technology for Directed I/O (VT-D) [12], which can provide a direct I/O access
from guest VMs, is one example of this. The IOMMU [2] is applied to commercial PC-based
systems to offload memory protection and address translation, in order to provide a fast I/O
access from guest VMs. However, even with hardware assistance, the 1/O performance from
the guest VMs cannot reach the original I/O performance in a system without virtualization,
let alone improve on it. Achieving timing accuracy of I/O operations in a virtualized system,
even with hardware support is difficult [33]. Additionally, these commonly used hardware
assists on 1/O virtualization cannot help the predictability and timing-accuracy of the 1/0O
operations requested from guest VMs.

To overcome these issues, we designed a hardware I/O system for multi-core and many-
core systems. The contribution of this paper is the designed virtualized complicated device
controller, termed the VCDC, that integrates the VMM and I/O drivers into the hardware
layer, thus achieving significant improvements of I/O performance in guest VMs. The VMM

Z. Jiang and N. Audsley

in VCDC virtualizes a physical I/O device to multiple virtual I/O devices for guest VMs.
For example, in a 16-core system, the VMM can separate a single monitor into 16 individual
partitions and provide access interfaces for each guest VM. In addition, the I/O drivers
in VCDC provide high layer control interfaces for the guest VMs. With VCDC, the user
applications in a guest VM are able to operate an I/0 via very simple requests. Furthermore,
if a user application is going to request the VGA controller to display a character from a
guest VM, such as ‘A’ at coordinate (2, 1), the user application is only required to transfer
the ASCII of the character followed by its coordinates to the VGA part inside VCDC, that
is ‘Ox41’°, ‘0x02°, ‘0x01".

The VCDC utilises a timing-accurate I/O controller [32] to provide clock cycle level
accurate I/O operations.

The paper is organized as follows: Section 2 presents our motivation. Section 3 presents the
design and implementation of the VCDC, respectively. Section 4 evaluates the performance
of a many-core system with VCDC. Section 5 presents some related work, with conclusions
offered in Section 6.

2 Motivation

The most significant challenge in 1/O virtualization is the loss of I/O performance. In
conventional I/O virtualization, the potential overhead is associated with the indirection and
interposition of an I/0 request, as well as the complex resource management (e.g. scheduling
and prioritization) [25].

2.1 Complicated Path of 1/0 requests

Figure 1 shows the flow of I/O requests handled in a traditional virtualization system. When
an application running within a VM issues an I/O request, typically by making a system call,
it is initially processed by the I/O stack in the guest OS, which is also running within the
VM. A device driver in the guest OS issues the request to a virtual I/O device, which the
VMM then intercepts. The VMM schedules requests from multiple VMs onto an underlying
physical 1/O device, usually via another device driver managed by the VMM or a privileged
guest VM with direct access to the physical hardware.

This complicated path of I/O requests poses three main drawbacks for the whole sys-
tem [25]:

Significant software overhead. Most of these operations are processed in software, which

causes significant CPU overheads.

Longer response time of 1/0 operations. Compared with the original system, virtualization

requires more time to handle the same I/0O request from the guest OS. This also causes a

decline in I/O throughput.

Worse timing accuracy of 1I/O Operations.. It is very difficult for an I/O operation

(e.g. read) to occur at a particular time point [32].

2.2 Complicated 1/O Resource Management

In multi-core and many-core systems, in addition to the complicated path of I/O requests,
complex I/O resource management is another bottleneck in virtualization:
Single CPU (Multi-core) System (Figure 2a). In a bus-based single CPU system, user
applications can normally request and operate I/O devices by modifying memory-mapped
registers. The overhead of I/O resource management mainly comes from the scheduling of

5:3

ECRTS 2017

5:4

VCDC: The Virtualized Complicated Device Controller

(a) Single CPU system (multi- (b) Multi-CPU System (multi-

CPU CPU
Bus
&5
CPU CPU

core) core) (c) Many-core System

Figure 2 Structure of Multi-CPU and Many-Core Systems. C — Core; R — Router / Arbiter.

the CPU — deciding which core has the priority to access the I/O device. This procedure
is normally handled by the OS.

Multi-CPU System (Multi-core) (Figure 2b). In bus-based multi-CPU systems, apart from
the CPU scheduling, the contention over I/O devices is unavoidable when a shared I/0
is to be accessed. To solve the issue of I/O contention among CPUs, hardware mutexes
are normally added in multi-CPU systems, which causes extra hardware overhead as well
as high bus workload (frequent communication is required between CPUs and hardware
mutex).

Many-core System (Figure 2c). In many-core systems, all arbitrations among cores are
turned over to the system arbiter (e.g. the routers in a NoC-based system), therefore CPU
scheduling is not required. However, many-core systems still suffer from I/O contention
when different cores need to access I/O devices at the same time.

In general, complicated I/O resource management poses the main three drawbacks for

the whole system:

1.

Significant system overhead. CPU scheduling is mostly implemented at the software
level, and I/O contention is mostly handled at the hardware level, which both consume
significant system overhead.

Unpredictable 1/0 operations. The complexity of I/O management makes I/O operations
difficult to predict.

Bad scalability. With the number of cores and CPUs increasing in a system, the workload
of resource management will be also increased, which causes more serious performance
reduction of the whole system.

Virtualized Complicated Device Controller (VCDC)

Having presented the I/O problems suffered by virtualization technology in many-core
and multi-core real-time systems, in this section we proceed by introducing our proposed
Virtualized Complicated Device Controller (VCDC), which enables:

Better 1/0 performance. Includes the lower response time of I/O operations and higher
I/0 throughput.

Predictability. 1/O operations requested from a guest OS are more predictable, than
under conventional virtualization.

Lower software overhead. Moves the VMM and low level I/O drivers from kernel mode
(at the software level) to the VCDC.

Z. Jiang and N. Audsley

Abstracted high layer access. The user application in a guest virtual machine is able to
request and operate an I/O device via invoking simple high layer drivers. For example,
a user application can request to read a series of data from a SPI-Flash by sending a
request with parameters to the VCDC: “Read SPI-Flash (instruction), from the start
address to the end address (parameters)".

Scalability. We propose a distributed implementation. When the VCDC is employed,
to add one more CPU into a system, the users are only required to add one group of
dedicated CPU FIFO, which aims to provide an interface between the added CPU and
the VCDC.

Global arbitration. We propose a modularized implementation, whereby the scheduling
policy of the arbiter can be switched easily between round robin, fixed priority and
customized scheduling policies [14].

Cycle level timing-accuracy. All 1/O operations over the GPIO pins can be issued with an
accuracy of a single cycle via being integrated with our clock cycle level timing-accurate
I/0O controller [32].

3.1 Virtualization in the VCDC Systems

VCDC provides I/0 virtualization for guest VMs, such that a physical I/O device can be
virtualized to multiple virtual I/Os for each virtual machine. In a system with VCDC, the
I/0 virtualization has the following features:
Bare-metal virtualization [23]. Host OS is not required. A guest OS can be executed on
a processor, directly.
Para-virtualization [17]. The I/O management module of a guest OS should be replaced
by our high layer I/O drivers, which can significantly reduce the software overhead.

For the purposes of the discussion, in this paper, we define the following terms in this
way:

I/0 request.. Sent directly from a user application. It could be a high level abstracted

command, which cannot be used directly on an I/O controller.

I/0 instructions. Can be used to control an I/O device controller directly.

The VCDC transforms each high level I/O request to single or multiple I/O instruction(s),
that can be used on the physical I/O directly. For example, in our prototype implementation,
a physical monitor (VGA controlled) is virtualized into four sections. The screen of the
monitor is separated into four sections by VCDC, which is used to display the content sent
from each guest VM. In each VM, the initial coordinate of the (virtual) screen is (0, 0),
which is respectively mapped to the following physical coordinates of the screen: (0, 0), (0,
100), (0, 200) and (0, 300). When a user application in the guest VM #3 sends an I/0O
request “Display ‘Hello World’ at coordinate (0, 0)', the VCDC will transform this request
to “Display ‘Hello World’ at coordinate (0, 300)" and send corresponding instructions to the
VGA controller.

3.2 Guest Virtual Machine and Guest OS

In our approach, each processor has an individual guest VM. As bare-metal virtualization is
deployed (no host OS required), in each guest VM, a guest OS is able to execute in kernel
mode to achieve full functionality. Given that the VCDC provides part of the device driver,
we also employ para virtualization (modified OS kernel) to reduce software size, which we
build using some high layer 1/O drivers to replace the original I/O manager. Currently, we

5:5

ECRTS 2017

5:6

VCDC: The Virtualized Complicated Device Controller

Guest VM

Application |

e A>T LSS TY

Kernel Mode

Application

User Mode,

Kernel Mode

1
I

0

()

FreeRTOS_Open(_
FreeRTOS_Write|
FreeRTOS_Read|
FreeRTOS_IOctl|
()
)

Standard FreeRTOS API(;

VCDC_Open()
'VCDC_IOct!

VCDC_Write
VCDC_Read|

0S Kernel

Standard FreeRTOS API()

FreeRTOS 1/O Manager 0S Kernel
I FreeRTOS I I High Layer /0 Driver I
I FreeRTOS l ILow Layer I/O Driverl 1
ﬂ ﬂ Hardware Y,

Hardware v AV :
| Virtualized 1/0

cPU I | /o I | CPU

(a) FreeRTOS Kernel in a non-VCDC system) (b) FreeRTOS Kernel in a VCDC system

Figure 3 FreeRTOS Kernels in Non-VCDC and VDCD systems.

have provided three modified OS to support the I/O virtualization [14], which are FreeRTOS
[7], ucoslI [16] and Xilkernel [31]. In Figure 3, we use FreeRTOS as an example to illustrate
the modification of a guest OS kernel in VCDC systems.

Compared with the original FreeROTS kernel (Figure 3a), the user application in a guest
VM in VCDC system (Figure 3b) is able to access and operate I/O via the high layer I/O
drivers, which are independent of the core module of the FreeRTOS.

Additionally, user applications running on the original FreeRTOS kernel can be ported to
the modified kernel directly in a VCDC system (without any modification), since we have
not modified the OS interfaces.

3.3 System Model

Typical use of the VCDC within a NoC architecture is shown in Figure 4 — all the I/O
functions are performed by the VCDC rather than remotely by software.

At run-time an application in a guest VM can invoke a high layer I/O driver on the
VCDC to achieve the required I/O. The communications packets are transferred between
the CPU and the VCDC via routers in the NoC. As an example, the path of such an I/O
request message is shown in Figure 4 as a red line.

Note that use of a NoC is not required by our system — a shared bus could be used
alternatively. However, in our experiments we use a NoC.

3.4 Overall Architecture

The architecture of the VCDC consists of the following main parts (see Figure 5):
Hardware Manager. Provides the interface to/from application CPUs via the NoC mesh.
I/0 Virtual Machine Monitor (I/O VMM). Provides the functionality of virtualization
for I/O devices.
I/O Low Layer Drivers. Encapsulates the corresponding drivers of the specific I/O
controllers (via I/O instructions).
I/0 Controllers. Controls the I/O devices, and can be driven by the low layer drivers
directly.
Memory Access Module. Provides the memory access interfaces for I/Os.

These architectural elements are detailed in the following subsections.

Z. Jiang and N. Audsley

E Guest Virtual Machine
H User
Application

E User Mode System Calls

= Kernel Mode

High Layer I/O
FreeRTOS gh Layer I/

Driver

vene
Hardware
Manager

1/OVMM 1 ‘—‘I 1/0 Low Layer Driver 1 I

gremnesnese, H 1/0 Controller 1 o1
H o

/o VMM 2 I 1/0 Low Layer Driver 2 I

/o /0 [0 contoter }—

Figure 4 System Model of a NoC with VCDC. Figure 5 Architecture of VCDC.
VM - Virtual Machine; R — Router / Arbiter.

1/0 VMM

Control Signal

Control Signal Func1 Func2 | .. | Funcn
o /o o . 1/o /o
VMM_1 VMM n VMM_1 VMM n Controller

(a) Architecture of Hardware (c) Architecture of 1I/O Low
Manager (b) Architecture of I/O VMM Layer Driver

Figure 6 Architectures of inner modules of VCDC.

3.5 Detailed Architecture
3.56.1 Hardware Manager

The hardware manager is responsible for communicating with application CPUs, allocating
incoming messages (I/O requests) from different CPUs to corresponding I/O VMMs, as
well as allocating response messages (I/O responses) from I/O VMMs back to CPUs. The
architecture of the hardware is shown in Figure 6a, with the right hand part allocating
incoming requests from the NoC; and the left hand part taking ending data back to CPUs
from VCDC.

The right hand part of the hardware manager is mainly comprised of one input FIFO,
a multiplexer and multiple output FIFOs (dependent on the number of I/O VMMs). The
output FIFOs are connected to the different I/O VMMSs. Similarly, the left hand part of the
hardware manager is mainly comprised of multiple input FIFOs (dependent on the number of
I/0 VMMs), a multiplexer, an output FIFO and a scheduler. The input FIFOs are connected
to the I/O VMMs, in order to receive the data to be sent back to the CPUs. The scheduler

5:7

ECRTS 2017

5:8

VCDC: The Virtualized Complicated Device Controller

controls the multiplexer to choose which input FIFO can transmit data into the output FIFO
(if neither input FIFO is empty the FIFOs are chosen in a round-robin manner).

Additionally, the FIFOs used to connect with I/O VMMs can be connected to 1/0O
controllers directly, which assists in supporting different I/O devices.

3.5.2 1/0 VMM

I/O VMM maintains the virtualization of I/O devices. Considering that the functionalities
and features of I/O devices are different, it is very difficult to build a general-purpose
module to achieve virtualization for all kinds of I/O devices. Therefore, we create some
specific-purpose I/O VMM for those commonly used I/O devices, including UART, VGA,
DMA, Ethernet, etc. Users can also easily add their customized I/O VMM into VCDC
via our provided interfaces [14]. All of these I/O VMMs have a general architecture, see
Figure 6b.

The general architecture of the I/O VMMs are the same, except for the virtualization mod-
ule. The I/O VMM is comprised of two groups of communication FIFOs, four multiplexers,
two schedulers, groups of dedicated CPU FIFOs and a virtualization module.

The two groups of communication FIFOs are connected with the hardware manager and
a low layer 1/O driver respectively, providing the communication interfaces between the
hardware manager and the low layer I/O drivers. The dedicated CPU FIFOs are built to store
the I/0 requests sent from different CPUs and I/0 response messages sent back from the I/O
(as buffers); one CPU owns an individual group of dedicated CPU FIFOs. The number of
groups of dedicated FIFOs are generic, so that users can add any number of dedicated CPU
FIFOs into the VCDC [14], which provides for scalability. The two schedulers take charge of
the scheduling of I/O requests and I/O response. Specifically, Scheduler 1 determines which
I/O request can be served by the virtualization module first, and Scheduler 2 determines
which I/O response can be sent back to the hardware manager first.

The virtualization module transforms I/O requests (sent to an virtual 1/0) to I/O
instructions (can be used to control a physical I/O). The implementation of this virtualization
module depends on the specific I/O devices to be controlled. Currently, we have provided
the virtualization module for some commonly used I/0, including UART, VGA, DMA,
Ethernet and an SPI NOR-flash. Due to limitations of space here, in Section 4.3.1 we will
only introduce the virtualization module for the Ethernet as an example.

3.5.3 Low Layer 1/O Driver

Low layer I/O drivers takes charge of encapsulating the specific I/O drivers for an specific I/O
controller (shown in Figure 6¢). We encapsulate the functions of I/O drivers into separate
hardware modules, e.g. read the data from a specific address of the SPI NOR-flash.

As shown, a low layer I/O driver is comprised of two FIFOs (one input and one output),
two multiplexers, one mutex and multiple functions of I/O drivers. Specifically, the input
FIFO is responsible for receiving I/0O instructions from I/O VMM, and the output FIFO
takes charge of receiving I/O responses from the I/O controller. In order to guarantee that
the low layer I/O driver is able to execute the I/O instructions in the same sequence as they
are sent by the I/O VMM, a mutex is added. While instructions are being carried out by
one of the hardware functions, other I/O instructions must be blocked to wait to access the
I/0 controller.

Z. Jiang and N. Audsley

3.5.4 Memory Access Module

VCDC also provides an interface to access the external memory (DDR), which is named
BlueTree [11]. I/O devices are able to use this interface to read and write the external
memory, such as the DMA. We will not introduce the implementation of the memory access
module in this paper; for more details please see [11], [9] and [10].

3.5.5 Timing-accurate 1/O Controller

Clock cycle level timing-accurate I/O operations can be achieved by connecting the GPIO
Command Processor (GPIOCP) [32].

The GPIOCP is a resource efficient programmable 1/O controller, which permits ap-
plications to instigate complex sequences of I/O operations at an exact time, so achieving
timing-accuracy of a single clock cycle. This is achieved by loading application specific
programs into the GPIOCP which generates a sequence of control signals over a set of
General Purpose I/O (GPIO) pins, e.g. read / write. Applications then are able to invoke a
specific program at run-time by sending the GPIO command, for example Run command X
at time ¢ (at a future time). This achieves cycle level timing-accuracy as the latencies of the
I/0O virtualization and communication bus are removed. As an example, a periodic read of a
sensor value by an application can be achieved by loading the GPIOCP with an appropriate
program, then at run-time the GPIOCP issues a command such as run command X at time
t and repeat with period Z — the values are read at exact times, with the latency of moving
the data back to the application considered within that application’s execution time.

In [32], we have shown that deployment of GPIOCP can guarantee the clock cycle level
granularity of I/O operations. In this paper, GPIOCP is integrated with the VCDC as
a controller, and provides I/O virtualization as well as cycle level timing-accurate I/0O
operations.

4 Evaluation

The VCDC was implemented using Bluespec [13] and synthesised for the Xilinx VC709
development board [28] (further implementation details are given in technical report [14]).
The VCDC is connected to a 4 x 5 size 2D mesh type open source NoC[21] containing 16
Microblaze CPUs [27] running the modified guest OS FreeRTOS (v9.0.0) in the guest VM.
The modification of the FreeRTOS is described in Section 3.2. The architecture is shown in
Figure 7.

To enable comparison, a similar hardware architecture was built, but without the VCDC
and I/O virtualization — note that this architecture requires I/O operations requested by
Mircoblaze to pass through the mesh to the I/O rather than being controlled by a VCDC.
The OS running on each Microblaze is FreeRTOS (v9.0.0) with its official I/O management
module [6]. Both architectures run at 100 MHz.

4.1 Response Time of 1/O Operations

This experiment aims to evaluate the performance of the I/O system while CPU and I/O are
fully loaded in a VCDC and non-VCDC system. In both architectures, 9 CPUs are active,
whose coordinates are from (0, 0) to (0, 2), (1, 0) to (1, 2) and (2, 0) to (2, 2). In both
architectures, all the active CPUs have an independent application that is set to be running,
which continuously reads data from a SPT NOR-flash (model: S25FL128S). Specifically, the
experiments are divided into four groups, depending on the read bytes in each I/O request:

5:9

ECRTS 2017

5:10

VCDC: The Virtualized Complicated Device Controller

Figure 7 Experimental Platform. R — Router / Arbiter; M — Microblaze; VM — Guest Virtual
Machine; T — Timer.

1, 4, 64 and 256. All the experiments are implemented 1000 times and recorded in tables. A
lower 1/O response time indicates a higher performance of the corresponding I/0O system.
We name the experiments according to the global scheduling policy and bytes of read data
in one I/0 request. For example, non-VCDC-RR-4B stands for a non-VCDC system with
round-robin global scheduling policy; and 4 bytes of data read from the NOR-flash in one
I/0O request.

In the non-VCDC architecture, we modify the I/O management of FreeRTOS to be
suitable for many-core systems'. While the user applications on different CPUs are requesting
the I/O at the same time point, the scheduling policy can be set as FIFO (non-VCDC-FF)
and Round-Robin (non-VCDC-RR) respectively.

Results of 1000 experiments are given in Table 1, showing that the response time of I/O
requests in the non-VCDC architecture is significantly higher for the reading of 1 byte, 4 bytes,
64 bytes or 256 bytes from the NOR-flash, especially while Round-Robin scheduling policy
being employed. For example, the average response time of non-VDCD-RR-1B is higher
than 360,000 ns (36,000 clock cycles). In contrast, in VDCD-1B, the worst I/O response
time is lower than 4,000 ns (400 clock cycles). The high I/O response time in non-VCDC-
RR is mainly caused by the software implementation of round-robin I/O scheduling policy
(complicated on-chip communication is required). In experiments with more bytes being
read, the VCDC system maintains its superior performance. For example, in VCDC-256B,
the I/O response time is lower than 900,000 ns (90,000 clock cycles), which is similar to the
worst case of the I/O response time in non-VCDC-RR-1B - 658,850 ns (65, 885 clock cycles).

Additionally, when it comes to the variance of I/O response time in 1000 experiments, the
VCDC systems have a better performance than the non-VCDC systems. For example, in the
non-VCDC-FF-1B, the highest variance of I/O response time is greater than 15,000 ns (1, 500
clock cycles). When it comes to the non-VCDC-RR-1B, the situation becomes worse: the
highest variance of I/O response time reaches 600,000 ns (60,000 clock cycles). Conversely,
in the VCDC-1B, the highest variance of I/O response time is less than 500 ns (50 clock

! The I/O management in FreeRTOS is designed for a single-core system; in our experiments, we modify
it to be suitable for many-core systems.

Z. Jiang and N. Audsley 5:11

Table 1 I/0O response time in VCDC and non-VCDC systems (unit: clock cycle).

Non-VCDC System Non-VCDC System
Scheduling Polic};: FIFO Scheduling Policy: goundRobin VCDC System
CPU Index Min Max Mean Min Max Mean Min Max Mean
Read 1 Byte
(0, 0) 9357 9357 9357 6149 65885 36060 285 285 285
(0, 1) 7425 8989 8915 7073 65849 35860 380 403 396
(0, 2) 7057 8598 8415 7096 65849 36049 380 403 395
(1, 0) 7057 8207 8203 7096 65826 36237 357 403 391
(1, 1) 9748 9748 9748 7073 65826 36410 403 403 403
(1, 2) 7425 8966 7476 7073 65826 36576 334 334 334
(2,0) 7034 8598 7467 7073 65826 36741 357 403 366
(2, 1) 7057 8207 7576 7096 65826 36930 357 403 377
(2,2) 6121 6121 6121 7073 65803 37102 334 334 334
Read 4 Bytes
(0, 0) 58002 58477 58021 29515 316248 173091 1066 1123 1093
(0, 1) 29611 36281 34908 33243 309490 168542 1247 1408 1356
(0, 2) 29657 37017 36191 34770 322660 176642 1293 1569 1398
(1, 0) 28875 36258 35264 34770 322547 177561 1362 1569 1412
(1, 1) 58361 58844 58381 33243 309382 171130 1316 1385 1325
(1,2) 29588 35499 30208 34657 322547 179222 1247 1408 1270
(2,0) 29979 37040 31290 35223 327813 182972 1247 1569 1322
(2, 1) 28139 36235 34785 32641 302799 169881 1293 1431 1369
(2,2) 57579 58062 57599 32535 302693 170670 1247 1270 1249
Read 64 Bytes
(0, 0) 907744 929955 918905 408908 4381352 2398035 18770 19245 18935
(0, 1) 450935 478696 460279 393536 4216640 2307883 19007 20272 19521
(0, 2) 479501 579758 538170 476993 4426369 2423243 19053 22549 20808
(1, 0) 473268 571294 520525 476993 4424823 2435851 19145 23032 21203
(1, 1) 909739 936166 921822 488037 4541994 2512343 19076 19398 19188
(1,2) 449348 473636 456782 475305 4423507 2446804 19007 20157 19418
(2, 0) 474027 579068 535487 475305 4423507 2469029 19007 22043 20535
(2,1) 472095 565429 518137 489451 4555159 2542512 19007 22549 20895
(2,2) 900332 920618 907492 468232 4356158 2456170 19007 19237 19073
Read 256 Bytes
(0,0) 3628902 3702565 3674076 1586442 16998330 9303655 75609 78231 76046
(0, 1) 1810819 1897023 1826232 1848174 17206343 9370227 75839 79841 77648
(0, 2) 1897828 2181970 2119170 1830492 17041721 9280577 75885 88305 83101
(1, 0) 1890399 2132060 2046512 1862700 17279325 9512215 75997 89708 84212
(1, 1) 3631085 3708365 3679649 1848508 17147673 9620444 75908 78484 76336
(1,2) 1808220 1897000 1823103 1842516 17147673 9528055 75839 79542 77494
(2,0) 1897391 2180659 2116159 1828370 17016021 9497681 75839 87040 82616
(2, 1) 1890422 2131301 2044241 1869796 17345151 9731236 75839 89202 83631
(2, 2) 3616296 3682191 3641053 1826248 16990334 9579806 75839 78346 76212

ECRTS 2017

5:12 VCDC: The Virtualized Complicated Device Controller

I Non-VCDC; Scheduling Policy: FIFO
[Non-veDC; Scheduling Policy: RoundRobin
1 veDC; Scheduling Policy: RoundRobin

1600

1400 -

1200

Throughput (Unit: KB/s)
» o o o
s &8 38 8
s 8 38 8

N
S
]

AN MAEN MEEN MiE =

cpu (0,0) cpu (0,1) cpu (0,2) cpu (0,3)

Figure 8 I/O Throughput.

cycles). For experiments with more bytes being read, VCDC systems still have a better
performance. For example, in non-VCDC-RR-256B, the maximum variance of the I/0O
response time reaches 154,118,880 ns (15,411, 888 clock cycles). Conversely, in VCDC-256B,
the maximum variance of the I/O response time is only 137,310 ns (13,731 clock cycles),
which is 1/1000 of variance in the non-VCDC-RR-256B.

Therefore, the evaluation results shows that a system with VCDC can provide more
predictable I/O operations with lower response time.

4.2 1/0 Throughput

We evaluated the I/O throughput in two architectures (with VCDC and without VCDC).
In the experiment, we use the same NOR-flash illustrated in Section 4.1 connected to the
VCDC as our evaluation object.

In both architectures, one independent application is set to be running on each of four
Microblaze CPUs (coordinates are from (0,0) to (0,3)) and continuously writing to the
NOR-flash — one byte can be written during one I/O request. We record the written bytes
from each CPU within 1 second as the I/O throughput. The result of higher I/O throughput
implies a better performance of the I/O system. All the evaluations are implemented 1000
times. The evaluation results are shown in Figure 8.

In the figure, four groups of bar charts present the average I/O throughput in the VCDC
system and the non-VCDC system; and the error bar on each bar chart presents the variance
of the I/O throughput in these 1000 experiments. As shown, on all CPUs considered, the
VCDC system always provides a better performance on I/O throughput. Specifically, the
I/O throughput from any of the CPUs in the VCDC system is nearly 7 times higher than the
non-VCDC system with FIFO scheduling policy, and 20 times higher than the non-VCDC
system with round robin scheduling policy. Additionally, when it comes to the variance of
I/0 throughput, the VCDC system has a better performance than the non-VCDC systems.

In general, the evaluation results in this section show that a system with VCDC can
provide higher I/O throughput with smaller variance.

4.3 Scalability

In this section, we evaluate the scalability of the VCDC by measuring the I/O response
time of Ethernet packets sent from different CPUs in single-core, 4-core, 8-core and 16-core
systems, respectively.

Z. Jiang and N. Audsley

1/0VMM

veoe

1/ovMm

;
AXI Lite | [axistream

(Source IP &
[F67256 Ethernet Sendtothe| _~Tfsource vt
1 TEMAC 5 oxrérsrroo) 1

subsystem PU_|

S

TEMAC AXI Ethernet Buffer

Receive from
AXI Ethernet

Buffer

1/0 control pins i "AXI Stream hxiLite h Stream Lxl Stream

PHY

Lyw Layer 1/O Drivers |

i otemac i AXI Ethernet Buffer

1G/2.5G Ethernet subsystem

Figure 9 Connection between VCDC Figure 10 Virtualization Module of Ethernet I/0O
and Ethernet System. VMM.

4.3.1 Ethernet Virtualization

A full Ethernet packet comprises an Ethernet header, an IP header, a TCP header and the
payload [22]. The virtualization of Ethernet is implemented by virtualizing the IP address of
Ethernet packets sent from each processor.

In a many-core or multi-core system, all the Ethernet packets sent from different CPUs
should have the same IP address. In a system with VCDC, the virtulization module sets the
last 8 bits of the source IP address as the CPU ID, so that the Ethernet packets sent from
each CPU can have a unique source IP address. With VCDC employed, one CPU is able to
communicate with a dedicated destination without interference from other CPUs.

In our approach, VCDC is designed to connected with Xilinx 1G/2.5G Ethernet subsystem
[29], which comprises three IP cores: a Tri-mode Ethernet MAC (TEMAC) [24], a Gigabit
MII (GMII) [24] and an Axi Ethernet buffer [30], see Figure 9.

In Xilinx 1G/2.5G Ethernet subsystem, the GMII provides an interface between MAC
and PHY, which is controlled by the TEMAC and the AXI Ethernet buffer. Specifically, the
TEMAC takes charge of the control parts of the GMII, such as initialization and settings of
communication speed. The AXI Ethernet buffer takes charge of transmission of Ethernet
packets. When an Ethernet packet is received by the AXI Ethernet buffer, the packet will be
sent to the GMII directly via an AXI stream interface, then sent to the physical layer.

As described in Section 3.5.2; inside I/O VMM, the virtualization module is responsible
for the virtualization of a specific I/O. Figure 10 describes the inner architecture of the
virtualization module inside the I/O VMM for Ethernet.

The virtualization module inside the Ethernet I/O VMM has two parts: down and up.

The down part takes charge of the analysis and allocation of incoming I/O requests from the
dedicated CPU FIFOs. Specifically, the I/O requests received by the virtualization module
are divided into the control operations and the Ethernet packets. If the incoming I/O request
is the control operation, the virtualization module will allocate it to the TEMAC inside
the Ethernet subsystem via the low layer I/O drivers (AXIT lite interface). If the incoming
I/0 request is an Ethernet packet, the virtualization module will virtualize its IP address
according to its corresponding CPU IP; and send it to the AXI Ethernet buffer via the low
layer 1/0 drivers (AXI Stream interface). Additionally, the up part takes charge of receiving
Ethernet packets from the physical layer (PHY). It buffers and sends an entire Ethernet

5:13

ECRTS 2017

5:14

VCDC: The Virtualized Complicated Device Controller

packet back to the corresponding dedicated CPU FIFO according to the destination IP
address of this Ethernet packet.

4.3.2 Experiment

The experiment is divided into two groups, which depends on the global scheduling policy
of the VCDC: round-robin (named VCDC-RR) and fixed priority (named VCDC-FP). In
VCDC-RR and VCDC-FP, the experiments can be further divided into four parts, according
to the number of active CPUs. In these four parts of the experiments, we activate 1, 4, 8
and 16 Microblazes respectively. We name these experiment parts according to the label of
the experiment plus the number of active CPUs. For example, in a 4-core VCDC system
with round-robin global scheduling policy, the experiment is labelled VCDC-RR-4.

The software application running on each active CPU is the same, and is designed to
continuously send 1 KB Ethernet packets via VCDC to a dedicated component. The 1 KB
Ethernet packets sent from different CPUs are exactly the same, including the MAC header,
the TP header, and the payload. However, the VCDC will virtualize the source IP address
of each Ethernet packet based on the rules in Section 4.3.1. Additionally, the dedicated
component is designed to monitor the response time of these Ethernet packets by recording
the reach time and analysing the virtual source IP address of the packets. All the experiments
were implemented 1000 times.

The experiment is divided into two groups, which depends on the global scheduling policy
of the VCDC: round-robin (named VCDC-RR) and fixed priority (named VCDC-FP). In
VCDC-RR and VCDC-FP, the experiments can be further divided into four parts, according
to the number of active CPUs. In these four parts of the experiments, we activate 1, 4, 8
and 16 Microblazes respectively. We name these experiment parts according to the label of
the experiment plus the number of active CPUs. For example, in a 4-core VCDC system
with round-robin global scheduling policy, the experiment is labelled VCDC-RR-4.

The software application running on each active CPU is the same, and is designed to
continuously send 1 KB Ethernet packets via VCDC to a dedicated component. The 1 KB
Ethernet packets sent from different CPUs are exactly the same, including the MAC header,
the IP header, and the payload. However, the VCDC will virtualize the source IP address
of each Ethernet packet based on the rules in Section 4.3.1. Additionally, the dedicated
component is designed to monitor the response time of these Ethernet packets by recording
the reach time and analysing the virtual source IP address of the packets. All the experiments
were implemented 1000 times; and the experiment results are depicted in tables.

In VCDC-FP, CPU (0, 0) is always set as the highest priority, followed by CPU (1, 0),
(2,0), (3,0) and (1, 0) etc. The experiment results are shown in Table 2. As shown, for all
multi-core systems, the I/O response time from the CPU with the highest priority is always
fixed around 12 us; and the I/O requests from the CPUs with the lower priorities are always
blocked by the the I/O requests with higher priorities, which guarantees the execution of the
I/0O requests with higher priorities. For example, in VCDC-FP-8, the average response time
of the I/O requests from CPU (0,0) (the highest priority) is kept to 12 us, which means it can
never be blocked by others. When it comes to the I/O requests from CPU (3, 1) (the lowest
priority), the I/O response time is always around 96 us, which is 8 times the highest priority
I/O requests. The I/O response time of the lowest priority I/O request is extended due to
blocks from other CPU, which means that the VCDC system does not introduce extra delay
for the lowest priority I/0O request. In a 8-core system, the theoretical optimal response time
of the lowest priority I/O request should be 8 times the highest priority I/O request, and
our experiment results obtain this. Similarly, in VCDC-FP-16, the average response time of

Z. Jiang and N. Audsley

Table 2 Average Response Time of Loop Back 1KB Ethernet Packets in VCDC System (Global

Scheduling Policy: Fixed Priority; Unit: us).

Number of CPUs
2 3

CPU Index 1
EO, 0 12.09 12.07 12.09 12.08
1,0 - 25.50 25.51 25.50
2,0 — 36.92 36.94 36.93
3,0 - 48.35 48.36 48.35
0,1 - — 59.78 59.78
1,1 — — 71.21 71.19
2,1 - — 82.62 82.62
3,1 — — 94.06 95.06
0, 2 - - — 105.46
12 - - ~ 116.90
2.2 - - ~128.31
3,2 - - ~ 139.74
0,3 - - ~ 15117
13 - - ~ 16258
2,3 — — — 174.02
3,3 . - ~ 185.44

Table 3 Average Response Time of Loop Back 1KB Ethernet Packets in VCDC System (Global

Scheduling Policy: Round Robin; Unit: us).

Number of CPUs
2 3

CPU Index 1
(0,0 12.32 46.71 90.58 180.15
1,0 — 47.20 90.88 180.71
2,0 - 47.68 91.22 179.99
3,0 - 48.19 91.58 180.66
0,1 — — 91.93 180.04
1,1 — — 92.27 180.71
2,1 - - 92.63 180.09
3,1 — — 92.98 180.77
0, 2 - - — 180.04
1,2 - - -~ 180.71
§2, 2 - - - 180.09
3,2 - - - 180.77
0,3 - - — 180.04
1,3 - - - 180.71
2,3 - - - 180.09
(3,3 - - ~180.77

the I/O request from CPU (3,3) (the lowest priority) is around 190 us, which is 16 times
the response time of the highest priority I/O requests. The results still meet the theoretical
optimal value. These experiments indicate a good scalability of the VCDC.

In VCDC-RR, the global arbiter is set to start from operating a random I/O request
in each independent experiment. The experiment results are shown in Table 3. As shown,
with an increase in the number of CPUs, the I/O response time of each CPU is proportional
to the number of CPUs. Specifically, compared to the response time of an I/O request in
VCDC-RR-1, the average I/O response time of an I/O request in VCDC-RR-4, VCDC-RR-4
and VCDC-RR-16 is respectively around 4, 8 and 16 times the average I/O response time in
a single-core system. These results are close to the theoretical optimal values, which shows a
good scalability of the VCDC.

4.4 Hardware and Software Overhead

This section can be mainly divided into two parts. In the first part, we compare the software
overhead of a VCDC system and non-VCDC system with a software implementation of I/O

5:15

ECRTS 2017

5:16

VCDC: The Virtualized Complicated Device Controller

Table 4 Software Usage (object code).

Non-VCDC Non-VCDC

Software Module VCDC (FIFO) (Round-Robin)

I/O Manager

(KB) 0 139.2 148.5
UAPE;E{BD)river 60.5 1922.4 122.4
VG(AK]élgiver 70.2 105.2 105.2

Non—nga(sg)Driver 90.2 135.8 145.6

Ether(n}i%];river 88.7 210.2 230.2

Table 5 Hardware Usage (Without GPIOCP).

Hardware Consumption VCDC Microblaze SPI Controller
Look Up Tables 4812 1860 886
Registers 1413 2133 615
Block RAMs
(KB) 0 8 0

management (i.e. I/O manager in FreeRTOS), see Table 4. In the second part, we compare
the hardware overhead of a VCDC and a Microblaze CPU (running as a VMM), see Table 5.

4.4.1 Software Overhead

As shown in Table 4, the VCDC system significantly reduces software overhead. Specifically,
the software I/O manager is not required and the size of I/O drivers is smaller in the VCDC
system.

4.4.2 Hardware Overhead

As shown in Table 5, compared with a dedicated I/O controller (SPI controller), VCDC
consumes more FPGA hardware resources, including look up tables and registers. When it
is compared with a full-featured Microblaze, the VCDC consumes more look up tables but
less registers and BRAMs.

It is a trade-off between software overhead and hardware overhead. However, the VCDC
system brings significant improvements of the I/O performance, including I/0O throughput,
response time, variance and scalability.

4.5 On-chip Communication Overhead

In NoC-based many-core systems, all the I/O requests are transmitted as on-chip packets.
A larger requirement for on-chip packets means a higher on-chip communication overhead.
In this section, we compare the on-chip communication overhead while invoking commonly
used I/0 requests in a VCDC and non-VCDC system by recording the number of packets on
the NoC. In the NoC [21], the width of all the on-chip packets are 32 bits. The evaluation
results are demonstrated in Table 6.

As it is shown, while the invoked I/O request is simple, the on-chip communication
overhead is similar in all the systems, e.g. displaying one pixel via the VGA in a single-core

Z. Jiang and N. Audsley

Table 6 On-chip Communication Overhead.

Number of on-chip Packets
I/0 Device I/0 Operation (Each Packet: 32-bit)
Non-VCDC Non-VCDC
FIFO Round-Robin VeDe

]] 1 CPU 6 [§ 3

Display 1 Pixel 4 CPUs 24 33 12

VGA 10 CPUs 60 87 30

]] TCPU 60 60 30
Display 10 Pixels 4 CPUs 240 357 120
10 CPUs 600 897 300

1 CPU 12 12 4

Read 1 Byte 4 CPUs 48 57 16

SPI Flash 10 CPUs 120 237 40
1 CPU 120 120 40
Read 10 Bytes 4 CPUs 480 597 160
10 CPUs 1200 1497 400

system. When the I/O operations become complicated or the number of CPUs are increased,
the on-chip communication overhead in non-VCDC architecture is significant; in contrast,
the VCDC architecture has a lower on-chip communication overhead, for example, reading
10 bytes data from the SPI flash in 10-core systems.

4.5.1 Bottleneck of On-chip Communication

In the proposed design, a single channel interface is used for transmitting VCDC requests. It

connects the many-core system and the VCDC, which has been explained in Section 3.5.1.

Frequently invoked VCDC requests might cause traffic congestion at the entrance of the
VCDC, which decreases the predictability of I/O operations. This traffic congestions can
further affect the communication issues on the system level.

4.5.2 Discussion

In current stage, a provided solution is adding the number of communication channels in the
interface between many-core system and VCDC. The multiple communication channels can
alleviate communication traffic significantly. However, changing the number of communication
channels requires to rebuild whole hardware, which is not suitable for a ready-built IC.

5 Related Work

Related approaches for I/O virtualization over a many-core or many-CPU architecture can be
mainly divided into software virtualization and hardware virtualization. In this section, we
review one software I/O virtualization (Quest-V [26]) and two hardware I/O virtualizations
(VT-d [12] and SR-IOV [20]).

5.1 Quest-V

Quest-V is a virtualized multi-kernel [26]. It uses virtualization techniques to isolate kernels
on different cores of a multi-core processor. Quest-V virtualizes the single CPU as two classes
of VCPUs: (1) main VCPUs are used to schedule and track the conventional software
threads; (2) I/O VCPUs are used to account for scheduling, execution of I/O requests and
handling of I/O interrupts. The virtualization for the underlying hardware features are
supported by the I/O VCPUs with corresponding I/O drivers (virtualized). Using the same

5:17

ECRTS 2017

5:18

VCDC: The Virtualized Complicated Device Controller

physical CPU for both software threads and for handling I/O can compromise the 1/O
accuracy.

5.2 Virtualization Technology for Directed 1/0 (VT-d)

VT-d is the hardware support for isolating and restricting device accesses to the owner of
the partition managing the device, which is developed by Intel [12]. VT-d includes three
key capabilities: (1) Allows an administrator to assign I/O devices to guest VMs in any
desired configuration; (2) supports address translations for device DMA data transfers; and
(3) provides VM routing and isolation of device interrupts. Generally speaking, VT-d provides
a hardware VMM that allows user applications running in the guest VMs to access and
operate the I/O devices directly. Compared with traditional software virtualization, VT-d
offloads most of the overhead of virtualization to the hardware level. In a system with VT-d,
in addition to I/O drivers, extra drivers for VT-d are also required in the software layer.
Therefore the I/O performance in the guest VM can only reach about 70% [25], compared to
the original 1/0.

5.3 Single Root 1/0 Virtualization (SR-10V)

Single Root I/O Virtualization (SR-IOV) is a specification, which proposes a set of hardware
enhancements for the PCle device. SR-IOV aims to remove major VMM intervention for
performance data movement to I/O devices, such as the packet classification and address
translation. A SR-IOV-based device is able to create multiple “light-weight” instances of
PCI function entities (also known as VFs). Each VF can be assigned to a guest for direct
access, but still shares major device resources, achieving both resource sharing and high
performance. Currently, many I/O devices have already supported the SR-IOV specification,
such as [4], [5] and [15]. Similarly to Intel VT-d, to support a SR-IOV-based I/O more
drivers are needed in the software, which reduces the performance of the I/0.

6 Conclusion

In this paper, we have presented the concept of predictable hardware I/O virtualization for
NoC many-core systems (VCDC). It enables applications to access and operate I/O devices
directly from guest VMs, bypassing the guest OS, the VMM and low layer I/O drivers in
software layer.

Evaluation reveals that VCDC can virtualize a physical I/O to multiple virtual I/Os
with significant performance improvements, including faster 1/O response time, greater I/0
throughput, less on-chip communication overhead and good scalability. When it comes
to the system overhead, the VCDC represents a trade-off between software and hardware,
decreasing the software usage but requiring a greater consumption of hardware.

—— References

1 Keith Adams and Ole Agesen. A comparison of software and hardware techniques for
x86 virtualization. SIGARCH Comput. Archit. News, 34(5):2-13, October 2006. doi:
10.1145/1168919.1168860.

2 Muli Ben-Yehuda, Jimi Xenidis, Michal Ostrowski, Karl Rister, Alexis Bruemmer, and
Leendert Van Doorn. The price of safety: Evaluating IOMMU performance. In The Ottawa
Linux Symposium, pages 9-20, 2007. doi:10.1.1.716.7062.

http://dx.doi.org/10.1145/1168919.1168860
http://dx.doi.org/10.1145/1168919.1168860
http://dx.doi.org/10.1.1.716.7062

Z. Jiang and N. Audsley

10

11

12

13

14

15

16

17

18

19

20
21

Alan Burns and Andrew J Wellings. Real-time systems and programming languages: Ada
95, Real-Time Java, and Real-Time POSIX. Pearson Education, 2001.

Yaozu Dong, Xiaowei Yang, Jianhui Li, Guangdeng Liao, Kun Tian, and Haibing Guan.
High performance network virtualization with SR-IOV. J. Parallel Distrib. Comput.,
72(11):1471-1480, November 2012. doi:10.1016/j.jpdc.2012.01.020.

Yaozu Dong, Zhao Yu, and Greg Rose. SR-IOV networking in Xen: Architecture,
design and implementation. In Proceedings of the First Conference on 1/O Virtualiz-
ation, WIOV’08, pages 10-10, Berkeley, CA, USA, 2008. USENIX Association. URL:
http://dl.acm.org/citation.cfm?id=1855865.1855875.

FreeRTOS. FreeRTOS 1/0 official website. http://www.freertos.org/FreeRT0S-Plus/
FreeRTOS_Plus_I0/FreeRTOS_Plus_I0.shtml. Accessed September 27, 2016.

FreeRTOS. FreeRTOS official website. http://www.freertos.org/. Accessed September
27, 2016.

Marisol Garcia-Valls, Tommaso Cucinotta, and Chenyang Lu. Challenges in Real-time
virtualization and predictable cloud computing. J. Syst. Archit., 60(9):726-740, October
2014. doi:10.1016/j.sysarc.2014.07.004.

Jamie Garside and Neil Audsley. Prefetching across a shared memory tree within a Network-
on-Chip architecture. In 2018 International Symposium on System on Chip (SoC), pages
1-4, Oct 2013. d0i:10.1109/ISS0C.2013.6675268.

Manil Gomony, Jamie Garside, Benny Akesson, Neil Audsley, and Kees Goossens. A glob-
ally arbitrated memory tree for mixed-time-criticality systems. IEFEE Transactions on
Computers, pages 1-1, 2016. doi:10.1109/tc.2016.2595581.

Manil Dev Gomony, Jamie Garside, Benny Akesson, Neil Audsley, and Kees Goossens. A
generic, scalable and globally arbitrated memory tree for shared DRAM access in Real-
Time systems. In Design, Automation € Test in Europe Conference € Exhibition (DATE),
2015. IEEE Conference Publications, 2015. doi:10.7873/date.2015.0390.

Radhakrishna Hiremane. Intel virtualization technology for directed 1/O (Intel VT-d).
Technology@ Intel Magazine, 4(10), 2007.

Bluespec Inc. Bluespec System Verilog (BSV). http://www.bluespec.com/products/.
Accessed September 27, 2015.

Zhe Jiang. VCDC technical report. https://github.com/RTSYork/BlueIO. Accessed
January 27, 2017.

Jithin Jose, Mingzhe Li, Xiaoyi Lu, Krishna Chaitanya Kandalla, Mark Daniel Arnold, and
Dhabaleswar K. Panda. SR-IOV support for virtualization on InfiniBand clusters: Early
experience. In 2018 13th IEEE/ACM International Symposium on Cluster, Cloud, and
Grid Computing. IEEE, may 2013. doi:10.1109/ccgrid.2013.76.

Silicon Labs. UCOS official website. https://www.micrium. com/rtos/kernels/. Accessed
September 27, 2015.

John A. Landis, Terrence V. Powderly, Rajagopalan Subrahmanian, Aravindh Puthiyapara-
mbil, and James R. Hunter Jr. Computer system para-virtualization using a hypervisor
that is implemented in a partition of the host system, July 19 2011. US Patent 7,984,108.
Jirgen Mossinger. Software in automotive systems. IEEE Software, 27(2):92-94, mar 2010.
doi:10.1109/ms.2010.55.

Gil Neiger. Intel virtualization technology: Hardware support for efficient processor virtu-
alization. Intel Technology Journal, 10(03), aug 2006. doi:10.1535/itj.1003.01.
PCI-SIG. SR-IOV official website. http://pcisig.com/. Accessed September 27, 2016.
Gary Plumbridge, Jack Whitham, and Neil Audsley. Blueshell: a platform for rapid proto-
typing of multiprocessor NoCs and accelerators. ACM SIGARCH Computer Architecture
News, 41(5):107-117, jun 2014. doi:10.1145/2641361.2641379.

5:19

ECRTS 2017

http://dx.doi.org/10.1016/j.jpdc.2012.01.020
http://dl.acm.org/citation.cfm?id=1855865.1855875
http://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_IO/FreeRTOS_Plus_IO.shtml
http://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_IO/FreeRTOS_Plus_IO.shtml
http://www.freertos.org/
http://dx.doi.org/10.1016/j.sysarc.2014.07.004
http://dx.doi.org/10.1109/ISSoC.2013.6675268
http://dx.doi.org/10.1109/tc.2016.2595581
http://dx.doi.org/10.7873/date.2015.0390
http://www.bluespec.com/products/
https://github.com/RTSYork/BlueIO
http://dx.doi.org/10.1109/ccgrid.2013.76
https://www.micrium.com/rtos/kernels/
http://dx.doi.org/10.1109/ms.2010.55
http://dx.doi.org/10.1535/itj.1003.01
http://pcisig.com/
http://dx.doi.org/10.1145/2641361.2641379

5:20

VCDC: The Virtualized Complicated Device Controller

22

23

24

25

26

27

28

29

30

31
32

33

D. Plummer. Ethernet address resolution protocol: Or converting network protocol
addresses to 48.bit ethernet address for transmission on ethernet hardware, nov 1982.
doi:10.17487/rfc0826.

Jyotiprakash Sahoo, Subasish Mohapatra, and Radha Lath. Virtualization: A survey on
concepts, taxonomy and associated security issues. In 2010 Second International Conference
on Computer and Network Technology. IEEE, 2010. doi:10.1109/iccnt.2010.49.

Pang Wei Tsai, Hou Yi Chou, Mon Yen Luo, and Chu Sing Yang. Design a flexible software
development environment on NetFPGA platform. In Applied Mechanics and Materials,
volume 411-414, pages 1665-1669. Trans Tech Publications, sep 2013. doi:10.4028/www.
scientific.net/amm.411-414.1665.

Carl Waldspurger and Mendel Rosenblum. 1/0 virtualization. Communications of the
ACM, 55(1):66-73, 2012.

Richard West, Ye Li, and Eric S. Missimer. Quest-v: A virtualized multikernel for safety-
critical Real-Time systems. CoRR, abs/1310.6349, 2013. URL: http://arxiv.org/abs/
1310.6349.

Xilinx. Microblaze user manual. http://www.xilinx.com/support/documentation/sw_
manuals/xilinx11/mb_ref_guide.pdf. Accessed August 27, 2016.

Xilinx. VC709 official website. https://www.xilinx.com/products/boards-and-kits/
dk-v7-vc709-g.html. Accessed August 27, 2016.

Xilinx. Xilinx 1G/2.5G Ethernet subsystem manual. https://www.xilinx.com/support/
documentation/ip_documentation/axi_ethernet/v7_0/pgl38-axi-ethernet.pdf. Ac-
cessed August 27, 2016.

Xilinx. Xilinx AXI FIFO wuser manual. https://www.xilinx.com/support/
documentation/ip_documentation/axi_fifo_mm_s/v4_1/pg080-axi-fifo-mm-s.pdf.
Accessed August 27, 2016.

Xilinx. Xilinx official website. https://www.Xilinx.com. Accessed July 5, 2015.

Neil Audsley Zhe Jiang. GPIOCP: Timing-accurate general purpose i/o controller for
many-core Real-time systems. In Proceedings of the 2017 Design, Automation & Test in
Europe Conference & FExhibition. EDA Consortium, 2017.

Richard West Zhuoqun Cheng and Ying Ye. Building Real-Time embedded applications on
QduinoMC: A web-connected 3d printer case study. In Real- Time and Embedded Technology
and Applications Symposium (RTAS), 2017 IEEE. IEEE, 2017.

http://dx.doi.org/10.17487/rfc0826
http://dx.doi.org/10.1109/iccnt.2010.49
http://dx.doi.org/10.4028/www.scientific.net/amm.411-414.1665
http://dx.doi.org/10.4028/www.scientific.net/amm.411-414.1665
http://arxiv.org/abs/1310.6349
http://arxiv.org/abs/1310.6349
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/mb_ref_guide.pdf
https://www.xilinx.com/products/boards-and-kits/dk-v7-vc709-g.html
https://www.xilinx.com/products/boards-and-kits/dk-v7-vc709-g.html
https://www.xilinx.com/support/documentation/ip_documentation/axi_ethernet/v7_0/pg138-axi-ethernet.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_ethernet/v7_0/pg138-axi-ethernet.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_fifo_mm_s/v4_1/pg080-axi-fifo-mm-s.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_fifo_mm_s/v4_1/pg080-axi-fifo-mm-s.pdf
https://www.Xilinx.com

	Introduction
	Motivation
	Complicated Path of I/O requests
	Complicated I/O Resource Management

	Virtualized Complicated Device Controller (VCDC)
	Virtualization in the VCDC Systems
	Guest Virtual Machine and Guest OS
	System Model
	Overall Architecture
	Detailed Architecture
	Hardware Manager
	I/O VMM
	Low Layer I/O Driver
	Memory Access Module
	Timing-accurate I/O Controller

	Evaluation
	Response Time of I/O Operations
	I/O Throughput
	Scalability
	Ethernet Virtualization
	Experiment

	Hardware and Software Overhead
	Software Overhead
	Hardware Overhead

	On-chip Communication Overhead
	Bottleneck of On-chip Communication
	Discussion

	Related Work
	Quest-V
	Virtualization Technology for Directed I/O (VT-d)
	Single Root I/O Virtualization (SR-IOV)

	Conclusion

