
Replica-Aware Co-Scheduling for
Mixed-Criticality∗

Eberle A. Rambo1 and Rolf Ernst2

1 Technische Universität Braunschweig, Braunschweig, Germany
rambo@ida.ing.tu-bs.de

2 Technische Universität Braunschweig, Braunschweig, Germany
ernst@ida.ing-tu-bs.de

Abstract
Cross-layer fault-tolerance solutions are the key to effectively and efficiently increase the relia-
bility in future safety-critical real-time systems. Replicated software execution with hardware
support for error detection is a cross-layer approach that exploits future many-core platforms to
increase reliability without resorting to redundancy in hardware. The performance of such sys-
tems, however, strongly depends on the scheduler. Standard schedulers, such as Partitioned Strict
Priority Preemptive (SPP) and Time-Division Multiplexing (TDM)-based ones, although widely
employed, provide poor performance in face of replicated execution. In this paper, we propose the
replica-aware co-scheduling for mixed-critical systems. Experimental results show schedulability
improvements of more than 1.5x when compared to TDM and 6.9x when compared to SPP.

1998 ACM Subject Classification C.4 Performance of Systems

Keywords and phrases replicated execution, scheduling, fault tolerance, real-time systems

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2017.20

1 Introduction

Technology downscaling has increased the hardware’s overall susceptibility to errors to the
point where they became non-negligible [15]. Hence, current and future computing systems
must be appropriately designed to cope with errors in order to provide a reliable service and
correct functionality. Specially in the real-time mixed-criticality domain, where applications
with different requirements and criticalities co-exist in the system, which must provide
sufficient independence and prevent error propagation (e.g. timing, data corruption) between
criticalities [17, 28]. Recent examples are complex applications such as Flight Management
Systems (FMS) and Advanced Driver Assistance Systems (ADAS) in the avionics and
automotive domains, respectively [17, 28]. In this paper, we address the timing aspect of
software execution protected from soft errors.

Soft errors, more specifically Single Event Effects (SEEs), are transient faults abstracted
as bit-flips in hardware and can be caused by alpha particles, energetic neutrons from cosmic
radiation and process variability [11, 15]. Depending on where and when they occur, their
impact on software execution range from masked (no observable effect) to a complete system
crash [5, 8, 9]. To handle such errors, the approaches can vary from completely software-
based to completely hardware-based. The former are able to cover only part of the errors
[9, 8] and the latter result in costly redundant hardware [15], as currently seen in lock-step

∗ This work was supported in parts by the German Research Foundation (DFG) as part of the priority
program “Dependable Embedded Systems” (SPP 1500 – http://spp1500.itec.kit.edu).

C
o

n
si

st

en
t * Complete * W

ell D
o

cu
m

ented * Easy to
 R

eu
se

 *

 *
 Evaluated *

 E
C

R
T
S
 *

 Artifact *
 A

E

© Eberle A. Rambo and Rolf Ernst;
licensed under Creative Commons License CC-BY

29th Euromicro Conference on Real-Time Systems (ECRTS 2017).
Editor: Marko Bertogna; Article No. 20; pp. 20:1–20:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECRTS.2017.20
http://spp1500.itec.kit.edu
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

20:2 Replica-Aware Co-Scheduling for Mixed-Criticality

R
om

ain

Hypervisor / OS

Checkpoint
& Rollback

Replicated
Execution

Pr
ot

ec
te

d
A

p
p

.

Pr
ot

ec
te

d
A

p
p

.

Pr
ot

ec
te

d
A

p
p

.

Pr
ot

ec
te

d
A

p
p

lic
a

ti
o

n

U
np

ro
te

ct
ed

A
pp

.

U
np

ro
te

ct
ed

A
pp

.

U
np

ro
te

ct
ed

A
p

pl
ic

at
io

n

Figure 1 ASTEROID’s fault-tolerance architecture: the software side.

dual-core execution [21]. We focus on a more effective and efficient cross-layer approach,
which distributes the tasks of detecting errors and recovering from them in different layers of
software and hardware [15, 9, 8].

A cross-layer fault-tolerance solution for mixed-criticality has been developed in the
ASTEROID project. It increases the reliability at a higher level of abstraction without
resorting to hardware redundancy [3, 8]. ASTEROID’s architecture is illustrated in Fig. 1.
The reliable software execution is realized by the operating system service Romain [8].
Mixed-critical applications may co-exist in the system and are translated into protected
and unprotected applications. Romain replicates the protected applications and manage
their execution. Error detection is realized by a set o mechanisms whose main feature is
the hardware assisted state comparison, which compares the replicas’ state at certain points
in time [3, 8]. Error recovery strategies can vary depending on whether the application is
running in Dual Modular Redundancy (DMR) or Triple Modular Redundancy (TMR) [3, 5].

The performance of replicated execution has been analyzed in [4] and revised in [2]. The
work supports Partitioned Strict Priority Preemptive (SPP) scheduling, where tasks are
mapped to arbitrary cores, and assumes a single error model. The authors found that SPP,
although widely employed in real-time systems, provides very pessimistic response time
bounds for replicated tasks. Depending on the interfering workload, replicated tasks executing
serially (on the same core) present much better performance than when executing in parallel
(on distinct cores). That occurs due to the long time that replicated tasks potentially have
to wait on each core to synchronize and compare states before resuming execution. That
leads to very low resource utilization and prevents the use of replicated execution in practice.

In this paper, we explore co-scheduling to provide small response times for replicated
tasks without hindering the remaining unprotected tasks. Co-scheduling is a technique that
schedules interacting tasks/threads to execute simultaneously on different cores [22]. It allows
tasks/threads to communicate more efficiently by reducing the time they are blocked during
synchronization. In contrast to SPP [4, 2], our approach drastically minimizes delays due
to the implicit synchronization found in state comparisons. In contrast to gang scheduling
[10], it rules out starvation and distributes the execution of replicas in time to achieve
small response times of unprotected tasks. Finally, our approach differs from standard
Time-Division Multiplexing (TDM) and TDM with background partition [18] in that all
tasks have formal guarantees.

The major contribution of this paper is the replica-aware co-scheduling for mixed-
critical systems. A formal Worst-Case Response Time (WCRT) analysis under a single
error assumption is included. In contrast to related work, it supports different recovery
strategies and accounts for the Network-on-Chip (NoC) communication delay and overheads
due to replica management and state comparison. Experimental results with benchmark
applications show an improvement on taskset schedulability of up to 6.9x when compared to
SPP [2], and 1.5x when compared to a TDM-based scheduler.

E. A. Rambo and R. Ernst 20:3

2 Related Work

L4/Romain [8] is a cross-layer fault-tolerance approach that provides reliable software
execution under soft errors. Romain provides protection at the application-level by replicating
and managing the applications’ executions as an operating system service. The error detection
is realized by a set of mechanisms [3, 8, 9] whose main feature is the hardware assisted state
comparison, which allows an effective and efficient comparison of the replicas’ states. Pipeline
fingerprinting [3] provides a checksum of the retired instructions and the pipeline’s data path
in every processor, detecting errors in the execution flow and data. The state comparison,
reduced to comparing checksums instead of data structures, is carried out at certain points
in time. It must occur at least when the application is about to externalize its state e.g. in a
syscall [8]. The replica generated syscalls are intercepted by Romain, have their integrity
checked and their replicas’ states compared before being allowed to externalize the state [8].

Mixed-criticality, in the context of this paper, is supported with different levels of
protection for applications with different criticalities and requirements (unprotected, protected
with DMR1or TMR) and by ensuring that timing constraints are met even in case of errors.
For instance, Romain provides different error recovery strategies [3, 5]:

DMR with checkpoint and rollback: to recover, the replicas rollback to their last valid
state and re-execute;
TMR with state copy: to recover, the state of the faulty replica is replaced with the state
of one of the healthy replicas.

In this work, we focus on the system-level timing aspect of errors affecting the applications.
We assume thereby the absence of failures in critical components [9, 24], such as the Operating
System (OS), the replica manager/voter (e.g. Romain) and interconnect (e.g. NoC), which
can be protected as in [16, 26].

The WCRT of replicated execution has been analyzed in [4], where replicas are modeled
as fork-join tasks in a system implementing Partitioned SPP. The work was later revised
in [2] due to optimism in the original approach. The revised approach is used in this work.
In that approach, with deadline monotonic priority assignment, where the priority of tasks
decrease as their deadlines increase, replicated tasks perform worse when mapped in parallel
than when mapped to the same core. This is due to the state comparisons during execution,
which involves implicit synchronization between cores. With partitioned scheduling, in the
worst-case, the synchronization ends up accumulating the interference from all cores to
which the replicated task is mapped, resulting in poor performance in higher loads. On
the other hand, mapping replicated tasks to the highest priorities results in long response
times for lower priority tasks and rules out deadline monotonicity. The latter causes the
unschedulability of all tasksets with at least one regular task whose deadline is shorter than
the execution time of a replicated task.

Gang scheduling [10] is a co-scheduling variant that schedules groups of interacting
tasks/threads simultaneously. It increases performance by reducing the inter-thread commu-
nication latency. The authors in [19] present an integration between gang scheduling and
Global Earliest Deadline First (EDF), called the Gang EDF. They provide a schedulability
analysis derived from the Global EDF’s based on the sporadic task model. In another work,
[12] shows that SPP Gang schedulers in general are not predictable, for instance, due to

1 DMR per se can be used for system integrity only. However, DMR augmented with checkpointing and
rollback enables recovery and can be used to achieve integrity and availability (state rollback followed
by re-execution in both replicas) [3, 5].

ECRTS 2017

20:4 Replica-Aware Co-Scheduling for Mixed-Criticality

priority inversions and slack utilization. In the context of real-time systems, gang scheduling
has not received much attention.

TDM-based scheduling [18] is widely employed to achieve predictability and ensure
temporal-isolation. Tasks are allocated to partitions, which are scheduled to execute in time
slots. Partitions can span across several (or all) cores and can be executed at the same time.
The downside of TDM is that it is not work-conserving and underutilizes system resources.
A TDM variant with background partition [18] tackles this issue by allowing low priority
tasks to execute in other partitions whenever no higher priority workload is executing. Yet,
in addition to the high cost to switch between partitions, no guarantees can be given to tasks
in the background partition.

In this work, we exploit co-scheduling with SPP to improve the performance of the
system. Our work differs from [4] in that replicas are treated as gangs and are mapped with
highest priorities, and are hence activated simultaneously on different cores. In contrast
to gang-scheduling [10, 12] and to [4], the execution of replicas is distributed in time with
offsets to compensate for the lack of deadline monotonicity thus allowing the schedulability
of tasks with short deadlines. We further provide for the worst-case performance of lower
priority tasks by allowing them to execute whenever no higher priority workload is executing.
However, in contrast to [18], all tasks have WCRT guarantees. Moreover, we also model the
state comparison and the on-Chip communication overheads, and although we use Romain
as example, the model can also be applied to other approaches.

3 Preliminaries

In this work, we use the Compositional Performance Analysis (CPA) [14] to provide formal
response time bounds. Let us introduce the system, task and error models.

3.1 System Model
The system consists of a standard NoC-based many-core composed of processing elements,
simply referred to as cores.

There are two types of tasks in our system, as in [2]:
independent tasks τi: regular, unprotected tasks; and
fork-join tasks Γi: replicated, protected tasks.

The system implements partitioned scheduling, where the operating system manages tasks
statically mapped to cores. The mapping is assumed to be given as input. The scheduling
policy is a combination of SPP and gang scheduling. When executing only independent tasks,
the system’s behavior is identical to Partitioned SPP, where tasks are scheduled independently
on each core according to SPP. It differs from SPP, when scheduling fork-join tasks.

Fork-join tasks are mapped with highest priorities, hence do not suffer interference from
independent tasks, and execute simultaneously on different cores, as in gang scheduling. Note
that deadline monotonicity is therefore only partially possible. To limit the interference to
independent tasks, the execution of a fork-join task is divided in smaller intervals called
stages, whose executions are distributed in time. At the end of each stage, the states of the
replicas are compared. In case of an error, i.e. states differ, recovery is triggered.

Fork-join stages are executed with static offsets [23] in execution slots. One stage is
executed per slot. On a core with n fork-join tasks, there are n+ 1 execution slots: one slot
for each fork-join task Γi and one slot for recovery. The slots are cyclically scheduled in a
cycle Φ. The slot for Γi starts at offset φ(Γi) relative to the start of Φ and ends after ϕ(Γi),

E. A. Rambo and R. Ernst 20:5

t

core 1

1

3
2

21 recovery
21 recovery

1

t

(s-1)-th stage of i-
th activation

s-th stage recovery of
s-th stage

1st stage of
i+1-th activation

Φ
ϕ(Γ2) ϕ(recovery)

ϕ(Γ1) φ(Γ2) φ(Γ2) φ(recovery)

core 2

1

4
2

21 recovery
21 recovery

1

error

DelayActivation with offsetEvent Execution

Figure 2 Execution example with two fork-join and two independent tasks on two cores.

the slot length. The recovery slot is shared by all fork-join tasks on that core and is where
error recovery may take place under a single error assumption (details in Sec. 3.3 and 4.3).
The recovery slot has an offset φ(recovery) relative to Φ and length ϕ(recovery). Lower
priority independent tasks are allowed to execute whenever no higher priority workload is
executing.

An example is shown in Fig. 2, where two fork-join tasks Γ1 and Γ2 and two independent
tasks τ3 and τ4 are mapped to two cores. Γ1 and Γ2 execute in their respective slots
simultaneously in both cores. When an error occurs, the recovery of Γ2 is scheduled and the
recovery of the error-affected stage occurs in the recovery slot. The use of offsets enables
the schedulability of independent tasks with short periods and deadlines, such as τ3 and
τ4. Note that, without the offsets, Γ1 and Γ2 would execute back-to-back leading to the
unschedulability of τ3 and τ4.

3.2 Task Model
An independent task τi is mapped to core σ with a priority p. Once activated, it executes
for at most Ci, its Worst-Case Execution Time (WCET). The activations of a task are
modeled with arbitrary event models. Task activations in an event model are given by arrival
curves η−(∆t) and η+(∆t), which return the minimum and maximum number of events
arriving in any time interval ∆t. Their pseudo-inverse counterparts δ+(q) and δ−(q) return
the maximum and minimum time interval between the first and last events in any sequence
of q event arrivals. Conversion is provided in [27]. Periodic events with jitter, sporadic events
and others can be modeled with the minimum distance function δ−i (q) as follows [27]:

δ−i (q) = max((q − 1) · dmin, (q − 1) · P − J) (1)

where P is the period, J is the jitter, dmin is the minimum distance between any two events,
and the subscript i indicates the association with a task τi or Γi.

Fork-join tasks are rigid parallel tasks, i.e. the number of processors required by a fork-join
task is fixed and specified externally to the scheduler [12], and consist of multiple stages
with data dependencies, as in [2, 1]. A fork-join task Γi is a Directed Acyclic Graph (DAG)
G(V,E), where vertices in V are subtasks and edges in E are precedence dependencies [2]. In
the graph, tasks are partitioned in segments and stages, as illustrated in Fig. 4a. A subtask
τσ,si is the s-th stage of the σ-th segment and is annotated with its WCET Cσ,si . The WCET

ECRTS 2017

20:6 Replica-Aware Co-Scheduling for Mixed-Criticality

CCCC
r

i

c

i

e

i

h

i




Overhead romain
Overhead NoC comm.

Overhead hypervisor
Task execution

C
s

i

,

(a) WCET of a fork-join subtask

Rollback & re-execute

State copy



Recovery strategy:

C
s

reci

,

,



C
e

reci,

(b) WCET of recovery

Figure 3 The composition of WCET of fork-join subtasks.

of a stage is equal across all segments, i.e. ∀x, y : Cx,si =Cy,si . Each segment σ of Γi is mapped
to a distinct core. A fork-join task Γi is annotated with the static offset φ(Γi), which marks
the start of its execution slot in Φ. The offset also admits a small positive jitter jφ, to account
for a slight desynchronization between cores and context switch overhead.

The activations of a fork-join task are modeled with event models. Once Γi is activated,
its stages are successively activated by the completion of all segments of the previous stage,
as in [2, 1]. Our approach differs from them in that it restricts the scheduling of at most
one stage of Γi in a cycle Φ, and the stage receives service at the offset φ(Γi). Note that the
event arrival at a fork-join task is not synchronized with its offset. The events at a fork-join
task are queued at the first stage and only one event at a time is processed (FIFO) [2]. A
queued event is admitted when the previous event leaves the last stage.

The interaction with Romain (the voter) is modeled in the analysis as part of the WCET
Cσ,si , as depicted in Fig. 3a. The WCET includes the on-Chip communication latency and
state comparison overheads, as the Romain instance may be mapped to an arbitrary core.
Those can be obtained e.g. with [25] along with task mapping and scheduler properties to
avoid over-conservative interference estimation and obtain tighter bounds.

3.3 Error Model

Our model assumes a single error scenario caused by SEEs (cf. Sec. 1). We assume that
all errors affecting fork-join tasks can be detected and contained, ensuring integrity. The
overhead of error detection mechanisms are modeled as part of the WCET (cf. Fig. 3a).
Regarding independent tasks, we assume that an error immediately leads to a task failure
and assume also that its failure will not violate the WCRT guarantees of the remaining tasks.
Those assumptions are met e.g. by Romain2. Moreover, we assume the absence of failures
in critical components [9, 24], such as the OS, the replica manager/voter Romain and the
interconnect (e.g. the NoC), which can be protected as in [16, 26].

Our model provides recovery2 for fork-join tasks, ensuring their availability. With a
recovery slot in every cycle Φ, our approach is able to handle up to one error per cycle Φ.
However, the analysis in Sec. 4.3 assumes at most one error per busy window for the sake of
a simpler analysis (the concept will be introduced in Sec. 4). The assumption is reasonable
since the probability of a multiple error scenario is very low and can be considered as an
acceptable risk [17]. A multiple error scenario occurs only if an error affects more than one
replica at a time or if more than one error occurs within the same busy window.

2 Romain is able to detect and recover from all soft errors affecting user-level applications. For details on
the different error impacts and detection strategies, the interested reader can refer to [3, 8].

E. A. Rambo and R. Ernst 20:7

3.4 Offsets
The execution of fork-join tasks in our approach is based on static offsets, which are assumed
to be provided as input to the scheduler. The offsets form execution slots whose size do not
vary during runtime, as seen in Fig. 2. Varying the slots sizes would substantially increase
the timing analysis complexity without a justifiable performance gain. The offsets must
satisfy two constraints:

I Constraint 1. A slot for a fork-join task Γi must be large enough to fit the largest stage of
Γi. That is, ∀s, σ: ϕ(Γi) ≥ Cσ,si + jφ.

I Constraint 2. The recovery slot must be large enough to fit the recovery of the largest
stage of any fork-join task mapped to that core. That is, ∀i, s, σ: ϕ(recovery)≥Cσ,si,rec + jφ.

where a one error scenario per cycle is assumed and Cσ,si,rec is the recovery WCET of subtask
τσ,si (cf. Sec. 4.3).

We provide basic offsets that satisfy Constraints 1 and 2. The calculation must consider
only overlapping fork-join tasks, i.e. fork-join tasks mapped to at least one core in common.
Offsets for non-overlapping fork-join tasks are computed separately as they do not interfere
directly with each other. The indirect interference, e.g. in the NoC, are accounted for in the
WCETs. First we determine the smallest slots that satisfy Constraint 1:

∀Γi : ϕ(Γi) = max
∀σ,s
{Cσ,si }+ jφ (2)

and the smallest recovery slot that satisfies Constraint 2:

ϕ(recovery) = max
∀Γi,τσ,sj

∈Γi

{
Cσ,si,rec

}
+ jφ . (3)

The cycle Φ is then the sum of all slots:

Φ =
∑
∀Γi

{ϕ(Γi)}+ ϕ(recovery) . (4)

The offsets then depend on the order in which the slots are placed inside Φ. Assuming that
the slots φ(Γi) are sorted in ascending order on i and that the recovery slot is the last one,
the offsets are obtained by:

φ(x) =


0 if x = Γ1

φ(Γi−1) + ϕ(Γi−1) if x = Γi and i > 1
Φ− ϕ(recovery) if x = recovery

(5)

4 Response-Time Analysis

The analysis is based on CPA and inspired by [2, 23]. In CPA, the WCRT is calculated with
the busy window approach [29]. The response time of an event of a task τi (resp. Γi) is the
time interval between the event arrival and the completion of its execution. In the busy
window approach [29], the event with the WCRT can be found inside the busy window. The
busy window wi of a task τi (resp. Γi) is the time interval where all response times of the
task depend on the execution of at least one previous event in the same busy window, except
for the task’s first event. The busy window starts at a critical instant corresponding to the
worst-case scheduling scenario. Since the worst-case scheduling scenario depends on the type
of task, it will be derived individually in the sequel.

ECRTS 2017

20:8 Replica-Aware Co-Scheduling for Mixed-Criticality

Independent tasks

Fork-join task

 5 4 3

1 
1,1

1 
2,1

1 
3,1

1


1,2

1 
2,2

1 
3,2

1

segment 1

segment 2

stage 1 stage 2 stage 3

 2 
1,1

2 
2,1

2


1,2

2 
2,2

2

segment 1

segment 2

stage 1 stage 2

 6

(a) Taskset

core 1 core 2

 5

 6


3,2

1


2,2

1


1,2

1
1,1

1


2,1

1


3,1

1

 3

 4


2,2

2


1,2

2
1,1

2


2,1

2

(b) Mapping

Figure 4 A taskset with 4 independent tasks and 2 fork-join tasks, and its mapping to 2 cores.
Highest priority at the top, lowest at the bottom.

Before we derive the analysis for fork-join and for independent tasks, let us introduce the
example in Fig. 4 used throughout the section. The taskset consists of 4 independent tasks
and 2 fork-join tasks, mapped to two cores. The task priority on each core decreases from
top to bottom (e.g. τ1,1

1 has the highest priority and τ4 the lowest).

4.1 Fork-Join Tasks
We now derive the WCRT for an arbitrary fork-join task Γi. Therefor, we need to identify
the critical instant leading to the worst-case scheduling scenario. In case of SPP, the critical
instant is when all tasks are activated at the same time and the tasks’ subsequent events
arrive as early as possible [29]. In our case, the critical instant must also account for the use
of static offsets [23].

The worst-case scheduling scenario for Γ2 on core 1 is illustrated in Fig. 5. Γ2 is activated
and executed at the same time on cores 1 and 2 (omitted). Note that, by design, fork-join
tasks do not dynamically interfere with each other. The critical instant occurs when the first
event of Γ2 arrives just after missing Γ2’s offset. The event has to wait until the next cycle to
be served, which takes time Φ + jφ when the activation with offset is delayed by a jitter jφ.
Notice that the WCETs of fork-join tasks already account for the inter-core communication
and synchronization overhead (cf. Fig. 3a).

I Lemma 1. The critical instant leading to the worst-case scheduling scenario of a fork-join
task Γi is when the first event of Γi arrives just after missing Γi’s offset φ(Γi).

Proof. A fork-join task Γi does not suffer interference from independent tasks or other
fork-join tasks. The former holds since independent tasks always have lower priority. The
latter holds due to three reasons: an arbitrary fork-join task Γj always receives service in its
slot φ(Γj); the slot φ(Γj) is large enough to fit Γj ’s largest subtask (Constraint 1); and the
slots in a cycle Φ are disjoint. Thus, the critical instant can only be influenced by Γi itself.

We prove by contradiction. Suppose that there is another scenario worse than Lemma 1.
That means that the first event can arrive at a time that causes a delay to Γi larger than
Φ + jφ. However, if the delay is larger than Φ + jφ, then the event arrived before a previous
slot φ(Γi) and Γi did not receive service. Since that can only happen if there is a pending

E. A. Rambo and R. Ernst 20:9

Φ

1

2

t


1,1

1


2,1

1


3,1

1


1,1

2


2,1

2
ϕ(Γ2)

B2(1), R2(1)

δ2(2) R2(2)

core 1

DelayActivation with offsetEvent Execution

ϕ(Γ2)

Q2(2)

B2(2)

Critical instant

ϕ(Γ2)+jϕ

ϕ(Γ2)+jϕ

Figure 5 Worst-case schedule for fork-join gang Γ2 on core 1 (cf. Fig. 4).

activation of Γi and thus violates the definition of a busy window, the hypothesis must be
rejected. J

Let us now derive the Multiple-Event Queueing Delay Qi(q) and Multiple-Event Busy
Time Bi(q) on which the busy window relies. Qi(q) is the longest time interval between the
arrival of Γi’s first activation and the first time its q-th activation receives service, considering
that all events belong to the same busy window [2, 20]. For Γi, the q-th activation can receive
service at the next cycle Φ after the execution of q−1 activations of Γi lasting si · Φ each, a
delay Φ (cf. Lemma 1) and a jitter jφ. This is given by:

Qi(q) = (q − 1) · si · Φ + Φ + jφ (6)

where si is the number of stages of Γi and Φ is the cycle.

I Lemma 2. The Multiple-Event Queueing Delay Qi(q) given by Eq. 6 is an upper bound.

Proof. The proof is by induction. When q=1, Γi has to wait for service at most until the
next cycle Φ plus an offset jitter jφ to get service for its first stage, considering that the
event arrives just after its offset (Lemma 1). In a subsequent q + 1-th activation in the same
busy window, Eq. 6 must also consider q entire executions of Γi. Since Γi has si stages and
only one stage can be activated and executed per cycle Φ, it takes additional si · Φ for each
activation of Γi, resulting in Eq. 6. J

The Multiple-Event Busy Time Bi(q) is the longest time interval between the arrival
of Γi’s first activation and the completion of its q-th activation, considering that all events
belong to the same busy window [2, 20]. The q-th activation of Γi completes after a delay Φ
(cf. Lemma 1), a jitter jφ and the execution of q activations of Γi. This is given by:

Bi(q) = q · si · Φ + jφ + Cσ,si (7)

where Cσ,si is the WCET of Γi’s last stage.

I Lemma 3. The Multiple-Event Busy Time Bi(q) given by Eq. 7 is an upper bound.

Proof. The proof is by induction. When q=1, Γi has to wait for service at most until the
next cycle Φ plus an offset jitter jφ to get service for its first stage (Lemma 1), plus the
completion of the last stage of the activation lasting (si−1) · Φ + Cσ,si . This is given by:

Bi(1) = (si − 1) · Φ + Φ + jφ + Cσ,si

= si · Φ + jφ + Cσ,si
(8)

ECRTS 2017

20:10 Replica-Aware Co-Scheduling for Mixed-Criticality

In a subsequent q+1-th activation in the same busy window, Eq. 7 must consider q additional
executions of Γi. Since Γi has si stages and only one stage can be activated and executed
per cycle Φ, it takes additional si · Φ for each activation of Γi. Thus, Eq. 7. J

Now we can calculate the busy window and WCRT of Γi. The busy window wi of a
fork-join task Γi is given by:

wi = max
q≥1, q∈N

{Bi(q) |Qi(q + 1) ≥ δ−i (q + 1)} . (9)

I Lemma 4. The busy window is upper bounded by Eq. 9.

Proof. The proof is by contradiction. Suppose there is a busy window w̆i longer than wi.
In that case, w̆i must contain at least one activation more than wi, i.e. q̆ ≥ q + 1. From
Eq. 9, we have that Qi(q̆) < δ−i (q̆), i.e. q̆ is not delayed by the previous activation. Since
that violates the definition of a busy window, the hypothesis must be rejected. J

The response time Ri(q) of the q-th activation of Γi in the busy window is given by:

Ri(q) = Bi(q)− δ−i (q) . (10)

The worst-case response time R+
i is the longest response time of any activation of Γi

observed in the busy window.

R+
i = max

1≤q≤η+
i

(wi)
Ri(q) . (11)

I Theorem 5. R+
i (Eq. 11) provides an upper bound on the worst-case response time of an

arbitrary fork-join task Γi.

Proof. The WCRT of a fork-join task Γi is obtained with the busy window approach [29].
It remains to prove that the critical instant leads to the worst-case scheduling scenario, that
the interference captured in Eqs. 6 and 7 are upper bounds, and that the busy window is
correctly captured by Eq. 9. These are proved in Lemmas 1, 2, 3, and 4, respectively. J

4.2 Independent Tasks
We now derive the WCRT analysis of an arbitrary independent task τi. Two types of
interference affect independent tasks: interference caused by higher priority independent
tasks and by fork-join tasks. Let us first identify the critical instant leading to the worst-case
scheduling scenario where τi suffers the most interference.

I Lemma 6. The critical instant of τi is when the first event of higher priority independent
tasks arrive simultaneously with τi’s event at the offset of a fork-join task.

Proof. The worst-case interference caused by a higher priority (independent) task τj under
SPP is when its first event arrives simultaneously with τi’s and continue arriving as early as
possible [29].

The interference caused by a fork-join task Γj on τi depends on Γj ’s offset φ(Γj) and
subtasks τσ,sj , whose execution times vary for different stages s. Assume a critical instant
that occurs at a time other than at the offset φ(Γj). Since a task Γj starts receiving service
at its offset, an event of τi arriving at time t > φ(Γj) can only suffer less interference from
Γj ’s subtask than when arriving at t = 0. J

E. A. Rambo and R. Ernst 20:11

1

2

t


1,1

1


2,1

1


3,1

1


1,1

2


2,1

2

Q4(1)

core 1

Φ

3

4

δ4(2)
B4(2)

R4(2)

ϕ(Γ2)

DelayActivation with offsetEvent ExecutionCritical activation

B4(1), R4(1), Q4(2)

ϕ(Γ2)
ϕ(Γ2)

ϕ(Γ2)

Critical instant

Figure 6 The worst-case schedule for independent task τ4 on core 1 (cf. Fig. 4).

Fork-join subtasks have different execution times for different stages, which leads to a
number of scheduling scenarios that must be evaluated [23]. Each scenario is defined by
the fork-join subtasks that will receive service in the cycle Φ and the offset at which the
critical instant supposedly occurs. The scenario is called a critical instant candidate S. Since
independent tasks participate in all critical instant candidates, they are omitted in S for the
sake of simplicity.

I Definition 7. Critical Instant Candidate S: the critical instant candidate S is an ordered
pair (a, b) where a is a critical offset and b is a tuple containing one subtask τσ,sj of every
interfering fork-join task Γj .

Let us also define the set of candidates that must be evaluated.

I Definition 8. Critical Instant Candidate Set S: the set containing all possible different
critical instant candidates S.

The worst-case schedule of the independent task τ4 from the example in Fig. 4 is illustrated
in Fig. 6. In fact, the critical instant leading to τ4’s WCRT is at φ(Γ1) when τ1,2

1 and τ1,1
2

receive service at the same cycle Φ, i.e. S = (φ(Γ1), (τ1,2
1 , τ1,1

2)). Events of the independent
task τ3 start arriving at the critical instant and continue arriving as early as possible.

Let us now bound the interference IIi (∆t) caused by equal or higher priority independent
tasks in any time interval ∆t. The interference IIi (∆t) can be upper bounded as follows [20]:

IIi (∆t) =
∑

∀τj∈hpI(i)

η+
j (∆t) · Cj (12)

where hpI(i) is the set of equal or higher priority independent tasks mapped to the same
core as τi.

To derive the interference caused by fork-join tasks we need to define the Critical Instant
Event Model. The critical instant event model η̌σ,si (∆t, S) of a subtask τσ,si ∈ Γi returns the
maximum number of activations observable in any time interval ∆t, assuming the critical
instant S. It can be derived from Γi’s input event model η+

i (∆t) as follows:

η̌σ,si (∆t, S) = min
{
η+
i

(
∆tS + Φ− φ(Γi)

)
, ψ
}
− gt

(
sS , s, φS , φ(Γi)

)
(13)

ECRTS 2017

20:12 Replica-Aware Co-Scheduling for Mixed-Criticality

ψ =
⌊

∆tS
Φ · si

⌋
+ ge

(
∆tS mod (Φ · si) , Φ · (s− 1)

)
(14)

∆tS = ∆t+ Φ · (sS−1)︸ ︷︷ ︸
critical instant

stage

+ φS︸︷︷︸
critical instant

offset

(15)

where s is the stage of subtask τσ,si ; si is the number of stages in Γi; φS is the offset in S; sS
is the stage of Γi in S; gt(a, b, c, d) is a function that returns 1 when (a > b)∨ (a = b∧ c > d),
0 otherwise; and ge(a, b) is a function that returns 1 when a ≥ b, 0 otherwise.

I Lemma 9. η̌σ,si (∆t, S) (Eq. 13) provides a valid upper bound on the number of activations
of τσ,si observable in any time interval ∆t, assuming the critical instant S.

For the sake of readability, the proof is presented in Appendix A.
The interference IFJi (∆t, S) caused by fork-join tasks on the same core in any time

interval ∆t, assuming a critical instant candidate S, can then be upper bounded as follows:

IFJi (∆t, S) =
∑

∀τσ,s
j
∈hpFJ (i)

η̌σ,sj (∆t, S) · Cσ,sj (16)

where hpFJ(i) is the set of fork-join subtasks mapped to the same core as τi.
The Multiple-Event Queueing Delay Qi(q, S) and Multiple-Event Busy Time Bi(q, S) for

an independent task τi, assuming a critical instant candidate S, can be derived as follows.

Qi(q, S) = (q − 1) · Ci + IIi (Qi(q, S)) + IFJi (Qi(q, S), S) (17)

Bi(q, S) = q · Ci + IIi (Bi(q, S)) + IFJi (Bi(q, S), S) (18)

where q · Ci is the time required to execute q activations of task τi.
Eqs. 17 and 18 result in fixed-point problems, similar to the well known busy window

equation (Eq. 9). They can be solved iteratively, starting with a very small, positive ε.

I Lemma 10. The Multiple-Event Queueing Delay Qi(q, S) given by Eq. 17 is an upper
bound, assuming the critical instant S.

Proof. The proof is by induction. When q=1, τi has to wait for service until the interfering
workload is served. The interfering workload is given by Eqs. 12 and 16. Since η+

j (∆t) and
Cj are upper bounds by definition, Eq. 12 is also an upper bound. Similarly, since η̌σ,sj (∆t, S)
is an upper bound (cf. Lemma 9) and Cσ,sj is an upper bound by definition, 16 is an upper
bound for a given S. Therefore, Qi(1, S) is also an upper bound, for a given S.

In a subsequent q + 1-th activation in the same busy window, Qi(q, S) also must consider
q executions of τi. This is captured in Eq. 17 by the first term, which is, by definition, an
upper bound on the execution time. From that, Lemma 10 follows. J

I Lemma 11. The Multiple-Event Busy Time Bi(q, S) given by Eq. 18 is an upper bound,
assuming the critical instant S.

E. A. Rambo and R. Ernst 20:13

Proof. The proof is similar to Lemma 10, except that Bi(q, S) in Eq. 18 also captures
the completion of the q-th activation. It takes additional Ci, which is an upper bound by
definition. Thus Eq. 18 is an upper bound, for a given S. J

The busy window wi(q, S) of an independent task τi is given by:

wi(S) = max
q≥1, q∈N

{Bi(q, S) | Qi(q+1, S) ≥ δ−i (q+1)} (19)

I Lemma 12. The busy window is upper bounded by Eq. 19.

Proof. The proof is by contradiction. Suppose there is a busy window w̆i(S) longer than
wi(S). In that case, w̆i(S) must contain at least one activation more than wi(S), i.e. q̆ ≥ q+1.
From Eq. 19, we have that Qi(q̆, S) < δ−i (q̆), i.e. q̆ is not delayed by the previous activation.
Since that violates the definition of a busy window, the hypothesis must be rejected. J

The response time Ri of the q-th activation of a task in a busy window is given by:

Ri(q, S) = Bi(q, S)− δ−i (q) (20)

Finally, the worst-case response time R+
i is found inside the busy window and must be

evaluated for all possible critical instant candidates S ∈ S. The worst-case response time
R+
i is given by:

R+
i = max

S∈S

{
max

1≤q≤η+
i

(wi(S))
{Ri(q, S)}

}
(21)

where the set S is given by the following Cartesian products:

S =
{
φ(Γj), φ(Γk), . . .

}
×
{
σi(Γj)× σi(Γk)× . . .

}
(22)

where Γj ,Γk, . . . are all fork-join tasks mapped to the same core as τi and σi(Γj) is the set
of subtasks of Γj that are mapped to that core. When no fork-join tasks interfere with τi,
S = {(0, ())}.

I Theorem 13. R+
i (Eq. 21) returns an upper bound on the worst-case response time of an

independent task τi.

Proof. We must first prove that, for a given S, R+
i is an upper bound. R+

i is obtained with
the busy window approach [29]. It returns the maximum response time Ri(q, S) among all
activations inside the busy window. From Lemmas 10 and 11 we have that Eqs. 17 and 18
are upper bounds for a given S. From Lemma 12 we have that the busy window is captured
by Eq. 19. Since the first term of Eq. 20 is an upper bound and the second term is a lower
bound by definition, Ri(q, S) is an upper bound. Thus R+

i is an upper bound for a given S.
Since Eq. 21 evaluates the maximum response time over all S ∈ S, R+

i is an upper bound on
the response time of τi. J

4.3 Error Recovery
Designed for mixed-criticality, our approach supports different recovery strategies for different
fork-join tasks (cf. Sec. 2). For instance, in DMR augmented with checkpointing and rollback,
recovery consists in reverting the state and re-executing the error-affected stage in both
replicas. In TMR, recovery consists in copying and replacing the state of the faulty replica
with the state of a healthy one. The different strategies are captured in the analysis by the

ECRTS 2017

20:14 Replica-Aware Co-Scheduling for Mixed-Criticality

recovery execution time, which depends on the strategy and the stage to be recovered. The
recovery WCET Cσ,si,rec of a fork-join subtask τσ,si accounts for the adopted recovery strategy
as illustrated in Fig. 3b. Once an error is detected, error recovery is triggered and executed
in the recovery slot of the same cycle Φ. Fig. 2 illustrates the recovery of the s-th stage of
Γ2’s i-th activation.

Let us incorporate the error recovery into the analysis. For a fork-join task Γi, we must
only adapt the Multiple-Event Busy Time Bi(q) (Eq. 7) to account for the execution of
the recovery:

Breci (q) = q · si · Φ + jφ + φ(recovery)− φ(Γi) + Cσ,si,rec (23)

where Cσ,si,rec is the WCET of the recovery of last subtask of Γi. The recovery of another
task Γj does not interfere with Γi’s WCRT. Only the recovery of one of Γi’s subtasks can
interfere with Γi’s WCRT. Moreover, since the recovery of a subtask occurs in the recovery
slot of the same cycle Φ and does not interfere with the next subtask, only the recovery of
the last stage of Γi actually has an impact on its response time. This is captured by the
three last terms of Eq. 23.

For an independent task τi, the worst-case impact of recovery of a fork-join task Γj is
modelled as an additional fork-join task Γrec with one subtask τσ,1rec mapped to the same
core as τi and that executes in the recovery slot. The WCET Cσ,1rec of τσ,1rec is chosen as the
maximum recovery time among the subtasks of all fork-join tasks mapped to that core:

Cσ,1rec = max
∀τσ,s
j
∈hpFJ (i)

{
Cσ,si,rec

}
(24)

With Γrec mapped, Eq. 21 finds the critical instant where the recovery Cσ,1rec has the worst
impact on the response time of τi.

5 Experimental Evaluation

In our experiments we evaluate our approach with real as well as synthetic workload, focusing
on the performance of the scheduler. First we characterize MiBench applications [13] and
evaluate them as fork-join (replicated) tasks in the system. Then we evaluate the performance
of independent (regular) tasks. Finally we evaluate the approach with synthetic workload
when varying parameters of fork-join tasks.

5.1 Evaluation with benchmark applications
5.1.1 Characterization
First we extract execution times and number of stages from MiBench automotive and security
applications [13]. They were executed with small input on an ARMv7@1GHz and a DDR3-
1600 [7]. Table 1 summarizes the total WCET, observed number of stages and WCET of the
longest stage (max). A stage is delimited by syscalls (cf. Sec. 2). We report the observed
execution times as WCETs. As pointed out in [2], stages vary on number and execution time
depending on the application and on the current activity in that stage (computation/IO).
This is seen e.g. in susan, where 99% of the WCET is concentrated in one stage (computation)
while the other stages perform mostly IO and are on average 3.34us long.

In our approach, the optimal is when all stages of a fork-join task have the same WCET.
There are two possibilities to achieve that: to split very long stages in smaller ones or to
group small subsequent stages together. We exploit the latter as it does not require changes

E. A. Rambo and R. Ernst 20:15

Table 1 MiBench applications’ profile.

WCET
[ms]

Observed stages Grouped stages
#stages max WCET [ms] #stages max WCET [ms]

basicmath 32.48 19738 0.02 5 6.50
bitcount 24.42 30 15.16 3 15.16
susan 9.63 12 9.59 1 9.63

blowfish 0.11 7 0.09 1 0.11
rijndael 13.17 93 0.37 3 5.91
sha 3.49 51 0.11 2 1.90

ba
.b
i

bi
.b
a

ba
.ri

ri.
ba

ba
.su

su
.b
a

bi
.ri

ri.
bi

ba
.sh

sh
.b
a

bi
.su

su
.b
i

ba
.b
l

bl
.b
a

bi
.sh

sh
.b
i

bi
.b
l

bl
.b
i

ri.
su

su
.ri

ri.
sh

sh
.ri

bl
.ri

ri.
bl

sh
.su

su
.sh

bl
.su

su
.b
l

bl
.sh

sh
.b
l

0

1

2

3

W
C
R
T

[1
02
m
s]

Ours TDM SPP

10
20
30
40

O
ve
ra
ll

lo
ad

[%
]

Figure 7 WCRT of fork-join tasks with two segments derived from MiBench.

to the error detection mechanism or to our model. The results with grouped stages are
shown on the right-hand side of Table 1. We have first grouped stages without increasing
the maximum stage length. The largest improvement is seen in bitcount, where the number
of stages reduces in one order of magnitude. In cases where all stages are very short, we
increase the maximum stage length. When increasing the maximum stage length in two
orders of magnitude, the number of stages of basicmath reduces in four orders of magnitude.
We have manually chosen the maximum stage length. Alternatively the problem of finding
the maximum stage length can be formulated as an optimization problem that e.g. minimizes
the overall WCRT or maximizes the slack. Next, we map the applications as fork-join tasks
and evaluate their WCRTs.

5.1.2 Evaluation of fork-join tasks
Two applications at a time are mapped as fork-join tasks with two segments (i.e. replicas in
DMR) to two cores (cf. Fig. 4). On each core, 15% load is introduced by ten independent
tasks generated with UUniFast [6]. We compare our approach with a TDM-based scheduler
and Axer’s Partitioned SPP [2]. In TDM, each fork-join task executes (and recovers) in its
own slot. Independent tasks execute in a third slot, which replaces the recovery slot of our
approach. The size of the slots are derived from our offsets. For all approaches, the priority
assignment for independent tasks is deadline monotonic and considers that deadline equals
period. In SPP, the deadline monotonic priority assignment also includes fork-join tasks.

The results are plotted in Fig. 7, where ba.bi gives the WCRT of basicmath when mapped
together with bitcount. Despite the low system load, our approach also outperforms SPP
in all cases, with bounds 58.2% lower, on average. Better results with SPP cannot be
obtained unless the interfering workload is removed or highest priority is given to the
fork-join tasks [2], which violates DM. Despite the similarity of how our approach handles
fork-join tasks with TDM, the proposed approach outperforms TDM in all cases, achieving,

ECRTS 2017

20:16 Replica-Aware Co-Scheduling for Mixed-Criticality

0 10 20 30 40 50 60 70 80 90 100
0

20
40
60
80

100

lo
ad

ba
si
cm

at
h

+
ri
jn
da

el

Overall load [%]

Sc
he

du
la
bl
e

ta
sk
se
ts

[%
]

Ours
TDM
SPP

SPP/hp

Figure 8 Schedulability as a function of the load of the system. Basicmath and rijndael as
fork-join tasks with two segments.

5 10 15 20 25 30 35 40 50 60
0

10
20
30
40
50
60

Fr
eq
ue

nc
y
[%

]

Ours
TDM
SPP

SPP/hp

(a) WCRT of independent tasks [ms]

basicmath rijndael
0

0.5

1

1.5

W
C
R
T

[1
02
m
s]

(b) WCRT of FJ tasks

Figure 9 Basicmath and rijndael as replicated tasks in DMR running on a dual-core configuration
with 20.2% load (5% load from independent tasks).

on average, bounds 13.9% lower. This minor difference is because TDM slots must be slightly
longer than our offsets to fit an eventual recovery. Nonetheless, not only our approach can
guarantee small WCRT for replicated tasks but also provides for the worst-case performance
of independent tasks.

5.1.3 Evaluation of independent tasks

In a second experiment we fix bitcount and rijndael as fork-join tasks and vary the load
on both cores. The generated task periods are in the range [20,500] ms, larger than the
longest stage of the fork-join tasks. The schedulability of the system as the load increases is
shown in Fig. 8. Our approach outperforms TDM and SPP in all cases, scheduling 1.55x
and 6.96x more tasksets, respectively. Due to its non-work conserving characteristic, TDM’s
schedulability is limited to medium loads. SPP provides very small response times with
lower loads but, as the load increases, the schedulability drops fast due to high interference
(and thus high WCRT) suffered by fork-join tasks. For reference purposes, we also plot the
schedulability of SPP when assigning the highest priorities to the fork-join tasks (SPP/hp).
The schedulability in higher loads improves but losing deadline monotonicity guarantees
renders the systems unusable in practice. Moreover, when increasing the jitter to 20% (relative
to period), schedulability decreases 14.2% but shows the same trends for all schedulers.

Fig. 9 details the tasks’ WCRTs when the system load is 20.2%. Indeed, when schedulable,
SPP provides some of the smallest WCRTs for independent tasks, and SPP/hp improves the
response times of fork-join tasks at the expense of the independent tasks’. Our approach
provides a balanced trade-off between the performance of independent tasks and of fork-join
tasks, and achieves high schedulability even in higher loads.

E. A. Rambo and R. Ernst 20:17

5 10 15 20 25
0
5

10
15
20
25

Max. stage WCET [ms]

#
st
ag
es

Γ1
Γ2

(a) Stages of Γ1 and Γ2

5 10
15

510152025
0

25
50
75

Max. stage
WCET Γ1 [ms]

Max. stage
WCET Γ2 [ms]

Φ
[m
s
]

(b) Cycle Φ

Figure 10 Parameters of two fork-join tasks Γ1 and Γ2 with two segments running on a dual-core
configuration.

5
10

15
5 10 15 20 25

2
4
6
8

Max. stage
WCET Γ1 [ms]

Max. stage
WCET Γ2 [ms]

W
C
R
T

Γ
1

[1
02
m
s
]

(a) WCRT of Γ1

5
10

15
5 10 15 20 25

2
4
6
8

Max. stage
WCET Γ1 [ms]

Max. stage
WCET Γ2 [ms]

W
C
R
T

Γ
2

[1
02
m
s
]

(b) WCRT of Γ2

Figure 11 Performance of fork-join tasks Γ1 and Γ2 as a function of the maximum stage WCET.

5.2 Evaluation with synthetic workload
We now evaluate the performance of our approach when varying parameters such as stage
length and cycle Φ.

5.2.1 Evaluation of fork-join tasks
Two fork-join tasks Γ1 and Γ2 with two segments each (i.e. replicas in DMR) are mapped to
two cores. The total WCETs3 of Γ1 and Γ2 are 15 and 25ms, respectively. Both tasks are
sporadic, with a minimum distance of 1s between activations. The number of stages of Γ1
and Γ2 is varied as a function of the maximum stage WCET, as depicted in Fig. 10a. The
length of the cycle Φ, depicted in Fig. 10b, varies with the maximum stage WCET since it is
derived from them (cf. Sec. 3.4).

The system performance as the maximum stage lengths of Γ1 and Γ2 increase is reported
in Fig. 11. The WCRT of Γ1 increases with the stage length (Fig. 11a) as it depends on
the number of stages and Φ’s length. In fact, the WCRT of Γ1 is longest when the stages
of Γ1 are the shortest and the stages of the interfering fork-join task (Γ2) are the longest.
Conversely, WCRT of Γ1 is shortest when its stages are the longest and the stages of the
interfering fork-join task are the shortest. The same occurs to Γ2 in Fig. 11b. Thus, there
is a trade-off between the response times of interfering fork-join tasks. This is plotted in
Fig. 12 as the sum of the WCRTs of Γ1 and Γ2. As can be seen in Fig. 12, low response
times can be obtained next and above to the line segment between the origin (0, 0, 0) and
the point (15, 25, 0), the total WCETs1 of Γ1 and Γ2 respectively.

3 The sum of the WCET of all stages of a fork-join task.

ECRTS 2017

20:18 Replica-Aware Co-Scheduling for Mixed-Criticality

5
10

15
5 10 15 20 25

2
4
6
8

Max. stage
WCET Γ1 [ms]

Max. stage
WCET Γ2 [ms]

W
C
R
T

Γ
1
+

W
C
R
T

Γ
2

[1
02
m
s
]

Figure 12 WCRT trade-off between interfering fork-join tasks.

5
10

15
5 10 15 20 25

0
25
50
75

100

Max. stage
WCET Γ1 [ms]

Max. stage
WCET Γ2 [ms]

Sc
he

du
la
bl
e

ta
sk
se
ts

[%
]

(a) Task period interval [15-500] ms

5
10

15
5 10 15 20 25

0
25
50
75

100

Max. stage
WCET Γ1 [ms]

Max. stage
WCET Γ2 [ms]

Sc
he

du
la
bl
e

ta
sk
se
ts

[%
]

(b) Task period interval [25-500] ms

Figure 13 Schedulable tasksets as a function of the maximum stage WCET of fork-join tasks Γ1

and Γ2 with 25% load from independent tasks.

5.2.2 Evaluation of independent tasks
To evaluate the impact of the parameters on independent tasks, we extend the previous
scenario introducing 25% load on each core with ten independent tasks generated with
UUniFast [6]. The task periods are within the interval [15,500] ms for the first experiment,
and the interval [25,500] ms for the second. The priority assignment is deadline monotonic
and considers that the deadline is equal to the period.

The schedulability as a function of the stage lengths is shown in Fig. 13. Sufficiently long
stages cause the schedulability to decrease as independent tasks with short periods start
missing their deadlines. This is seen in Fig. 13a when the stage length of either fork-join
task reaches 15ms, the minimum period for the generated tasksets. Thus, when increasing
the minimum period of generated tasks to 25ms, the number of schedulable tasksets also
increases (Fig. 13b).

The maximum stage length of a fork-join task has direct impact on the response times
and schedulability of the system. For the sake of performance, shorter stage lengths are
preferred. However, that is not always possible because it would result in a large number of
stages or because of the application, which restricts the minimum stage length (cf. Sec. 5.1.1).
Nonetheless, fork-join tasks still are able to perform well with appropriate parameter choices.
Additionally, one can formulate the problem of finding the stage lengths according to an
objective function, such as minimize the overall response time or maximize the slack. The
offsets can also be included in the formulation, as long as Constraints 1 and 2 are met.

6 Conclusion

In this paper, we presented the replica-aware co-scheduling for mixed-critical systems, where
applications with different requirements and criticalities co-exist. The work includes a
formal WCRT analysis supporting different recovery strategies and accounting for the NoC

E. A. Rambo and R. Ernst 20:19

communication delay and overheads due to replica management and state comparison. Our
approach provides for high worst-case performance of replicated software execution on many-
core architectures without impairing the remaining tasks in the system. Experimental results
with benchmark applications showed an improvement on taskset schedulability of up to 6.9x
when compared to Partitioned SPP and 1.5x when compared to a TDM-based scheduler.

Naturally, there is always the possibility of critical components failing due to errors
(replica manager or voter and the OS). In that case, either enough time for a reboot must
be allocated or the critical components must be hardened.

Acknowledgement. We would like to thank Adam Lackorzynski and Tobias Stumpf for the
helpful discussions.

References
1 Björn Andersson and Dionisio de Niz. Analyzing Global-EDF for multiprocessor scheduling

of parallel tasks. In International Conference On Principles Of Distributed Systems, pages
16–30. Springer, 2012.

2 Philip Axer. Performance of Time-Critical Embedded Systems under the Influence of Errors
and Error Handling Protocols. PhD thesis, TU Braunschweig, 2015.

3 Philip Axer, Rolf Ernst, Björn Döbel, and Hermann Härtig. Designing an analyzable
and resilient embedded operating system. In Proc. on Software-Based Methods for Robust
Embedded Systems, Braunschweig, Germany, 2012.

4 Philip Axer, Sophie Quinton, Moritz Neukirchner, Rolf Ernst, Bjorn Dobel, and Hermann
Hartig. Response-time analysis of parallel fork-join workloads with real-time constraints.
In Proc. of ECRTS’13, 2013.

5 Philip Axer, Maurice Sebastian, and Rolf Ernst. Reliability analysis for mpsocs with mixed-
critical, hard real-time constraints. In Proc. Intl. Conference on Hardware/Software Code-
sign and System Synthesis (CODES+ISSS), 2011.

6 Enrico Bini and Giorgio C. Buttazzo. Measuring the performance of schedulability tests.
Real-Time Systems, 30(1-2):129–154, 2005.

7 Nathan Binkert, Bradford Beckmann, Gabriel Black, et al. The Gem5 Simulator.
SIGARCH Comput. Archit. News, 39(2), August 2011.

8 Björn Döbel, Hermann Härtig, and Michael Engel. Operating system support for redundant
multithreading. In Proc. of EMSOFT’12, 2012.

9 Michael Engel and Björn Döbel. The reliable computing base-a paradigm for software-based
reliability. In GI-Jahrestagung, pages 480–493, 2012.

10 Dror G. Feitelson and Larry Rudolph. Gang scheduling performance benefits for fine-grain
synchronization. Journal of Parallel and Distributed Computing, 16(4):306 – 318, 1992.
doi:10.1016/0743-7315(92)90014-E.

11 Rémi Gaillard. Single event effects: Mechanisms and classification. In Michael Nicolaidis,
editor, Soft Errors in Modern Electronic Systems. Springer US, 2011.

12 Joël Goossens and Vandy Berten. Gang ftp scheduling of periodic and parallel rigid real-
time tasks. arXiv preprint arXiv:1006.2617, 2010.

13 M.R. Guthaus, J. S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, and R.B. Brown.
MiBench: A free, commercially representative embedded benchmark suite. In WWC-4.
2001, Dec 2001.

14 R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst. System Level
Performance Analysis–the SymTA/S Approach. IEE Proceedings-Computers and Digital
Techniques, 152, 2005.

ECRTS 2017

http://dx.doi.org/10.1016/0743-7315(92)90014-E

20:20 Replica-Aware Co-Scheduling for Mixed-Criticality

15 Andreas Herkersdorf et al. Resilience Articulation Point (RAP): Cross-layer dependabil-
ity modeling for nanometer system-on-chip resilience. Microelectronics Reliability, 54(6–
7):1066–1074, 2014. doi:10.1016/j.microrel.2013.12.012.

16 M. Hoffmann, F. Lukas, C. Dietrich, and D. Lohmann. dOSEK: the design and imple-
mentation of a dependability-oriented static embedded kernel. In Proc. of RTAS’15, pages
259–270, 2015. doi:10.1109/RTAS.2015.7108449.

17 International Standards Organization. ISO 26262: Road Vehicles – Functional Safety, 2011.
18 Robert Kaiser and Stephan Wagner. Evolution of the PikeOS microkernel. In First Inter-

national Workshop on Microkernels for Embedded Systems, 2007.
19 Shinpei Kato and Yutaka Ishikawa. Gang EDF scheduling of parallel task systems. In Proc.

of RTSS’09, 2009.
20 J. P. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary deadlines. In

Proc. of RTSS’90, 1990.
21 NXP MPC577xK Ultra-Reliable MCU Family. [online]. Available: http://www.nxp.com/

assets/documents/data/en/fact-sheets/MPC577xKFS.pdf, 2017.
22 John K. Ousterhout. Scheduling techniques for concurrent systems. In ICDCS, volume 82,

pages 22–30, 1982.
23 J.C. Palencia and M. Gonzalez Harbour. Schedulability analysis for tasks with static and

dynamic offsets. In Proc. of RTSS’98, 1998. doi:10.1109/REAL.1998.739728.
24 Eberle A. Rambo and Rolf Ernst. Providing flexible and reliable on-chip network communi-

cation with real-time constraints. In 1st International Workshop on Resiliency in Embedded
Electronic Systems (REES), 2015.

25 Eberle A. Rambo, Selma Saidi, and Rolf Ernst. Providing formal latency guarantees for
ARQ-based protocols in networks-on-chip. In Proc. of DATE’16, 2016.

26 Eberle A. Rambo, Christoph Seitz, Selma Saidi, and Rolf Ernst. Designing networks-on-
chip for high assurance real-time systems. In Proc. of PRDC’17, 2017.

27 K. Richter. Compositional Scheduling Analysis Using Standard Event Models. PhD thesis,
TU Braunschweig, 2005.

28 RTCA Incorporated. DO-254: Design Assurance Guidance For Airborne Electronic Hard-
ware, 2000.

29 K.W. Tindell, A. Burns, and A. J. Wellings. An extendible approach for analyzing fixed
priority hard real-time tasks. Real-Time Systems, 6(2), 1994.

A Additional Proofs

For the sake of readability, the proof of Lemma 9 (Sec. 4.2) is presented here.

Proof. The proof is by induction, in two parts. First let us assume sS = 1 and φS = 0,
neutral values resulting in ∆tS=∆t and gt(sS , s, φS , φ(Γi))=0. The maximum number of
activations of τσ,si seen in the interval ∆t is limited by the maximum number of activations of
the fork-join task Γi because a subtask τσ,si is activated once per Γi’s activation, and limited
by the maximum number of times that τσ,si can actually be scheduled and served in ∆t. This
is ensured in Eq. 13 by the minimum function and its first and second terms, respectively.

When sS>1 and/or φS>0, the time interval [0,∆t) must be moved forward so that it
starts at stage sS and offset φS . This is captured by ∆tS in Eq. 15 and by the last term of
Eq. 13. The former extends the end of the time interval by the time it takes to reach the
stage sS and the offset φS , i.e. [0,∆tS). The latter pushes the start of the interval forward by
subtracting an activation of τσ,si if it occurs before the stage sS and the offset φS , resulting
in the interval [∆tS −∆t,∆tS). Thus Eq. 13. J

http://dx.doi.org/10.1016/j.microrel.2013.12.012
http://dx.doi.org/10.1109/RTAS.2015.7108449
http://www.nxp.com/assets/documents/data/en/fact-sheets/MPC577xKFS.pdf
http://www.nxp.com/assets/documents/data/en/fact-sheets/MPC577xKFS.pdf
http://dx.doi.org/10.1109/REAL.1998.739728

	Introduction
	Related Work
	Preliminaries
	System Model
	Task Model
	Error Model
	Offsets

	Response-Time Analysis
	Fork-Join Tasks
	Independent Tasks
	Error Recovery

	Experimental Evaluation
	Evaluation with benchmark applications
	Characterization
	Evaluation of fork-join tasks
	Evaluation of independent tasks

	Evaluation with synthetic workload
	Evaluation of fork-join tasks
	Evaluation of independent tasks

	Conclusion
	Additional Proofs

