
LTZVisor: TrustZone is the Key∗

Sandro Pinto1, Jorge Pereira2, Tiago Gomes3, Adriano Tavares4,
and Jorge Cabral5

1 Centro Algoritmi, Universidade do Minho, Guimarães, Portugal
sandro.pinto@dei.uminho.pt

2 Centro Algoritmi, Universidade do Minho, Guimarães, Portugal
jorge.m.pereira@algoritmi.uminho.pt

3 Centro Algoritmi, Universidade do Minho, Guimarães, Portugal
tgomes@dei.uminho.pt

4 Centro Algoritmi, Universidade do Minho, Guimarães, Portugal
atavares@dei.uminho.pt

5 Centro Algoritmi, Universidade do Minho, Guimarães, Portugal
jcabral@dei.uminho.pt

Abstract
Virtualization technology starts becoming more and more widespread in the embedded systems
arena, driven by the upward trend for integrating multiple environments into the same hardware
platform. The penalties incurred by standard software-based virtualization, altogether with
the strict timing requirements imposed by real-time virtualization are pushing research towards
hardware-assisted solutions. Among existing commercial off-the-shelf (COTS) technologies, ARM
TrustZone promises to be a game-changer for virtualization, despite of this technology still being
seen with a lot of obscurity and scepticism. In this paper we present a Lightweight TrustZone-
assisted Hypervisor (LTZVisor) as a tool to understand, evaluate and discuss the benefits and
limitations of using TrustZone hardware to assist virtualization. We demonstrate how TrustZone
can be adequately exploited for meeting the real-time needs, while presenting a low performance
cost on running unmodified rich operating systems. While ARM continues to spread TrustZone
technology from the applications processors to the smallest of microcontrollers, it is undeniable
that this technology is gaining an increasing relevance. Our intent is to encourage research and
drive the next generation of TrustZone-assisted virtualization solutions.

1998 ACM Subject Classification C.3 Real-Time and Embedded Systems

Keywords and phrases hypervisor, virtualization, TrustZone, space and time partitioning, real-
time, embedded systems

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2017.4

1 Introduction

Platform virtualization, which enables multiple operating systems (OSes) to run on top of the
same hardware platform, is gaining momentum in the embedded systems arena, driven by the
growing interest in consolidating and isolating multiple and heterogeneous environments [6].
While in industrial control or automotive systems virtualization has been used to integrate
real-time control functionalities with high-level or infotainment environments [20, 9], in
aeronautics and aerospace virtualization provides isolation for safety-critical components

∗ This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT – Fundação
para a Ciência e Tecnologia – (grant SFRH/BD/91530/2012 and UID/CEC/00319/2013).

© Sandro Pinto, Jorge Pereira, Tiago Gomes, Adriano Tavares, and Jorge Cabral;
licensed under Creative Commons License CC-BY

29th Euromicro Conference on Real-Time Systems (ECRTS 2017).
Editor: Marko Bertogna; Article No. 4; pp. 4:1–4:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECRTS.2017.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2 LTZVisor: TrustZone is the Key

[10, 26]. Despite the differences among several embedded industries, all share an upward
trend for integration, due to the common interest in building systems with reduced size,
weight, power and cost (SWaP-C) budget [6, 10].

Typically, solutions for embedded virtualization [10, 1, 7, 26] follow two different ap-
proaches: full-virtualization and paravirtualization. Between both approaches there is a
trade-off between performance and flexibility: the traditional full-virtualization [7, 26] incurs
on a higher performance cost, while the static paravirtualization approach [1, 10, 26] incurs
on a higher design cost. Recently, due to penalties incurred by software-based virtualization
approaches, as well as the strict timing requirements and constraints imposed by real-time
virtualization [31], academia and industry have recently begun focusing their attention in
providing hardware support to assist virtualization. Intel introduced Intel Virtualization
Technology (VT) [24], ARM presented ARM Virtualization Extensions (VE) and ARM
TrustZone [28, 4, 5, 17], and, recently, Imagination/MIPS released MIPS Virtualization and
OmniShield technhology [31].

Among existent COTS technologies, ARM VE and ARM TrustZone [30] have attracted
particular attention, due to the ubiquitous adoption of ARM-based processors in the embedded
market. Although ARM VE is the specific technology from ARM for virtualization, ARM
TrustZone is also seen as a hardware-based alternative for system virtualization [5]. This
technology is gaining momentum due to the supremacy and lower cost of TrustZone-enabled
processors in comparison with VE-enabled processors, and because it is seen as the only
implementable hardware-based approach on ARM processors where VE are not available.
Examples of such processors include the well-established ARM Cortex-A9, and the newest
Cortex-A32. Furthermore, due to the recent ARM announcement of introducing TrustZone
technology in the new generation of Cortex-M processors [27], this technology also promises
to be a game-changer in the low-end sector, opening the possibility of breaking the barrier
to the adoption of system virtualization in resource-constrained embedded devices.

TrustZone technology virtualizes a physical core as two virtual cores, providing two
completely separate execution domains. The non-secure world acts as a virtual machine
(VM) under the control of a hypervisor running in the secure world side. Some TrustZone-
based solutions for virtualization have been proposed [30, 3, 5, 22, 13, 17]. While some
of them just support a single guest execution, others present a dual-OS configuration for
running an RTOS side-by-side with a GPOS. The problem is that they still lack in providing
detailed information about their implementation and deployment on physical platforms, as
well as in performing extensive experiments and presenting convincing results. We believe
that ARM TrustZone, when adequately exploited, opens up a number of opportunities for
(real-time) virtualization, despite some researchers still arguing that perceiving TrustZone as
a virtualization mechanism is very limiting and ill-guided [28, 8].

To give answers to a plethora of doubts and questions we developed LTZVisor (Lightweight
TrustZone-assisted Hypervisor) as a tool to clearly understand and evaluate how TrustZone
hardware can be efficiently exploited to assist virtualization. We describe all the details
behind the implementation, highlighting its benefits and discussing identified limitations and
how they can be overcome. We conducted an extensive set of experiments which clearly
demonstrate how TrustZone-assisted virtualization can effectively meet real-time needs.
LTZVisor is the outcome of years of our experience in working and developing TrustZone-
based solutions for a multitude of applications and domains [17, 16, 18, 19, 15]. The amount
of open-source software for TrustZone systems is scarce. We plan to make LTZVisor available
for the open-source community, encouraging research, whilst providing the foundation to
drive the next generation of TrustZone-assisted virtualization solutions.

S. Pinto, J. Pereira, T. Gomes, A. Tavares, and J. Cabral 4:3

1.1 Contributions
In this paper, we present LTZVisor with the following contributions:

an open-source tool to understand, evaluate, and encourage research towards TrustZone-
assisted virtualization;
an extensive evaluation over a physical hardware platform with popular benchmark suites,
focusing on the penalties incurred on the real-time properties of the secure guest OS, as
well as on performance of the non-secure guest OS;
a complete discussion about the identified drawbacks and advantages of using TrustZone
for (real-time) virtualization, and how we suggest to overcome those limitations based on
the knowledge and expertise consolidated over the years.

2 ARM TrustZone

TrustZone technology [29] refers to the security extensions introduced with ARMv6K in
all ARM Cortex-A processors. The TrustZone hardware architecture can be seen as a
dual-virtual system, partitioning all system’s physical resources into two isolated execution
environments. Recently, ARM also decided to extend TrustZone for the Cortex-M processor
family [27]. TrustZone for ARMv8-M has the same high-level features as TrustZone for
applications processors, with the benefit that context switching between both worlds is
done in hardware for faster transitions. In the remainder of this section, when describing
TrustZone, we are focused on the specificities of this technology for Cortex-A processors.
The distinctive aspects of TrustZone for ARMv8-M are out of the scope of this paper.

At the processor level, the most significant architectural change is its partition into
two separate worlds: the secure and the non-secure worlds. A new 33rd processor bit, the
Non-Secure (NS) bit, accessible through the Secure Configuration Register (SCR) register,
indicates in which world the processor is currently executing, and is propagated over the
memory and peripherals buses. To preserve the processor state during the world switch,
TrustZone adds an extra processor mode: the monitor mode. The monitor mode is completely
different from other supported modes, because when the processor runs in this mode the
state is always considered secure, independently of the NS bit state. Software stacks in the
two worlds can be bridged via a new privileged instruction – Secure Monitor Call (SMC).
The monitor mode can also be entered by configuring it to handle IRQ, FIQ, and Aborts
exceptions in the secure world. To ensure a strong isolation between secure and normal
states, some special registers are banked, such as a number of System Control Coprocessor
(CP15) registers. Some secure critical processor core bits and CP15 registers are either
totally unavailable to non-secure world or access permissions are closely under supervision
of the secure world. The TrustZone Address Space Controller (TZASC) and the TrustZone
Memory Adapter (TZMA) extend TrustZone security to the memory infrastructure. TZASC
can partition the DRAM into different memory regions: this hardware controller has a
programming interface, accessible only from the secure side, that can be used to configure
a specific memory region as secure or non-secure. By design, secure world applications
can access normal world memory but the reverse is not possible. TZMA provides similar
functionality but for off-chip ROM or SRAM. The TrustZone-aware Memory Management
Unit (MMU) provides two distinct MMU interfaces, enabling each world to have a local set
of virtual-to-physical memory address translation tables. The isolation is still available at
the cache-level, because processor’s caches have been extended with an additional tag which
signals in which state the processor accesses the memory. System devices can be dynamically
configured as secure or non-secure through the TrustZone Protection Controller (TZPC). To

ECRTS 2017

4:4 LTZVisor: TrustZone is the Key

support the robust management of secure and non-secure interrupts, the Generic Interrupt
Controller (GIC) provides both secure and non-secure prioritized interrupt sources.

3 LTZVisor: Design

The main design idea behind LTZVisor is the use of TrustZone hardware to assist virtualiza-
tion. The key towards TrustZone-assisted virtualization is to rely on hardware support as
much as possible, while containing software implementation and components privileges, and
promoting the secure environment with a higher privilege of execution. This leads to three
fundamental principles:

The principle of minimal implementation: Spaghetti code is the main source of vulner-
abilities in software and provides an avenue of exploitation for hackers. Relying on the
hardware support of TrustZone technology for virtualization as much as possible, as well as
promoting the careful design and static configuration of each hypervisor component, will
definitively help us minimize the trusted computing base of the system and, consequently,
contain the attack surface.
The principle of least privilege: Components must be given access only to those resources
(e.g., I/O devices, system services, etc) that are absolutely required. TrustZone technology
guarantees, by design, that the non-secure world is always less privileged than the secure
one, despite the CPU execution mode. Furthermore, in the secure world, the monitor mode
introduces a third level of privileges. Exploring these features to implement a well-layered
virtualization approach will help promoting privileged execution and hardware-enforced
isolation of the real-time environment from the non-real-time one.
The principle of asymmetric scheduling: Virtualization of a real-time environment is
very challenging, mainly due to strict timing requirements and hierarchical scheduling
problems that those systems introduce. The adoption of an asymmetric scheduling policy,
where the secure environment has a higher privilege of execution than the non-secure
one, will ensure that timing requirements are met, even while executing real-time tasks
over the RTOS running on top of a virtual CPU.

3.1 General Architecture
LTZVisor provides a virtualization solution based on the two virtual execution environments
provided by the TrustZone hardware. The secure world is responsible for hosting the
privileged software, while the non-secure world is responsible for hosting the non-privileged
software. Figure 1 depicts the proposed virtualization architecture. In this figure, three main
software components can be identified: the hypervisor, the secure VM, and the non-secure
VM.

LTZVisor runs in the highest privileged processor mode, i.e., in monitor mode. When
running in this mode, the processor state is considered always secure. The hypervisor has
full control of all hardware and software resources, and is responsible for configuring memory,
interrupts and devices assigned to each VM, as well as managing the Virtual Machine Control
Block (VMCB) of each VM during a partition switch. When a virtual machine is about
to be executed by the physical processor, the hypervisor transfers the VM state, saved on
the respective VMCB, to the physical processor context. When the hypervisor assigns the
physical processor to another virtual machine, the processor context of the active VM is
saved back into the respective VMCB.

The secure VM runs in the supervisor mode of the secure world side. This VM needs to
have a small footprint, because when the processor state is secure it has full view over the

S. Pinto, J. Pereira, T. Gomes, A. Tavares, and J. Cabral 4:5

Normal Apps Real-Time AppsNormal Apps Real-Time Apps

LTZVisor

ARM TrustZone-enabled SoC

Normal Apps

Non-Secure VM
(GPOS)

M
o

n
it

o
r

m
od

e
Su

pe
rv

is
o

r
m

od
e

U
se

r
m

od
e

RT Apps

Secure VM
(RTOS)

Figure 1 LTZVisor General Architecture.

non-secure world side. As such, the privileged guest code can interfere with the other virtual
machine, by accessing or modifying its state or the state of its resources (memory or memory
mapped devices). For this reason, the operating system hosted on the secure VM must be
aware of the virtualization, and is considered part of the system’s Trust Computing Base
(TCB). The secure VM is ideal to run an RTOS, because the higher privilege of execution
helps meeting the timing requirements of such environments. Furthermore, RTOSes typically
have small memory footprints.

The non-secure VM runs in the supervisor mode of the non-secure world side. This VM
is ideal to host a general purpose guest OS, useful for running human-machine interfaces
as well as internet-based applications and services. The software running on the non-secure
world side is completely isolated from the privileged software running on the secure world
side. When the processor is operating in a privileged mode but not in the secure state, it
cannot access nor modify any state information belonging to the secure world. Any attempt
from the non-secure guest OS to access any resource of the secure world side immediately
triggers an exception to the hypervisor.

4 LTZVisor: Implementation

LTZVisor exploits ARM TrustZone to provide time and space isolation between both parti-
tions. The asymmetric design principle allows to preserve the real-time characteristics of the
secure virtual machine (RTOS). This section provides all the details behind LTZVisor imple-
mentation, describing how CPU virtualization and memory isolation is ensured, presenting
how MMU and caches are managed, describing how device partition is achieved, explaining
how interrupts and time are managed for different guest OSes, and illustrating how inter-VM
communication is implemented.

4.1 Virtual CPU
TrustZone technology virtualizes each physical CPU into two virtual CPUs: one for the
secure world and another for the non-secure world. Between both worlds there is a list of
banked registers, i.e., an individual copy of those registers exists for each world. Since each
guest OS is running in a different world, in this particular case, a huge part of the virtual
CPU support is guaranteed by the hardware itself, minimizing the number of registers to
be saved and restored in each partition-switching operation. The VMCB of the non-secure

ECRTS 2017

4:6 LTZVisor: TrustZone is the Key

side is composed by 27 registers: 13 General Purpose Registers (R0-R12), the Stack Pointer
(SP), the Linker Register (LR) and Saved Program Status Register (SPSR) for each of
the following modes: Supervisor, System, Abort and Undef. The “high” General Purpose
Registers (R8-R12), as well as the SP, LR and SPSR of the FIQ and IRQ modes are not
included, as they are mutually exclusive for each world. Among the coprocessor registers,
almost all of them are banked: only the SCTLR and the ACTLR need to be preserved. For
optimization purposes, the VMCB of the secure side is composed of only 16 registers: 13
General Purpose Registers (R0-R12), the Stack Pointer (SP), the Linker Register (LR) and
SPSR for the System mode. The Monitor mode is, by design, uniquely dedicated to the
secure world side. These optimizations reduce the interrupt latency from the secure guest
OS (RTOS) perspective, speeding up the transition from the non-secure to the secure world
side, when a secure interrupt arises while the non-secure OS is executing.

Among the aforementioned unbanked registers, there are those which are only modifiable
from the secure side: they can be read when the processor is in the non-secure state, but
an attempt to modify them will be ignored. This is stated on TrustZone specification to
guarantee a high degree of security in the system, which has a cost for the non-secure guest
OS. For example, the System Control Register (SCTLR) and the Auxiliary Control Register
(ACTLR) provide control and configuration over memory, cache, MMU, AXI accesses, etc.
These registers are used to enable and disable MMU, and are only accessible in the secure
state. During the non-secure guest OS boot process, an attempt to modify them will be
ignored, leading the GPOS to get stuck. For that reason, the hypervisor must fill some
registers of the non-secure VMCB with a specific initialization value. For example, the
SCTLR register of the non-secure VMCB should be initialized appropriately, so that MMU
and Level 1 cache of the non-secure world side are enabled before the GPOS starts booting.

4.2 Scheduler
An identified issue in virtualizing a real-time environment is the well-known hierarchical
scheduling problem. Typically, a hypervisor schedules virtual CPUs while a guest RTOS
running over the virtual CPU schedules its own tasks. Ensuring real-time execution of tasks
over the RTOS executing on top of a virtual CPU involves a complex hierarchical scheduling
analysis, requiring that both schedulers are accordingly modeled [31].

LTZVisor overcomes this problem by implementing an asymmetric or idle scheduler. This
scheduling policy guarantees that the non-secure guest OS is only scheduled during the idle
periods of the secure guest OS, and the secure guest OS can preempt the execution of the
non-secure one. In fact, the secure virtual machine (RTOS) has a higher scheduling priority
than the non-secure one, and LTZVisor is not the software component that directly schedules
the virtual machines, but it is scheduled itself by the secure guest OS. Although this can
seem contradictory, the concept of ring protection is never jeopardized, as the LTZvisor
continues executing in a more privileged mode than the secure guest OS: the hypervisor is
just configured to behave in a passive way.

4.3 Memory Partition
Traditional hardware-assisted memory virtualization relies on Memory Management Unit
(MMU) support for 2-level address translation, mapping guest virtual to guest physical
addresses and then guest physical to host physical addresses. This MMU feature is a key
enabler to run unmodified partition OSes, and also to implement isolation between partitions.

TrustZone-enabled SoCs (which are not VE-enabled) only provide MMU support for
single-level address translation. Therefore, the existence of a TZASC is a major requirement

S. Pinto, J. Pereira, T. Gomes, A. Tavares, and J. Cabral 4:7

B

C

A
0x0000_0000 Non-Secure

Secure

No memory0x3BFF_FFFF

0x3C00_0000

0xFFFF_FFFF

0x3CFF_FFFF

0x4000_0000

TZ_DDR_RAM = 0x0000_7FFF

Figure 2 LTZVisor: Memory Configuration.

for the proposed solution, because this component allows partition of memory into different
segments. This memory segmentation feature can be exploited to guarantee spatial isolation
between the non-secure VM and the secure one, basically by adequately configuring the
security state of the memory segments of respective partitions. The non-secure VM should
have its own memory segment(s) configured as non-secure, and the remaining memory as
secure. If the non-secure guest OS tries to access a secure memory region (either belonging
to the secure partition or the hypervisor), an exception is automatically triggered and the
execution control redirected to the hypervisor.

Memory segments can be configured with a specific granularity, which is implementation
defined, depending on the vendor. In the hardware under which our system was deployed,
Xilinx ZC702, memory regions can be configured with a granularity of 64MB. This config-
uration is provided via a system level control register named TZ_DDR_RAM. A 0 or 1 on a
particular bit indicates a secure or non-secure memory region for that particular memory
segment, respectively. Figure 2 depicts the memory setup and respective secure/non-secure
mappings, for a virtualized system consisting of the hypervisor altogether with the secure
virtual machine (B), and the non-secure virtual machine (A). In this specific configura-
tion, the non-secure VM (GPOS) uses the first fifteen memory segments (0x00000000 –
0x3BFFFFFF), corresponding to a total of 960MB of non-secure memory. The hypervisor
and the secure VM, due to their low memory footprint, use only the last available memory
segment (0x3C000000 – 0x3FFFFFFF), corresponding to a 64MB of secure memory. The
remainder of the 32-bit memory address space is not accessible (C), because Xilinx ZC702 is
only endowed with a 1GB DDR3 memory.

4.4 MMU and Cache Management
The TrustZone-aware Memory Management Unit (MMU) provides two distinct MMU in-
terfaces, enabling each world to have a local set of virtual-to-physical memory address
translation tables. This means each world has its own copy of the TTBR register set, as well
as an independent MMU configuration. This reduces the list of activities to perform on each
guest-switching operation, because translation lookaside buffer (TLB) entries do not need to
be invalidated.

The same kind of isolation is still available at cache-level. The processor caches have been
extended with an additional tag (NS bit) which records the security state of the transaction
that accesses the memory. This NS bit is set by hardware and it is not directly accessible
by system software. Therefore, in this cache coherence design, when the system switches
between the two worlds, none of the cache lines need to be flushed. This means that this
design feature at cache-level significantly improves the performance of LTZVisor, because no
cache management operation needs to be performed on each guest-switching operation: cache

ECRTS 2017

4:8 LTZVisor: TrustZone is the Key

isolation is enforced and guaranteed by the hardware itself. On Xilinx ZC702, there are a few
notes regarding the TrustZone support in L2 cache. The L2 Control register (reg1_control)
can only be written with an access tagged as secure, which means that an attempt to enable
or disable the L2 cache from the non-secure world side will be ignored. Similarly to the
support that the hypervisor needs to perform in the L1 cache initialization (aforementioned in
Section 4.1), LTZVisor also needs to enable the L2 cache on the secure world side before the
non-secure guest OS starts booting. Once the L2 cache is enabled, maintenance operations
on the non-secure entries can be performed directly from the non-secure world side.

4.5 Device Partition
TrustZone technology allows devices to be (statically or dynamically) configured as secure or
non-secure. This hardware feature allows the partition of devices between both worlds while
enforcing isolation at the device level.

LTZVisor implements device virtualization adopting a pass-through policy, which means
devices are managed directly by guest partitions. To ensure strong isolation between them,
devices are not shared between guests and are assigned to the respective partitions at design
time, and then configured during boot time. The devices assigned to the RTOS (secure
VM) are configured as secure devices, while devices assigned to the GPOS (non-secure VM)
are configured as non-secure devices. This guarantees the GPOS cannot compromise the
state of any device belonging to the RTOS, and if the non-secure guest partition tries to
access a secure device then an exception will be automatically triggered and handled by
hypervisor. On Xilinx ZC702, the security state of devices can be configured through a set
of secure registers accesible from the secure side. This registers include, for example, the
SDIO slave security registers (security2_sdio0 and security3_sdio1) and the APB slave
security register (security6_apb_slaves).

4.6 Interrupt Management
In TrustZone-enabled SoCs, the GIC supports the coexistence of secure and non-secure inter-
rupt sources. It also allows the configuration of secure interrupts with a higher priority than
the non-secure interrupts, and has several configuration models that enable the assignment
of IRQs and FIQs to secure or non-secure interrupt sources.

LTZVisor configures interrupts of secure devices (i.e., secure interrupts) as FIQs, and
interrupts of non-secure devices (i.e., non-secure interrupts) as IRQs. A TrustZone-enabled
GIC permits all implemented interrupts to be individually defined as Secure or Non-secure,
through the Interrupt Security Registers set (ICDISRn). To program secure interrupts to use
the FIQ interrupt mechanism of the processor, the FIQen bit in the CPU Interface Control
Register (ICPICR) must be set. When the secure guest OS (i.e., RTOS) is under execution,
secure interrupts (i.e., FIQs) are redirected to the RTOS without hypervisor interference,
guaranteeing that no overhead is added to the interrupt latency of the secure guest OS.
This can be done by disabling the FIQ bit into the Secure Configuration Register (SCR).
If an IRQ (i.e., an interrupt for the GPOS partition) arises while the RTOS is executing,
it doesn’t affect the expected RTOS behavior. As soon as the non-secure guest becomes
active, the interrupt will be then processed. The prioritization of secure interrupts prevents a
denial-of-service attack against the secure side (from the GPOS partition). From a different
perspective, when the non-secure guest OS (i.e., GPOS) is executing and an FIQ (i.e., an
interrupt for the RTOS partition) arises, the execution flow is immediately redirected to the
hypervisor, which will be responsible for handling the interrupt directly in monitor mode.

S. Pinto, J. Pereira, T. Gomes, A. Tavares, and J. Cabral 4:9

This design decision minimizes the interrupt latency from the RTOS perspective, ensuring
the interrupt is attended as soon as possible. On the other hand, if an IRQ arises, it will be
directly managed by the non-secure guest. Non-secure interrupts are always signaled (by
design) using the IRQ mechanism of the processor.

4.7 Time Management
Temporal isolation in virtualized systems is typically achieved using two levels of timing: at
hypervisor level and at partition level. For the partition level, hypervisors typically provide
timing services which allow guests to have notion of virtual or real time. In the first case,
each time a partition is inactive, the time is paused, and once the guest is rescheduled, the
timekeeping is resumed. In the second case, when the partition is paused, the hypervisor is
responsible for keeping track of the wall-clock time, and, once resumed, update the partition
timing structures.

LTZVisor provides a distinctive time management implementation. Due to its dual-OS
configuration, as well as the intrinsic design principle of asymmetric scheduling, the hypervisor
dedicates one independent timing unit for each guest OS. The secure VM uses the Triple
Timer Counter (TTC) 0, while the non-secure VM uses the TTC1. It is fundamental that the
hypervisor configures TTC1 as a non-secure device, otherwise an exception will be triggered
on the first attempt to access it. This specific time management implementation ensures
that each VM has its timing structures updated at all times. The RTOS does not miss
any system-tick interrupt, and the GPOS, as a tickless OS, is completely aware of the real
passage of time.

4.8 Inter-VM Communication
Inter-VM communication provides a transparent virtual mechanism for implementing commu-
nication between different VMs. In contrast with other solutions, which follow an non-standard
approach [24, 22, 26], LTZVisor uses the standardized VirtIO [21] as a transport abstraction
layer. VirtIO has been used in several implementations targeting I/O virtualization [21, 4],
and has recently started being adopted to implement inter-guest [14] and inter-processor
communication on multicore platforms (e.g., Texas Instrument RPMsg and Mentor Graphics
MEMF) [2].

LTZVisor implements an adaptation of the RPMsg API from the Texas Instrument and
OpenAMP group to a supervised single-core architecture. The implementation from Texas
provides the foundation for implementing communication on top of the GPOS, while the
implementation from OpenAMP provides the foundation for a bare-metal approach. The
main modifications encompass: (i) the complete elimination of the Remoteproc executable
loader and processor life cycle management, since it is supported by the hypervisor; (ii) the
VirtIO device Remoteproc configuration implemented through a static approach (at compile-
time); and (iii) RPMsg slave mode support following the VirtIO standard. Figure 3 depicts
the communication architecture. As it can be seen, the data path is completely isolated by
the event path, a design decision that promotes asynchronous communication, essential to
guarantee the timing requirements of the secure VM. The data path is defined by a shared
block of memory, configured as non-secure. The event path is defined by software generated
interrupts (SGIs) routed through the hypervisor. This mechanism is based in requests from
guest OSes to the hypervisor, via the SMC instruction. All requests are stored in a circular
buffer, following a first-in, first-out policy. During each partition switch, LTZVisor triggers
SGIs to the respective guest OSes, enabling asynchronous notifications. In spite of the

ECRTS 2017

4:10 LTZVisor: TrustZone is the Key

Rpmsg
(Master/Slave)

LTZVisor

ARM TrustZone-enabled SoC

M
o

n
it

o
r

m
od

e
K

er
ne

l
m

od
e

RTOS

(Secure World)

Shared
Memory

Data Path
U

se
r

m
od

e Comm.
Task

VirtIO
Rpmsg

(Master/Slave)

Comm.
Task

GPOS

(Normal World)

Events Path (SGI)

VirtIO

Figure 3 LTZVisor: Inter-VM Communication.

imposition of a slight increase to the partition-switching time, this trade-off guarantees the
reliability of the communication as the hypervisor has control over every transaction.

5 Evaluation

LTZVisor was evaluated on a Xilinx ZC702 evaluation board targeting a dual ARM Cortex-A9
running at 667MHz. In spite of using a multicore hardware architecture, the evaluated
implementation only supports a single-core configuration. Our evaluation focused on three
metrics: (i) memory footprint, (ii) performance overhead and (iii) interrupt latency. LTZVisor
and both OS partitions were compiled using the ARM GNU toolchain, with compilation
optimizations disabled (-O0). The idea of presenting results with compilation optimizations
disabled is because it represents the worst case scenario. Linaro Linux (v3.3.0) and FreeRTOS
(v7.0.2) were used as non-secure and secure partitions, respectively. MMU, data and
instruction cache and branch prediction were disabled on the secure world side.

5.1 Memory Footprint

In order to assess the memory footprint of each software component of the implemented
architecture we used the size tool of the ARM GNU Toolchain. We evaluated LTZVisor, as
well as the native, modified and virtualized version of FreeRTOS. Table 1 presents the collected
measurements, where boot code, libraries and drivers were not taken into consideration. As
it can be seen, the memory overhead introduced by the hypervisor is really small, i.e., 2880
bytes. The main reasons behind such a low memory footprint are related to the principle of
minimal implementation followed during LTZVisor design which relies on (i) the hardware
support of TrustZone technology for virtualization and (ii) the careful design and static
configuration of each hypervisor component. The native version of FreeRTOS, supporting
IRQ, requires 18882 bytes, the modified version, supporting FIQ, requires 18898, and the
virtualized version requires 18918 bytes. From the native version to the modified one there
is a slight increase of 0.8% in the memory footprint, while from the native version to the
virtualized one there is an increase of 1.9%. This slight increase is completely acceptable and
encompasses small modifications and adaptations for FIQ and context-switch handling (from
native to modified), and in the FreeRTOS scheduler (from modified to virtualized).

S. Pinto, J. Pereira, T. Gomes, A. Tavares, and J. Cabral 4:11

Table 1 LTZVisor memory footprint (bytes).

Software Memory Footprint
.text .data .bss Total

LTZVisor 2368 0 512 2880
FreeRTOS IRQ (v7.0.2) 17942 20 920 18882
FreeRTOS FIQ (v7.0.2) 17954 20 924 18898
vFreeRTOS FIQ (v7.0.2) 17974 20 924 18918

5.2 Performance
The performance evaluation process was split into three different test case scenarios. First,
LTZVisor was evaluated for specific micro-operations of the guest-switching operation. Then,
we evaluated the virtualization overhead (using the Thread Metrics Suite) as well as the
interrupt latency over the secure VM (RTOS). Finally, we assessed the virtualization overhead
over the non-secure VM (GPOS) using the LMBench3 Suite.

5.2.1 Partition context switching
To evaluate the guest context switch time we used the Performance Monitor Unit (PMU)
component. To measure the time consumed by each internal activity of a round-trip world
switch, a PMU-specific instruction was added at the beginning and end of each code portion
to be measured. Results were gathered in clock cycles and converted to microseconds
accordingly to the processor’s frequency (667MHz). The values represent the average and
the standard deviation of 1000 collected samples.

The list of internal activities to perform a full switch between secure to non-secure and
non-secure to secure worlds are:
1. SMC handling. The secure guest OS schedules the idle task. The idle task performs a

secure call that is responsible for invoking the hypervisor (SMC). Time since the processor
enters in the monitor’s vector table until LTZVisor completes the SMC handling;

2. Save secure guest OS context. LTZvisor handles the SMC request and saves the context
of the secure guest OS. Time to save the current state of the secure guest OS to its
respective VMCB;

3. Restore non-secure guest OS context. LTZvisor saves the context of the secure guest OS
and then restores the context of the non-secure guest OS. Time to restore the state of
the non-secure guest OS from its respective VMCB;

4. FIQ acknowledge. The non-secure guest OS is running while a secure interrupt is triggered
(e.g., RTOS timer tick). Time since the processor enters in the monitor’s vector table
until LTZVisor acknowledges the FIQ;

5. Save non-secure guest OS context. LTZvisor acknowledges the FIQ request and then saves
the context of the non-secure guest OS. Time to save the current state of the non-secure
guest OS to its respective VMCB;

6. FIQ handling. LTZvisor saves the context of the non-secure guest OS and then immediatly
handles the FIQ request. Time since the hypervisor save the current state of the non-secure
guest OS untill LTZVisor completes the FIQ handling;

7. Restore secure guest OS context. LTZvisor handles the FIQ and then restores the context
of the secure guest OS. Time to restore the state of the secure guest OS from its respective
VMCB.

8. Scheduler. LTZvisor restores the execution of the RTOS. The RTOS continues executing
the idle task loop and verifies if there are real-time tasks to run. If not, the idle task
performs a system call (SMC) that is responsible for invoking the hypervisor. Time since
the processor restores the idle task execution until it enters in the monitor’s vector table.

ECRTS 2017

4:12 LTZVisor: TrustZone is the Key

Table 2 LTZVisor performance statistics (clock cycles).

World Switch Operation Performance Time
x s @667MHz

(1) SMC handling 571 0.943 856ns

Switch to NS world (2) Save S guest OS context 422 1.274 633ns

(3) Restore NS guest OS context 949 2.324 1423ns

(4) FIQ acknowledge 467 0.614 700ns

Switch to S world (5) Save NS guest OS context 982 1.321 1472ns

(6) FIQ Handling 1648 47.367 2471ns

(7) Restore S guest OS context 243 0.524 364ns

Scheduler (8) Assymetric Policy 7542 9.316 11307ns

Table 2 presents the collected results. As it can be seen, the complete partition-switch
operation takes around 19.23 microseconds. This value assumes there are no real-time tasks
ready to run once the RTOS is rescheduled. The process of verifying, from the RTOS
execution, there are no real-time tasks to run and, hence, trigger the switch to the non-secure
world takes around 11.31 microseconds. The process of switching from the RTOS to the
GPOS takes just 2.91 microseconds, and is the most deterministic activity of the partition-
switching operation. Our experiments demonstrated less than four clock cycles of deviation
from the average value (for each individual activity). Once the GPOS is executing and a
FIQ is triggered, the hypervisor ensures a 2.17 microseconds of interrupt latency, and then
in a further 2.84 microseconds the RTOS is restored. The FIQ handling operation is the
major source of non-determinism of the partition-switching operation. We strongly believe
the reason is related with the required accesses to the peripheral bus when handling the
interrupt request (in this specific case, the system tick timer).

5.2.2 Secure VM (RTOS)
The Thread-Metric Benchmark Suite consists of a set of benchmarks properly conceived
to evaluate RTOSes performance. The suite comprises 7 benchmarks, evaluating the most
common RTOS services and interrupt processing: cooperative scheduling (CS); preemptive
scheduling (PS); interrupt processing (IP); interrupt preemption processing (IPP); syn-
chronization processing (SP); message processing (MP); and memory allocation (MA). Each
benchmark outputs a counter value, representing the RTOS impact on the running application:
the higher the value, the smaller the impact.

Benchmarks were executed in the native version of FreeRTOS (N_IRQ), where interrupts
are handled as IRQs, in a modified version of FreeRTOS, where interrupts are handled as
FIQs (N_FIQ), and then compared against the virtualized version (TZ_FIQ). Figure 4a
presents the achieved results, corresponding to the average relative performance (as well
as the average absolute performance) of 1000 collected samples for each benchmark. Each
sample reflects the benchmark score for a 30 seconds execution time, encompassing a total
execution time of 500 minutes, per benchmark. In accordance with Figure 4a the execution of
the modified version of FreeRTOS (N_FIQ) is very dependent from the benchmark. In some
cases, the performance decreases, while in others the performance increase. The increase of
performance on the modified version of FreeRTOS is completely understandable since FIQ
interrupts present low hardware latency than IRQs, but the decrease is apparently strange.
The reason behind this phenomenon is related with an adaption we did on the yield macro
of FreeRTOS. The native version of FreeRTOS implements the yield through the use of the
SVC exception. When a SVC is triggered a context-switch happens and the IRQ bit of the
CPSR is set, so that there is no preemption during the execution of the critical routine

S. Pinto, J. Pereira, T. Gomes, A. Tavares, and J. Cabral 4:13

50

60

70

80

90

100

110

120

130

N
_

IR
Q

N
_

FI
Q

TZ
_F

IQ

N
_

IR
Q

N
_

FI
Q

TZ
_F

IQ

N
_

IR
Q

N
_

FI
Q

TZ
_F

IQ

N
_

IR
Q

N
_

FI
Q

TZ
_F

IQ

N
_

IR
Q

N
_

FI
Q

TZ
_F

IQ

N
_

IR
Q

N
_

FI
Q

TZ
_F

IQ

N
_

IR
Q

N
_

FI
Q

TZ
_F

IQ

CS PS IP IPP SP MP MA

R
el

at
iv

e
P

er
fo

rm
an

ce
 (

%
)

Relative Performance (%)

5
1

1
9

5
7

3

1
1

5
5

5
4

6

1
9

1
5

7
5

3

9
4

3
8

8
2

2
4

5
2

5
1

4

2
3

0
9

5
5

2

1
7

3
5

7
1

3

(a) Relative performance

0.9998

0.99985

0.9999

0.99995

1

1.00005

1.0001

1.00015

3
0

9
0

1
5
0

2
1
0

2
7
0

3
3
0

3
9
0

4
5
0

5
1
0

5
7
0

6
3
0

6
9
0

7
5
0

8
1
0

8
7
0

9
3
0

9
9
0

1
0
5
0

1
1
1
0

1
1
7
0

1
2
3
0

1
2
9
0

1
3
5
0

1
4
1
0

1
4
7
0

Time (seconds)

Native FreeRTOS (IRQ)

CS PCS IP IPP

(b) Variation: Native (IRQ)

0.9998

0.99985

0.9999

0.99995

1

1.00005

1.0001

1.00015
3
0

9
0

1
5
0

2
1
0

2
7
0

3
3
0

3
9
0

4
5
0

5
1
0

5
7
0

6
3
0

6
9
0

7
5
0

8
1
0

8
7
0

9
3
0

9
9
0

1
0
5
0

1
1
1
0

1
1
7
0

1
2
3
0

1
2
9
0

1
3
5
0

1
4
1
0

1
4
7
0

Time (seconds)

Native FreeRTOS (FIQ)

CS PCS IP IPP

(c) Variation: Native (FIQ)

0.9998

0.99985

0.9999

0.99995

1

1.00005

1.0001

1.00015

3
0

9
0

1
5
0

2
1
0

2
7
0

3
3
0

3
9
0

4
5
0

5
1
0

5
7
0

6
3
0

6
9
0

7
5
0

8
1
0

8
7
0

9
3
0

9
9
0

1
0
5
0

1
1
1
0

1
1
7
0

1
2
3
0

1
2
9
0

1
3
5
0

1
4
1
0

1
4
7
0

Time (seconds)

Virtualized FreeRTOS (FIQ)

CS PCS IP IPP

(d) Variation: Virtualized (FIQ)

Figure 4 Thread-Metric benchmarks results.

(atomic execution). Thus, the modification of FreeRTOS for handling interrupts as FIQs
should include the modification of the context-switch function to set the FIQ bit, instead
of the IRQ bit. The problem is in the ARMv7-A specification, this bit is implementation
defined. In the case of Xilinx Zynq, for security reasons, this bit is read-only, and only
changes when triggered by hardware (e.g. when a FIQ happens). For this reason, we were
forced to change the yield function to use an SGI (FIQ) instead of the SVC exception. The
SGI has a higher latency than the SVC, which, on yield-intensive tests (i.e., the case of
CS, PS, IP and IPP), this translates in a decrease of performance. It should be noted this
is platform- and worlkload-specific problem that does not necessarily mean it can occur
in other platforms and be noticeable in real application scenarios. In fact, the overhead
introduced by LTZVisor is null, as demonstrated by the comparison of the N_FIQ and
TZ_FIQ versions. This is perfectly understandable because, once FreeRTOS starts running
real-time tasks, it will never be interrupted by the hypervisor. Regarding the variation,
Figure 4b, Figure 4c and Figure 4d present the normalized variation of the collected results
over time for the native, modified and virtualized versions of FreeRTOS, respectively. It
is clear that the use of FIQ for handling interrupt sources slightly reduces the variation of
results, and variation in the virtualized system is also in the same order of magnitude as
the modified version, which means the virtualized system remains as deterministic as the
(modified) native one. In sum, the asymmetric scheduling policy gives the RTOS a higher
execution privilege, so it can preserve its real-time characteristics. Furthermore, the necessity
of handling interrupts as FIQs promotes a deterministic execution, and most of the cases
can either increase performance.

Interrupt latency is the measurement of system’s response-time to an interrupt, which
corresponds to the elapsed time between interrupt assertion and the instant when a response
happens. Equation 1 expresses the system latency: τH is the hardware dependent time which
depends on the interrupt controller, on the board, as well as the type of the interrupt; τOS is

ECRTS 2017

4:14 LTZVisor: TrustZone is the Key

the OS-specific induced overhead; and τHY P is the hypervisor-specific induced overhead.

τIL = τH + (τHY P) + τOS (1)

Experiments showed that the latency in the native system (FreeRTOS) is 0.89 micro-
seconds, which corresponds to the average interrupt handling overhead of our system, because
when the secure guest OS is executing the FIQ requests are directly forward to the RTOS.
The τHY P expression of Equation 1 represents the extra overhead induced by our approach,
which only occurs when the RTOS has no real-time ready-to-run tasks, and consequently
the hypervisor is invoked to perform a world switch. Since LTZVisor runs with all interrupt
sources disabled, the worst case scenario happens when an FIQ request (e.g., RTOS tick)
arrives while a context switch from the secure to the non-secure world is starting. In this
case, the request is handled with a worst case interrupt latency of 5.08 microseconds. This is
a very sporadic situation that can happen under rare conditions, because two asynchronous
and independent events need to occur at the same time: (i) an asynchronous FIQ needs to be
triggered while (ii) a world switch is happening. Nevertheless, since the overhead introduced
on latency has a deterministic upper bound (5.08 microseconds), it can be taken into account
when designing the real-time system.

5.2.3 Non-Secure VM (GPOS)
LMBench [11] is a widely used suite of micro-benchmarks that measure a variety of important
aspects of system performance, such as latency and bandwidth. The suite is written in
portable ANSI-C using POSIX interfaces and targeting UNIX systems. The LMBench
3.0 suite includes more than fourthy micro-benchmarks within three different categories:
bandwith, latency, and other. We focus our evaluation on two specific benchmarks, evaluating
different architectural subsystems:

lat_ops: Arithmetic operations latency, to evaluate general CPU performance (VFP and
Neon are disabled);
bw_mem: Memory operations bandwidth for different blocks size (2K, 128K, 4M), to
evaluate the interference of the TZASC as well as Level 1 (4-way set-associative 32 KB)
and Level 2 (8-way set-associative 512 KB) data caches.

For the first part of the experiment, FreeRTOS was configured with a 1 millisecond
tick rate (i.e., guest-switching rate) and no real-time tasks were added to the system (i.e.,
the RTOS will be infinitely executing the idle task). We ran the micro-benchmarks in the
native version of Linux (N) and compared them against the virtualized version (TZ). L1
and L2 caches and branch prediction were enabled for both test case scenarios. For each
micro-benchmark, we performed 100 consecutive experiments. For each experiment the
micro-benchmark was configured for 10 warm-ups and 1000 repetitions (–W 10 –N 1000).
Presented results correspond to the average relative performance and variation (as well as
the average absolute performance) of the 100 consecutive experiments, encompassing a total
of 100000 samples (per bar).

Figure 5 presents the achieved results for the arithmetic operations latency benchmark.
The values on top of the bars corresponds to the average latency, in nanoseconds. As it can
be seen, the virtualized version of Linux only presents an average performance degradation
of 2%, when compared with its native execution. This value is practically uniform among all
micro-benchmarks (apart from the small variations due to the benchmark’s lack of accuracy
and the system’s nonlinearities), except for the int add and int64 add cases. For these
specific micro-benchmarks, the achieved results do not reflect the real performance penalty,

S. Pinto, J. Pereira, T. Gomes, A. Tavares, and J. Cabral 4:15

90

92

94

96

98

100

102

104

N TZ N TZ N TZ N TZ N TZ N TZ N TZ N TZ N TZ

int bit int add int mul int div int mod int64 bit int64 add int64 mul int64 div

R
el

at
iv

e
P

er
fo

rm
an

ce
 (

%
)

Relative Performance (%)

N (min) VariationTZ (min)

1
.5

0

0
.0

3

0
.7

5

1
1

1
.8

4

2
9

.2
7

1
.5

2

0
.0

3

1
.3

5

3
2

6
.8

0

(a) lat_ops benchmark results (part 1)

90

92

94

96

98

100

102

104

N TZ N TZ N TZ N TZ N TZ N TZ N TZ N TZ N TZ

int64 mod float add float mul float div double add double mul double div float
bogomflops

double
bogomflops

R
el

at
iv

e
P

er
fo

rm
an

ce
 (

%
)

Relative Performance (%)

N (min) Variation

2
0

8
.9

8

3
2

.4
0

2
2

.6
0

1
4

6
.0

3

4
2

.6
8

3
7

.6
6

5
7

0
.4

0

2
8

6
.2

2

7
7

9
.7

7

TZ (min)

(b) lat_ops benchmark results (part 2)

Figure 5 LMBench arithmetic operations latency (lat_ops) benchmark results.

due to the lack of precision. The assessed latency is 0.03 nanoseconds, and the minimal time
unit is 0.01 nanoseconds. Regarding variation, it is clear the virtualized Linux presents a
variation in the same order of magnitude as the native version. This means the virtualized
system remains as deterministic as the native one.

Figure 6 presents the achieved results for the memory bandwith benchmark. The values
on top of the bars corresponds to the average memory bandwith, in megabytes per second
(MB/s). Figure 6a, Figure 6b and Figure 6c depict the assessed results for a memory
block size of 2KB, 128KB and 4MB, respectively. These memory block sizes were selected
with the intention to fit and not within the L1 and L2 cache sizes. Looking at the three
figures, it is clear the relative performance of the system is practically uniform among all
micro-benchmarks, presenting an average performance degradation of 2% when comparing
the virtualized Linux to the native one. Contrasting these values with the results presented
in Figure 5, three main conclusions can be drawn: first, it is clearly noticed the effect of
each cache on the accessed absolute memory bandwith results – the higher is the memory
block size, the lower is the memory bandwith; second, cache isolation is in fact guaranteed by
hardware, and does not introduce any extra overhead neither requires any cache maintenance
operation on each guest-switch; and, finally, (memory) space isolation provided by means
of the TZASC does not have associated any extra source of overhead. To corroborate the
viability of our conclusions, experiments were performed without some of the hypervisor
support (please refer to Sections 4.1 and 4.4) for caches and memory initialization. For
example, one set of experiments were performed without the hypervisor having enabled L2
cache before booting the GPOS. The results were very straightforward: an abrupt decrease
of performance, reaching almost 70% in some cases, happen for memory block sizes higher
than 32KB and lower than 512KB. These experiments clearly demonstrates the effect of L2
cache in the overall system, as well as the coexistence of non-secure and secure cache entries
without any cache maintenance support. Despite not being presented in Figure 6, due to

ECRTS 2017

4:16 LTZVisor: TrustZone is the Key

90

92

94

96

98

100

102

104

N TZ N TZ N TZ N TZ N TZ N TZ N TZ N TZ N TZ

rd wr rdwr cp fwr frd fcp bzero bcopy

R
el

at
iv

e
P

er
fo

rm
an

ce
 (

%
)

Relative Performance (%) - 2K

N (min) VariationTZ (min)

7
6

2
0

8
4

1
3

2
7

6
1

5
1

4
9

2
6

3
1

2
0

5
3

1
3

2
2

1
7

4
2

1
2

0
2

(a) bw_mem benchmark results (2KB)

90

92

94

96

98

100

102

104

N TZ N TZ N TZ N TZ N TZ N TZ N TZ N TZ N TZ

rd wr rdwr cp fwr frd fcp bzero bcopy

R
el

at
iv

e
P

er
fo

rm
an

ce
 (

%
)

Relative Performance (%) - 128K

N (min) Variation

1
8

4
5

TZ (min)

1
8

1
4

1
0

9
7

8
1

9

2
6

6
2

1
2

0
9

9
7

2

1
7

9
2

1
0

7
8

(b) bw_mem benchmark results (128KB)

90

92

94

96

98

100

102

104

N TZ N TZ N TZ N TZ N TZ N TZ N TZ N TZ N TZ

rd wr rdwr cp fwr frd fcp bzero bcopy

R
el

at
iv

e
P

er
fo

rm
an

ce
 (

%
)

Relative Performance (%) - 4M

N (min) VariationTZ (min)

7
5

3

4
9

9

3
4

5

3
0

1

2
6

3
8

5
0

6

4
3

4

1
7

8
7

4
4

2

(c) bw_mem benchmark results (4MB)

Figure 6 LMBench memory bandwith (bw_mem) benchmark results.

shortage of space, we also performed a larger set of experiments encompassing memory block
sizes of 16KB, 64KB and 1MB. The achieved results were identical to the ones presented in
Figure 6, which reinforces the reliability of our conclusions.

For the second part of the experiment, instead of fixing the FreeRTOS tick with a 1
millisecond rate, the same experiments were repeated for eight different guest-switching rates
within a time window between 100 microseconds to 10 milliseconds. Again, no real-time
tasks were added to the system. We ran the arithmetic operations latency benchmark in the
virtualized version of Linux. L1 and L2 caches and branch prediction were enabled for all test
case scenarios. For each micro-benchmark we performed 100 consecutive experiments, and for
each experiment the micro-benchmark was configured for 10 warm-ups and 1000 repetitions
(–W 10 –N 1000). Presented results correspond to the average performance overhead of
measured results for the 18 (arithmetic) micro-benchmarks, encompassing a total of 1800000
samples per test case scenario (per mark). Eight different test case scenarios were setup,
corresponding to a tick rate of 100, 200, 300, 500, 1000, 2000, 5000 and 10000 microseconds,
encompassing a cumulative number of 14400000 samples. Figure 7 presents the achieved
results. The performance overhead ranges from 22.93% to 0.65% for a guest-switching rate
of 100 and 10000 microseconds, respectively. For a system configured with a tick rate above
500 microseconds, the expected performance overhead is less than 5%.

S. Pinto, J. Pereira, T. Gomes, A. Tavares, and J. Cabral 4:17

0

5

10

15

20

25

100 1000 10000

O
ve

rh
e

ad
 (

%
)

time (microseconds)

Figure 7 LTZVisor: guest-switching rate vs performance overhead.

6 Discussion

With LTZVisor we demonstrated how hardware enhancements introduced by TrustZone
technology can be adequately exploited to assist virtualization, especially in the case of two
virtual machines, because this number coincides exactly with the number of isolated states
directly supported by the processor. We demonstrated and explained how several TrustZone
features can be adequately exploited to run an RTOS side-by-side with a GPOS.

The asymmetric design principle, which dictates the secure VM has a greater scheduling
priority than the non-secure one, ensures the timing requirements of the real-time environment
remains nearly intact, at the cost of integrating the hypervisor with the RTOS on the secure
world side. In doing so, the RTOS has full control over the system, and can access or modify
the state of the non-secure VM. Recently, Ngabonziza et al. [12] presented some doubts about
how our solution [17] could prevent the RTOS (secure world) from accessing the GPOS (non-
secure world): in fact, it cannot; this is the price we pay to preserve the real-time demands of
the system, while keeping performance acceptable for low-end and low-cost devices. Anyway,
two possible solutions to guarantee a higher degree of isolation on high-end devices are: run
all guest OSes in the non-secure world side, as demonstrated by our recent work [18]; or either
paravirtualizing the RTOS, so that it can run in the user mode of the secure world side, and
mediate each memory access through the hypervisor. Another point outlined by Ngabonziza
et al. is related to guest OSes preemption and consequent starvation. They argue in our
design “either OS cannot preempt the other OS”. This is wrong; LTZVisor guarantees, by
design, the secure guest OS (RTOS) preempts the non-secure guest OS (GPOS) as soon as a
FIQ is triggered, but the reverse is not possible. So, starvation can happen, but only from the
non-secure world side. However, despite this being a design decision to ensure the real-time
needs, it is well-justified by the fact typical real-time applications have frequent idle times,
which ensures the non-secure guest OS has enough CPU slices for execution. Ultimately, the
scheduling policy can be designed accordingly to the applications needs, ensuring enough
scheduling points that adequately meet the needs of both OSes, without compromising any
real-time deadline; or either multicore platforms can be exploited to implement asymmetric
multiprocessing (AMP) support, as we already did.

One of the main identified limitations is related to the number of supported virtual
machines. LTZVisor supports the coexistence of two VMs, one running in the secure world
and one running in the non-secure world. Although this is almost sufficient for a huge amount
of current embedded real-time applications, some researchers still rely on this premise to
consider TrustZone as an ill-guided virtualization technique. We demonstrated this is not
completely true, and that is possible to overcome this limitation by multiplexing more guest
OSes inside the non-secure world side [18, 19]. It requires careful handling of shared hardware
resources, such as processor registers, memory, caches and MMU. Processor registers can

ECRTS 2017

4:18 LTZVisor: TrustZone is the Key

be easily saved and restored into/from a specific VMCB, while memory isolation can be
achieved through the dynamic memory configuration feature of TZASC.

Spatial isolation is a major requirement for virtualization. LTZvisor implements memory
isolation relying on the TZASC, which is an optional and implementation-specific component
on TrustZone specification. The granularity of access restrictions depends on the SoC. Some
outdated TrustZone-based SoCs are not equipped with this memory controller, and on
many other the TZASC can only control some portions of the memory. For example, the
Versatile Express platform provides no means to partition the DDR RAM into secure and
non-secure areas. Nevertheless, when regarding the most modern TrustZone-based SoC, this
is completely different, because they are totally equipped with fully featured TrustZone-aware
memory controllers. This is the case of Xilinx Zynq SoCs and also the Freescale i.MX53 QSB.
For example, Sun et al. [25] explains the use of the same functionality to create TrustICE, a
framework that uses the hardware-assisted Watermark technique to dynamically protect the
memory regions of the suspended secure code (ICEs).

Another identified limitation on the memory subsystem is related to non-existence of
a second level memory translation. There is no way to virtualize the physical memory as
used by the guest OSes. The guest-physical memory always corresponds to the host-physical
memory, which means all guest OSes have to co-operate with respect to the address space
being used, requiring relocation and consequent recompilation of the guest OS. This means
the chance to use multiple closed-source guest OSes (only available as binary image) is
very reduced, because different OS providers typically compile their software to run on the
same memory address space of a specific platform. What is seen as a limitation to the
system from a non-real-time perspective, is somewhat seen as an advantage from a real-time
perspective. It is well-established the use of MMU and other components which introduce
some non-linearities are seen with some scepticism regarding determinism and worst-case
performance requirements of many real-time systems. An important argument that supports
our vision is the recent decision of ARM in introducing support for virtualization in the new
ARMv8-R architecture relying on a double-stage MPU [27]. In the ARMv8-R architecture,
operating systems running at PL1 (IRQ, FIQ, SVC, System, etc) are able to use an MPU, as
well as the hypervisor running at PL2 (Hypervisor). The MPU controlled by the hypervisor
restricts access of memory regions or peripherals to an individual guest, or shared between
guests. This is a similar strategy to the one we use with TrustZone, and was adopted by
ARM to meet the strict requirements of real-time environments.

The existence of two distinct MMU interfaces as well as secure and non-secure cache
entries is also seen as an advantage due to the performance gains achieved during the
partitions-switch. From a real-time perspective, the use of these features is not always
desirable, which means that in many potential embedded applications the use of MMU
and cache will only be exploited by the non-secure guest OS. However, if the idea is to
consolidate a soft-real-time system with a general purpose, the use of these features can
be helpful in terms of context-switch time and performance. The only disadvantage that
arises with the TrustZone-awareness in this components, is the need of minimal hypervisor
support on their initialization, as well as their inaccessibility during runtime. In this case,
one possible strategy to deal with this limitation is to implement some paravirtualization
support, by statically analyzing the non-secure guest OS image file, identify the opcode of
the instruction, and replace the instruction by hypercalls that request the access to those
components mediated by the hypervisor.

Current device virtualization approach goes towards a pass-through model without any
sharing device access support. Device isolation relies in a virtual form of IOMMU provided

S. Pinto, J. Pereira, T. Gomes, A. Tavares, and J. Cabral 4:19

by means of the TZPC. Similar to the limitation identified in the TZASC, the TZPC is also
an optional and implementation-specific component on TrustZone specification. This means
the number and type of devices that can be configured as non-secure vary from platform to
platform and from vendor to vendor. For example, in Xilinx ZC702, the TTC0 is always
secure and there is no way to configure its access directly form the non-secure guest OS.
Despite the identified limitation on the TZPC, the pass-through policy without any support
for shared devices is also somehow limiting. This kind of implementation makes sense in the
case of the secure VM, to promote real-time characteristics, but is very limiting in a system
there is a need to share devices among VMs and disregards one of our main design principles:
the principle of least privilege. We plan to implement an hybrid approach in-between a
pass-through and a paravirtualization strategy: the secure guest OS has direct and full control
over the devices (pass-through model), but the non-secure VM requests access to devices
via hypercalls, and the hypervisor mediates the access (paravirtualization). This model
guarantees the timing requirements of the real-time environment, promotes the principle of
less privilege by controlling the non-secure guest OS devices’ access while overcoming the
dependency of the TZPC for configuring devices as non-secure.

One of the main advantages of TrustZone resides on the interrupt subsystem. The direct
assignment of interrupts to each world, without intervention of the hypervisor, is a plus,
but, most importantly, it does not increase the interrupt latency of the secure world once
the RTOS gets executed. One small disadvantage that comes with this model is that slight
modifications need to be introduced in the secure guest OS, in order to use interrupt handlers
as FIQs instead of IRQs. In doing so, another problem on this specific platform arises: the
decrease of performance on yield-intensive workloads. However, since this problem is very
specific to this platform and precise workloads, we believe it should not be generalized.

Last, but not least, another considerable advantage of the presented solution is its
scalability. The recent ARM decision of introducing TrustZone technology in the new Cortex-
M processors series opens up a number of opportunities for implementing cost-effective
virtualization for future low-end real-time systems. We strongly believe that it will be
possible to consolidate a hard real-time environment (as a secure guest OS) with a soft
real-time environment (as a non-secure guest OS), at the cost of minimal engineering effort.
The enhancements introduced in TrustZone specification for ARMv8-M architecture will
definitively ensure better timing and performance guarantees, since the new specification
implements more hardware support for world switching while guaranteeing faster transitions
and greater power efficiency.

7 Related Work

The idea of using TrustZone technology to assist virtualization in embedded systems is not
new, and the first works exploiting the intrinsic virtualization capabilities of TrustZone were
proposed some years ago.

The work presented by Johannes Winter [30] was the first scientific public attempt to
exploit the TrustZone technology to assist virtualization. The paper introduces a virtualization
framework for handling non-secure world guests, and presented a prototype based on a secure
version of the Linux-kernel that was able to boot only an adapted Linux kernel as non-secure
world guest. Later, Cereia et al. [3] described an asymmetric virtualization layer implemented
on top of the TrustZone technology in order to support the concurrent execution of both
an RTOS and a GPOS on the same processor. The evaluation process was conducted only
on an emulator, and presenting limited results regarding the virtualization overhead and

ECRTS 2017

4:20 LTZVisor: TrustZone is the Key

the hypervisor interference in the real-time characteristics. In [5] Frenzel et al. presented a
minimal adapted version of Linux-kernel (as normal world OS) on top of a hypervisor running
on the secure world side. SafeG [22], from TOPPERS Project, is a dual-OS open-source
solution that takes advantage of ARM TrustZone extensions to concurrently execute an RTOS
and a GPOS on the same hardware platform. ViMoExpress [13] is a lightweight virtualization
solution, proposed by Oh et al., which exploits the TrustZone technology to accelerate the
execution of two guest OSes. Both works do not conducted any evaluation neither reported
any experiments. Schwarz et al. [23] proposed an alternative system virtualization approach
based on TrustZone which allows the switch between a virtualized and non-virtualized
execution mode through soft reboots.

8 Conclusion

Embedded real-time systems are proliferating at rapid pace in our everyday life, representing
a huge part of our key infrastructures. The trend nowadays goes towards the consolidation
of a wide range of functions into the same hardware platform, leading real-time requirements
to coexist with non-real-time characteristics. Virtualization has been used as an enabler for
platform consolidation whilst guaranteeing a robust functionality isolation, but the penalties
incurred by existent software-based approaches, altogether with timing requirements imposed
by real-time virtualization bring forth the need of hardware-assisted virtualization solutions.
Among existing COTS technologies, ARM TrustZone is attracting particular attention, due
to its exclusive applicability on those ARM processors where VE are not available, while
offering the best cost-benefit trade-off. The problem is that this technology is still seen
with a lot of scepticism, which rised an urgent need to comprehensively examine the hype,
myths, and realities of the use of this technology for virtualization, especially because ARM
continues to spread TrustZone across the different processors families. LTZVisor provides a
tool to understand, evaluate and discuss the benefits and limitations of using this security-
oriented technology to assist virtualization. We conducted an extensive set of experiments
which demonstrated that this technology can effectively satisfy the strict requirements for
virtualizing a real-time environment, while offering a low performance cost on running an
unmodified guest GPOS. Evaluation over the non-secure guest OS also helped us understand
the expected penalties over a soft-real-time guest OS, regarding the consolidation of a soft
and hard real-time environment in future Cortex-M processors. With LTZVisor we want to
share the experience gained over the last years, to encourage research for next generation of
TrustZone-assisted virtualization solutions.

Current research aims at multicore extension. We have already implemented support
for asymmetric multiprocessing (AMP), but we also want to explore other multicore config-
urations. Work in the near future will focus on an extensive and exhaustive evaluation of
real-time aspects with short-term and long-term tests, as well as studying the timing inter-
ferences and sources of non-determinism which arise from the multicore approach. Extension
of LTZVisor for new generation Cortex-M platforms is also at the top of our goals, but we
still need to wait until the release of the first ARMv8-M boards.

Acknowledgements. We would also like to thank the anonymous reviewers for their helpful
comments on the first version of this paper.

S. Pinto, J. Pereira, T. Gomes, A. Tavares, and J. Cabral 4:21

References
1 Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neuge-

bauer, Ian Pratt, and Andrew Warfield. Xen and the Art of Virtualization. SIGOPS Oper.
Syst. Rev., 37(5):164–177, October 2003. doi:10.1145/1165389.945462.

2 F. Baum and A. Raghuraman. Making Full use of Emerging ARM-based Heterogeneous
Multicore SoCs. In Proceedings of the 8th European Congress on Embedded Real Time
Software and Systems, Jan 2016.

3 M. Cereia and I. Bertolotti. Virtual Machines for Distributed Real-time Systems. Comput.
Stand. Interfaces, 31(1):30–39, January 2009. doi:10.1016/j.csi.2007.10.010.

4 C. Dall and J. Nieh. KVM/ARM: The Design and Implementation of the Linux ARM Hy-
pervisor. SIGPLAN Not., 49(4):333–348, February 2014. doi:10.1145/2644865.2541946.

5 T. Frenzel, A. Lackorzynski, A. Warg H., and Härtig. ARM TrustZone as a Virtualization
Technique in Embedded Systems. Twelfth Real-Time Linux Workshop, 2010.

6 G. Heiser. Virtualizing Embedded Systems: Why Bother? In Proceedings of the 48th
Design Automation Conference, DAC’11, pages 901–905. ACM, 2011.

7 H. Joe, H. Jeong, Y. Yoon, H. Kim, S. Han, and H.W. Jin. Full virtualizing micro hyper-
visor for spacecraft flight computer. In 2012 IEEE/AIAA 31st Digital Avionics Systems
Conference (DASC), pages 6C5–1–6C5–9, Oct 2012. doi:10.1109/DASC.2012.6382393.

8 Genode Labs. An Exploration of ARM TrustZone Technology. URL: https://genode.
org/documentation/articles/trustzone.

9 C. Lee, S.W. Kim, and C. Yoo. VADI: GPU Virtualization for an Automotive Platform.
IEEE Transactions on Industrial Informatics, 12(1):277–290, Feb 2016. doi:10.1109/TII.
2015.2509441.

10 Miguel Masmano, Ismael Ripoll, Alfons Crespo, and J. Metge. Xtratum: a hypervisor
for safety critical embedded systems. In 11th Real-Time Linux Workshop, pages 263–272.
Citeseer, 2009.

11 L. McVoy and C. Staelin. lmbench: Portable Tools for Performance Analysis. In USENIX
annual technical conference, pages 279–294. San Diego, CA, USA, 1996.

12 B. Ngabonziza, D. Martin, A. Bailey, H. Cho, and S. Martin. TrustZone Explained: Archi-
tectural Features and Use Cases. In 2016 IEEE 2nd International Conference on Collabor-
ation and Internet Computing (CIC), pages 445–451, Nov 2016. doi:10.1109/CIC.2016.
065.

13 S. Oh, K. Koh, C. Kim, K. Kim, and S. Kim. Acceleration of dual OS virtualization in
embedded systems. In 2012 7th International Conference on Computing and Convergence
Technology (ICCCT), pages 1098–1101, Dec 2012.

14 S. Patni, J. George, P. Lahoti, and J. Abraham. A zero-copy fast channel for inter-guest
and guest-host communication using VirtIO-serial. In 2015 1st International Conference on
Next Generation Computing Technologies (NGCT), pages 6–9, Sept 2015. doi:10.1109/
NGCT.2015.7375072.

15 S. Pinto, T. Gomes, J. Pereira, J. Cabral, and A. Tavares. IIoTEED: an enhanced Trus-
ted Execution Environment for Industrial IoT Edge Devices. IEEE Internet Computing,
21(1):40–47, Jan-Feb 2017. doi:10.1109/MIC.2017.17.

16 S. Pinto, D. Oliveira, J. Pereira, J. Cabral, and A. Tavares. FreeTEE: When real-time
and security meet. In 2015 IEEE 20th Conference on Emerging Technologies Factory
Automation (ETFA), pages 1–4, Sept 2015. doi:10.1109/ETFA.2015.7301571.

17 S. Pinto, D. Oliveira, J. Pereira, N. Cardoso, M. Ekpanyapong, J. Cabral, and A. Tavares.
Towards a lightweight embedded virtualization architecture exploiting ARM TrustZone.
In Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA),
pages 1–4, Sept 2014. doi:10.1109/ETFA.2014.7005255.

ECRTS 2017

http://dx.doi.org/10.1145/1165389.945462
http://dx.doi.org/10.1016/j.csi.2007.10.010
http://dx.doi.org/10.1145/2644865.2541946
http://dx.doi.org/10.1109/DASC.2012.6382393
https://genode.org/documentation/articles/trustzone
https://genode.org/documentation/articles/trustzone
http://dx.doi.org/10.1109/TII.2015.2509441
http://dx.doi.org/10.1109/TII.2015.2509441
http://dx.doi.org/10.1109/CIC.2016.065
http://dx.doi.org/10.1109/CIC.2016.065
http://dx.doi.org/10.1109/NGCT.2015.7375072
http://dx.doi.org/10.1109/NGCT.2015.7375072
http://dx.doi.org/10.1109/MIC.2017.17
http://dx.doi.org/10.1109/ETFA.2015.7301571
http://dx.doi.org/10.1109/ETFA.2014.7005255

4:22 LTZVisor: TrustZone is the Key

18 S. Pinto, J. Pereira, T. Gomes, M. Ekpanyapong, and A. Tavares. Towards a TrustZone-
assisted Hypervisor for Real Time Embedded Systems. IEEE Computer Architecture Let-
ters, PP(99):1–1, 2016. doi:10.1109/LCA.2016.2617308.

19 S. Pinto, A. Tavares, and S. Montenegro. Space and time partitioning with hardware
support for space applications. Data Systems In Aerospace (DASIA), European Space
Agency, (Special Publication) ESA SP, 2016.

20 D. Reinhardt and G. Morgan. An embedded hypervisor for safety-relevant automotive E/E-
systems. In Proceedings of the 9th IEEE International Symposium on Industrial Embedded
Systems (SIES 2014), pages 189–198, June 2014. doi:10.1109/SIES.2014.6871203.

21 Rusty Russell. Virtio: Towards a De-facto Standard for Virtual I/O Devices. SIGOPS
Oper. Syst. Rev., 42(5):95–103, July 2008. doi:10.1145/1400097.1400108.

22 D. Sangorrin, S. Honda, and H. Takada. Dual operating system architecture for real-time
embedded systems. In Proceedings of the 6th International Workshop on Operating Systems
Platforms for Embedded Real-Time Applications, Brussels, Belgium, pages 6–15, 2010.

23 O. Schwarz, C. Gehrmann, and V. Do. Affordable Separation on Embedded Platforms.
In Proceedings of the 7th International Conference on Trust and Trustworthy Computing,
volume 8564 of LNCS, pages 37–54. Springer-Verlag New York, Inc., 2014. doi:10.1007/
978-3-319-08593-7_3.

24 Udo Steinberg and Bernhard Kauer. NOVA: A Microhypervisor-based Secure Virtualiza-
tion Architecture. In Proceedings of the 5th European Conference on Computer Systems,
EuroSys’10, pages 209–222. ACM, 2010. doi:10.1145/1755913.1755935.

25 H. Sun, K. Sun, Y. Wang, J. Jing, and H. Wang. TrustICE: Hardware-Assisted Isol-
ated Computing Environments on Mobile Devices. In 2015 45th Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks, pages 367–378, June 2015.
doi:10.1109/DSN.2015.11.

26 A. Tavares, A. Dídimo, T. Lobo, P. Cardoso, J. Cabral, and S. Montenegro. Rodosvisor
– An ARINC 653 quasi-compliant hypervisor: CPU, memory and I/O virtualization. In
Proceedings of 2012 IEEE 17th International Conference on Emerging Technologies Factory
Automation (ETFA 2012), pages 1–10, Sept 2012. doi:10.1109/ETFA.2012.6489588.

27 J. Taylor. Security for the next generation of safe real-time systems. In Proceedings of
Embedded World Conference, Nuremberg, Germany, March 2016.

28 Prashant Varanasi and Gernot Heiser. Hardware-supported Virtualization on ARM. In
Proceedings of the Second Asia-Pacific Workshop on Systems, APSys’11, pages 11:1–11:5.
ACM, 2011. doi:10.1145/2103799.2103813.

29 P. Wilson, A. Frey, T. Mihm, D. Kershaw, and T. Alves. Implementing Embedded Security
on Dual-Virtual-CPU Systems. IEEE Design Test of Computers, 24(6):582–591, Nov 2007.
doi:10.1109/MDT.2007.196.

30 J. Winter. Trusted Computing Building Blocks for Embedded Linux-based ARM Trustzone
Platforms. In Proceedings of the 3rd ACM Workshop on Scalable Trusted Computing,
STC’08, pages 21–30. ACM, 2008. doi:10.1145/1456455.1456460.

31 S. Zampiva, C. Moratelli, and F. Hessel. A hypervisor approach with real-time support to
the MIPS M5150 processor. In Sixteenth International Symposium on Quality Electronic
Design, pages 495–501, March 2015. doi:10.1109/ISQED.2015.7085475.

http://dx.doi.org/10.1109/LCA.2016.2617308
http://dx.doi.org/10.1109/SIES.2014.6871203
http://dx.doi.org/10.1145/1400097.1400108
http://dx.doi.org/10.1007/978-3-319-08593-7_3
http://dx.doi.org/10.1007/978-3-319-08593-7_3
http://dx.doi.org/10.1145/1755913.1755935
http://dx.doi.org/10.1109/DSN.2015.11
http://dx.doi.org/10.1109/ETFA.2012.6489588
http://dx.doi.org/10.1145/2103799.2103813
http://dx.doi.org/10.1109/MDT.2007.196
http://dx.doi.org/10.1145/1456455.1456460
http://dx.doi.org/10.1109/ISQED.2015.7085475

	Introduction
	Contributions

	ARM TrustZone
	LTZVisor: Design
	General Architecture

	LTZVisor: Implementation
	Virtual CPU
	Scheduler
	Memory Partition
	MMU and Cache Management
	Device Partition
	Interrupt Management
	Time Management
	Inter-VM Communication

	Evaluation
	Memory Footprint
	Performance
	Partition context switching
	Secure VM (RTOS)
	Non-Secure VM (GPOS)

	Discussion
	Related Work
	Conclusion

