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—— Abstract

The Controller Area Network with Flexible Data-Rate (CAN-FD) is a new communication pro-
tocol to meet the bandwidth requirements for the constantly growing volume of data exchanged
in modern vehicles. The problem of frame packing for CAN-FD, as studied in the literature, as-
sumes a single sub-system where one CAN-FD bus serves as the communication medium among
several Electronic Control Units (ECUs). Modern automotive electronic systems, on the other
hand, consist of several sub-systems, each facilitating a certain functional domain such as power-
train, chassis and suspension. A substantial fraction of all signals is exchanged across sub-systems.
In this work, we study the frame packing problem for CAN-FD with multiple sub-systems, and
propose a two-stage optimization framework. In the first stage, we pack the signals into frames
with the objective of minimizing the bandwidth utilization. In the second stage, we extend Aud-
sley’s algorithm to assign priorities/identifiers to the frames. In case the resulting solution is
not schedulable, our framework provides a potential repacking method. We propose two solu-
tion approaches: (a) an Integer Linear Programming (ILP) formulation that provides an optimal
solution but is computationally expensive for industrial-size problems; and (b) a greedy heuristic
that scales well and provides solutions that are comparable to optimal solutions. Experimental
results show the efficiency of our optimization framework in achieving feasible solutions with low
bandwidth utilization. The results also show a significant improvement over the case when there
is no cross-domain consideration (as in prior work).
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The Multi-Domain Frame Packing Problem for CAN-FD

1 Introduction

Modern automotive electronic systems consist of several sub-systems, each facilitating a
certain functional domain such as powertrain, chassis, suspension, steering, etc. Over the
years, there has been a steady increase in the number of messages exchanged among such
sub-systems, also called domains in the paper. A few reasons for this trend are: 1) increase in
the number of features enabled by software and electronics; 2) integration of functionalities
onto System-on-Chip (SoCs) allowing up-integration of hardware capacity into fewer (but
more computationally capable) Electronic Control Units (ECUs); and 3) consolidation of
ECUs for cost reduction. The proliferation of such cross-domain traffic can significantly
contribute to bandwidth bottlenecks, and as we show in this paper, it leads to a non-trivial
optimization problem. In this paper, we propose a frame packing algorithm for multiple
sub-systems that are served by CAN-FD (Controller Area Network with Flexible Data-Rate)
field buses. To the best of our knowledge, this is the first attempt to formulate and propose
a solution to what we term as the problem of multi-domain frame packing for CAN-FD.

Since its development in the 1990s, CAN (Controller Area Network) has attracted a
significant amount of research from the real-time systems community. The CAN protocol
adopts a collision detection and resolution scheme, where the message to be transmitted is
chosen according to its identifier. When multiple nodes need to transmit over the same bus,
the message with the lowest identifier is selected for transmission. This arbitration protocol
allows encoding of the message priority into the identifier field and the implementation of
priority-based scheduling. The analysis of the CAN message response time [22, 5] was derived
using an analogy to the results on CPU scheduling, providing an exact evaluation and a safe
approximation of the worst-case message response times.

In recent years, automotive features have been growing, thereby demanding an increase in
bandwidth requirements of the communication network. In order to bridge the gap between
CAN and other higher data rate communication protocols (such as TTEthernet, MOST150,
etc.), two major improvements were added to CAN to develop CAN-FD [9]: 1) the increase
of bit-rate (up to 8 Mbps); and 2) the increase of payload sizes (up to 64 bytes). The
physical layer of CAN was unchanged: it still uses a bitwise arbitration method of contention
resolution based on message identifiers.

Related Work. As mentioned earlier, the frame packing problem has been considered in
the literature only for a single domain in CAN-FD. Bordoloi and Samii [2] present a dynamic
programming approach for packing the signals followed by a priority assignment step. Urul’s
thesis [23] points out that schedulability of frames can be improved by packing same period
signals in each frame. Di Natale et al. [16] present a single-step Integer Linear Programming
(ILP) formulation to achieve both optimal bandwidth utilization and schedulability. However,
its applicability is limited to medium-size problems. In [25], the authors map signals to
frames on CAN as part of their task allocation and priority assignment problem to optimize
end-to-end latency using an MILP.

The frame packing problem is related to the classical bin packing problem (BPP) which
is known to be NP-hard. For CAN-FD, a particularly relevant subclass of BPP is the
variable-sized bin packing problem (VSBPP). While the classical bin packing problem has
been studied extensively (e.g., [8]), VSBPP has received relatively less attention. Friesen and
Langston [7] propose and formally analyze the performance of three heuristics for VSBPP.
Murgolo [15] presents a polynomial-time approximation scheme for VSBPP. We note that
the approximation algorithms for VSBPP cannot be directly applied to the frame packing
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problem for CAN-FD since the goal of the latter problem is to minimize bandwidth utilization
instead of the number of bins (frames). In addition, the frame packing problem must consider
both the size and the period of each signal.

For standard CAN, both [17] and [20] present frame packing approaches inspired by the
next fit decreasing heuristic for BPP. The difference is that the algorithm in [17] sorts the
signals according to their periods, while the one in [20] sorts them based on their deadlines.
Saket and Navet [19] present a frame packing heuristic which sorts the signals by their
bandwidth utilization and then packs this list of sorted signals alternately from both sides of
the list (to increase the chances of signals with similar periods to be packed together).

The frame packing problem has also been considered under other communication protocols
that are time-triggered (such as FlexRay static segment [13, 24, 21, 11, 3]) or mixed event/time-
triggered [18]. The nature of these communication protocols, and thus the frame packing
problem, is very different from that for CAN and CAN-FD. Hence, the corresponding
approaches and results are not directly applicable here.

Contributions. The frame packing problem in CAN and CAN-FD has been addressed in
the literature [2, 23, 16]. However, unlike our paper, these references consider only a single
domain. Even for a single domain, the problem is already challenging: the above references
have pointed out its relationship to the bin packing problem which is known to be NP-hard.

In this paper, we study the multi-domain frame packing problem for CAN-FD, and
develop a two-stage optimization procedure. In the first stage, we propose an ILP based
approach to generate an optimal solution for frame packing as well as a heuristic that scales
to large problem sizes. Our ILP and heuristic approaches capture the details of inter-domain
communication and gating over multiple CAN-FD networks. In the second stage, we propose
an extension to Audsley’s algorithm [1] for optimal priority assignment with multi-domain
frames. In case the priority assignment does not lead to a feasible solution, we provide
an effective strategy to re-pack the frames. We conduct experiments on synthetic systems
(whose characteristics are close to real systems) and show that our heuristic runs extremely
fast compared to the computationally expensive (in terms of both time and memory) ILP
and yet returns solutions that are on average within 3% of those produced by the ILP in
terms of bandwidth utilization per domain. Our experiments also show that the repacking
strategy is effective in that it often leads to schedulable solutions. Compared to the approach
without cross-domain consideration, our approach can typically save 6%-10% bandwidth
utilization per domain.

The rest of the paper is organized as follows. Section 2 provides a brief overview of the
CAN-FD protocol. Section 3 defines the multi-domain frame packing problem. Section 4
provides an overview for the two-stage iterative framework. Section 5 presents the approach
using ILP formulation and Section 6 describes the greedy heuristic algorithm. Section 7
provides the experimental results and compares the ILP and heuristic approaches. Finally,
Section 8 summarizes our contributions and presents some concluding remarks.

2 CAN-FD Overview

In this section, we briefly describe the main features of CAN-FD. The CAN-FD frame format
is shown in Figure 1. For a more detailed description, readers are referred to [2]. Like CAN,
a dominant bit is a logical 0 and a recessive bit is a logical 1. As in the figure, a CAN-FD
frame is partitioned into two phases: arbitration phase and data phase.

12:3
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Arbitration Field | Control Field | DataField | CRCField |ACK|  EOF RS |
S . I[F B|E : .
11-bit r r 4-bit 0-64 Bytes |17 or 21-bit . .
D|D R 7-bit 3-bit
0 Identifier |1 olR(® DLC Data CRC : :
F E|F S|l
CAN-FD Arbitration Phase CAN-FD Data Phase CAN-FD Arbitration Phase

Figure 1 CAN-FD Frame Format (from [9]).

Arbitration Phase. The arbitration phase in the CAN-FD frame contains the following
fields: SOF (Start Of Frame), arbitration, part of the control field, ACK (Acknowledgment),
EOF (End OF Frame), and IFS (Inter-Frame Space). The 11-bit (or 29-bit in case of extended
format) identifier represents the priority of the frame: the lower the value of the identifier,
the higher the priority. The arbitration for transmission happens as follows. During the idle
state of the bus, all the nodes with some ready frames send the 11-bit identifier after the
SOF bit. During the transmission of the identifier bits, if a node transmits a recessive bit
but finds a dominant bit on the bus, it stops transmission due to the presence of a higher
priority node contesting for transmission. In the end, the node with the highest priority
message wins the arbitration and continues the transmission.

The transmission of bits in the arbitration phase occurs at the arbitration bit-rate, and
the duration of transmission for each bit is denoted as t,. For example, if the arbitration
rate is chosen as 500 Kbps, then ¢, = 2us.

Data Phase. The BRS (Bit-Rate Switch) bit is one of the additions to the CAN-FD frame
format. It is used to decide whether the bit-rate in the data phase is the same as that of
the arbitration phase (BRS = 0) or it switches to the increased bit rate (BRS = 1). Since
our focus is on CAN-FD, we consider the BRS bit in the frames to be recessive (i.e., BRS =
1). At the increased rate of data transmission, each bit transmission occurs with a duration
denoted by t4. For example, if the data rate is chosen as 2 Mbps, t; = 0.5us. The 4-bit DLC
(data-length code) field specifies the payload size (in bytes) of the data field. CAN-FD offers
16 distinct payload sizes: 0 through 8, 12, 16, 20, 24, 32, 48 and 64 bytes.

The data field is followed by the Cyclic Redundancy Check (CRC) field, which has 17
bits for payloads up to 16 bytes, and 21 bits otherwise. The CRC delimiter bit (recessive) is
transmitted next. After this, the bit rate is changed back to that of the arbitration phase.

Transmission Time. The worst-case transmission time (WCTT) of a CAN-FD frame is a
function of its payload size (i.e., the size of the data field) and the data rates. As in [2], if p
is the payload size (in bytes) of a CAN-FD frame, its WCTT is given by:

-1
WCTT(p) = 321, + (28+5 P’ = 6} +10p)td. (1)

In this work we have assumed the arbitration and data rates to be same for all the domains,
however our approach can be easily adapted to the scenario where each domain/network has
a different bit-rate. The bit-rates affect the WCTT expression (Equation 1), and therefore
for the latter case we can compute the WCTT for each domain and use it in the bandwidth
calculation corresponding to the domain. Similarly the schedulability analysis can be updated
with the inclusion of the appropriate WCTT expression for determining the response time
for a frame on each domain.
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Figure 2 A multi-domain CAN-FD architecture.

Table 1 Parameters of each signal and frame.

’ Notation ‘ Significance ‘

T(v) Period of frame ~y
D(v) Deadline of frame v
’ Notation ‘ Significance ‘ P(y) Payload size (in bytes) of
t(o) Period of signal o frame . :
(o) Deadline of signal o A(y) Set of (.iomams of signals
- - - packed in frame ~y
p(o) Size (in bytes) of signal o - -
- - S(v) Set of signals packed in
4(o) Domains of signal o P
Tame -y
C(v) Worst-case  transmission
time (WCTT) of frame
() Priority level of frame ~

3 Problem Definition

We assume a network topology where several CAN-FD sub-systems, typically serving different
domains, are connected to a central gateway. We use the terms “domain” and “sub-system’
interchangeably. The ECUs in each domain generate signals which must be packed into
frames and transmitted to their destination domains. Each domain uses a CAN-FD bus for
data communication. The gateway is responsible for forwarding the frames to their respective
destination domains without repacking or reassigning frame identifiers. Such an architecture
is relevant in the automotive industry [10]. Figure 2 provides an example of a system where
3 domains are connected by a gateway.

Table 1 summarizes the parameters of each signal and frame. In the following, we define
the problem and review the schedulability analysis for CAN-FD.

)

Problem Description: Let D = {A;, Ao, ..., Ap} denote the set of domains. Let n; denote
the number of ECUs in domain A;, 1 <4 < |D|. The jth ECU from domain A; is denoted
by 1; ;. The set of signals generated by ECU 1; ; is represented by S(¢; ;) = {aﬁj | k=
1,...,|S(#i;)|}. Each signal o € S(1; ;) is specified as a quadruple (¢(o),d(o),p(o),d(0)),
whose components denote respectively the period, deadline, size (in bytes) and domains
(including the source and destinations) of signal o.

12:5
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The output of the multi-domain frame packing problem is a set of frames I' = {vy, 72, ...}
satisfying all of the following conditions.

1. Fach signal o is placed in exactly one frame .

2. For each frame =, all the signals in « are from the same ECU, and the periods of all the
signals in v are harmonic! (i.e., Vo;, 0j € v, there exists an integer k such that either
t(o;) =k -t(oj) or t(o;) =k - t(0;)).

3. The sum of the sizes of all signals in a frame v is at most the payload size of ~.

4. The packed frames are schedulable in all the domains in which they are transmitted.

Each frame « is characterized by a tuple (S(vy),A(¥),T(v),D(v), P(y),C(v),w(¥)),
where S(7) is the set of signals packed into v and A(«) is the set of domains of the signals in
v. The quantities T'(), D(v), P(v), and C(v) are respectively the period, deadline, payload
size (in bytes), and WCTT of the frame 7. Given S(v), the other parameters of the frame ~
are determined as follows.

A(y) = U 0(0); 1i.e., the set of domains of 7 is the union of those for all the signals

) aeS(y)

in .

T(v) =ged{t(o) : 0 € S(y)}; ie., the period of v is the greatest common divisor (gecd)

of the periods of the signals in ~.

D(v) =min{d(c) : 0 € S(v)}; i.e., the deadline of 7 is the smallest deadline among the
signals in 7.

P(y) > Z p(o); i.e., the payload of ~ is large enough to contain its constituent

o€S(7)
signals. The CAN-FD standard [9] restricts P(7) to be one of the following values: 0

through 8, 12, 16, 20, 24, 32, 48 and 64 bytes.
The WCTT C(v) of a frame v is determined by Equation (1), with the variable p being
replaced by P(7).

() represents the unique priority (across all domains) assigned to frame ~.

The bandwidth utilization U(y) of frame + is defined as

Ulr) = ma (2)

The objective is to minimize the total bandwidth utilization over all the domains. This is
motivated by extensibility to accommodate possible future functions [2].

CAN-FD Schedulability: The schedulability analysis for CAN-FD follows that of CAN [5],
where the worst-case response time is always inside the busy period. The busy period of
priority level-i is a contiguous interval of time that starts at the critical instant, during which
any frame of priority lower than ~; is unable to win arbitration. The length of the busy
period L(;) and the index ¢™**(7y;) of the last instance are calculated as

i =so0+ X [gislem. o= |5l

jehp(i) L}

3)

! Note that our approach is valid even without this condition.
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where hp(7) is the set of frames with priority higher than ~;, and B(+;) is the blocking time,
i.e., the maximum time spent on waiting for the transmission of a lower priority message
already on the bus when ~; becomes ready.

The response time R(7; 4) of the ¢-th instance ; 4 in the busy period is given by

R(%i,q) = w(viq) — (@ = )T (vi) + C(i) (4)

where ¢ ranges from 1 to the last instance ¢™®*(~;) of ~; inside the busy period. The
worst-case queuing delay w(v; 4) for the ¢-th instance in the busy period is

wiia) = o+ - 0060 + ¥ |44 oty )

sy | )

In Equation (5), w(v; ) appears on both sides. However, the right hand side is a monotonic
non-decreasing function of w(7; 4). Hence, w(7; 4) can be solved using the iterative procedure
defined by the equation below.

" (0g) = BOW) + (0= DCON+ D | T

] o). ©)
jehp(i)

The calculation can start with an initial value of w®(v; ) = B(v;) 4+ (¢ — 1)C;, and stop when
W' (y.4) = W (Yiq) or W (vig) — (¢ — )T (Vi) + C(v:) > D(v;), the latter condition
indicating that ~; is unschedulable. The worst-case response time of v;, denoted by R(7;), is
the maximum among all its instances in the busy period; that is,

R(vi) = max  {R(viq)} (7)

q=1,...,¢™**(7s)

4 Overview of the Two-Stage Optimization Procedure

The multi-domain frame packing problem for CAN-FD is NP-hard. This follows directly
from the NP-hardness of the special case of single-domain frame packing problem [2]. To
cope with this complexity, we consider an optimization procedure that consists of two stages,
as illustrated in Figure 3. In the first stage, we try to find a signal-to-frame packing with
minimum total bandwidth utilization. In the second stage, given the signal-to-frame packing,
we perform priority assignment to all the frames such that the response time of each frame
falls within its deadline. We choose to minimize the total bandwidth in the first stage for two
reasons: one is that this is also the overall objective, the other is that smaller bus bandwidth
utilization generally leads to better schedulability. However, the latter is not always the case.
When a candidate frame packing produced by Stage 1 is not schedulable, all the frames or a
subset thereof are repacked, this time focusing on improving schedulability. The two-stage
procedure iterates until a feasible solution is found or after a certain number of iterations of
repacking have been completed.

As discussed in subsequent sections, we present two instantiations of the optimization
procedure. One instantiation formulates the problem in the first stage as an integer linear
program (ILP) and leverages existing solvers to find an optimal solution (i.e., one with
minimum total bandwidth utilization). In case of unschedulability, the second stage iteratively
produces another packing by sacrificing optimality by a certain amount, with additional
constraints in the ILP model. As will be seen in Section 5, the ILP formulation is somewhat
intricate due to the discontinuous nature of the frame sizes available under CAN-FD. Due
to the number of constraints in the ILP formulation, this approach does not scale to large

12:7
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( A list of signals )

Stage 1:
Signal-to-Frame Packing

Stage 2: 4

Priority Assignment
with Modified <
Audsley’s Algorithm

v

Successful? Frame Repacking

YES

/
Gchedulable Frame Packin@

Figure 3 The two-stage optimization procedure.

systems. The second instantiation of the procedure in Figure 3 uses a fast heuristic in the
first stage. Based on the observation that the first stage, namely the problem of signal-to-
frame packing, is related to the bin packing problem, we develop a bandwidth-based best-fit
(greedy) approach, where each signal is packed into a candidate frame that minimizes the
total bandwidth utilization over all the domains. The second stage directly repacks a selected
list of frames in case of unschedulability.

The problem of frame priority assignment can be solved efficiently. We propose a modified
version of the Audsley’s algorithm [1] that only needs to check a quadratic number of
candidate priority assignments. Similar to Audsley’s algorithm, it iteratively picks a frame
that can be assigned a particular priority level starting from the lowest priority. However,
when choosing a candidate frame, it should guarantee that assigning the priority does not
violate the schedulability in any domain to which the frame will be transmitted. Here, the
priority order of frames remains the same across all domains, as the gateway is assumed to
forward the frames without repacking or reassigning frame identifiers.

5 ILP-based Approach

5.1 ILP formulation for Signal-to-Frame Packing

Since each frame may only contain signals sent by the same ECU and we do not consider
schedulability in the first stage, it is sufficient to perform frame packing for each ECU
separately. Hence, we present the ILP formulation considering the set of signals S(¢; ;)
generated by ECU 1); ;. The total bandwidth utilization is the sum of the utilization values
over all the ECUs.

We generate a set of virtual frames I'; j; = {7y, | I = 1,...,|S(#; ;)|}, one for each signal
in S(¢;;). Thus, I'; ; consists of the maximum number of frames that could be used for
packing the signals in S(¢; ;); a packing may use only a subset of I'; ;. Each virtual frame
v €Ty ; is represented as a tuple (T'(7y;), D(v), P(v1)), which specifies respectively the period,
deadline and size of the frame. Here, we fix the period of each frame to be the period of its
corresponding signal. Thus, VI, T'(vy;) = t(o;). However, the deadline D(~;) and size P(v;)



P. Joshi, H. Zeng, U. D. Bordoloi, S. Samii, S.S. Ravi, and S. K. Shukla

depend on the signals packed in v;. We use a binary parameter to denote whether a signal
shall be transmitted in a particular domain.

)

v 1 if the destination of o is in domain A,
e =
‘ 0 otherwise.

Note that this information is available as part of the input. Thus, Y} . is not a variable in

the ILP formulation. We define a binary (decision) variable zj; to indicate the mapping of
signals to frames:

Ty =

1 if signal o, is packed into frame -y;
0 otherwise.

Each signal should be assigned to one and only one frame:
1S (%4,5)1

Ve: Y ap =1 (8)
1=1
The period of a frame should be a divisor of the period of any signal assigned to the frame:
VE, 1 such that ¢(ox) mod T'(y;) #0: xp; = 0 (9)
If two signals have non-harmonic periods, they should not be packed in the same frame:
Yk, m such that t(ox) > t(om) /\t(ak) mod (o) #0, Yy @ Tpy+Tmy < 1 (10)

Since some frames may not be assigned any signals during the packing, we must ensure that
they are not taken into account while computing the bandwidth utilization. To do this, we
use a binary variable p; to indicate if v, contains any signals. Hence,

le(wi,j)\ I |S(i,5)]

k=1 Lo < (1)
o N = P JURES Tkl

IS (¥i5)] A ;

For each frame ~;, we introduce a variable z; that represents the sum of the sizes (in
bytes) of the signals packed in ~;:
[S(%i,5)1

2= Y. aki-plox) (12)
k=1

The maximum size of a frame is 64 bytes. Hence, the total size of the signals assigned to a
frame should be no more than 64 bytes:

Vi: z < 64 (13)
As described in Section 2, CAN-FD allows 16 different frame payload sizes (0 through 8,
12, 16, 20, 24, 32, 48 and 64 bytes). Hence, the size P(7;) of any frame 7; can be modeled as
a discontinuous function defined by
z;, 0< 2 <8
12, 8<z <12
16, 12 <z < 16
20, 16< 2z <20
24, 20<z <24
32, 24< 2 <32
48, 32 < 7z <48
64, 48 < 2 < 64

12:9
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We define eight new binary variables A1, Ao, ..., Ag, which determine the ranges of the z;
variables.

Zl<8+M(1—)\1)

Zl<12+M(1—>\2) /\Zl+M )\2

(1=2X2) >
Zl§16+M( )\3) /\Zl+M( )\3)>12
Zl§20+M( )\4) /\Zl+M( )\4)>16
(14)
A<+ MA—2s) A 2+ M(1—2s) > 20
Zl§32+M(1—)\6) /\ZZ+M( >\6)>24
Zl§48+M(1—)\7) /\Zl+M(1—>\7)>32
Zl§64+M(1—)\g) /\21+M(1—)\8)>48
where M is a large enough constant. Hence, the size of a frame can be expressed as
P(y) = M- zi + 1200 + 16A3 + 200y + 2405 + 32X + 487 4 64 g . (15)

However, there is a product term, namely A - z;, in Equation (15). This can be linearized by
introducing a new variable v; as follows.

u=M-2z = v < z+M({1-X\) /\ z1 < v+ M(1-X) /\ v < M-z. (16)
Therefore, Equation (15) can be rewritten as the following linear constraint:
P(’yl) = v+ 129 4+ 163 + 204 + 24)A5 + 32X + 48X7 + 645 . (17)

To calculate the WCTT of frame ~; using Equation (1), we note that the ceiling function
[P(vz)*lﬁ
64

—‘ can only take on two values: 0 if P(y;) < 16 and 1 otherwise. Hence, we introduce
a binary variable u; to represent it. The constraints on u; are as follows:

P(y)+ M(1=w) > 16 /\ P(n) < 16+ M . (18)
Now, the expression for WCTT becomes

C(y) = 32tq + (28 + 5uy + 10P(7y;)) ta - (19)

The total bandwidth utilization for all the frames for an ECU %); ; in the CAN-FD network
can be expressed as follows:

Cm) C(y)
n T(vj) — ("l’e T('yll) ﬂ (20)

where the first part p; - TE ; corresponds to the bandwidth utilization over the source domain

[S(¥i,5)]

>

l

A;, and the second part ), 2 (771 e E”;g) corresponds to the bandwidth utilization over all

the destination domains. In Equation (20), n; . is a binary variable to determine whether
the frame 7; has any signal with a destination in domain A.. Using the binary parameter
Y} . defined earlier, 7; . can be defined as

. S i,

S LA S (@ Yie) > 1

l,e —
’ 0 otherwise

The linear constraints that enforce the definition of 7, . are as follows:

[S (i)l |S (i)l
B 3J X1 Y
Zle(;é’ﬁ b < e S LA me €0 @kt Yao - (21)
1,] k=1
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Algorithm 1 Modified Audsley’s Algorithm for Multi-Domain CAN-FD

1: procedure AUDSLEYMULTIDOMAIN (T")

2 Let N = |T'|, Create a list ) containing all the frames in T
3 for m = N downto 1 do

4: for each frame v € Q do

5: flag_ found = FALSE

6 for each A; € A(y) do

7 R(vy) = ComputeResponseTime (v, A;, T

8 if « is schedulable in all A; € A(y) then

9: Assign priority level 7 to «y
10: Remove 7 from @

11: flag found = TRUE

12: break

13: if flag_ found is FALSE then

14: Report unschedulability and return

15: Report schedulability

The objective is to minimize the total bandwidth utilization of all the frames:

D] n; (S5l

w2 3 b+ S e 7)) 2

e#i

In Equation (22), p; - ggi; and 1. - 283 are both a product of a binary variable and a

real variable. They can be linearized in a manner similar to that of Equation (16).

5.2 Modified Audsley’s Algorithm for Priority Assignment

In order to assign priority identifiers to all the frames, we extend Audsley’s algorithm [1] to
the multi-domain case (Algorithm 1). The input to the algorithm is the set of frames T" for
all the domains. Similar to Audsley’s algorithm, priority levels are assigned iteratively to all
the frames starting from lowest to highest (Lines 3-15). At each iteration, a priority level is
assigned to the first frame v that satisfies the schedulability constraints over all the domains
belonging to A(v) (Lines 8-12). If a priority level cannot be assigned to any of the frames
(i.e., flag_found is FALSE), the algorithm reports unschedulability (Lines 13-14). If all the
frames are assigned a unique priority, the algorithm is successful in finding a schedulable
priority assignment.

Using the approach in [6], it can be easily shown that the schedulability of a multi-domain
frame (i.e., whether it meets the deadline requirement in all its domains) satisfies all the

three conditions which are necessary and sufficient to provide an optimal priority assignment.

Hence, our extension to Audsley’s algorithm for the multi-domain CAN-FD system is optimal
for finding a schedulable priority assignment.

5.3 Handling Infeasibility

Although in principle our frame packing scheme supports schedulability (since it minimizes
bandwidth utilization which indirectly helps to reduce network traffic), there are cases when
the modified Audsley’s algorithm returns infeasibility.
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In the case of ILP, when we encounter infeasibility, we call the solver again after relaxing
the optimal value of the objective function (by doubling the optimality gap in each iteration)
and setting a time limit of one hour for each iteration. We report infeasibility if no feasible
priority assignment is found even after a given number of iterations.

6 Greedy Algorithm-based Approach

The ILP approach discussed in the previous section provides an optimal packing of the signals
into frames with respect to bandwidth utilization. However, due to its exponential time
complexity, it does not scale well to large sets of signals. Therefore, we propose a greedy
heuristic (Algorithm 2) for the frame packing step. The heart of the algorithm presents the
steps for packing the signals from one ECU; the outermost loop ensures that the steps are
iterated over all the ECUs.

6.1 Description of the Heuristic for Signal-to-Frame Packing

The algorithm first sorts the input signals for each ECU (Line 3 in Algorithm 2) on the
basis of a parameter such as the period, size or the input bandwidth utilization (which is
given by the size/period) of signals. It then uses a Bandwidth Best-Fit approach to pack
the signals into frames as follows. Starting from the first signal, each signal is placed in a
frame that minimizes the total bandwidth utilization of the system (over all the domains).
The steps shown in lines 6 and 7 create a new frame and add the signal to it. To obtain
the bandwidth utilization for a frame, we use Equation (2) to compute the utilization over
each of its destination domains and then take their sum. The total bandwidth utilization
of the system is the sum of the bandwidth utilization over all the frames (Equation (20)).
Further, lines 8-14 compute and store the total bandwidth utilization by temporarily adding
the signal to an existing frame. Before a signal is assigned to an existing frame, the “if(oy
can be added to F;)” condition (Line 9 in Algorithm 2) checks (i) whether the frame can
accommodate the new signal (i.e., the total size of all the signals in the frame is at most
64); and (ii) whether the period of the new signal is harmonic with the periods of the other
signals in that frame. The steps in lines 15 and 16 decide whether it is beneficial to add the
current signal to a new frame or to one of the existing frames. The output of the algorithm
is a list of frames (I') which stores the frames created in each step.

The quality of the packing depends on the sorting criterion used in Line 3. In our
experiments, we compare different sorting methods using each of the above parameters (i.e.,
period, size and size/period) in both increasing and decreasing orders.

Time Complexity Analysis: For each ECU v);, we show that the above heuristic runs in
O(s?f) time, where s = |S;| is the number of signals for the ECU and f is the number of
frames in the resulting packing. To begin with, sorting the set S(1);) can be done in O(slog s)
time. Now, for each signal o € S(¢;), the time for finding the best placement into a frame
can be estimated as follows. Let T'(¢;) = {71,72,...,7-} denote the current set of frames
when o is considered. Creating a new frame containing just o can be done in O(1) time. As
mentioned above, testing whether o can be added to a frame ~y; involves two checks involving
the size of the frame and the harmonicity of periods of the signals currently in the frame.
It is easy to see that each of these checks can be done in time O(|y;|), where |vy;| denotes
the number of signals in ;. Thus, the total time for checking whether ¢ can be added to
each of the existing frames is O(}_;_, |vi|) = O(s), since all the frames together contain at
most s signals. For each placement of ¢ in a frame, it is also easy to see that computing the
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Algorithm 2 Greedy Algorithm

1: procedure GREEDY-BW-BEST-FIT (¥, S)

2 for each ECU 1; € ¥ do

3 Sort(S(¢);))

4 Number of frames n = 0, list of frames I' =

5: for each signal o, in S(;) do

6 Create a new frame F;, 1 containing only oy

7 Compute the total BW utilization wu, 1 of frames Fy, ..., Fy, Fi41
8 for j=1 tondo

9: if (ok can be added to Fj) then
10: Add oy, to F;
11: Compute the total BW utilization u; of frames Fi, ..., Fj,
12: Remove o}, from F}
13: else
14: Set u; to infinity
15: Find the smallest u; among u1, ..., un41 and pack oy in F)
16: if (j==n+1)thenadd F,,y; toT" and set n=n+1

17: Return I

bandwidth utilization (as explained in the description of the heuristic) for signal o can be
done in O(r +>_1_; |v|) = O(s) time since r < f < s and as observed earlier, Y ._; || < s.
As we need to compute the bandwidth utilization for at most f + 1 alternatives (including
the new frame containing only o), the time used for this step is O(sf). In other words, for
each signal, the greedy heuristic uses O(sf) time. So, over all the s signals in S(v;), the
time complexity of the heuristic is O(s?f).

6.2 Handling Infeasibility

In the second stage of the optimization, in case Algorithm 1 (i.e., the modified Audsley’s
Algorithm) fails to find a schedulable priority assignment, we propose a repacking method,
with three variations, so that the frames may become schedulable. Our repacking strategy
consists of two parts: the first part unpacks a selected set of frames based on certain
conditions, and the second part repacks the signals removed from frames. The first part

(unpacking of frames) is based on the following two methods.

1. Unpacking Based on Destination Domains: In case of a multi-domain system, Al-
gorithm 1 reports infeasibility when a particular priority level cannot be assigned to any
frame. This infeasibility could occur due to certain domains. Therefore, our first unpack-
ing method attempts to separate the signals destined for different domains. The intuition
behind such an unpacking can be understood from the following example. Consider a
frame with 14 signals: o1, 092, .... 014. Suppose the first 12 signals have a total size
of 40 bytes and their destination domain is D; while signals o153 and 014 have a total
size of 2 bytes and their destination domain is Ds. Thus, such a frame carries an extra
payload of 40 bytes to domain Ds. It could be beneficial to remove the signals intended
for domain Dy from the frame so that the overall schedulability (in particular for Ds)
may be improved.

2. Unpacking Based on Deadline: Increasing the deadline of a frame is another method we
adopt in order to satisfy the schedulability constraints. We apply this in our unpacking
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scheme by separating the signals with the smallest deadline in a frame, thereby increasing
the frame’s deadline and its schedulability.

We apply at most one unpacking scheme per frame in an iteration. If the first criterion
(destination domain based unpacking) is applicable to a frame, then we unpack the corres-
ponding signals and do no further unpacking for this frame. If the first criterion does not
apply to a frame (i.e., all the signals in the frame have the same destination domain), then
we check the second criterion (deadline based unpacking). If neither of the criteria is met for
a frame, we do not unpack that frame. After unpacking the signals, we repack them into
existing frames using first-fit, best-fit and worst-fit heuristics. The repacking should satisfy
the previously stated constraints of the problem (i.e., a frame should only have signals from
the same ECU, all the signals in a frame should have harmonic periods and the total size of
the signals in a frame should not exceed 64 bytes). The repacking step may suitably expand
or shrink the size of a frame to handle the addition and removal of signals respectively.

We consider three different sets of frames as candidates for the unpacking and repacking
steps. For each signal in the set, we unpack signals based on the above criteria and then
repack them into existing frames (or generate new frames) using first-fit (FF), best-fit (BF)
and worst-fit (WF) methods.

1. All the frames: In this case, we consider all the frames. We refer to this variation as the
“All” heuristic.

2. Unassigned frames from Audsley’s method: Here, we unpack only those frames for which
Algorithm 1 could not assign a priority level. That is, at the priority level where
Algorithm 1 fails to find a schedulable frame from the remaining set of frames, we consider
this set for unpacking. We call this variation the “Unassigned” heuristic.

3. Irreducible subset: The idea behind computing an irreducible subset is similar to the
computation of a minimal unsatisfiable core of a Boolean formula in conjunctive normal
form [14]. When Algorithm 1 reports infeasibility, we compute a set of frames I”, called
an irreducible subset, satisfying the following condition: the set I does not satisfy the
schedulability constraints, but for any frame v € I, the set IV — {~v} becomes schedulable.
We only unpack the frames which form an irreducible subset, based on the above two
criteria. We refer this variation as “Irreducible subset” heuristic.

The reason for developing three variations of the repacking strategy is due to the complexity
of making a given set of frames schedulable over the network. Since schedulability depends
on a number of factors such as deadlines, traffic congestion over the network, sizes of frames,
etc., there is no single factor which can be manipulated in order to obtain schedulability. The
three different methods of repacking target different input sets. For example, for a particular
input, it might be beneficial to unpack and repack a smaller set of “problematic” frames
whereas another input might require a larger set of frames to be repacked. In the former
case, the “Irreducible subset” approach could be more beneficial, and in latter case, the “All’
approach might yield better results.

7 Experimental Results

In this section, we present a detailed evaluation of the proposed algorithms using synthetic
systems. For these experiments, we generated synthetic systems according to the guidelines
on real-world automotive benchmarks [12], with minor modifications. Specifically, we
redistributed the share of signals with size larger than 64 bytes to the bin “33-64 bytes” (as
for this work we only consider signals with size up to 64 bytes), and the share of signals sent
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Table 2 Signal parameters and their distribution.

Period (ms) ‘ Share H Size (Bytes) ‘ Share ‘

1 4% 1 35%
2 3% 2 49%
5 3% 4 13%
10 31% 5-8 0.8%
20 31% 9-16 1.3%
50 3% 17-32 0.5%
100 20% 33-64 0.4%
200 1%
1000 4%
Comparison of all the greedy heuristics (BW utilization) Runtime of greedy heuristics

lization per domain (in %)

Time in seconds

Average ut

(a) Comparison of the bandwidth utilization (b) Comparison of the runtime for all the
of all the proposed greedy heuristics. proposed greedy heuristics.

Figure 4 Comparison of bandwidth utilization and runtime of greedy algorithm.

by engine control tasks to those with periods between 1 and 20ms (as we do not consider
the signals with angle-synchronous periods). Table 2 summarizes the distribution of signal
periods and payload sizes used for generating the synthetic systems. Each signal is randomly
assigned a source and a destination domain (from the set of domain IDs) with a probability
of 1/|D|, where |D| is the total number of domains. Therefore, the probability of a signal
being cross-domain (i.e., the probability that its source and destination domains are different)
is 1 —1/|DJ|. In all our experiments, we use a system with three domains, 10 ECUs (in total)
and vary the number of signals from 80 to 220. Hence for our experiments, the probability
of a signal being cross-domain is 2/3.

Our experiments are conducted using a high performance computing cluster at Virginia
Tech. This cluster has 4 x E7-8867v4 2.4 GHz (Broadwell) processors and 3TB, 2400MHz
memory on a Unix platform. We used IBM’s CPLEX as the ILP solver and implemented
the algorithms in C++.

7.1 Comparison of Greedy Packing Heuristics

For all of our experiments in this section, we generated 5000 benchmarks for each system
size (in terms of the number of signals).

We first evaluate the different greedy packing heuristic approaches by comparing the
bandwidth utilization they provide after packing. We note that our greedy approach
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Importance of cross domain consideration

80 100 120 150 180

DOur greedy approach M Baseline approach

2 N ® 9
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Average Bandwidth Utilization Per Domain (%)
o IS
3 8

S

o

200 220

Number of signals

Figure 5 Comparing the greedy heuristic with a baseline packing approach which does not
consider cross domain bandwidth while packing.

(Algorithm 2) leads to different bandwidth utilization values depending on the sorting
criterion. We used the following parameters: period, size, and size/period (with increasing
and decreasing orders). After the sorting step, each algorithm packs the signals in a greedy
manner to optimize the bandwidth utilization.

Figure 4a shows the bandwidth utilization per domain of the greedy heuristics, where the
utilization is averaged over all those systems which are schedulable. As seen from the figure,
there is small but noticeable variation in bandwidth utilization among the different heuristics.
However, in all cases, sorting by increasing period performs the best. This is consistent with
the observation that it is beneficial to pack signals with similar periods together, which in
general reduces the total bandwidth utilization.

We also plot the runtime of the heuristics for each system size in Figure 4b. It is clear
from this figure that the heuristic of sorting the signals in increasing order of periods has
the smallest runtime; that is, it has an advantage over the other sorting approaches in
terms of algorithmic efficiency as well. This is due to the fact that (as pointed out in the
time complexity analysis for the greedy approaches) the runtime of the greedy algorithm
is a function of the number of frames created, and the algorithm that sorts the signals
in increasing order of periods creates the least number of frames for each signal size (as
compared to the other heuristics). Hence, for the rest of the experiments, we use the heuristic
that sorts the signals in increasing order of periods to represent all the greedy heuristics and
compare it with the ILP-based approach.

7.2 Importance of Cross-Domain Consideration

In this experiment, we demonstrate the importance of considering the cross-domain utilization
during packing of the signals. Since there is no existing work for multi-domain frame packing
in CAN-FD, we compare our greedy heuristic to a baseline approach which does not consider
cross domain bandwidth utilization. Specifically, the baseline approach is the same as the
greedy heuristic, except that it takes into account only the first part of Equation (20) (the
source domain bandwidth utilization) but not the second part (cross-domain bandwidth
utilization). For each system size, we tried 5000 benchmarks, and the bandwidth utilization
represented is the average per domain over the 5000 benchmarks.

Figure 5 shows the significance of taking into account the cross-domain utilization for
packing. We observe that there is a considerable reduction in bandwidth utilization per
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Comparison of ILP and greedy heuristic packing
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(a) Greedy vs. ILP: bandwidth utilization (b) Average and standard deviation for
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Figure 6 Comparison of ILP and greedy algorithms.

domain when frames are packed using our approach as opposed to the baseline approach:
the typical reduction is in the range of 6% to 10% for utilization per domain. Also, the gap
becomes larger as the number of signals increases.

7.3 Comparison of the Greedy Heuristic with ILP

In this experiment, we compare the ILP-based approach and the greedy heuristic in terms of
their bandwidth utilization and the runtime. For these experiments, we used 100 synthetic
systems for each size due to the excessively long runtime of ILP. We stopped at systems with
220 signals as ILP cannot scale to any larger systems: for systems with 4 domains, 15 ECUs
and 250 signals, each of them takes about 7 hours on average.

Figure 6a illustrates the average bandwidth utilization per domain over the systems that
are schedulable (either in the first packing attempt or after iteration/repacking). As can be
observed from the figure, the bandwidth utilization of the greedy approach is quite close to
that of ILP. The maximum mean difference on bandwidth utilization per domain is about
2.7% for systems with 220 signals.

Since Figure 6a gives only the average bandwidth utilization over all the systems, to better
compare the ILP and the greedy approaches, we present the variability of the difference
between the utilization values reported by them in Figure 6b. The gray bars represent
the mean difference in percentage (over the 100 random systems, which are schedulable)
between the bandwidth utilization (per domain) given by the ILP and the greedy approaches.
The error bars represent the standard deviation of the difference. Figure 7 presents the
distribution of the number of systems (that are schedulable) into different bins which represent
the range of the difference between the average bandwidth utilization of the ILP and greedy
approaches (as indicated in the legend). As the number of signals increases, the number of
systems assigned to the larger bins also increases. Thus, Figures 6b and 7 show that with
increasing number of signals, the difference in the bandwidth utilization given by the ILP
and greedy approaches increases.

Figure 8a presents the average runtime of the systems for the ILP and greedy heuristic
(in log scale). It is evident that the ILP would have scalability issues for larger systems, as
the average runtime for the systems with 220 signals is already over 2.5 hours. The greedy
approach on the other hand runs about 6 orders of magnitude faster than the ILP. Thus, we

differences on utilization between ILP and greedy.
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Histogram of input systems with respect to various bins
denoting the difference between average bandwidth
utilization of ILP and greedy (per domain)
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Figure 7 Distribution of systems within the various bin sizes (difference between greedy and ILP
utilizations per domain).
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Figure 8 Scalability of greedy with respect to ILP and industry sized systems.

can conclude that the greedy algorithm provides a packing whose bandwidth utilization is
comparable to that of the ILP with a much smaller runtime. We note that in Figure 8a the
average runtime of the greedy heuristic for 100 signals is slightly higher than that for the
subsequent case of 120 signals. This is because one of the systems (out of 100) turned out to
be unschedulable and thus the heuristic runs 10 iterations for this case, thereby increasing
the average runtime. On the other hand, the unschedulable system in the case of 120 signals
becomes schedulable in just one iteration with our heuristic (please refer to Figure 10).

In order to check the scalability of the greedy heuristic for industry sized systems we also
conducted experiments (with 5000 systems) having 500, 800 and 1000 signals with 5, 6 and 8
domains and 5, 7 and 10 ECUs per domain respectively. We plot the bandwidth utilization
and runtime in Fig.8b. The runtime of these systems was observed to be less than 6 seconds
per system on the cluster (even in the largest size of 1000 signals), which shows that the
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Comparison of “All”, “Irreducible Subset”, “Unassigned” and “Combined” heuristics
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Figure 9 Comparison of “All” “Irreducible subset” “Unassigned” and “Combined” heuristics with
respect to schedulability.

heuristic is easily scalable to large size systems. However for these experiments we used a
slightly modified data generation scheme, where the contribution of signals from periods 1,2
and 5 ms which was 10% was distributed to signals with period 10 and 20 ms equally.

7.4 Handling Infeasibility

In this set of experiments, we compare the approaches for handling infeasibility for the greedy
heuristic. We generated 5000 random systems for each system size (number of signals in the
system). As described in Section 6.2, we have implemented three variations of the repacking
heuristic, namely “All”; “Unassigned” and “Irreducible subset”, and each of these variations
uses three types of repacking algorithms: first-fit (FF), best-fit (BF) and worst-fit (WF).
We also combined all the three variations (with first-fit), which resulted in (slightly) better
results with respect to feasibility. We refer to this heuristic as the “Combined” heuristic.

In the experiments, we find that FF consistently outperforms the other two repacking
algorithms BF and WF. Among the three variations, “All” heuristic gives the best results
most of the time with respect to the number of feasible systems after the iterative procedure.
To minimize clutter, in Figure 9 we only present the results for six approaches: “All” with
FF, WF and BF, “Unassigned” with FF, “Irreducible Subset” with FF, and “Combined”
with FF. The rectangular bars represent the percentage of the total number of systems, the
gray section gives the number of systems feasible in first attempt (FA), the black section
gives the number of systems feasible after repacking (FR), and the section with horizontal
dash pattern gives the number of infeasible systems (IF).

We observe that the scheme “All” with first-fit (labeled as All-FF) is able to get the
maximum number of systems to become feasible after the iterative step (for each system size).
This is due to the fact that the “Irreducible subset” and “Unassigned” heuristics unpack
a subset of the frames unpacked by the “All” heuristic. Therefore “All” is able to remove
potentially “problematic” signals from all the frames and thus provide more schedulable
cases. Also, by combining all our repacking heuristics, more than 92% of the systems become
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Comparison of Feasibility between ILP and greedy
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Figure 10 Infeasibility handling of ILP and greedy heuristic.

feasible (after repacking) for signal sizes 180 and below. For larger signal sizes, namely 200
and 220, 86% and 74% of the systems become feasible (after repacking) respectively.

Finally, we compare the infeasibility handling of the ILP and the greedy heuristic. For
ILP, we use the iterative procedure described in Section 5.3, and for the greedy heuristic we
use the “All” with first-fit scheme, since it was found to give the best results for infeasibility
handling. Due to the long runtime of ILP, we generated 100 random systems for each system
size. As in Figure 10, the performance of the greedy heuristic is comparable to that of ILP
with respect to the number of feasible cases for small systems (namely, with number of signals
below 150). However, for system size of 180 the greedy packing results in about 5% infeasible
cases whereas the ILP delivers just 1% infeasible cases. Furthermore, for system size 200
and 220, the ILP gives 7% infeasible cases whereas the greedy approach gives 19% and 26%
infeasible cases respectively. Due to its optimal packing (lower bandwidth utilization over
the network), the ILP provides better feasibility at the cost of a much longer runtime.

8 Conclusions

In this paper, we motivate and propose solutions for the problem of frame packing for
multi-domain CAN-FD systems. Existing work on frame packing for CAN-FD systems has
not considered the problem from a multi-domain perspective. Our experiments show the
significance of considering the multi-domain aspect (i.e., the inter-domain communication)
for packing signals into frames. We present two approaches for the problem, namely ILP
and greedy heuristic, both of which pack signals into frames with the goal of minimizing
the bandwidth utilization over all the domains. In addition, we proposed an extension
to Audsley’s algorithm for assigning priority identifiers to the frames in the multi-domain
case. In case of infeasibility, we developed several repacking heuristics so that the system
may become feasible. Our experimental results show that the performance of the greedy
heuristic is comparable to that of the ILP with respect to the bandwidth utilization as well
as feasibility of the packed frames. However it is much faster than the ILP.

One line of future work is to investigate the frame packing problem for a heterogeneous
multi-domain system where domains may be served by different communication protocols such
as CAN, switched Ethernet, etc. In this work we have targeted optimization of bandwidth
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utilization which is an important metric for conserving network bandwidth (for future feature
additions) and obtaining better schedulability. In our future work we would be interested in
considering other aspects such as optimization of extensibility [26] and robustness [4].
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