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Abstract
Measuring the similarity of two polygonal curves is a fundamental computational task. Among
alternatives, the Fréchet distance is one of the most well studied similarity measures. Informally,
the Fréchet distance is described as the minimum leash length required for a man on one of the
curves to walk a dog on the other curve continuously from the starting to the ending points.
In this paper we study a variant called the Fréchet gap distance. In the man and dog analogy,
the Fréchet gap distance minimizes the difference of the longest and smallest leash lengths used
over the entire walk. This measure in some ways better captures our intuitive notions of curve
similarity, for example giving distance zero to translated copies of the same curve.

The Fréchet gap distance was originally introduced by Filtser and Katz [19] in the context
of the discrete Fréchet distance. Here we study the continuous version, which presents a number
of additional challenges not present in discrete case. In particular, the continuous nature makes
bounding and searching over the critical events a rather difficult task.

For this problem we give an O(n5 logn) time exact algorithm and a more efficient O(n2 logn+
n2

ε log 1
ε ) time (1 + ε)-approximation algorithm, where n is the total number of vertices of the

input curves. Note that for (small enough) constant ε and ignoring logarithmic factors, our
approximation has quadratic running time, matching the lower bound, assuming SETH [10], for
approximating the standard Fréchet distance for general curves.
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1 Introduction

Polygonal curves arise naturally in the modeling of a number computational problems, and
for such problems assessing the similarity of two curves is one of the most fundamental tasks.
There are several competing measures for defining curve similarity. Among these, there has
been strong interest in the Fréchet distance, particularly from the computational geometry
community, as the Fréchet distance takes into account the continuous “shape” of the curves
rather than just the set of points in space they occupy. The Fréchet distance and related
measures have been used for a variety of applications [21, 9, 24, 23, 11], and it is typically
illustrated as follows. Let the two polygonal curves be denoted π and σ, with n vertices in
total. Imagine a man and a dog are respectively placed at the starting vertices of π and σ,
and they must each move continuously along their curves to their respective ending points.
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42:2 Computing the Fréchet Gap Distance

Figure 1 Left: A 2D “airplane roll”. Right: Turning in 2D by pivoting on one side at a time.

The man and dog are connected by a leash, and the Fréchet distance is the minimum leash
length required over all possible walks of the man and dog, where the man and dog can
independently control their speed but cannot backtrack.

In this paper we consider a variant called the Fréchet gap distance, originally introduced
by Filtser and Katz in the context of the discrete Fréchet distance [19]. In the man and
dog analogy, this variant minimizes the difference of the lengths of the longest and shortest
leashes used over the entire walk. As discussed in [19], since this measure considers both
the closest and farthest relative positions of the man and dog, in many cases it is closer to
our intuitive notion of curve similarity. Notably, two translated copies of the same curve
have Fréchet gap distance zero, as opposed to the magnitude of the translation under the
standard Fréchet distance. Though this is not to say that it is the same as minimizing the
standard Fréchet distance under translation. For instance, fix any two points on a rigid body
in two or three dimensions. The pair of curves traced out by these points as we arbitrarily
rotate and translate the rigid body will always have Fréchet gap distance zero (see Figure 1).

A natural scenario for the gap distance is planning the movement of military units, where
one wants them to be sufficiently close to support each other in case of need, but sufficiently
far from each other to avoid unintended interaction (i.e., friendly fire). Such units might
move on two major roads that are roughly parallel to each other, thus matching our setup.

Previous Work. Alt and Godau [4] presented an O(n2 log(n)) time algorithm to compute the
standard Fréchet distance. More recently Buchin et al. [12] improved the logarithmic factor in
the running time (building on [1]), however Bringmann [10] showed that assuming the Strong
Exponential Time Hypothesis (SETH), no strongly subquadratic time algorithm is possible.
Moreover, Bringmann showed that assuming SETH there is no strongly subquadratic 1.001-
approximation algorithm, thus ruling out the possibility of a strongly subquadratic PTAS
for general curves. On the other hand, there are fast approximation algorithms for several
families of nicely behaved curves, for example Driemel et al. [16] gave an O(cn/ε+ cn logn)
time algorithm for the case of c-packed curves.

Many variants of the Fréchet distance between polygonal curves have been considered.
Alt and Godau [4] gave a quadratic time algorithm for the weak Fréchet distance, where
backtracking on the curves is allowed. Driemel and Har-Peled [15] considered allowing
shortcuts between vertices, and for this more challenging variant, they give a near linear time
3-approximation for c-packed curves. Later Buchin et al. [14] proved the general version,
where shortcutting is also allowed on edge interiors, is NP-hard (and gave an approximation
for the general and an exact algorithm for the vertex case). The discrete Fréchet distance only
considers distances at the vertices of polygonal curves, i.e. rather than a continuously walking
man and dog, there is a pair of frogs hopping along the vertices. This somewhat simpler variant
can be solved in O(n2) time using dynamic programming [17]. Interestingly, Agarwal et al. [1]
showed the discrete variant can be solved in weakly subquadratic O(n2 log logn/ logn) time,
however the above results of Bringmann [10] also imply there is no strongly subquadratic
algorithm for the discrete case, assuming SETH. Avraham et al. [6] considered shortcuts in
the discrete case, providing a strongly subquadratic running time, showing shortcuts make it
more tractable, which was the reverse for the continuous case.
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Minimizing Fréchet distance under translation (and other transformations) was previously
considered, though running times are typically large. For example, Alt et al. [5] gave a
roughly O(n8) time algorithm, though they also gave a O(n2/ε2) time (1 + ε)-approximation.
Avraham et al. [7] consider the discrete case, and provide a nice summary of other previous
work. The Fréchet distance has also been extended to more general inputs, such as graphs [3],
piecewise smooth curves [22], simple polygons [13], surfaces [2], and complexes [20]. In
general there are too many Fréchet distance results to cover, and the above is just a sampling.

The most relevant previous work is that of Filtser and Katz [19], who first proposed the
Fréchet gap distance. The technical content of the two papers differs significantly however,
as [19] considers the discrete case, avoiding many of the difficulties faced in our continuous
setting. In particular, a solution to the gap problem is a distance interval. In the continuous
case the challenge is bounding the number of possible intervals, while in the discrete case
a bound of O(n4) holds, as each interval endpoint is a vertex to vertex distance. Using a
result of Avraham et al. [7], Filtser and Katz improve this to an O(n3) time algorithm to
compute the minimum discrete Fréchet gap. They also provide O(n2 log2 n) time algorithms
for one-sided discrete Fréchet gap with shortcuts and the weak discrete Fréchet gap distance.

Contributions and Overview. Here we consider the continuous Fréchet gap distance problem
(defined informally above, and formally below). This is the first paper to consider the more
challenging continuous version of this problem. For this problem we provide an O(n5 logn)
time exact algorithm and a more efficient O(n2 logn+ n2

ε log 1
ε ) time (1 + ε)-approximation

algorithm, and we now outline our approach and main contributions.
The standard approach for computing the Fréchet distance starts by solving the decision

version for a given query distance δ ≥ 0, by using the free space diagram, which describes the
pairs of points (one from each curve) which are within distance δ. The convexity of the free
space cells allows one to efficiently propagate reachibility information, leading to a quadratic
time proceedure overall. For the Fréchet gap problem the free space cells are no longer convex,
but despite this we show that they have sufficient structure to allow efficient reachability
propagation, again leading to a quadratic time decider, which in our case determines whether
a given query interval [s, t] is feasible.

The next step in computing the Fréchet distance is to find a polynomially sized set of
critical events, determined by the input curves, to search over. For the standard Fréchet
distance this set has O(n3) size. For the Fréchet gap case however the number of critical
events can be much larger as they are determined by two rather than one distance value.
As mentioned above, for the discrete case only pairs of vertex distances are relevant and
so there are O(n4) events. On the other hand, for the continuous case there can now be
“floating” monotonicity events where increasing (or decreasing) the gap interval endpoint
values simultaneously may lead to an entire continuum of optimum intervals. Despite this
we show there is an O(n6) sized set of canonical intervals containing an optimum solution.

The last step is efficiently searching over the critical events. For the standard Fréchet
distance this can be done via parametric search [4] or sampling [20], yielding an O(n2 logn)
running time. Searching in the gap case however is more challenging, as there is no longer a
natural linear ordering of events. Specifically, the set of feasible intervals may not appear
contiguously when ordering candidate intervals by width. Despite this, we similarly get a
near linear factor speed up, by using a more advanced version of the basic approach in [20].

Our approximation uses the observation that all feasible intervals share a common value.
Roughly speaking, at the cost of a 2-approximation, this allows us to consider the radius of
intervals centered at this common value, rather than two independent interval endpoints,
reducing the number of critical events. This is improved to a (1 + ε)-approximation, and
finally the running time is reduced by a linear factor, again using a modified version of [20].

SoCG 2017
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2 Preliminaries

Throughout, given points p, q ∈ Rd, ||p − q|| denotes their Euclidean distance. Moreover,
given two (closed) sets P,Q ⊆ Rd, dist(P,Q) = minp∈P,q∈Q ||p− q|| denotes their distance.

2.1 Fréchet Distance and Fréchet Gap Distance
A polygonal curve π of length n is a continuous mapping from [0, n] to Rd, such that
for any integer 1 ≤ i ≤ n, the restriction of π to the interval [i − 1, i] is defined by
π((i − 1) + α) = (1 − α)π(i − 1) + απ(i) for any α ∈ [0, 1], i.e. a straight line segment.
When it is clear from the context, we often use π to denote the image π([0, n]). The set of
vertices of π is defined as V (π) = {π0, π1 . . . , πn}, where πi = π(i), and the set of edges is
E(π) = {π0π1, . . . , πn−1πn}, where πi−1πi is the line segment connecting πi−1 and πi.

A reparameterization for a curve π of length n is a continuous non-decreasing bijection
f : [0, 1]→ [0, n] such that f(0) = 0, f(1) = n. Given reparameterizations f, g of an n length
curve π and an m length curve σ, respectively, the width between f and g is defined as

widthf,g(π, σ) = max
α∈[0,1]

||π(f(α))− σ(g(α))|| .

The (standard) Fréchet distance between π and σ is then defined as

dF (π, σ) = min
f,g

widthf,g(π, σ)

where f, g range over all possible reparameterizations of π and σ.
A gap is an interval [s, t] where 0 ≤ s ≤ t are real numbers, and the gap width is t− s.

Similarly, given reparameterizations f, g for curves π, σ, define their gap and gap width as

gapf,g(π, σ) =
[

min
α∈[0,1]

||π(f(α))− σ(g(α))||, max
α∈[0,1]

||π(f(α))− σ(g(α))||
]
,

gapwidthf,g(π, σ) = max
α∈[0,1]

||π(f(α))− σ(g(α))|| − min
α∈[0,1]

||π(f(α))− σ(g(α))|| .

The Fréchet gap distance between two curves π and σ is then defined as

dG(π, σ) = min
f,g

gapwidthf,g(π, σ)

where f, g range over all possible reparameterizations of π and σ.
If there exist reparameterizations f and g for curves π and σ satisfying the inequalities,

max
α∈[0,1]

||π(f(α))− σ(g(α))|| ≤ t min
α∈[0,1]

||π(f(α))− σ(g(α))|| ≥ s,

we say [s, t] is a feasible gap between curves π and σ. Throughout the paper [s∗, t∗] denotes
an arbitrary optimal gap, that is t∗ − s∗ = dG(π, σ). (Note there may be more than one such
optimal gap, and moreover a feasible gap does not necessarily contain an optimal gap.)

Note that in the later sections of the paper we refer to gaps or intervals [s, t] instead as
parametric points or pairs (s, t), in which case feasibility is defined analogously.

2.2 Free Space
To compute the standard Fréchet distance one normally looks at the so called free space.
The t free space between curves π and σ, with n and m edges respectively, is defined as

Ft = {(α, β) ∈ [0, n]× [0,m] | ||π(α)− σ(β)|| ≤ t}.
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Similarly define F<t = {(α, β) ∈ [0, n] × [0,m] | ||π(α) − σ(β)|| < t} to be Ft without its
boundary. C(i, j) = [i− 1, i]× [j − 1, j] is referred to as the cell of the free space diagram
determined by edges πi−1πi and σj−1σj , and the free space within this cell is

Ft(i, j) = {(α, β) ∈ [i− 1, i]× [j − 1, j] | ||π(α)− σ(β)|| ≤ t}.

Alt and Godau [4] showed that the free space within a cell is always a convex set
(specifically, the clipping of an affine transformation of a disk to the cell). Moreover,
any x, y monotone path in the free space from (0, 0) to (n,m) corresponds to a pair of
reparameterizations f , g of π, σ such that widthf,g(π, σ) ≤ t. The converse also holds and
hence dF (π, σ) ≤ t if and only if such a monotone path exists. These two statements together
imply that in order to determine if dF (π, σ) ≤ t, it suffices to restrict attention to the free
space intervals on the boundaries of the cells. Specifically, let LFi,j (resp. BFi,j) denote the left
(resp. bottom) free space interval of C(i, j), i.e. LFi,j = Ft(i, j) ∩ ({i− 1} × [j − 1, j]) (resp.
BFi,j = Ft(i, j) ∩ ([i− 1, i]× {j − 1})). See Figure 2.

2.3 Relative Free Space
We extend the standard free space definitions of the previous section to the Fréchet gap
distance problem. First we define the s, t relative free space between π and σ to be

F[s,t] = {(α, β) ∈ [0, n]× [0,m]| | s ≤ ||π(α)− σ(β)|| ≤ t} = Ft \ F<s ,

describing all pairs of points, one on π and one on σ, whose distance is contained in [s, t].
For a point (α, β) in a cell of F[s,t] or Ft, throughout we use the colloquial terms higher or
lower (resp. right or left) to refer larger or smaller value of α (resp. β).

Again we seek an x, y monotone path in the relative free space from (0, 0) to (n,m),
since such a path corresponds to a pair of reparameterizations f , g of π, σ such that
gapwidthf,g(π, σ) ≤ t − s, and hence dG(π, σ) ≤ t − s. Conversely, if no such path exists
then [s, t] is not a feasible gap for π and σ, implying that [s∗, t∗] 6⊆ [s, t], but note however
that unlike the standard Fréchet distance, it may still hold that t∗ − s∗ ≤ t− s.

The relative free space in the cell C(i, j) determined by edges πi−1πi and σj−1σj is,

F[s,t](i, j) = {(α, β) ∈ [i− 1, i]× [j − 1, j] | s ≤ ||π(α)− σ(β)|| ≤ t} = Ft(i, j) \F<s (i, j).

Another technical challenge with the Fréchet gap problem arises from the fact that relative
free space in a cell may not be convex (see Figure 3). However, there is some structure.
Observe that F[s,t](i, j) = Ft(i, j)\F<s (i, j), and hence is the set difference of two convex sets,
where one is contained in the other. In other words, it looks like a standard free space cell
with a hole removed. In particular, we can again look at the free space intervals on the cell
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boundaries. As Ft(i, j) is convex, it still determines a single interval on each cell boundary,
however, this interval may be broken into two subintervals by the removal of Fs(i, j) (whose
convexity implies it is at most two subintervals). Let LFi,j = LbFi,j ∪ LaFi,j denote the relative
free space on the left boundary of C(i, j), where LbFi,j denotes the bottom and LaFi,j the top
interval (note if Fs(i, j) does not intersect the boundary then LbFi,j = LaFi,j = LFi,j). Similarly,
let BFi,j = BlFi,j ∪ BrFi,j denote the relative free space on the bottom boundary of C(i, j),
where BlFi,j denotes the left and BrFi,j the right interval.

3 The Fréchet Gap Decision Problem

The Fréchet gap decision problem is defined as follows.

I Problem 1. Given polygonal curves π, σ, is a given interval [s, t] a feasible gap for π, σ?

As discussed in Section 2.3, [s, t] is a feasible gap for π and σ if and only if there exists an
x, y monotone path from (0, 0) to (n,m) in the [s, t] relative free space F[s,t]. This motivates
the definition of the reachable relative free space,

RF[s,t] = {(α, β) ∈ [0, n]×[0,m] | there exists an x, y monotone path from(0, 0) to (α, β)}.

Hence the answer to Problem 1 is ‘yes’ if and only if (n,m) ∈ RF[s,t]. As was the case with the
relative free space, the relevant information for the reachable relative free space is contained
on the cell boundaries. We now describe how to propagate the reachable information from
the left and bottom boundary to the right and top boundary of a cell, which ultimately
will allow us to propagate the reachable information from (0, 0) to (n,m). (Note this is the
typical approach to solving the standard Fréchet distance decision problem.)

Let LRi,j and BRi,j denote the reachable subsets of the left and bottom boundaries of
C(i, j). First we argue that like LFi,j , LRi,j is composed of at most two disjoint intervals. Let
LxFi,j be either LaFi,j or LbFi,j . The reachable subset of LxFi,j is a single connected interval.
To see this, observe that wherever the lowest reachable point in LxFi,j lies, all points above
it in LxFi,j are reachable by a monotone path. As LRi,j is a subset of LFi,j , this implies it is
composed of at most two intervals denoted LaRi,j and LbRi,j (if LFi,j is single interval then
LRi,j = LaRi,j = LbRi,j). BlRi,j and BrRi,j are defined similarly.

Propagating in a cell: Given LRi,j and BRi,j , we now describe how to compute LRi,j+1 (BRi+1,j
is handled similarly). There are four cases, determined by whether we are propagating LRi,j
or BRi,j , and whether we are going above or below the hole Fs(i, j). First, some notation.

I Definition 2. Label the leftmost and rightmost vertical lines tangent to the hole Fs(i, j)
as v`li,j and v`ri,j , and label the topmost and bottommost horizontal tangent lines as h`ai,j
and h`bi,j (see Figure 4). Similarly define the leftmost point Hli,j , the rightmost point Hri,j ,
the topmost point Hai,j , and the bottommost point Hbi,j , of Fs(i, j) (Note any one of these
points may be undefined if Fs(i, j) intersects the boundary in more than a single point, as is
the case for Hri,j in Figure 4.) Finally, let Iai,j be the highest and Ibi,j the lowest point of
LFi,j+1. When i, j is fixed, the subscript is often dropped.

Propagation of the reachable relative free space is done similarly to that for the standard
free space [4]. Namely points from LRi,j and BRi,j are projected onto LFi,j+1 by paths which
locally stay as low as possible. The only difference is that now the LRi,j and BRi,j cases are
each broken into two subcases based on whether the path must go above or below the hole
Fs(i, j) (see Figure 5 and Figure 6). Note this stays a constant time operation per cell, since
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as proved above LRi,j and BRi,j are each always composed of at most two disjoint subintervals.
Due to space limitations, the straightforward but tedious details of propagation are left to
the full version [18] (the above definition was kept as it is needed later).

I Theorem 3 (For proof see [18]). Given polygonal curves π of length n, σ of length m, and
an interval [s, t], the Fréchet gap decision problem, Problem 1, can be solved in O(nm) time.

4 Finding the Relative Free Space Critical Events

In this section we describe the relative free space critical events, that is a polynomially sized
subset of possible intervals, which must contain an optimal interval [s∗, t∗]. The relative free
space events are significantly more complicated than the free space events for the standard
Fréchet distance. The following definitions will be used throughout this section.

I Definition 4. Two free space cells C(i, j) and C(k, l) are adjacent if they share a horizontal
or vertical boundary, i.e. k = i and |l−j| = 1, or l = j and |k−i| = 1. Call any monotone path
from (0, 0) to (n,m) in the relative free space a valid path. Given any valid path p, the cell
sequence of p, denoted cp(p) = (C1, . . . , Cn+m−1), is the ordered sequence of cells p intersects
(so C1 = C(1, 1), Cn+m−1 = C(n,m)). For horizontally adjacent cells C(i, j) and C(i, j + 1)
in the cell sequence, p either passes above or below Fs(i, j), specifically if p intersects the
vertical segment connecting Ha to the top boundary of C(i, j) then p passes above Fs(i, j),
and otherwise p passes below. (Similarly define passing left or right for vertically adjacent
cells.) This defines the passing sequence of p, denoted pass(p) = (h1, . . . , hn+m−1), where
hi ∈ {above, below, left, right}.

For the standard Fréchet distance, Alt and Godau [4] specified the following set of distance
values, called the critical events, which must contain the optimal Fréchet distance.

Initialization event: The minimum value ε such that (0, 0) ∈ Fε and (n,m) ∈ Fε.
Connectivity events: For any cell Ci, the minimum ε such that LFi or BFi is non-empty,
corresponding to the distance between a vertex of one curve and an edge of the other.
Monotonicity events: Let Ij and Ik be two non-empty vertical free space boundary
intervals in the same row with Ij left of Ik (or horizontal intervals in the same column).
The minimum ε such that Ibj ≤ Iak , that is there is a monotone path between Ij and Ik.

Since any valid path can be decomposed into a set of row and column subpaths, proving
that dF (π, σ) is one the above defined critical events is a straightforward task.

For the Fréchet gap distance, the critical events will be a super-set of the standard Fréchet
events. As an optimal gap is defined by an interval [s, t], the events below can either be a
value of s or a value of t. A critical interval is then any valid s ≤ t pair from the first three
critical event types defined below. Additionally, there is now a fourth type called a floating

SoCG 2017
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Figure 7 Opening of a horizontal passage.

monotonicity event. These events directly specify the s, t pair (i.e. these “events” are also
“critical intervals”), and there are potentially an infinite number of such events.
1. Initialization events: The values s = min{||π0 − σ0||, ||πn − σm||} and t = max{||π0 −

σ0||, ||πn − σm||}. That is, the supremum of values for s such that (0, 0) /∈ Fs and
(n,m) /∈ Fs, and the minimum value of t such that (0, 0) ∈ Ft and (n,m) ∈ Ft.

2. Connectivity events: For any row i and column j, the values dist(πi−1, σj−1σj), dist(πi,
σj−1σj), dist(πi−1πi, σj−1), dist(πi−1πi, σj), for either s or t. In other words for cell Ci,j ,
the maximum value s such that Ha, Hb, Hl, or Hr are defined, or minimum value t such
that Ia, Ib (or similarly any of the other three cell boundary intervals) are defined. Note
Ia, Ib are first defined at the same location/value where Hr is last defined, yet we still
regard these as separate events, one for s and the other for t. (For s this is when the free
space intervals may break into two, and for t it is when the interval is first non-empty.)

3. Standard Monotonicity events: For any cells Cj , Ck in the same row with Cj left of
Ck:
(a) The value t such that height(Ibj ) = height(Iak ).
(b) The value s such that height(Haj ) = height(Hbk).

3. Floating Monotonicity events: For any cells Cj , Ck in the same row with Cj left of
Ck:
(a) Any pair s, t such that height(Ibj ) = height(Hbk).
(b) Any pair s, t such that height(Haj ) = height(Iak ).

Here height() denotes the vertical coordinate of a point in the relative free space. Analogous
definitions apply to the case when cells are in the same column. Note that depending on the
geometry such events may not be defined.

Let Ss and St denote the set of values for s and t, respectively, determined by the
initialization, connectivity and standard monotonicity critical events, and let Ss × St denote
the corresponding set of valid critical intervals determined by these values. Let SF be the set
of s, t intervals determined by floating monotonicity events. The set of all critical intervals is
then SI = SF ∪ (Ss × St). The proof of the following is similar to the standard Fréchet case,
except now valid paths are characterized by passing sequences in addition to cell sequences.

I Lemma 5 (For proof see [18]). SI contains any optimal Fréchet gap interval [s∗, t∗].

4.1 Bounding the number of critical intervals
We now bound the number of critical intervals, i.e. |SI |. An interval [s, t] ∈ SI , is either
in Ss × St or SF . Now Ss (resp. St) has size1 O(n3) as it contains one initialization event,

1 For simplicity, from this point onwards we assume without loss of generality that m ≤ n and only write
sizes and running times with respect to n.
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Figure 8 How point p determines s and t. In general segments may not lie in a single plane.

O(n2) connectivity events, and O(n3) monotonicity events (just like the standard Fréchet
case). As we consider all valid pairs from Ss and St, this gives an O(n6) bound on |Ss × St|.

Bounding the size of SF is significantly more complicated. In particular, the floating
monotonicity events may give rise to an entire continuum of critical intervals. For example,
consider the second type of floating monotonicity event (2), shown in Figure 7. The value
of height(Haj ) is governed only by a function of s and the value of height(Iak ) only by a
function of t. These functions might be such that if we increase or decrease s, but keep
t− s constant (i.e. the gap value we are optimizing), height(Haj ) = height(Iak ) remains an
invariant. (Hence the term “floating” events.)

In this section we describe the functions which govern how s and t can vary such that
height(Haj ) = height(Iak ) remains an invariant. Ultimately our understanding of these
function will yield a polynomially sized set of canonical critical intervals (determined by
vertices of the arrangement of these functions), which must contain an optimum gap interval.

4.1.1 Function Description of Floating Monotonicity Events
Consider the floating monotonicity event type (2) (similar statements will hold for type
(1)). Such an event is specified by a triple of indices, i, j, k, where i specifies an edge
πi−1πi (i.e. a row of the relative free space), j specifies an edge σj−1σj (i.e. a column), and
k ≥ j specifies a vertex σk (i.e. the right boundary of a column). The event occurs when
height(Haj ) = height(Iak ) = h.

Geometrically, a fixed height h corresponds to a point p on πi−1πi. The point Haj is
determined by s, and Iak by t. First lets understand Iak . In order to have h = height(Iak ),
t must be such that t = ||σk − p||, and moreover p must be the higher (i.e. closer to πi)
of the possibly two points on πi−1πi satisfying this condition (the other point determining
Ibk). Consider the plane determine by πi−1, πi, and σk, and let πi−1 = (0, 0), p = (0, h),
and σk = (χ, γ) (see Figure 8a). Then as a function of h, t is described by the equation
t =

√
χ2 + (γ − h)2. Note that Iak is only defined when t ∈ [t1, t2], where t1 = dist(σk, πi−1πi)

and t2 = ||σk − πi||, and hence this equation is only relevant in this interval.
height(Haj ) on the other hand is determined by s, however the relationship is a bit more

complicated. Observe that Haj is the only point on the horizontal line h`aj that is in the set
Fs(i, j), meaning the point on σj−1σj that Haj corresponds to must be the closest point on
σj−1σj to p (see Figure 8b and Figure 8c). If this closest point is either σj−1 or σj , then the
form of the equation for s in terms of h is the same as it was t, namely s =

√
α2 + (β − h)2

(where α, β are now the coordinates of either σj−1 or σj). Otherwise this closest point is
in the interior of σj−1σj in which case the equation is of the form s = c · h + d, for some
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t2

t1

sr=s2sl=s1

t2

t1

sr=s2s1 sl

Figure 9 Two cases for curve piece fi,j,k, and shaded satisfying points in s, t parametric space.

constants c and d (since as one walks along a line, the distance to another fixed line is
given by a linear equation). Similar to Iak , Haj is only defined when s ∈ [s1, s2], where
s1 = dist(σj−1σj , πi−1πi) and s2 = dist(σj−1σj , πi), and hence this equation is only relevant
in this interval.

Now that we have a description of height(Haj ) in terms of s and height(Iak ) in terms
of t, we can describe the function for t in terms of s, denoted fi,j,k(s), which describes
when height(Haj ) = height(Iak ) = h. There are two cases based on the form of the function
describing s.

Interior of σj−1σj case:

s = c · h+ d, t =
√
χ2 + (γ − h)2 ⇒ fi,j,k(s) =

√(
s− d
c
− γ
)2

+ χ2 .

Endpoint of σj−1σj case:

s =
√
α2 + (β − h)2, t =

√
χ2 + (γ − h)2 ⇒ fi,j,k(s) =

√
(
√
s2 − α2 + (β − γ))2 + χ2 .

To summarize, fi,j,k(s) is composed of at most three hyperbola2 pieces, and is only
(possibly) defined within the region s ∈ [s1, s2] and t ∈ [t1, t2], see Figure 9. Also, the
geometry of the problem implies that when fi,j,k(s) is defined it is a monotone increasing
function. Hence the intersection of fi,j,k with the bounding box [s1, s2]× [t1, t2] is connected,
and so rather than using this box to define fi,j,k, we instead say fi,j,k is either completely
undefined or is defined only in the interval [sl, sr] where sl and sr are the s coordinate where
fi,j,k respectively enters and leaves the bounding box. Note that one can argue if fi,j,k is
defined then sr = s2, however, it may be that sl > s1 (if the closest point to σj−1σj is lower
on πi−1πi than the closest point to σk).

The exact form of the equation fi,j,k(s) is not needed in our analysis, however, the above
discussion implies the following simple observation which will be used later.

I Observation 6. In the s, t parametric space fi,j,k is either undefined or defines a constant
complexity monotonically increasing curve piece, with endpoints at values sli,j,k ≤ sri,j,k. In
particular, fi,j,k has only a constant number of local minima and maxima (i.e. points of
tangency) with respect to translations of the line t = s.

Note that for (1), i.e. when height(Ibj ) = height(Hbk), fi,j,k can be defined similarly, and
the above observation again holds. One must also define functions for the analogous events
in the free space columns. Such functions are again determined by triples i, j, k, however
now i, j refer to rows and k to the column. Below we will denote these functions by gi,j,k.

2 Technically, the endpoint case is not a hyperbola, though it is similar.
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4.1.2 Events minimizing the gap
As discussed above each fi,j,k, if defined, gives an entire continuum of critical intervals.
However, ultimately we are only interested in feasible intervals which minimize the gap, and
this will allow us to reduce this continuum to a polynomial number of canonical intervals.
This polynomially sized set is determined not only by the fi,j,k, but also by the other types
of critical events. Note that initialization (1), connectivity (2), and standard monotonicity
events (3) only define constraints on either just s or t, whereas the fi,j,k and gi,j,k define a
continuum of [s, t] intervals. Hence to put them on equal footing we think of all of them as
defining constraints in the two dimensional s, t parametric space.

First observe that in the parametric space, for any point (s, t) of interest, 0 ≤ s ≤ t, and
so we only consider points in the first quadrant that are above the line t = s. Initialization,
connectivity, and standard monotonicity events are simply defined by horizontal or vertical
lines. Specifically, for each such event the points satisfying the corresponding constraint are
those above (resp. left of) the corresponding horizontal (resp. vertical) line:
1. Initialization events: s ≤ α0, t ≥ β0

Where α0 = min{||π0 − σ0||, ||πn − σm||} and β0 = max{||π0 − σ0||, ||πn − σm||}.
2. Connectivity events: s ≤ αli,j or s ≤ αbi,j , t ≥ βli,j or t ≥ βbi,j

Where the αi,j and βi,j are vertex-edge distances, that is αli,j = βli,j = dist(πi−1πi, σj−1)
or αbi,j = βbi,j = dist(πi−1, σj−1σj). Note defining both αi,j and βi,j is not necessary but
useful to distinguish constraints on s from those on t.

3. Standard Monotonicity events: s ≤ αi,(j,k) or s ≤ α(i,j),k, t ≥ βi,(j,k) or t ≥ β(i,j),k
Which happens when the free space is such that αi,(j,k) = height(Hai,j) = height(Hbi,k)
or α(i,j),k = height(Hai,k) = height(Hbj,k), and when βi,(j,k) = height(Ibi,j) = height(Iai,k)
or β(i,j),k = height(Ibi,k) = height(Iaj,k).

4. Floating Monotonicity events: t ≥ fi,j,k(s) for s ∈ [slfi,j,k, s
rf
i,j,k], or t ≥ gi,j,k(s) for

s ∈ [slgi,j,k, s
rg
i,j,k]. Note depending on the geometry such constraints may not be defined.

Note that the first three event types each partition the entire parametric space into two
connected sets, those which either satisfy or do not satisfy the constraint. The fi,j,k (and
gi,j,k) can also be thought of in this way, see the shaded regions in Figure 9. Specifically,
(s, t) satisfies the constraint if t ≥ t1, s ≤ s2, and if s ∈ [sl, sr] then (s, t) must lie above the
curve fi,j,k. Otherwise (s, t) does not satisfy the constraint.

Any valid path in the relative free space must have a well defined cell sequence (C1, . . . ,

Cn+m−1) and passing sequence pass(p) = (h1, . . . , hn+m−1) (see Definition 4). Moreover,
such a pair of sequences precisely determine a subset of the constraints defined above, such
that there is a valid path with this cell and passing sequence if and only if all constraints in
the subset are satisfied (this is implied by Lemma 5). In other words, for a given cell and
passing sequence we want to solve a well defined optimization problem, where constraints on
s and t are of the form described above, and the objective is to minimize t− s.

Clearly the optimal value of this optimization problem must lie on the boundary of at
least one constraint. In particular, the optimum lies either at the intersection point of the
boundaries of two constraints, or at a local minimum of one of the boundary constraints,
with respect to the objective of minimizing t− s. By Observation 6, each fi,j,k or gi,j,k has at
most a constant number of local minima, and as the boundaries of all other constraints are
straight lines, this is also true for every boundary function. Thus we have now determined
the set of canonical critical intervals discussed earlier in this section.

I Lemma 7. The above defined constraints, determined by all types of critical events,
determine an O(n6) sized set of canonical critical intervals, i.e. (s, t) pairs, that must contain
an optimal gap [s∗, t∗].
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Proof. Any optimal gap determines a cell and passing sequence of some valid path in the
corresponding relative free space. Above it was discussed how such sequences determine a
subset of constraints, where the optimum gap width is determined either at an intersection
of the boundaries of two constraints or at a local minimum of an fi,j,k or gi,j,k. Now a priori
we do not know the cell and passing sequence of a path determining an optimal gap, hence
we will consider them all. So consider the arrangement of all planar curves defined by the
boundaries of any of the possible constraints defined above. There are a constant number
of initialization constraints, O(n2) possible connectivity constraints, and O(n3) possible
standard or floating monotonicity constraints. Due to the particularly nice form of these
curves, each pair intersect at most a constant number of times, and hence there are O(n6)
intersections overall. Moreover, as discussed above, each curve has only a constant number
of local minima with respect the the objective of minimizing t− s. Hence this arrangement
determines as set of O(n6) points, at least one of which realizes the minimum gap width. J

I Observation 8. Whether or not a given (s, t)-pair is feasible for the Fréchet gap problem,
is solely determined by which constraints the point satisfies or does not satisfy. So consider
the arrangement of curves determined by the boundaries of all the constraint types discussed
above. Then within the interior of a given cell of the arrangement all (s, t)-pairs are thus
either all feasible or all infeasible.

5 Exact Computation of the Fréchet Gap Distance

The O(n6) critical intervals given by Lemma 7 together with the O(n2) decider of Theorem 3,
naively give only an O(n8) algorithm for computing the Fréchet gap distance, as there is no
immediate linear ordering to search over the events. However, here we give a much faster
O(n5 logn) time algorithm to compute the Fréchet gap distance exactly.

The standard Fréchet distance is computed in O(n2 logn) time by searching over the
O(n3) critical events with an O(n2) time decision procedure. This searching originally was
done with parametric search [4], though for our purposes the simpler sampling based approach
of [20] is more relevant.

Searching is a far more challenging task in the Fréchet gap setting. Specifically, in the
standard Fréchet case there is a linear ordering of the critical events, and in this ordering
all events are infeasible up until the true Fréchet distance, and then feasible afterwards.
However, in our two dimensional parametric space there is no such natural linear ordering.
Moreover, recall that even if an interval [s, t] is feasible, it does not imply [s, t] contains an
optimal gap as a subinterval. Thus the following lemma, while easy to prove, is crucial.

I Lemma 9 (For proof see [18]). In the parametric space, the set of feasible (s, t) pairs is a
connected set.

The algorithm for exactly computing the Fréchet gap distance uses the following sub-
routines:

deciderPoint(s, t): Decides whether or not the pair (s, t) is feasible, in O(n2) time.
deciderLine(c): Given a positive number c, returns “below” if there is any feasible
(s, t)-pair with t− s ≤ c, and returns “above” otherwise. The running time is O(n5).
sample(r): Samples r (s, t)-pairs, independently and uniformly at random, from the set
of O(n6) canonical critical pairs of Lemma 7. The running time is O(r).
sweep(c1, c2): Returns the set of all canonical critical (s, t)-pairs of Lemma 7 such that
c1 ≤ t− s ≤ c2, in O((n3 + k) logn) time, where k is the number of such critical pairs.
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First observe the subroutine deciderPoint(s, t) is given by Theorem 3. deciderLine(c)
is computed as follows. First compute the intersection points of the line, t− s = c, with the
O(n3) boundaries of all the constraints discussed in Section 4.1.2. Since these constraints
are horizontal/vertical lines or fi,j,k/gi,j,k, by Observation 6, there are O(n3) intersection
points. Thus calling deciderPoint on each of these intersection points, takes O(n5) time
as deciderPoint takes O(n2) time. By Observation 8, if all these point queries return
infeasible, then all points on the line t− s = c are infeasible. In this case, since by Lemma 9
the feasible region is connected, any optimal gap pair must lie above the the line t− s = c.
On the other hand, again by by Lemma 9, if one of the point queries returned true then any
optimal gap pair must lie below (or on) the line t− s = c.

The subroutine sample(r) is also straightforward. Specifically, every canonical critical
pair is either a local minima or an intersection of the boundaries of two constraints from
Section 4.1.2. Thus in order to sample a canonical critical pair, we sample either one or two
constraints3, where whether we sample one or two is done in proportion to the number of
pairs versus single constraints. Each constraint is determined by either a pair or triple of
indices (and a few bits, such as whether the side of bottom of a cell, etc. ), and hence each
can be sampled in O(1) time (again done proportionally to the number of triples versus pairs
of indices). Thus r canonical pairs can be sampled in O(r) time.

Thus what remains is to describe the subroutine sweep, for which we have the following.

I Lemma 10. Given two real values 0 ≤ c1 ≤ c2, one can compute the set of all canonical
critical (s, t)-pairs of Lemma 7 such that c1 ≤ t− s ≤ c2, in O((n3 + k) logn) time, where k
is the number of such critical pairs. This algorithm is denoted sweep(c1, c2).

Proof. It is well known that one can compute the set of all k intersection points of a set
of m x-monotone constant-complexity curves in O((m+ k) logm) time using a horizontal
sweep line in the standard sweep line algorithm of Bentley and Ottmann [8]. In our case the
curves are given by the O(n3) constraints of Section 4.1.2, clipped to only be defined in the
region bounded by the lines t − s = c1 and t − s = c2. The constraints with straight line
boundaries are s-monotone, and by Observation 6 so are the fi,j,k and gi,j,k. Thus the claim
follows by applying the standard sweep line algorithm to our case. J

1 R = sample(αn4) // α a sufficiently large constant
2 Sort R̂ = {c = t− s | (s, t) ∈ R} in increasing order
3 Binary search over R̂ using deciderLine(c) for the interval [c1, c2]

s.t. deciderLine(c1) = above and deciderLine(c2) = below
// Set initial values c1 = 0, c2 =∞

4 S = sweep(c1, c2)
5 Call deciderPoint(s, t) on each (s, t) ∈ S, and

return the feasible pair with smallest t− s value.
Algorithm 1: Computing the Fréchet gap distance

The algorithm for computing the Fréchet gap distance is shown in Algorithm 1. We need the
following lemma to bound the number of critical pairs that we end up searching over.

3 Note the number of local minima per constraint and the number of times two constraints intersect is a
constant, but the constant may be more than one. Thus technically the described sampling is not truly
uniform. One can make it uniform, though this distinction is irrelevant for our asymptotic analysis.
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I Lemma 11 (For proof see [18]). Let [c1, c2] be the interval described in Algorithm 1. Then
with exponentially high probability, this interval contains O(n3) canonical critical pairs.

Note instead one could argue that with polynomially high probability the number of canonical
critical pairs in [c1, c2] is only O(n2 logn). Ultimately though this would not change the
running time, as the real bottleneck is searching with the O(n5) time deciderLine.

I Theorem 12. Given polygonal curves π and σ, each of length at most n, Algorithm 1
computes the Fréchet gap distance in O(n5 logn) time.

Proof. The correctness of Algorithm 1 has essentially already been argued. Specifically,
the random sample R partitions the real line into intervals based on the values in R̂. One
of these intervals contains the optimal gap width, implying the interval [c1, c2] found by
searching using deciderLine(c) is well defined. Moreover, S contains a canonical critical
pair with optimal gap width as sweep(c1, c2) returns all canonical critical pairs in the region
bounded by the lines t− s = c1 and t− s = c2, and by Lemma 7 the set of canonical critical
pairs contains a pair with optimal gap width. As deciderPoint is called on all pairs in S,
the algorithm will find this optimal gap pair.

For the running time, calling sample(αn4) takes O(n4) time. Sorting R̂ takes O(n4 logn)
time, and searching over R̂ takes O(n5 logn) time as deciderLine takes O(n5) time. By
Lemma 10, sweep(c1, c2) takes O((n3 + |S|) logn) time. Calling deciderPoint on each
pair in S takes O(|S|n2) time, as deciderPoint takes O(n2) time. By Lemma 11, with
high probability |S| = O(n3), so sweeping and all deciderPoint calls combined take O(n5)
time. Thus the overall time is O(n5 logn), i.e. dominated by the time to search with
deciderLine. J

6 Approximation

In this section, we propose an efficient algorithm to approximate the Fréchet gap distance,
based on the following simple fact. Let do be the average of the starting and ending vertex
pair distances of π and σ, that is do = db+de

2 where db = ||π0 − σ0|| and de = ||πn − σm||.

I Observation 13. If a parametric point (s, t) is feasible then s ≤ do ≤ t.

This implies we only need to consider parametric points such that s ≤ do ≤ t, which we call
centered points. Define the radius of any such point (s, t) to be rs,t = max{t− do, do − s},
and define the projection to be proj(s, t) = (do − rs,t, do + rs,t).

Observe that in order to get a 2-approximation it suffices to restrict our attention to
projected points (as [s, t] ⊆ [do−rs,t, do+rs,t] for any centered point (s, t)), and the advantage
is that projected points are more nicely behaved. Specifically, projected points define a linear
ordering by the parameter r with the nice property that if (do − r, do + r) is feasible then
for any r′ ≥ r it holds that (do − r′, do + r′) is also feasible. Moreover, below we show that
the O(n6) critical intervals of Lemma 7, can be reduced to O(n3) in this setting, intuitively
since now there is only a single parameter r, rather than independent s and t parameters.

The details of how the above high level idea is employed are interesting, but are omitted
due to space constraints. Here we give a brief outline. First it is shown that considering
the minimum radius projected point in each region defined by one of the O(n3) constraints
of Section 4.1.2, gives a set of O(n3) projected points containing a 2-approximation to
the Fréchet gap distance. Then it is observed that sorting these points by radii induces a
linear ordering of feasibility, thus already implying a near cubic time algorithm to find a
2-approximation. Next we how to construct an O(n2/ε) time (1 + ε)-approximate decider



C. Fan and B. Raichel 42:15

(again making use of Observation 13), and then show how to use it to efficiently turn any
constant factor approximation into a (1 + ε)-approximation. Finally, the most challenging
part is removing a near linear factor in the running time, and involves sampling and careful
sweeping over the functions for s and t discussed in Section 4.1.1, modified for the projected
point setting, thus advancing the basic sampling and sweeping approach of [20].

I Theorem 14 (For proof see [18]). Given polygonal curves π and σ, each of length at most
n, one can (1 + ε)-approximate the Fréchet gap distance in O(n2(logn+ 1

ε log 1
ε )) time.
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