
Quickest Visibility Queries in Polygonal Domains∗†

Haitao Wang

Department of Computer Science, Utah State University, Logan, UT, USA
haitao.wang@usu.edu

Abstract
Let s be a point in a polygonal domain P of h−1 holes and n vertices. We consider the following
quickest visibility query problem. Given a query point q in P, the goal is to find a shortest path in
P to move from s to see q as quickly as possible. Previously, Arkin et al. (SoCG 2015) built a data
structure of size O(n22α(n) logn) that can answer each query in O(K log2 n) time, where α(n) is
the inverse Ackermann function and K is the size of the visibility polygon of q in P (and K can
be Θ(n) in the worst case). In this paper, we present a new data structure of size O(n log h+h2)
that can answer each query in O(h log h logn) time. Our result improves the previous work when
h is relatively small. In particular, if h is a constant, then our result even matches the best result
for the simple polygon case (i.e., h = 1), which is optimal. As a by-product, we also have a new
algorithm for the following shortest-path-to-segment query problem. Given a query line segment
τ in P, the query seeks a shortest path from s to all points of τ . Previously, Arkin et al. gave a
data structure of size O(n22α(n) logn) that can answer each query in O(log2 n) time, and another
data structure of size O(n3 logn) with O(logn) query time. We present a data structure of size
O(n) with query time O(h log n

h), which favors small values of h and is optimal when h = O(1).

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling, F.2.2
Nonnumerical Algorithms and Problems

Keywords and phrases shortest paths, visibility, quickest visibility queries, shortest path to
segments, polygons with holes

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.61

1 Introduction

Let P be a polygonal domain with h − 1 holes and a total of n vertices, i.e., there is an
outer simple polygon containing h− 1 pairwise disjoint holes and each hole itself is a simple
polygon. If h = 1, then P becomes a simple polygon. For any two points s and t in P, a
shortest path from s to t is a path in P connecting s and t with the minimum Euclidean
length. Two points p and q are visible to each other if the line segment pq is in P. For any
point q in P, its visibility polygon consists of all points of P visible to q, denoted by Vis(q).

We consider the following quickest visibility query problem. Let s be a source point in
P. Given any point q in P, the query asks for a path to move from s to see q as quickly as
possible. Such a “quickest path” is actually a shortest path from s to all points of Vis(q).
The problem has been recently studied by Arkin et al. [1], who built a data structure of size
O(n22α(n) logn) that can answer each query in O(K log2 n) time, where K is the size of Vis(q).
In this paper, we present a new data structure of O(n log h+ h2) size with O(h log h logn)
query time. Our result improves the previous work when h is relatively small. Interesting is
that the query time is independent of K, which can be Θ(n) in the worst case. Our result is

∗ A full version of the paper is available at https://arxiv.org/abs/1703.03048.
† This research was supported in part by NSF under Grant CCF-1317143.

© Haitao Wang;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 61; pp. 61:1–61:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.61
https://arxiv.org/abs/1703.03048
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

61:2 Quickest Visibility Queries in Polygonal Domains

also interesting in that when h = O(1), the data structure has O(n) size and O(logn) query
time, which matches the result for the simple polygon case [1] and is optimal.

As in [1], in order to solve the quickest visibility queries, we also solve a shortest-path-to-
segment query problem (or segment query for short), which may have independent interest.
Given any line segment τ in P , the segment query asks for a shortest path from s to all points
of τ . Arkin et al. [1] gave a data structure of size O(n22α(n) logn) that can answer each
query in O(log2 n) time, and another data structure of size O(n3 logn) with O(logn) query
time. We present a new data structure of O(n) size with O(h log n

h) query time. Our result
again favors small values of h and attains optimality when h = O(1), which also matches the
best result for the simple polygon case [1, 7].

Given the shortest path map of s, our quickest visibility query data structure can be
built in O(n log h+ h2 log h) time and our segment query data structure can be built in O(n)
time. Arkin et al.’s quickest visibility query data structure and their first segment query data
structure can both be built in O(n22α(n) logn) time, and their second segment query data
structure can be built in O(n3 logn) time [1].

Throughout the paper, whenever we talk about a query related to paths in P, the query
time always refers to the time for computing the path length, and to output the actual path,
it needs additional time linear in the number of edges of the path by standard techniques.

1.1 Related Work
The traditional shortest path problem is to compute a shortest path to move from s to
“reach” a query point. Each shortest path query can be answered in O(logn) time by using
the shortest path map of s, denoted by SPM(s), which is of O(n) size. To build SPM(s),
Mitchell [14] gave an algorithm of O(n3/2+ε) time for any ε > 0 and O(n) space, and later
Hershberger and Suri [10] presented an algorithm of O(n logn) time and space. If P is a
simple polygon (i.e., h = 1), SPM(s) can be built in O(n) time, e.g., see [8].

For the quickest visibility queries, Arkin et al. [1] also built a “quickest visibility map” of
O(n7) size in O(n8 logn) time, which can answer each query in O(logn) time. In addition,
Arkin et al. [1] gave a conditional lower bound on the problem by showing that the 3SUM
problem on n numbers can be solved in O(τ1 + n · τ2) time, where τ1 is the preprocessing
time and τ2 is the query time. Therefore, a data structure of o(n2) preprocessing time and
o(n) query time would lead to an o(n2) time algorithm for 3SUM.

In the simple polygon case (i.e., h = 1), better results are known. For the quickest
visibility queries, Khosravi and Ghodsi [11] first proposed a data structure of O(n2) size that
can answer each query in O(logn) time. Arkin et al. [1] gave an improved result and they
built a data structure of O(n) size in O(n) time, with O(logn) query time. For the segment
queries, Arkin et al. [1] built a data structure of O(n) size in O(n) time, with O(logn) query
time. Chiang and Tamassia [7] achieved the same result for the segment queries and they
also gave some more general results (e.g., when the query is a convex polygon).

Similar in spirit to the “point-to-segment” shortest path problem, Cheung and Daescu [6]
considered a “point-to-face” shortest path problem in 3D and approximation algorithms were
given for the problem.

1.2 Our Techniques
We first propose a decomposition D of P by O(h) shortest paths from s to certain vertices of
SPM(s). The decomposition D, whose size is O(n), has O(n) cells with the following three
key properties. First, any segment τ in P can intersect at most O(h) cells of D. Second, for

H. Wang 61:3

each cell ∆ of D, τ ∩∆ consists of at most two sub-segments of τ . Third, after O(n) time
preprocessing, for each sub-segment τ ′ of τ in any cell of D, the shortest path from s to τ ′
can be computed in O(logn) time. With D, we can easily answer each segment query in
O(h log n

h) time by a “pedestrian” algorithm.
To solve the quickest visibility queries, an observation is that the shortest path from s to

see q is a shortest path from s to a window of Vis(q), i.e., an extension of the segment qu for
some reflex vertex u of P. Hence, the query can be answered by calling segment queries on
all O(K) windows of Vis(s). This leads to the O(K log2 n) time query algorithm in [1].

If we follow the same algorithmic scheme and using our new segment query algorithm,
then we would obtain an algorithm of O(K · h · log n

h) time for the quickest visibility queries.
We instead present a “smarter” algorithm that prunes some “unnecessary” portions of the
windows such that it suffices to consider the remaining parts of the windows. Further, with
the help of the decomposition D, we show that a shortest path from s to the remaining
windows can be found in O((K + h) log h logn) time. We refer to it as the preliminary result.
To achieve this result, we solve many other problems, which may be of independent interest.
For example, we build a data structure of O(n log h) size such that given any query point t
and line segment τ in P, we can compute in O(log h logn) time the intersection between τ
and the shortest path from s to t in P.

To further reduce the query time to O(h log h logn), by using the extended corridor
structure of P [3, 5], we show that there exists a set S(q) of O(h) candidate windows such
that a shortest path from s to see the query point q must be a shortest path from s to a
window in S(q). This is actually quite consistent with the result in the simple polygon case,
where only one window is needed for answering each quickest visibility query [1]. Once the
set S(q) is computed, we can apply our pruning algorithm discussed above on S(q) to answer
the quickest visibility query in additional O(h log h logn) time. To compute S(q), we give an
algorithm of O(h logn) time, without having to explicitly compute Vis(s). The algorithm is
based on a modification of the algorithm given in [4] that can compute Vis(q) in O(K logn)
time for any point q, after O(n+ h2) space and O(n+ h2 log h) time preprocessing.

The rest of the paper is organized as follows. In Section 2, we define notation and review
some concepts. In Section 3, we introduce the decomposition D of P , and discuss the segment
queries. We present our preliminary result for quickest visibility queries in Section 4, and the
improved result is discussed in Section 5. Due to the space limit, we only sketch the main
idea and all details can be found in the full paper [15].

2 Preliminaries

For any subset A of P , we say that a point p is (weakly) visible to A if p is visible to at least
one point of A. For any point t ∈ P, we use π(s, t) to denote a shortest path from s to t in
P, and in the case where the shortest path is not unique, π(s, t) may refer to an arbitrary
such path. With a little abuse of notation, for any subset A of P , we use π(s,A) to denote a
shortest path from s to all points of A; we use d(s,A) to denote the length of π(s,A), i.e.,
d(s,A) = mint∈A d(s, t). Let V denote the set of all vertices of P.

The shortest path map. The shortest path map SPM(s) is a decomposition of P into
regions (or cells) such that in each cell σ, the sequence of obstacle vertices along π(s, t) is
fixed for all t in σ [10, 14]. Further, the root of σ, denoted by r(σ), is the last vertex of
V ∪ {s} in π(s, t) for any point t ∈ σ (hence π(s, t) = π(s, r(σ)) ∪ r(σ)t; note that r(σ) is s
if s is visible to t). We classify each edge of a cell σ into three types: a portion of an edge

SoCG 2017

61:4 Quickest Visibility Queries in Polygonal Domains

of P, an extension segment, which is a line segment extended from r(σ) along the opposite
direction from r(σ) to the vertex of π(s, t) preceding r(σ), and a bisector curve/edge that is a
hyperbolic arc. For each point t on a bisector edge of SPM(s), t is on the common boundary
of two cells and there are two different shortest paths from s to t through the roots of the two
cells, respectively. The vertices of SPM(s) include V ∪ {s} and all intersections of edges of
SPM(s). The intersection of two bisector edges is called a triple point, which has more than
two shortest paths from s. The map SPM(s) has O(n) vertices, edges, and cells [10, 14].

For differentiation, we call the vertices and edges of P the obstacle vertices and the
obstacle edges, respectively. The holes and the outer polygon of P are also called obstacles.

The shortest path tree SPT (s) is the union of shortest paths from s to all obstacle vertices
of P . SPT (s) has O(n) edges [10, 14]. Given SPM(s), SPT (s) can be obtained in O(n) time.

For ease of exposition, we make a general position assumption that no obstacle vertex
has more than one shortest path from s and no point of P has more than three shortest
paths from s. Hence, no bisector edge of SPM(s) intersects an obstacle vertex and no three
bisector edges intersect at the same point.

For any polygon P , we use |P | to denote the number of vertices of P and use ∂P to
denote the boundary of P .

Ray-shooting queries in simple polygons. Let P be a simple polygon. With O(|P |) time
and space preprocessing, each ray-shooting query in P (i.e., given a ray in P , find the first
point on ∂P hit by the ray) can be answered in O(log |P |) time [2, 9]. The result can be
extended to curved simple polygons or splinegons [12].

The canonical lists and cycles of planar trees. We will often talk about certain planar
trees in P (e.g., SPT (s)). Consider a tree T with root r. A leaf v is called a base leaf if it
is the leftmost leaf of a subtree rooted at a child of r. Denote by L(T, v) the post-order
traversal list of T starting from such a base leaf v, and we call it a canonical list of T . The
root r must be the last node in L(T, v). We remove r from L(T, v) and make the remaining
list a cycle by connecting its rear to its front, and let C(T) denote the circular list. Although
T may have multiple base leaves, C(T) is unique and we call C(T) the canonical cycle of T .
We further use Ll(T, v) to denote the list of the leaves of T following their relative order in
L(T, v) and use Cl(T) to denote the circular list of Ll(T, v). One reason we introduce these
notation is the following. Let e be any edge of T . All nodes of T whose paths to r in T
contain e are consecutive in L(T, v) and C(T). Similarly, all leaves of T whose paths to r in
T contain e must be consecutive in Ll(T, v) and Cl(T).

The following observation on shortest paths will be frequently referred to in the paper.

I Observation 1.
1. Suppose π1 and π2 are two shortest paths from s to two points in P, respectively; then π1

and π2 do not cross each other.
2. Suppose π1 is a shortest path from s to a point in P and τ is a line segment in P; then

the intersection of π1 and τ is a sub-segment of τ (which may be a single point or empty).

3 The Decomposition D and the Segment Queries

In this section, we introduce a decomposition D of P and use it to solve the segment query
problem. The decomposition D will also be useful for solving the quickest visibility queries.

We first define a set V of points. Let p be an intersection between a bisector edge of
SPM(s) and an obstacle edge. Since p is on a bisector edge, it is in two cells of SPM(s) and

H. Wang 61:5

has two shortest paths from s. We make two copies of p in the way that each copy belongs
to only one cell (and thus corresponds to only one shortest path from s). We add the two
copies of p to V . We do this for all intersections between bisector edges and obstacle edges.
Consider a triple point p, which is in three cells of SPM(s) and has three shortest paths from
s. Similarly, we make three copies of p that belong to the three cells, respectively. We add
the three copies of p to V . We do this for all triple points. This finishes the definition of V .

By definition, each point of V has exactly one shortest path from s. Let ΠV denote the
set of shortest paths from s to all points of V . Let TV be the union of all shortest paths of
ΠV . We consider points of V distinct although some of them are copies of the same physical
point. In this way, we can consider TV as a “physical” tree rooted at s.

I Definition 1. Define D to be the decomposition of P by the edges of TV .

In the following, we assume the shortest path map SPM(s) has already been computed.
We have the following lemma about the decomposition D.

I Lemma 2.
1. The size of the set V is O(h).
2. The combinatorial size of D is O(n).
3. Each cell of D is simply connected.
4. For any segment τ in P, τ can intersect at most O(h) cells of D. Further, for each cell

∆ of D, the intersection τ and ∆ consists of at most two (maximal) sub-segments of τ .
5. After O(n) time preprocessing, for any segment τ ′ in a cell ∆ of D, the shortest path

from s to τ ′ can be computed in O(log |∆|) time, where |∆| is the combinatorial size of ∆.
6. For each cell ∆ of D, ∆ has at most two vertices r1 and r2 (both in V ∪ {s}), called

“super-roots”, such that for any point t ∈ ∆, π(s, t) is the concatenation of π(s, r) and the
shortest path from r to t in ∆, for a super-root r in {r1, r2}.

7. Given the shortest path map SPM(s), D can be computed in O(n) time.

Using D, we can easily answer each segment query in O(h log n
h) time by a “pedestrian”

algorithm, similar in spirit to the ray-shooting algorithm of Hershberger and Suri [9].

I Theorem 3. Given the shortest path map SPM(s), we can build a data structure of O(n)
size in O(n) time, such that each segment query can be answered in O(h log n

h) time.

4 The Quickest Visibility Queries: The Preliminary Result

In this section, we give our preliminary result on quickest visibility queries, which sets the
stage for our improved result.

For any subset A of P, a point p ∈ A is called a closest point of A (with respect to s) if
d(s,A) = d(s, p). Given any query point q in P , our goal is to find a shortest path from s to
Vis(q). Let q∗ be a closest point of Vis(q). To answer the query, it is sufficient to determine
q∗. Thus we will focus on finding q∗. Note that if q is visible to s, then q∗ = s. We can
determine whether s is visible to q in O(logn) time by checking whether q is in the cell of
SPM(s) whose root is s. In the following, we assume that s is not visible to q.

We define the windows of q and Vis(q). Consider an obstacle vertex u that is visible to q
such that the two incident obstacle edges of u are on the same side of the line through q and
u (e.g., see Fig. 1). Let q(u) denote the first point on ∂P hit by the ray from u along the
direction from q to u. Then uq(u) is called a window of q; we say that the window is defined
by u. Further, we call qq(u) the extended window of uq(u).

SoCG 2017

61:6 Quickest Visibility Queries in Polygonal Domains

q
u

q(u)

Figure 1 Illustrating a win-
dow uq(u) of q.

q

s

π0

f(1)

f(2)

f(3)

f(4)

f(5)

f(6)

q1

q2
q3
q4

q5

q6

Figure 2 Illustrating the map f(·): f(1) = 1, f(2) = 2, f(3) = 5,
f(4) = 4, f(5) = 6, and f(6) = 3. Note that the paths could be
“below” π0, but for ease of exposition, we “flip” them above π0, and
this flip operation does not change the topology of these paths.

Each window of q is an edge of Vis(q), and thus the number of windows of q is O(K),
where K = |Vis(q)|. Further, there must be a closest point q∗ that is on a window of q [1].
Hence, as in [1], a straightforward algorithm to compute q∗ is to compute shortest paths
from s to all windows of s and the path of minimum length determines q∗. To compute
shortest paths from s to all windows, if we apply our segment queries on all windows using
Theorem 3, then the total time would be O(K · h · log n

h). In the rest of this section, we
present an algorithm that can compute q∗ in O((K + h) log h logn) time, without having to
compute shortest paths to all windows.

4.1 The Algorithm Overview
As the first step, we compute Vis(q), which can be done in O(K logn) time after O(n+h2 log h)
time and O(n+ h2) space preprocessing [4]. Then, we can find all windows and extended-
windows in O(K) time. For ease of exposition, we make a general position assumption for q
that q is not collinear with any two obstacle vertices. The assumption implies that q is in
the interior of P and no two windows are collinear.

Let u0 be the root of the cell of SPM(s) containing q (if q is on the boundary of multiple
cells, then we take an arbitrary such cell). Hence, π(s, u0)∪u0q is a shortest path π(s, q) from
s to q. Note that u0 must define a window u0q(u0) of q [13]. Let u0q(u0), u1q(u1), . . . , ukq(uk)
be all windows of q ordered clockwise around q. Clearly, k = O(K). For each 0 ≤ i ≤ k, let
qi = q(ui). Note that the window u0q0 is special in the sense that u0 is in π(s, q). So we first
apply our algorithm in Theorem 3 on u0q0 to compute a closest point q∗0 of u0q0. Clearly, if
q∗ ∈ u0q0, then q∗ = q∗0 . In the following, we assume q∗ 6∈ u0q0. Let Q = {q, q1, q2, . . . , qk}.
Note that Q does not contain q0 but q. If q∗ ∈ Q, then we can find q∗ by computing d(s, p)
for all p ∈ Q, in O(k logn) time using SPM(s). Below, we assume q∗ 6∈ Q. Note that the
above assumption that q∗ 6∈ u0q0 ∪ Q is only for arguing the correctness of our following
algorithm, which actually proceeds without knowing whether the assumption is true or not.

For each 0 ≤ i ≤ k, let wi = qqi, i.e., the extended window of uiqi. Let W = {wi | 1 ≤
i ≤ k}. For convenience of discussion, we assume that each wi of W does not contain its two
endpoints q and qi (but the endpoints of wi still refer to q and qi). Since q∗ 6∈ u0q0 ∪Q, q∗
must be on an extended window in W . Clearly, q∗ is also a closest point of W . Since no
two windows of q are collinear, no extended-window of W contains another. We assign each
window wi ∈W a direction from q to qi, so that we can talk about its left or right side.

Suppose q∗ is on wi ∈ W . Since wi is an open segment, by the definition of q∗, the
shortest path π(s, q∗) must reach q∗ from either the left side or the right side of wi. Formally,

H. Wang 61:7

we say that π(s, q∗) reaches q∗ from the left side (resp., right side) of wi if there is a small
neighborhood of q∗ such that all points of π(s, q∗) in the neighborhood are on the left side
(resp., right side) of wi. Let wli (resp., wri) denote the set of points p on wi whose shortest
path from s to p is from the left (resp., right) side of wi. Hence, q∗ is either on wli or on wri .

Our algorithm will find two points q∗l and q∗r such that if q∗ is on wli for some i ∈ [1, k],
then q∗ = q∗l , and otherwise (i.e.,q∗ is in wri for some i ∈ [1, k]), q∗ = q∗r .

In the following, we will only present our algorithm for finding q∗l since the case for q∗r is
symmetric. In the following discussion, we assume q∗ is on wli for some i ∈ [1, k].

The rest of this section is organized as follows. In Section 4.2, we discuss some observations,
based on which we describe our pruning algorithm in Section 4.3 to prune some (portions of)
segments of W such that q∗ (= q∗l) is still in the remaining segments of W . In Section 4.4, we
will finally compute q∗l on the remaining segments of W . As will be clear later, our algorithm
uses extended windows instead of windows because extended windows can help us with the
pruning.

4.2 Observations
For any point t ∈ P with s 6= t, and its shortest path π(s, t), we use t+ to denote a point on
π(s, t) arbitrarily close to t (but t+ 6= t). If t is on wli for some i ∈ [1, k], then t+ must be on
the left side of wi. For any segment w of W , we say that w or a sub-segment of w can be
pruned if it does not contain q∗. Our pruning algorithm, albeit somewhat involved, is based
on the following simple observation.

I Observation 2. For any point t ∈ wli for some i ∈ [1, k], if π(s, t+) intersects any segment
w ∈W or an endpoint of it, then t can be pruned (i.e., t cannot be q∗).

Proof. Let t′ be a point on π(s, t+) that is a point on any segment w ∈W or an endpoint
of it. Clearly, t′ ∈ Vis(s) and d(s, t′) < d(s, t). Thus, t cannot be q∗. J

Consider the shortest paths π(s, qi) for i = 1, 2, . . . , k. To simplify the notation, let
πi = π(s, qi) for each i ∈ [1, k]. In particular, let π0 = π(s, q) (not π(s, q0)). Recall that
Q = {q, q1, . . . , qk}. The union of all paths πi for 0 ≤ i ≤ k forms a planar tree, denoted
by TQ, with root at s. Consider the canonical cycle C(TQ) as defined in Section 2. Let CQ
be the circular list of the points of Q following their relative order in C(TQ). We further
break CQ into a list LQ at q, such that LQ starts from q and all other points of LQ follow
the counterclockwise order in CQ. Assume LQ is {q, qf(1), qf(2), . . . , qf(k)}, i.e., the (i+ 1)-th
point of the list is qf(i) (e.g., see Fig. 2). So f(·) essentially maps each point of Q \ {q}
from its position in LQ to its position in the list {q1, q2, . . . , qk}. Hence, f(1) . . . , f(k) is a
permutation of 1, . . . , k, and f(i) 6= f(j) if i 6= j. The reason we introduce the list LQ is that
intuitively, for any 1 ≤ i < j ≤ k, the path πf(j) is counterclockwise from πf(i) with respect
to π0 around s. For convenience, we let f(0) = 0.

Given SPM(s), after O(n) time preprocessing, we can compute the list LQ and thus
determine the map f(·) in O(k logn) time. The details are omitted.

We can show that for any i ∈ [1, k], π0 does not contain qi and πi does not contain q.
The following lemma is proved based on Observation 2.

I Lemma 4. Suppose πj contains qi with i 6= j and i, j ∈ [1, k]. If i < j, then wj can be
pruned; otherwise, wi can be pruned.

In O(k logn) time, we can remove all extended-windows of W that can be pruned by
Lemma 4. The details are omitted. But to simplify the notation, we assume that none of the

SoCG 2017

61:8 Quickest Visibility Queries in Polygonal Domains

q
s

qf(j)
qf(i)

π0

πf(i)

πf(j)

q
s

qf(j)

qf(i)

π0

πf(i)

πf(j)

q
s

qf(j)

qf(i)

π0

πf(i)

πf(j)

p

(a) (b) (c)

Figure 3 Illustrating Lemma 5.

s

π0 q

Figure 4 The thick (red) segments are the remaining parts of the segments ofW after the pruning
algorithms (so that q∗l must be on the left side of a red segment). Again, we “flip” all paths above
π0.

segments of W is pruned since otherwise we could re-index all segments of W . So now W

has the following property: For any i ∈ [1, k], qi is not contained in any πj with j ∈ [0, k]
and j 6= i.

For each i ∈ [1, k], since π0 does not cross πi, π0 ∪ πi ∪ wi forms a closed curve that
separates the plane into two regions, one locally on the left of wi and the other locally on the
right wi. We let Di denote the region locally on the left side of wi including π0 ∪ πi ∪ wi as
its boundary (it is possible that Di is unbounded). If π0 ∩ πi is a sub-path including at least
one edge, then it is also considered to be in Di. We can show that if q∗ ∈ wli, then π(s, q∗)
must be in Di.

Our pruning algorithm mainly relies on Lemma 5, which is based on Observation 2.

I Lemma 5. Suppose i and j are two indices with 1 ≤ i < j ≤ k.
1. If f(i) < f(j), then πf(i) does not cross wf(j) and πf(j) does not cross wf(i), and further,

Df(i) is contained in Df(j) (e.g., see Fig. 3(a)).
2. If f(i) > f(j), then either πf(i) crosses wf(j) or πf(j) crosses wf(i). Further, in the

former case (see Fig. 3(b)), wf(i) can be pruned, and in the latter case (see Fig. 3(c)), the
sub-segment qp of wf(i) can be pruned, where p is the point at which πf(j) crosses wf(i).

For any 1 ≤ i < j ≤ k, we say πi and πj are consistent if f(i) < f(j). By Lemma 5, if
πi and πj are not consistent, then we can do some pruning, based on which we present our
pruning algorithm in Section 4.3. Figure 4 gives an example showing the remaining parts of
the segments of W after the pruning.

4.3 A Pruning Algorithm for Pruning the Segments of W

We process the paths πf(1), πf(2), . . . , πf(k) in this order. Assume that πf(i−1) has just been
processed and we are about to process πf(i). Our algorithm maintains a sequence of bundles,

H. Wang 61:9

q

s

π0

f(3)

f(4)

f(6)

f(7)

f(8)

f(13)

f(15)
f(16)

f(20)

Figure 5 Illustrating the shortest paths corresponding to the indices in the current bundle se-
quence B = {{3}, {4}, {{{6}, {7}}, {8}}, {{13}, {{15}, {16}}, {20}}}, where each underline indicates
a bundle of B. For example, the last bundle is a composite bundle consisting of three children
bundles with 20 as its wrap index. In the figure, the indices of the paths are labeled. Again, we
“flip” all paths above π0.

denoted by B = {B1, B2, . . . Bg}. Each bundle B ∈ B is defined recursively as follows.
Essentially B is a list of sorted indices of a subset of {1, 2, . . . , i − 1}, but the indices are
grouped in a special and systematic way.

There are two types of bundles: atomic and composite. If B has only one index, then it
is an atomic bundle. Otherwise, B is a composite bundle consisting of a sequence of at least
two bundles B′1, . . . , B′g′ (with g′ ≥ 2) such that the last bundle B′g′ must be atomic (others
can be either atomic or composite), and we call the index contained in B′g′ the wrap index of
B. We consider the bundles B′1, . . . , B′g′ as the children bundles of B.

Let fmin(B) and fmax(B) denote the smallest and largest f(j) of all indices j of B,
respectively. If B is composite, then B further has the following three bundle-properties.
(1) The indices of B are distinct and sorted increasingly by their order in B. (2) For any
1 ≤ b < g′ − 1, fmax(B′b) < fmin(B′b+1). (3) If j is the wrap index of B, then fmin(B) = f(j)
and πf(j) crosses wf(j′) for every j′ ∈ B \ {j} (intuitively, πf(j) “wraps” the point qf(j′), and
this is why we call j a “wrap” index). Refer to Fig. 5 for an example.

For convenience, if the context is clear, we also consider a bundle B as a set of sorted
indices. So if an index j is in B, we can write “j ∈ B”. We use the word “bundle” because
each index j of B refers to the path πf(j). Therefore, B is a “bundle” of shortest paths.

In addition, the bundle sequence B = {B1, B2, . . . , Bg} maintained by our algorithm
has two B-properties. (1) The indices in all bundles are distinct in [1, i− 1] and are sorted
increasingly by their order in the sequence. (2) For any 1 ≤ b < g, fmax(Bb) < fmin(Bb+1).

I Observation 3.
1. For any 1 ≤ b < b′ ≤ g and any indices j ∈ Bb and j′ ∈ Bb′ (both Bb and Bb′ are from

B), the two shortest paths πf(j) and πf(j′) are consistent (see Fig. 5).
2. For any composite bundle B = {B′1, . . . , B′g′}, for any 1 ≤ b < b′ ≤ g′− 1 and any indices

j ∈ B′b and j′ ∈ B′b′ , the two shortest paths πf(j) and πf(j′) are consistent (see Fig. 5).

In the following, we describe our algorithm for processing the shortest path πf(i), during
which B will be updated. Initially when i = 1, B contains the only atomic bundle B = {1}
and this finishes our processing for πf(1). In general when i > 1, we do the following.

We first find the index β such that fmax(Bβ) < f(i) < fmax(Bβ+1). We can maintain
the bundle sequence B in a data structure so that β can be found in O(logn) time. The

SoCG 2017

61:10 Quickest Visibility Queries in Polygonal Domains

details are omitted. If β = g (so Bβ+1 does not exist in this case), then we add a new atomic
bundle Bg+1 = {i} to the rear of B and this finishes the processing of πf(i).

If β 6= g, we check whether fmin(Bβ+1) < f(i). If fmin(Bβ+1) < f(i), we can show that
wf(i) can be pruned. Hence, in this case, we simply ignore πf(i) and finish the processing
of πf(i). In the following, we assume f(i) < fmin(Bβ+1) (note that f(i) 6= fmin(Bβ+1) since
i 6∈ B). Next, we are going to find all such indices j of B that πf(j) crosses wf(i). To this
end, the following two lemmas are crucial.

I Lemma 6.
1. For any index j in Bb for any b ∈ [1, β], πf(j) does not cross wf(i).
2. For any index j in Bb for any b ∈ [β + 1, g], if πf(j) crosses wf(i), then wf(j) can be

pruned; otherwise, πf(i) must cross wf(j).
3. If j is in Bb for some b ∈ [β + 2, g] and πf(j) crosses wf(i), then πf(j′) crosses wf(i) for

any j′ ∈ Bb′ and any b′ ∈ [β + 1, b− 1].
4. If j is in Bb for some b ∈ [β + 1, g − 1] and πf(j) does not cross wf(i), then πf(j′) does

not cross wf(i) for any j′ ∈ Bb′ and any b′ ∈ [b+ 1, g].

For any bundle B in {Bβ+1, Bβ+2, . . . , Bg}, if B has two indices j and j′ such that wf(i)
crosses πf(j) but does not cross πf(j′), then we say that B is a mixed bundle, which is
necessarily a composite bundle.

I Lemma 7. For any mixed bundle B = {B′1, B′2, . . . , B′g′}, the following holds.
1. The path πf(r) must cross wf(i), where r is the wrap index of B, i.e., B′g′ = {r}.
2. If an index j is in B′b for some b ∈ [2, g′ − 1] and πf(j) crosses wf(i), then πf(j′) crosses

wf(i) for any j′ ∈ B′b′ and any b′ ∈ [1, b− 1].
3. If an index j is in B′b for some b ∈ [1, g′ − 2] and πf(j) does not cross wf(i), then πf(j′)

does not cross wf(i) for any j′ ∈ B′b′ and any b′ ∈ [b+ 1, g′ − 1].
4. If a bundle B′ of B has two indices j and j′ such that wf(i) crosses πf(j) but does not

cross πf(j′), then B′ is also a mixed bundle. This lemma applies to B′ recursively.

In light of the preceding two lemmas, in the following we will find the indices j of B such
that πf(j) crosses wf(i) and then prune wf(j) by Lemma 6(2) (i.e., remove j from B); we say
that such an index j is prunable.

Before describing our algorithm, we discuss an operation that will be used in the algorithm.
Consider a composite bundle B = {B′1, B′2, . . . , B′g′} of B. Let r be a wrap index of B, i.e.,
B′g′ = {r}. Suppose wf(i) crosses πf(r). Our algorithm will remove r from B and thus
from B. This is done by a wrap-index-removal operation. Further, suppose B is the j-th
bundle of B, i.e., B = Bj . After r is removed, the operation will implicitly insert the
bundles B′1, B′2, . . . , B′g′−1 into the position of B in B, i.e., after the operation, B becomes
B1, . . . , Bj−1, B

′
1, . . . , B

′
g′−1, Bj+1, . . . , Bg. Note that this new bundle list still has the two B-

properties. Indeed, fmax(Bj−1) < fmin(B) = f(r) < fmin(B′1) and fmax(B′g′−1) ≤ fmax(B) <
fmin(Bj+1). We can maintain the bundles of B in a data structure so that each wrap-index-
removal operation can be performed in O(logn) time. The details are omitted.

Another operation that is often used in the algorithm is the following. Given any
i, j ∈ [1, k], we want to determine whether wf(i) crosses πf(j). We call it the shortest
path segment intersection (or SP-segment-intersection) query. Our full paper presents an
algorithm that can answer each such query in O(log h logn) time, after O(n log h) time and
space preprocessing.

We are ready to describe our algorithm for removing all prunable indices from B. By
Lemma 6(1), each bundle Bb of B for 1 ≤ b ≤ β does not contain any prunable index.

H. Wang 61:11

For each bundle B of Bβ+1, Bβ+2, . . . , Bg in order, we call a procedure prune(B) until the
procedure returns “false”.

If all indices of B are prunable, then prune(B) will return “true” and the entire bundle B
will be removed from B. Otherwise, the procedure will return false. Further, if B is a mixed
bundle, then all prunable indices of B will be removed (and the procedure returns false).

The procedure prune(B) works as follows. It is a recursive procedure. As a base case, if
B is an atomic bundle {j}, then we call an SP-segment-intersection query to check whether
πf(j) crosses wf(i). If yes, we remove B and return true; otherwise, return false. If B is a
composite bundle {B′1, B′2, . . . , B′g′} with r as the wrap index (i.e., B′g′ = {r}), then we first
call an SP-segment-intersection to check whether πf(r) crosses wf(i). If not, by Lemma 7(1),
B does not have any prunable index and thus we simply return false. If yes, then we call
a wrap-index-removal operation to remove B′g′ . Afterwards, for each b′ = 1, 2, . . . , g′ − 1
in order, we call prune(B′b′) recursively. If prune(B′b′) returns false, then we return false
(without calling prune(B′b′+1)). If it returns true, we remove B′b′ (in fact all children bundles
of B′b′ have been removed by prune(B′b′)). If b′ = g′ − 1, then we return true (since all
bundles of B have been removed); otherwise, we proceed on calling prune(B′b′+1).

If prune(Bb) returns true for every b with β + 1 ≤ b ≤ g, then we add a new atomic
bundle {i} at the end of B, which now becomes {B1, B2, . . . , Bβ , {i}}. This also finishes our
preprocessing for πf(i). Otherwise, prune(Bb) returns false for some b with β + 1 ≤ b ≤ g. In
this case, as a final step, we create a new composite bundle B, consisting of all bundles of B
after Bβ (not including Bβ) and the atomic bundle {i} as the last child bundle of B. This is
done by a bundle-creation operation, which can be implemented in O(logn) time (the details
are omitted). Afterwards, the new bundle sequence B becomes {B1, B2, . . . , Bβ , B}. It can
be shown that the new bundle B is a “valid” composite bundle and the updated B maintains
the two B-properties.

To analyze the running time of the above algorithm, let m be the number of indices that
have been removed from B. Then, the algorithm makes at mostm+1 SP-segment-intersection
queries. To see this, once the query discovers an index j that is not prunable, the algorithm
will stop without making any more such queries. On the other hand, each wrap-index-removal
operation removes an index, and thus the number of such operations is at most m. Further,
observe that for each bundle B, whenever we make a recursive call on a child bundle of B,
the wrap index of B is guaranteed to be removed. Therefore, the number of total recursive
calls is at most m as well. Hence, the running time of the algorithm is O((m+ 1) log h logn).

This finishes our algorithm for processing the path πf(i). The total time for processing
πf(i) is O((m+1) log h logn). Since once an index is removed from B, it will never be inserted
into B again, the sum of all such m in the entire algorithm for processing all paths πf(i) for
i = 1, 2, . . . , k is at most k. Hence, the total time of the entire algorithm is O(k log h logn).

4.4 Computing the Closest Point q∗

Recall that we have assumed that q∗ is on wli for some i ∈ [1, k], i.e., q∗ = q∗l . According to
our pruning algorithm for computing the bundle sequence B, q∗ must be on wlf(j) for some
j ∈ B. In this section, we will compute q∗ by using the bundle sequence B. For example, in
Fig 4, our goal is to compute q∗ on the left sides of those (red) thick segments.

4.4.1 The Set of Regions R

Our algorithm for computing q∗ uses a set R of regions of P, which is introduced below.

SoCG 2017

61:12 Quickest Visibility Queries in Polygonal Domains

Let O denote the obstacle space, which is the complement of the free space of P. More
specifically, O consists of the h− 1 simple polygonal holes of P and the (unbounded) region
outside the outer boundary of P. Let B denote the union of all bisector edges of SPM(s).
Mitchell [13] proved that O ∪B is simply connected and P \ B is also simply connected (e.g.,
see Fig.1 in the appendix). We consider O ∪ B as a planar graph G. Specifically, the vertex
set of G consists of all obstacles of O and all triple points of SPM(s). For any two vertices of
G, if they are connected by a chain of bisector edges in SPM(s) such that the chain does not
contain any other vertex of G, then G has an edge connecting the two vertices, and further,
we call the above chain of bisector edges a bisector super-curve. It can be shown that G is a
simple graph with O(h) vertices, edges, and faces.

Since |V | = O(h) (by Lemma 2(1)), ΠV is a set of O(h) shortest paths. Recall that TV is
the union of all shortest paths of ΠV and TV is considered as a “physical” tree rooted at
s. Note that each edge of any path of ΠV except the last edge (i.e., the one connecting a
point of V) is an edge of SPT (s). Hence, the total number of edges of the tree TV is O(n).
Throughout the paper, let h∗ = |V |. Thus, h∗ = O(h).

It is known that P \B is simply connected and π(s, t) is in P \B for any point t ∈ P [13].
To simplify the discussion, together with the copies of the points of V , we consider P ′ = P \B
as a simple polygon (with some curved edges) by making two copies for each interior point of
every bisector super-curve such that they respectively belong to the two sides of the curve.

Since TV is a planar tree, we can define its canonical lists as discussed in Section 2. Let
v1 be an arbitrary base leaf of TV . Let the leaf list Ll(TV , v1) be v1, v2, . . . , vh∗ , which follow
the counterclockwise order along ∂P ′.

For each 1 ≤ i ≤ h∗, let αi denote the portion of ∂P ′ counterclockwise from vi to vi+1
(let vh∗+1 refer to v1). Note that αi is either a bisector super-curve or a chain of obstacle
edges. Suppose we move a point t on αi from vi to vi+1. The shortest path π(s, t) will
continuously change with the same topology since π(s, t) is always in P ′ (which is simply
connected). Let Ri be the region of P ′ that is “swept” by π(s, t) during the above movement
of t. More specifically, let pi be the common point on π(s, vi) ∩ π(s, vi+1) that is farthest to
s. Then, Ri is bounded by π(pi, vi), π(pi, vi+1), and αi. For convenience of discussion, we
let Ri also contain the common sub-path π(s, pi) = π(s, vi) ∩ π(s, vi+1) and we call π(s, pi)
the tail of Ri. We call the region bounded by π(pi, vi), π(pi, vi+1), and αi the cell of Ri. We
consider π(s, vi), π(s, vi+1), and αi as the three portions of the boundary ∂Ri of Ri. The
definition implies that for any point t in Ri, π(s, t) is in Ri. In fact, if t is in the cell of Ri,
then π(s, t) is the concatenation of π(s, pi) and the shortest path from pi to t in the cell.
Clearly, P ′ is the union of R1, R2, . . . , Rh∗ . Roughly speaking, the regions R1, . . . , Rh∗ are
counterclockwise around s. Define R = {R1, R2, . . . , Rh∗}.

4.4.2 The Algorithm for Computing q∗

Let τ be any segment in P such that a region Ri ∈ R contains π(s, τ). Suppose Ri is known.
With the help of the decomposition D proposed in Section 3, we give a region-processing
algorithm in the full paper to compute π(s, τ) in O(log h logn) time.

Recall that R = {R1, R2, . . . , Rh∗}. Due to our general position assumption that q is not
collinear with any two obstacle vertices, none of {q, q1, . . . , qk} is an obstacle vertex. Then,
for each k′ ∈ [0, k], there is a unique region Ri of R whose cell contains qf(k′), such that the
shortest path πf(k′) is contained in Ri, and we let z(k′) refer to the index i of Ri. Computing
the indices z(0), z(1), . . . , z(k) can be done in O(k logn) time by point location queries on
the cells of the regions of R.

For any two indices k1 and k2 in [1, h∗], if k1 ≤ k2, then let [k1, k2]R denote the set of all
integers k′ ∈ [k1, k2]; otherwise, let [k1, k2]R denote the set of all integers k′ ∈ [k1, h

∗]∪ [1, k2].

H. Wang 61:13

q
s

qf(j)

qf(i)

π0

D q∗

Figure 6 Illustrating Observation 4.

q
s

qf(j′)

qf(i)

π0

D
qf(j)

Figure 7 j is the wrap index of Bb and j′ is
another index of Bb with j′ 6= j; πf(j′) is in the
region D.

Recall that the regions R1, . . . , Rh∗ are counterclockwise around s. We actually use [k1, k2]R
to refer to the set of indices of the regions of R from Rk1 to Rk2 counterclockwise around s.

Next we compute q∗ on wlf(j) for j ∈ B. Consider the bundles of B = {B1, B2, . . . , Bg}.
For each b with 1 ≤ b ≤ g, we call a procedure path(Bb, z(i)), where i is the last index of
Bb−1 if b ≥ 2 and i = 0 otherwise. Note that i < j for any index j ∈ Bb. The procedure
path(Bb, z(i)) works as follows. Depending on whether Bb is atomic, there are two cases.

The atomic case. If Bb is atomic, let j be the only index of Bb. According to the bundle-
properties, i < j and f(i) < f(j). So πf(j) and πf(i) are consistent. By Lemma 5(1), Di is
contained in Dj . Let D be Dj minus the interior of Di.

I Observation 4. If q∗ is on wlf(j), then π(s, q∗) must be in D (see Fig. 6).

I Lemma 8. If q∗ is on wlf(j), then π(s, q∗) is in Rk′ for some index k′ ∈ [z(i), z(j)]R, and
further, any shortest path π(s, wf(j)) from s to wf(j) is π(s, q∗).

For each k′ ∈ [z(i), z(j)]R, we apply our region-processing algorithm on Rk′ and wf(j)
to obtain a path, and we keep the shortest path π among all such paths; let qlf(j) be the
endpoint of π on wf(j). According to Lemma 8, if q∗ is on wlf(j), then q∗ must be qlf(j).

For analyzing the total running time of our algorithm, as will be seen later, for each
k′ ∈ [z(i), z(j)]R with k′ 6= z(i) and k′ 6= z(j), the region-processing algorithm will not be
called on Rk′ again in the entire algorithm for computing q∗l . On the other hand, we charge
the two algorithm calls on Rk′ for k′ = z(i) and k′ = z(j) to the index j of B. In this way, the
total number of calls to the region-processing procedure in the entire algorithm is O(h∗ + k)
since the total number of indices of B is at most k and the total number of regions Rk′ is h∗.

The composite case. If Bb is composite, the algorithm is more complicated. Let j be the
wrap index of Bb. Observation 4 and Lemma 8 still hold on j. However, since now the region
D contains a portion of wf(j′) for each j′ ∈ Bb \ {j} (see Fig. 7), D may also contain the
shortest path from s to wf(j′). In order to avoid calling the region-processing procedure on
the same region of R too many times, we use the following approach to process wf(j).

For any two different indices of k′ and k′′ in a range [k1, k2]R of indices of the regions of
R, we say that k′′ is ccw-larger than k′ if [k′, k′′]R is a subset of [k1, k2]R (e.g., if k1 < k2,
then k′ < k′′). Define zij to be the ccw-largest index in [z(i), z(j)] such that wf(j) crosses
∂Rzij

(if no such index exists, then let zij = z(i)).
We first compute zij (to be discussed later). Then, we call the region-processing procedure

on Rk′ for all k′ ∈ [z(i), zij] and return the shortest path π that is found; let qlf(j) be the
endpoint of π on wf(j). By the following lemma, if q∗ is on wlf(j), then qlf(j) is q∗.

I Lemma 9. If q∗ is on wlf(j), then π(s, q∗) is in Rk′ for some index k′ ∈ [z(i), zij]R, and
further, any shortest path π(s, wf(j)) from s to wf(j) is π(s, q∗).

SoCG 2017

61:14 Quickest Visibility Queries in Polygonal Domains

The following lemma makes sure that when we process wf(j′) for any other index j′ of Bb
with j′ 6= j, we do not need to consider the regions Rk′ for k′ ∈ [z(i), zij − 1] if zij 6= z(i).

I Lemma 10. Suppose zij 6= z(i). If q∗ is on wlf(j′) for some j′ ∈ Bb and j′ 6= j, then
π(s, q∗) is in Rk′ for some k′ ∈ [zij , z(j′)]R.

In order to compute the index zij , we will use a R-region range query. Namely, given the
index range [z(i), z(j)]R as well as wf(j), the query can be used to compute zij . In the full
paper, we give a data structure that can answer each such query in O(log h logn) time, after
O(n log h) time and space preprocessing.

After wf(j) is processed as above, qlf(j) is computed. By Lemma 10, to process wf(j′) for
other indices j′ of Bb \ {j}, we only need to consider the indices of the regions of R after zij .
Let B′1, B′2, . . . , B′g′−1 be the bundles in Bb other than the last one. For each 1 ≤ b′ ≤ g′ − 1,
if b′ = 1, we call path(B′b′ , zij) recursively; otherwise, we call path(B′b′ , z(i′)) recursively,
where i′ is the last index of B′b′−1.

After wf(j) is processed for each j ∈ B, qlf(j) is computed for every j ∈ B; among these
at most k points, we return the point q′ whose value d(s, q′) is the smallest as q∗l , which is
q∗ based on our above analysis (and also due to our assumption that q∗ is on wli for some
i ∈ [1, k]). The total number of calls on the region-processing procedures is O(k + h∗). The
total number of R-region range queries is O(k) since each such query is for a composite
bundle and there are at most k bundles in total. Hence, the total time of the algorithm is
O((h+ k) log h logn). Recall that k ≤ K.

We summarize our overall algorithm in the following theorem.

I Theorem 11. Given SPM(s), we can build a data structure of O(n log h + h2) size
in O(n log h + h2 log h) time, such that each quickest visibility query can be answered in
O((K + h) log h logn) time, where K is the size of the visibility polygon of the query point q.

Proof. In the preprocessing, we compute the visibility polygon query data structure in [4]
for computing Vis(q), which is of O(n + h2) size and can be built in O(n + h2 log h) time.
The rest of the preprocessing work includes building the decomposition D and the segment
query data structure of Theorem 3, performing the preprocessing for computing the map
f(·), for the region-processing algorithms, for answering SP-segment-intersection queries, for
answering R-region range queries, etc; these work takes O(n log h) time and space in total.

Given any query point q, we first compute Vis(q) in O(K logn) time by the query
algorithm in [4]. Then, we obtain the extended window set W . Let k = |W |, which is O(K).
Next, we compute a closest point q∗ on a segment of W in O(k log h logn) time. To this
end, we compute a set S of O(k) candidate points as follows. We first add q, q1, . . . , qk to
S. Then, we compute the closest point q∗0 of u0q0 and add q∗0 to S. Next we compute the
point q∗l in O((k + h) log h logn) time by using our pruning algorithm in Sections 4.3 and
4.4. By a symmetric algorithm, we can also compute q∗r . We add both q∗l and q∗r to S. By
our analysis, q∗ must be one of the points of S. Since |S| = O(k), we can find q∗ in S in
additional O(k logn) time by using the shortest path map SPM(s). J

In fact, we have the following more general result, which might have independent interest.

I Corollary 12. Given SPM(s), we can build a data structure of O(n log h) size in O(n log h)
time, such that given k = O(n) segments in P intersecting at the same point, we can compute
a shortest path from s to all these segments in O((k + h) log h logn) time.

Proof. The preprocessing step is the same as in Theorem 11 except that the visibility polygon
query data structure [4] is not necessary any more. Hence, the total preprocessing time and

H. Wang 61:15

space is O(n log h). Given a set S of k segments intersecting at the same point, denoted
by p, we break each segment at p to obtain two segments and we still use S to denote the
new set of at most 2k segments. Next we compute a closest point p∗ on the segments of
S. To do so, we can apply the same algorithm as in Theorem 11 for computing q∗ on the
extended-windows of W . Indeed, the only key property of the segments of W we need is
that all segments of W have a common endpoint at q. Now that all segments of S have a
common endpoint p, the same algorithm still works. J

5 The Quickest Visibility Queries: The Improved Result

To further reduce the query time of Theorem 11 to O(h log h logn), independent of K, the
key idea is the following. First, we show that for any query point q, there exists a subset
S(q) of O(h) windows such that a closest point q∗ is on a segment of S(q). This is done
by making use of the extended corridor structure [3, 5]. Second, we give an algorithm that
can compute S(q) in O(h logn) time, without computing Vis(q), after O(n log h+ h2) space
and O(n log h+ h2 log h) time preprocessing. The result is obtained by modifying the query
algorithm for computing Vis(q) in [4]. Refer to our full paper [15] for all these details.

I Theorem 13. Given SPM(s), we can build a data structure of O(n log h + h2) size
in O(n log h + h2 log h) time, such that each quickest visibility query can be answered in
O(h log h logn) time.

References
1 E.M. Arkin, A. Efrat, C. Knauer, J. S. B. Mitchell, V. Polishchuk, G. Rote, L. Schlipf,

and T. Talvitie. Shortest path to a segment and quickest visibility queries. Journal of
Computational Geometry, 7:77–100, 2016.

2 B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas, J. Hershberger, M. Sharir, and
J. Snoeyink. Ray shooting in polygons using geodesic triangulations. Algorithmica,
12(1):54–68, 1994.

3 D.Z. Chen and H. Wang. L1 shortest path queries among polygonal obstacles in the plane.
In Proc. of 30th Symposium on Theoretical Aspects of Computer Science, pages 293–304,
2013.

4 D.Z. Chen and H. Wang. Visibility and ray shooting queries in polygonal domains. Com-
putational Geometry: Theory and Applications, 48:31–41, 2015.

5 D.Z. Chen and H. Wang. Computing the visibility polygon of an island in a polygonal
domain. Algorithmica, 77:40–64, 2017.

6 Y.K. Cheung and O. Daescu. Approximate point-to-face shortest paths in R3.
arXiv:1004.1588, 2010.

7 Y.-J. Chiang and R. Tamassia. Optimal shortest path and minimum-link path queries
between two convex polygons in the presence of obstacles. International Journal of Com-
putational Geometry and Applications, 7:85–121, 1997.

8 L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R.E. Tarjan. Linear-time algorithms
for visibility and shortest path problems inside triangulated simple polygons. Algorithmica,
2(1-4):209–233, 1987.

9 J. Hershberger and S. Suri. A pedestrian approach to ray shooting: Shoot a ray, take a
walk. Journal of Algorithms, 18(3):403–431, 1995.

10 J. Hershberger and S. Suri. An optimal algorithm for Euclidean shortest paths in the plane.
SIAM Journal on Computing, 28(6):2215–2256, 1999.

SoCG 2017

61:16 Quickest Visibility Queries in Polygonal Domains

11 R. Khosravi and M. Ghodsi. The fastest way to view a query point in simple polygons. In
Proc. of the 24th European Workshop on Computational Geometry, pages 187–190, 2005.

12 E. Melissaratos and D. Souvaine. Shortest paths help solve geometric optimization problems
in planar regions. SIAM Journal on Computing, 21(4):601–638, 1992.

13 J. S. B. Mitchell. A new algorithm for shortest paths among obstacles in the plane. Annals
of Mathematics and Artificial Intelligence, 3(1):83–105, 1991.

14 J. S. B. Mitchell. Shortest paths among obstacles in the plane. International Journal of
Computational Geometry and Applications, 6(3):309–332, 1996.

15 H. Wang. Quickest visibility queries in polygonal domains. arXiv:1703.03048, 2017.

	Introduction
	Related Work
	Our Techniques

	Preliminaries
	The Decomposition D and the Segment Queries
	The Quickest Visibility Queries: The Preliminary Result
	The Algorithm Overview
	Observations
	A Pruning Algorithm for Pruning the Segments of W
	Computing the Closest Point q*
	The Set of Regions R
	The Algorithm for Computing q*

	The Quickest Visibility Queries: The Improved Result

