
Bicriteria Rectilinear Shortest Paths among
Rectilinear Obstacles in the Plane∗†

Haitao Wang

Department of Computer Science, Utah State University, Logan, UT, USA
haitao.wang@usu.edu

Abstract
Given a rectilinear domain P of h pairwise-disjoint rectilinear obstacles with a total of n vertices
in the plane, we study the problem of computing bicriteria rectilinear shortest paths between
two points s and t in P. Three types of bicriteria rectilinear paths are considered: minimum-link
shortest paths, shortest minimum-link paths, and minimum-cost paths where the cost of a path
is a non-decreasing function of both the number of edges and the length of the path. The one-
point and two-point path queries are also considered. Algorithms for these problems have been
given previously. Our contributions are threefold. First, we find a critical error in all previous
algorithms. Second, we correct the error in a not-so-trivial way. Third, we further improve
the algorithms so that they are even faster than the previous (incorrect) algorithms when h is
relatively small. For example, for computing a minimum-link shortest s-t path, the previous
algorithm runs in O(n log3/2 n) time while the time of our new algorithm is O(n+ h log3/2 h).

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling, F.2.2
Nonnumerical Algorithms and Problems

Keywords and phrases rectilinear paths, shortest paths, minimum-link paths, bicriteria paths,
rectilinear polygons

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.60

1 Introduction

Let P be a rectilinear domain with a total of h holes and n vertices in the plane, i.e., P is a
multiply-connected region whose boundary is a union of n axis-parallel line segments, forming
h + 1 closed polygonal cycles (i.e., h holes plus an outer boundary). A simple rectilinear
polygon is a special case of a rectilinear domain with h = 0. A rectilinear path is a path
consisting of only horizontal and vertical line segments.

For a rectilinear path π, we define its length as the total sum of the lengths of the segments
of π, and we define its link distance as the number of edges of π (each edge is also called a
link). We use the measure of π to refer to both its length and its link distance. For any two
points s and t in P, a shortest rectilinear path from s to t is a rectilinear path connecting s
to t in P with the minimum length, and a minimum-link rectilinear path is a rectilinear s-t
path with the minimum link distance. Among all shortest rectilinear s-t paths, one with the
minimum link distance is called a minimum-link shortest s-t path; among all minimum-link
s-t paths, one with the minimum length is called a shortest minimum-link s-t path. We define
the cost of π as a non-decreasing function f of both the length and the link distance of π.
We assume that given the number of links of π and the length of π, its cost can be computed

∗ A full version of the paper is available at https://arxiv.org/abs/1703.04466.
† This research was supported in part by NSF under Grant CCF-1317143.

© Haitao Wang;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 60; pp. 60:1–60:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.60
https://arxiv.org/abs/1703.04466
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

60:2 Bicriteria Rectilinear Shortest Paths among Rectilinear Obstacles in the Plane

in constant time. Depending on the context, the measure of π may also refer to its cost. A
minimum-cost path from s to t is a rectilinear s-t path in P with the minimum cost.

All the three types of paths discussed above (i.e., minimum-link shortest paths, shortest
minimum-link paths, and minimum-cost paths) are called bicriteria shortest paths. In order
to differentiate between “bicriteria shortest paths” and “shortest paths”, we will use optimal
paths to refer to these bicriteria shortest paths. Since some observations and algorithmic
schemes may be applicable to all three types of optimal paths, unless otherwise stated, a
statement made to “optimal paths” should be applicable to all three types of optimal paths.

In this paper, we study the problem of computing all three types of optimal paths between
two points s and t in P. Their one-point and two-point queries are also considered.

Previous Work. The following results are applicable to all three types of optimal paths.
Yang et al. [24] first presented an O(nr + n logn) time algorithm, where r is the number

of extreme edges of P (an edge e is extreme if its two adjacent edges lie on the same side
of the line containing e; r = Ω(n) in the worst case). Later, Yang et al. [25] proposed an
algorithm of O(n log2 n) time and O(n logn) space and another algorithm of O(n log3/2 n)
time and space; Chen et. al. [2] improved it to O(n log3/2 n) time and O(n logn) space.

The one-point optimal path query problem, where s is the source and t is a query point,
was also studied. Based on the algorithm of Yang et al. [25], Chen et. al. [2] built a data
structure of O(n logn) size in O(n log3/2 n) time such that for each query point t, the measure
of the optimal s-t path can be computed in O(logn) time and an actual path can be output
in additional time linear in the number of edges of the path. For simplicity, in the following,
when we say that the query time of a data structure for finding a path is O(g(n)), we mean
that the measure of the path can be computed in O(g(n)) time and an actual path can be
output in additional time linear in the number of edges of the path.

The two-point optimal path query problem, i.e., both s and t are query points, was
also studied by Chen et. al. [2], where a data structure of O(n2 log2 n) size was built in
O(n2 log2 n) time such that each two-point query can be answered in O(log2 n) time.

Our Results. We provide a comprehensive study on these problems and our contributions
are threefold.

First, we show that all above algorithms in the previous work are incorrect. More
specifically, we find a critical error in the algorithm of Yang et al. [25]. Since the results of
Chen et. al. [2] are all based on the method of Yang et al. [25], they are not correct either. A
similar error also appears in [24]. Note that the technique of Chen et. al. [2], which follows
the similar idea in [4] for computing L1 shortest paths in arbitrary polygonal domains, would
work if it was based on a correct algorithm (for example, it still works in our new algorithm).

Second, we fix the error of Yang et al. [25] in a not-so-trivial way. However, the
complexities are not the same as before for all three types of optimal paths. Specifically, for
computing a minimum-link shortest path, our corrected algorithm runs in O(n log3/2 n) time
and O(n logn) space (with the help of the technique of Chen et. al. [2] to reduce a factor
of log1/2 n). For the other two types of optimal paths, however, the complexities have one
more O(n) factor, i.e., O(n2 log3/2 n) time and O(n2 logn) space.

Third, we further improve the algorithms in the way that the complexities only depend
on h, in addition to O(n). For computing a minimum-link shortest path, our algorithm
runs in O(n+ h log3/2 h) time and O(n+ h log h) space. For computing other two types of
optimal paths, our algorithm runs in O(n+h2 log2 h) time and O(n+h2 log h) space. We also
obtain data structures for one-point and two-point queries, and the results are summarized

H. Wang 60:3

Table 1 Summary of our data structures on one-point and two-point optimal path queries. Note
that log2 h · 4

√
logh = O(hε) for any ε > 0. The “Prep. Time” stands for “Preprocessing Time”.

Types of Paths One-Point Queries Two-Point Queries

Min-Link Shortest
Prep. Time O(n+ h log3/2 h) O(n+ h2 log2 h) O(n+ h2 log2 h4

√
logh)

Space O(n+ h log h) O(n+ h2 log2 h) O(n+ h2 log h4
√

logh)
Query Time O(logn) O(logn+ log2 h) O(logn)

Shortest Min-Link
Prep. Time O(n+ h2 log3/2 h) O(n+ h3 log2 h) O(n+ h3 log2 h4

√
logh)

Space O(n+ h2 log h) O(n+ h3 log2 h) O(n+ h3 log h4
√

logh)
Query Time O(logn+ log2 h) O(logn+ log3 h) O(logn+ log2 h)

Minimum-Cost
Prep. Time O(n+ h2 log3/2 h) O(n+ h3 log2 h) O(n+ h3 log2 h4

√
logh)

Space O(n+ h2 log h) O(n+ h3 log2 h) O(n+ h3 log h4
√

logh)
Query Time O(logn+ h log h) O(logn+ h log2 h) O(logn+ h log h)

Minimum-Link
Prep. Time O(n+ h2 log2 h) O(n+ h2 log2 h4

√
logh)

Space O(n+ h2 log2 h) O(n+ h2 log h4
√

logh)
Query Time O(logn+ log2 h) O(logn)

in Table 1. Note that for two-point queries, we give two data structures for each problem
with tradeoff between the preprocessing and the query time. We also consider the two-point
query problem for minimum-link paths (without considering the lengths) since the problem
was not studied before (but its one-point query problem has been solved, as discussed below).

Our results are particularly interesting when h is relatively small. For example if
h = O(n1/2−ε) for any ε > 0, then for finding a single optimal path of any type, our
algorithm runs in O(n) time, and our data structures for the minimum-link shortest path
and minimum-link path queries are also optimal.

It is easy to see that the minimum-link shortest paths and the shortest minimum-link paths
are special cases of minimum-cost paths, and we discuss them separately mainly because our
results for the two special cases are generally better that those for the minimum-cost paths.
In fact, as the cost function f is quite general, our algorithm for computing minimum-cost
paths may find many applications. We give two examples below.

Polishchuk and Mitchell [19] gave an O(kn log2 n) time algorithm for computing a shortest
s-t path with at most k links for a given integer k, which improves the O(kn2) time algorithm
in [24]. As indicated in [19], the problem can be solved using any algorithm that can find a
minimum-cost path with the cost function defined as f(a, b) = a if b ≤ k and f(a, b) =∞
otherwise, where a and b are the length and the link distance of the path, respectively.
Partially due to this reason, Polishchuk and Mitchell [19] already suspected that there is a
misunderstanding on the algorithms of [2, 25] for computing minimum-cost paths. We thus
confirm their suspicion. On the other hand, applying our new (and correct) algorithm for
minimum-cost paths can solve the problem in O(n+ h2 log3/2 h) time, which is faster than
the algorithm in [19] when h is sufficiently small or when k is relatively large.

As a dual problem, finding a minimum-link s-t path with length at most a given value l
was also studied in [24], where a worst-case O(n2(r + logn)) time algorithm was given with
r as the number of extreme edges of P. Note that r ≥ h. The problem can also be solved
using any minimum-cost path algorithm by defining the cost function as f(a, b) = b if a ≤ l
and f(a, b) =∞ otherwise. Hence, applying our algorithm for minimum-cost paths can solve
the problem in O(n+ h2 log3/2 h), which clearly improves the algorithm of [24].

SoCG 2017

60:4 Bicriteria Rectilinear Shortest Paths among Rectilinear Obstacles in the Plane

Other Related Work. If P is a simple rectilinear polygon (i.e., h = 0), then there always
exists a rectilinear s-t path that has both the minimum length and the minimum link distance
for any s and t in P [10, 11]. de Berg [10] built a data structure of O(n logn) size in O(n logn)
time that can find such a path in O(logn) time for any two-point query. The preprocessing
time and space were both reduced to O(n) by Schuierer [21] (with O(logn) query time).

If P is a general rectilinear domain with h 6= 0, then there may not exist a rectilinear path
that is both a minimum-link path and a shortest path [24]. The problems of finding only
minimum-link paths or only shortest paths have been studied extensively. Imai and Asano [12]
presented an O(n logn) time and space algorithm for finding a minimum-link s-t path in
P, and the space was reduced to O(n) [9, 16, 20]. Recently, Mitchell et al. [17] proposed
an O(n+ h log h) time and O(n) space algorithm for the problem, after P is triangulated
(which can be done in O(n logn) time or O(n + h log1+ε h) time for any ε > 0 [1]). The
algorithms in [9, 16, 17] also construct an O(n) size data structure that can answer each
one-point minimum-link path query in O(logn) time.

For computing shortest s-t paths in P , Clarkson et al. [7] gave an algorithm of O(n log2 n)
time and O(n logn) space, and as a tradeoff between time and space, they modified their
algorithm so that it runs in O(n log3/2 n) time and space [8]. Wu et al. [23] proposed an
O(n log r + r2 log r) time algorithm, where r is the number of extreme edges of P, and the
algorithm was later improved to O(n log r + r log3/2 r) time [25]. Mitchell [14, 15] solved the
problem in O(n logn) time and O(n) space, and Chen and Wang [5, 6] reduced the time to
O(n+ h log h) after P is triangulated.

If P is an arbitrary polygonal domain (i.e., not rectilinear), then the results from
[5, 6, 7, 8, 14, 15] are also applicable to finding arbitrary shortest paths under L1 metric.
In addition, the algorithms in [5, 6, 14, 15] can be used to compute an O(n) size data
structure so that each one-point L1 shortest path query can be answered in O(logn) time.
For two-point L1 shortest path queries, Chen et al. [4] constructed a data structure of size
O(n2 logn) in O(n2 log2 n) time that can answer each query in O(log2 n) time. Recently,
Chen et al. [3] reduced the query time to O(logn) by building a data structure of size
O(n+ h2 · log h · 4

√
logh) in O(n+ h2 · log2 h · 4

√
logh) time.

To find a minimum-link s-t path between two points s and t in an arbitrary polygonal
domain P, Mitchell [18] gave an O(Eα(n) log2 n) time algorithm, where α(n) is the inverse
of Ackermann’s function and E is the size of the visibility graph of P and E = Θ(n2) in the
worst case. The one-point query problem was also studied in [18].

In the following, unless otherwise stated, a path always refers to a rectilinear path.

Our Techniques. Given two points s and t in the rectilinear domain P , to find an optimal
s-t path, the algorithm of Yang et al. [25] first built a “path-preserving” graph G of size
O(n logn) by using the idea of Clarkson et al. [7]. Then, it is shown that G contains an s-t
path πG(s, t) that is homotopic to an optimal s-t path π(s, t) in P with the same length, and
further, π(s, t) can be obtained from πG(s, t) by performing certain “dragging” operations.
Motivated by this observation, Yang et al. [25] computed an optimal s-t path by applying
Dijkstra’s algorithm on G and simultaneously performing the dragging operations. We find
a critical error in their way of applying Dijkstra’s algorithm. We fix the error by using
a “path-based” Dijkstra’s algorithm and maintaining some additional information, and we
prove that our algorithm is correct. Due to that we need to maintain more information on
computing shortest minimum-link paths and minimum-cost paths, our algorithm for them
runs slower than that for computing minimum-link shortest paths.

To further reduce the running time (for small h), our main idea is to use a reduced graph
Gr of size O(h log h) instead of G. We show that Gr contains an s-t path πGr (s, t) that

H. Wang 60:5

is homotopic to an optimal s-t path π(s, t) in P with the same length, and further, π(s, t)
can be obtained from πGr

(s, t) by performing the dragging operations as in [25] and a new
kind of operations, called through-corridor-path generating operations. The graph Gr is built
based on a corridor structure of P , which was used to find minimum-link paths in [17]. More
specifically, we decompose P into O(h) junction rectangles and O(h) corridors. Each corridor
is a simple rectilinear polygon. Although each corridor may have Θ(n) vertices, we show
that we only need to consider at most four points of each corridor to build the graph Gr. To
this end, we make use of the histogram partitions of rectilinear simple polygons [21].

For the one-point queries, Chen et al. [2] “insert” the query point t to the graph G to
obtain a set Vg(t) of O(logn) vertices (called “gateways”) of G such that an optimal path can
be obtained by performing the dragging operations from the gateways. We follow the similar
scheme but on our reduced graph Gr, where only O(log h) gateways are necessary. Further,
we also need to utilize the techniques of Schuierer [21] for simple rectilinear polygons.

For the two-point queries, the approach of [2] inserts both query points s and t to the
graph G to obtain a set Vg(s) of O(logn) gateways for s and a set Vg(t) of O(logn) gateways
for t, so that an optimal s-t path can be obtained by performing dragging operations from
these gateways. The query time becomes O(log2 n) because every pair of points (p, q) with
p ∈ Vg(s) and q ∈ Vg(t) needs to be considered. We again use the same scheme but on the
graph Gr with only O(log h) gateways for both s and t, and the query time is O(logn+log2 h).
To reduce the query time to O(logn), we follow the scheme in [3] for two-point L1 shortest
path queries in arbitrary polygonal domains. The main idea is to build a larger graph by
adding more vertices to Gr so that O(

√
log h) gateways are sufficient for each query point.

The rest of the paper is organized as follows. We define some notation in Section 2. In
Section 3, we review the algorithm given by Yang, Lee, and Wong [25] (we refer to it as
the YLW algorithm), point out the error, and correct it. In Section 4, we further improve
the algorithm for finding a single optimal s-t path. Due to the space limit, some details are
omitted but can be found in the full paper [22]. Our data structures for the one-point and
two-point path queries are also omitted and in the full paper.

2 Preliminaries

In this section, we define some concepts and notation. For any two points p and q of P, if
the line segment pq is in P, then we say that p is visible to q. Consider a vertical line l and
a point p ∈ P . Let p′ be the point on l whose y-coordinate is the same as that of p. We call
p′ the horizontal projection of p on l. If p is visible to p′, then p is horizontally visible to l.

For any two points p and q, we use Rpq to denote the rectangle with pq as a diagonal. A
path in P is L-shaped if it consists of a horizontal segment and a vertical segment (each of
them may be empty). A path is U-shaped if it consists of three segments s1, s2, and s3 such
that s1 and s3 are on the same side of the line containing s2. A path is called a staircase
path if it does not contain a U-shaped subpath. Note that a staircase path is a shortest path.

Let V denote the set of all vertices of P. We let V also include the two points s and
t. We review a “path-preserving” graph G(V) on V [7]. The vertex set of G(V) consists
of the points of V and Steiner points on some vertical lines, called cut-lines. The cut-lines
and the Steiner points are defined as follows. Let vm be the point of V with the median
x-coordinate. The vertical line lm through vm is a cut-line. For each point v ∈ V, if v is
horizontally visible to lm, then the horizontal projection of v on lm is a Steiner point. Let Vl
(resp., Vr) be the points of V on the left (resp., right) side of lm. The cut-lines and Steiner
points on the left and right sides of lm are defined on Vl and Vr, recursively. We use a

SoCG 2017

60:6 Bicriteria Rectilinear Shortest Paths among Rectilinear Obstacles in the Plane

binary tree T (V) to represent the above recursive procedure, called cut-line tree. Each node
u ∈ T (V) corresponds to a cut-line l(u) and a subset V (u) ⊆ V . If u is the root, then l(u) is
lm and V (u) = V. The left and right subtrees of the root are defined recursively on Vl and
Vr. Hence, T (V) has O(n) nodes and each point of V can define a Steiner point on at most
O(logn) cut-lines. Therefore, there are O(n logn) Steiner points in total.

The vertex set of G(V) consists of all points of V and all Steiner points defined above.
The edges of the graph are defined as follows. First, if a point v ∈ V defines a Steiner point
v′ on a cut-line, then G(V) has an edge vv′. Second, for any two adjacent Steiner points p1
and p2 on each cut-line, if they are visible to each other, then G(V) has an edge p1p2.

Clearly, G(V) has O(n logn) nodes and edges. Each edge of G(V) is either horizontal or
vertical, whose weight is the length of the corresponding line segment. The graph G(V) can
be built in O(n log2 n) time [7, 13, 25]. The following lemma was proved before [7, 13, 25].

I Lemma 1 ([7, 13, 25]). For any two points p and q in V, if Rpq is empty (i.e., Rpq is in
P), then G(V) contains a staircase path from p to q.

For any path π in P, let L1(π) denote its length and let Ld(π) denote its link distance.
For any two points a and b on π, if the context is clear, we often use π(a, b) to denote the
subpath of π between a and b. For any two points p and q in the plane, we say that q is to
the northeast of p if q is in the first quadrant (including its boundary) with respect to p.

3 The YLW Algorithm and Our Correction

In this section, we first review the YLW algorithm [25] and then point out the error. Finally,
we will fix the error. The YLW algorithm is essentially based on the following observation.

I Lemma 2 (Yang et al. [25]). For any optimal path π from s to t in P, there is path πG
in G(V) such that L1(πG) = L1(π) and πG is homotopic to π (i.e., πG can be continuously
dragged to π without going outside of P).

We briefly review the proof of Lemma 2 because it will help to understand the algorithm.
Let π be any optimal path from s to t. It is shown (Lemma 2.1 [25]) that π can be

divided into a sequence of staircase subpaths, and the two endpoints of each such subpath
are in V . Hence, it is sufficient to prove the lemma for any staircase subpath of π. Consider a
staircase subpath π(p, q) of π with p and q as the two endpoints. We further obtain a pushed
staircase path as follows. Without loss of generality, we assume q is to the northeast of p and
the segment of π(p, q) incident to p is horizontal. We push the first vertical segment of π(p, q)
rightwards until either it hits a vertex of V or it becomes collinear with the second vertical
segment of π(p, q). In the latter case, we merge the two vertical segments and keep pushing
the merged segment rightwards. In the former case, we push the next horizontal segment
upwards in a similar way. The procedure stops until we arrive at the segment incident to
q. Let π′ denote the resulting path. Observe that L1(π′) = L1(π(p, q)), π′ is homotopic to
π(p, q), and π′ is also a staircase path. π′ is called a pushed staircase path [25]. Also note
that each segment of π′ contains at least one vertex of V. There are eight types of pushed
staircase paths from p to q depending on which quadrant of p the point q lies in and also
depending on whether the first segment of the path incident to p is horizontal or vertical.

The vertices of V partition π′ into subpaths. To prove the lemma, it is sufficient to show
the following claim: for any subpath π′(p′, q′) of π′ between any two adjacent vertices p′ and
q′ of V on π′, there is a path πG(p′, q′) connecting p′ and q′ in G(V) with the same length
and the two paths are homotopic. Because every segment of π′ contains at least one vertex

H. Wang 60:7

p′

q′

Figure 1 Converting πG(p′, q′) (the dashed red
path) to π′(p′, q′) (the solid blue path between p′ and
q′).

p

t

π2

π1

Figure 2 Illustrating a counter example
for the YLW algorithm.

of V, π′(p′, q′) must be an L-shaped path. Without loss of generality, we assume q′ is to the
northwest of p′. If the rectangle Rp′q′ is empty, then by Lemma 1, the above claim is true.
Otherwise, as shown in [25] (Lemma 4.5), there are some points of V in Rp′q′ that can be
ordered as p′ = v0, v1, . . . , vt = q′ with Rvi−1vi

being empty and vi to the northwest of vi−1
for each 1 ≤ i ≤ t, and further, π′(p′, q′) is homotopic to the concatenation of vi−1vi for all
1 ≤ i ≤ t. By Lemma 1, for each 1 ≤ i ≤ t, G(V) contains a staircase path connecting vi−1
and vi and the path is in Rvi−1vi (and thus is homotopic to vi−1vi). Hence, by concatenating
the staircase paths from vi−1 to vi for all i = 1, 2, . . . , t, we obtain a staircase path from p′ to
q′ and the path is homotopic to π′(p′, q′). Note that the staircase path has the same length
as π′(p′, q′) since π′(p′, q′) is an L-shaped path. The above claim thus follows.

This proves Lemma 2. The proof actually constructs the path πG in G(V) corresponding
to the optimal path π, and πG is called a target path. Yang et al. [25] also showed that π can
be obtained from πG by applying certain dragging operations during searching the graph
G(V). Instead of describing the details of the operation (refer to our full paper or [25]), we
give some intuition on how π can be obtained from πG by using the dragging operations.
Based on the above constructive proof for Lemma 2, we only need to show that for each
L-shaped path π′(p′, q′), it can be obtained from the corresponding staircase path πG(p′, q′)
in G(V). Without loss of generality, we assume that q′ is to the northeast of p′ and the
segment incident to p′ in π′(p′, q′) is vertical. Because πG(p′, q′) is homotopic to π′(p′, q′),
we can convert πG(p′, q′) to π′(p′, q′) as follows (e.g., see Fig. 1). Starting from p′, for each
horizontal segment of πG(p′, q′), drag it upwards until either it hits the horizontal segment of
π′(p′, q′) or it becomes collinear with the next horizontal segment of πG(p′, q′). In the former
case, we have obtained π′(p′, q′). In the latter case, we continue to drag the new horizontal
segment upwards in the same way as before.

The YLW algorithm applies Dijkstra’s algorithm using the measure vector (L1(π), Ld(π))
for a path π. Initially, all vertices of G(V) are in a priority queue Q with measure vectors
(∞,∞) except that the measure vector for s is (0, 0). While Q is not empty, the algorithm
removes from Q the vertex p with the smallest measure vector (lexicographically) and advance
the paths stored at p to each of p’s neighbor q by the dragging operations. Let π(s, q) be a
path obtained for q. There may be other paths already stored at q and the types of the last
staircase subpaths of these paths are also stored (recall that there are eight types of pushed
staircase subpaths). The YLW algorithm relies on the following two rules to determine
whether the new path π(s, q) should be stored at q, and if yes, whether some paths stored at
q should be removed. Let π′(s, q) be any path that has already been stored at q.

Rule(a) If the measure vectors of π(s, q) and π′(s, q) are not the same, then discard the one
whose measure vector is strictly larger.

Rule(b) If π(s, q) and π′(s, q) have the same measure vector and of the same type, compare
their last segments. If they overlap, discard the path whose last segment is longer.

SoCG 2017

60:8 Bicriteria Rectilinear Shortest Paths among Rectilinear Obstacles in the Plane

It is claimed in [25] that once the point t is processed, among all paths stored at t, the
one with the smallest measure vector is an optimal s-t path.

The Error. We find that the algorithm is not correct, mainly due to Rule(a). Figure 2
illustrates a counterexample. Assume that both π1 and π2 are paths from s to p with
L1(π1) = L1(π2) and Ld(π1) + 1 = Ld(π2). Thus, the measure vector of π1 is strictly smaller
than that of π2. According to Rule(a), we should discard π2. Observe that we can obtain an
s-t path from s to t using π2 without any extra link. However, to obtain an s-t path using
π1, we need at least two more links. Therefore, π2 can lead to a better s-t path than π1, and
thus, we should not discard π2. Notice that the reason this happens is that although the
measure vector of π1 is strictly smaller than that of π2, the last segment of π2 is shorter than
that of π1 (and thus it may be “freely” dragged upwards higher than that of π1).

In fact, the most essential reason for this error to happen might be the following. If π is
a shortest s-t path, then for any two points p and q in π, the subpath π(p, q) of π between p
and q is also a shortest path from p to q. However, this may not be the case for minimum-link
paths. Namely, if π is a minimum-link s-t path, then it is possible that for two points p and q
in π, π(p, q) is not a minimum-link path from p to q. Due to this reason, one can verify that
the O(nt+ n logn) time algorithm given by Yang et al. [24] for computing optimal paths is
not correct either. Indeed, the approach in [24] also applies Dijkstra’s algorithm on a graph
to search the optimal paths using the measure vectors like (L1(π), Ld(π)).

3.1 Our New Algorithm
To fix the error, we need to fix Rule(a). We first consider the minimum-link shortest paths.
We replace Rule(a) by the following Rule(a1), but still keep Rule(b). (Recall that π′(s, q)
denotes any path that has already been stored at q.)

Rule(a1) Let π1 be one of π′(s, q) and π(s, q), and π2 the other. If L1(π1) < L1(π2), or
L1(π1) = L1(π2) but Ld(π1) ≤ Ld(π2)− 2, then we discard π2.

By Rule(a1), we may need to store two paths π1 and π2 at q even if the measure vector
of one path is strictly smaller than that of the other, in which case L1(π1) = L1(π2) and
Ld(π1) = Ld(π2)± 1. Hence, unlike the YLW algorithm, each vertex q of G(V) may store
paths with different measure vectors. Therefore, we cannot apply the same “vertex-based”
Dijkstra’s algorithm as before. Instead, we propose a “path-based” Dijkstra’s algorithm.
Roughly speaking, we will process individual paths instead of vertices. Specifically, in the
beginning there is only one path from s to s itself in the priority queue Q. In general, as long
as Q is not empty, we remove from Q the path π with the smallest measure vector. Assume
that the endpoint of π is p. Then, we advance π from p to each of p’s neighbors q. If π(s, q)
is stored at q by our rules (i.e., both Rule(a1) and Rule(b)), then we (implicitly) insert π(s, q)
to Q. The algorithm stops once Q is empty. Since we process paths following the increasing
measure order, the algorithm will eventually stop. Finally, among all paths stored at t, we
return the one with the smallest measure as the optimal solution. The correctness of the
algorithm is proved in the full paper.

In terms of the running time, the YLW algorithm maintains at most eight paths at each
vertex p of G(V). To see this, due to Rule(b), for each type of staircase paths, p maintains
at most one path. In our new algorithm, the paths maintained at p always have the same
length but their link distances differ by at most one. Hence, again due to Rule(b), there
are at most sixteen paths maintained at p. Clearly, this does not affect both the time and

H. Wang 60:9

π2
π3

q

t1

t2

t3

π1

Figure 3 Illustrating an example on why we
need Rule(a2).

Figure 4 Illustrating the vertical visibility de-
composition VD(P) and its dual graph Gvd.

the space complexities of the algorithm asymptotically. Thus, the algorithm still runs in
O(n log2 n) time and O(n logn) space, as the YLW algorithm.

In addition, using another path-preserving graph G∗(V) of O(n log1/2 n) vertices and
O(n log3/2 n) edges [8], Yang et al. [25] proposed another O(n log3/2 n) time and space
algorithm (see Section 4.2 of [25]). Further, Chen et al. [2] reduced the space of the algorithm
to O(n logn) with the same O(n log3/2 n) time (similar technique was also used in [4]). By
applying the techniques of both [25] and [2] to our new method, we can also obtain an
algorithm of O(n log3/2 n) time and O(n logn) space. We omit the details.

We proceed on the problem of finding a minimum-cost s-t path. Recall that we have a
cost function f . For any path π, we use f(π) to denote the cost of the path. Our algorithm
is the same as above with the following changes. First, the paths π in the priority Q are
prioritized by f(π). Second, we replace both Rule(a1) and Rule(b) by the following rule.

Rule(a2) Let π1 be one of π′(s, q) and π(s, q), and π2 the other. If the last segments of π1
and π2 are exactly the same and f(π1) ≤ f(π2), then we discard π2.

We give some intuition on why we use the above rule. Refer to Fig. 3, where there are
three paths π1, π2, and π3 from s to q. Let si be the last segment of πi for each 1 ≤ i ≤ 3,
and we assume that they overlap with |s1| < |s2| < |s3|, where |si| is the length of each si.
We also assume that Ld(π1) = Ld(π2) = Ld(π3) and L1(π1) > L1(π2) > L1(π3). In this
case, we have to keep all three paths because any of them may lead to the best path from s

to t. For example, for each 1 ≤ i ≤ 3, the path πi may lead to the best path from s to ti.
One can generalize the example so that a total of Ω(n) paths may need to be stored at p.
However, O(n) is the upper bound since the last segment of each such path starts from a
different vertex of G(V) in the horizontal line through q and there are O(n) such vertices.
For this reason, their are O(n2 logn) paths stored in all O(n logn) vertices of G(V). Hence,
the running time of the algorithm becomes O(n2 log2 n) and the space becomes O(n2 logn).
As for the minimum-link shortest paths, by using the graph G∗(V) and the techniques in
[2, 25], we can reduce the running time by a factor of

√
logn. We omit the details.

For computing a shortest minimum-link s-t path, we use a similar algorithm as above but
with the following changes. First, we use the measure vector (Ld(π), L1(π)) instead. Second,
we use the following rule, which is similar to Rule(a2). The complexities are the same as the
above for minimum-cost paths.

Rule(a3) Let π1 be one of π′(s, q) and π(s, q), and π2 the other. If the last segments of π1
and π2 are exactly the same and the measure vector of π1 is no larger than that of π2,
then we discard π2.

SoCG 2017

60:10 Bicriteria Rectilinear Shortest Paths among Rectilinear Obstacles in the Plane

d

Figure 5 Illustrating the corridor structure and the
corridor graph Gcor of three vertices. There are three
junction rectangles, which are highlighted. Each con-
nected white region is a corridor, which corresponds to
an edge of Gcor. The diagonal d forms a degenerated
corridor.

e H

Figure 6 Illustrating the maximal histo-
gram H, which has three windows shown
with (red) dotted segments.

4 The Improved Algorithm

We further improve our algorithm, so that in addition to O(n), the complexities of our
improved algorithm only depend on h, i.e., the number of holes of P. We first review the
corridor structure of P [17] and the histogram partitions of rectilinear simple polygons [21].

The Corridor Structure of P. For ease of exposition, we make a general position assumption
that no two edges of P are collinear. The vertical visibility decomposition of P, denoted by
VD(P), is obtained by extending each vertical edge of P until it hits the boundary of P.
Each cell of VD(P) is a rectangle. Each extension segment is called a diagonal of VD(P).

Let Gvd be the dual graph of VD(P) (see Fig. 4), i.e., each node of Gvd corresponds
to a cell of VD(P) and two nodes have an edge if the corresponding cells share an edge.
Based on Gvd, we obtain a corridor graph Gcor as follows. First, we keep removing every
degree-one node from Gvd along with its incident edge until no such nodes remain. Second,
we keep contracting every degree-two node from Gvd (i.e., remove the node and replace its two
incident edges by a single edge) until no such nodes remain. The graph thus obtained is Gcor,
which has O(h) nodes and O(h) edges [17]. See Fig. 5. The cells of VD(P) corresponding to
the nodes of Gcor are called junction rectangles. If we remove all junction rectangles from
P, each connected region is a simple rectilinear polygon, which is called a corridor. Each
corridor has two diagonals each of which is on a vertical side of a junction rectangle, and we
call them the doors of the corridor. For convenience, if a diagonal d bounds two junction
rectangles (see Fig. 5), then we consider d itself as a “degenerate” corridor whose two doors
are both d. With the degenerated corridors, each vertex of P lies in a unique corridor.

The decomposition VD(P) can be computed in O(n+ h log1+ε h) time for any ε > 0 [1].
After VD(P) is known, the corridor structure of P can be obtained in O(n) time.

The Histogram Partitions. The histogram partition is a decomposition of a simple rec-
tilinear polygon [21]. We will need to build the histogram partitions on the corridors
of P.

A simple rectilinear polygon H is called a histogram if its boundary can be divided into
an x- or y-monotone chain and a single line segment, which is called the base of H.

Consider a simple rectilinear polygon Q (e.g., a corridor C of the corridor structure of
P) and let e be an edge of Q (e.g., a door of C). A histogram partition of Q with respect
to e, denoted by H(Q, e), is defined as follows. Let H be the maximal histogram with base

H. Wang 60:11

d1 d2R

Figure 7 Illustrating an open corridor: the
canal R and the two bridges are highlighted. The
four points on the two doors are backbone points.

d1

d2

w1q1

w2 q2

Figure 8 Illustrating a closed corridor. The
points q1 and q2 are backbone points on d1 and
d2, respectively.

e in Q, i.e., there is no other histogram in Q with base e that can properly contain it (see
Fig. 6). A window of H is a maximal segment on the boundary of H that is contained in
the interior of Q except its two endpoints. For each window w of H, it divides H into two
subpolygons, and we let Q(w) be the one that does not contain e. If H does not have a
window, we are done with the histogram partition of Q. Otherwise, for each window w, we
perform the above partition on Q(w) recursively with respect to w.

For any points p and q in Q, it is known that there exists a path from p to q in Q that is
both a shortest path and a minimum-link path [10, 11, 21], and we call it a smallest path.

4.1 A Reduced Path Preserving Graph
Recall that our algorithm in Section 3 use a graph G(V), which is built on the vertices of
V and has O(n logn) nodes and edges. In this section, as a major tool for reducing the
complexities of our algorithm, we propose a reduced graph of O(h log h) nodes and edges. We
first introduce a set B of O(h) backbone points on the doors of the corridors of P.

The Backbone Points. Consider a corridor C of the corridor structure of P . Let d1 and d2
be the two doors of C, which are both vertical. The region of C excluding the two doors is
called the interior of C. If there exist a point p1 ∈ d1 and a point p2 ∈ d2 such that p1p2 is
horizontal and p1p2 in C then we say that C is an open corridor ; otherwise, it is closed.

Consider an open corridor C (see Fig. 7). Let p1 and p2 be the points defined above.
Imagine that we drag p1p2 vertically upwards (resp., downwards) until we hit a vertex of C,
then the current locations of p1 and p2 are two backbone points. In this way, each door of
C has two backbone points. Clearly, the rectangle R with the four backbone points as the
vertices is in C and we call R the canal of C. The two horizontal edges of R are called bridges
of C. Further, the top edge of R is the upper bridge and the bottom edge is the lower bridge.

If C is a degenerate corridor, which is a single diagonal d, then C is also an open corridor
and the upper (resp., lower) bridge is degenerated to the upper (resp., lower) endpoint of d.

Next, we consider the case where C is closed (see Fig. 8). Let H1 be the maximal histogram
in C with base d1. As C is closed, H1 has a window w1 that separates d1 from d2, that is, w1
divides C into two sub-polygons that contain d1 and d2, respectively. By the definition of
windows, if we extend w1 to d1, the extension will hit d1 at a point, denoted by q1, before it
goes out of C. Similarly, we define H2, w2, and q2, with respect to the other door d2. The
two points q1 and q2 are backbone points of C.

The above defines two backbone points on each door of every open corridor and one
backbone point on each door of every closed corridor. Let B denote the set of all such
backbone points. Since there are O(h) corridors, the size of B is O(h).

SoCG 2017

60:12 Bicriteria Rectilinear Shortest Paths among Rectilinear Obstacles in the Plane

The Reduced Graph G(B). In the sequel, we introduce the reduced graph, denoted by
G(B). We first consider the case where both s and t are in junction rectangles. With a little
abuse of notation, we let B also contain both s and t.

We build the graph G(B) with respect to the points of B in the same way as G(V) with
respect to V in Section 3. Hence, G(B) has O(h log h) vertices and O(h log h) edges. In
addition, we add the following O(h) edges to G(B). Consider a closed corridor C with the
two backbone points q1 and q2 on its two doors. Note that q1 and q2 are also two vertices
in G(B). We add to G(B) an edge e(q1, q2) to connect q1 and q2 with length equal to
L1(π(C, q1, q2)), where π(C, q1, q2) is a shortest path from q1 to q2 in C. We call e(q1, q2) a
corridor edge of G(B), and call π(C, q1, q2) a corridor path of C. We do this for all closed
corridors. This completes the construction of G(B). Since there are O(h) corridors, G(B)
has O(h) corridor edges. For differentiation, other edges of G(B) that are not corridor edges
are called ordinary edges. Hence, G(B) has O(h log h) edges in total. Note that every path
πG(B) in G(B) corresponds to a path π in P with the same length in the sense that if the
path πG(B) contains a corridor edge, then π contains the corresponding corridor path.

The following lemma is analogous to Lemma 2, but on the reduced graph G(B). It
explains why the graph G(B) can help to find optimal paths.

I Lemma 3. There exists a path πG(B) in G(B) from s to t that is homotopic to an optimal
s-t path and the two paths have the same length; we call πG(B) a target path.

Lemma 3 implies that a shortest s-t path in G(B) is a shortest s-t path in P . Hence, G(B)
is indeed a “path-preserving” graph. We can compute G(B) in O(n+ h log2 h) time using
the previous algorithm [7, 13, 25] as well as a so-called reduced domain Pr, which consists of
all junction rectangles and the canals of all open corridors of P. The details are omitted.

4.2 Computing an Optimal Path
In this section, we compute an optimal s-t path using G(B). We will show that an optimal
s-t path can be computed by applying the dragging operations as in [25] on the ordinary
edges of πG(B) and applying a new kind of operations, called through-corridor-path generating
operations, on corridor edges of πG(B), where πG(B) is a target path defined in Lemma 3.

The algorithmic scheme is similar to that in Section 3.1. When we advance the searching
process through an ordinary edge, we perform a dragging operation as in [25]. If we are
advancing along a corridor edge, then we apply a through-corridor-path generating operation,
which is introduced in the following. We first review some results from Schuierer [21].

Consider a closed corridor C. Let d be a door of C and let q be the backbone point on d.
Recall that q is an extension of a window w of the maximal histogram H in C with base d.

Let p be a point in C. Following the terminology in [21], a rectilinear path from p to a
point on d is called an admissible path if the last link is orthogonal to d. A minimum-link
admissible path from p to d is an admissible path from p to any point of d with the smallest
number of links, and we use Ld(p, d) to denote the number of links in the path. Let I1(p, d)
(resp., I2(p, d)) denote the set of points on d that can be reached by p with an admissible
path of at most Ld(p, d) (resp., Ld(p, d) + 1) links (e.g., see Fig. 9). It is known that each
of I1(p, d) and I2(p, d) is an interval of d, and I1(p, d) ⊆ I2(p, d) [21]. Further, if p is not
horizontally visible to d, then both intervals have q as one of their endpoints. By using the
histogram partition H(C, d), Schuierer [21] built a data structure in O(|C|) time such that
given any point p ∈ C, the two intervals I1(p, d) and I2(p, d) can be determined in O(log |C|)
time. With a little abuse of notation, we also use H(C, d) to refer to the above data structure.

H. Wang 60:13

q

d

I1(p, d)
I2(p, d)

p

wa b

Figure 9 Illustrating the two intervals I1(p, d)
and I2(p, d), where Ld(p, d) = 3 and ab is the
window w. The two blue segments are doors of
the corridor.

q

d

p

λ2(p, d)

p′

λ1(p, d)

p1 p2

w

Figure 10 Illustrating the two points λ1(p, d)
and λ2(p, d) on the window w. p′ is also a back-
bone point.

Suppose p is a point on the other door of C than d (so p is not horizontally visible to d).
Then, I1(p, d) is uniquely determined by a point, denoted by λ1(p, d), on the window w in
the following way [21] (e.g., see Fig. 10). Recall that d is vertical and thus w is horizontal.
Without loss of generality, assume that the histogram H is locally above w and locally on
the left of d. We shoot a ray from λ1(p, d) upwards until a point p1 on the boundary of C
and then we project p1 perpendicular to d and let p2 be the projection point. The point p2
is the other endpoint of the interval I1(p, d), i.e., I1(p, d) = qp2. Note that p2 is above q.
Let I ′1(p, d) denote the segment λ1(p, d)q, which is on the extension of the window w. We
can also understand the two intervals I1(p, d) and I ′1(p, d) in the following way. There exists
an admissible path of Ld(p, d) links from p to q, denoted by π1(C, p, q), which is actually a
smallest path from p to q, and its last link is I ′1(p, d); for any point q′ ∈ I1(p, d), by dragging
the last segment of π1(C, p, q) upwards until q′, we can obtain an admissible path of Ld(p, d)
links from p to q′. The data structure H(C, d) can also report λ1(p, d) in O(logn) time and
the path π1(C, p, q) can be output in additional time linear in the link distance of the path.

The interval I2(p, d) is uniquely determined by a point λ2(p, d) on the window w in the
similar way as above. Similarly, we define I ′2(p, d) and the corresponding admissible path of
Ld(p, d) + 1 links from p to q whose last link is I ′2(p, d), denoted by π2(C, p, q), which is a
shortest path (but not necessarily a smallest path) from p to q in C [21]. Similarly, the data
structure H(C, d) can also report λ2(p, d) in O(logn) time and the path π2(C, p, q) can be
output in additional time linear in the link distance of the path.

In the following, we introduce our through-corridor-path generating operations for advan-
cing paths along corridor edges in our algorithm for searching the graph G(B).

Consider a corridor edge e(q1, q2) connecting two vertices q1 and q2 of G(B). Note that
q1 and q2 are two backbone points that are on the two doors d1 and d2 of a closed corridor
C, respectively. Consider a path π(s, q1) from s to q1 maintained by our algorithm. Suppose
we want to advance π(s, q1) from q1 to q2 along the corridor edge e(q1, q2). We perform the
following through-corridor-path generating operation that will extend π(s, q1) from q1 to q2
to obtain a path π(s, q2) from s to q2.

Recall that q1 is an extension of a window w1 of the maximal histogram H1 in C with
base d1. Hence, w1 divides C into two sub-polygons that contain d1 and d2, respectively.
Without loss of generality, we assume that the sub-polygon containing d2 is locally above w1.
We also assume that C is locally on the right of d1 (e.g., see Fig. 11).

Let α be the last segment of π(s, q1) (i.e., the one incident to q1) and let p be the other
endpoint of α than q1. Suppose we have already built the data structure H(C, d2) for C with
respect to the door d2. Depending on whether α is horizontal or vertical, there are two cases.

SoCG 2017

60:14 Bicriteria Rectilinear Shortest Paths among Rectilinear Obstacles in the Plane

d2

q1

q2

d1

w1

w2

p

α

π(s, q1)

Figure 11 Illustrating the through-corridor-
path generating operation for the case where α is
horizontal. The path π1(C, q1, q2) are shown with
red dashed segments.

d2

q1

q2
d1

p

α

π(s, q1)

λ1(p, d2)w2

w1

Figure 12 Illustrating the through-corridor-
path generating operation for the case where α
is vertical and p is on d1 below q1. The smallest
path πopt(C, q1, q2) are shown with red dashed
segments. Note that I ′

1(p, d2) = λ1(p, d2)q2.

1. If α is horizontal (e.g., see Fig. 11), then p must be to the left of q1 since C is locally
on the right side of d1. In this case, we use H(C, d2) to determine the path π1(C, q1, q2)
(whose last link is I ′1(q1, d2)) and concatenate it with π(s, q1) to obtain π(s, q2). We also
compute the number of links of π(s, q2) and its length, and store them at q2. Note that
L1(π(s, q1)) and Ld(π(s, q1)) are already stored at q1.

2. If α is vertical, then depending on whether p is above q1, there are two subcases.
a. If p is above q1, then we use the same approach as above to obtain π(s, q2). Note that

in this case the path makes a turn at q1 while there is no turn at q1 in the above case.
b. If p is below q1, then depending on whether p is on d1, there are further two subcases.

i. If p is not on d1, then we use the same approach as above to obtain π(s, q2).
ii. If p is on d1, this is the trickiest case. Let πopt(C, p, q2) denote the smallest path

from p to q2 in C whose last link is I ′1(p, d2) (e.g., see Fig. 12). πopt(C, p, q2) can also
be determined in O(logn) time by the data structure H(C, d2). We obtain π(s, q2)
by concatenating πopt(C, p, q2) with the subpath of π(s, q1) between s and p.

As a summary, to obtain π(s, q2), if Case 2(b)ii happens, then we connect the subpath of
π(s, q1) between s and p with πopt(C, p, q2); otherwise, we connect π(s, q1) with π1(C, q1, q2).
Note that in either case the last link of π(s, q2) is I ′1(q1, d2). In either case, let π′ be the
subpath of π(s, q2) contained in C. With the histogram partition H(C, d2), we can obtain
L1(π′) and Ld(π′) as well as the first and last links of π′ in O(logn) time (the path π′ can be
output in additional O(Ld(π′)) time). Hence, we can compute L1(π(s, p2)) and Ld(π(s, p2))
as well as its last link in O(logn) time, without explicitly computing the path π′. Therefore,
the through-corridor-path generating operation can be performed in O(logn) time.

As discussed before, our algorithm works in the same way as the one in Section 3 except
that we apply through-corridor-path generating operations on corridor edges of G(B) instead
of the dragging operations. We can compute the histogram partitions for all closed corridors
as the preprocessing for performing the through-corridor-path generating operations, and the
total preprocessing time is O(n) since the size of all corridors is O(n). After the algorithm
finishes, the path stored at t with the smallest measure is an optimal s-t path.

The above only discussed the case where both s and t are in junction rectangles. We
can generalizes the approach to other cases if at least one of them is in a corridor. This
is done by introducing corridor-connection points and adding a beginning procedure and a
concatenation procedure to the algorithm. The details can be found in the full paper [22].

H. Wang 60:15

I Theorem 4. We can compute a minimum-link shortest s-t path in O(n+ h log3/2 h) time
and O(n+ h log h) space, and compute a shortest minimum-link s-t path or a minimum-cost
s-t path in O(n+ h2 log3/2 h) time and O(n+ h2 log h) space.

References
1 R. Bar-Yehuda and B. Chazelle. Triangulating disjoint Jordan chains. International Journal

of Computational Geometry and Applications, 4(4):475–481, 1994.
2 D.Z. Chen, O. Daescu, and K. S. Klenk. On geometric path query problems. International

Journal of Computational Geometry and Applications, 11(6):617–645, 2001.
3 D.Z. Chen, R. Inkulu, and H. Wang. Two-point L1 shortest path queries in the plane. In

Proc. of the 30th Annual Symposium on Computational Geometry, pages 406–415, 2014.
4 D.Z. Chen, K. S. Klenk, and H.-Y.T. Tu. Shortest path queries among weighted obstacles

in the rectilinear plane. SIAM Journal on Computing, 29(4):1223–1246, 2000.
5 D.Z. Chen and H. Wang. A nearly optimal algorithm for finding L1 shortest paths among

polygonal obstacles in the plane. In Proc. of the 19th European Symposium on Algorithms,
pages 481–492, 2011.

6 D.Z. Chen and H. Wang. L1 shortest path queries among polygonal obstacles in the plane.
In Proc. of 30th Symp. on Theoretical Aspects of Computer Science, pages 293–304, 2013.

7 K. Clarkson, S. Kapoor, and P. Vaidya. Rectilinear shortest paths through polygonal
obstacles in O(n log2 n) time. In Proc. of the 3rd Annual Symposium on Computational
Geometry, pages 251–257, 1987.

8 K. Clarkson, S. Kapoor, and P. Vaidya. Rectilinear shortest paths through polygonal
obstacles in O(n log2/3 n) time. Manuscript, 1988.

9 G. Das and G. Narasimhan. Geometric searching and link distance. In Proc. of the 2nd
Workshop of Algorithms and Data Structures, pages 261–272, 1991.

10 M. de Berg. On rectilinear link distance. Computational Geometry: Theory and Applica-
tions, 1:13–34, 1991.

11 J. Hershberger and J. Snoeyink. Computing minimum length paths of a given homotopy
class. Computational Geometry: Theory and Applications, 4(2):63–97, 1994.

12 H. Imai and T. Asano. Efficient algorithms for geometric graph search problems. SIAM
Journal on Computing, 15(2):478–494, 1986.

13 D.T. Lee, C.D. Yang, and T.H. Chen. Shortest rectilinear paths among weighted obstacles.
International Journal of Computational Geometry and Applications, 1(2):109–124, 1991.

14 J. S. B. Mitchell. An optimal algorithm for shortest rectilinear paths among obstacles.
Abstracts of the 1st Canadian Conference on Computational Geometry, 1989.

15 J. S. B. Mitchell. L1 shortest paths among polygonal obstacles in the plane. Algorithmica,
8(1):55–88, 1992.

16 J. S. B. Mitchell, V. Polishchuk, and M. Sysikaski. Minimum-link paths revisited. CGTA,
47:651–667, 2014.

17 J. S. B. Mitchell, V. Polishchuk, M. Sysikaski, and H. Wang. An optimal algorithm for
minimum-link rectilinear paths in triangulated rectilinear domains. In Proc. of the 42nd
International Colloquium on Automata, Languages and Programming, pages 947–959, 2015.

18 J. S. B. Mitchell, G. Rote, and G. Woeginger. Minimum-link paths among obstacles in the
plane. Algorithmica, 8:431–459, 1992.

19 V. Polishchuk and J. S. B. Mitchell. k-Link rectilinear shortest paths among rectilinear
obstacles in the plane. In Proc. of the 17th Canadian Conference on Computational Geo-
metry (CCCG), pages 101–104, 2005.

20 M. Sato, J. Sakanaka, and T. Ohtsuki. A fast line-search method based on a tile plane. In
Proc. of the IEEE International Symposium on Circuits and Systems, pages 588–597, 1987.

SoCG 2017

60:16 Bicriteria Rectilinear Shortest Paths among Rectilinear Obstacles in the Plane

21 S. Schuierer. An optimal data structure for shortest rectilinear path queries in a simple
rectilinear polygon. International Journal of Computational Geometry and Applications,
6:205–226, 1996.

22 H. Wang. Bicriteria rectilinear shortest paths among rectilinear obstacles in the plane.
arXiv:1703.04466, 2017.

23 Y.-F. Wu, P. Widmayer, M.D. F. Schlag, and C.K. Wong. Rectilinear shortest paths and
minimum spanning trees in the presence of rectilinear obstacles. IEEE Transactions on
Computers, 36:321–331, 1987.

24 C.D. Yang, D.T. Lee, and C.K. Wong. On bends and lengths of rectilinear paths: A
graph-theoretic approach. Int. J. Comput. Geom. Appl., 02:61–74, 1992.

25 C.D. Yang, D.T. Lee, and C.K. Wong. Rectilinear path problems among rectilinear
obstacles revisited. SIAM Journal on Computing, 24:457–472, 1995.

	Introduction
	Preliminaries
	The YLW Algorithm and Our Correction
	Our New Algorithm

	The Improved Algorithm
	A Reduced Path Preserving Graph
	Computing an Optimal Path

