
On the Number of Ordinary Lines Determined by
Sets in Complex Space∗†

Abdul Basit1, Zeev Dvir2, Shubhangi Saraf3, and Charles Wolf4

1 Department of Computer Science, Rutgers University, Piscataway, NJ, USA
basit.abdul@gmail.com

2 Department of Mathematics and Department of Computer Science, Princeton
University, Princeton, NJ, USA
zeev.dvir@gmail.com

3 Department of Computer Science and Department of Mathematics, Rutgers
University, Piscataway, NJ, USA
shubhangi.saraf@gmail.com

4 Department of Mathematics, Rutgers University, Piscataway, NJ, USA
ciw13@math.rutgers.edu

Abstract
Kelly’s theorem states that a set of n points affinely spanning C3 must determine at least one
ordinary complex line (a line passing through exactly two of the points). Our main theorem
shows that such sets determine at least 3n/2 ordinary lines, unless the configuration has n − 1
points in a plane and one point outside the plane (in which case there are at least n− 1 ordinary
lines). In addition, when at most n/2 points are contained in any plane, we prove a theorem
giving stronger bounds that take advantage of the existence of lines with four and more points (in
the spirit of Melchior’s and Hirzebruch’s inequalities). Furthermore, when the points span four
or more dimensions, with at most n/2 points contained in any three dimensional affine subspace,
we show that there must be a quadratic number of ordinary lines.
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1 Introduction

Let V = {v1, v2, . . . , vn} be a set of n points in Cd. We denote by L(V) the set of lines
determined by points in V , and by Lr(V) (resp. L≥r(V)) the set of lines in L(V) that contain
exactly (resp. at least) r points. Let tr(V) denote the size of Lr(V). Throughout the write-up
we omit the argument V when the context makes it clear. We refer to L2 as the set of
ordinary lines, and L≥3 as the set of special lines.

A well known result in combinatorial geometry is the Sylvester-Gallai theorem.

I Theorem 1 (Sylvester-Gallai theorem). Let V be a set of n points in R2 not all on a line.
Then there exists an ordinary line determined by points of V.
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The statement was conjectured by Sylvester in 1893 [18], and the first published proof is by
Melchior [14]. Later proofs were given by Gallai in 1944 [8] and others; there are now several
different proofs of the theorem. Of particular interest is the following result by Melchior [14].

I Theorem 2 (Melchior’s inequality [14]). Let V be a set of n points in R2 that are not
collinear. Then

t2(V) ≥ 3 +
∑
r≥4

(r − 3)tr(V).

Theorem 2 in fact proves something stronger than the Sylvester-Gallai theorem, i.e. there are
at least three ordinary lines. A natural question to ask is how many ordinary lines must a
set of n points, not all on a line, determine. This led to what is known as the Dirac-Motzkin
conjecture.

I Conjecture 3 (Dirac-Motzkin conjecture). For every n 6= 7, 13, the number of ordinary
lines determined by n noncollinear points in the plane is at least

⌈
n
2
⌉
.

There were several results on this question (see [15, 13, 5]), before Green and Tao [9] resolved
it for large enough point sets.

I Theorem 4 (Green and Tao [9]). Let V be a set of n points in R2, not all on a line. Suppose
that n ≥ n0 for a sufficiently large absolute constant n0. Then t2(V) ≥ n

2 for even n and
t2(V) ≥

⌊ 3n
4
⌋
for odd n.

[9] provides a nice history of the problem, and there are several survey articles on the topic,
see for example [3].

The Sylvester-Gallai theorem is not true when the field R is replaced by C. The well
known Hesse configuration, realized by the nine inflection points of a non-degenerate cubic,
provides a counter example. A more general example is the following:

I Example 5 (Fermat configuration). For any positive integer k ≥ 3, let V be inflection points
of the Fermat Curve Xk + Y k + Zk = 0 in PC2. Then V has n = 3k points, in particular

V =
k⋃
i=1
{[1 : ωi : 0]} ∪ {[ωi : 0 : 1]} ∪ {[0 : 1 : ωi]},

where ω is a kth root of −1.
It is easy to check that V determines three lines containing k points each, while every

other line contains exactly three points. In particular, V determines no ordinary lines.1

In response to a question of Serre [17], Kelly [12] showed that when the points span more
than two dimensions, the point set must determine at least one ordinary line.

I Theorem 6 (Kelly’s theorem [12]). Let V be a set of n points in C3 that are not contained
in a plane. Then there exists an ordinary line determined by points of V.

Kelly’s proof of Theorem 6 used a deep result of Hirzebruch [11] from algebraic geometry.
More specifically, it used the following result, known as Hirzebruch’s inequality.

1 We note that the while Fermat configuration as stated lives in the projective plane, it can be made
affine by any projective transformation that moves a line with no points to the line at infinity.
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I Theorem 7 (Hirzebruch’s inequality [11]). Let V be a set of n points in C2, such that
tn(V) = tn−1(V) = tn−2(V) = 0. Then

t2(V) + 3
4 t3(V) ≥ n+

∑
r≥5

(2r − 9)tr(V).

More elementary proofs of Theorem 6 were given in [7] and [6]. To the best of our knowledge,
no lower bound greater than one is known for the number of ordinary lines determined by
point sets spanning C3. Improving on the techniques of [6], we make the first progress in
this direction.

I Theorem 8. Let V be a set of n ≥ 24 points in C3 not contained in a plane. Then V
determines at least 3

2n ordinary lines, unless n− 1 points are on a plane in which case there
are at least n− 1 ordinary lines.

Clearly if n− 1 points are coplanar, it is possible to have only n− 1 ordinary lines. In
particular, let V consist of the Fermat Configuration, for some k ≥ 3, on a plane and one
point v not on the plane. Then V has 3k + 1 points, and the only ordinary lines determined
by V are lines that contain v, so there are exactly 3k ordinary lines. We are not aware of any
examples that achieve the 3

2n bound when at most n− 2 points are contained in any plane.
Using a similar argument, for point sets in R3, Theorems 4 and 8 give us the following easy
corollary.

I Corollary 9. Let V be a set of n points in R3 not contained in a plane. Suppose that
n ≥ n0 for a sufficiently large absolute constant n0. Then V determines at least 3

2n − 1
ordinary lines.

When V is sufficiently non-degenerate, i.e. no plane contains too many points, we are
able to give a more refined bound in the spirit of Melchior’s and Hirzebruch’s inequalities,
taking into account the existence of lines with more than three points. In particular, we
show the following (the constant 1/2 in Theorem 10 is arbitrary and can be replaced by any
positive constant smaller than 1):

I Theorem 10. There exists an absolute constant c > 0 and a positive integer n0 such that
the following holds. Let V be a set of n ≥ n0 points in C3 with at most 1

2n points contained
in any plane. Then

t2(V) ≥ 3
2n+ c

∑
r≥4

r2tr(V).

Suppose that V consists of n− k points on a plane, and k points not on the plane. There
are at least n− k lines through each point not on the plane, at most k − 1 of which could
contain three or more points. So we get that there are at least k(n − 2k) ordinary lines
determined by V. Then if k = εn, for 0 < ε < 1/2, we get that V has Ωε(n2) ordinary
lines, where the hidden constant depends on ε. Therefore, the bound in Theorem 10 is only
interesting when no plane contains too many points.

We note that having at most a constant fraction of the points on any plane is necessary
to obtain a bound as in Theorem 10. Indeed, let V consist of the Fermat Configuration
for some k ≥ 3 on a plane and o(k) points not on the plane. Then V has O(k) points and
determines o(k2) ordinary lines. On the other hand,

∑
r≥4 r

2tr(V) = Ω(k2).
Finally, when a point set V spans four or more dimensions in a sufficiently non-degenerate

manner, i.e. no three dimensional affine subspace contains too many points, we prove that
there must be a quadratic number of ordinary lines.

SoCG 2017
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I Theorem 11. There exists an absolute constant c′ > 0 and a positive integer n0 such that
the following holds. Let V be a set of n ≥ n0 points in C4 with at most 1

2n points contained
in any three dimensional affine subspace. Then

t2(V) ≥ c′n2.

Here, again, the constant 1/2 is arbitrary and can be replaced by any positive constant
less than 1. However, increasing this constant will shrink the constant c′ in front of n2. A
quadratic lower bound may also be possible if at most 1

2n points are contained in any two
dimensional space, but we have no proof or counterexample.

Note that while we state Theorems 8 and 10 over C3 and Theorem 11 over C4, the same
bounds hold in higher dimensions as well since we may project a point set in Cd onto a
generic lower dimensional subspace, preserving the incidence structures. In addition, while
these theorems are proved over C, these results are also new and interesting over R.

Organization. In Section 2 we give a short overview of the new ideas in our proof (which
builds upon [6]). In Section 3 we develop the necessary machinery on matrix scaling and
Latin squares. In Section 4, we prove some key lemmas that will be used in the proofs of our
main results. Section 5 gives the proof of Theorem 8, which is considerably simpler than
Theorems 10 and 11. In Section 6, we develop additional machinery needed for the proof of
Theorem 10 and describe the basic proof idea. The complete proofs of Theorems 10 and 11
can be found in the full version of the paper.

2 Proof overview

The starting point for the proofs of Theorems 8, 10 and 11 is the method developed in [2, 6]
which uses rank bounds for design matrices – matrices in which the supports of different
columns do not intersect in too many positions. We augment the techniques in these papers
in several ways which give us more flexibility in analyzing the number of ordinary lines. We
devote this short section to an overview of the general framework (starting with [6]) outlining
the places where new ideas come into play.

Let V = {v1, . . . , vn} be points in Cd and denote by V the n× (d+ 1) matrix whose ith
row is the vector (vi, 1) ∈ Cd+1, i.e. the vector obtained by appending a 1 to the vector vi.
The dimension of the (affine) space spanned by the point set can be seen to be equal to
rank(V )−1. We would now like to argue that too many collinearities in V (or too few ordinary
lines) imply that all (or almost all) points of V must be contained in a low dimensional
affine subspace, i.e. rank(V ) is small. To do this, we construct a matrix A, encoding the
dependencies in V , such that AV = 0. Then we must have rank(V ) ≤ n− rank(A), and so it
suffices to lower bound the rank of A.

We construct the matrix A in the following manner so that each row of A corresponds to
a collinear triple in V. For any collinear triple {vi, vj , vk}, there exist coefficients ai, aj , ak
such that aivi + ajvj + akvk = 0. We can thus form a row of A by taking these coefficients
as the nonzero entries in the appropriate columns. By carefully selecting the triples using
constructions of Latin squares (see Lemma 22), we can ensure that A is a design matrix.

The proof in [6] now proceeds to prove a general rank lower bound on any such design-
matrix. To understand the new ideas in our proof, we need to ‘open the box’ and see how the
rank bound from [6] is actually proved. The proof in [6] relies on matrix scaling techniques
to gain control of the matrix. We are allowed to multiply each row and each column of A
by a nonzero scalar and would like to reduce to the case where the entries of A are ‘mostly
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balanced’ (see Theorem 14 and Corollary 15). Once scaled, we can consider M = A∗A

(note that rank(M) = rank(A)). The design properties of A are then used to show that the
diagonal entries of M are large and the off-diagonal entries are small. Such matrices are
referred to as diagonal dominant matrices, and it is easy to lower bound their rank using
trace inequalities (see Lemma 16).

Our proof introduces two new main ideas into this picture. The first idea has to do with
the conditions needed to scale A. It is known (see Corollary 15) that a matrix A has a
good scaling if it does not contain a ‘too large’ zero submatrix. This is referred to as having
Property-S (see Definition 13). The proof of [6] uses A to construct a new matrix B, whose
rows are the same as those of A but with some rows repeating more than once. Then one
shows that B has Property-S and continues to scale B (which has rank at most that of A)
instead of A. This loses the control on the exact number of rows in A which is crucial for
bounding the number of ordinary lines. We instead perform a more careful case analysis: If
A has Property-S then we scale A directly and gain more information about the number
of ordinary lines. If A does not have Property-S, then we carefully examine the large zero
submatrix that violates Property-S. Such a zero submatrix corresponds to a set of points
and a set of lines such that no line passes through any of the points. We argue in Lemma 26
that such a submatrix implies the existence of many ordinary lines.

The second new ingredient in our proof comes into play only in the proof of Theorem 10.
Here, our goal is to improve on the rank bound of [6] using the existence of lines with four or
more points. Recall that our goal is to give a good upper bound on the off-diagonal entries
of M = A∗A. Consider the (i, j)’th entry of M , obtained by taking the inner product of
columns i and j in A. The i’th column of A contains the coefficients of vi in a set of collinear
triples containing vi (we might not use all collinear triples). In [6] this inner product is
bounded using the Cauchy-Schwartz inequality, and uses the fact that we picked our triple
family carefully so that vi and vj appear together in a small number of collinear triples.
One of the key insights of our proof is to notice that since the entries come from linear
dependencies, having more than three points on a line gives rise to cancellations in the inner
products (which increase the more points we have on a single line).

3 Preliminaries

3.1 Matrix Scaling and Rank Bounds

One of the main ingredients in our proof is rank bounds for design matrices. These techniques
were first used for incidence type problems in [2] and improved upon in [6]. We first set up
some notation. For a complex matrix A, let A∗ denote the matrix conjugated and transposed.
Let Aij denote the entry in the ith row and jth column of A. For two complex vectors
u, v ∈ Cd, we denote their inner product by 〈u, v〉 =

∑d
i=1 ui · vi.

Central to the obtaining rank bounds for matrices is the notion of matrix scaling. We
now introduce this notion and provide some definitions and lemmas.

I Definition 12 (Matrix Scaling). Let A be an m× n matrix over some field F. For every
ρ ∈ Fm, γ ∈ Fn with all entries nonzero, the matrix A′ with A′ij = Aij · ρi · γj is referred to
as a scaling of A. Note that two matrices that are scalings of each other have the same rank.

We will be interested in scalings of matrices that control the row and column sums. The
following property provides a sufficient condition under which such scalings exist.

SoCG 2017
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I Definition 13 (Property-S). Let A be an m× n matrix over some field. We say that A
satisfies Property-S if for every zero submatrix of size a× b, we have

a

m
+ b

n
≤ 1.

The following theorem is given in [16].

I Theorem 14 (Matrix Scaling theorem). Let A be an m× n real matrix with non-negative
entries satisfying Property-S. Then, for every ε > 0, there exists a scaling A′ of A such that
the sum of every row of A′ is at most 1 + ε, and the sum of every column of A′ is at least
m/n− ε. Moreover, the scaling coefficients are all positive real numbers.

We may assume that the sum of every row of the scaling A′ is exactly 1 + ε. Otherwise, we
may scale the rows to make the sum 1 + ε, and note that the column sums can only increase.

The following Corollary to Theorem 14 appeared in [2].

I Corollary 15 (`2 scaling). Let A be an m× n complex matrix satisfying Property-S. Then,
for every ε > 0, there exists a scaling A′ of A such that for every i ∈ [m]∑

j∈[n]

∣∣A′ij∣∣2 ≤ 1 + ε,

and for every j ∈ [n]∑
i∈[m]

∣∣A′ij∣∣2 ≥ m

n
− ε .

Moreover, the scaling coefficients are all positive real numbers.

Corollary 15 is obtained by applying Theorem 14 to the matrix obtained by squaring
the absolute values of the entries of the matrix A. Once again, we may assume that∑
j∈[n]

∣∣A′ij∣∣2 = 1 + ε.
To bound the rank of a matrix A, we will bound the rank of the matrix M = A′∗A′,

where A′ is some scaling of A. Then we have that rank(A) = rank(A′) = rank(M). We use
Corollary 15, along with rank bounds for diagonal dominant matrices. The following lemma
is a variant of a folklore lemma on the rank of diagonal dominant matrices (see [1]) and
appeared in this form in [6].

I Lemma 16. Let A be an n×n complex hermitian matrix, such that |Aii| ≥ L for all i ∈ n.
Then

rank(A) ≥ n2L2

nL2 +
∑
i 6=j |Aij |2

.

The matrix scaling theorem allows us to control the `2 norms of the columns and rows of
A, which in turn allow us to bound the sums of squares of entries of M . To this end, we use
the following lemma which appeared in [6].

I Lemma 17. Let A be an m× n matrix over C. Suppose that each row of A has `2 norm
α, the supports of every two columns of A intersect in at most t locations, and the size of
the support of every row is q. Let M = A∗A. Then∑

i 6=j
|Mij |2 ≤

(
1− 1

q

)
tmα4.
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Lemma 17 is sufficient to prove Theorems 8 and 11. To prove Theorem 10, we need better
bounds. A more careful analysis in the proof of Lemma 17 gives us the following lemma.
The proof follows the same basic approach and can be found in the full version of the paper.
We first need the following definition.

I Definition 18. Let A be an m× n matrix over C. Then we define:

D(A) :=
∑
i6=j

∑
k<k′

∣∣AkiAkj −Ak′iAk′j

∣∣2 , and E(A) :=
m∑
k=1

∑
i<j

(
|Aki|2 − |Akj |2

)2
.

Note that both D(A) and E(A) are non-negative real numbers.

I Lemma 19. Let A be an m× n matrix over C. Suppose that each row of A has `2 norm
α, the supports of every two columns of A intersect in exactly t locations, and the size of the
support of every row is q. Let M = A∗A. Then∑

i6=j
|Mij |2 =

(
1− 1

q

)
tmα4 −

(
D(A) + t

q
E(A)

)
.

3.2 Latin squares
Latin squares play a central role in our proof. While Latin squares play a role in both [6]
and [2], our proof exploits their design properties more strongly.

I Definition 20 (Latin square). An r×r Latin square is an r×r matrix L such that Lij ∈ [r]
for all i, j and every number in [r] appears exactly once in each row and exactly once in each
column.

If L is a Latin square and Lii = i for all i ∈ [r], we call it a diagonal Latin square.

I Lemma 21. For every r ≥ 3, there exists an r× r diagonal Latin square. For r ≥ 4, there
exist diagonal Latin squares with the additional property that, for every i 6= j, Lij 6= Lji.

Proof. For r ≥ 3, the existence of r × r diagonal Latin squares was proved by Hilton [10].
Therefore, we need only show the second part of the theorem. For this we rely on self-
orthogonal Latin squares.

Two Latin squares L and L′ are called orthogonal if every ordered pair (k, l) ∈ [r]2
occurs uniquely as (Lij , L′ij) for some i, j ∈ [r]. A Latin square is called self-orthogonal if it
is orthogonal to its transpose, denoted by LT . A theorem of Brayton, Coppersmith, and
Hoffman [4] proves the existence of r × r self-orthogonal Latin squares for r ∈ N, r 6= 2, 3, 6.
Let L be a self-orthogonal Latin square. Since Lii = LTii, the diagonal entries give all pairs
of the form (i, i) for every i ∈ [r], i.e. the diagonal entries must be a permutation of [r].
Without loss of generality, we may assume that Lii = i and so L is also a diagonal Latin
square. Clearly a self-orthogonal Latin square satisfies the property that Lij 6= Lji if i 6= j.

This leaves us only with the case r = 6, which requires separate treatment. It is known
that 6× 6 self-orthogonal Latin squares do not exist. Fortunately, the property we require is
weaker and we are able to give an explicit construction of a matrix that is sufficient for our
needs. Let L be the following matrix

1 4 5 3 6 2
3 2 6 5 1 4
2 5 3 6 4 1
6 1 2 4 3 5
4 6 1 2 5 3
5 3 4 1 2 6


.

It is straightforward to verify that L has the required properties. J

SoCG 2017
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The following lemma is a strengthening of a lemma from [2].

I Lemma 22. Let r ≥ 3. Then there exists a set T ⊆ [r]3 of r2 − r triples, referred to as a
triple system, that satisfies the following properties:
1. Each triple consists of three distinct elements.
2. For every pair i, j ∈ [r], i 6= j, there are exactly six triples containing both i and j.
3. If r ≥ 4, for every i, j ∈ [r], i 6= j, there are at least two triples containing i and j such

that the remaining elements are distinct.

Proof. Let L be a Latin square as in Lemma 21. Let T be the set of triples (i, j, k) ⊆ [r]3
with i 6= j and k = Lij . Clearly the number of such triples is r2 − r. We verify that the
properties mentioned hold.

Recall that we have Lii = i for all i ∈ [r], and every value appears once in each row and
column. So for i 6= j ∈ [r], it can not happen that Lij = i or Lij = j and we get Property 1,
i.e. all elements of a triple must be distinct.

For Property 2, note that a pair i, j appears once as (i, j, Lij) and once as (j, i, Lji). And
since every element appears exactly once in every row and column, we have that i must
appear once in the jth row, j must appear once in the ith row and the same for the columns.
It follows that each of (∗, j, i), (j, ∗, i), (∗, i, j) and (i, ∗, j) appears exactly once, where ∗ is
some other element of [r]. This gives us that every pair appears in exactly six triples.

For r ≥ 4 and i 6= j, since Lij 6= Lji, the triples (i, j, Lij) and (j, i, Lji) are sufficient to
satisfy Property 3. J

4 The dependency matrix

Let V = {v1, . . . , vn} be a set of n points in Cd. We will use dim(V) to denote the dimension
of the linear span of V and by affine-dim(V) the dimension of the affine span of V (i.e., the
minimum r such that points of V are contained in a shift of a linear subspace of dimension
r). We projectivize Cd and consider the set of vectors V ′ = {v′1, . . . , v′n}, where v′i = (vi, 1)
is the vector in Cd+1 obtained by appending a 1 to the vector vi. Let V be the n× (d+ 1)
matrix whose ith row is the vector v′i. Now note that

affine-dim(V) = dim(V ′)− 1 = rank(V )− 1.

We now construct a matrix A, which we refer to as the dependency matrix of V. Note
here that the construction we give here is preliminary, but suffices to prove Theorems 8 and
11. A refined construction is given in Section 6, where we select the triples more carefully.
The rows of the matrix will consist of linear dependency coefficients, which we define below.

I Definition 23 (Linear dependency coefficients). Let v1, v2 and v3 be three distinct collinear
points in Cd, and let v′i = (vi, 1), i ∈ {1, 2, 3}, be vectors in Cd+1. Recall that v1, v2, v3 are
collinear if and only if there exist nonzero coefficients a1, a2, a3 ∈ C such that

a1v
′
1 + a2v

′
2 + a3v

′
3 = 0.

We refer to the a1, a2 and a3 as the linear dependency coefficients between v1, v2, v3. Note
that the coefficients are determined up to scaling by a complex number. Throughout our
proof, the specific choice of coefficients does not matter, so we fix a canonical choice by
setting a3 = 1.

I Definition 24 (Dependency Matrix). For every line l ∈ L≥3(V), let Vl denote the points
lying on l. Then |Vl| ≥ 3 and we assign each line a triple system Tl ⊆ V3

l , the existence
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of which is guaranteed by Lemma 22. Let A be the m× n matrix obtained by going over
every line l ∈ L≥3 and for each triple (i, j, k) ∈ Tl, adding as a row of A a vector with three
nonzero coefficients in positions i, j, k corresponding to the linear dependency coefficients
among the points vi, vj , vk. We refer to A as the dependency matrix for V.

Note that we have AV = 0. Every row of A has exactly three nonzero entries. By
Property 2 of Lemma 22, the supports of any distinct two columns intersect in exactly six
entries when the two corresponding points lie on a special line2, and 0 otherwise. That is,
the supports of any two distinct columns intersect in at most six entries.

We say a pair of points vi, vj , i 6= j, appears in the dependency matrix A if there exists
a row with nonzero entries in columns i and j. The number of times a pair appears is the
number of rows with nonzero entries in both columns i and j.

Every pair of points that lies on a special line appears exactly six times. The only pairs
not appearing in the matrix are pairs of points that determine ordinary lines. There are

(
n
2
)

pairs of points, t2(V) of which determine ordinary lines. So the number of pairs appearing in
A is

(
n
2
)
− t2. The total number of times these pairs appear is then 6

((
n
2
)
− t2

)
. Every row

gives three distinct pairs of points, so it follows that the number of rows of A is

m = 6
((

n

2

)
− t2

)
/3 = n2 − n− 2t2(V). (1)

Note that m > 0, unless t2 =
(
n
2
)
, i.e. all lines are ordinary.

As mentioned in the proof overview, we will consider two cases: when A satisfies Property-
S and when it does not. We now prove lemmas dealing with the two cases. The following
lemma deals with the former case.

I Lemma 25. Let V be a set of n points affinely spanning Cd, d ≥ 3, and let A be the
dependency matrix for V. Suppose that A satisfies Property-S. Then

t2(V) ≥ (d− 3)
2(d+ 1)n

2 + 3
2n .

Proof. Fix ε > 0. Since A satisfies Property-S, by Lemma 15 there is a scaling A′ such
that the `2 norm of each row is at most

√
1 + ε and the `2 norm of each column is at least√

m
n − ε. Let M := A′∗A′. Then Mii ≥ m

n − ε for all i. Since every row in A has support of
size three, and the supports of any two columns intersect in at most six locations, Lemma 17
gives us that

∑
i6=j
|Mij |2 ≤ 4m(1 + ε)2. By applying Lemma 16 to M we get,

rank(M) ≥
n2(mn − ε)

2

n(mn − ε)2 + 4m(1 + ε)2 .

Taking ε to 0, and combining with (1), we get

rank(A) = rank(A′) = rank(M) ≥
n2m2

n2

nm
2

n2 + 4m
= mn

m+ 4n

= n− 4n2

m+ 4n = n− 4n2

n2 − n− 2t2(V) + 4n

= n− 4n2

n2 + 3n− 2t2(V) .

2 Note that while the triple system Tl consists of ordered triples, the supports of the rows of A are
unordered.
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15:10 On the Number of Ordinary Lines Determined by Sets in Complex Space

Recall that affine-dim(V) = d = rank(V ) − 1. Since AV = 0, we have that rank(V ) ≤
n− rank(A). It follows that

d+ 1 ≤ 4n2

n2 + 3n− 2t2(V) .

Rearranging gives us that

t2(V) ≥ (d− 3)
2(d+ 1)n

2 + 3
2n. J

We now consider the case when Property-S is not satisfied.

I Lemma 26. Let V be a set of n points in Cd, and let A be the dependency matrix for V.
Suppose that A does not satisfy Property-S. Then, for every integer b∗, 1 < b∗ < 2n/3, one
of the following holds:
1. There exists a point v ∈ V contained in at least 2

3 (n+ 1)− b∗ ordinary lines;
2. t2(V) ≥ nb∗/2.

Proof. Since A violates Property-S, there exists a zero submatrix supported on rows U ⊆ [m]
and columns W ⊆ [n] of the matrix A, where |U | = a and |W | = b, such that

a

m
+ b

n
> 1.

Let X = [m] \ U and Y = [n] \W and note that |X| = m − a and |Y | = n − b. Let the
violating columns correspond to the set V1 = {v1, . . . , vb} ⊂ V . We consider two cases: when
b < b∗, and when b ≥ b∗.

Case 1: (b < b∗). We may assume that U is maximal, so every row in the submatrix
X ×W has at least one nonzero entry. Partition the rows of X into three parts: Let X1, X2
and X3 be rows with one, two and three nonzero entries in columns of W respectively. We
will get a lower bound on the number of ordinary lines containing exactly one point in V1 and
one point in V \ V1 by bounding the number of pairs {vi, w}, with vi ∈ V1 and w ∈ V \ V1,
that lie on special lines. Note that there are at most b(n− b) such pairs, and each pair that
does not lie on a special line determines an ordinary line.

Each row of X1 gives two pairs of points {vi, w1} and {vi, w2} that lie on a special line,
where vi ∈ V1 and w1, w2 ∈ V \ V1. Each row of X2 gives two pairs of points {vi, w} and
{vj , w}, where vi, vj ∈ V1 and w ∈ V \ V1 that lie on special lines. Each row of X3 has all
zero entries in the submatrix supported on X × Y , so does not contribute any pairs. Recall
that each pair of points on a special line appears exactly six times in the matrix. This implies
that the number of pairs that lie on special lines with at least one point in V1 and one point
in V \ V1 is 2|X1|+2|X2|

6 ≤ 2|X|
6 . Hence, the number of ordinary lines containing exactly one

of v1, . . . , vb is then at least b(n− b)− |X|3 .
Recall that

1 < a

m
+ b

n
=
(

1− |X|
m

)
+ b

n
.

Substituting m ≤ n2 − n, from (1), we get

|X| < bm

n
≤ b(n− 1).
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This gives that the number of ordinary lines containing exactly one point in V1 is at least

b(n− b)− |X|3 >
2b
3 n−

3b2 − b
3 .

We now have that there exists v ∈ V1 such that the number of ordinary lines containing v is
at least⌊

2
3n−

3b− 1
3

⌋
≥
⌊

2
3n− b

∗ + 4
3

⌋
≥ 2

3(n+ 1)− b∗.

Case 2: (b ≥ b∗). We will determine a lower bound for t2(V) by counting the number of
nonzero pairs of entries Aij , Aij′ with j 6= j′, that appear in the submatrix U × Y . There
are

(
n−b

2
)
pairs of points in V \ V1, each of which appears at most six times, therefore the

number of pairs of such entries is at most 6
(
n−b

2
)
. Each row of U has three pairs of nonzero

entries, i.e. the number of pairs of entries equals 3a. It follows that

3a ≤ 6
(
n− b

2

)
(2)

Recall equation (1) and that a
m + b

n > 1, which gives us

a > m

(
1− b

n

)
=
(
n2 − n− 2t2(V)

)(
1− b

n

)
. (3)

Combining (2) and (3), we get

(
n2 − n− 2t2(V)

)(
1− b

n

)
< 2
(
n− b

2

)
.

Solving for t2(V) gives us

t2(V) > nb

2 ≥
nb∗

2 . J

5 Proof of Theorem 8

We note here that the machinery developed so far is sufficient to prove both Theorems 8
and 11. Both proofs are based on similar ideas. We give the proof of Theorem 8 in this
section.

The proof relies on Lemmas 25 and 26. Together, these lemmas imply that there must be
a point with many ordinary lines containing it, or there are many ordinary lines in total. As
mentioned in the proof overview, the theorem is then obtained by using an iterative argument
removing a point with many ordinary lines through it, and then applying the same argument
to the remaining points. We get the following easy corollary from Lemma 25 and Lemma 26.

I Corollary 27. Let V be a set of n points in Cd not contained in a plane. Then one of the
following holds:
1. There exists a point v ∈ V contained in at least 2

3n−
7
3 ordinary lines.

2. t2(V) ≥ 3
2n.

Proof. Let A be the dependency matrix for V. If A satisfies Property-S, then we are done
by Lemma 25. Otherwise, let b∗ = 3, and note that Lemma 26 gives us the statement of the
corollary when n ≥ 5. J
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15:12 On the Number of Ordinary Lines Determined by Sets in Complex Space

We are now ready to prove Theorem 8.

Proof of Theorem 8. If t2(V) ≥ 3
2n then we are done. Else, by Corollary 27, we may assume

there exists a point v1 with at least 1
3 (2n − 7) ordinary lines and hence at most 1

6 (n + 4)
special lines through it. Let V1 = V \ {v1}. If V1 is planar, then there are exactly n − 1
ordinary lines through v1. We note here that this is the only case where there exists fewer
then 3

2n ordinary lines.
Suppose now that V1 is not planar. Again, by Corollary 27, there are either 3

2 (n − 1)
ordinary lines in V1 or there exists a point v2 ∈ V1 with at least 2

3 (n− 1)− 7
3 = 1

3 (2n− 9)
ordinary lines through it. In the former case, we get 3

2 (n− 1) ordinary lines in V1, at most
1
6 (n+ 4) of which could contain v1. This gives that the total number of ordinary lines in V is

t2(V) ≥ 3
2(n− 1)− 1

6(n+ 4) + 1
3(2n− 7) = 1

2(4n− 9).

When n ≥ 9, we get that t2(V) ≥ 3
2n.

In the latter case there exists a point v2 ∈ V1 with at least 1
3 (2n − 9) ordinary lines

in V1 through it. Note that at most one of these could contain v1, so we get at least
1
3 (2n− 7) + 1

3 (2n− 9)− 1 = 1
3 (4n− 19) ordinary lines through one of v1 or v2. Note also that

the number of special lines through one of v1 or v2 is at most 1
6 (n+ 4) + 1

6 (n+ 3) = 1
6 (2n+ 7).

Let V2 = V1 \ {v2}. If V2 is contained in a plane, we get at least n− 3 ordinary lines from
each of v1 and v2 giving a total of 2n− 6 ordinary lines in V. It follows that when n ≥ 12,
t2(V) ≥ 3

2n.

Otherwise V2 is not contained in a plane, and again Corollary 27 gives us two cases. If
there are 3

2 (n− 2) ordinary lines in V2, then we get that the total number of ordinary lines is

t2(V) = 3
2(n− 2)− 1

6(2n+ 7) + 1
3(4n− 19) = 1

2(5n− 21).

When n ≥ 11, we get that t2(V) ≥ 3
2n.

Otherwise there exists a point v3 with at least 2
3 (n− 2)− 7

3 ordinary lines through it. At
most two of these could pass through one of v1 or v2, so we get 2

3 (n− 2)− 7
3 − 2 = 1

3 (2n− 17)
ordinary lines through v3 in V. Summing up the number of lines through one of v1, v2 and
v3, we get that

t2(V) ≥ 1
3(2n− 17) + 1

3(4n− 19) = 2n− 12.

When n ≥ 24, we get that t2(V) ≥ 3
2n. J

6 Proof Idea of Theorem 10

We first give a more careful construction for the dependency matrix of a point set V . Recall
that we defined the dependency matrix in Definition 24 to contain a row for each collinear
triple from a triple system constructed on each special line. The goal was to not have
too many triples containing the same pair. In this section (Definition 33) we will give a
construction of a dependency matrix that will have an additional property (captured in Item
4 of Lemma 31) which is used to obtain cancellation in the diagonal dominant argument.

We denote the argument of a complex number z by arg (z), and use the convention that
for every complex number z, arg (z) ∈ (−π, π].

I Definition 28 (angle between two complex numbers). We define the angle between two
complex numbers a and b to be the the absolute value of the argument of ab, denoted by∣∣arg (ab)∣∣. Note that the angle between a and b equals the angle between b and a.
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I Definition 29 (co-factor). Let v1, v2 and v3 be three distinct collinear points in Cd, and
let a1, a2 and a3 be the linear dependency coefficients among the three points. Define the
co-factor of v3 with respect to (v1, v2), denoted by C(1,2)(3), to be a1a2

|a1||a2| . Notice that this
is well defined with respect to the points, and does not depend on the choice of coefficients.

The following lemma will be used to show that “cancellations” must arise in a line containing
four points (as mentioned earlier in the proof overview). We will later use this lemma as a
black box to quantify the cancellations in lines with more than four points by applying it to
random four tuples inside the line.

I Lemma 30. Let v1, v2, v3, v4 be four collinear points in Cd. Then at least one of the
following hold:
1. The angle between C(1,2)(3) and C(1,2)(4) is at least π/3.
2. The angle between C(1,3)(4) and C(1,3)(2) is at least π/3.
3. The angle between C(1,4)(2) and C(1,4)(3) is at least π/3.

Our final dependency matrix will be composed of blocks, each given by the following
lemma. Roughly speaking, we construct a block of rows A(l) for each special line l. The
rows in A(l) will be chosen carefully and will correspond to triples that will eventually give
non trivial cancellations.

I Lemma 31. Let l be a line in Cd and Vl = {v1, . . . vr} be points on l with r ≥ 3. Let Vl be
the r × (d+ 1) matrix whose ith row is the vector (vi, 1). Then there exists an (r2 − r)× r
matrix A = A(l), which we refer to as the dependency matrix of l, such that the following
hold:
1. AVl = 0;
2. Every row of A has support of size three;
3. The support of every two columns of A intersects in exactly six locations;
4. If r ≥ 4 then for at least 1/3 of choices of k ∈ [r2 − r], there exists k′ ∈ [r2 − r]

such that following holds: For k ∈ [r2 − r], let Rk denote the rth row of A. Suppose
supp(Rk) = {i, j, s}. Then supp(Rk′) = {i, j, t} (for some t 6= s) and the angle between
the co-factors C(i,j)(s) and C(i,j)(t) is at least π/3.

Proof. Recall that Lemma 22 gives us a family of triples Tr on the set [r]3. For every
bijective map σ : Vl → [r], construct a matrix Aσ in the following manner: Let Tl be the
triple system on V3

l induced by composing σ and Tr. For each triple (vi, vj , vk) ∈ Tl, add a
row with three non-zero entries in positions i, j, k corresponding to the linear dependency
coefficients between vi, vj and vk.

Note that for every σ, Aσ has r2 − r rows and r columns. Since the rows correspond to
linear dependency coefficients, clearly we have AσVl = 0 satisfying Property 1. Properties 2
and 3 follow from properties of the Tl from Lemma 22.

We will use a probabilistic argument to show that there exists a matrix A that has
Property 4. Let Σ be the collection of all bijective maps from [r] to the points Vl, and let
σ ∈ Σ be a uniformly random element. Consider Aσ. Since every pair of points occurs in at
least two distinct triples, for every row Rk of Aσ, there exists a row Rk′ such that the supports
of Rk and Rk′ intersect in two entries. Suppose that Rk and Rk′ have supports contained in
{i, j, s, t}. Suppose that σ maps {vi, vj , vs, vt} to {1, 2, 3, 4} and that (1, 2, 3) and (1, 2, 4) are
triples in Tr. Without loss of generality, assume vi maps to 1. Then by Lemma 30, the angle
between at least one of the pairs {C(i,j)(s), C(i,j)(t)}, {C(i,s)(j), C(i,s)(t)}, {C(i,t)(j), C(i,t)(s)}
must be at least π/3. That is, given that vi maps to 1, we have that the probability that Rk
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satisfies Property 4 is at least 1/3. Then it is easy to see that

Pr(Rk satisfies Property 4) ≥ 1/3.

Define the random variable X to be the number of rows satisfying Property 4, and note
that we have

E[X] ≥ (r2 − r)1
3 .

It follows that there exists a matrix A in which at least 1/3 of the rows satisfy Property
4. J

Based on this new construction, we can give improved bound on the sum of the off-
diagonal entries. The proof involves somewhat tedious calculations and can be found in the
full version.

I Lemma 32. There exists an absolute constant c0 > 0 such that the following holds. Let l
be a line in Cd and Vl = {v1, . . . vr} be points on l with r ≥ 4. Let A(l) be the dependency
matrix for l, defined in Lemma 31, and A′ a scaling of A such that the `2 norm of every
row is α. Let M = A′∗A′.∑

i 6=j
|Mij |2 ≤ 4(r2 − r)α4 − c0(r2 − r)α2.

We are now ready to define the dependency matrix that we will use in the proof of
Theorem 10.

I Definition 33 (Dependency Matrix, second construction). Let V = {v1, . . . vn} be a set of n
points in Cd and let V be the n× (d+ 1) matrix whose ith row is the vector (vi, 1). For each
matrix A(l), where l ∈ L≥3(V), add n− r column vectors of all zeroes, with length r2 − r, in
the column locations corresponding to points not in l, giving an (r2 − r)× n matrix. Let A
be the matrix obtained by taking the union of rows of these matrices for every l ∈ L≥3(V).
We refer to A as the dependency matrix of V.

Note that this construction is a special case of the one given in Definition 24 and so satisfies
all the properties mentioned there. In particular, we have AV = 0 and the number of rows
in A equals n2 − n− 2t2(V).

Proof Idea. We now briefly describe the proof idea for Theorem 10, which follows the proof
of Theorem 8 closely. Given the dependency matrix A, if A satisfies Property-S, we are able
to use matrix scaling along with the improved bound from Lemma 32. If the matrix does
not satisfy Property-S, we use Lemma 26. This gives us the following corollary.

I Corollary 34. There exists a constant c1 > 0 and a positive integer n0 such that the
following holds. Let V be a set of n ≥ n0 points in Cd not contained in a plane. Then one of
the following must hold:
1. There exists a point v ∈ V contained in at least n

2 ordinary lines.
2. t2(V) ≥ 3

2n+ c1
∑
r≥4(r2 − r)tr(V).

To complete the proof, we again use a pruning argument. We use Corollary 34 to
find a point with a large number of ordinary lines, “prune” this point, and then repeat
this on the smaller set of points. We stop when either we can not find such a point, in
which case Corollary 34 guarantees a large number of ordinary lines, or when we have
accumulated enough ordinary lines. The assumption that no plane contains more than
n/2 points guarantees that we are able to continue pruning until we find sufficiently many
ordinary lines.
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