
A Universal Slope Set for 1-Bend Planar Drawings
Patrizio Angelini1, Michael A. Bekos2, Giuseppe Liotta3, and
Fabrizio Montecchiani4

1 Wilhelm-Schickhard-Institut für Informatik, Universität Tübingen, Tübingen,
Germany
angelini@informatik.uni-tuebingen.de

2 Wilhelm-Schickhard-Institut für Informatik, Universität Tübingen, Tübingen,
Germany
bekos@informatik.uni-tuebingen.de

3 Universitá degli Studi di Perugia, Perugia, Italy
giuseppe.liotta@unipg.it

4 Universitá degli Studi di Perugia, Perugia, Italy
fabrizio.montecchiani@unipg.it

Abstract
We describe a set of ∆−1 slopes that are universal for 1-bend planar drawings of planar graphs of
maximum degree ∆ ≥ 4; this establishes a new upper bound of ∆− 1 on the 1-bend planar slope
number. By universal we mean that every planar graph of degree ∆ has a planar drawing with at
most one bend per edge and such that the slopes of the segments forming the edges belong to the
given set of slopes. This improves over previous results in two ways: Firstly, the best previously
known upper bound for the 1-bend planar slope number was 3

2 (∆− 1) (the known lower bound
being 3

4 (∆ − 1)); secondly, all the known algorithms to construct 1-bend planar drawings with
O(∆) slopes use a different set of slopes for each graph and can have bad angular resolution,
while our algorithm uses a universal set of slopes, which also guarantees that the minimum angle
between any two edges incident to a vertex is π

(∆−1) .
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1 Introduction

This paper is concerned with planar drawings of graphs such that each edge is a poly-line
with few bends, each segment has one of a limited set of possible slopes, and the drawing
has good angular resolution, i.e. it forms large angles between consecutive edges incident on
a common vertex. Besides their theoretical interest, visualizations with these properties find
applications in software engineering and information visualization (see, e.g., [12, 26, 40]).
For example, planar graphs of maximum degree four (degree-4 planar graphs) are widely
used in database design, where they are typically represented by orthogonal drawings, i.e.
crossing-free drawings such that every edge segment is a polygonal chain of horizontal and
vertical segments. Clearly, orthogonal drawings of degree-4 planar graphs are optimal both
in terms of angular resolution and in terms of number of distinct slopes for the edges. Also,
a classical result in the graph drawing literature is that every degree-4 planar graph, except
the octahedron, admits an orthogonal drawing with at most two bends per edge [5, 34].

It is immediate to see that more than two slopes are needed in a planar drawing of a graph
with vertex degree ∆ ≥ 5. The k-bend planar slope number of a graph G with degree ∆ is the
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9:2 A Universal Slope Set for 1-Bend Planar Drawings

Figure 1 A 1-bend planar drawing with 4 slopes and angular resolution π
4 of a graph with ∆ = 5.

minimum number of distinct slopes that are sufficient to compute a crossing-free drawing of
G with at most k bends per edge. Keszegh et al. [30] generalize the technique by Biedl and
Kant [5] and prove that for any ∆ ≥ 5, the 2-bend planar slope number of a degree-∆ planar
graph is d∆/2e; the construction in their proof has optimal angular resolution, that is 2π

∆ .
For the case of drawings with one bend per edge, Keszegh et al. [30] also show an upper

bound of 2∆ and a lower bound of 3
4 (∆ − 1) on the 1-bend planar slope number, while a

recent paper by Knauer and Walczak [31] improves the upper bound to 3
2 (∆− 1). Both these

papers use a similar technique: First, the graph is realized as a contact representation with
T -shapes [10], which is then transformed into a planar drawing where vertices are points and
edges are poly-lines with at most one bend. The set of slopes depends on the initial contact
representation and may change from graph to graph; also, each slope is either very close to
horizontal or very close to vertical, which gives rise to bad angular resolution. Knauer and
Walczak [31] also proved that the 1-bend (outer)planar slope number of outerplanar graphs
with ∆ > 2 is d∆

2 e and that ∆ + 1 slopes suffice for planar bipartite graphs.
We study the trade-off between number of slopes, angular resolution, and number of

bends per edge in a planar drawing of a graph with maximum degree ∆. We improve the
upper bounds in [31] on the 1-bend planar slope number, and at the same time we achieve
Ω( 1

∆ ) angular resolution. More precisely, we prove the following.

I Theorem 1. For any ∆ ≥ 4, there exists an equispaced universal set S of ∆− 1 slopes for
1-bend planar drawings of planar graphs with maximum degree ∆. That is, every such graph
has a planar drawing with the following properties: (i) each edge has at most one bend; (ii)
each edge segment uses one of the slopes in S; and (iii) the minimum angle between any two
consecutive edge segments incident on a vertex or a bend is at least π

∆−1 .

Theorem 1, in conjuction with [27], implies that the 1-bend planar slope number of
planar graphs with n ≥ 5 vertices and maximum degree ∆ ≥ 3 is at most ∆− 1. We prove
the theorem by using an approach that is conceptually different from that of Knauer and
Walczak [31]: We do not construct an intermediate representation, but we prove the existence
of a universal set of slopes and use it to directly compute a 1-bend planar drawing of any
graph with degree at most ∆. The universal set of slopes consists of ∆− 1 distinct slopes
such that the minimum angle between any two of them is π

(∆−1) . An immediate consequence
of the 3

4 (∆ − 1) lower bound argument in [30] is that a 1-bend planar drawing with the
minimum number of slopes cannot have angular resolution larger than 4

3
π

(∆−1) . Hence, the
angular resolution of our drawings is optimal up to a multiplicative factor of at most 0.75;
also, note that the angular resolution of a graph of degree ∆ is at most 2π

∆ even when the
number of slopes and the number of bends along the edges are not bounded.

The proof of Theorem 1 is constructive and it gives rise to a linear-time algorithm
assuming the real RAM model of computation. A drawing computed with this algorithm
is shown in Fig. 1. The construction for triconnected planar graphs uses a variant of the
shifting method of de Fraysseix, Pach and Pollack [11]; this is used as a building block for
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the drawing algorithm for biconnected planar graphs, which is based on the SPQR-tree
decomposition of the graph into its triconnected components (see, e.g., [12]). By using a
BC-tree decomposition, our approach can be further extended to general planar graphs,
details can be found in the extended version of this paper [1]. If the graph is disconnected,
since we use a universal set of slopes, the distinct connected components can be drawn
independently.

Related work. The results on the slope number of graphs are mainly classified into two
categories based on whether the input graph is planar or not. For a (planar) graph G

of maximum degree ∆, the slope number (planar slope number) is the minimum number
of slopes that are sufficient to compute a straight-line (planar) drawing of G. The slope
number of non-planar graphs is lower bounded by d∆/2e [41] but it can be arbitrarily large,
even when ∆ = 5 [2]. For ∆ = 3 this number is 4 [35], while it is unknown for ∆ = 4.
Upper bounds on the slope number are known for complete graphs [41] and outer 1-planar
graphs [14]. Deciding whether a graph has slope number 2 is NP-complete [15, 19]. For a
planar graph G of maximum degree ∆, the planar slope number of G is lower bounded by
3∆− 6 and upper bounded by O(2∆) [30]. Improved upper bounds are known for special
subclasses of planar graphs, e.g., planar graphs with ∆ ≤ 3 [15, 13, 28], outerplanar graphs
with ∆ ≥ 4 [32], partial 2-trees [33], planar partial 3-trees [25]. Note that determining the
planar slope number of a graph is hard in the existential theory of the reals [24].

Closely related to our problem is the problem of finding d-linear drawings of graphs,
in which all angles (formed either between consecutive segments of an edge or between
edge-segments incident to the same vertex) are multiples of 2π/d. For d = 4, an angular
resolution of 2π/d implies d-linearity, while for d > 4 this is not always true [8]. Special types
of d-linear drawings are the orthogonal [5, 7, 21, 39] and the octilinear [3, 4, 36] drawings,
for which d = 2 and d = 4 holds, respectively. As already recalled, any planar graph with
∆ ≤ 4 (except the octahedron) admits a planar orthogonal drawing with at most two bends
per edge [5, 34]. Deciding whether a degree-4 planar graph has an orthogonal drawing
with no bends is NP-complete [21], while it is solvable in polynomial time if one bend per
edge is allowed [6]. Octilinear drawings have been mainly studied in the context of metro
map visualization and map schematization [37, 38]. Nöllenburg [36] proved that deciding
whether an embedded planar graph with ∆ ≤ 8 admits a bendless planar octilinear drawing
is NP-complete. Bekos et al. [3] showed that any planar graph with ∆ ≤ 5 admits a planar
octilinear drawing with at most one bend per edge and this is not always possible if ∆ ≥ 6.
Note that in our work we generalize their positive result to any ∆. Later, Bekos et al. [4]
studied bounds on the total number of bends of planar octilinear drawings. Finally, trade-offs
between number of bends, angular resolution, and area requirement of planar drawings of
graphs with maximum degree ∆ are, for example, studied in [9, 16, 17, 18, 20, 22].

Paper organization. The rest of this paper is organized as follows. Preliminaries are given
in Section 2. In Section 3, we describe a drawing algorithm for triconnected planar graphs.
The technique is extended to biconnected planar graphs in Sections 4. Finally, in Section 5
we discuss further implications of Theorem 1 and we list open problems.

2 Preliminaries

A graph G containing neither loops nor multiple edges is simple. We consider simple graphs,
if not otherwise specified. The degree of a vertex of G is the number of its neighbors. We say

SoCG 2017
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that G has maximum degree ∆ if it contains a vertex with degree ∆ but no vertex with degree
larger than ∆. A graph is connected, if for any pair of vertices there is a path connecting
them. Graph G is k-connected, if the removal of k− 1 vertices leaves the graph connected. A
2-connected (3-connected) graph is also called biconnected (triconnected, respectively).

A drawing Γ of G maps each vertex of G to a point in the plane and each edge of G to a
Jordan arc between its two endpoints. A drawing is planar, if no two edges cross (except
at common endpoints). A planar drawing divides the plane into connected regions, called
faces. The unbounded one is called outer face. A graph is planar, if it admits a planar
drawing. A planar embedding of a planar graph is an equivalence class of planar drawings
that combinatorially define the same set of faces and outer face.

The slope s of a line ` is the angle that a horizontal line needs to be rotated counter-
clockwise in order to make it overlap with `. The slope of an edge-segment is the slope of the
line containing the segment. Let S be a set of slopes sorted in increasing order; assume (up
to a rotation) that S contains the 0 angle, which we call horizontal slope. A 1-bend planar
drawing Γ of graph G on S is a planar drawing of G in which every edge is composed of at
most two straight-line segments, each of which has a slope that belongs to S. We say that S
is equispaced if and only if the difference between any two consecutive slopes of S is π

|S| . For
a vertex v in G, each slope s ∈ S defines two different rays that emanate from v and have
slope s. If s is the horizontal slope, then these rays are called horizontal. Otherwise, one of
them is the top and the other one is the bottom ray of v. Consider a 1-bend planar drawing
Γ of a graph G and a ray rv emanating from a vertex v of G. We say that rv is free if there
is no edge attached to v through rv. We also say that rv is incident to face f of Γ if and
only if rv is free and the first face encountered when moving from v along rv is f .

Let Γ be a 1-bend planar drawing of a graph and let e be an edge incident to the outer
face of Γ that has a horizontal segment. A cut at e is a y-monotone curve that
(i) starts at any point of the horizontal segment of e,
(ii) ends at any point of a horizontal segment of an edge e′ 6= e incident to the outer face of

Γ, and
(iii) crosses only horizontal segments of Γ.

Central in our approach is the canonical order of triconnected planar graphs which can
be computed in linear time [11, 29]. Let G = (V,E) be a triconnected planar graph and let
Π = (P0, . . . , Pm) be a partition of V into paths, such that P0 = {v1, v2}, Pm = {vn}, edges
(v1, v2) and (v1, vn) exist and belong to the outer face of G. For k = 0, . . . ,m, let Gk be the
subgraph induced by ∪ki=0Pi and denote by Ck the outer face of Gk. Π is a canonical order
of G if for each k = 1, . . . ,m− 1 the following hold:
(i) Gk is biconnected,
(ii) all neighbors of Pk in Gk−1 are on Ck−1,
(iii) |Pk| = 1 or the degree of each vertex of Pk is two in Gk, and
(iv) all vertices of Pk with 0 ≤ k < m have at least one neighbor in Pj for some j > k.

An SPQR-tree T represents the decomposition of a biconnected graph G into its tricon-
nected components and it can be computed in linear time [12, 23]. Every triconnected
component of G is associated with a node µ of T . The triconnected component itself is called
the skeleton of µ, denoted by Gskel

µ . A node µ in T can be of four different types:
(i) µ is an R-node, if Gskel

µ is a triconnected graph,
(ii) a simple cycle of length at least three classifies µ as an S-node,
(iii) a bundle of at least three parallel edges classifies µ as a P-node,
(iv) the leaves of T are Q-nodes, whose skeleton consists of two parallel edges.
Neither two S- nor two P -nodes are adjacent in T . A virtual edge in Gskel

µ corresponds to a
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Figure 2 Illustrations for (a-b) Lemma 2 and (c) Lemma 3.

tree node ν that is adjacent to µ in T , more precisely, to another virtual edge in Gskel
ν . If we

assume that T is rooted at a Q-node ρ, then every skeleton (except the one of ρ) contains
exactly one virtual edge, called reference edge and whose endpoints are the poles of µ, that
has a counterpart in the skeleton of its parent. Every subtree Tµ rooted at a node µ of T
induces a subgraph Gµ of G called pertinent, that is described by Tµ in the decomposition.

3 Triconnected Planar Graphs

Let G be a triconnected planar graph with ∆ ≥ 4 and let S be a set of ∆−1 equispaced slopes
containing the horizontal one. We consider the vertices of G according to a canonical order
Π = (P0, . . . , Pm). For k = 0, . . . ,m, let G−k be the planar graph obtained by removing edge
(v1, v2) from Gk, and let C−k be the path from v1 to v2 obtained by removing (v1, v2) from
Ck. We construct a 1-bend planar drawing of G−k on S satisfying the following invariants.
(I.1) No part of the drawing lies below vertices v1 and v2, which have the same y-coordinate.
(I.2) Every edge on C−k has a horizontal segment.
(I.3) Each vertex v on C−k has at least as many free top rays incident to the outer face of

G−k as the number of its neighbors in G \Gk.

Once a 1-bend planar drawing on S of G−m satisfying Invariants I.3–I.3 has been construc-
ted, a 1-bend planar drawing on S of G = G−m∪{(v1, v2)} can be obtained by drawing (v1, v2)
as a polyline composed of two straight-line segments, one attaching at the first clockwise
bottom ray of v1 and the other one at the first anti-clockwise bottom ray of v2. Since S has
at least three slopes, these two rays cross. Invariant I.3 ensures that edge (v1, v2) does not
introduce any crossing. Next, we state two useful properties of any 1-bend planar drawing
on S satisfying Invariants I.3–I.3, whose proofs can be found in [1]; see also Figs. 2a–2c).

I Lemma 2. Let Γk be a 1-bend planar drawing on S of G−k satisfying Invariants I.3–I.3.
Let (u, v) be an edge of C−k such that u precedes v along path C−k and let σ > 0. There exists
a 1-bend planar drawing Γ′k on S of G−k , satisfying Invariants I.3–I.3, in which the horizontal
distance between any two consecutive vertices along C−k is the same as in Γk, except for u
and v, whose horizontal distance is increased by σ.

I Lemma 3. Let Γk be a 1-bend planar drawing on S of G−k satisfying Invariants I.3–I.3.
Let u be any vertex of C−k , and let ru be any free top ray of u that is incident to the outer
face of G−k in Γk. Then, it is possible to construct a 1-bend planar drawing Γ′k on S of G−k ,
satisfying Invariants I.3–I.3, in which ru does not cross any edge of Γ′k.

We now describe our algorithm. First, we draw P0 = {v1, v2} and P1 = {v3, . . . , vj} such
that v1, v3, . . . , vj , v2 lie along a horizontal line, in this order (edge (v1, v2) is not considered).
Invariants I.3 and I.3 hold. Invariant I.3 follows since S contains ∆ − 2 top rays and all
vertices drawn so far (including v1 and v2) have at most ∆−2 neighbors later in the canonical

SoCG 2017
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Figure 3 Illustration of the cases of: (a) a chain, (b) a singleton of degree δi in Gk.

order. We now show how to add path Pk, for some k > 1, to a drawing Γk−1 satisfying
Invariants I.3–I.3, so that the resulting drawing Γk of G−k is a 1-bend planar drawing on S
satisfying Invariants I.3–I.3. We distinguish the cases in which Pk is a chain or a singleton.

Suppose first that Pk is a chain, say {vi, vi+1, . . . , vj}; refer to Fig. 3a. Let u` and ur
be the neighbors of vi and vj in C−k−1, respectively. By Invariant I.3, each of u` and ur
has at least one free top ray that is incident to the outer face of Γk−1; among them, we
denote by τa(u`) the first one in anti-clockwise order for u`, and by τc(ur) the first one in
clockwise order for ur. By Lemma 3, we can assume that τa(u`) and τc(ur) do not cross any
edge in Γk−1. This implies that there exists a horizontal line-segment h whose left and right
endpoints are on τa(u`) and τc(ur), respectively, that does not cross any edge of Γk−1. We
place all the vertices vi, vi+1, . . . , vj of Pk on interior points of h, in this left-to-right order.
Then, we draw edge (u`, vi) with a segment along h and the other one along τa(u`); we draw
edge (ur, vj) with a segment along h and the other one along τc(ur), and we draw every edge
(vq, vq+1), with q = i, . . . , j − 1, with a unique segment along h.

By construction, Γk is a planar drawing on S. All the vertices of Pk lie above u` and
ur, since τa(u`) and τc(ur) are top rays of u` and ur, respectively. Hence, these vertices and
their incident edges lie above v1 and v2, and thus Invariant I.3 is satisfied by Γk. Invariant
I.3 is satisfied since every edge that is drawn at this step has a segment along h, which is
horizontal. Invariant I.3 is satisfied since we attached edges (u`, vi) and (ur, vj) at vertices
u` and ur using the first anti-clockwise free top ray of u` and the first clockwise free top ray
of ur among those incident to the outer face, respectively. Thus, we reduced only by one the
number of free top rays incident to the outer face for u` and ur. For the other vertices of Pk,
the invariant is satisfied since their ∆− 2 top rays are free and incident to the outer face.
This concludes our description for the case in which Pk is a chain.

Suppose now that Pk is a singleton {vi} of degree δi ≤ ∆ in G−k . This also includes the
case in which Pk = Pm is the last path of Π. If δi = 2, then vi is placed as in the case of a
chain. So, we may assume that δi ≥ 3. Let u`, u1, u2, . . . , uδi−2, ur be the neighbors of vi as
they appear along C−k−1; see Fig. 3b. By Invariant I.3, each neighbor of vi in C−k−1 has at
least one free top ray incident to the outer face of Γk−1; let τa(u`) be the first of them in
anti-clockwise order for u` and τc(ur) be the first of them in clockwise order for ur. Also, for
each vertex uq, with q = 1, . . . , δi − 2, let τ(uq) be any of these rays. By Lemma 3, we can
assume that these rays do not cross any edge in Γk−1.

Consider a horizontal line hi above all vertices of Γk−1. Rays τa(u`), τ(u1), . . . , τ(uδi−2),
τc(ur) cross hi; however, the corresponding intersection points p`, p1, . . . , pδi−2, pr may
not appear in this left-to-right order along hi; see Fig. 4a. To guarantee this property, we
perform a sequence of stretchings of Γk−1 by repediately applying Lemma 2. First, if p`
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Figure 4 (a) Intersection points p`, p1, . . . , pδi−2, pr appear in a wrong order along hi. (b)
Applying Lemma 2 to make p` be the leftmost intersection point.

is not the leftmost of these intersection points, let σ be the distance between p` and the
leftmost intersection point. We apply Lemma 2 on any edge between u` and u1 along C−k−1
to stretch Γk−1 so that all the vertices in the path of C−k from u1 to v2 are moved to the
right by a quantity σ′ slightly larger than σ. This implies that p` is not moved, while all the
other intersection points are moved to the right by a quantity σ′, and thus they all lie to the
right of p` in the new drawing; see Fig. 4b. Analogously, we can move p1 to the left of every
other intersection point, except for p`, by applying Lemma 2 on any edge between u1 and u2
along C−k−1. Repeating this argument allows us to assume that in Γk−1 all the intersection
points appear in the correct left-to-right order along hi.

We now describe the placement of vi. Let β1(vi), . . . , βδi−2(vi) be any set of δi − 2
consecutive bottom rays of vi; since S contains ∆ − 1 slopes and δi ≤ ∆, vi has enough
bottom rays. If we place vi above hi, rays β1(vi), β2(vi), . . . , βδi−2(vi) intersect hi in this
left-to-right order. Let ρ1, . . . , ρδi−2 be the corresponding intersection points. The goal is to
place vi so that each ρq, with q = 1, . . . , δi − 2, coincides with pq. To do so, we consider the
line λ1 through p1 with the same slope as β1(vi). Note that placing vi on λ1 above hi results
in ρ1 to coincide with p1. Also note that, while moving vi upwards along λ1, the distance
d(ρq, ρq+1) between any two consecutive points ρq and ρq+1, with q = 1, . . . , δi − 3, increases.

We move vi upwards along λ1 so that d(ρq, ρq+1) > d(p1, pδi−2), for each q = 1, . . . , δi−3.
This implies that all points p2, . . . , pδi−2 lie strictly between ρ1 and ρ2. Then, we apply
Lemma 2 on any edge between u1 and u2 along C−k−1 to stretch Γk−1 so that all the vertices
in the path of C−k from u2 to v2 are moved to the right by a quantity d(p2, ρ2). In this
way, u1 is not moved and so p1 still coincides with ρ1; also, p2 is moved to the right to
coincide with ρ2; finally, since d(ρ2, ρ3) > d(p1, pδi−2) > d(p2, pδi−2), all points p3, . . . , pδi−2
lie strictly between ρ2 and ρ3. By repeating this transformation for all points p3, . . . , pδi−2, if
any, we guarantee that each ρq, with q = 1, . . . , δi − 2, coincides with pq. We draw each edge
(vi, uq), with q = 1, . . . , δi − 2, with a segment along τ(uq) and the other one along βq(vi).

It remains to draw edges (vi, u`) and (vi, ur), which by Invariant I.3 must have a horizontal
segment. After possibly applying Lemma 2 on any edge between u` and u1 along C−k−1 to
stretch Γk−1, we can guarantee that τa(u`) crosses the horizontal line through vi to the left
of vi. Similarly, we can guarantee that τc(ur) crosses the horizontal line through vi to the
right of vi by applying Lemma 2 on any edge between uδi−2 and ur. We draw (vi, u`) with
one segment along τa(u`) and one along the horizontal line through vi, and we draw (vi, ur)
with one segment along τc(ur) and one along the horizontal line through vi. A drawing
produced by this algorithm is illustrated in Fig. 3b.
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The fact that Γk is a 1-bend planar drawing on S satisfying Invariant I.3–I.3 can be shown
as for the case in which Pk is a chain. In particular, for Invariants I.3 and I.3, note that
vertices u1, . . . , uδi−2 do not have neighbors in G \Gk and do not belong to C−k . Thus, they
do not need to have any free top ray incident to the outer face of G−k and the edges connecting
them to vi do not need to have a horizontal segment. This concludes our description for the
case in which Pk is a singleton, and yields the following theorem (a discussion about the
time complexity can be found in [1]).

I Theorem 4. For any ∆ ≥ 4, there exists a equispaced universal set S of ∆− 1 slopes for
1-bend planar drawings of triconnected planar graphs with maximum degree ∆. Also, for any
such graph on n vertices, a 1-bend planar drawing on S can be computed in O(n) time.

4 Biconnected Planar Graphs

In this section we describe how to extend Theorem 4 to biconnected planar graphs, using
the SPQR-tree data structure described in Section 2.

The idea is to traverse the SPQR-tree of the input biconnected planar graph G bottom-up
and to construct for each visited node a drawing of its pertinent graph (except for its two
poles) inside a rectangle, which we call chip. Besides being a 1-bend planar drawing on S,
this drawing must have an additional property, namely that it is possible to increase its width
while changing neither its height nor the slope of any edge-segment. We call this property
horizontal stretchability. We give a formal definition of this drawing and describe how to
compute it for each type of node of the SPQR-tree.

Let T be the SPQR-tree of G rooted at an arbitrary Q-node ρ. Let µ be a node of T with
poles sµ and tµ. Let Gµ be the pertinent graph of µ. Let Gµ be the graph obtained from
Gµ as follows. First, remove edge (sµ, tµ), if it exists; then, subdivide each edge incident
to sµ (to tµ) with a dummy vertex, which is a pin of sµ (is a pin of tµ); finally, remove sµ
and tµ, and their incident edges. Note that, if µ is a Q-node other than the root ρ, then
Gµ is the empty graph. We denote by δ(sµ, µ) and δ(tµ, µ) the degree of sµ and tµ in Gµ,
respectively; note that the number of pins of sµ (of tµ) is δ(sµ, µ)− 1 (is δ(tµ, µ)− 1), if edge
(sµ, tµ) exists in G, otherwise it is δ(sµ, µ) (it is δ(tµ, µ)).

We construct a 1-bend planar drawing of Gµ on S inside an axis-aligned rectangle, called
the chip of µ and denoted by C(µ), so that the following properties are satisfied (see Fig. 5a):
(P.1) All the pins of sµ lie on the left side of C(µ) and all the pins of tµ lie on its right side;
(P.2) for each pin, the unique edge incident to it is horizontal; and
(P.3) there exist pins on the bottom-left and on the bottom-right corners of C(µ).

We call horizontally-stretchable (or stretchable, for short) a drawing of Gµ satisfying
Properties P.4-P.4. Note that a stretchable drawing Γ remains stretchable after any uniform
scaling, any translation, and any horizontal or vertical flip, since the horizontal slope is in S
and the slopes are equispaced. On the other hand, it is generally not possible to perform any
non-uniform scaling of Γ (in particular, a horizontal or a vertical scaling) without altering the
slopes of some segments. However, we can simulate a horizontal scaling up of Γ by elongating
the horizontal segments incident to all the pins lying on the same vertical side of the chip,
thus obtaining a new stretchable drawing inside a new chip with the same height and a larger
width. Conversely, a horizontal scaling down cannot always be simulated in this way.

Before giving the details of the algorithm, we describe a subroutine that we will often use
to add the poles of a node µ to a stretchable drawing of Gµ and draw the edges incident to
them. The proof of the next lemma can be found in [1]; see also Fig. 5b.
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Figure 5 Illustrations (a) of a pin C(µ) and (b) for Lemma 5.
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(a)
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u2 uh−2

C(νh−1)
C(ν1)

u1

C(νh)

C(µ)uh−1

sµ tµ
βa(u1) βc(u1) βa(u2) βc(u2) βc(uh−1)βa(uh−1)

(b)

Figure 6 Illustrations for the cases in which µ is: (a) a P -node and (b) an S-node.

I Lemma 5. Let u ∈ {sµ, tµ} be a pole of a node µ ∈ T and let u1, . . . , uq be q neighbors
of u in Gµ. Consider a stretchable drawing of Gµ inside a chip C(µ), whose pins p1, . . . , pq
correspond to u1, . . . , uq. Suppose that there exists a set of q consecutive free rays of u and
that the elongation of the edge incident to each pin p1, . . . , pq intersects all these rays. Then,
it is possible to draw edges (u, u1), . . . , (u, uq) with two straight-line segments whose slopes
are in S, without introducing any crossing between two edges incident to u or between an
edge incident to u and an edge of Gµ.

We now describe the algorithm. At each step of the bottom-up traversal of T , we
consider a node µ ∈ T with children ν1, . . . , νh, and we construct a stretchable drawing of
Gµ inside a chip C(µ) starting from the stretchable drawings of Gν1 , . . . , Gνh

inside chips
C(ν1), . . . , C(νh) that have been already constructed. We distinguish the different cases in
which µ is a Q-, a P-, an S-, or an R-node.

Suppose that µ is a Q-node. If µ is not the root ρ of T , we do not do anything, since Gµ
is the empty graph; the edge (sµ, tµ) of G corresponding to µ will be drawn when visiting
either the parent ξ of µ, if ξ is not a P-node, or the parent of ξ.

Otherwise, µ = ρ and hence it has only one child ν1. Since Gµ coincides with Gν1 , the
stretchable drawing of Gν1 is also a stretchable drawing of Gµ. Vertices sµ and tµ, and their
incident edges, will be added at the end of the traversal of T .

Suppose that µ is a P-node; refer to Fig. 6a. We consider a chip C(µ) for µ whose height
is larger than the sum of the heights of chips C(ν1), . . . , C(νh) and whose width is larger than
the one of any of C(ν1), . . . , C(νh). Then, we place chips C(ν1), . . . , C(νh) inside C(µ) so
that no two chips overlap, their left sides lie along the left side of C(µ), and the bottom side
of C(νh) lies along the bottom side of C(µ). Finally, we elongate the edges incident to all the
pins on the right side of C(ν1), . . . , C(νh) till reaching the right side of C(µ). The resulting
drawing is stretchable since the drawings of Gν1 , . . . , Gνh

are. In particular, Property P.4
holds for C(µ) since it holds for C(νh).
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9:10 A Universal Slope Set for 1-Bend Planar Drawings

Suppose that µ is an S-node; refer to Fig. 6b. Let u1, . . . , uh−1 be the internal vertices
of the path of virtual edges between sµ and tµ obtained by removing the virtual edge (sµ, tµ)
from the skeleton of µ. We construct a stretchable drawing of Gµ as follows.

First, we place vertices u1, . . . , uh−1 in this order along a horizontal line lµ. For i =
1, . . . , h − 1, let βa(ui) and βc(ui) be the first bottom rays of ui in anti-clockwise and in
clockwise order, respectively. To place each chip C(νi), with i = 2, . . . , h− 1, we first flip it
vertically, so that it has pins on its top-left and top-right corners, by Property P.4. Then,
after possibly scaling it down uniformly, we place it in such a way that its left side is to
the right of ui−1, its right side is to the left of ui, it does not cross βc(ui−1) and βa(ui),
and either its top side lies on line lµ (if edge (ui−1, ui) /∈ G; see C(ν2) in Fig. 6b), or it lies
slightly below it (otherwise; see C(νh−1) in Fig. 6b).

Then, we place C(ν1) and C(νh), after possibly scaling them up uniformly, in such a way
that:
(i) Chip C(ν1) lies to the left of u1 and does not cross βa(u1). Also, if (sµ, u1) ∈ G, then

C(ν1) lies entirely below lµ; otherwise, as in Fig. 6b, the topmost pin on its right side
has the same y-coordinate as u1.

(ii) Chip C(νh) lies to the right of uh and does not cross βc(uh). Also, if (uh, tµ) ∈ G, as in
Fig. 6b, then C(νh) lies entirely below uh; otherwise, the topmost pin on its left side
has the same y-coordinate as uh.

(iii) The bottom sides of C(ν1) and of C(νh) have the same y-coordinate, which is smaller
than the one of the bottom side of any other chip C(ν2), . . . , C(νh−1).
We now draw all the edges incident to each vertex ui, with i = 1, . . . , h − 1. If edge

(ui−1, ui) ∈ G, then it can be drawn as a horizontal segment, by construction. Otherwise,
ui can be connected with a horizontal segment to its neighbor in Gνi

corresponding to
the topmost pin on the right side of C(νi). In both cases, one of these edges is attached
at a horizontal ray of ui. Analogously, one of the edges connecting ui to its neighbors in
Gνi+1 ∪ {ui+1} is attached at the other horizontal ray of ui. Thus, it is possible to draw the
remaining δ(ui, νi) + δ(ui, νi+1)− 2 ≤ ∆− 2 edges incident to ui by attaching them at the
∆− 2 bottom rays of ui, by applying Lemma 5. In fact, since C(νi) and C(νi+1) lie to the
left and to the right of ui, respectively, and do not cross βc(ui) and βa(ui), the elongations
of the edges incident to the pins of ui in C(νi) and in C(νi+1) corresponding to these edges
intersect all the bottom rays of ui, hence satisfying the preconditions to apply the lemma.

Finally, we construct chip C(µ) as the smallest rectangle enclosing all the current drawing.
Note that the left side of C(µ) contains the left side of C(ν1), while the right side of C(µ)
contains the right side of C(νh). Thus, all the pins of sµ, possibly except for the one
corresponding to edge (sµ, u1), lie on the left side of C(µ). Also, if (sµ, u1) exists, we can
add the corresponding pin since, by construction, C(ν1) lies entirely below u1. The same
discussion applies for the pins of tµ. This proves that the constructed drawing satisfies
properties P.4 and P.4. To see that it also satisfies P.4, note that the bottom side of C(µ)
contains the bottom sides of C(ν1) and of C(νh), by construction, which have a pin on both
corners, by Property P.4. Thus, the constructed drawing of Gµ is stretchable.

Suppose that µ is an R-node. We compute a stretchable drawing of Gµ as follows. First,
we compute a 1-bend planar drawing on S of the whole pertinent Gµ of µ, including its poles
sµ and tµ; then, we remove the poles of µ and their incident edges, we define chip C(µ), and
we place the pins on its two vertical sides so to satisfy Properties P.4–P.4.

Since the skeleton Gskel
µ of µ is triconnected, we use the algorithm described in Section 3

as a main tool for drawing Gµ, with suitable modifications to take into account the fact
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that each virtual edge (u, v) of Gskel
µ actually corresponds to a whole subgraph, namely the

pertinent graph Gν of the child ν of µ with poles sν = u and tν = v. Thus, when the virtual
edge (u, v) is considered, we have to add the stretchable drawing of Gν inside a chip C(ν);
this enforces additional requirements for our drawing algorithm.

The first obvious requirement is that (u, v) will occupy δ(u, ν) consecutive rays of u and
δ(v, ν) consecutive rays of v, and not just a single ray for each of them, as in the triconnected
case. However, reserving the correct amount of rays of u and v is not always sufficient to add
C(ν) and to draw the edges between u, v, and vertices in Gν . In fact, we need to ensure that
there exists a placement for C(ν) such that the elongations of the edges incident to its pins
intersect all the reserved rays of the poles u and v of ν, hence satisfying the preconditions to
apply Lemma 5. In a high-level description, for the virtual edges that would be drawn with
a horizontal segment in the triconnected case (all the edges of a chain, and the first and last
edges of a singleton), this can be done by using a construction similar to the one of the case
in which µ is an S-node. For the edges that do not have any horizontal segment (the internal
edges of a singleton), instead, we need a more complicated construction.

The algorithm is again based on considering the vertices of H = Gµ according to a
canonical order Π = (P0, . . . , Pm) of H, in which v1 = sµ and v2 = tµ, and on constructing a
1-bend planar drawing of H−k on S satisfying a modified version of Invariants I.3–I.3.

(M.1) No part of the drawing lies below vertices v1 and v2, which have the same y-coordinate.
(M.2) For every virtual edge (w, z) on C−k , if (w, z) belongs to H then it has a horizontal

segment; also, the edge-segments corresponding to edges incident to the pins of the chip
of the child of µ corresponding to (w, z) are horizontal.

(M.3) Each vertex v on C−k has at least as many free top rays incident to the outer face of
H−k as the number of its neighbors in H that have not been drawn yet.

We note that Invariant M.4 is identical to Invariant I.3, while Invariant M.4 is the natural
extension of Invariant I.3 to take into account our previous observation. Finally, Invariant M.4
corresponds to Invariant I.3, as it ensures that we can still apply Lemma 2 and Lemma 3.

At the first step, we draw P0 = {v1, v2} and P1 = {v3, . . . , vj}. Consider the path
of virtual edges (v1, v3), (v3, v4), . . . , (vj , v2). Let ν1,3, ν3,4, . . . , νj,2 be the corresponding
children of µ, and let C(ν1,3), C(ν3,4), . . . , C(νj,2) be their chips. We consider this path as
the skeleton of an S-node with poles v1 and v2, and we we apply the same algorithm as
in the case in which µ is an S-node to draw the subgraph composed of v3, . . . , vj and of
chips C(ν1,3), C(ν3,4), . . . , C(νj,2) inside a larger chip, denoted by C(v1, v2). Note that, by
construction, C(v1, v2) has pins on its bottom-left and on its bottom-right corners. We then
place v1 and v2 with the same y-coordinate as the bottom side of C(v1, v2), with v1 to the left
and v2 to the right of C(v1, v2). We draw one of the edges incident to v1 horizontal, and the
remaining δ(v1, ν1,3)− 1 by applying Lemma 5, and the same for v2. Invariants M.4 and M.4
are satisfied by construction. For Invariant M.4, note that v3, . . . , vj have all their ∆− 2 top
rays free, by construction, and at least two of their neighbors have already been drawn. Also,
v1 and v2 have consumed only δ(v1, ν1,3)− 1 and δ(v2, νj,2)− 1 top rays, respectively. Since
edge (v1, v2) does not belong to H−k (but belongs to H), v1 and v2 satisfy Invariant M.4.

We now describe how to add path Pk, for some k > 1, to the current drawing Γk−1 in
the two cases in which Pk is a chain or a singleton.

Suppose that Pk is a chain {vi, vi+1, . . . , vj}; let u` and ur be the neighbors of vi
and vj in C−k . Let ν`, νi, . . . , νj−1, νr be the children of µ corresponding to virtual edges
(u`, vi), (vi, vi+1), . . . , (vj−1, vj), (vj , vr), and C(ν`), C(νi), . . . , C(νj−1), C(νr) be their chips.

We define rays τa(u`) and τc(ur), and the horizontal segment h between them, as in the
triconnected case. Due to Lemma 3, we can assume that τa(u`) and the δ(u`, ν`) − 1 top
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rays of u` following it in anti-clockwise order do not cross any edge of Γk−1, and the same
for τc(ur) and the δ(ur, νr)− 1 top rays of ur following it in clockwise order. Note that, by
Invariant M.4, all these rays are free. As in the step in which we considered P0 and P1 of
Π, we use the algorithm for the case in which µ is an S-node to construct a drawing of the
subgraph composed of vi, . . . , vj and of chips C(ν`), C(νi), . . . , C(νj−1), C(νr) inside a larger
chip C(u`, ur), which has pins on its bottom-left and on its bottom-right corners. We then
place C(u`, ur) so that its bottom side lies on h and it does not cross τa(u`) and τc(ur), after
possibly scaling it down uniformly. Finally, we draw the δ(u`, ν`) edges between u` and its
neighbors in Gν`

∪ {vi}, and the δ(ur, νr) edges between ur and its neighbors in Gνr
∪ {vj},

by applying Lemma 5, whose preconditions are satisfied. The fact that the constructed
drawing satisfies the three invariants can be proved as in the previous case.

Suppose that Pk is a singleton {vi} of degree δi ≤ ∆ in H−k . As in the triconnected case,
we shall assume that δi ≥ 3. Let u`, u1, . . . , uδi−2, ur be the neighbors of vi as they appear
along C−k−1, let ν`, ν1, . . . , νδi−2, νr be the children of µ corresponding to the virtual edges
connecting vi with these vertices, and let C(ν`), C(ν1), . . . , C(νδi−2), C(νr) be their chips.

For each q = 1, . . . , δi − 2, we select any set Tq of consecutive δ(uq, νq) free top rays of uq
incident to the outer face and a set Bq of consecutive δ(vi, νq) bottom rays of vi; see Fig. 7b.
Sets B1, . . . , Bδi−2 are selected so that the rays in Bq precede those in Bq+1 in anti-clockwise
order. Since δ(vi, ν`) + δ(vi, νr) ≥ 2, we have that vi has enough bottom rays for sets
B1, . . . , Bδi−2. Sets T` and Tr contain the first δ(u`, ν`) free top rays of u` in anti-clockwise
order and of the first δ(ur, νr) free top rays of ur in clockwise order, respectively.

We then select a horizontal line hi lying above every vertex in Γk−1. As in the algorithm
described in Section 3, after possibly applying O(∆) times Lemma 2, we can assume that all
the rays in sets T`, T1, . . . , Tδi−2, Tr intersect hi in the correct order. Namely, when moving
along hi from left to right, we encounter all the intersections with the rays in T`, then all
those with the rays in T1, and so on. This property is already guaranteed for the rays in
B1, . . . , Bδi−2. This defines two total left-to-right orders OT and OB of the intersection
points of T`, T1, . . . , Tδi−2, Tr and of B1, . . . , Bδi−2 along hi, respectively. For simplicity, we
extend these orders to the rays in T`, T1, . . . , Tδi−2, Tr and in B1, . . . , Bδi−2, respectively.

Our goal is to merge the two sets of intersection points, while respecting OT and OB,
in such a way that the following condition holds for each q = 1, . . . , δi − 2. If edge (vi, uq)
belongs to H, then the first intersection point of Tq in OT coincides with the first intersection
point of Bq in OB , and the second intersection point of Tq in OT is to the right of the last
intersection point of Bq in OB; see T1 and B1 in Fig. 7b. Otherwise, (vi, uq) /∈ H and the
first intersection point of Tq in OT is to the right of the last intersection point of Bq in OB ;
see T3 and B3 in Fig. 7b. In both cases, all the intersection points of Tq and Bq are to the
left of all the intersection points of Tq+1 and Bq+1.

To obtain this goal, we perform a procedure analogous to the one described in Section 3
to make points p1, . . . , pδi−2 coincide with points ρ1, . . . , ρδi−2. Namely, we consider a line
λ1, whose slope is the one of the first ray in B1, that starts at the first intersection point of
T1 in OT , if edge (v1, u1) belongs to H, or at any point between the last intersection point
of T1 and the first intersection point of T2 in OT , otherwise. Then, we place vi along λ1,
far enough from hi so that the distance between any two consecutive intersection points in
OB is larger than the distance between the first and the last intersection points in OT ; see
Fig. 7a. Finally, we apply Lemma 2 at most δi − 3 times to move the intersection points of
sets T2, . . . , Tδi−2, one by one, in the their correct positions; see Fig. 7b.

Once the required ordering of intersection points along hi has been obtained, we consider
another horizontal line h′i lying above hi and close enough to it so that its intersections with
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Figure 7 Ilustrations for placing singleton vi in the case of an R-node.

the rays in T`, T1, . . . , Tδi−2, Tr and B1, . . . , Bδi−2 appear along it in the same order as along
hi. We place each chip C(νq), with q = 1, . . . , δi− 2, after possibly scaling it down uniformly,
in the interior of the region delimited by these two lines, by the last ray in Tq, and by a ray
in Bq (either the second or the first, depending on whether (vi, uq) ∈ H or not); see Fig. 7c.

We draw the edges incident to vi and uq, for each q = 1, . . . , δi − 2, as follows. If (vi, uq)
belongs to H, we draw it with one segment along the first ray in Tq and one along the
first ray in Bq (red edge in Fig. 7c). For the other edges we apply Lemma 5 twice, whose
preconditions are satisfied due to the placement of C(νq) (blue and green edges in Fig. 7c).

We conclude by drawing the edges connecting vi, u`, and vertices in Gν`
; the edges

connecting vi, ur and vertices in Gνr are drawn symmetrically. First, after possibly applying
Lemma 2, we assume that the last ray of T` intersects the horizontal line through vi to the
left of vi, at a point pi. After possibly scaling C(ν`) down uniformly, we place it so that its
left side is to the right of pi, its right side is to the left of vi, it does not cross the first top ray
of vi in clockwise order, and its bottom side is horizontal and lies either above the horizontal
line through vi, if (u`, vi) ∈ H, or along it, otherwise. Then, we draw (u`, vi), if it belongs
to H, with one segment along the last ray of T` and the other one along the horizontal line
through vi. Otherwise, (u`, vi) /∈ H and we can draw one of the edges incident to vi with
a horizontal segment. We finally apply Lemma 5 twice, to draw the edges from u` to its
neighbors in Gν`

, and from vi to its other neighbors in Gν`
. The fact that the constructed

drawing satisfies Invariants M.4–M.4 can be proved as in the triconnected case.
Once the last path Pm of Π has been added, we have a drawing Γµ of H = Gµ satisfying

Invariants M.4–M.4. We construct chip C(µ) as the smallest axis-aligned rectangle enclosing
Γµ. By Invariant M.4, vertices v1 and v2 lie on the bottom side of C(µ). Also, by Invariant M.4,
all the edges incident to v1 or to v2 have a horizontal segment. Thus, it is possible to obtain
a drawing of Gµ inside C(µ) by removing v1 and v2 (and their incident edges) from Γµ, by
elongating the horizontal segments incident to them till reaching the vertical sides of C(µ),
and by placing pins at their ends. The fact that this drawing satisfies Properties P.4–P.4
follows from the observation that v1 and v2 were on the bottom side of C(µ). This concludes
the case in which µ is an R-node.

Once we have visited the root ρ of T , we have a stretchable drawing of Gρ inside a chip
C(ρ), which we extend to a drawing of G as follows. Refer to Fig. 5a. We place sρ and tρ
at the same y-coordinate as the bottom side of C(ρ), one to its left and one to its right, so
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that C(ρ) does not cross any of the rays of sρ and of tρ. Then, we draw edge (sρ, tρ) with
one segment along the first bottom ray in clockwise order of sρ and the other one along
the first bottom ray in anti-clockwise order of tρ. Also, we draw the edges connecting sρ
and tρ to the vertices corresponding to the lowest pins on the two vertical sides of C(ρ)
as horizontal segments. Finally, we draw all the remaining edges incident to sρ and tρ by
applying Lemma 5 twice. The following theorem summarizes the discussion in this section (a
discussion about the time complexity can be found in [1]).

I Theorem 6. For any ∆ ≥ 4, there exists a equispaced universal set S of ∆− 1 slopes for
1-bend planar drawings of biconnected planar graphs with maximum degree ∆. Also, for any
such graph on n vertices, a 1-bend planar drawing on S can be computed in O(n) time.

5 Conclusions and Open Problems

In this paper, we improved the upper bound on the 1-bend planar slope number from 3
2 (∆−1)

to ∆− 1, for ∆ ≥ 4. We mention two side-results of our work. Since the angular resolution
of our drawings is at least π

∆−1 , at the cost of increased drawing area our main result also
improves the best-known upper bound of π

4∆ on the angular resolution of 1-bend poly-line
planar drawings by Duncan and Kobourov [17]. For ∆ = 4, it also guarantees that planar
graphs with maximum degree 4 admit 1-bend planar drawings on a set of slopes {0, π3 ,

2π
3 },

while previously it was known that such graphs can be embedded with one bend per edge on
a set of slopes {0, π4 ,

π
2 ,

3π
4 } [3] and with two bends per edge on a set of slopes {0, π} [5].

Our work raises several open problems.
(i) Reduce the gap between the 3

4 (∆− 1) lower bound and the ∆− 1 upper bound.
(ii) Our algorithm may produce drawings with super-polynomial area. Is this unavoidable

for 1-bend planar drawings with few slopes and good angular resolution?
(iii) Study the straight-line case (e.g., when ∆ = 4). Note that stretching might be difficult

in this setting.
(iv) We proved that a set of ∆− 1 equispaced slopes is universal for 1-bend planar drawings.

Is every set of ∆− 1 slopes universal? Note that for ∆ ≤ 4 a positive answer descends
from our work and from a result by Dujmovic et al. [15], who proved that any planar
graph that can be drawn on a particular set of three slopes can also be drawn on any
set of three slopes. If the answer to this question is negative for ∆ > 4, what is the
minimum value s(∆) such that every set of s(∆) slopes is universal?
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