
On Bend-Minimized Orthogonal Drawings of
Planar 3-Graphs
Yi-Jun Chang∗1 and Hsu-Chun Yen†2

1 Department of EECS, University of Michigan, Ann Arbor, MI, USA
2 Department of Electrical Engineering, National Taiwan University, Taipei,

Taiwan

Abstract
An orthogonal drawing of a graph is a planar drawing where each edge is drawn as a sequence of
horizontal and vertical line segments. Finding a bend-minimized orthogonal drawing of a planar
graph of maximum degree 4 is NP-hard. The problem becomes tractable for planar graphs of
maximum degree 3, and the fastest known algorithm takes O(n5 logn) time. Whether a faster
algorithm exists has been a long-standing open problem in graph drawing. In this paper we
present an algorithm that takes only Õ(n17/7) time, which is a significant improvement over the
previous state of the art.
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1 Introduction

An orthogonal drawing of a graph is a planar drawing where each edge is composed of a
sequence of horizontal and vertical line segments with no crossings. Orthogonal drawings
appear in many applications such as the automation of VLSI circuit layout and the drawing
of diagrams in information systems. Variants of orthogonal drawings have been introduced
in the literature to cope with different constraints or to improve the readability and aesthetic
feel: smoothing the drawing [2, 1], requiring orthogonal convexity [5], accommodating vertices
of more than 4 incident edges [16, 8], and restricting directions of vertices [11, 13]. Refer
to [12] for a survey on orthogonal drawings.

Bend-minimization is one of the most classical optimization problems on orthogonal
drawings. Given a planar (or plane) graph, the problem asks for an orthogonal drawing
with the total number of bends minimized. However, the problem is NP-hard for planar
4-graphs [15].1 To obtain polynomial time algorithms, one has to relax the problem one way
or another. For example, it is known that a polynomial time algorithm exists when the first
bend on an edge does not incur any cost [3].

Much research effort has been made on bend-minimization for subclasses of planar 4-
graphs [9, 7, 14, 18, 17]. The two most natural subclasses are planar 3-graphs (reducing
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† Hsu-Chun Yen was supported in part by Ministry of Science and Technology, Taiwan, under grant

MOST 103-2221-E-002-154-MY3.
1 We write k-graphs to denote graphs of maximum degree k. Note that the degree of each vertex cannot

exceed 4 in an orthogonal drawing, and hence planar 4-graphs are the most general graph class that can
be drawn orthogonally.
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the maximum degree by 1) and plane 4-graphs (fixing the planar embedding). For plane
4-graphs, a seminal work by Tamassia [20] demonstrates a reduction from bend-minimization
to a computation of a min-cost flow. Following this approach, the runtime has been reduced
to O(n7/4√logn) [14], and subsequently to O(n1.5) [7].2

For planar 3-graphs, the fastest known algorithm for bend-minimization is the O(n5 logn)
time algorithm designed by Di Battista, Liotta, and Vargiu, which dates back to 1998 [9].
As stated as an open problem in [4], further improving the time complexity is identified as
an important issue in the field of graph drawing.

Problem 15: Let G be a planar graph whose vertices have degree at most three. Is there an
algorithm to compute a planar bend-minimum orthogonal drawing of G in o(n5 logn) time?

In this paper, we answer the problem affirmatively by demonstrating an Õ(n17/7) time3
algorithm. Precisely, our algorithm takes O(n ·T (n)) time, where T (n) is the time complexity
of constructing a bend-minimized orthogonal drawing of a plane 3-graph subject to the
constraint that some designated edges have no bend. We will later see that bend-minimization
of a plane 3-graph can be reduced to min-cost flow of constant capacity, and a recent
breakthrough on unit-capacity min-cost flow in sparse graphs [6] implies T (n) = Õ(n10/7).

The main challenge of designing a bend-minimization algorithm for planar 3-graphs is to
handle the transition from the variable embedding setting to the fixed embedding setting.
The naïve approach of testing all possible planar embeddings is very inefficient, as there can
be an exponential number of different planar embeddings. A natural way to approach this
problem is to devise a dynamic programming procedure on an SPQR-tree, which is a tree
structure capable of storing all possible embeddings of a planar graph using linear space. The
approach is briefly sketched as follows. By “contracting” all subgraphs of the planar graph
G that can be flipped, a graph G′ that has a fixed combinatorial embedding is obtained. An
optimal drawing of G′ can be computed quickly using a bend-minimization algorithm for
plane 3-graphs. The optimal drawings of the contracted subgraphs are computed recursively.
Merging these drawings yields a drawing of G. Using the terminology of SPQR-trees, if G is
the pertinent graph of a node µ in the SPQR-tree, then the graph G′ is (a subdivision of) the
skeleton of µ, and the contracted subgraphs are the pertinent graphs of some descendants of µ.
See Fig. 1 for a conceptual example: (1) G′ = H2 is resulting from contracting the subgraph
H1 into a vertex v in G. (2) Merging the drawings of H1 and H2 yields an orthogonal
drawing of G (treating each white dot in the figure as a bend).

The above strategy does not immediately give us a bend-minimization algorithm. Observe
that the outer boundary of G needs to have 4 convex corners. Thus we need an additional
constraint which requires that the drawing of G′ and the drawings computed by recursive
calls jointly supply 4 convex corners in the outer boundary. To ensure that the final drawing
of G is optimal, one has to compute multiple drawings of each contracted subgraph H subject
to different constraints on the number of convex corners in the outer boundary of G that H
can supply, and to examine all possible combinations of these constraints. In [9] the notion
of spirality, which measures how an orthogonal drawing is “rolled up”, is developed to serve
as the aforementioned constraints.

In this paper, we utilize some tools developed by Rahman et al. in [19]. They characterized
the condition for the existence of a no-bend orthogonal drawing based on the number of

2 Throughout the paper, we define n := |V (G)| as the number of vertices in the graph. Note that we
have |E(G)| = O(n) for planar graphs.

3 The Õ(·) notation suppresses any poly log n factor.
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Figure 1 Contracting subgraphs and merging sub-drawings.

2-vertices4 on some cycles, and they gave a linear time algorithm to construct such a drawing
if one exists. Note that bend-minimization can be equated with finding a minimum number
of subdivisions and a planar embedding to meet the condition for a no-bend orthogonal
drawing to exist.

We first reduce the bend-minimization problem to a constrained version, and then we
use the SPQR-tree dynamic programming to solve the constrained version of the bend-
minimization problem recursively. In our algorithm, for each contracted subgraph, only a
constant number of recursive calls is needed, and the merging of the subdrawings can be
performed in time linear to the number of contracted subgraphs. Our algorithm is presented
in a top-down manner. The main algorithm (for biconnected planar 3-graphs) is described
in Sec. 3, and the details of some subroutines are left in Sec. 4 and 5. The SPQR-tree
implementation is described in Sec. 6. Our algorithm can also be extended to planar 3-graphs
that are not biconnected based on block-cutvertex tree. The detail is omitted due to space
limit.

It is expected that our approach be applicable to some other variants of orthogonal
drawings, such as the orthogonally convex drawing [5], as its no-bend version can be
characterized analogously along the line of the work by Rahman at el. [19].

2 Preliminaries

Given a graph G = (V,E), we write ∆(G) to denote the maximum degree of G. We write
V (G) and E(G) to denote the sets of vertices and edges of G, respectively. We call G a
d-graph if ∆(G) ≤ d. A vertex of degree d is called a d-vertex. A multi-graph is a graph
where self-loops are disallowed while multi-edges are allowed. Throughout the paper, all
graphs under consideration are planar 3-graphs with possibly multi-edges. Unless otherwise
stated, all cycles and paths are assumed to be simple in the sense that they do not have
repeated vertices.

A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). We write H ⊆ G

to denote the subgraph relation. We write H ( G if H ⊆ G and H 6= G. For H ( G, we
write G−H to denote the graph resulting from removing from G all vertices in H and the
edges incident to these vertices. A graph is planar if it can be drawn on a plane without any
edge crossing. A planar drawing partitions the plane into several disconnected regions called
faces. The face corresponding to the region of unbounded size is called the outer face. The
remaining ones are called inner faces. A facial cycle is a cycle surrounding a face. All facial
cycles are simple in a biconnected plane graph. A plane graph is a planar graph with a fixed
combinatorial embedding (which specifies a cyclic order of the edges incident to each vertex
in the planar embedding) and a designated outer cycle CO that surrounds the outer face.

4 We write a k-vertex to denote a vertex of degree k.
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We call a cycle inner if it is not the outer one. For any vertex and edge, we call it boundary
if it is located in CO; otherwise, it is non-boundary. A cycle C 6= CO is called boundary if it
contains some edges in CO. For a cycle C in a plane graph G, we write G[C] to denote the
subgraph of G that contains exactly C and vertices and edges residing in its interior region.
Note that G[C] = G iff C = CO; and G[C] = C iff C is an inner facial cycle.

With respect to a cycle C of a plane graph G, an edge e = {u, v} 6∈ E(G[C]) is called a
leg of C if at least one of u and v belongs to V (C). A vertex in V (C) incident to some leg of
C is called a legged-vertex of C. In a 3-graph, each legged-vertex of C is incident to exactly
one leg of C. A cycle C is k-legged if C has exactly k legs.

Consider the plane graph G in Fig. 1. The cycle C1 = (h,m, l, j, i) is a non-boundary
2-legged cycle of which the two legged-vertices are h and j, and the two legs are {a, h}
and {j, k}. The facial cycle C2 = (d, e, k) is a boundary 3-legged cycle in G. A subdivision
is a process of adding a new 2-vertex w to an edge e = {u, v} by replacing e with two
edges {u,w} and {w, v}. A smoothing is the reverse process of a subdivision which removes
a 2-vertex w by replacing two edges {u,w} and {w, v} with a new edge {u, v}, assuming
{u,w}, {w, v} ∈ E(G).

2.1 Theorems of Rahman et al.
Rahman st al. [19] gave a characterization of those biconnected plane 3-graphs that admit
orthogonal drawings without bends. Based on the characterization, they presented a linear
time algorithm to construct such a drawing, if one exists.

I Theorem 1 ([19]). A biconnected plane 3-graph G admits a no-bend orthogonal drawing if
and only if the following conditions are met:
1. The outer cycle CO contains at least four 2-vertices.
2. Each 2-legged cycle contains at least two 2-vertices.
3. Each 3-legged cycle contains at least one 2-vertex.

The conditions in Theorem 1 can be reformulated as a single condition requiring the
number of 2-vertices plus the number of legged-vertices to be at least 4 in each cycle. Note
that a cycle is drawn as an orthogonal polygon in an orthogonal drawing. Since an orthogonal
polygon must have at least four 90◦ corners, the necessity of the conditions in Theorem 1
follows from the fact that only 2-vertices and legged-vertices can be drawn as 90◦ corners of
a cycle. Corollary 2 is an immediate consequence of Theorem 1.

I Corollary 2. A biconnected planar 3-graph G admits an orthogonal drawing using x bends
if and only if there is a plane graph G• which is a subdivision of G with |V (G•)|− |V (G)| = x

meeting the three conditions in Theorem 1.

To better understand Theorem 1 and Corollary 2, consider the plane graph G in Fig. 1, the
non-boundary 2-legged cycle C1 = (h,m, l, j, i), and the boundary 3-legged cycle C2 = (d, e, k).
As CO(G) contains only one 2-vertex f , C1 contains only one 2-vertex i, and V (C2) contains
no 2-vertex, all three conditions in Theorem 1 are violated. The plane graph G• in Fig. 1,
which results from making 3 subdivisions in G, fulfills the three conditions. A no-bend
orthogonal drawing of G• can be seen as an orthogonal drawing of G with 3 bends.

Observe that in the linear time drawing algorithm of Rahman et al. [19], it is possible to
choose any set of four 2-vertices in CO as four convex corners in the outer boundary.5 Hence
we have the following theorem.

5 The outer boundary refers to the orthogonal polygon corresponding to CO in the drawing. Note that a
convex corner in the outer boundary is also a concave corner of the outer face.
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I Theorem 3 ([19]). Let G be a biconnected plane 3-graph that admits a no-bend orthogonal
drawing, and let S be a set of at most four 2-vertices in CO. Then there exists a no-bend
orthogonal drawing of G in which all vertices in S are convex corners in the outer boundary.

2.2 Orthogonal Representations and Min Cost Flow Formulation.

Let G be a biconnected plane 3-graph that admits a no-bend orthogonal drawing. A naïve
way of describing a no-bend orthogonal drawing of G is to specify the actual coordinates
of all vertices. The concept of an orthogonal representation [20] allows us to describe the
shape of an orthogonal drawing, expressed in terms of angles around the vertices without
reporting any information about the actual coordinates of the vertices.6 Formally speaking,
an orthogonal representation consists of assigning an angle θ ∈ {90◦, 180◦, 270◦} to each pair
(v, F ) such that the vertex v belongs to the cycle surrounding face F . This indicates that
v is a degree θ corner in face F . It is required that the summation of all angles around a
vertex is 360◦, and the difference between the number of convex corners and the number of
concave corners is 4 in each inner face, and is −4 in the outer face. Given an orthogonal
representation meeting the above requirements, in O(n) time a no-bend orthogonal drawing
realizing the angle assigned to each corner can be constructed [20].

In view of the above, the task of bend-minimization of a biconnected plane 3-graph reduces
to applying a minimum number of subdivisions to make the graph to have an orthogonal
representation. This can be formulated as a min-cost flow problem [20]. Each vertex v of
degree k supplies 4− k units of flow. Each inner face F consumes p− 4 units of flow, where
p is the number of vertices surrounding F . The outer face FO consumes p+ 4 units of flow,
where p is the number of vertices in CO. For each pair (v, F ) such that v belongs to the
cycle surrounding F , add an arc (v, F ) with capacity 2 and cost 0. Flowing k units of flow
from v to F indicates that v is a 90(k + 1)◦ corner in F . For each edge e which borders the
two faces F and F ′, add two arcs (F, F ′) and (F ′, F ) with capacity 4 and cost 1. Flowing
k units of flow from F to F ′ along the arc associated with e indicates that the edge e is
subdivided k times, and these k new 2-vertices are convex corners in F and concave corners
in F ′. Since Theorem 1 implies that subdividing an edge more than 4 times makes no use, it
is fine to set the capacity of these arcs to 4. It is straightforward to verify that any feasible
flow corresponds to an orthogonal representation, and the cost of the flow equals the number
of 2-vertices introduced by subdivisions. The flow network can be made unit-capacity by
emulating an arc of capacity k by k arcs with capacity 1. Since the total number of arcs in
the flow network is m = O(n), and since the maximum cost of an arc is W = 1, the min-cost
flow algorithm of [6] solves the bend-minimization problem of a biconnected plane 3-graph in
Õ(m10/7 logW ) = Õ(n10/7) time.

I Theorem 4. A bend-minimized orthogonal drawing of a biconnected plane 3-graph can be
constructed in T (n) = Õ(n10/7) time.

We are not aware of any unit-capacity min-cost flow formulation of bend-minimization of
plane 4-graphs, so the O(n1.5) time algorithm of [7] remains state-of-the-art.

6 Here we only describe a simplified version of orthogonal representations that works for no-bend drawings
of biconnected plane 3-graphs. See [20] for a complete definition that handles bends and general plane
graphs.

SoCG 2017
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Algorithm 1: Min-Bend-Draw(G, s).
Input: (1) a biconnected planar 3-graph G that is not a cycle, (2) a 2-vertex s ∈ V (G)
Output: a bend-minimized orthogonal drawing of G subject to the condition that s

belongs to the outer boundary
1 Let u and v be the two neighbors of s.
2 for each b ∈ {1, 2, 3} do
3 G̃← the graph resulting from replacing (u, s, v) with a path P = (u, s1, . . . , sb, v).
4 G• ← Subdiv-Embed(G̃, P ).
5 Compute a no-bend orthogonal drawing of G• (which can be seen as an orthogonal

drawing of G).
6 Among all drawings computed, return the one that uses the minimum number of bends.

3 The Main Algorithm

In this section we present our main algorithm, which applies O(n) calls to a subroutine that
solves a constrained version of the bend-minimization problem. Let G be a biconnected
planar 3-graph, and P be a u–v path such that V (P ) \ {u, v} contains only 2-vertices. A
P -orthogonal drawing of G is an orthogonal drawing of G such that the outer cycle contains
P as a subpath, and no bend is imposed on P . A P -orthogonal drawing for a biconnected
plane 3-graph G, with P ⊆ CO(G), is defined analogously.

The procedure Subdiv-Embed(G,P ), which is described in the next section, computes
a plane graph G• such that any no-bend orthogonal drawing of G• is a bend-minimized
P -orthogonal drawing of G. More precisely, the plane graph G• is required to meet the
following conditions:

G• is a subdivision of G, and no subdivision is made on the path P .
P belongs to the outer cycle of G•.
G• admits a no-bend orthogonal drawing.
Among all plane graphs meeting the above 3 criteria, G• is chosen such that |V (G•)| −
|V (G)| is minimized.

To describe our main algorithm, we first note the following result.

I Lemma 5. For any orthogonal drawing of a planar graph G, at least one of the following is
true: (1) the outer boundary contains a 2-vertex v ∈ V (G); (2) the outer boundary contains
an edge e ∈ E(G) that has at least one bend.

Proof. If no 2-vertex of G belongs to CO, there must be at least 4 bends in the outer cycle
to serve as 4 convex corners of the orthogonal polygon corresponding to CO. J

Using Subdiv-Embed as a blackbox, Algorithm 1 and Algorithm 2 compute bend-minimized
orthogonal drawings subject to the two cases of Lemma 5. We remark that the reason that
we do not need to consider the case of b > 3 in these two algorithms is due to Lemma 7.
Based on these two algorithms, Algorithm 3, which is the main algorithm of the paper,
computes a bend-minimized orthogonal drawing of a biconnected planar 3-graph G that is
not a cycle. See Fig. 2 for an illustration of Min-Bend-Draw. The subdivisions introduced in
the procedure Subdiv-Embed are drawn as white dots.

Let G be a plane graph, and let H = G[C] be a subgraph of G such that C is a 2-legged
cycle. Define flipping H as the operation that reverses the cyclic order of the edges incident
to v in the combinatorial embedding of G, for each v ∈ V (H). As long as C is 2-legged, the
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Algorithm 2: Min-Bend-Draw(G, e).
Input: (1) a biconnected planar 3-graph G that is not a cycle, (2) an edge

e = {u, v} ∈ E(G)
Output: a bend-minimized orthogonal drawing of G subject to the condition that e

has at least one bend and belongs to the outer boundary
1 for each b ∈ {1, 2, 3} do
2 G̃← the graph resulting from replacing (u, v) with a path P = (u, s1, . . . , sb, v).
3 G• ← Subdiv-Embed(G̃, P ).
4 Compute a no-bend orthogonal drawing of G• (which can be seen as an orthogonal

drawing of G).
5 Among all drawings computed, return the one that uses the minimum number of bends.

Algorithm 3: Min-Bend-Draw(G).
Input: a biconnected planar 3-graph G that is not a cycle
Output: a bend-minimized orthogonal drawing of G

1 For each e ∈ E(G), run Min-Bend-Draw(G, e).
2 For each 2-vertex s ∈ V (G), run Min-Bend-Draw(G, s).
3 Among all drawings computed, return the one that uses the minimum number of bends.

flipping operation preserves the planarity of G. For example, in Fig. 3 the plane graph G2
is resulting from flipping H = G[C] in the plane graph G1, where C = (c, k, l, h, i, e, d). To
prove the correctness of Min-Bend-Draw(G), we need the following lemmas.

I Lemma 6. Let G be a biconnected plane 3-graph admitting a no-bend orthogonal drawing.
Let C be a boundary 2-legged cycle that has no boundary 2-vertex. Then flipping G[C]
preserves the property of having a no-bend orthogonal drawing.

I Lemma 7. Let G be a planar graph that is not a cycle, and P be a path of four consecutive
2-vertices in G. Then smoothing one 2-vertex in P to make it a path of three consecutive
2-vertices does not increase the minimum number of bends needed to have an orthogonal
drawing.

Due to the space limit, the proof of Lemma 6 and Lemma 7 are omitted (The proof of
Lemma 7 utilizes Lemma 6). Refer to Fig. 3 for an illustration:

The plane graph G2 is resulting from flipping H = G[C] in the plane graph G1, where
C = (c, k, l, h, i, e, d). The property of having no-bend orthogonal drawing is preserved.
If we treat G1 and G3 as planar graphs, the planar graph G3 is resulting from smoothing
f in G1; the graph G3 still has a no-bend orthogonal drawing (with a different embedding
than G1).

I Theorem 8. Min-Bend-Draw(G), Min-Bend-Draw(G, e), and Min-Bend-Draw(G, s) are cor-
rect.

Proof. The correctness of Min-Bend-Draw(G, e) and Min-Bend-Draw(G, s) follows from the
correctness of Subdiv-Embed. Note that Lemma 7 allows us not to consider the case of b > 3.

Lemma 5 ensures that there exists a bend-minimized orthogonal drawing of G such that
either (1) the outer boundary contains a 2-vertex s ∈ V (G), or (2) the outer boundary

SoCG 2017
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Figure 3 Flipping and smoothing.

contains an edge e ∈ E(G) whose number of bends is at least 1. Therefore, among all edges
e ∈ E(G) and all 2-vertices s ∈ V (G), one of Min-Bend-Draw(G, e) or Min-Bend-Draw(G, s)
returns a bend-minimized orthogonal drawing. Thus, Min-Bend-Draw(G) is correct. J

4 Constrained Orthogonal Drawing

In this section we describe the procedure Subdiv-Embed(G,P ) and prove its correctness.
Recall that we need Subdiv-Embed(G,P ) to return a plane graph G• such that its no-bend
orthogonal drawing is also a bend-minimized P -orthogonal drawing of G.

To better understand how Subdiv-Embed(G,P ) works, the reader is encouraged to consult
Fig. 4 as our discussion proceeds. Let G be a biconnected planar 3-graph, and P be a u–v path
in G such that V (P ) \ {u, v} contains only 2-vertices (see G in the leftmost figure of Fig. 4).
With respect to the given G and P , a biconnected subgraph B with E(P ) ( E(G) \ E(B)
is said to be essential if there exists an embedding of G where P ⊆ CO such that in this
particular embedding the unique cycle C with B = G[C] is 2-legged. Note that changing
“there exists” to “for all” does not alter the definition. That is, for any essential subgraph B,
in any embedding of G with P ⊆ CO, the unique cycle C with B = G[C] must be 2-legged.
Moreover, all 2-legged cycles C resulting from different embeddings of G with P ⊆ CO have
the same two 2-vertices s and t. We define {s, t} as the poles of B.7

With respect to G and P , an essential subgraph B is said to be maximal if for all essential
subgraphs B′, either E(B) ∩ E(B′) = ∅ or B′ ⊆ B. Fig. 4 specifies two maximal essential
subgraphs Bx and By. We write B(G,P ) to denote the set of maximal essential subgraphs
with respect to G and P . Given a fixed planar embedding of G with P ⊆ CO, Bin(G,P ) is

7 These terms are related to SPQR tree, as described below. In an SPQR tree of G with any reference
edge e in P , an essential subgraph B is a pertinent graph (with poles {s, t}) associated with either a
P-node or an R-node. The reason that B is not associated with an S-node is that B is biconnected. See
Section 6 for more details.
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Figure 5 An example illustrating the proof of Lemma 10.

defined as the set of maximal essential subgraphs that does not have any edge in CO, and
Bout(G,P ) is defined as B(G,P ) \ Bin(G,P ).

For any essential subgraph B, we write Bb to denote the planar graph resulting from
adding a path (s, r1, . . . , rb, t) to B, where {s, t} are the poles of B. We write P (Bb) to
denote the path (s, r1, . . . , rb, t). The upper figure of Fig. 4 shows B3

x, P (B3
x), B2

y and P (B2
y).

Intuitively, the path (s, r1, . . . , rb, t) is an abstraction for the sub-drawing (with b convex
corners) to which the drawing of B will eventually be attached, and 4 − b represents the
number of convex corners that the drawing of B is capable to contribute in forming the final
orthogonal drawing.

Given a function L that maps Bout(G,P ) to {1, 2, 3}, we write GL to denote the plane
graph resulting from replacing each B ∈ Bout(G,P ) with a path of 4 − L(B) 2-vertices
(r1, . . . , r4−L(B)) and replacing each B ∈ Bin(G,P ) with a 2-vertex r. See GL in the upper
figure of Fig. 4. Let {s, s′} and {t, t′} be the two (uniquely defined) edges in E(G) \ E(B),
where {s, t} are the poles of B. We write P (B,L) to denote the path of 4− L(B) 2-vertices
or the single 2-vertex in GL that replaces B, depending on whether B ∈ Bout(G,P ) or
B ∈ Bin(G,P ).

I Definition 9. A function L that maps Bout(G,P ) to {1, 2, 3} is a valid labeling if and only
if |Bout(G,P )| ≥ 3 implies L(B) = 3 for all B ∈ Bout(G,P ).

The intuition behind Definition 9 is as follows. Recall that 4 convex corners are needed in
the outer boundary of an orthogonal drawing. The path P can supply at least 1 convex corner
(P has at least one 2-vertex). Thus, if |Bout(G,P )| ≥ 3, it suffices that each B ∈ Bout(G,P )
supplies 1 convex corner.
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I Lemma 10. Among all embeddings of G with P ⊆ CO, there are at most two ways of
partitioning B(G,P ) into Bin(G,P ) and Bout(G,P ). Moreover, given (1) a labeling L that
maps Bout(G,P ) to {1, 2, 3}, and (2) a set Bout(G,P ), the plane graph GL (if it exists) is
uniquely determined.

Proof. First of all, we can restrict our consideration to the function L such that L(B) = 1
for all B, as taking subdivisions does not affect the number of planar embeddings.

To understand the proof better, the reader is referred to Fig. 5 for an illustrating example,
in which s1, . . . , s5 are 2-vertices corresponding to essential subgraphs B1, . . . , B5, respectively.
Let G′L be the planar graph resulting from removing the intermediate vertices of the u–v
path P in GL and neglecting the planar embedding of GL. It is clear that in any planar
embedding of G′L such that u, v ∈ V (CO), there is no 2-legged cycle C in G′L such that C
contains both u and v. The existence of such a cycle C violates the definition of B(G,P ), as
C would have been contracted into a 2-vertex in GL.

Therefore, under the constraint that u, v ∈ V (CO) in an embedding of G′L, there is no way
to flip G′L[C] in G′L, where C is any 2-legged cycle. With respect to any embedding of G′L
such that u, v ∈ V (CO), let P1 and P2 be the two u–v paths along the outer boundary, and
define Si = {B|P (B,L) ⊆ Pi}, where i ∈ {1, 2}. The unordered pair {S1, S2} is independent
of the chosen embedding (since no flipping operation can be performed).

The outer boundary of GL is either P together with P1 (i.e., Bout(G,P )={B1, B5}) or P
together with P2 (i.e., Bout(G,P )={B2, B4}). Therefore, Bout(G,P ) can only be S1 or S2,
and once Bout(G,P ) is fixed, the planar embedding of GL is fixed. J

The procedure Subdiv-Embed(G,P ) is defined as Algorithm 4. The procedure uses a
subroutine Merge which constructs a plane graph G• from the following plane graphs:

GL
• ← a subdivision of GL that admits a no-bend orthogonal drawing.

B3• ← Subdiv-Embed(B3, P (B3)), for each B ∈ Bin(G,P ).
BL(B)• ← Subdiv-Embed(BL(B), P (BL(B))), for each B ∈ Bout(G,P ).

Recall that the plane graph G• is a planar embedding of a subdivision of G that admits a
no-bend orthogonal drawing. In addition, we require |V (G•)| − |V (G)| to be |V (GL•)| −
|V (GL)|+

(∑
B∈Bin(G,P ) |V (B3•)| − |V (B3)|

)
+
(∑

B∈Bout(G,P ) |V (BL(B)•)| − |V (BL(B))|
)
.

Intuitively, G• is constructed by merging these plane graphs in such a way that main-
tains the property of having a no-bend orthogonal drawing without making any new sub-
division (see Fig. 4). As guaranteed by Lemma 10, there are two ways of partitioning
B(G,P ), and the upper middle figure shows one of the two in which Bout(G,P ) = {By} and
Bin(G,P ) = {Bx}. Procedure Subdiv-Embed(G,P ) produces GL• (which is a subdivision
of GL), B3

x
• (i.e., Subdiv-Embed(B3

x, P (B3
x)) which is a subdivision of B3

x), and B2
y
• (i.e.,

Subdiv-Embed(B2
y , P (B2

y)), which is a subdivision of B2
y). Note that the white dots in the

drawing indicate 2-vertices created by subdivisions. Also note that displaying the orthogonal
drawings of B3

x
•, B2

y
•, and G• in Fig. 4 are simply for illustrating purposes. We only compute

their planar embeddings and subdivisions, and no specific drawing is fixed. The description
of the procedure Merge is left to the next section.

The P -orthogonal drawing of the plane graph GL in Algorithm 4 can be computed using
any orthogonal drawing algorithm for plane 3-graphs that allows us to restrict some edges to
have no bend. This can be done in time T (|V (GL)|) = Õ(|V (GL)|10/7) using the min-cost
flow described in Sec. 2.2. It is straightforward to modify the min-cost flow to restrict some
edges to have no bend. The proof of the correctness of Subdiv-Embed(G,P ) is omitted due
to the space limit.
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Algorithm 4: Subdiv-Embed(G,P ).
Input: (1) a biconnected planar 3-graph G that is not a cycle, and (2) a u–v path P

in G such that V (P ) \ {u, v} consists of exactly b 2-vertices, where b ∈ {1, 2, 3}
Output: a plane graph G• which is a planar embedding of a subdivision of G such

that no subdivision is made on P , and any no-bend orthogonal drawing of
G• is also a bend-minimized P -orthogonal drawing of G

1 for the at most 2 possibilities of partitioning B(G,P ) into Bin(G,P ) and Bout(G,P ),
and the at most 9 possibilities of valid labelings L do

2 Construct a bend-minimized P -orthogonal drawing D of the plane graph GL
subject to the constraint that no bend is made on the path (r1, . . . , r4−L(B)) that
replaces B, for each B ∈ Bout(G,P ). Let GL• be the subdivision of GL resulting
from replacing each bend in D by a 2-vertex.

3 For each B ∈ Bin(G,P ), let B3• ← Subdiv-Embed(B3, P (B3)).
4 For each B ∈ Bout(G,P ), let BL(B)• ← Subdiv-Embed(BL(B), P (BL(B))).
5 Use Merge to construct a planar embedding of a subdivision of G from GL

•,
{B3•}B∈Bin(G,P ), and {BL(B)•}B∈Bout(G,P ).

6 Among all planar embeddings of subdivisions of G computed, return the one that uses
the minimum number of subdivisions.

I Theorem 11. Procedure Subdiv-Embed(G,P ) returns a plane graph G• such that any
no-bend orthogonal drawing of G• is a bend-minimized P -orthogonal drawing of G.

We will later see that the procedure Merge admits an implementation that runs in
|B(G,P )| time. This leads to the following lemma.

I Lemma 12. Suppose that Subdiv-Embed(Bi, P (Bi)) for each B ∈ B(G,P ), i ∈ {1, 2, 3}
are precomputed. Subdiv-Embed(G,P ) is in O(T (|E(G)| −

∑
B∈B(G,P ) |E(B)|)) time.

Proof. The drawing D of GL can be computed in O(T (|V (GL)|)) time. The procedure
Merge takes O(|B(G,P )|) ≤ O(|V (GL)|) time. The lemma follows from the fact that |V (GL)|
and |E(G)| −

∑
B∈B(G,P ) |E(B)| differs by at most a constant factor. J

5 Merging Subgraphs

In this section we describe the procedure Merge. For each essential subgraph B, we define
B• as its corresponding subgraph in B3• or BL(B)•, depending on whether B ∈ Bin(G,P )
or B ∈ Bout(G,P ). Here B• is defined as a plane graph instead of a planar graph. Observe
that simply replacing each P (B,L) with B• (i.e., an expansion) yields a planar embedding
of a subdivision of G that meets the constraint on the number of subdivisions made (i.e.,
|V (G•)| − |V (G)|). But this does not guarantee that the resulting plane graph G• has a no-
bend P -orthogonal drawing. A key in our merging procedure is that after replacing P (B,L)
with B•, B• becomes a subgraph of G• that can be flipped. We will see that, by appropriately
flipping some B•, we obtain a planar embedding that has a no-bend P -orthogonal drawing.

Let B be an essential subgraph of G with poles {s, t}. We let es = {s, s′} and et = {t, t′}
be the two edges incident to s and t, respectively, from the outside of B. The two edges
es and et are well-defined since both s and t already have two incident edges in B as B
is required to be biconnected. Recall that in Subdiv-Embed(G,P ) an orthogonal drawing
D of GL is computed. By definition, D is also a no-bend orthogonal drawing of the plane
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Figure 6 Illustration of Merge.

graph GL•. We let F1 (resp., F2) be the face in GL• such that s′ is followed by s (resp., s is
followed by s′) in the counter-clockwise ordering of vertices of its facial cycle. We say that
P (B,L) is of type-k if the number of convex corners minus the number of concave corners
of F1 in P (B,L) is k in D. Note that P (B,L) is of type-k if and only if the number of
convex corners minus the number of concave corners of F2 in P (B,L) is −k, since a vertex
in P (B,L) is convex in F1 if and only if it is concave in F2. See Fig. 6 for examples of types
of P (B,L).

Next, we define the type of B• with respect to a specific orthogonal drawing D′ of B3•

or BL(B)•. For notational simplicity, we write i = 3 if B ∈ Bin(G,P ), and i = L(B) otherwise.
Let (s, x1, . . . , xa, t, y1, . . . , yb) be the clockwise ordering of vertices in the cycle surrounding
B•, and let P1 = (s, x1, . . . , xa, t) and P2 = (s, yb, . . . , y1, t). Among the two faces in Bi•

that are not within the subgraph B•, we let F1 (resp., F2) be the face that has P1 (resp., P2)
as a subpath in the facial cycle. Then we say B• is of type-k in a given orthogonal drawing
of Bi• if the number of convex corners minus the number of concave corners of F1 in P1 is
k. Note that B• is of type-k if and only if the number of convex corners minus the number
of concave corners of F2 in P2 is −k. See Fig. 6 for examples of B• of different types and
drawings of Bi• that realize these types.

Recall that our algorithm does not fix any specific orthogonal drawing of Bi•. We define
T (B•) as the set of integers such that k ∈ T (B•) if there exists an orthogonal drawing D′ of
Bi• such that (1) B• is of type-k with respect to the drawing D′, (2) in the drawing D′, no
bend is made in the subgraph B• (but it is allowed to have bends in the path P (Bi)).

I Lemma 13. The type of P (B,L) is within {−4+i, . . . , 4−i}, where i = 3 if B ∈ Bin(G,P ),
and i = L(B) otherwise.

Proof. As the path P (B,L) contains exactly 4− i 2-vertices, the result follows. J

I Lemma 14. If s is followed by t (resp., t is followed by s) in P (Bi) in the counter-clockwise
ordering of vertices of the outer cycle of Bi•, then T (B•) contains all of 0,−1, . . . ,−4 + i

(resp., 0, 1, . . . , 4− i).

Proof. We only focus on the case where t is followed by s in P (Bi) in the counter-clockwise
ordering of vertices of the outer cycle of Bi•. In this case F1 is an inner face. The proof
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Algorithm 5: Merge.
Input: GL• and its no-bend orthogonal drawing D, {B3•}B∈Bin(G,P ), and

{BL(B)•}B∈Bout(G,P )
Output: a plane graph G• which is a planar embedding of a subdivision of G that

admits a no-bend orthogonal drawing
1 Initialize G̃ = GL

•.
2 for B ∈ B(G,P ) do
3 Set i = 3 if B ∈ Bin(G,P ), and i = L(B) otherwise.
4 Set b1 as the sign of the type of P (B,L) in D (if the type is 0, then b1 can be

either −1 or 1).
5 Set b2 = 1 if t is followed by s in P (Bi) in the counter-clockwise ordering of

vertices of the outer cycle of Bi•, and set b2 = −1 otherwise.
6 Replace P (B,L) in G̃ with B•.
7 Flip the subgraph B• if b1 · b2 < 0.
8 return G• = G̃.

of the other case is similar. To see that 4 − i ∈ T (B•), consider any no-bend orthogonal
drawing D′ of Bi• where all the i 2-vertices on the path P (Bi) are drawn as convex corners
in F1. Due to Theorem 3, such a drawing D′ exists. The type of Bi• with respect to D′
is 4− i since the number of convex corners minus the number of concave corners of F1 in
P1 must be 4 − i. In what follows, we prove that T (B•) also contains 0, 1, . . . , 4 − i − 1.
For each x ∈ {i+ 1, . . . , 4}, by adding x− i new 2-vertices (which are treated as bends in a
drawing) to the path P (Bi), Theorem 3 allows us to construct an orthogonal drawing D′ of
Bi• where the path P (Bi), excluding the two endpoints, supplies x convex corners in F1.
The type of Bi• with respect to D′ is 4− x since the number of convex corners minus the
number of concave corners of F1 in P1 must be 4− x. J

Based on Lemma 13 and Lemma 14, we define the Merge procedure as Algorithm 5. In
the iteration of the algorithm that processes B, let τ be the type of P (B,L) in D. For
the case where b1 and b2 have the same sign, there is an orthogonal drawing D′ of Bi•

realizing the type τ (by Lemma 13 and Lemma 14). It is straightforward to see that replacing
P (B,L) with the drawing of B• (taken from D′) maintains the validity of the orthogonal
representation D (since both P (B,L) in D and B• in D′ have the same type τ).

For the case where b1 and b2 have opposite signs, there is an orthogonal drawing D′ of
Bi• realizing the type −τ , where τ is the type of P (B,L) in D. Similarly, if the replacement
is done with the drawing of B• taken from D′, then after flipping the subgraph B•, the
validity of the orthogonal representation D is maintained (the flipping cancels the effect of
opposite signs).

Though the correctness of Algorithm 5 is based on the existence of certain drawings of
Bi•, there is no need to compute these drawings. Therefore, the Algorithm 5 takes only
|B(G,P )| time. See Fig. 6 for an illustration of Merge.

6 SPQR-tree Implementation

In this section we show that the three procedures Min-Bend-Draw(G), Min-Bend-Draw(G, s),
and Min-Bend-Draw(G, e) admit efficient implementations based on SPQR-trees [10].
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We denote the SPQR-tree of G rooted at the edge e as TG,e. Each node in TG,e is either
an S-,P-,Q-, or R-node. Each node is associated with a subgraph of G which is called the
pertinent graph. Each pertinent graph B is associated with two vertices {s, t} ⊆ V (H), called
poles, such that removal of s and t disconnects B from the rest of the graph. The root node
of TG,e is a Q-node whose pertinent graph is the subgraph of G resulting from removing the
edge e. Let ν be a node in TG,e that is a descendant of another node µ; then the pertinent
graph of ν is a proper subgraph of the pertinent graph of µ.

For a given subgraph H ⊆ G and two vertices s, t ∈ V (H) such that H does not contain
the reference edge e, the following two statements are equivalent:

B is biconnected, and removing s and t disconnects B from the rest of the graph.
B is the pertinent graph of a P-node or an R-node µ of TG,e, and the poles of µ are {s, t}.

For any node µ in TG,e, we define B(µ) as the set of all pertinent graphs B meeting the
following condition: B is associated with a P-node or an R-node ν which is a descendant
of µ such that all intermediate nodes in the directed path (µ, . . . , ν) in the SPQR-tree TG,e

contains no P-node and R-node.
Consider the procedure Subdiv-Embed(G̃, P ) invoked in an execution of Min-Bend-

Draw(G, e) or Min-Bend-Draw(G, s). With respect to the SPQR-tree TG̃,e′ for any arbitrary
choice of e′ ∈ E(P ), it is clear that B(G̃, P ) is exactly B(µ), where µ is the root of TG̃,e′ .
Therefore, any recursive call Subdiv-Embed(Bi, P (Bi)) invoked in the procedure Subdiv-
Embed(G̃, P ) can be associated with a P-node or an R-node ν ∈ B(µ) of TG̃,e in the
sense that B is the pertinent graph of ν. Similarly, it is straightforward to see that the set
B(Bi, P (Bi)) is exactly B(ν), independent of i. Since the SPQR-tree TG̃,e′ can be constructed
in linear time, we have the following theorem (which is due to Lemma 12).

I Theorem 15. Let n = |V (G)|. Both Min-Bend-Draw(G, e) and Min-Bend-Draw (G, s) can
be implemented to run in O(T (n)) time, and Min-Bend-Draw(G) can be implemented to run
in O(n · T (n)) time, where T (n) = Õ(n10/7).

I Remark. We comment on the suggestion of an anonymous reviewer regarding the use
of the terminology in [9] to derive our result. In the procedure Subdiv-Embed(G,P ), the
computation of Subdiv-Embed(Bi, P (Bi)) for i ∈ {1, 2, 3} is analogous to the computation of
optimal set of B in [9]. Theorem 1 actually implies that the spirality of a split component of
a biconnected planar 3-graph is bounded by a constant. This also explains why it suffices to
only consider i ∈ {1, 2, 3}. If one goes through the proof details in [9], tracks the dependence
on spirality carefully, and incorporates the Õ(n10/7) time algorithm for the fixed-embedding
setting (Theorem 4, which is based on [6]) to the approach in [9], an Õ(n17/7) time bend-
minimization algorithm can also be obtained using the terminology in [9]. Nonetheless, we
feel that our approach (directly based on tools in [19]) is more natural and simpler than [9].

Acknowledgements. We thank the anonymous reviewers for their thoughtful comments.
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