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—— Abstract

In many data analysis applications the following scenario is commonplace: we are given a point
set that is supposed to sample a hidden ground truth K in a metric space, but it got corrupted
with noise so that some of the data points lie far away from K creating outliers also termed as
ambient noise. One of the main goals of denoising algorithms is to eliminate such noise so that
the curated data lie within a bounded Hausdorff distance of K. Popular denoising approaches
such as deconvolution and thresholding often require the user to set several parameters and/or
to choose an appropriate noise model while guaranteeing only asymptotic convergence. Our goal
is to lighten this burden as much as possible while ensuring theoretical guarantees in all cases.

Specifically, first, we propose a simple denoising algorithm that requires only a single para-
meter but provides a theoretical guarantee on the quality of the output on general input points.
We argue that this single parameter cannot be avoided. We next present a simple algorithm that
avoids even this parameter by paying for it with a slight strengthening of the sampling condition
on the input points which is not unrealistic. We also provide some preliminary empirical evidence
that our algorithms are effective in practice.
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1 Introduction

Real life data are almost always corrupted by noise. Of course, when we talk about noise, we
implicitly assume that the data sample a hidden space called the ground truth with respect
to which we measure the extent and type of noise. Some data can lie far away from the
ground truth leading to ambient noise. Clearly, the data density needs to be higher near the
ground truth if signal has to prevail over noise. Therefore, a worthwhile goal of a denoising
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Figure 1 Scale ambiguity.

algorithm is to curate the data, eliminating the ambient noise while retaining most of the
subset that lies within a bounded distance from the ground truth.

In this paper we are interested removing “outlier”’-type of noise from input data. Numerous
algorithms have been developed for this problem in many different application fields; see e.g [16,
21]. There are two popular families of denoising/outlier detection approaches: Deconvolution
and Thresholding. Deconvolution methods rely on the knowledge of a generative noise
model for the data. For example, the algorithm may assume that the input data has been
sampled according to a probability measure obtained by convolving a distribution such as
a Gaussian [18] with a measure whose support is the ground truth. Alternatively, it may
assume that the data is generated according to a probability measure with a small Wasserstein
distance to a measure supported by the ground truth [7]. The denoising algorithm attempts
to cancel the noise by deconvolving the data with the assumed model.

A deconvolution algorithm requires the knowledge of the generative model and at least
a bound on the parameter(s) involved, such as the standard deviation of the Gaussian
convolution or the Wasserstein distance. Therefore, it requires at least one parameter as well
as the knowledge of the noise type. The results obtained in this setting are often asymptotic,
that is, theoretical guarantees hold in the limit when the number of points tends to infinity.

The method of thresholding relies on a density estimation procedure [20] by which it
estimates the density of the input locally. The data is cleaned, either by removing points
where density is lower than a threshold [14], or moving them from such areas toward higher
densities using gradient-like methods such as mean-shift [11, 19]. It has been recently used
for uncovering geometric information such as one dimensional features [15]. In [5], the
distance to a measure [10] that can also be seen as a density estimator [2] has been exploited
for thresholding. Other than selecting a threshold, these methods require the choice of a
density estimator. This estimation requires at least one additional parameter, either to define
a kernel, or a mass to define the distance to a measure. In the case of a gradient based
movement of the points, the nature of the movement also has to be defined by fixing the
length of a step and by determining the terminating condition of the algorithm.

New work. In above classical methods, the user is burdened with making several choices
such as fixing an appropriate noise model, selecting a threshold and/or other parameters. Our
main goal is to lighten this burden as much as possible. First, we show that denoising with a
single parameter is possible and this parameter is in some sense unavoidable unless a stronger
sampling condition on the input points is assumed. This leads to our main algorithm that
is completely free of any parameter when the input satisfies a stronger sampling condition
which is not unrealistic.
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Figure 2 From left to right: the ground truth, the noisy input samples (~ 7000 points around the
ground truth and 2000 ambient noise points), two intermediate steps of our iterative parameter-free
denoising algorithm and the final output.

Our first algorithm Declutter algorithm uses a single parameter (presented in Section 3)
and assumes a very general sampling condition which is not stricter than those for the
classical noise models mentioned previously because it holds with high probability for those
models as well. Additionally, our sampling condition also allows ambient noise and locally
adaptive samplings. Interestingly, we note that our Declutter algorithm is in fact a variant
of the approach proposed in [8] to construct the so-called e-density net. Indeed, as we point
out in Appendix D of the full version [6], the procedure of [8] can also be directly used for
denoising purpose and one can obtain an analog of Theorems 9 and 13 in this paper for the
resulting density net.

Use of a parameter in the denoising process is unavoidable in some sense, unless there are

other assumptions about the hidden space. This is illustrated by the example in Figure 1.

Does the sample here represent a set of small loops or one big circle? The answer depends on
the scale at which we examine the data; see the full version [6] for the results of applying our
denoising algorithms on this data set. The choice of a parameter may represent this choice of
the scale [3, 13]. To remove this parameter, one needs other conditions for either the hidden
space itself or for the sample, say by assuming that the data has some uniformity. Aiming to
keep the sampling restrictions as minimal as possible, we show that it is sufficient to assume
the homogeneity in data only on or close to the ground truth for our second algorithm which
requires no input parameter.

Specifically, the parameter-free algorithm presented in Section 4 relies on an iteration
that intertwines our decluttering algorithm with a novel resampling procedure. Assuming
that the sample is sufficiently dense and somewhat uniform near the ground truth at scales
beyond a particular scale s, our algorithm selects a subset of the input point set that is close
to the ground truth without requiring any input from the user. The output maintains the

quality at scale s even though the algorithm has no explicit knowledge of this parameter.

See Figure 2 for an example.

All missing details from this extended abstract can be found in the full version [6]. In
addition, in Appendix C of the full version [6], we show how the denoised data set can be
used for homology inference. In Appendix E of the full version [6] , we provide various
preliminary experimental results of our denoising algorithms.

» Remark. Very recently, Jiang and Kpotufe proposed a consistent algorithm for estimating
the so-called modal-sets with also only one parameter [17]. The problem setup and goals are
very different: In their work, they assume that input points are sampled from a density field
that is locally maximal and constant on a compact domain. The goal is to show that as the
number of samples n tends to infinity, such domains (referred to as modal-sets in their paper)
can be recovered, and the recovered set converges to the true modal-sets under the Hausdorff
distance. We also note that our Declutter algorithm allows adaptive sampling as well.
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2 Preliminaries

We assume that the input is a set of points P sampled around a hidden compact set K, the
ground truth, in a metric space (X, dx). For simplicity, in what follows the reader can assume
X = R? with P, K C X =R%, and the metric dx of X is simply the Euclidean distance. Our
goal is to process P into another point set () guaranteed to be Hausdorff close to K and
hence to be a better sample of the hidden space K for further applications. By Hausdorff
close, we mean that the (standard) Hausdorff distance 05 (Q, K) between @ and K, defined
as the infimum of ¢ such that Vp € Q,dx(p, K) < § and Va € K, dx(x,Q) < ¢, is bounded.
Note that ambient noise/outliers can incur a very large Hausdorff distance.

The quality of the output point set @) obviously depends on the “quality” of input
points P, which we formalize via the language of sampling conditions. We wish to produce
good quality output for inputs satisfying much weaker sampling conditions than a bounded
Hausdorff distance. Our sampling condition is based on the sampling condition introduced
and studied in [4, 5]; see Chapter 6 of [4] for discussions on the relation of their sampling
condition with some of the common noise models such as Gaussian. Below, we first introduce
a basic sampling condition deduced from the one in [4, 5], and then introduce its extensions
incorporating adaptivity and uniformity.

Basic sampling condition. Our sampling condition is built upon the concept of k-distance,
which is a specific instance of a broader concept called distance to a measure introduced
in [10]. The k-distance dpy(z) is simply the root mean of square distance from z to its
k-nearest neighbors in P. The averaging makes it robust to outliers. One can view dp ()
as capturing the inverse of the density of points in P around z [2]. As we show in Appendix
D [6], this specific form of k-distance is not essential — Indeed, several of its variants can
replace its role in the definition of sampling conditions below, and our Declutter algorithm
will achieve similar denoising guarantees.

» Definition 1 ([10]). Given a point z € X, let p;(x) € P denote the i-th nearest neighbor
of x in P. The k-distance to a point set P C X is dpy(z) = \/% Zle dx(z,pi(x))2.

» Claim 2 ([10]). dp(-) is I-Lipschitz, i.e. |dpg(x) —dpr(y)| < dx(z,y) for¥(z,y) € XxX.

All our sampling conditions are dependent on the choice of k in the k-distance, which we
reflect by writing €, instead of € in the sampling conditions below. The following definition
is related to the sampling condition proposed in [5].

» Definition 3. Given a compact set K C X and a parameter k, a point set P is an €x-noisy
sample of K if

1. Vz e K, dpy(x) < e

2. Ve eX, dx(z, K) <dpi(z)+ e

Condition 1 in Definition 3 means that the density of P on the compact set K is bounded
from below, that is, K is well-sampled by P. Note, we only require P to be a dense enough
sample of K — there is no uniformity requirement in the sampling here.

Condition 2 implies that a point with low k-distance, i.e. lying in high density region, has
to be close to K. Intuitively, P can contain outliers which can form small clusters but their
density can not be significant compared to the density of points near the compact set K.

Note that the choice of € always exists for a bounded point set P, no matter what value
of k is — For example, one can set ¢; to be the diameter of point set P. However, the smallest
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possible choice of € to make P an eg-noisy sample of K depends on the value of k. We thus
use € in the sampling condition to reflect this dependency.
In Section 4, we develop a parameter-free denoising algorithm. As Figure 1 illustrates, it

is necessary to have a mechanism to remove potential ambiguity about the ground truth.

We do so by using a stronger sampling condition to enforce some degree of uniformity:

» Definition 4. Given a compact set K C X and a parameter k, a point set P is a uniform
(ék, ¢)-noisy sample of K if P is an €x-noisy sample of K (i.e, conditions of Def. 3 hold) and
3. Vpe P, dpy(p) > <.

It is important to note that the lower bound in Condition 3 enforces that the sampling
needs to be homogeneous - i.e, dp () is bounded both from above and from below by some
constant factor of €, — only for points on and around the ground truth K. This is because
condition 1 in Def. 3 is only for points from K, and condition 1 together with the 1-Lipschitz
property of dpy (Claim 2) leads to an upper bound of O(ey) for dp(y) only for points y
within O(e;) distance to K. There is no such upper bound on dp for noisy points far away
from K and thus no homogeneity/uniformity requirements for them.

Adaptive sampling conditions. The sampling conditions given above are global, meaning
that they do not respect the “feature” of the ground truth. We now introduce an adaptive
version of the sampling conditions with respect to a feature size function.

» Definition 5. Given a compact set K C X, a feature size function f: K — RT U {0} is a
1-Lipschitz non-negative real function on K.

Several feature sizes exist in the literature of manifold reconstruction and topology inference,
including the local feature size [1], local weak feature size, p-local weak feature size [9] or
lean set feature size [12]. All of these functions describe how complicated a compact set is
locally, and therefore indicate how dense a sample should be locally so that information can
be inferred faithfully. Any of these functions can be used as a feature size function to define
the adaptive sampling below. Let p denote any one of the nearest points of p in K. Observe
that, in general, a point p can have multiple such nearest points.

» Definition 6. Given a compact set K C X, a feature size function f of K, and a parameter
k, a point set P is a uniform (e, c)-adaptive noisy sample of K if

1. Ve e K, dp(x) < e f(x),

2. VyeX, dx(y,K) < dpw(y) + exf(9),

3. Vpe P, dpi(p) > %1 (p).

We say that P is an eg-adaptive noisy sample of K if only conditions 1 and 2 above hold.

We require that the feature size is positive everywhere as otherwise, the sampling condition
may require infinite samples in some cases. We also note that the requirement of the feature
size function being 1-Lipschitz is only needed to provide the theoretical guarantee for our
second parameter-free algorithm.

3 Decluttering

We now present a simple yet effective denoising algorithm which takes as input a set of points
P and a parameter k, and outputs a set of points @ C P with the following guarantees: If P
is an eg-noisy sample of a hidden compact set K C X, then the output @ lies close to K in
the Hausdorff distance (i.e, within a small tubular neighborhood of K and outliers are all
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Algorithm 1: Declutter(P,k).

Data: Point set P, parameter k

Result: Denoised point set )

1 begin

2 sort P such that dp(p1) < --- < dpr(pp|)-
3 Qo — 0

4 for i «+— 1 to |P| do

5 if Qi—l N B(pi; 2dp7k(pi)) = @ then
6

7

8

9

| Qi=Qi—1U{p:}
end
else Q;=0Qi
end
10 | Q«—Qn
11 end

eliminated). The theoretical guarantee holds for both the non-adaptive and the adaptive
cases, as stated in Theorems 9 and 13.

As the k-distance behaves like the inverse of density, points with a low k-distance are
expected to lie close to the ground truth K. A possible approach is to fix a threshold a and
only keep the points with a k-distance less than «. This thresholding solution requires an
additional parameter a. Furthermore, very importantly, such a thresholding approach does
not easily work for adaptive samples, where the density in an area with large feature size
can be lower than the density of noise close to an area with small feature size.

Our algorithm Declutter(P,k), presented in Algorithm 1, works around these problems
by considering the points in the order of increasing values of their k-distances and using a
pruning step: Given a point p;, if there exists a point ¢ deemed better in its vicinity, i.e., ¢
has smaller k-distance and has been previously selected (¢ € Q;—1), then p; is not necessary
to describe the ground truth and we throw it away. Conversely, if no point close to p; has
already been selected, then p; is meaningful and we keep it. The notion of “closeness” or
“vicinity” is defined using the k-distance, so k is the only parameter. In particular, the
“vicinity" of a point p; is defined as the metric ball B(p;, 2dp(p;)); observe that this radius
is different for different points, and the radius of the ball is larger for outliers. Intuitively,
the radius 2dpk(p;) of the “vicinity” around p; can be viewed as the length we have to go
over to reach the hidden domain with certainty. So, bad points have a larger “vicinity”. We
remark that this process is related to the construction of the “density net” introduced in [8],
which we discuss more in Appendix D [6].

See Figure 3 on the right for an artificial example, where the black points are input points,
and red crosses are in the current output @Q;_1. Now, at the ith iteration, suppose we are
processing the point p; (the green point). Since within the vicinity of p; there is already a
good point p, we consider p; to be not useful, and remove it. Intuitively, for an outlier p;, it
has a large k-distance and hence a large vicinity. As we show later, our €x-noisy sampling
condition ensures that this vicinity of p; reaches the hidden compact set which the input
points presumably sample. Since points around the hidden compact set should have higher
density, there should be a good point already chosen in @;_;. Finally, it is also important
to note that, contrary to many common sparsification procedures, our Declutter algorithm
removes a noisy point because it has a good point within its vicinity, and not because it is
within the vicinity of a good point. For example, in Figure 3, the red points such as p have
small vicinity, and p; is not in the vicinity of any of the red point.
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Figure 3 Declutter.

In what follows, we will make this intuition more concrete. We first consider the simpler
non-adaptive case where P is an eg-noisy sample of K. We establish that @) and the ground
truth K are Hausdorff close in the following two lemmas. The first lemma says that the
ground truth K is well-sampled (w.r.t. ;) by the output @ of Declutter.

» Lemma 7. Let Q C P be the output of Declutter(P,k) where P is an €-noisy sample of a
compact set K C X. Then, for any x € K, there exists ¢ € Q such that dx(x,q) < beg.

Proof. Let z € K. By Condition 1 of Def. 3, we have dpy(z) < €. This means that
the nearest neighbor p; of = in P satisfies dx(p;, ) < dpx(z) < €. If p; € Q, then the
claim holds by setting ¢ = p;. If p; ¢ Q, there must exist j < ¢ with p; € Q;—1 such
that dx(pi,pj) < 2dpi(pi). In other words, p; was removed by our algorithm because
p; € Qi—1 N B(p;i,2dp(p;)). Combining triangle inequality with the 1-Lipschitz property of
dp (Claim 2), we then have

dx(z,p;) < dx(@,pi) + dx(pi,p;) < dx(x,p;) + 2dpk(pi) < 2dpi(z) + 3dx(pi, ¥) < Sey,
which proves the claim. <
The next lemma implies that all outliers are removed by our denoising algorithm.

» Lemma 8. Let Q C P be the output of Declutter(P,k) where P is an €-noisy sample of a
compact set K C X. Then, for any q € Q, there exists x € K such that dx(q,z) < Te.

Proof. Consider any p; € P and let p; be one of its nearest points in K. It is sufficient to
show that if dx(p;,p;) > Tex, then p; ¢ Q .

Indeed, by Condition 2 of Def. 3, dpx(p;) > dx(p:, Di) — €x > 6€x. By Lemma 7, there
exists ¢ € @ such that dx(p;,q) < 5ei. Thus,

dpr(q) < dpk(pi) + dx(pi, q) < beg.

Therefore, dpk(p;) > 6e; > dpi(¢) implying that ¢ € Q;—1. Combining triangle inequality
and Condition 2 of Def. 3, we have

dx(pi,q) < dx(pi, pi) + dx(Di, @) < dpr(pi) + €x + 5ep < 2dp i (pi).
Therefore, ¢ € Q;—1 N B(p;,2dpk(pi)), meaning that p; ¢ Q. <

» Theorem 9. Given a point set P which is an ex-noisy sample of a compact set K C X,
Algorithm Declutter returns a set Q C P such that 6 (K, Q) < Te.

23:7
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Interestingly, if the input point set is uniform then the denoised set is also uniform, a
fact that turns out to be useful for our parameter-free algorithm later.

» Proposition 10. If P is a uniform (ex, c)-noisy sample of a compact set K C X, then the
distance between any pair of points of Q is at least 2.

Proof. Let p and ¢ be in ) with p # ¢ and, assume without loss of generality that dpx(p) <
dp(q). Then, p ¢ B(q,2dpx(q)) and dpr(q) > <. Therefore, dx(p,q) > 2. <

Adaptive case

Assume the input is an adaptive sample P C X with respect to a feature size function f.
The denoised point set () may also be adaptive. We hence need an adaptive version of the
Hausdorff distance denoted 62(@, K) and defined as the infimum of ¢ such that (i) Vp € Q,
dx(p,K) < df(p), and (ii) Vz € K,dx(z,Q) < §f(x), where p is a nearest point of p in K.
Similar to the non-adaptive case, we establish that P and output ) are Hausdorff close via
Lemmas 11 and 12 whose proofs are same as those for Lemmas 7 and 8 respectively, but
using an adaptive distance w.r.t. the feature size function. Note that the algorithm does not
need to know what the feature size function f is, hence only one parameter (k) remains.

» Lemma 11. Let Q C P be the output of Declutter(P, k) where P is an ei-adaptive noisy
sample of a compact set K C X. Then, Vo € K,3q € Q, dx(z,q) < bepf(x).

» Lemma 12. Let Q C P be the output of Declutter(P, k) where P is an ep-adaptive noisy
sample of a compact set K C X. Then, for Vq € Q, dx(q,q) < 7Terf(q).

» Theorem 13. Given an ex-adaptive noisy sample P of a compact set K C X with feature
size f, Algorithm Declutter returns a sample Q C P of K where 5£(Q,K) < Teg.

Again, if the input set is uniform, the output remains uniform as stated below.

» Proposition 14. Given an input point set P which is an uniform (e, c)-adaptive noisy
sample of a compact set K C X, the output QQ C P of Declutter satisfies

V(ai0) € Q. i#5 = dlaigy) = 22 £(@).

Proof. Let ¢; and ¢; be two points of @ with ¢ < j. Then ¢; is not in the ball of center g;
and radius 2dp(q;). Hence dx(qi,q;) > 2dpr(q;) > 2% f(q;). Since i < j, it also follows
that dx(gi,q;) > 2dpr(q;) > 2dpr(qs) > 2 f(qs)- )

The algorithm Declutter removes outliers from the input point set P. As a result, we
obtain a point set which lies close to the ground truth with respect to the Hausdorff distance.
Such point sets can be used for inference about the ground truth with further processing. For
example, in topological data analysis, our result can be used to perform topology inference
from noisy input points in the non-adaptive setting; see Appendix C [6] for more details.

An example of the output of algorithm Declutter is given in Figure 4(a)—(d). More
examples (including for adaptive inputs) can be found in the full version [6].

Extensions

It turns out that there are many choices that can be used for the k-distance dp(z) instead
of the one introduced in Definition 1. Indeed, the goal of k-distance intuitively is to provide a
more robust distance estimate — Specifically, assume P is a noisy sample of a hidden domain
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(a) (b) (c) (d) (e)

Figure 4 (a)—(d) show results of the Algorithm Declutter: (a) the ground truth, (b) the noisy
input with 15K points with 1000 ambient noisy points, (c) the output of Algorithm Declutter when
k=9, (d) the output of Algorithm Declutter when k£ = 30. In (e), we show the output of Algorithm
ParfreeDeclutter. As shown in Appendix E [6], algorithm ParfreeDeclutter can remove ambient noise
for much sparser input samples with more noisy points.

K C X. With the presence of noisy points far away from K, the distance dx(x, P) no longer
serves as a good approximation of dx(x, K), the distance from z to the hidden domain K. We
thus need a more robust distance estimate. The k-distance dp () introduced in Definition 1
is one such choice, and there are many other valid choices. As we show in Appendix D [6],
we only need the choice of dp(z) to be 1-Lipschitz, and is less sensitive than dx(x, P) (that
is, dx(x,P) < dpi(z)). We can then define the sampling condition (as in Definitions 3
and 4) using a different choice of dp(z), and Theorems 9 and 13 still hold. For example,
we could replace k-distance by dpi(z) = ¢ Ele d(x,p;(x)) where p;(x) is the ith nearest
neighbor of x in P; that is, dp () is the average distance to the k nearest neighbors of x
in P. Alternatively, we can replace k-distance by dp(z) = d(z, pr(z)), the distance from

Z to its k-th nearest neighbor in P (which was used in [8] to construct the e-density net).

Declutter algorithm works for all these choices with the same denoising guarantees.

One can in fact further relax the conditions on dp(x) or even on the input metric space
(X, dx) such that the triangle inequality for dx only approximately holds. The corresponding
guarantees of our Declutter algorithm are provided in Appendix D of the full version [6].

4  Parameter-free decluttering

The algorithm Declutter is not entirely satisfactory. First, we need to fix the parameter k a
priori. Second, while providing a Hausdorff distance guarantee, this procedure also “sparsifies"
input points. Specifically, the empty-ball test also induces some degree of sparsification, as
for any point ¢ kept in @, the ball B(g,2dpx(¢g)) does not contain any other output points in
. While this sparsification property is desirable for some applications, it removes too many
points in some cases — See Figure 4 for an example, where the output density is dominated
by €, and does not preserve the dense sampling provided by the input around the hidden
compact set K. In particular, for k = 9, it does not completely remove ambient noise, while,
for k = 30, the output is too sparse.

In this section, we address both of the above concerns by a novel iterative re-sampling
procedure as described in Algorithm ParfreeDeclutter(P). Roughly speaking, we start with
k = |P| and gradually decrease it by halving each time. At iteration i, let P; denote the
set of points so far kept by the algorithm; ¢ is initialized to be |log,(|P|)] and is gradually
decreased. We perform the denoising algorithm Declutter(P;, k = 2¢) given in the previous

section to first denoise P; and obtain a denoised output set ). This set can be too sparse.
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Algorithm 2: ParfreeDeclutter(P).

Data: Point set P
Result: Denoised point set Py
1 begin
2 Set i, = |logy(|P])], and P;, «— P
3 for i «— i, to 1 do
4 Q <+— Declutter(P;,2%)
5 Pi—1 +— UgeB(a, (10 + 2v2)dp, 5:(q)) N P;
6
7

end
end

We enrich it by re-introducing some points from P;, obtaining a denser sampling P;_; C P; of
the ground truth. We call this a re-sampling process. This re-sampling step may bring some
outliers back into the current set. However, it turns out that a repeated cycle of decluttering
and resampling with decreasing values of k£ removes these outliers progressively. See Figure 2
and also more examples in the full version [6]. The entire process remains free of any user
supplied parameter. In the end, we show that for an input that satisfies a uniform sampling
condition, we can obtain an output set which is both dense and Hausdorff close to the hidden
compact set, without the need to know the parameters of the input sampling conditions.

In order to formulate the exact statement of Theorem 15, we need to introduce a more
relaxed sampling condition. We relax the notion of uniform (e, ¢)-noisy sample by removing
condition 2. We call it a weak uniform (e, c)-noisy sample. Recall that condition 2 was the
one forbidding the noise to be too dense. So essentially, a weak uniform (e, ¢)-noisy sample
only concerns points on and around the ground truth, with no conditions on outliers.

» Theorem 15. Given a point set P and iy such that for all i > ig, P is a weak uniform
(€9i,2)-noisy sample of K and is also a uniform (egio,2)-noisy sample of K, Algorithm
ParfreeDeclutter returns a point set Py C P such that dg(Py, K) < (87 4 16v/2)e€qig .

We elaborate a little on the sampling conditions. On one hand, as illustrated by Figure 1,
the uniformity on input points is somewhat necessary in order to obtain a parameter-free
algorithm. So requiring a uniform (eq:,2)-noisy sample of K is reasonable. Now it would
have been ideal if the theorem only required that P is a uniform (€5, 2)-noisy sample of
K for some kg = 2%. However, to make sure that this uniformity is not destroyed during
our iterative declutter-resample process before we reach i = ig, we also need to assume that,
around the compact set, the sampling is uniform for any k = 2% with i > ig (i.e, before we
reach ¢ = ig). The specific statement for this guarantee is given in Lemma 17. However, while
the uniformity for points around the compact set is required for any i > ig, the condition
that noisy points cannot be arbitrarily dense is only required for one parameter, k = 2%.

The constant for the ball radius in the resampling step is taken as 10 + 2v/2 which we call
the resampling constant C'. Our theoretical guarantees hold with this resampling constant
though a value of 4 works well in practice. The algorithm reduces more noise with decreasing
C. On the flip side, the risk of removing points causing loss of true signal also increases
with decreasing C. Section 5 and Appendix E [6] provide several results for Algorithm
ParfreeDeclutter. We also point out that while our theoretical guarantee is for non-adaptive
case, in practice, the algorithm works well on adaptive sampling as well.
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Proof for Theorem 15

Aside from the technical Lemma 16 on the k-distance, the proof is divided into three steps.

First, Lemma 17 shows that applying the loop of the algorithm once with parameter 2k
does not alter the existing sampling conditions for &” < k. This implies that the €5i,-noisy
sample condition on P will also hold for P;,. Then Lemma 18 guarantees that the step going
from P;, to P;,_; will remove all outliers. Combmed with Theorem 9, which guarantees that
Pi,—1 bampleb well K, it guarantees that the Hausdorff distance between P;,_; and K is
bounded. However, we do not know ¢y and we have no means to stop the algorithm at this
point. Fortunately, we can prove Lemma 19 which guarantees that the remaining iterations
will not remove too many points and break the theoretical guarantees — that is, no harm is
done in the subsequent iterations even after ¢ < ¢yp. Putting all three together leads to our
main result Theorem 15.

» Lemma 16. Given a point set P, x € X and 0 < i < k, the distance to the i-th nearest

neighbor of x in P satisfies, dx(x,p;) < k%mdgk(x).

Proof. The claim is proved by the following derivation.

k
Z x(@,p)’

» Lemma 17. Let P be a weak uniform (esy,2)-noisy sample of K. For any k' < k such
that P is a (weak) uniform (eg,c)-noisy sample of K for some ¢, applying one step of the
algorithm, with parameter 2k and resampling constant C' = 10+ 2v/2 gives a point set P! C P
which is a (weak) uniform (e, c)-noisy sample of K.

k—i+1

3 dx (z,p;)? <

k
Z (z,p;)? = dpy(z)>. <

??‘\»—A
w\H

Proof. We show that if P is a uniform (eg,c)-noisy sample of K, then P’ will also be a
uniform (e, ¢)-noisy sample of K. The similar version for weak uniformity follows from the
same argument.

First, it is easy to see that as P’ C P, the second and third sampling conditions of Def. 4
hold for P’ as well. What remains is to show that Condition 1 also holds.

Take an arbitrary point € K. We know that dpoi(x) < €, as P is a weak uniform
(€e2k, 2)-noisy sample of K. Hence there exists p € P such that dx(p,z) < dpar(z) < ez
and dpak(p) < 2. Writing @ the result of the decluttering step, 3¢ € @ such that

dx(p,q) < 2dpar(p) < 4eax. Moreover, dpox(q) > 4% due to the uniformity condition for P.

Using Lemma 16, for k' < k, the k' nearest neighbors of z, which are chosen from P,
N Ny (z) satisfies:

NNy (z) C B(x,V2ex) C B(p, (1+v2)ear) C Blg, (5+V2)ear) C B(g, (10+2v2)dp o (q))
Hence NNy (x) C P’ and dp i (x) = dp s (x) < €. This proves the lemma. <

» Lemma 18. Let P be a uniform (ex,2)-noisy sample of K. One iteration of decluttering
and resampling with parameter k and resampling constant C' = 10 4+ 2v/2 provides a set
P’ C P such that 6y (P, K) < 8Cex + Tey,.

Proof. Let @ denote the output after the decluttering step. Using Theorem 9 we know
that 05 (Q, K) < Teg. Note that @ C P’. Thus, we only need to show that for any p € P/,
dx(p, K) < 8Cey, + Teg. Indeed, by the way the algorithm removes points, for any p € P/,
there exists ¢ € @ such that p € B(q, Cdpi(q)). It then follows that

dx(p, K) < Cdp,k(q) + dx(q,K) < C’(ek + dx(q,K)) + Ter, < 8Cey, + Teg. <
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» Lemma 19. Given a point y € P;, there exists p € Py such that dx(y,p) < kdp, 2i(y),

where Kk = 18"‘41177‘/5.

Proof. We show this lemma by induction on i. First for i = 0 the claim holds trivially.
Assuming that the result holds for all j < ¢ and taking y € P;, we distinguish three cases.

Case 1: y € P;_; and dp, | 2i-1(y) < dp, 2:(y). Applying the recurrence hypothesis for
j =1 — 1 gives the result immediately.

Case 2: y ¢ P;_1. It means that y has been removed by decluttering and not been put
back by resampling. These together imply that there exists ¢ € @Q; C P;_; such
that dx(y,q) < 2dp, 2i(y) and dx(y,q) > Cdp, 2i(q) with C = 10 + 2v/2. From the
proof of Lemma 17, we know that the 2°~! nearest neighbors of ¢ in P; are resampled
and included in Pj_;. Therefore, dp, | 2i-1(q) = dp, 2i-1(q) < dp, 2i(q). Moreover,
since ¢ € P;_1, the inductive hypothesis implies that there exists p € Py such that
dx(p,q) < kdp, | 2i-1(q) < kdp, 2i(q). Putting everything together, we get that there
exists p € Py such that

dx(p,y) < dx(p,q) + dx(q,y)
< Kdp, 2i(q) + 2dp, 2:(y)

K
< +2|dp. o
S 5+\/§ ) P;,2 (y)
< kdp, 2i ().

The derivation above also uses the relation that dp, 2i(q) < &dx(y,q) < Zdp, 2 (y).

Case 3: y € P;_; and dp, | 2i-1(y) > dp, 2:(y). The second part implies that at least
one of the 27! nearest neighbors of 3 in P; does not belong to P;_;. Let z be such a
point. Note that dx(y,z) < \/dei,gi (y) by Lemma 16. For point z, we can apply the
second case and therefore, there exists p € Py such that

dx(p,y) < dx(p,2) + dx(z,v)

< (577 +2) tna) + VBl
Sgiﬁfw)meM+kwwﬂﬂ@Myw
< ((5_’_&\/?4‘2) (1+\/§)+\/§> dPi)Qi(y) SﬁdPi,%(y) <

Putting everything together. A repeated application of Lemma 17 (with weak uniformity)
guarantees that P; 11 is a weak uniform (€jig+1,2)-noisy sample of K. One more application
(with uniformity) provides that P;, is a uniform (eyi,,2)-noisy sample of K. Thus, Lemma 18
implies that dg(P;,_1, K) < (87 + 16v/2)esi,. Notice that Py C P;,_; and thus for any
p € Py, dx(p, K) < (87 4 16v/2)¢qi .

To show the other direction, consider any point x € K. Since P;, is a uniform (€zi,2)-
noisy sample of K, there exists y € P;, such that dx(z,y) < €0 and dp, zi (y) < 2e49i.

Applying Lemma 19, there exists p € Py such that dx(y,p) < Mem. Hence dx(z,p) <
(M + 1) €9i0 < (87 4 164/2)egio. The theorem then follows.
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Figure 5 Experiment on a two dimensional manifold in three dimensions. From left to right, the
ground truth, the noisy adaptively sampled input, output of two intermediate steps of the algorithm,
and the final result.

5 Preliminary experimental results

We now present some preliminary experimental results for the two denoising algorithms
developed in this paper. See Appendix E of the full version [6] for more results.

In Figure 5, we show different stages of the ParfreeDeclutter algorithm on an input
with adaptively sampled points. Even though for the parameter-free algorithm, theoretical
guarantees are only provided for uniform samples, we note that it performs well on this
adaptive case as well.

A second example is given in Figure 6. Here, the input data is obtained from a set of noisy
GPS trajectories in the city of Berlin. In particular, given a set of trajectories (each modeled
as polygonal curves), we first convert it to a density field by KDE (kernel density estimation).
We then take the input as the set of grid points in 2D where every point is associated with
a mass (density). Figure 6(a) shows the heat-map of the density field where light color
indicates high density and blue indicates low density. In (b) and (c), we show the output of
our Declutter algorithm (the ParfreeDeclutter algorithm does not provide good results as the
input is highly non-uniform) for k¥ = 40 and k = 75 respectively. In (d), we show the set
of 40% points with the highest density values. The sampling of the road network is highly
non-uniform. In particular, in the middle portion, even points off the roads have very high
density due to noisy input trajectories. Hence a simple thresholding cannot remove these
points and the output in (d) fills the space between roads in the middle portion; however
more aggressive thresholding will cause loss of important roads. Our Declutter algorithm
can capture the main road structures without collapsing nearby roads in the middle portion
though it also sparsifies the data.

In another experiment, we apply the denoising algorithm as a pre-processing for high-
dimensional data classification. Here we use MNIST data sets, which is a database of
handwritten digits from ’0’ to ’9". Table 1 shows the experiment on digit 1 and digit 7. We
take a random collection of 1352 images of digit 1’ and 1279 images of digit '7’ correctly
labeled as a training set, and take 10816 images of digit 1 and digit 7 as a testing set. Each
of the image is 28 x 28 pixels and thus can be viewed as a vector in R7®*. We use the L
metric to measure distance between such image-vectors. We use a linear SVM to classify the
10816 testing images. The classification error rate for the testing set is 0.6564% shown in the
second row of Table 1.
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Figure 6 (a) The heat-map of a density field generated from GPS traces. There are around 15k
(weighted) grid points serving as an input point set. The output of Algorithm Declutter when (b)
k =40 and (c) k = 75, (d) thresholding of 40% points with the highest density.

Table 1 Results of denoising on digit 1 and digit 7 from the MNIST.

1 Error(%)
2 Original | # Digit 1 1352 \ # Digit 7 1279 0.6564

3 | Swap. Noise # Mislabelled 1 270 # Mislabelled 7 266 4.0957

4 Digit 1 Digit 7

5 # Removed | # True Noise | # Removed | # True Noise

6 | L1 Denoising 314 264 17 1 2.4500

7 Back. Noise # Noisy 1 250 # Noisy 7 250 1.1464

8 Digit 1 Digit 7

9 # Removed | # True Noise | # Removed | # True Noise

10 | L1 Denoising 294 250 277 250 0.7488

Next, we artificially add two types of noises to input data: the swapping-noise and the
background-noise. The swapping-noise means that we randomly mislabel some images of ‘1’
as '7’, and some images of ‘7’ as ’1’. As shown in the third row of Table 1, the classification
error increases to about 4.096% after such mislabeling in the training set.

Next, we apply our ParfreeDeclutter algorithm to this training set with added swapping-
noise (to the set of images with label '1” and the set with label *7’ separately) to first clean
up the training set. As we can see in Row-6 of Table 1, we removed most images with a
mislabeled ‘1’ (which means the image is ’7’ but it is labeled as '1’). A discussion on why
mislabeled ‘7’s are not removed is given in the full version [6]. We then use the denoised
dataset as the new training set, and improved the classification error to 2.45%.

The second type of noise is the background noise, where we replace the black backgrounds
of a random subset of images in the training set (250 ‘1’s and 250 ‘7’s) with some other
grey-scaled images. Under such noise, the classification error increases to 1.146%. Again, we
perform our ParfreeDeclutter algorithm to denoise the training sets, and use the denoised
data sets as the new training set. The classification error is then improved to 0.7488%. More
results on the MNIST data sets are reported in the full version [6].

6 Discussions

Parameter selection is a notorious problem for many algorithms in practice. Our high level
goal is to understand the roles of parameters in algorithms for denoising, how to reduce their
use and what theoretical guarantees do they entail. While this paper presented some results
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towards this direction, many interesting questions ensue. For example, how can we further
relax our sampling conditions, making them allow more general inputs, and how to connect
them with other classical noise models?

We also note that while the output of ParfreeDeclutter is guaranteed to be close to the

ground truth w.r.t. the Hausdorff distance, this Hausdorff distance itself is not estimated.

Estimating this distance appears to be difficult. We could estimate it if we knew the correct
scale, i.e. ig, to remove the ambiguity. Interestingly, even with the uniformity condition, it is
not clear how to estimate this distance in a parameter free manner.

We do not provide guarantees for the parameter-free algorithm in an adaptive setting
though the algorithm behaved well empirically for the adaptive case too. A partial result is
presented in Appendix B of the full version [6], but the need for a small €, in the conditions
defeat the attempts to obtain a complete result.

The problem of parameter-free denoising under more general sampling conditions remains
open. It may be possible to obtain results by replacing uniformity with other assumptions,
for example topological assumptions: say, if the ground truth is a simply connected manifold
without boundaries, can this help to denoise and eventually reconstruct the manifold?

Acknowledgments. We thank Ken Clarkson for pointing out the result in [8].
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