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Abstract
Given a set of sites in a simple polygon, a geodesic Voronoi diagram partitions the polygon into re-
gions based on distances to sites under the geodesic metric. We present algorithms for computing
the geodesic nearest-point, higher-order and farthest-point Voronoi diagrams of m point sites in a
simple n-gon, which improve the best known ones form ≤ n/polylogn. Moreover, the algorithms
for the nearest-point and farthest-point Voronoi diagrams are optimal for m ≤ n/ polylogn. This
partially answers a question posed by Mitchell in the Handbook of Computational Geometry.
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1 Introduction

The geodesic distance between any two points x and y contained in a simple polygon is the
length of the shortest path contained in the polygon connecting x and y. A geodesic Voronoi
diagram of a set S of m sites contained in a simple polygon P partitions P into regions based
on distances to sites of S under the geodesic metric. The geodesic nearest-point Voronoi
diagram of S partitions P into cells, exactly one cell per site, such that every point in a
cell has the same nearest site of S under the geodesic metric. The higher-order Voronoi
diagram, also known as the order-k Voronoi diagram, is a generalization of the nearest-point
Voronoi diagram. For an integer k with 1 ≤ k ≤ m− 1, the geodesic order-k Voronoi diagram
of S partitions P into cells, at most one cell per k-tuple of sites, such that every point in
a cell has the same k nearest sites under the geodesic metric. Thus, the geodesic order-1
Voronoi diagram is the geodesic nearest-point Voronoi diagram. The geodesic order-(m− 1)
Voronoi diagram is called the geodesic farthest-point Voronoi diagram. Hence, the geodesic
farthest-point Voronoi diagram of S partitions P into cells, at most one cell per site, such
that every point in a cell has the same farthest site under the geodesic metric.

In this paper, we study the problem of computing the geodesic nearest-point, higher-order
and farthest-point Voronoi diagrams of a set S of m points contained in a simple n-gon
P . Each edge of a geodesic Voronoi diagram is either a hyperbolic arc or a line segment
consisting of points equidistant from two sites [2, 3, 11]. The boundary between any two
neighboring cells of a geodesic Voronoi diagram is a chain of O(n) edges. Each end vertex
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of the boundary is of degree 1 or 3 under the assumption that no point in the polygon
is equidistant from four distinct sites while every other vertex is of degree 2. There are
O(k(m − k)) degree-3 vertices in the geodesic order-k Voronoi diagram of S [11]. Every
degree-3 vertex is equidistant from three sites and is a point where three Voronoi cells meet.
The number of degree-2 vertices is Θ(n) for the geodesic nearest-point Voronoi diagram and
the geodesic farthest-point Voronoi diagram [2, 3]. For the geodesic order-k Voronoi diagram,
it is known that the number of degree-2 vertices is O(kn) [11], but this bound is not tight.

The first nontrivial algorithm for computing the geodesic nearest-point Voronoi diagram
was given by Aronov in 1989 [2]. Their algorithm takes O((n+m) log2(n+m)) time. Later,
Papadopoulou and Lee [15] improved the running time to O((n+m) log(n+m)). However,
there has been no progress since then while the best known lower bound of the running time
remains to be Ω(n+m logm). In fact, Mitchell posed a question whether this gap can be
resolved in the Handbook of Computational Geometry [13, Chapter 27].

For the geodesic order-k Voronoi diagram, the first nontrivial algorithm was given by Liu
and Lee [11] in 2013. Their algorithm works for a polygonal domain with holes and takes
O(k2(n+m) log(n+m)) time. Thus, this algorithm also works for a simple polygon. They
presented an asymptotically tight combinatorial complexity of the geodesic order-k Voronoi
diagram for a polygonal domain with holes, which is Θ(k(m− k) + kn). However, it is not
tight for a simple polygon: the geodesic order-(m − 1) Voronoi diagram of m points in a
simple n-gon has complexity Θ(n+m) [3]. There is no bound better than the one by Liu and
Lee known for the complexity of the geodesic order-k Voronoi diagram in a simple polygon.

For the geodesic farthest-point Voronoi diagram, the first nontrivial algorithm was given
by Aronov et al. [3] in 1993, which takes O((n+m) log(n+m)) time. While the best known
lower bound is Ω(n + m logm), there has been no progress until Oh et al. [14] presented
a faster O((n + m) log logn)-time algorithm for the special case that all sites are on the
boundary of the polygon in 2016. They also claimed that their algorithm can be extended to
compute the geodesic farthest-point Voronoi diagram for any m points contained in a simple
n-gon in O(n log logn+m log(n+m)) time.1

Our results. Our main contributions are the algorithms for computing the nearest-point,
higher-order and farthest-point Voronoi diagrams of m sites in a simple n-gon, which improve
the best known ones for m ≤ n/ polylogn. To be specific, we present

an O(n+m logm log2 n)-time algorithm for the nearest-point Voronoi diagram,
an O(k2m logm log2 n + min{nk, n(m − k)})-time algorithm for the order-k Voronoi
diagram, and
an O(n+m logm+m log2 n)-time algorithm for the farthest-point Voronoi diagram.

Moreover, our algorithms reduce the gaps of the running times towards the lower bounds.
Our algorithm for the geodesic nearest-point Voronoi diagram is optimal for m ≤ n/ log3 n.
Since the algorithm by Papadopoulou and Lee is optimal for m ≥ n, our algorithm together
with the one by Papadopoulou and Lee gives the optimal running time for computing the
diagram, except for the case that n/ log3 n < m < n.

Similarly, our algorithm for the geodesic farthest-point Voronoi diagram is optimal for
m ≤ n/ log2 n. Since the algorithm by Aronov et al. [3] is optimal for m ≥ n, our algorithm
together with the one by Aronov et al. gives the optimal running time for computing the
diagram, except for the case that n/ log2 n < m < n. This answers the question posed by

1 Details will be found in the journal version of their paper.
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Mitchell on the geodesic nearest-point and farthest-point Voronoi diagrams, except for the
short intervals of n/ polylogn < m < n stated above.

For the geodesic order-k Voronoi diagram, we analyze an asymptotically tight combinator-
ial complexity of the diagram for a simple polygon, which is Θ(k(m−k)+min{nk, n(m−k)}).

Other contributions of this paper are the algorithms for computing the topological
structures of the geodesic nearest-point, order-k and farthest-point Voronoi diagrams which
take O(m logm log2 n), O(k2m logm log2 n) and O(m logm log2 n) time, respectively. These
algorithms allow us to obtain a dynamic data structure for answering nearest or farthest
point queries. In this problem, we are given a static simple n-gon P and a dynamic point
set S ⊆ P . We are allowed to insert points to S and delete points from S. After processing
updates, we are to find the point of S nearest (or farthest) from a query point efficiently.
This data structure requires O(

√
m log(n+m)) query time and O(

√
m logm log2 n) update

time, where m is the number of points in S at the moment.

1.1 Outline
Our algorithms for computing the geodesic nearest-point, higher-order and farthest-point
Voronoi diagrams are based on a polygon-sweep paradigm. For the geodesic nearest-point and
higher-order Voronoi diagrams, we fix a point o on the boundary of the polygon and move
another point x from o in clockwise direction along the boundary of the polygon. While
x moves along the boundary, we compute the Voronoi diagram of sites contained in the
subpolygon bounded by the shortest path between o and x and the part of the boundary of
P from o to x in clockwise order. For the geodesic farthest-point Voronoi diagram, we sweep
the polygon with a curve consisting of points equidistant from the geodesic center of the
sites. The curve moves from the boundary towards the geodesic center. During the sweep,
we gradually compute the diagram restricted to the region we have swept.

To achieve algorithms faster than the best known ones for m ≤ n/ polylogn, we first
compute the topological structure of a diagram instead of computing the diagram itself
directly. The topological structure, which will be defined later, represents the adjacency of
the Voronoi cells and has complexity smaller than the one of the complete Voronoi diagram.
Once we have the topological structure, we can compute the complete Voronoi diagram in
O(T1 + T2 logn) time, where T1 is the combinatorial complexity of the complete Voronoi
diagram and T2 is the combinatorial complexity of the topological structure of the diagram.

We define four types of events where the topological structure changes. To handle each
event, we compute a point equidistant from three points under the geodesic metric. There is
no algorithm known for computing a point equidistant from three points efficiently, except
an O(n)-time trivial algorithm. We present an O(log2 n)-time algorithm assuming that the
data structure of Guibas and Hershberger [9] is constructed for P . This algorithm allows us
to handle each event in O(polylog{n,m}) time.

One application of an algorithm for computing the topological structure is a data structure
for nearest (or farthest) point queries for a dynamic point set. To obtain this data structure,
we apply the framework given by Bentley and Saxe [4]. We observe that we can find the
Voronoi cell of the diagram containing a query point in O(log(n+m)) time once we have
the topological structure of the diagram.

2 Preliminaries

Let P be a simple n-gon and S be a set of m points in P . For ease of description, we use
VD[S], k-VD[S] and FVD[S] (or simply VD, k-VD and FVD if they are understood in the

SoCG 2017
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context) to denote the geodesic nearest-point, order-k and farthest-point Voronoi diagrams
of S in P , respectively. We assume the general position condition that no vertex of P is
equidistant from two distinct sites of S and no point of P is equidistant from four distinct
sites of S. This was also assumed in previous work [3, 11, 15] on geodesic Voronoi diagrams.
This condition can be obtained by applying a slight perturbation of the positions of sites [6].

Consider any three points x, y and z in P . We use π(x, y) to denote the shortest path
(geodesic path) between x and y contained in P , and d(x, y) to denote the geodesic distance
between x and y. Two geodesic paths π(x, y) and π(x, z) do not cross each other, but may
overlap with each other. We call a point x′ the junction of π(x, y) and π(x, z) if π(x, x′) is
the maximal common path of π(x, y) and π(x, z). Refer to Figure 1(a).

Given a point p ∈ P and a closed set A ⊆ P , we slightly abuse the notation π(p,A) to
denote the shortest path contained in P connecting p and a point in A. Similarly, we abuse
the notation d(p,A) to denote the length of π(p,A). It holds that d(p,A) ≤ d(p, q) + d(q, A)
for any two points p, q ∈ P and any closed set A ⊆ P .

We say a set A ⊆ P is geodesically convex if π(x, y) ⊆ A for any two points x and y in A.
The geodesic convex hull of S is the intersection of all geodesic convex sets containing S. The
geodesic convex hull of a set of m points can be computed in O(n+m log(n+m)) time [9].

The geodesic center of a simple polygon P is the point c that minimizes maxp∈P d(c, p).
The center is unique [16] and can be computed in O(n) time [1]. Similarly, the geodesic
center of S can be defined as the point c that minimizes maxs∈S d(c, s). It is known that the
geodesic center of a set S of m points in P coincides with the geodesic center of the geodesic
convex hull of S [3]. Therefore, we can compute the center of S by computing the geodesic
convex hull of S and its center. This takes O(n+m log(n+m)) time in total.

Due to lack of space, some of the proofs are omitted. All missing proofs can be found in
the full version of this paper.

3 Computing the Geodesic Center of Points in a Simple Polygon

We first present an O(log2 n)-time algorithm for computing the geodesic center of three points
contained in P , assuming that we have the data structure of Guibas and Hershberger [9, 10].
This algorithm will be used as a subprocedure for computing the geodesic Voronoi diagrams.

3.1 Computing the Geodesic Center of Three Points
Let p1, p2 and p3 be three points in P , and let c be the geodesic center of them. The geodesic
convex hull of p1, p2, p3 is bounded by π(p1, p2), π(p2, p3), and π(p3, p1). The geodesic convex
hull may have complexity Ω(n), but its interior is bounded by at most three concave chains.
This allows us to compute the geodesic center of it efficiently.

We first construct the data structure of Guibas and Hershberger [9, 10] for P that allows
us to compute the geodesic distance between any two points in O(logn) time. To compute c,
we compute the shortest paths π(p1, p2), π(p2, p3), and π(p3, p1). Each shortest path has a
linear size, but we can compute them in O(logn) time using the data structure of Guibas
and Hershberger. Then we find a convex t-gon with t ≤ 6 containing c such that the geodesic
path π(x, pi) has the same combinatorial structure for any point x in the t-gon for each
i = 1, 2, 3. To find such a convex t-gon, we apply two-level binary search. Then we can
compute c directly in constant time inside the t-gon.

The data structure given by Guibas and Hershberger. Guibas and Hershberger [9, 10]
gave a data structure of linear size that enables us to compute the geodesic distance between
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Figure 1 (a) p′
i is the junction of π(pi, pj) and π(pi, pk) for three distinct indices i, j and k in

{1, 2, 3}. (b) The subdivision of 4 with respect to p′
1. (c) The subdivision of e with respect to p′

2.

any two query points lying inside P in O(logn) time. We call this structure the shortest path
data structure. They showed that this data structure can be constructed in O(n) time.

In the preprocessing, they compute a number of shortest paths such that for any two
points p and q in P , the shortest path π(p, q) consists of O(logn) subchains of precomputed
shortest paths and O(logn) additional edges. In the query algorithm, they find such subchains
and edges connecting them in O(logn) time. Then the query algorithm returns the shortest
path between two query points represented as a binary tree of height O(logn) [10]. Therefore,
we can apply binary search on the vertices of the shortest path between any two points.

Computing the geodesic center of three points: two-level binary search. Let 4 be the
geodesic convex hull of p1, p2 and p3. The geodesic center c of the three points is the geodesic
center of 4 [3], thus is contained in 4. If the center lies on the boundary of 4, we can
compute it in O(logn) time since it is the midpoint of two points. So, we assume that the
center lies in the interior of 4. Let p′i be the junction of π(pi, pj) and π(pi, pk) for three
distinct indices i, j and k in {1, 2, 3}. See Figure 1(a).

We use the following lemmas to apply two-level binary search.

I Lemma 1 ([9]). We can compute the junctions p′1, p′2 and p′3 in O(logn) time.

I Lemma 2 ([5]). Given a point p ∈ 4 and a direction, we can find the first intersection
point of the boundary of 4 with the ray from p in the direction in O(logn) time.

The first level. Imagine that we subdivide4 into O(n) cells with respect to p′1 by extending
the edges of π(p′1, p′2) ∪ π(p′1, p′3) towards π(p′2, p′3). See Figure 1(b). The extensions of the
edges can be sorted in the order of their endpoints appearing along π(p′2, p′3). Consider the
subdivision of 4 by the extensions, and assume that we can determine which side of a given
extension in 4 contains c in T (n) time. Then we can compute the cell of the subdivision
containing c in O(T (n) logn) time by applying binary search on the extensions. Note that
any point x in the same cell has the same combinatorial structure of π(x, p1) (and π(x, p′1)).

We also do this for p′2 and p′3. Then we have three cells whose intersection contains c.
Let D be the intersection of these three cells. We can find D in constant time by the the
fact that D is a convex polygon with at most six edges from extensions of the cells.

We do not subdivide 4 explicitly. Because we have π(p′1, p′2) and π(p′1, p′3) in binary trees
of height O(logn), we can apply binary search on the extensions of the edges of the geodesic
paths without subdividing 4 explicitly. In this case, during the binary search, we compute
the extension of a given edge of π(p′1, p′2) ∪ π(p′1, p′3) using Lemma 2 in O(logn) time.

There is a vertex p on the boundary of 4 such that for any point x contained in D we
have d(p1, x) = d(p1, p) + ‖p− x‖, where ‖p− x‖ is the Euclidean distance between p and x.
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Moreover, we already have p from the computation of the cell containing c in the subdivision
with respect to p′1. The same holds for p2 and p3. Therefore, we can compute the point c
that minimizes the maximum of d(c, p1), d(c, p2) and d(c, p3) in constant time inside D.

Therefore, we have the following lemma.

I Lemma 3. Assuming that we can determine which side of an extension in 4 contains c
in T (n) time, we can compute the geodesic center c in O((T (n) + logn) logn) time.

The second level. In the second level binary search, we determine which side of an extension
e in 4 contains c. Without loss of generality, we assume that e comes from the subdivision
with respect to p′1. Then π(p1, x) has the same combinatorial structure for any point x ∈ e.

This subproblem was also considered in previous works on computing the geodesic center of
a simple polygon [1, 16]. They first compute the point ce in e that minimizes maxp∈P d(p, ce),
that is, the geodesic center of the polygon restricted to e. Based on ce and its farthest point,
Pollack et al. [16] presented a way to decide which side of e contains the geodesic center of
the polygon in constant time. However, to compute ce, they spend O(n) time.

In our problem, we can do this in logarithmic time using the fact that the interior of 4 is
bounded by at most three concave chains. By this fact, there are two possible cases: ce is an
endpoint of e, or ce is equidistant from p1 and pi for i = 2 or 3. We compute the point on e
equidistant from p1 and p2, and the point on e equidistant from p1 and p3. Then we find the
point ce among the two points and the two endpoints of e. In the following, we show how to
compute the point on e equidistant from p1 and p2 if it exists. The point on e equidistant
from p1 and p3 can be computed analogously.

Observe that e can be subdivided into O(n) disjoint line segments by the extensions of the
edges of π(p′2, v1) ∪ π(p′2, v2) towards e, where v1 and v2 are endpoints of e. See Figure 1(c).
For any point x in the same line segment, π(p2, x) has the same combinatorial structure.

There is at most one point on e equidistant from p1 and p2. (For a proof, see the full
paper.) Thus we can apply binary search on the line segments in the subdivision of e. As we
did before, we do not subdivide e explicitly. Instead, we use the binary trees representing
π(p′2, v1) and π(p′2, v2). For a point x in e, by comparing d(p1, x) and d(p2, x), we can
determine which part of x on e contains the point equidistant from p1 and p2 in constant
time. In this case, we can compute the extension from an edge towards e in constant time
since e is a line segment. Thus, we complete the binary search in O(logn) time.

Therefore, we can compute ce in O(logn) time and determine which side of e in 4
contains c in the same time using the method of Pollack et al [16]. The following lemma
summarizes this section.

I Lemma 4. Given any three points p1, p2 and p3 contained in a simple n-gon P , the
geodesic center of p1, p2 and p3 can be computed in O(log2 n) time after the shortest path
data structure for P is constructed in linear time.

Similarly, we can compute a point equidistant from any three points in P (or, two points
and a line segment). They are used as subprocedures for computing the Voronoi diagrams.
Note that the geodesic center of three points may not be equidistant from all of them.
Moreover, there may be an infinite number of points equidistant from the three points (or,
two points and a line segment). In this case, we compute the one closest to them.

I Lemma 5. Given any three points contained in a simple n-gon, we can compute the closest
equidistant point from them under the geodesic metric in O(log2 n) time if it exists.
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Figure 2 (a) The adjacency graph of a Voronoi diagram. (b) The number of edges in the common
boundary of two adjacent Voronoi cells is bounded by the total complexity of π(s′

1, v), π(s′
1, u),

π(s′
2, v) and π(s′

2, u), where u and v are endpoints of the common boundary.

I Lemma 6. Given any two points and any line segment contained in a simple n-gon, we
can compute the closest equidistant point from them under the geodesic metric in O(log2 n)
time if it exists.

Combining the result in this subsection with the algorithms for computing the center of
points in the plane [12] and computing the geodesic center of a simple polygon [16], we can
compute the geodesic center of m points contained in P . (For details, see the full version.)

I Theorem 7. The geodesic center of m points contained in a simple polygon with n vertices
can be computed in O(m logm log2 n) time after the shortest path data structure for the
simple polygon is constructed.

4 Topological Structures of Voronoi Diagrams

In this section, we define the topological structure of Voronoi diagrams and show how to
compute the complete Voronoi diagrams from their topological structures. The topological
structure of a Voronoi diagram represents the adjacency of their Voronoi cells.

The common boundary of any two adjacent Voronoi cells is connected for the nearest-point
and farthest-point Voronoi diagrams of point sites in a simple polygon [2, 3]. Similarly, it
can be shown that this also holds for the higher-order Voronoi diagram of point sites in a
simple polygon.

The topological structure of k-VD is defined as follows for 1 ≤ k ≤ m − 1. Imagine
that we apply vertex suppression for every degree-2 vertex of the Voronoi diagram while
preserving the topology of the Voronoi diagram. Vertex suppression of a vertex v of degree 2
is the operation of removing v and adding an edge connecting the two neighbors of v. We
call the dual of this graph the adjacency graph of the Voronoi diagram. See Figure 2(a). It
represents the topological structure of the Voronoi diagram. The adjacency graph is a planar
graph with complexity O(k(m− k)), because the number of degree-1 and degree-3 vertices
of k-VD is O(k(m− k)) [11].

Assume that we have the adjacency graph of the Voronoi diagram together with the exact
positions of the degree-1 and degree-3 vertices of the diagram. Consider two Voronoi cells V1
and V2 which are adjacent to each other. Each Voronoi cell is defined by k sites, but any two
adjacent Voronoi cells share k − 1 sites. Let s1 and s2 be the two sites defining V1 and V2,
respectively, which are not shared by them. There are two Voronoi vertices v and u defined
by a triple (s1, s2, s) and a triple (s1, s2, s

′) of sites defining v and u, respectively, for some
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52:8 Voronoi Diagrams for a Moderate-Sized Point-Set in a Simple Polygon

sites s, s′. Each Voronoi edge in the common boundary of V1 and V2 is a part of the bisector
of s1 and s2 lying between v and u. See Figure 2(b).

To compute the Voronoi edges in the common boundary of V1 and V2, we consider the
geodesic paths π(s′i, v) and π(s′i, u) for i = 1, 2, where s′i is the junction of π(si, v) and
π(si, u). Then for any vertex x in π(s′1, v) ∪ π(s′1, u), there exists a point q in the bisector of
s1 and s2 lying between v and u such that π(s1, q) and π(s1, x) have the same combinatorial
structure. The same holds for s2. Thus, the number of edges in the common boundary is
bounded by the total complexity of π(s′1, v) ∪ π(s′1, u) and π(s′2, v) ∪ π(s′2, u). Thus, we may
compute the geodesic paths explicitly and consider every edge of the geodesic paths.

Therefore, we can compute the common boundary of two adjacent Voronoi cells in time
linear to its complexity plus O(logn). This leads to O(T1 + T2 logn) time for computing the
complete Voronoi diagram from its topological structure, where T1 is the complexity of the
complete Voronoi diagram and T2 is the complexity of the adjacency graph.

I Lemma 8. We can compute the complete Voronoi diagram of m points in a simple polygon
with n vertices in O(T1 + T2 logn) time once its adjacency graph, and the degree-1 and
degree-3 vertices at their places are given, where T1 is the complexity of the complete Voronoi
diagram and T2 is the complexity of the adjacency graph.

Therefore, in the following, we focus on computing the topological structure of VD, k-VD
and FVD, that is, the adjacency graphs of them with degree-3 vertices at their places.

5 The Geodesic Nearest-Point Voronoi Diagram

Fortune [7] presented an O(m logm)-time algorithm to compute the nearest-point Voronoi
diagram of m points in the plane by sweeping the plane with a horizontal line from top to
bottom. During the sweep, they compute a part of the Voronoi diagram of sites lying above
the horizontal line, which finally becomes the complete Voronoi diagram in the end of the
sweep. To do this, they define two types of events and handle O(m) events in total. Each
event can be handled in O(logm) time, which leads to O(m logm) total running time.

In our case, we sweep the polygon with a geodesic path π(o, x) for a fixed point o on the
boundary of P and a point x moving along the boundary of P from o in clockwise direction.
The point x is called the sweep point. If we compute all O(n+m) degree-1, degree-2 and
degree-3 vertices of the Voronoi diagram during the sweep, we may not achieve the running
time better than O((n+m) log(n+m)). The key to improve the running time is to compute
the topological structure of the Voronoi diagram first which consists of the degree-1 and
degree-3 vertices of the Voronoi diagram and the adjacency graph of Voronoi cells. Then we
construct the complete Voronoi diagram, including degree-2 vertices, from its topological
structure using Lemma 8.

Let o be an arbitrary point on ∂P , where ∂P denotes the boundary of P . Consider the
sweep point x that moves from o along ∂P in clockwise order. We use P (x) to denote the
subpolygon of P bounded by π(o, x) and the part of ∂P from o to x in clockwise order. Note
that P (x) is weakly simple. See Figure 3. As x moves along ∂P , P (x) does not decrease.
That is, P (x1) ⊆ P (x2) for any two points x1 and x2 on ∂P such that x1 comes before x2
from o in clockwise order.

For a site s ∈ P (x), let Rs(x) be the region {p ∈ P (x) | d(p, s) ≤ d(p, π(o, x))}. By
definition, Rs(x) does not decrease as x moves along ∂P in clockwise order.

I Lemma 9. Rs(x) is connected.
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Proof. To prove the lemma, we show that π(p, s) ⊆ Rs(x) for any point p ∈ Rs(x). This
implies that Rs(x) is connected because s is contained in Rs(x) if s ∈ P (x) by definition.
Let p be a point in Rs(x). Consider a point r ∈ π(p, s). We have d(r, s) = d(p, s)− d(p, r).
Moreover, we have d(p, π(o, x)) − d(p, r) ≤ d(r, π(o, x)). Since p ∈ Rs(x), it holds that
d(p, s) ≤ d(p, π(o, x)). Thus, d(r, s) ≤ d(r, π(o, x)). Therefore, r is in Rs(x), and therefore,
Rs(x) is connected. J

We say that a subset A of P is weakly monotone with respect to a geodesic path π′ if the
intersection of π(p, π′) with A is connected for any point p ∈ A.

I Lemma 10. The boundary of Rs(x) consists of one polygonal chain of ∂P and a simple
curve whose both endpoints lie on ∂P (x) unless s ∈ π(o, x). Moreover, the simple curve is
weakly monotone with respect to π(o, x).

Proof. For any point p ∈ Rs(x), the geodesic ray from p in direction opposite to the
edge of π(p, π(o, x)) incident to p is contained in Rs(x). This is because d(r, π(o, x)) =
d(p, π(o, x)) + d(p, r) ≥ d(p, s) + d(p, r) ≥ d(r, s) by triangle inequality for any point r in the
geodesic ray. The lemma follows from this fact and Lemma 9. J

Now we consider the union of Rs(x) for every site s in P (x) and denote it by R(x). The
dashed region in Figure 3(a) is R(x). Note that for any point p ∈ P (x) and any site s ∈ S
lying outside of P (x), it holds that d(p, π(o, x)) < d(p, s). This implies that for any point
p ∈ R(x), the nearest site of p is in P (x). Therefore, to compute VD restricted to R(x), we
do not need to consider the sites lying outside of P (x).

I Corollary 11. The closure of P (x) \R(x) is weakly simple.

I Corollary 12. Each connected component of R(x) consists of a polygonal chain of ∂P and
a connected simple curve with endpoints on ∂P unless π(o, x) contains some site. Moreover,
the union of such curves is weakly monotone with respect to π(o, x) at any time.

We maintain the nearest-point Voronoi diagram of sites contained in P (x) restricted
to R(x) while x moves along ∂P . However, after the sweep, R(x) does not coincide with
P . This means that we cannot obtain VD in this way. To solve this problem, we attach a
long and very thin triangle to ∂P to make a bit larger simple polygon P ′, as illustrated in
Figure 3, so that once we finish the sweep (when the sweep point returns back to o) in P ′ we
have the complete Voronoi diagram in P . (The triangle has height of the diameter of P .)

The beach line and the breakpoints. There are O(m) connected components of R(x) each
of whose boundaries consists of a polygonal chain of ∂P and a connected simple curve.
The beach line is defined to be the union of O(m) simple curves of R(x). It has properties
similar to those of the beach line of the Euclidean Voronoi diagram. It consists of O(n+m)
hyperbolic or linear arcs. We do not maintain them explicitly because the complexity of the
sequence is too large for our purpose. Instead, we maintain the combinatorial structure of
the beach line using O(m) space as follows.

A point on the beach line is called a breakpoint if it is equidistant from two distinct sites.
Each breakpoint moves and traces out some Voronoi edge as the sweep point moves along
∂P ′. We represent each breakpoint symbolically. That is, a breakpoint is represented as the
pair of sites equidistant from it. We say that such a pair defines the breakpoint. Given the
pair defining a breakpoint and the position of the sweep point, we can find the exact position
of the breakpoint using Lemma 6 in O(log2 n) time.
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Figure 3 (a) The site event defined by s with key k. Two (degenerate) breakpoints appear in
B(k). (b) Two (degenerate) endpoints appear in B(k). (c) The vanishing event defined by the
breakpoint of (s1, s2) with key k. The endpoint defined by s1 and the breakpoint merge into the
endpoint defined by s2.

Additionally, we consider the endpoints of O(m) connected curves of the beach line. We
simply call them the endpoints of the beach line. For an endpoint p, there is the unique site
s with d(p, s) = d(p, π(o, x)). We say that s defines p.

By Corollary 11 and Corollary 12, we can define the order of these breakpoints and these
endpoints. Let B(x) = 〈β1, . . . , βm′〉 be the sequence of the breakpoints and the endpoints of
the beach line sorted in clockwise order along the boundary of P (x) \R(x) with m′ = O(m).
We maintain B(x) instead of all arcs on the beach line. As x moves along ∂P ′, the sequence
B(x) changes.

While maintaining B(x), we compute the adjacency graph of VD together with the
degree-1 and degree-3 vertices of VD restricted to R(x). (Recall that a cell of VD restricted
to R(x) is associated with a site in P (x).) Specifically, when a new breakpoint defined by a
pair (s, s′) of sites is added to B(x), we add an edge connecting the node for s and the node
for s′ into the adjacency graph.

Events. We have four types of events: site events, circle events, vanishing events, and
merging events. Every event corresponds to a key, which is a point on the boundary of P ′.
We maintain the events with respect to their keys sorted in clockwise order from o along
the boundary. Given a sorted sequence of ν events for ν ∈ N, we can insert a new event in
O(log ν) time since we are given each point on the boundary of P ′ together with the edge of
P ′ where it lies. The event occurs when the sweep point x passes through the corresponding
key. The sequence B(x) changes only when x passes through the key of an event.

The definitions of the first two events are similar to the ones in Fortune’s algorithm. Each
site s in S defines a site event. The key k of the site event defined by s is the point on ∂P ′
closest to o among the points x′ with s ∈ π(o, x′). When the sweep point passes through k,
the site s appears on the beach line. Moreover, new breakpoints defined by s and some other
site s′, or new endpoints defined by s appear on B(x). See Figure 3(a) and (b).

The other events are defined by a pair of consecutive points in B(x) or a single breakpoint
in B(x). Before the sweep point reaches the key of an event, the points in the pair defining the
event may become non-consecutive, or the breakpoint defining the event may disappear from
B(x) due to the changes of B(·). In this case, we say that the event is invalid. Otherwise,
we say that the event is valid.

A pair (β1, β2) of consecutive breakpoints in B(x) defines a circle event if a point c
equidistant from s1, s2 and s3 exists, where (s1, s2) and (s2, s3) are two pairs of sites defining
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β1 and β2, respectively. The key k of this circle event is the point on ∂P ′ closest to o among
the points x′ with d(c, π(o, x′)) = d(c, s1)(= d(c, s2) = d(c, s3)). Assume that this event is
valid when x passes through k. At that time, c appears on the beach line. Moreover, β1 and
β2 disappear from the beach line, and a new breakpoint defined by (s1, s3) appears on the
beach line. (One may think that β1 and β2 merge into the breakpoint defined by (s1, s3).)

Each breakpoint β in B(x) defines a vanishing event. Let (s1, s2) be the pair of sites
defining β. Consider two points on ∂P ′ equidistant from s1 and s2. We observe that
exactly one of the two points lies outside of R(x). We denote it by p. See Figure 3(c).
The key k of the vanishing event is the point on ∂P ′ closest to o among the points x′ with
d(p, π(o, x′)) = d(p, s1). Assume that this event is valid when x passes through k. Then, β
traces out a Voronoi edge and reaches p, which is a degree-1 Voronoi vertex. Moreover, B(x)
changes accordingly as follows. Right before x reaches k, an endpoint defined by s1 or s2 is
a neighbor of β in B(x). (Otherwise, the beach line is not weakly monotone.) Without loss
of generality, we assume that an endpoint of s1 is a neighbor of β. When x reaches the key,
this endpoint and β disappear from B(x), and an endpoint defined by s2 appears in B(x).
(One may think that this endpoint and β merge into the endpoint defined by s2.)

A pair (β1, β2) of consecutive endpoints in B(x) defines a merging event if β1 and β2 are
endpoints of different connected curves of the beach line. Let s1 and s2 be the sites defining
β1 and β2, respectively. Without loss of generality, assume that β1 comes before β2 from
o in clockwise order. Let p be the (unique) point equidistant from s1, s2 that comes after
β1 and before β2 from o along ∂P ′ in clockwise order. The key k of the merging event is
the point on ∂P ′ closest to o among the points x′ with d(p, π(o, x′)) = d(p, s1). Assume that
this event is valid when x passes through k. Then, as the sweep point x moves along ∂P ′,
β1 and β2 are closer and finally meet each other at p. This means that the two connected
curves, one containing β1 and the other containing β2, merge into one connected curve. At
this time, β1 and β2 merge into a breakpoint defined by (s1, s2).

5.1 An algorithm
Initially, B(x) = B(o) is empty, so there is no circle, vanishing, or merging event. We compute
the keys of all site events in advance. For each site, we compute the key corresponding to its
event in O(logn) time [8].

As B(x) changes, we obtain new pairs of consecutive breakpoints or endpoints, and new
breakpoints. Then we compute the key of each event in O(log2 n) time using the following
lemmas and Lemma 5. In addition, as B(x) changes, some event becomes invalid. Once
an event becomes invalid, it does not become valid again. Thus we discard an event if it
becomes invalid. Therefore, the number of events we have is O(|B(x)|) at any time.

I Lemma 13. Given a point p in P ′ and a distance r ∈ R, the point on ∂P ′ closest to o
among the points x′ with d(p, π(o, x′)) = r can be found in O(log2 n) time.

I Lemma 14. For any two sites s1 and s2 in P ′, we can compute the two points equidistant
from s1 and s2 lying on the boundary of P ′ in O(log2 n) time.

Handling site events. To handle a site event defined by a site s with key k, we do the
following. By definition, the site s appears on the beach line when the sweep point x passes
through k. Thus, two breakpoints defined by (s, s′) for other sites s′ (or two endpoints
defined by s) appear on B(k). See Figure 3(a) and (b). We find the positions of them in
B(x) and update B(x) by adding them using Lemma 15.
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I Lemma 15. We can obtain B(k) from B(k′) in O(log2 n log |B(k′)|) time, where k′ is the
key previous to k.

Adding two breakpoints or two endpoints to B(x) makes a constant number of new pairs
of consecutive breakpoints or endpoints, which define circle or merging events. This also
makes a constant number of new vanishing events. We compute the key for each event in
O(log2 n) time and add the events to the event queue in O(log |B(x)|) time. Recall that
the number of events we have is O(|B(x)|) at any time. Therefore, each site event can be
handled in O(log2 n log |B(x)|) time.

Handling the other events. Let k be the key of a circle, vanishing, or merging event. For
a circle event, two breakpoints defining the event disappear from the beach line, and a
new breakpoint appears. For a vanishing event, the breakpoint defining the event and its
neighboring endpoint disappear from the beach line, and a new endpoint appears. For a
merging event, two endpoints defining the event are replaced with a new breakpoint. In any
case, we can update B(x) in O(log |B(x)|) time.

After updating B(x), we have a constant number of new pairs of consecutive breakpoints
or endpoints, and a constant number of new breakpoints. We compute the keys of events
defined by them in O(log2 n) time.

Analysis. During the sweep, we handle O(m) events in total. Each event can be processed
in O(log2 n logm) time since the length of B(x) is O(m) at any time. Thus we have the
following lemma and theorem.

I Lemma 16. After computing the shortest path data structure for P ′ and the shortest
path map for P ′ from the point o, we can compute the topological structure of VD in
O(m logm log2 n) time using O(m) space (excluding the two data structures).

I Theorem 17. Given a set of m point sites contained in a simple polygon with n vertices, we
can compute the geodesic nearest-point Voronoi diagram of the sites in O(n+m logm log2 n)
time using O(n+m) space.

6 The Geodesic Higher-order Voronoi Diagram

In this section, we first present an asymptotically tight combinatorial complexity of the
geodesic higher-order Voronoi diagram of points. Then we present an algorithm to compute
the diagram by applying the polygon-sweep paradigm introduced in Section 5. In the plane,
Zavershynskyi and Papadopoulou [17] presented a plane-sweep algorithm to compute the
higher-order Voronoi diagram. We use their approach together with our approach in Section 5.
In the following, we assume that 1 ≤ k ≤ m− 1.

6.1 The Complexity of the Diagram inside a Simple Polygon
Liu and Lee [11] presented an asymptotically tight complexity of the geodesic higher-order
Voronoi diagram of points in a polygonal domain with holes, which is Θ(k(m − k) + nk).
However, it is not tight for a simple polygon.

Figure 4 shows an example that the order-k Voronoi diagram has complexity of Ω(k(m−
k) + min{nk, n(m− k)}). We construct a simple polygon P and a set of sites with respect to
a reference point o. Let `1 be a sufficiently long horizontal line segment whose right endpoint
is o and `2 be a sufficiently long line segment with a positive slope whose left endpoint is
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k sites

m− k sites

n− 4 vertices
v1 o

`1

`2
u1

Figure 4 An example that the order-k Voronoi diagram has complexity of Ω(k(m − k) +
min{nk, n(m− k)}).

o. (`1 and `2 are not parts of the simple polygon, but they are auxiliary line segments to
locate the points.) We put m− k sites on `1 such that the sites are sufficiently close to each
other. Similarly, we put k sites on `2 such that sites are sufficiently close to each other and
‖vm−k − o‖ � ‖u1 − o‖, where vi’s are sites on `1 sorted along `1 from o and u′j ’s are sites
on `2 sorted along `2 from o, for i = 1, . . . ,m− k and j = 1, . . . , k.

As a part of the boundary of P , we put a concave and y-monotone polygonal curve with
n − 4 vertices below `2 such that the highest point of the curve is sufficiently close to u1.
Then we put another four vertices of P sufficiently far from the sites such that P contains
all sites and there is no simple polygon containing more Voronoi vertices than P contains.

In the full version, we show that k-VD of this example has complexity of Ω(k(m− k) +
min{nk, n(m− k)}). Moreover, we show that k-VD for any simple polygon and any point
set has complexity of O(k(m− k) + min{nk, n(m− k)}).

I Lemma 18. The geodesic order-k Voronoi diagram of m points inside a simple polygon
with n vertices has complexity of Θ(k(m− k) + min{nk, n(m− k)}).

6.2 Computing the Topological Structure of the Diagram
Due to lack of space, we present only an outline of our algorithm. For details, refer to the full
version. The algorithm is similar to the one in Section 5. Recall that for a site s ∈ P (x), the
boundary of Rs(x) consists of one polygonal chain of ∂P and a simple curve with endpoints
on ∂P . We call the simple curve the wave-curve for s. The wave-curve for s is monotone
with respect to π(o, x).

We say that a point p ∈ P (x) lies above a curve if π(p, π(o, x)) intersects the curve.
We use Li(x) to denote the region of P (x) consisting of all points lying above at least i
wave-curves for sites contained in P (x). The ith-level of the arrangement of wave-curves of
sites contained in P (x) is defined to be the boundary of Li(x) excluding ∂P . The ith-level
for each i is weakly monotone with respect to π(o, x) and consists of at most m simple curves
with endpoints lying on ∂P .

k-VD[S] restricted to Lk(x) coincides with k-VD[S ∩P (x)] restricted to Lk(x). Therefore,
we can obtain the topological structure of k-VD[S] by maintaining the topological structure
of the kth-level of the arrangement of wave-curves. In addition to this, we maintain the
topological structures of the ith-levels of the arrangement for all i < k to detect the changes
to the topological structure of the kth-level.

There are four types of events; site events, circle events, vanishing events and merging
events. The definitions of the event types are analogous to the ones in Section 5. We can
handle the site and circle events in a way similar to the one for the Euclidean order-k Voronoi
diagram given by Zavershynskyi and Papadopoulou [17]. We can handle the other events in
a way similar to the one in Section 5.

SoCG 2017



52:14 Voronoi Diagrams for a Moderate-Sized Point-Set in a Simple Polygon

I Theorem 19. Given a set of m points contained in a simple polygon with n vertices, we can
compute the geodesic order-k Voronoi of the points in O(k2m logm log2 n+min{nk, n(m−k)})
time using O(n+ km) space.

7 The Geodesic Farthest-Point Voronoi Diagram

We present an outline of our algorithm for computing the topological structure of FVD. For
details, refer to the full version. Aronov et al. [3] showed that FVD forms a tree whose root
is the geodesic center c of the sites. They first compute c and the geodesic convex hull of
the sites. Then they compute FVD restricted to the boundary of the polygon. Then they
compute the edges of FVD towards the geodesic center by a reverse geodesic sweep method.
We follow the framework of the algorithm by Aronov et al. [3], but we can achieve a faster
algorithm for m ≤ n/ log2 n by applying their approach to compute the topological structure
of FVD.

In the reverse geodesic sweep, a sweep line is a simple curve consisting of points equidistant
from c. Let B be the (circular) sequence of the sites that have their Voronoi cells on the
sweep line in clockwise order. As an exception, in the initial state, we set B to be the
sequence of the sites whose Voronoi cells appear on ∂P .

No site, vanishing, or merging event occurs during the sweep because FVD forms a tree.
So we handle only circle events. Every triple of consecutive sites in B defines a circle event.
The key defined by a triple (s1, s2, s3) is d(c, c′) for the point c′ equidistant from s1, s2 and
s3. We can compute the key of each triple of consecutive sites in B in O(log2 n) time.

I Lemma 20. We can compute the topological structure of FVD in O(m logm log2 n) or
O(n+m logm+m log2 n) time after computing the shortest path data structure for P .

I Theorem 21. Given a set of m points contained in a simple polygon with n vertices, we can
compute the geodesic farthest-point Voronoi diagram of the points in O(n+m logm+m log2 n)
time using O(n+m) space.

8 Dynamic Data Structures for Nearest or Farthest Point Queries

We showed that the topological structure of a Voronoi diagram can be computed without
considering the whole polygon. The topological structure can be used for data structures for
answering nearest or farthest point queries for dynamic point sets.

We apply the framework given by Bentley and Saxe [4]. At all times, we maintain O(
√
m)

disjoint sets each of which consists of O(
√
m) points. For each set, we compute the topological

structure of the nearest-point (or farthest-point) Voronoi diagram of the points in the set.
For a nearest (or farthest) point query, we simply find the Voronoi cells containing the

query point for O(
√
m) Voronoi diagrams. Then we have O(

√
m) candidates for the nearest

(or farthest) point from the query point. We find the nearest (or farthest) point from the
query point directly among them. Inside a simple polygon, the complexity of each complete
Voronoi diagram is O(n +

√
m). Thus each update takes O(n +

√
mpolylog{n,m}) time

if we maintain the complete Voronoi diagrams. This is why we compute the topological
structures of the Voronoi diagrams.

In the full version of this paper, we show how to find the Voronoi cell containing a query
point using the topological structure of a Voronoi diagram. The key idea is to approximate
the Voronoi diagram into a polygonal subdivision of complexity O(

√
m) using its adjacency

graph and the exact positions of degree-1 and degree-3 vertices.
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I Theorem 22. We can construct a data structure of size O(n+m) that supports a nearest-
point (or a farthest) query for point insertions and deletions. Each query time is O(

√
m log(n+

m)) and each update time is O(
√
m logm log2 n)).
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