
Dynamic Geodesic Convex Hulls in Dynamic
Simple Polygons∗

Eunjin Oh1 and Hee-Kap Ahn2

1 Department of Computer Science and Engineering, POSTECH, Pohang, Korea
jin9082@postech.ac.kr

2 Department of Computer Science and Engineering, POSTECH, Pohang, Korea
heekap@postech.ac.kr

Abstract
We consider the geodesic convex hulls of points in a simple polygonal region in the presence of
non-crossing line segments (barriers) that subdivide the region into simply connected faces. We
present an algorithm together with data structures for maintaining the geodesic convex hull of
points in each face in a sublinear update time under the fully-dynamic setting where both input
points and barriers change by insertions and deletions. The algorithm processes a mixed update
sequence of insertions and deletions of points and barriers. Each update takes O(n2/3 log2 n) time
with high probability, where n is the total number of the points and barriers at the moment. Our
data structures support basic queries on the geodesic convex hull, each of which takes O(polylogn)
time. In addition, we present an algorithm together with data structures for geodesic triangle
counting queries under the fully-dynamic setting. With high probability, each update takes
O(n2/3 logn) time, and each query takes O(n2/3 logn) time.
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1 Introduction

A set X of points in a (weakly) simple polygon P is geodesically convex if the shortest path
between any two points of X with respect to P is contained in X. The geodesic convex hull
of a set of points contained in a simple polygon, which was introduced by Sklansky et al. [18],
is defined as the intersection of all geodesic convex sets containing the set.

Geodesic convex hulls have been widely used for a variety of applications including collision
detection [1], robotics [10], and motion planning [19]. These algorithms assume that the
input points and the region where the points lie are static, that is, all input elements remain
the same over the time. However, in many real-world geometric applications, particularly
those that run in real-time, input data may change over time–input data elements may be
inserted or deleted. Therefore it is required to handle these changes to maintain the geodesic
convex hull for dynamically changing input data efficiently.

In this paper, we consider the problem of maintaining the geodesic convex hulls of dynamic
points in a dynamic simple polygonal region. In the problem, points are inserted and deleted
in a simple polygonal region as well as the region changes by insertions and deletions of
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non-crossing line segments (barriers) under the restriction that the dynamic line segments
always subdivide the region into simply connected faces.

We also study data structures that support a geodesic triangle counting query under the
dynamic environment. The geodesic triangle defined by three points contained in a simple
polygon P is the geodesic convex hull of them. Given a set S of input points in P , a geodesic
triangle counting query asks for the number of input points contained in the interior of the
geodesic triangle defined by three query points. No algorithm or data structure is known for
the dynamic geodesic triangle counting problem in a dynamic region while an algorithm for
the Euclidean version of the problem is known [14].

Related work for dynamic geodesic convex hulls. The convex hull of a set S of n points in
the plane is defined to be the intersection of all convex sets containing S. The first nontrivial
algorithm for maintaining the convex hull under point insertions and deletions in the plane
was given by Overmars and Leeuwen [16]. Their data structure supports each update in
O(log2 n) worst-case time, where n is the number of points they have at the moment. The
data structure can answer several basic queries including finding the extreme point in a
direction and finding tangent points. Each query takes O(logn) worst-case time. Later, the
update time was improved to O(logn) amortized time [3].

Surprisingly, little has been known for maintaining geodesic convex hulls of dynamic
points in a dynamic region, except the one by Ishaque and Tóth [12]. They considered
the problem in a semi-dynamic setting where point insertions and barrier deletions are not
allowed (a barrier is an edge of a simple polygon in their work). With this restriction, they
observe that the geodesic convex hull of points contained in a connected face of the barrier
arrangement gradually decreases. Moreover, the total number of changes to their convex hull
representations is O(n+m), where n is the number of points in the initial state and m is the
number of barriers in the final state. With this observations, they presented an algorithm to
maintain the geodesic convex hulls in O((n+m) log2(n+m) logn) total time. Their data
structure supports several basic queries in O(polylog{n,m}) time.

A natural question one may ask is whether the geodesic convex hulls can be maintained
with a sublinear update time in a more general setting where both insertions and deletions
of points and barriers are allowed.

Related work for geodesic triangle counting. The simplex counting problem is a funda-
mental query problem which has been studied extensively in the literature [4, 6, 14]. For a
set of n static points in Rd, Chan [4] gave a near-optimal algorithm which achieves O(n1−1/d)
query time with high probability after O(n logn)-time preprocessing using linear space. The
dynamic version of this problem where insertions and deletions of points are allowed is
decomposable in the sense that a query over D∪D′ can be answered in constant time from the
answers from D and D′ for any pair of disjoint data sets D and D′ [14]. Thus, we can obtain
a dynamic data structure from a static data structure of this problem using the framework
of Bentley and Saxe [2], or Overmars and Leeuwen [17].

The geodesic triangle counting problem in a simple polygon is a generalization of the
simplex counting problem. In the problem, we are given three query points in a simple
polygon and want to count all input points contained in the interior of the geodesic triangle
defined by the query points. We do not know any previous work achieving nontrivial results
on this problem. We consider this problem in the fully-dynamic setting where both input
points and barriers change by insertions and deletions. The problem is not decomposable
because the simple polygon changes in the course of updates. Therefore, it is unclear how to
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apply the framework of Bentley and Saxe [2], or Overmars and Leeuwen [17] even if we have
a data structure for the static version of the problem.

Our results. We present an algorithm and data structures to maintain the geodesic convex
hulls in the fully-dynamic setting where both input points and barriers change by insertions
and deletions. Each update can be processed in O(n2/3 log2 n) amortized time with high
probability, where n is the total number of points and barriers at the moment. In addition,
we show that any data structure for maintaining all edges of the geodesic convex hull requires
Ω(n1/3) update time. By maintaining the geodesic convex hulls, we can answer various basic
queries in O(polylogn) time in the worst case: line stabbing, inclusion, and tangent queries.

In this algorithm, we use a subprocedure to answer a geodesic triangle counting query
under insertions and deletions of points and barriers. Each update can be processed in
O(n2/3 logn) amortized time with high probability, and each query can be answered in
O(n2/3 logn) time with high probability, where n is the total number of points and barriers
at the moment. We believe that this algorithm is of independent interest.

All these algorithms are randomized in terms of their running times because we use the
partition tree given by Chan [4]. We can obtain algorithms with deterministic running times
by using the partition tree of Chazelle et al. [8] instead of the one of Chan [4]. In this case,
the update times increase slightly while the query times remain the same.

1.1 Outline

We first present a data structure for a geodesic triangle counting query for static points
contained in a static simple polygon P . This data structure consists of three levels. The first
level is the geodesic triangulation of P obtained from the algorithm by Chazelle et al. [7].
In the second level, each geodesic triangle of the geodesic triangulation is associated with a
balanced binary search tree with respect to the x-coordinates of the input points contained
in the geodesic triangle. In the third level, each node of the balanced binary search tree is
associated with a data structure for an Euclidean triangle counting query.

Given three query points which define the geodesic triangle contained in P , we first
find the nodes of the balanced binary search trees whose associated point sets contain input
points contained in . For each such node, we find an Euclidean triangle 4 such that S′ ∩4
coincides with S′ ∩ for a set S′ of the input points associated with the node. Then we use
a query algorithm of an Euclidean triangle counting query with 4. This procedure takes
O(n1/2 logn) time with high probability, where n is the total number of points and barriers.

We use this data structure to answer a geodesic triangle counting query for dynamic
points contained in a dynamic simple polygon P . The key idea is that we reconstruct the data
structure periodically, instead of updating it for each change. To be specific, we reconstruct
the data structure after n1/3 updates are made, where n is the total number of the points
and barriers at the moment.

Given the geodesic triangle defined by three query points, may not be the geodesic
convex hull of its three corners with respect to the barriers we had when the data structure
was constructed, because the barrier set has changed after the (re)construction of the data
structure. To overcome this difficulty, we decompose into smaller geodesic triangles with
respect to the barriers we had at the last time the data structure was constructed such that
for each smaller geodesic triangle ˜ , there are O(n1/3 logn) nodes of the balanced binary
search trees whose associated point sets contain some input points contained in ˜ . Using
these properties, we apply the query algorithm for the static data structure with each smaller
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geodesic triangle in the decomposition of . By careful analysis, we show that the query
time is O(n2/3 logn) with high probability.

Then we use this dynamic structure for geodesic triangle counting queries and show how
to maintain the geodesic convex hulls in the fully-dynamic setting. We observed that the
total number of distinct edges that appear on the geodesic convex hulls is less than the total
changes to their convex hull representations. Based on this observation, we compute some
edges that may appear on the geodesic convex hull in advance when we construct the data
structure of a geodesic triangle counting query.

To handle each update, we replace part of the convex hull with a chain of edges precom-
puted and maintained in the data structure. To find such a chain, we apply a geodesic triangle
counting query. Then we can achieve O(n2/3 log2 n) update time with high probability.

Due to lack of space, some of the proofs and details are omitted.

2 Preliminaries

Arrangements of Barriers. Let R be a sufficiently large rectangle. We consider the ar-
rangement of a set B of non-crossing line segments, called barriers, contained in R. The set
B is initially empty and changes by insertions and deletions of barriers.

The intersection graph of B is defined as follows. The graph has |B|+ 1 nodes, one for
each barrier in B and an additional node for R, where |X| denotes the number of elements in
a set X. Two nodes of the graph are connected by an edge if and only if their corresponding
barriers (or the boundary of R) are adjacent: one endpoint of a barrier lies on the other
barrier (or the boundary of R). We restrict the intersection graph to be connected at any
time, which gives a certain constraint on barriers that we consider. This restriction was
also assumed in the papers [5, 9, 11, 12]. Moreover, we require a barrier to have a constant
number of adjacent barriers, that is, each node in the intersection graph has a constant
degree, which was also assumed in the papers [5, 9, 11].

Each connected region of R \ ∪b∈Bb together with its boundary forms a weakly simple
polygon under the restriction. A single point may appear on the boundary of a weakly simple
polygon more than once, but we treat them as distinct points. We call each connected region
of R \ ∪b∈Bb together with its boundary a face of the arrangement of B.

In the following, we assume that the intersection graph of B is a tree. Thus the
arrangement of B consists of exactly one face at all times. We use R(B) to denote the unique
face (weakly simple polygon) of the arrangement. A more general case that the intersection
graph of B has cycles can also be handled analogously in the same time and space since
there are a constant amount of changes to the arrangement for each update. See Figure 1(a).
We can get rid of this assumption by modifying our algorithm slightly.

Update Sequences. Initially, both S and B are empty. We are given updates for points
and barriers one by one. An update is either an insertion or a deletion of a point or a barrier.
With these updates, S and B change accordingly. We are to process each update before we
receive the next update. Let U = 〈u1, u2, . . .〉 be a mixed sequence of updates. Let Si and
Bi denote S and B, respectively, after ui is processed for an index i. Let CHi denote the
geodesic convex hull of Si with respect to Bi. Let ni be the total complexity of Si and Bi.

For two sets X and Y , we use X ⊕ Y to denote the symmetric difference between X and
Y , that is, (X \ Y )∪ (Y \X). By definition, it holds that |Si ⊕ Sj |+ |Bi ⊕Bj | ≤ |i− j|. We
sometimes use an index i of U to denote the interval between the time when we receive ui
and the time when we receive ui+1. Time i indicates an arbitrary time in this interval.
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Figure 1 (a) The geodesic convex hull of points in a weakly simple polygon. (b) Every point on
` appears on the geodesic convex hull when barrier b is inserted.

Geodesic triangles and geodesic triangulations. For any two points x and y in R(B), the
geodesic path between x and y, denoted by πB(x, y) (or simply by π(x, y)), is the shortest
path between x and y in R(B). The boundary of the geodesic triangle defined by three points
p1, p2 and p3 in R(B) consists of three geodesic paths πB(p1, p2), πB(p2, p3) and πB(p3, p1).
The three vertices p1, p2 and p3 are called the corners of the geodesic triangle. The interior
of the geodesic triangle is bounded by three concave chains πB(p′1, p′2), πB(p′2, p′3), πB(p′3, p′1),
where p′i is the point such that πB(pi, p′i) is the maximal common path of πB(pi, pj) and
πB(pi, pk) for three distinct indices i, j and k in {1, 2, 3}. We call the interior of a geodesic
triangle the deltoid of it. We slightly abuse the term “deltoid” to denote a geodesic triangle
excluding its boundary whose deltoid coincides with itself.

We sometimes mention a geodesic triangle (or deltoid) without specifying its corners. In
this case, we mention it together with a barrier set B such that the boundary of the geodesic
triangle consists of three geodesic paths with respect to B.

A geodesic triangulation of R(B) is the decomposition of R(B) into a number of interior-
disjoint geodesic triangles with respect to B such that the union of the geodesic triangles
coincides with R(B). We say that a geodesic triangulation of R(B) is balanced if any
line segment that avoids the barriers in B intersects O(log |B|) geodesic triangles of the
triangulation.

A lower bound for maintaining the geodesic convex hull. To maintain the geodesic convex
hull at all times, we have to store the edges appearing on the boundary of the geodesic
convex hull in the algorithm, which takes Ω(n4/3) time in total by the following lemma.

I Lemma 1. For a mixed sequence of n updates of points and barriers, the number of distinct
edges appearing on the boundary of the geodesic convex hull is Ω(n4/3).

Proof. We prove this lemma using a lower bound example of a point-line incidence [15].
This lower bound example consists of a set P of N points and a set L of N lines such that
there are Ω(N4/3) distinct point-line pairs (p, `) with p ∈ ` for p ∈ P and ` ∈ L.

We construct a mixed sequence of n updates as follows. Let N = n/3. We first insert
the points of P one by one. For a line ` ∈ L, there is a barrier with one endpoint on the
boundary of R such that the insertion of the barrier makes all points of P lying on ` appear
on the boundary of the geodesic convex hull. See Figure 1(b). We insert such a barrier, and
then we remove it. We repeat this for every line in L. Then we have n/3 point insertions,
n/3 barrier insertions, and n/3 barrier deletions.

For the insertion of a barrier, the number of the new edges appearing on the geodesic
convex hull is at least the number of the points of P lying on the line ` ∈ L corresponding
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to the barrier. Moreover, the new edges are contained in `. Therefore, all such edges are
distinct for every line in L. This implies that the number of distinct edges of the geodesic
convex hull is Ω(n4/3). J

Note that this lower bound example contains collinear points. We can perturb the points
slightly in a certain way such that no three distinct points are collinear and the bound still
holds. We omit details due to lack of space.

3 Dynamic Geodesic Triangle Range Queries

We are given three points c1, c2 and c3 in R(Bi) as a query for a geodesic triangle counting
problem. We show how to compute the number of points of Si lying in the deltoid of the
geodesic triangle of c1, c2 and c3 at time i.

3.1 Two Data Structures
We maintain two data structures: a geodesic-path data structure and an α-geodesic-
triangulated subdivision. The first one is given by Goodrich and Tamassia [11]. With
their structure, we can compute the geodesic path between any two query points in R(Bi)
represented as a balanced binary search tree in O(log2 ni) time.

The second one is our main data structure. At time i, an α-geodesic-triangulated
subdivision is a balanced geodesic triangulation of R(Bi−α) for some 0 ≤ α ≤ i such that
every geodesic triangle C in the triangulation is associated with a hierarchy of the partition
trees given by Chan [4] on the point set C ∩ Si−α, which will be described later.

The first level: balanced geodesic triangulation. We use the balanced geodesic triangu-
lation Ti of R(Bi−α) given by Chazelle at al. [7]. We call α the inconsistency of Ti. The
choice of α will be described in Section 3.2. Let B̃i and S̃i be Bi−α and Si−α, respectively.
We call a deltoid in the geodesic triangulation a cell of Ti. To make the description easier,
we assume that no point of S̃i lies on the boundary of any cell of Ti. If it is not the case,
we assume that a point of Ti lying on the common boundary of two cells of Ti belongs to
exactly one of them to avoid overcounting.

The geodesic triangulation is for a static simple polygonal region. We do not make any
change to this structure for updates until the inconsistency of the structure exceeds a certain
level. Then we reconstruct it from scratch so that the structure has no inconsistency for
the current set of barriers. Thus, B̃i and S̃i are B and S we had at the last time the data
structures were constructed, respectively. Details will be described in Section 3.2.

I Lemma 2. A deltoid with respect to Bi intersects O((α+1) log |B̃i|) cells in the α-geodesic-
triangulated subdivision. Moreover, they can be found in O((α+ 1)(log2 |B̃i|+ logα)) time.

The second and third levels: a hierarchy of partition trees. Imagine that we construct
Chan’s partition tree on S̃i ∩ C for every cell C of Ti that answers a Euclidean triangle
counting query [4]. The partition tree requires O(N) preprocessing time, O(N) space, and
O(
√
N) query time with high probability, where N is the number of input points.

I Lemma 3. Let C be a cell of Ti and ˜ be a deltoid with respect to B̃i. We can compute the
number of points in (C ∩ S̃i) ∩ ˜ in O(n1/2

C ) time with high probability, where nC = |C ∩ S̃i|.
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In our problem, a query is given as a deltoid with respect to Bi, not B̃i. Thus, we cannot
apply the algorithm in Lemma 3 to the query deltoid directly. Instead, for a query deltoid ,
we construct a set Q̃(C, ) of pairwise disjoint deltoids with respect to B̃i for each cell C of
Ti such that the closures of the deltoids in Q̃(C, ) contain C ∩ in their union. We apply
the algorithm in Lemma 3 to each deltoid in Q̃(C, ) and get the answer. The running time
of this approach is O(mCn

1/2
C ), where mC = |Q̃(C, )| and nC = |C ∩ S̃i|.

To reduce the running time, instead of constructing Chan’s partition tree on the set
C ∩ S̃i for each cell C of Ti, we construct a hierarchy of Chan’s partition trees on C ∩ S̃i using
a range tree. We construct a one-dimensional range tree (balanced binary search tree) on
C ∩ S̃i with respect to the x-coordinates of the points. Each node v of the tree corresponds
to a vertical slab H(v). The root corresponds to the (degenerate) vertical slab R2. The
left child and the right child of a node v correspond to the left vertical slab and the right
vertical slab obtained from the partition of H(v) with respect to the median x-coordinate
of S̃i contained in C ∩H(v), respectively. For each node v of the range tree, we construct
Chan’s partition tree on the set (C ∩H(v)) ∩ S̃i (excluding the points of S̃i lying on the
right vertical side of H(v)) as the associated data structure of v.

In the query algorithm, we construct a set Q̃(C, ) of pairwise disjoint deltoids with
respect to B̃i satisfying Property (?) such that the closures of the deltoids contains C ∩
in their union. This procedure is described in Section 3.3.1. Then we apply Lemma 4 as a
subprocedure.

I Property (?). Any vertical line intersects O(1) deltoids in Q̃(C, ) for every cell C in Ti.

I Lemma 4. Given a deltoid with respect to Bi, we can compute the number of points of
S̃i contained in C ∩ for a cell C of Ti in O((mCnC)1/2 lognC) time with high probability,
where mC = |Q̃(C, )| and nC = |C ∩ S̃i|.

I Lemma 5. We can construct the hierarchy of Chan’s partition trees for every cell C of Ti
in O(|S̃i| log(|B̃i|+ |S̃i|)) time in total with high probability.

Maintaining the point-location data structure. We store one more piece of information
in the second level of the α-geodesic-triangulated subdivision. For each cell C of Ti, we
maintain the dynamic point-location data structure of Chan and Nekrich [5] on the boundary
of C and the barriers of Bi \ B̃i intersecting C. Their data structure supports two types
of queries: a point-location query and a vertical ray-shooting query. Each query takes
O(logN(log logN)2) time and each update takes O(logN log logN) time, where N is the
complexity of the boundary of C and the barriers of Bi \ B̃i intersecting C.

3.2 A Procedure for Updates
We do not make any change to the geodesic-triangulated subdivision for updates until the
inconsistency α becomes larger than n1/3

i . Then we reconstruct the subdivision from scratch
so that the structure has no inconsistency, that is, we set S̃i = Si and B̃i = Bi and construct
Ti accordingly when the inconsistency becomes larger than n1/3

i . We can reconstruct the
geodesic-triangulated subdivision in O(n2/3

i logni) amortized time.
For the other two data structures, we update them for each insertion and deletion of

barriers: the point-location data structure for every cell C of Ti intersecting the barrier in
O(n1/3

i log3 ni(log logni)) time, and the geodesic-path data structure in O(log2 ni) time.

I Lemma 6. At any time i, the amortized time complexity for the reconstruction of the
geodesic-triangulated subdivision is O(n2/3

i logni) with high probability.
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3.3 A Procedure for Geodesic Triangle Counting Queries
Assume that we have an update ui to process and we have the α-geodesic-triangulated
subdivision Ti with α ≤ n

1/3
i . Note that |B̃i| = O(ni) and |S̃i| = O(ni). Given any three

query points c1, c2 and c3 in R(Bi), we present an algorithm that returns the number of
points of Si contained in the deltoid of the geodesic triangle defined by c1, c2, c3 with
respect to Bi in O(n2/3

i logni) time. Recall that the geodesic triangulated subdivision is
constructed on R(B̃i) while is a deltoid with respect to Bi. Thus we cannot apply the
algorithm in Lemma 3 directly to . Instead, we decompose into a number of deltoids
with respect to B̃i and apply the algorithm in Lemma 3 to each such deltoid.

The query algorithm consists of three steps. In the first step, we find all cells of Ti
intersecting in O((α+1) log2 ni) time using Lemma 2. Let C( ) be the set of such cells. In
the second step described in Section 3.3.1, for each cell C ∈ C( ), we construct a set Q̃(C, )
of pairwise disjoint deltoids satisfying Property (?) with respect to B̃i whose closures contain
C ∩ in their union. The total complexity of this set for every cell in C( ) is O(1 + α).
Then, in the last step described in Section 3.3.2, we compute the number X1 of the points of
S̃i contained in using the set Q̃(C, ) for every cell C ∈ C( ). In addition, we compute
the numbers of points in Si \ S̃i and S̃i \ Si contained in , and denote them by X2 and X3,
respectively. Then X1 +X2 −X3 is the number of points of Si contained in .

3.3.1 Constructing a Set of Deltoids with respect to B̃i

Let C be a cell in C( ). In brief, we construct a set Q̃(C, ) of pairwise disjoint deltoids
with respect to B̃i as follows. We compute the vertical decomposition of C with respect to
the barriers in Bi ⊕ B̃i. Then we find all cells of the vertical decomposition intersecting .
For each such cell, we compute the intersection of the cell with , which is the geodesic
convex hull of at most six points with respect to B̃i. Then for each intersection, we obtain
at most four deltoids from a geodesic triangulation of it. All such deltoids form Q̃(C, ).

Computing the vertical decomposition. Let V(C) be the set of the endpoints of the
barriers of Bi ⊕ B̃i contained in the closure of C. We consider two vertical extensions from
every endpoint in V(C) going to opposite directions until they hit a barrier in Bi ⊕ B̃i or
the boundary of C. Note that no barrier in B̃i intersects the interior of C. Thus, we can
compute all extensions in O(|V(C)| logni(log logni)2) time in total using the point-location
data structure associated with C that supports a vertical ray-shooting query.

The extensions together with the barriers in Bi \ B̃i decompose C into O(1 + α) cells.
We call this decomposition the vertical decomposition of C. We dynamically maintain the
arrangement of Bi ⊕ B̃i using the point-location data structure associated with C. Thus by
computing all extensions, we can obtain the vertical decomposition of C.

Note that each cell (connected region) of the vertical decomposition contains at most four
convex vertices on its boundary. Moreover, the closure of each cell is the geodesic convex
hull of its four convex vertices with respect to both B̃i and Bi.

Traversing the vertical decomposition. Then we find all cells of the vertical decomposition
of C intersecting by traversing the vertical decomposition of C. In the case that C is
contained in , every cell in the vertical decomposition intersects . Thus we consider the
case that the boundary of intersects C.

We observe that we can compute the intersection of the boundary of C with the boundary
of while we compute the set C( ). Then, starting from the intersection points, we traverse
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the vertical decomposition of C along the boundary of . In this way, we can visit every cell
of the vertical decomposition intersecting . Moreover, we visit only the cells intersecting .

Every cell of the decomposition intersecting contains an endpoint of at most one barrier
of Bi \ B̃i on its boundary. Thus, during the traversal, we can find a neighboring cell of the
vertical decomposition intersecting the boundary of in O(logni) time. The running time
of this procedure is bounded by the number of cells of the decomposition intersecting
times O(logni).

Computing the set of deltoids. For each cell of the vertical decomposition of C intersecting
, consider the intersection of with the cell. It is the geodesic convex hull of at most six

points with respect to both B̃i and Bi. By computing a geodesic triangulation of it with
respect to B̃i, we can obtain at most four deltoids with respect to B̃i from the intersection
in O(log2 ni) time. Here, we do not explicitly compute the deltoids. Instead, we compute
the corners of each deltoid using the geodesic-path data structure we maintain. Then we can
compute the convex vertices of the deltoid of the geodesic triangle in O(log2 ni) time.

Let Q̃(C, ) be the set of all such deltoids obtained from all cells in the vertical decom-
position of C intersecting . Note that the number of all cells of the decomposition of C
intersecting is asymptotically the same as the size of Q̃(C, ). The running time of this
procedure is bounded by the size of Q̃(C, ) times O(log2 ni).

Analysis. For analysis, we prove the followings.
The total number of deltoids in Q̃(C, ) for all cells C ∈ C( ) is O(α+ 1).
The set Q̃(C, ) satisfies Property (?).

The first claim implies that the running time for computing Q̃(C, ) for all cells C ∈ C( )
is O((α+ 1) logni(log logni)2), which is dominated by the time for constructing the vertical
decomposition for every cell in C( ). The first and second claims give properties for Q̃(C, )
we want to achieve.

3.3.2 Computing the Number of Points in a Deltoid

We compute the number of points in (C ∩ ˜) ∩ S̃i for every cell C in C( ) and every deltoid˜ of Q̃(C, ). Due to properties of Q̃(C, ), we can compute it by applying Lemma 4 in
O(n2/3

i logni) time. Then we handle the points in Si ⊕ S̃i by deciding whether each of them
is contained in in O(log2 ni) time. We omit details due to lack of space.

I Theorem 7. A geodesic triangle counting query can be answered in O(n2/3 logn) time with
high probability under insertions and deletions of points and barriers, where n is the total
number of the points and barriers at the moment. We process each update in O(n2/3 logn)
amortized time with high probability using O(n logn) space.

4 Maintaining the Geodesic Convex Hull

In this section, we present an algorithm together with three data structures including the
data structures described in Section 3 to maintain the geodesic convex hull under insertions
and deletions of points and barriers.
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t(v)

t(v′′)

t(v′)
e

Figure 2 The nodes v′ and v′′ are children of the node v. For v, we compute the bridges (dashed
segments). The edge e is the bridge of the convex hull of P (v′) and the convex hull of P (v′′).

4.1 A Triangle-Range Hull Tree
In addition to the data structures for a geodesic triangle query, we maintain a data structure,
which we call a triangle-range hull tree. The triangle-range hull tree is constructed on the set
Pi = (Si ∩ S̃i)∪ V (Bi ∩ B̃i), where V (B) denotes the vertices of R(B) for a set B of barriers.
Note that |Pi| = O(ni). Given a set of points, this data structure allows us to compute the
Euclidean convex hull of the points of Pi lying inside a query Euclidean triangle. In this
section, we present an algorithm to construct the triangle-range hull tree and an algorithm
to compute the Euclidean convex hull of the points contained in a query Euclidean triangle.

A partition tree of Chan. The triangle-range hull tree is a partition tree constructed on Pi
containing additional information. There are several variants of a partition tree with different
partitioning schemes. Among them, we use the partition tree given by Chan [4]. This is
because in their scheme, the triangle t(v) corresponding to a node v is subdivided into a
constant number of interior-disjoint triangles each of which corresponds to a child of v. Each
node v is associated with a point set P (v) = t(v) ∩ Pi. Moreover, for any Euclidean triangle
4, the number of nodes v in T such that t(v) intersects the boundary of 4 is O(

√
|Pi|).

Construction of the triangle-range hull tree. In our problem, we use the partition tree
constructed on Pi to compute the Euclidean convex hull of points contained in a query
Euclidean triangle. Recall that Pi consists of points from Si ∩ S̃i and points from V (Bi ∩ B̃i).
For a vertex p of the Euclidean convex hull of P ′ ⊆ Pi, we call the vertex of the Euclidean
convex hull that comes first from p in clockwise order along the convex hull among all vertices
from Si ∩ S̃i (or, V (Bi) ∩ V (B̃i)) the S-neighbor (or, B-neighbor) of p.

For every node v of the partition tree, we compute a part of the convex hull of P (v) such
that the partition tree supports the following operations for the convex hull of P (v):

(O1) Given two edges e1 and e2 of the convex hull, we can compute the number of edges
of the convex hull lying from e1 to e2 in clockwise order in O(logni) time.
(O2) For an integer j and an edge e of the convex hull, we can access the jth edge of the
convex hull from e in clockwise order in O(logni) time.
(O3) Given a vertex p of the convex hull, we can find the S-neighbor and B-neighbor of
p in clockwise order along the convex hull in O(logni) time.

Let v be a node of T . Assume that for every descendant v′ of v, we have already computed
a part of the convex hull of P (v′) such that the partition tree supports all three operations.
We show how to compute a part of the convex hull of P (v) as follows. We compute a constant
number of edges of the convex hull of P (v) that do not appear on the convex hull of P (v′)
for any child v′ of v, which we call bridges for v. For illustration, see Figure 2. By property
of the partition tree, P (v) is the union of P (v′) for all children v′ of v, and t(v) contains
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the union of the triangles t(v′) for all children v′ of v. A bridge for v is an outer common
tangent of two convex hulls of P (v1) and of P (v2) for two children v1 and v2 of v.

Kirkpatrick and Snoeyink [13] presented an algorithm to compute the outer common
tangents of two given convex polygons with k vertices in O(log k) time once the vertices of
each convex polygon are stored in an array. In our case, we need O(log k) time for accessing
the jth edge of the convex hull of P (v1) (or P (v2)) from a given edge for an integer j. Since
a node of T has a constant number of children, we can compute all bridges for v in O(log2 ni)
time. We maintain the bridges for v in clockwise order along the convex hull of P (v). In
addition, we compute information for the bridges to support operations O1, O2 and O3 for
v. (We omit details due to lack of space.)

I Lemma 8. The triangle-range hull tree supports operations O1, O2 and O3 for every node.

To construct the triangle-range hull tree, we spend O(log2 ni) time for each node v, thus
the running time for the construction is O(ni log2 ni). Moreover, the number of bridges we
compute additionally is asymptotically bounded by the number of edges of the partition tree.
Thus, the size of the partition tree remains the same and we have the following lemma.

I Lemma 9. The triangle-range hull tree can be constructed on Pi in O(ni log2 ni) time with
high probability. The size of the triangle-range hull tree is O(ni).

Computation of the convex hull of points in a query Euclidean triangle. Let 4 be a
Euclidean triangle. We compute the Euclidean convex hull of Pi ∩ 4. To be specific, we
compute a tree of size O(

√
ni) supporting all three operations for the convex hull of Pi ∩4.

Each node of the tree is associated with a sequence of edges of the convex hull of Pi ∩4.
The algorithm is similar to the one for triangle range searching. We start from the root of

the triangle-range hull tree T . Let v be a node we just reached. Then we compute the convex
hull of P (u) ∩4 recursively for every child u of v. There are three possible cases: (1) t(u)
intersects the boundary of 4, (2) t(u) is contained in the interior of 4, or (3) t(u) does not
intersect 4. For the first case, we search further the subtrees rooted at u recursively. For
the second case, we already have the convex hull of P (u) ∩4. This is because the subtree of
T rooted at u supports the three operations for P (u) = P (u) ∩4. For the third case, we do
not search further the subtree rooted at u.

After computing the convex hull of P (u)∩4 for every child u of v, we compute the edges
of the convex hull of P (v) ∩4 which do not appear on the boundary of the convex hull of
P (u) ∩4 for any child u of v, which are bridges for v on the convex hull of P (v) ∩4. Note
that such a bridge is an outer common tangent of the convex hull of P (u1) ∩ 4 and the
convex hull of P (u2) ∩4 for two children u1 and u2 of v. Since v has a constant number of
children, there are a constant number of bridges for v. We compute them in O(log2 n) time
using the algorithm by Kirkpatrick and Snoeyink [13], and sort them in clockwise order along
the convex hull of P (v) ∩4. We also compute additional information to support operations
O1, O2 and O3 for v. Finally, we reach leaf nodes v of T . Since P (v) has a constant size, we
compute the convex hull of all points of P (v) lying inside 4 explicitly in constant time.

As a result of handling the query, we return the nodes of T we visited and the sequence
of bridges for each such node. That is, the output of the query algorithm is a tree consisting
of the nodes of T we visited each of which stores the sequence of bridges. Since we visited
O(
√
ni) nodes, the size of the output is O(

√
ni). One difference of the partition tree and

the output tree is that a leaf node of the output tree does not necessarily correspond to a
constant number of points. It happens when t(u) is contained in 4 for some node u of T . In
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this case, the leaf node of the output tree points to its corresponding node of T . Thus we
can apply all three operations on the leaf node of the output tree.

With a simple analysis, we can show that the running time of this query algorithm is
O(N log2 ni), where N is the number of nodes v in T such that t(v) intersects the boundary
of 4. Therefore, the running time for our query algorithm is O(

√
ni log2 ni).

I Lemma 10. We can compute a tree of size O(
√
ni) in O(

√
ni log2 ni) time with high

probability that supports the three operations for the convex hull of points of P contained in
a query Euclidean triangle.

Whenever we reconstruct the data structure for a geodesic triangle counting query, we
also reconstruct the triangle-range hull tree. Additionally, we handle the deletion of a point
p from S ∪ V (B) by removing it from the triangle-range hull tree in O(log3 ni) time.

4.2 Representation of the Geodesic Convex Hull
Ishaque and Tóth [12] showed that n updates may induce Ω(n2) combinatorial changes in
the geodesic convex hull. However, we observe that the total number of distinct edges of the
geodesic convex hull under n updates is less than n2. Based on this observation, we compute
a number of chains in advance, which are geodesic paths stored in the geodesic-path data
structure and the boundaries of convex hulls stored in the triangle-range hull tree. Then at
any time i, we represent the geodesic convex hull CHi of Si with respect to Bi as a sequence
consisting of subchains along the boundary of CHi.

We maintain this sequence using a concatenable queue implemented by AVL-trees, and
call it the representation tree. A concatenable queue is used also in [16] to represent the
Euclidean convex hull. This data structure allows us to split a sequence, merge two sequences,
insert or delete an element in O(logni) time. Each element in the representation tree
corresponds to a subchain of the boundary of CHi of one of the three types:

(T1) A single edge of CHi connecting two points in Si
(T2) A geodesic path with respect to Bi connecting two points in Si
(T3) A subchain of the convex hull of P ∩4 for some Euclidean triangle 4

For a T1 element e, we simply store its corresponding edge to e. For an element of
other types, instead of storing the subchain directly, we store information that supports the
three operations for the element. Moreover, we store additional information to each node v
(element) to support operations O1, O2 and O3 for CHi.

I Lemma 11. The representation tree supports operations O1, O2 and O3 for CHi.

4.3 Procedures for Various Types of Queries
Lemma 11 allows us to answer various basic queries. Here, we show how to answer queries
of three types, which were considered by Ishaque and Tóth [12]: a line stabbing query, an
inclusion query and a tangent query.

For a line stabbing query with a line segment ` contained in R(Bi), we want to find
the intersection of ` with CHi. For an inclusion query with a point p in R(Bi), we want to
determine whether or not p is contained in CHi. For a tangent query with a point p lying
outside of CHi, we want to find the vertices v of CHi where p is tangent to CHi. Each query
can be answered in polylogarithmic time.

I Lemma 12. We can answer a line stabbing and inclusion query in O(log2 ni) time in the
worst case. We can answer a tangent query in O(log3 ni) time in the worst case.
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Figure 3 (a) When b is inserted, we replace πBi−1 (s1, s2) with two convex chains in 1 and 2.
(b), (c) We compute q such that the maximal common path of π(s1, y) and γ1 is π(s1, q).

4.4 Procedures for Updates
We update the triangle-range hull tree when a point or a barrier is deleted. But we do
not update it for insertions of points or barriers. Instead, we reconstruct it whenever we
reconstruct the data structure for a geodesic triangle counting query. We also compute
the geodesic convex hull of S with respect to B when we reconstruct them. After the
reconstruction, the representation tree consists of T1 elements only.

In this paper, we present algorithms for processing an insertion of a barrier b. We omit
details of the procedures for the other cases. At time i, we have the geodesic convex hull
CHi−1. We first check whether b intersects the interior of CHi−1 by applying the stabbing
query with the line segment b. If b does not intersect the interior of CHi−1, it holds that
CHi = CHi−1. Otherwise, the intersection of b with the interior of CHi−1 consists of at most
two connected components. (This happens when ` contains an edge of CHi−1.) If it consists
of two connected components, we consider them as two distinct barriers. So, in the following,
we assume that the intersection of b with the interior of CHi−1 is connected.

Now we consider the intersection of b with the boundary of CHi−1. The intersection
consists of at most two points. We consider the case that the intersection is a single point y.
The other case can be handled analogously.

Let s1 and s2 be the S-neighbors of y along the boundary of CHi−1 in clockwise and
counterclockwise orders, and let x be the endpoint of b lying inside CHi−1. See Figure 3(a).
We can compute s1 and s2 in O(logni) time using operation O3. As the barrier b is inserted,
some points of Si lying in the interior of CHi−1 appear on the boundary of CHi. Such points
lie in the deltoid of the geodesic triangle with three corners s1, s2 and x with respect to
Bi. Moreover, we have the following observation.

I Observation 13. CHi is the geodesic convex hull of (CHi−1 \ ) ∪ (Si ∩ ) w.r.t. Bi.

Let 1 and 2 be the two deltoids such that their union including their common boundary
xy is . Without loss of generality, we assume that s1 ∈ 1 and s2 ∈ 2. We use γt to
denote the part of the boundary of the geodesic convex hull of (Si∩ t)∪{st, x} with respect
to Bi that connects st and x (and is not π(st, x)) for t = 1, 2. See Figure 3(b). To obtain
CHi, we replace π(s1, s2) with γ1 and γ2 in the representation tree of CHi−1. We show how
to compute γ1 only. The polygonal chain γ2 can be computed analogously. Then we show
how to replace π(s1, s2) with them in the representation tree.

The procedure for computing γ1 consists of three steps. First, we find a smaller deltoid
′ ⊆ 1 with properties similar to ones of 1. Second, we find an Euclidean triangle 4

such that the part of the boundary of the Euclidean convex hull of (Si ∪ V (Bi)) ∩4 from x
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to q in clockwise order is exactly γ1 \ π(s1, q), where q is the corner of 4 that does not lie on
xy. Third, we compute the convex hull of (Si ∪ V (Bi))∩4 using the triangle-range hull tree
and update CHi using this information.

Finding a smaller deltoid. Here, instead of considering 1, we choose a deltoid ′ ⊆ 1
satisfying the following properties:

The boundary of ′ consists of one (maximal) concave chain and two line segments.
The boundary of the geodesic convex hull of Si ∩ ′ excluding πBi

(x, q) is exactly
γ1 \ πBi(s1, q), where q is the corner of ′ that does not lie on xy.

We observe that π(s1, y)∩γ1 is connected. We find the point q ∈ π(s1, y) closest to y such
that π(s1, q) ⊆ γ1. It is possible that q = s1. See Figure 3(b) and (c). We can compute q in
O(n2/3

i log2 ni) time by applying binary search on π(s1, y) with a geodesic triangle counting
query described in Section 3. We extend the edge of π(s1, q) incident to q until it hits xy.
Let y′ be the intersection of xy with the extension. We let ′ be the geodesic triangle with
corners q, y′ and x. Then this geodesic triangle satisfies the properties we want to achieve.

Finding an Euclidean triangle 4. We choose the Euclidean triangle 4 whose three corners
are the three corners of ′. Since ′ is a deltoid with respect to Bi, the line segment xq
connecting x and q appears on the boundary of the Euclidean convex hull CH of (Si∪V (Bi))∩
4. Moreover, any point of Si ∪ V (Bi) contained in the interior of the region bounded by
π(x, q) and xq does not appear on the boundary of CH. Thus the following holds.

I Lemma 14. The polygonal chain γ1 \ π(s1, q) coincides with the part of the boundary of
the Euclidean convex hull of (Si ∪ V (Bi)) ∩4 excluding xq.

Computing the convex hull of (Si ∪ V (Bi)) ∩ 4. Let P = (S̃i ∩ Si) ∪ V (B̃i ∩Bi). We
first compute the convex hull of P ∩ 4 using the triangle-range hull tree. Let CH be the
convex hull. Then we consider each point p in Si \ S̃i one by one, and update CH to be
the convex hull of CH and p. Each update takes O(log2 ni) time because we have to spend
O(logni) time to access the jth vertex of CH for some index j. Finally, we compute the
Euclidean convex hull of (Si ∪ V (Bi)) ∩4.

I Lemma 15. We can compute the Euclidean convex hull of (Si∪V (Bi))∩4 in O(ni1/2 log2 ni)
time with high probability.

Now we have γ1 and γ2 consisting of O(ni1/3) subchains belonging to T1, T2, or T3.
We insert them to the representation tree in O(ni1/3 logni) time. Then we remove π(s1, s2)
from the representation tree. This takes O(logni) time since the representation tree is a
concatenable queue supporting split operation.

Therefore, the running time for handling the insertion of a barrier is dominated by the
running time for the second step, which takes O(n2/3

i log2 ni) time.

I Lemma 16. The geodesic convex hull of Si with respect to Bi−1 ∪ {b} for some barrier b
can be computed in O(n2/3

i log2 ni) time with high probability once we have CHi−1.

I Theorem 17. We can update the geodesic convex hull in O(n2/3 log2 n) amortized time
with high probability under insertions and deletions of points and barriers, where n is the
total number of the points and barriers at the moment. A line stabbing query, inclusion query,
and tangent query can be answered in polylogarithmic time in the worst case.
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