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Abstract
Drainage networks on terrains have been studied extensively from an algorithmic perspective.
However, in drainage networks water flow cannot bifurcate and hence they do not model braided
rivers (multiple channels which split and join, separated by sediment bars). We initiate the
algorithmic study of braided rivers by employing the descending quasi Morse-Smale complex on
the river bed (a polyhedral terrain), and extending it with a certain ordering of bars from the one
river bank to the other. This allows us to compute a graph that models a representative channel
network, consisting of lowest paths. To ensure that channels in this network are sufficiently
different we define a sand function that represents the volume of sediment separating them. We
show that in general the problem of computing a maximum network of non-crossing channels
which are δ-different from each other (as measured by the sand function) is NP-hard. However,
using our ordering between the river banks, we can compute a maximum δ-different network
that respects this order in polynomial time. We implemented our approach and applied it to
simulated and real-world braided rivers.
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1 Introduction

Geomorphology is the study of the shape of natural terrains and the processes that create
them. One of these processes is erosion due to water flow. In mountainous areas, valleys are
nearly always shaped by rivers,1 which slowly transport solid material downstream. Due
to gravity, water usually follows the direction of steepest descent, although inertia may
result in deviations. The combination of terrain shape and water flow gives rise to various
computational problems that have been studied in geomorphology, geographic information
science (GIS), and computational geometry.

One prominent problem is the computation of drainage networks, also referred to as
flows [1, 2, 4]. Here computations are based on elevation data only and the shape of the
terrain is used to determine where rivers will form (see [26] for an extensive overview). A
second problem of interest concerns local minima. Due to erosion local minima are more rare
in natural terrains than local maxima. Minima in terrains are the bottoms of pits that will
be filled with water. When a pit overflows at the lowest saddle surrounding it, the saddle
may be eroded and eventually both pit and saddle will be removed simultaneously. For this
reason certain terrain types do not have local minima and minor local minima are often
measurement errors. Such errors are clearly undesirable when studying flow on terrains and
hence, minor local minima are removed by computational means [15, 16, 17, 25]. A third
commonly studied problem deals with watersheds. Watershed boundaries are steepest ascent
paths following the ridges of mountains [5, 19, 26].

Braided rivers. The usual models (as discussed above) for water flow in terrains allow
rivers to merge, which is natural because side valleys join main valleys. And clearly, if
water always follows the direction of steepest descent, a river cannot split (except due to
degeneracies). Yet splitting happens in deltas and various river types, in particular braided
river systems [12, 11] (see Figure 1 for an example). Such systems have islands called bars
ranging in length from about one water depth to ten times the overall river width, separating
different channels of the same river over their length after which the channels confluence [20].
Bifurcations are currently still poorly understood in geomorphology [14]. They are quite
dynamic in the sense that erosion or sedimentation leads to perpetual changes in the division
of water and sediment at bifurcations, which affects downstream morphological development
of channels and bars locally [3, 6, 23] and over surprisingly long distances downstream [22].
This makes braided river systems highly dynamic on the seasonal time scale. Within a year
the appearance and hydrological functioning is also highly variable due to changing water
levels during floods and low flow periods that emerge and submerge bars.

Many fundamental questions remain how rivers form shallow, ecologically valuable shoals,
carve deep channels for shipping, collapse banks with property on it, and flood built-up areas.
Part of the reason for slow progress is that sediment transport is a nonlinear function of flow
velocity, leading to self-amplifying changes in depth and width of channels. This leads to
changes in water and sediment conveyance, which in turn affects downstream channels that
split around other bars and so on ad nearly infinitum [14]. We know this quasi-quantitatively
from increasing gridded data of bed elevation and flow properties collected with advanced
remote sensing techniques [11, 18], in numerical two-phase modelling [23] and in controlled
laboratory experiments with small-scale braided rivers [9]. However, how small changes at

1 We use ‘rivers’ as unifying terminology for flowing water, including erosive rivulets, streams, brooks,
and large sediment-laden rivers that build their own landscapes through sedimentation.
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Figure 1 Orthoimagery of the Crossbank reach of the Waimakariri river, a braided gravel river
in New Zealand. Thanks to Murray Hicks from NIWA Christchurch, NZ.

bifurcations and confluences propagate and grow or decay through the channel network and
how that leads to changes in the larger-scale network structure remains unknown. A main
reason is that there is currently no technique to extract morphologically meaningful networks,
nor to rigorously connect the networks at different water levels [12, 18].

Modeling braided rivers, where channels can both split and merge, is considerably more
complex than modeling standard drainage networks, where all rivers flow only downhill and
do not bifurcate. In this paper we initiate the study of braided rivers from the perspective of
computational geometry and topology.

Modeling braided rivers in a nutshell. To model a braided river we first need a represen-
tation of the basic geometry, independent of water level. We hence use the elevation of the
river bed as a starting point. In meandering rivers the so-called thalweg is often used as a
basic representation of the river. The thalweg is defined as the deepest part of a continuous
channel. In a meandering river that is simply one linear feature, which is usually not the
channel center line but more sinuous as it follows the deeper pools in the outer bends. We
are striving for a similar representation for braided rivers, consisting of linear features along
lowest paths in each channel. These linear features can merge and bifurcate, that is, they
form a planar graph or network. The use of graphs to model and analyze braided rivers was
recently pioneered in [18]. In a river, channels are deepest where water flows (or used to flow)
the fastest. This is due to the non-linearity of sediment transport: when velocity doubles,
sediment transport increases eight to perhaps hundredfold, which leads to the erosion of
channels and deposition in bars. We define lowest paths intuitively as the paths that do
not go higher than they need to go to connect the endpoints. To find lowest paths we use a
descending quasi Morse-Smale complex [10, 24]. We show that lowest paths must always lie
on this complex, except for, possibly, the ends of the path.

A representative network for a braided river should not necessarily contain all possible
channels. Topologically speaking a tiny local maximum in the river bed creates two channels.
We can use persistence to simplify our input and avoid such situations. But still, too many
channels might remain. We would hence like to select a set of channels which are sufficiently
different from each other. We model how different two channels are with a function (the
sand function) that relates to the volume of sediment the river has to move before the two
channels become one. More volume needs more time to be removed [13]. A bar of very small
volume separating two channels requires insignificant time to be removed, so the channels
are not significantly different. But a large bar with a large volume may require multiple
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floods to be shaved off or cut through by a new channel, meaning that the two channels
separated by this bar are significantly different.

Our objective now is to compute a representative network of channels that is optimal in
some sense. We require (i) each channel to be (mostly) on the descending quasi Morse-Smale
complex (that is, locally lowest), (ii) any two channels to be sufficiently different (specified by
a parameter δ and the sand function), and (iii) the representative network to be maximum.
Unfortunately, the exact formulation of this problem is NP-hard. We deal with this by
computing a striation: a left-bank-to-right-bank sequence of non-crossing paths for the whole
braided river. We provide three different heuristics to compute a striation, each with various
strengths and weaknesses. We then limit the representative network to select channels only
from the striation. To make this selection, we compute the sand function between every two
channels. For this we compute a monotone isotopy between any two channels, to ensure
that only sand between the channels is measured, and without multiplicity. We require
this isotopy to be consistent with the striation. We then present three different models
to compute the sand function along a single matching path of the isotopy, which is then
integrated over the entire isotopy to compute the sand function between two channels. The
isotopy that minimizes the sand function is chosen. We show that the resulting sand function
can be computed efficiently between any two channels of the striation. Finally, we can use a
simple greedy algorithm to select the representative network from the striation.

Organization. Section 2 gives the definitions and the problem statement. Section 3 describes
the quasi Morse-Smale complex and shows that lowest paths lie mostly on this complex.
Section 4 shows NP-hardness of computing a representative network and introduces three
ways of computing a striation. Section 5 gives three ways of defining the sand function and
algorithms to compute it. Section 6 describes how to compute a representative network if a
striation and a sand function are given. Section 7 reports on experiments of an implementation
applied to data from a numerical model and to data collected from the real-world Waimakariri
river (see Fig. 1). Finally, a discussion is given in Section 8.

2 Definitions and problem statement

Let G = (V,E) be a triangulation of a topological disk M in the plane, and let h : M → R
be the height of the points in M , where the edges (respectively triangles) of G interpolate h
linearly between its vertices (respectively edges). So G can be viewed as a simplicial 2-complex
in R3 by adding h as a third dimension. Furthermore, let σ ∈ V be a source and τ ∈ V
be a sink, both on the boundary ∂M . The source and sink are assumed to be vertices
for simplicity, but our approach can be extended to the case where σ and τ are connected
components on the boundary of M . We refer to (G, h, σ, τ) as a river, and we refer to the
volume {(x, y, z) | (x, y) ∈ M, z ∈ R, z ≤ h(x, y)} as sand. We define the amount of sand
above a point (x, y, z) as max(0, h(x, y)− z).

Let π+
∂M and π−∂M (respectively clockwise and counterclockwise) be the two paths from σ

to τ along the boundary of M . We call a path π from σ to τ semi-simple if it has no self-
intersections, but it may coincide with itself, see the red path in Fig. 2. In such self-coinciding
parts, these parts are symbolically separated. Let P be a set of semi-simple, pairwise
non-crossing paths from σ to τ along edges of G. For two semi-simple paths π0 and π1 in
P, let D(π0, π1) be the region bounded by and including π0 and π1. So two semi-simple
paths π0 and π1 from σ to τ have no proper crossings if and only if D(π+

∂M , π0) ⊆ D(π+
∂M , π1)

or D(π+
∂M , π1) ⊆ D(π+

∂M , π0).
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π+
∂M

M

σ τ

π−
∂M

Figure 2 The diskM and three paths of P without proper crossings, including the two paths π+
∂M

and π−∂M and a backtracking path.

A homotopy η : [0, 1]2 → M from π0 to π1 is a continuous map, such that η(p, 0) =
π0(αη(p)), η(p, 1) = π1(βη(p)), η(0, t) = σ and η(1, t) = τ , where reparameterizations αη
and βη : [0, 1]→ [0, 1] are continuous non-decreasing surjections aligning π0 and π1. We refer
to (αη, βη) as the matching between π0 and π1 given by η. We can equip a homotopy η
with a height function ζ : [0, 1]2 → R and define the surface Σζ

η : [0, 1]2 → R3 as Σζ
η(p, t) =

(η(p, t), ζ(p, t)). Define the volume above Σζ
η as the total volume of sand above the points

of Σζη (counted with multiplicity) given by

vol(Σζη) =
∫∫

[0,1]×[0,1]

max(0, h(η(p, t))− ζ(p, t))
∥∥∥∥∂η∂p × ∂η

∂t

∥∥∥∥dp dt.

Generally, we will choose η(p, t) in such a way that it does not surpass the height of η(p, 0)
or η(p, 1), so as to measure at least the volume of sand ‘above’ an extremal path (π0 or π1).

We measure the similarity between two paths using a sand function d : P × P → R,
and we say a path π0 is δ-dissimilar to π1 if and only if d(π0, π1) ≥ δ. The function d will
generally not be a metric, since it is generally not symmetric, does not satisfy the triangle
inequality, and d(π0, π1) can be 0 for distinct paths π0 and π1. Intuitively, we define d(π0, π1)
in such a way that measures the volume of sand that lies between π0 and π1. Since the height
of both paths may vary along the length of the river, it is unclear how to define this volume
in a natural way. We define d(π0, π1) = vol(Σζη), so the sand measured by d depends largely
on the homotopy η and the corresponding height function ζ. We discuss how to choose η
between π0 and π1 in Section 5.

Our goal is to compute a network whose paths represent channels in a river. Essentially,
such paths minimize the distance spent at high elevations. We define the cost of a path as
its lexicographic height [21]. For a path π : [0, 1]→M , define πh : [0, 1]→M × R to be the
path (π(p), h(π(p))) over the terrain, and let ρ(π, z) be the length of the path πh that has
height at least z. We say a path π0 is lower than π1 if and only if there exists a z∗ ∈ R,
such that for all z ≥ z∗, ρ(π0, z) = ρ(π1, z) and for all ε > 0, there is some z′ ∈ (z∗ − ε, z∗)
with ρ(π0, z

′) < ρ(π1, z
′). A path is lowest if no lower paths exist. We motivate this choice

by the property of Lemma 2 that lowest paths follow steepest descent – a property often
assumed for water flow as well [26]. Instead of stopping in local minima, lowest paths can
proceed by taking a steepest descent from a saddle point in reverse (note that this is not a
steepest ascent path from the minimum).

Call a subset Π ⊆ P of paths a δ-network if no pair of paths in Π has proper crossings,
and d(π0, π1) ≥ δ if the lexicographic height of π0 ∈ Π is at least that of π1 ∈ Π. Intuitively, a
representative δ-network is one that contains as many lowest paths as possible. More precisely,
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48:6 Computing Representative Networks for Braided Rivers

if Π and Π′ are δ-networks, then Π′ is better than Π if there exists some k ≤ min{|Π|+1, |Π′|},
such that for each i < k, the i-th lowest path of Π and that of Π′ are equally low, and
either |Π| < k, or the k-th lowest path of Π′ is lower than that of Π. A δ-network is
representative if no better δ-networks exist.

Assumptions and problem statement. Assume that a polyhedral terrain is given: a trian-
gulation with n vertices that have a height, and linear interpolation over edges and triangles.
We assume that all vertices have a different height and any two edges incident to the same
vertex have different slope. The latter assumption ensures that steepest descent and steepest
ascent over edges is unique from every vertex. We artificially connect all vertices of the
boundary of the terrain to an extra vertex v∞ that is higher than all vertices on the boundary.
All local minima on the boundary will stay local minima, whereas all local maxima on the
boundary become regular. We do not need a geometric embedding for this modification.

Given such a modified terrain, a source σ, a sink τ , and a difference parameter δ, we study
the problem of computing a representative δ-network over the edges of the triangulation for
various choices of the sand function d.

3 Morse-Smale complex and lowest paths

An important topological tool for computing a representative δ-network, and lowest paths
in particular, is the Morse-Smale complex. Here we briefly introduce some of the concepts
related to (quasi) Morse-Smale complexes that are relevant to our work. We do so in a
simplified manner to make the paper more accessible (full technical details are given in [10]).
We furthermore specify the relation between Morse-Smale complexes and lowest paths.

3.1 Morse-Smale complex
Let M be a smooth, compact 2-dimensional manifold without boundary, and let h : M→ R be
a height function on M. A point p on M is critical with respect to h if all partial derivatives
vanish at p. Otherwise, p is called regular. There are three types of critical points: (local)
minima, (local) maxima, and saddle points. For each regular point p we define the path of
steepest ascent (or steepest descent) as the path that follows the gradient of h at p. These
paths are also known as integral lines and are open at both ends, with at each end a critical
point. Using these integral lines, we can subdivide M as follows: two regular points p and q
belong to the same cell if the integral lines through p and q end at the same critical points
on both sides. The resulting complex is known as the Morse-Smale complex, or MS-complex
in short. Note that if one of the endpoints of an integral line is a saddle point, then the
corresponding cell is 1-dimensional. We refer to 2-dimensional cells of the MS-complex as
MS-cells, 1-dimensional cells as MS-edges, and the vertices simply correspond to the critical
points. It can be shown ([10]) that every MS-cell is a quadrilateral with a minimum, a saddle,
a maximum, and again a saddle along the boundary of the cell in that order.

Our input consists of a triangulation, and all paths must follow the edges of the triangu-
lation. Therefore, the MS-complex as defined above is not directly useful for our purpose.
Instead, we use a quasi MS-complex as defined in [10]. A quasi MS-complex has the same
combinatorial structure as an ordinary MS-complex, but it can be required to follow the
edges of a triangulation. Let v be a vertex of the triangulation, and let S(v) be the edge
star of v consisting of the set of edges incident to v. Note that, if we order the edges
of S(v) around v, then the endpoints of two neighboring edges must be connected by an
edge in the triangulation. The lower edge star S↓(v) consists of the subset of edges whose
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endpoints are lower than v with respect to h. Symmetrically, we can define the upper edge
star S↑(v) = S(v) \ S↓(v) (recall that we have no horizontal edges). The lower edge star
can naturally be subdivided into wedges of consecutive edges in S↓(v) separated by edges
in S↑(v). We can now classify points based on the wedges in its lower edge star: minima
have 0 wedges, regular points have 1 wedge but not the whole edge star, saddles have 2 or
more wedges, and maxima have one complete wedge (S(v) = S↓(v)). Given these definitions,
we can construct a quasi MS-complex as follows. From every saddle point v we construct
a steepest descent path in every wedge of S↓(v) until it reaches a minimum. Similarly, we
construct a steepest ascent path in every wedge of S↑(v) until it reaches a maximum. This
construction can lead to crossings, as a steepest descent path may cross a steepest ascent
path (two steepest descent paths may merge, but will never cross). Therefore, to ensure the
correct combinatorial structure, the construction of a path must also end if it encounters an
already constructed path. The resulting subdivision is a quasi MS-complex and thus depends
on the order in which the paths are constructed. Since, for our purposes, the steepest descent
paths are more important, we require that all steepest descent paths are constructed first.
In fact, we do not need the steepest ascent paths, and hence we will completely omit these
paths from the construction. The resulting complex is commonly referred to as a descending
(quasi) MS-complex [24]. The cells of a descending MS-complex are bounded by alternating
minima and saddle points, and every cell contains exactly one maximum. In the remainder
of this paper we refer to the descending quasi MS-complex as constructed above simply as
the MS-complex, unless stated otherwise. The same rule applies to the components of the
complex, namely the MS-cells and MS-edges.

The quasi MS-complex and therefore the descending quasi MS-complex can be computed
in O(n logn) time [10].

3.2 Lowest paths
The following lemmas state that the lowest paths lie mostly on the MS-complex. The proofs
can be found in the full version of the paper. We also sketch how lowest paths can be
computed.

I Lemma 1. Let π be the lowest path between two vertices u and v in G. Then the highest
point of π is at u, v, or a saddle point.

I Lemma 2. Let u and v be two adjacent vertices on a lowest path π with h(u) > h(v).
Then the edge (u, v) must be the edge of steepest descent among the edges in the wedge of
S↓(u) that contains (u, v).

I Lemma 3. Let π be the lowest path between two vertices u and v in G, where both u and
v lie on MS-edges. Then all vertices of π lie on MS-edges.

I Lemma 4. Let π be the lowest path between two vertices u and v in G, and let u′ and v′
be the first vertices on an MS-edge encountered by following the steepest descent path from u

and v, respectively. Then π is the concatenation of the steepest descent path from u to u′,
the lowest path from u′ to v′, and the steepest descent path from v to v′ in reverse.

We can compute lowest paths efficiently using the MS-complex. Specifically, we construct a
lowest path tree from the source vertex as follows. We start with a disconnected set of vertices
consisting of the source and all minima. Then we add all saddle points in increasing order
of height. For every saddle, we add the saddle point and the MS-edges to adjacent minima
in the MS-complex. However, if two (or more) minima are already in the same connected
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π

Figure 3 Example of a path π such that {π+
∂M , π, π−∂M} is a δ-network if π partitions the total

volume of the pyramids equally. Points in the different subsets are shown in white and gray.

component in the lowest path tree, then we remove the first edges of the corresponding
MS-edges (the edges incident to the saddles), except for the first edge that descends the
steepest. After all saddle points are added, we compute the steepest descent edge for all
vertices internal to MS-cells. This results in the correct lowest path tree by Lemma 3 and
Lemma 4. The method runs in O(n+m logm) time using sorting, where m is the number
of critical vertices.

4 Striation

Before we specify the sand function needed to construct a δ-network, we can consider the
complexity of the problem of computing a representative δ-network for a generic sand function.
Let π0 and π1 be two semi-simple non-crossing paths from σ to τ . For any reasonable sand
function d, the value of d(π0, π1) should measure only sand in the region D(π0, π1) in between
the paths. To enforce this, we can restrict the domain of the homotopy η from π0 to π1 to
D(π0, π1). Furthermore, we want to ensure that each volume of sand is measured at most
once. This can be achieved by restricting η to be an isotopy,2 as well as monotone.3

Now consider an input terrain consisting of a sequence of pyramids with different heights
as shown in Figure 3, where all non-peak vertices are at height 0. Let π0 and π1 be two
paths from source to sink at height 0 and let P be the set of pyramids in D(π0, π1). We say
that a sand function d is well-behaved if d(π0, π1) =

∑
p∈P vol(p) where vol(p) is the sand

volume of the pyramid p. It is easy to see that computing a representative δ-network for
a terrain of this type is NP-hard if the sand function is well-behaved, by reduction from
Partition (see Fig. 3). We note that all sand functions that we use are well-behaved.

To make the problem tractable, we put a restriction on the paths that can be used in
a representative δ-network. It is not sufficient to restrict the paths to be monotone, since
the NP-hardness reduction still works for monotone paths. As a stronger restriction we can
specify a monotone isotopy η between the boundaries π−∂M and π+

∂M . We require every path
in a δ-network to be a level curve of η. This ensures that the candidate paths cannot cross
each other or themselves. The resulting δ-network then strongly depends on the choice of η.
Naturally we want to choose η in such a way that many low paths are included as candidates.
To that end we use the MS-complex. Instead of completely specifying η, we specify only a
discrete subset thereof consisting of suitable candidate paths. We define a striation S as an

2 That is, a homotopy whose intermediate curves have no self-intersections.
3 That is, for t ≤ t′, η(·, t) and η(·, t′) have no proper crossings and η(·, t) ⊆ D(η(·, 0), η(·, t′)).
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π

v

qu1

u2

u1

u2

πcw

πi+1

u1

u2

πccw

πi

Figure 4 Computing the striation paths around the MS-complex cell c of a maximum q; the
cell c is shown darker and triangulated.

π+
∂M

σ τ

π−
∂M

u1

q

u2

π+
∂M

σ τ

π−
∂M

D3

D2

D1

πi+1

πi

πi+1

πi

Figure 5 Splitting the triangulation by the striation paths around an MS-complex cell.

ordered set of non-crossing paths S = {π0, . . . , πr} from σ to τ with π0 = π−∂M and πr = π+
∂M .

Every path in a striation must be composed of MS-edges and between every two consecutive
paths πi and πi+1 in a striation there can be at most one MS-cell and possibly several
one-dimensional features. The one-dimensional features arise from overlapping MS-edges or
from the way the striation is computed. Note that every striation can be completed to a
monotone isotopy between π−∂M and π+

∂M .

Computing a striation. The hardness result of the previous section also directly implies
that computing a striation that includes a representative δ-network is NP-hard. Therefore
we consider several heuristics. For every heuristic we require that the lowest path between
source and sink is in the striation. This is possible, since by Lemma 3, the lowest path is
composed of MS-edges.

Two of our three heuristics for computing the striation use the persistence of local maxima.
The persistence of a local maximum is the difference in height to a saddle with which it is
paired, and a local maximum is paired with the lowest saddle on a highest path to a higher
maximum. It can be computed in linear time from the contour tree, which can be computed
in O(n+m logm) time [7, 8] when there are m critical points. All local maxima except for
v∞ will be paired and have their persistence defined.

Iterated lowest path. As a first step we compute the lowest path π from source to sink. We
then subdivide G along π into two parts: D1 = D(π, π−∂M ) and D2 = D(π+

∂M , π). Next,
we recursively apply the algorithm in D1 and D2. The obtained striations S1 and S2 can
then be concatenated to obtain the final striation S = {S1, π,S2}. Finally we can add
π−∂M and π+

∂M to the striation. The recursion stops when G contains at most one MS-cell.
We have to be careful when computing π, since π must be distinct from π−∂M and π+

∂M .
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More precisely, π must have an MS-cell on both sides. Since π is also a path in D1 and
D2, we must often compute the second or third lowest path. We can do so by computing
the lowest paths through all edges that are not in the lowest path tree. The lowest path
that is not one of the boundary paths can then easily be obtained.

Highest persistence first. The first path π is obtained by computing the lowest path from
source to sink that passes through the maximum q with the highest persistence (excluding
v∞). Since π actually consists of two lowest paths (from source to q, and from q to sink),
π has the form of a path π′ with a special vertex v from which there is a path to q and
back to v (Lemma 4). We now subdivide G as follows. Let c be the MS-cell containing
q, and let u1 and u2 be the first and last vertices of π that are on the boundary of c,
respectively (see Fig. 4). Furthermore, let πcw and πccw be the paths between u1 and u2
along the boundary of c in clockwise and counterclockwise direction, respectively. We can
now obtain the path πi as the concatenation of the subpath of π from σ to u1, the path
πccw, and the subpath of π from u2 to τ . Similarly, we can obtain πi+1 by replacing πccw
by πcw in πi. If u1 = u2, then either πi or πi+1 may backtrack from u1. In that case we
can replace the respective path with π′. The paths πi and πi+1 subdivide G into three
parts (see Fig. 5): D1 = D(πi, π−∂M ), D2 = D(πi+1, πi), and D3 = D(π+

∂M , πi+1). Since
D2 contains only one MS-cell, we recurse only in D1 and D3 to obtain S1 and S3. The
final striation then consists of S = {S1, πi+1, πi,S3}. During recursive calls we do not
recompute the persistence of maxima, but use the persistence computed initially.

Hybrid. We first compute the lowest path π from source to sink. Next we pick the maximum
q with the highest persistence among all maxima for which π contains an MS-edge on the
boundary of the corresponding MS-cell. This heuristic then proceeds in the same way as
the highest persistence first heuristic, using the lowest path through q.

It is easy to verify that all heuristics produce a striation and that this striation includes the
lowest path from source to sink (none of the chosen paths can cross the lowest path). The
complexity of the striation – the summed complexities of its paths – is O(nm) in all cases,
where m is the number of local maxima. The first heuristic may seem the most natural.
However, lowest paths computed in recursive steps will often stay close to the original lowest
path and differ only in bars with low persistence. It may make more sense to deviate first
in the bar with highest persistence, as this may lead directly to a path that is δ-dissimilar
to the lowest path. This is what the second heuristic is designed for. However, the lowest
path through the maximum with highest persistence might require a long backtracking path
to reach this maximum. This will force many paths to go around possibly the wrong side
of a bar. Note that, in a sense, this problem is dual to the problem of the first heuristic.
The final heuristic, a hybrid of the first two, tries to alleviate this problem by requiring the
chosen maximum to be close to the lowest path.

5 Sand function

Before we can compute a representative δ-network from a striation, we need to define the
sand function and show how to compute it for two paths. Let πi and πj (i < j) be two
paths in the striation. To compute d(πi, πj) we first need to specify a monotone isotopy
η between πi and πj . For consistency, we require η to be monotone with respect to the
striation. An isotopy η is striation monotone with respect to a striation S = {π0, . . . , πr}
if for every k (i ≤ k ≤ j) there exists a tk such that η(·, t) ⊆ D(πi, πk) for all t ≤ tk and
η(·, t) ⊆ D(πk, πj) for all t ≥ tk. Intuitively, for every path πk in the striation between πi
and πj there must exist a level curve of η that matches πk, and other level curves cannot
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ζ(p, t)

h(η(p, t))

t

Figure 6 The area of sand (shaded) above curve ζ(p, ·) (dashed), where ζ is minimizing in the
(a) water level model, (b) water flow model, (c) symmetric flow model.

cross πk. Similarly, a path f : [0, 1]→M with f(0) ∈ πi and f(1) ∈ πj is striation monotone
with respect to a striation S = {π0, . . . , πr} if for every k (i ≤ k ≤ j) there exist a tk such
that f(t) ∈ D(πi, πk) for t ≤ tk and f(t) ∈ D(πk, πj) for t ≥ tk. Note that every matching
curve η(p, ·) of a striation monotone isotopy η is striation monotone.

We now define the sand function along a matching curve η(p, t) of the isotopy (for some
fixed p) between πi and πj . This function can then be extended to a sand function d(πi, πj)
from πi to πj as described in Section 2. We consider three different models (see Fig. 6):

Water level model. This sand function simply measures the amount of sand above h(η(p, 0)).
Intuitively, the sand function measures the minimum amount of sand that needs to be
removed such that πi and πj merge if the water level is at the height of πi. Formally, we
set ζ(p, t) = h(η(p, 0)).

Water flow model. This sand function measures the amount of sand that needs to be
removed such that the function h(η(p, ·)) becomes non-increasing. Formally, we set
ζ(p, t) = mint′≤t h(η(p, t′)).

Symmetric flow model. This sand function measures the amount of sand that needs to be re-
moved such that h(η(p, t)) is unimodal. Formally, we set ζ(p, t) = max(mint′≤t h(η(p, t′)),
mint′≥t h(η(p, t′))).

Note that the sand functions in the water level model and the water flow model are not
symmetric, whereas the sand function in the symmetric flow model is symmetric. In general
we do not assume that the sand function is symmetric.

Finally, we need to compute the isotopy η between two paths πi and πj . In general
we define the sand function as d(πi, πj) = infη vol(Σζ

η), where ζ is defined by the model as
described above. Below we describe how to compute d(πi, πj) only for the water flow model,
but it is straightforward to extend the same approach to the other models.

Following the definition of the water flow model, we say that πi is similar to πj if there
exists a striation monotone isotopy η such that all matching curves are non-increasing in
h. Note that d(πi, πj) = 0 if πi is similar to πj . To be able to argue the correctness of our
computation, we introduce a different but related definition. We say that πi is pseudo-similar
to πj if, for every point q in D(πi, πj), there exists a point p ∈ πi and a striation monotone
path π from p to q such that π is non-increasing in h. Omitted proofs can be found in the
full version of the paper.

I Lemma 5. If πi is pseudo-similar to πj, then d(πi, πj) = 0.

Computing the sand function. We now show how to compute d(πi, πj) efficiently in the
water flow model. The algorithm can operate directly on the MS-complex. First consider
two consecutive paths πi and πi+1 in the striation. Let B(πi, πi+1) and T (πi, πi+1) be the
sets of critical points that are bounding the MS-cell ci between πi and πi+1 and are on πi
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and πi+1, respectively. Now let h∗ be the maximum height among all points in B(πi, πi+1)
and assign h∗ to ci. We claim that the volume of sand in ci above h∗ equals d(πi, πi+1).
For non-consecutive paths πi and πj , we need to propagate the heights. After assigning h∗
to ci, we also lower the height of all points in T (πi, πi+1) to h∗ (points with lower height
than h∗ keep their height). We continue the propagation until we reach πj . In case there is
a one-dimensional feature between two consecutive paths, then we also need to propagate
the height over this one-dimensional feature separately from propagating over MS-cells.
However, note that one-dimensional features do not add any volume to the sand function.
This process assigns certain height values h∗k to each of the MS-cells ck between πi and πj ,
and d(πi, πj) =

∑j−1
k=i vol(ck, h∗k), where vol(ck, h∗k) is the volume of sand in ck above h∗k.

I Lemma 6. If D(πi, πj) is altered by lowering every MS-cell ck in D(πi, πj) to h∗k, then πi
is pseudo-similar to πj.

I Lemma 7. For any two paths πi and πj in the striation d(πi, πj) ≥
∑j−1
k=i vol(ck, h∗k).

Proof. For the sake of contradiction, assume that we can make πi similar to πj by removing
less than

∑j−1
k=i vol(ck, h∗k) volume of sand from D(πi, πj). By Lemma 5 we can then also

make πi pseudo-similar to πj by removing the same volume of sand. Now there must be some
point q in some MS-cell ck (if q is on an MS-edge, then let k be as small as possible) that has
height higher than h∗k in the altered D(πi, πj). We now show by induction on k that there is
no striation monotone non-decreasing path from q to πi, refuting that πi is pseudo-similar
to πj . If k = i, then any non-decreasing path from q to πi must end at some point q′ on
the boundary of ci. But since the height of q′ can be at most the maximum height of all
points in B(πi, πi+1), which is h∗i , this is not possible. If k > i, then any non-decreasing path
from q to πi must hit πk at some point q′ at a height above h∗k. If q′ ∈ πi, then there must
exist a point among B(πk, πk+1) that is on πi and has height above h∗k. However, this is not
possible by construction. Otherwise, q′ lies on some MS-cell cl with l < k. By construction
h∗l ≤ h∗k and thus q′ has height higher than h∗l . The result now follows by induction. J

Lemma 6 and Lemma 7 prove that we can compute d(πi, πj) as
∑j−1
k=i vol(ck, h∗k). To compute

the values h∗k we simply need to propagate the height values on the MS-complex by following
the striation. To compute vol(ck, x) efficiently for some height x, we can preprocess each
MS-cell. Note that vol(ck, x) is a monotone function of O(nk) complexity, where nk is the
number of vertices in ck. After computing this function in O(nk lognk) time using a plane
sweep, we can query vol(ck, x) for any height x in O(lognk) time. The total preprocessing
time is O(n logn), after which the sand function from any πi to any πj can be determined in
O(|i− j| logn) = O(m logn) time.

To compute the sand functions for other models, we only need slight modifications. For
the water level model we need the following modification: when we propagate a height h∗k to
all points in T (πi, πi+1), we also update heights lower than h∗k to h∗k. The symmetric flow
model requires the propagation in both directions, that is from πi to πj and from πj to πi.
The height assigned to an MS-cell is then the maximum height assigned by any direction of
the propagation. The correctness proofs are very similar to those of the water flow model.

6 Representative network

To obtain our representative network, we sort the O(m) paths of our striation S = {π0, . . . , πr}
based on lexicographic height. Each path πi contains O(n) edges. We preprocess each path
in O(n logn) time to compute its height profile function [21]. After this, we can compare
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Figure 7 A numerically modeled river, the Morse-Smale complex overlaid, and two representative
δ-networks for two different values of δ.

the lexicographic heights of two striation paths in O(n) time. Hence, sorting the paths
by lexicographic height takes O(mn logn + mn logm) = O(mn logn) time. By our non-
degeneracy assumptions, all paths have different lexicographic height. Assume S is the sorted
set of paths.

To compute the representative network, we initialize the representative network as an
empty set R of paths. We iterate over the paths in S in order of increasing lexicographic
height, and we add a path π to R if each path π′ already in R has d(π, π′) ≥ δ. This
can be tested in O(m logn) time by testing only the two paths of R in between which π
would be inserted. Overall, this yields an O(mn logn) running time given the striation. By
construction we obtain a representative δ-network, that is, no better δ-network exists.

7 Experimental results

We performed experiments on two data sets: a numerically modeled river and a real-world
braided river. To do so we implemented the highest persistence first heuristic for the striation
and the sand function in the water flow model. The numerically modeled river was created
by a state-of-the-art model suite that is used in the civil engineering and fluvial and coastal
morphology disciplines worldwide, indicating its usefulness and quality [23]. The real-world
case is an iconic braided gravel river in New Zealand called Waimakariri, one of the largest
in the world of this type, that was the first with spatial cover of the bed through remote
sensing techniques [11].

Figure 7 shows our results for the numerically modeled river. The representative network
is capturing most channels of the river. Channels that are added in the denser network cross
big bars and are in most cases located in small tie-channels that formed at water levels when
water was spilling over the bar. These are essential in the natural braiding dynamics in that
these can be the locations where bars split during floods. Furthermore, the sparser network
also avoids deep short channels which are connected on one or no end. Some of these formed
as filling lows between two merging bars rather than active channels, and the fact that they
only partake in the dense network when connected at small tie-channels is evidence that the
network method represents the river channel network in these important aspects.

Figure 8 shows a representative network for the Waimakariri. This complex topography
has many large remnant channels that became inactive while smaller channels may be
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Figure 8 Representative network for the Waimakariri river (same area as shown in Fig. 1).

Figure 9 Mountains splitting the river.

growing. The network captures some smaller channels and leaves out the unconnected
remnant channels. The network sometimes loops to flow upstream, meaning that such
channels should either not be connected or that minor tie-channels were missed, which can
now for the first time be investigated through comparison of sparser and denser networks.

8 Discussion and future work

The representative δ-networks computed using our approach already look very promising,
even though we have implemented only one striation heuristic and only one sand function.
The next step is a thorough testing on different river bed terrain data using each combination
of a striation and a sand function, and with different values of δ. The output can be further
assessed by geomorphologists, for example by comparing the computed networks with the
corresponding actual river networks at different water levels. Other striations and other sand
functions can also be considered, and may give better results in certain scenarios.

In particular, our striation heuristic may give counter-intuitive results when M includes
the banks of the river. To illustrate this, consider the two high mountains on both sides
of the river banks in Figure 9. It can occur that such mountains are the most significant
maxima, and cause the majority of the river to go over the banks, instead of between the
mountains. For this reason, we may want to base the significance of maxima also on their
distance to the main channel of the river. Our hybrid heuristic already tries to address this
issue, but a more refined approach may be needed.

In the future we also want to consider time-varying data on rivers, both as a tool to
improve the results by eliminating features that do not persist over time, and as a way to
analyze how the river structure evolves over time. However, to perform such an analysis
efficiently, we may need to simplify our model.
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