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Abstract
Data analysis often concerns not only the space where data come from, but also various types of
maps attached to data. In recent years, several related structures have been used to study maps
on data, including Reeb spaces, mappers and multiscale mappers. The construction of these
structures also relies on the so-called nerve of a cover of the domain.

In this paper, we aim to analyze the topological information encoded in these structures in
order to provide better understanding of these structures and facilitate their practical usage.

More specifically, we show that the one-dimensional homology of the nerve complex N(U)
of a path-connected cover U of a domain X cannot be richer than that of the domain X itself.
Intuitively, this result means that no new H1-homology class can be “created” under a natural
map from X to the nerve complex N(U). Equipping X with a pseudometric d, we further refine
this result and characterize the classes of H1(X) that may survive in the nerve complex using the
notion of size of the covering elements in U . These fundamental results about nerve complexes
then lead to an analysis of the H1-homology of Reeb spaces, mappers and multiscale mappers.

The analysis of H1-homology groups unfortunately does not extend to higher dimensions.
Nevertheless, by using a map-induced metric, establishing a Gromov-Hausdorff convergence result
between mappers and the domain, and interleaving relevant modules, we can still analyze the
persistent homology groups of (multiscale) mappers to establish a connection to Reeb spaces.
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1 Introduction

Data analysis often concerns not only the space where data come from, but also various
types of information attached to data. For example, each node in a road network can contain
information about the average traffic flow passing this point, a node in protein-protein
interaction network can be associated with biochemical properties of the proteins involved.
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Such information attached to data can be modeled as maps defined on the domain of interest;
note that the maps are not necessarily Rd-valued, e.g, the co-domain can be S1. Hence
understanding data benefits from analyzing maps relating two spaces rather than a single
space with no map on it.

In recent years, several related structures have been used to study general maps on data,
including Reeb spaces [9, 11, 13, 18], mappers (and variants) [4, 8, 21] and multiscale mappers
[10]. More specifically, given a map f : X → Z defined on a topological space X, the Reeb
space Rf w.r.t. f (first studied for piecewise-linear maps in [13]), is a generalization of the
so-called Reeb graph for a scalar function which has been used in various applications [2]. It
is the quotient space of X w.r.t. an equivalence relation that asserts two points of X to be
equivalent if they have the same function value and are connected to each other via points of
the same function value. All equivalent points are collapsed into a single point in the Reeb
space. Hence Rf provides a way to view X from the perspective of f .

The Mapper structure, originally introduced in [21], can be considered as a further
generalization of the Reeb space. Given a map f : X → Z, it also considers a cover U of
the co-domain Z that enables viewing the structure of f at a coarser level. Intuitively, the
equivalence relation between points in X is now defined by whether points are within the
same connected component of the pre-image of a cover element U ∈ U . Instead of a quotient
space, the mapper takes the nerve complex of the cover of X formed by the connected
components of the pre-images of all elements in U (i.e, the cover formed by those equivalent
points). Hence the mapper structure provides a view of X from the perspective of both f
and a cover of the co-domain Z.

Finally, both the Reeb space and the mapper structures provide a fixed snapshot of the
input map f . As we vary the cover U of the co-domain Z, we obtain a family of snapshots
at different granularities. The multiscale mapper [10] describes the sequence of the mapper
structures as one varies the granularity of the cover of Z through a sequence of covers of Z
connected via cover maps.

New work. While these structures are meaningful in that they summarize the information
contained in data, there has not been any qualitative analysis of the precise information
encoded by them with the only exception of [4] and [14] 1. In this paper, we aim to analyze
the topological information encoded by these structures, so as to provide better understanding
of these structures and facilitate their practical usage [12, 17]. In particular, the construction
of the mapper and multiscale mapper use the so-called nerve of a cover of the domain. To
understand the mappers and multiscale mappers, we first provide a quantitative analysis of
the topological information encoded in the nerve of a reasonably well-behaved cover for a
domain. Given the generality and importance of the nerve complex in topological studies,
this result is of independent interest.

More specifically, in Section 3, we first obtain a general result that relates the one
dimensional homology H1 of the nerve complex N(U) of a path-connected cover U (where
each open set contained is path-connected) of a domain X to that of the domain X itself.
Intuitively, this result says that no new H1-homology classes can be “created" under a natural
map from X to the nerve complex N(U). Equipping X with a pseudometric d, we further

1 Carrière and Oudot [4] analyzed certain persistence diagram of mappers induced by a real-valued
function, and provided a characterization for it in terms of the persistence diagram of the corresponding
Reeb graph. Gasparovic et al [14] provides full description of the persistence homology information
encoded in the intrinsic Čech complex (a special type of nerve complex) of a metric graph.
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refine this result and quantify the classes of H1(X) that may survive in the nerve complex
(Theorem 21, Section 4). This demarcation is obtained via a notion of size of covering
elements in U . These fundamental results about nerve complexes then lead to an analysis
of the H1-homology classes in Reeb spaces (Theorem 27), mappers and multiscale mappers
(Theorem 29). The analysis of H1-homology groups unfortunately does not extend to higher
dimensions. Nevertheless, we can still provide an interesting analysis of the persistent
homology groups for these structures (Theorem 36, Section 5). During this course, by using
a map-induced metric, we establish a Gromov-Hausdorff convergence between the mapper
structure and the domain. This offers an alternative to [18] for defining the convergence
between mappers and the Reeb space, which may be of independent interest.

All missing proofs in what follows are deferred to the full version of this paper on arXiv.

2 Topological background and motivation

Space, paths, covers. Let X denote a path connected topological space. Since X is path
connected, there exists a path γ : [0, 1]→ X connecting every pair of points {x, x′} ∈ X ×X
where γ(0) = x and γ(1) = x′. Let ΓX(x, x′) denote the set of all such paths connecting x
and x′. These paths play an important role in our definitions and arguments.

By a cover of X we mean a collection U = {Uα}α∈A of open sets such that
⋃
α∈A Uα = X.

A cover U is path connected if each Uα is path connected. In this paper, we consider only
path connected covers.

Later to define maps between X and its nerve complexes, we need X to be paracompact,
that is, every cover U of X has a subcover U ′ ⊆ U so that each point x ∈ X has an open
neighborhood contained in finitely many elements of U ′. Such a cover U ′ is called locally
finite. From now on, we assume X to be compact which implies that it is paracompact too.

I Definition 1 (Simplicial complex and maps). A simplicial complex K with a vertex set V
is a collection of subsets of V with the condition that if σ ∈ 2V is in K, then all subsets of σ
are in K. We denote the geometric realization of K by |K|. Let K and L be two simplicial
complexes. A map φ : K → L is simplicial if for every simplex σ = {v1, v2, . . . , vp} in K, the
simplex φ(σ) = {φ(v1), φ(v2), . . . , φ(vp)} is in L.

I Definition 2 (Nerve of a cover). Given a cover U = {Uα}α∈A of X, we define the nerve of
the cover U to be the simplicial complex N(U) whose vertex set is the index set A, and where a
subset {α0, α1, . . . , αk} ⊆ A spans a k-simplex in N(U) if and only if Uα0∩Uα1∩. . .∩Uαk 6= ∅.

Maps between covers. Given two covers U = {Uα}α∈A and V = {Vβ}β∈B of X, a map of
covers from U to V is a set map ξ : A → B so that Uα ⊆ Vξ(α) for all α ∈ A. By a slight
abuse of notation we also use ξ to indicate the map U → V. Given such a map of covers,
there is an induced simplicial map N(ξ) : N(U) → N(V), given on vertices by the map ξ.
Furthermore, if U ξ→ V ζ→ W are three covers of X with the intervening maps of covers
between them, then N(ζ ◦ ξ) = N(ζ) ◦N(ξ) as well. The following simple result is useful.

I Proposition 3 (Maps of covers induce contiguous simplicial maps [10]). Let ζ, ξ : U → V be
any two maps of covers. Then, the simplicial maps N(ζ) and N(ξ) are contiguous.

Recall that two simplicial maps h1, h2 : K → L are contiguous if for all σ ∈ K it holds
that h1(σ)∪h2(σ) ∈ L. In particular, contiguous maps induce identical maps at the homology
level [19]. Let Hk(·) denote the k-dimensional homology of the space in its argument. This
homology is singular or simplicial depending on if the argument is a topological space or a

SoCG 2017
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Uαf−1Uα

R3 R2f N(f−1U)

Figure 1 The map f : S2 ⊂ R3 → R2 takes the sphere to R2. The pullback of the cover element
Uα makes a band surrounding the equator which causes the nerve N(f−1U) to pinch in the middle
creating two 2-cycles. This shows that the map φ∗ : X → N(∗) may not induce a surjection in H2.

simplicial complex respectively. All homology groups in this paper are defined over the field
Z2. Proposition 3 implies that the map Hk(N(U))→ Hk(N(V)) arising out of a cover map
can be deemed canonical.

3 Surjectivity in H1-persistence

In this section we first establish a map φU between X and the geometric realization |N(U)|
of a nerve complex N(U). This helps us to define a map φU∗ from the singular homology
groups of X to the simplicial homology groups of N(U) via the singular homology of |N(U)|.
The famous nerve theorem [3, 16] says that if the elements of U intersect only in contractible
spaces, then φU is a homotopy equivalence and hence φU∗ leads to an isomorphism between
H∗(X) and H∗(N(U)). The contractibility condition can be weakened to a homology ball
condition to retain the isomorphism between the two homology groups [16]. In absence of such
conditions of the cover, simple examples exist to show that φU∗ is neither a monophorphism
(injection) nor an epimorphism (surjection). Figure 1 gives an example where φU∗ is not
sujective in H2. However, for one dimensional homology we show that, for any path connected
cover U , the map φU∗ is necessarily a surjection. One implication of this is that the simplicial
maps arising out of cover maps induce a surjection among the one dimensional homology
groups of two nerve complexes.

3.1 Nerves
The proof of the nerve theorem [15] uses a construction that connects the two spaces X
and |N(U)| via a third space XU that is a product space of U and the geometric realization
|N(U)|.

XU

π

##
X

ζ
>>

φU // |N(U)|

In our case U may not satisfy the contractibility condition. Nevertheless, we use the same
construction to define three maps, ζ : X → XU , π : XU → |N(U)|, and φU : X → |N(U)|
where φU = π ◦ ζ is referred to as the nerve map. Details about the construction of these
maps follow.

Denote the elements of the cover U as Uα for α taken from some indexing set A. The
vertices of N(U) are denoted by {uα, α ∈ A}, where each uα corresponds to the cover
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element Uα. For each finite non-empty intersection Uα0,...,αn :=
⋂n
i=0 Uαi consider the

product Uα0,...,αn × ∆n
α0,...,αn , where ∆n

α0,...,αn denotes the n-dimensional simplex with
vertices uα0 , . . . , uαn . Consider now the disjoint union

M :=
⊔

α0,...,αn∈A:Uα0,...,αn 6=∅

Uα0,...,αn ×∆n
α0,...,αn

together with the following identification: each point (x, y) ∈ M , with x ∈ Uα0,...,αn

and y ∈ [α0, . . . , α̂i, . . . , αn] ⊂ ∆n
α0,...,αn is identified with the corresponding point in the

product U
α0,...,α̂i,...,αn

× ∆
α0,...,α̂i,...,αn

via the inclusion Uα0,...,αn ⊂ U
α0,...,α̂i,...,αn

. Here
[α0, . . . , α̂i, . . . , αn] denotes the i-th face of the simplex ∆n

α0,...,αn . Denote by ∼ this identific-
ation and now define the space XU := M / ∼ . An example for the case when X is a line
segment and U consists of only two open sets is shown below.

I Definition 4. A collection of real valued continuous functions {ϕα :→ [0, 1], α ∈ A} is
called a partition of unity if (i)

∑
α∈A ϕα(x) = 1 for all x ∈ X, (ii) For every x ∈ X, there

are only finitely many α ∈ A such that ϕα(x) > 0.
If U = {Uα, α ∈ A} is any open cover of X, then a partition of unity {ϕα, α ∈ A} is

subordinate to U if supp(ϕα) is contained in Uα for each α ∈ A.

Since X is paracompact, for any open cover U = {Uα, α ∈ A} of X, there exists a
partition of unity {ϕα, α ∈ A} subordinate to U [20]. For each x ∈ X such that x ∈ Uα,
denote by xα the corresponding copy of x residing in XU . Then, the map ζ : X → XU is
defined as follows: for any x ∈ X,

ζ(x) :=
∑
α∈A

ϕα(x)xα.

The map π : XU → |N(U)| is induced by the individual projection maps

Uα0,...,αn ×∆n
α0,...,αn → ∆n

α0,...,αn .

Then, it follows that φU = π ◦ ζ : X → |N(U)| satisfies, for x ∈ X,

φU (x) =
∑
α∈A

ϕα(x)uα. (1)

We have the following fact [20, pp. 108]:

I Fact 5. ζ is a homotopy equivalence.

3.2 From space to nerves
Now, we show that the nerve maps at the homology level are surjective for one dimensional
homology. Interestingly, the result is not true beyond one dimensional homology (see Figure 1)

SoCG 2017
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which is probably why this simple but important fact has not been observed before. First, we
make a simple observation that connects the classes in singular homology of |N(U)| to those
in the simplicial homology of N(U). The result follows immediately from the isomorphism
between singular and simplicial homology induced by the geometric realization; see [19,
Theorem 34.3]. In what follows let [c] denote the class of a cycle c.

I Proposition 6. Every 1-cycle ξ in |N(U)| has a 1-cycle γ in N(U) so that [ξ] = [|γ|].

I Proposition 7. If U is path connected, φU∗ : H1(X)→ H1(|N(U)|) is a surjection.

Proof. Let [γ] be any class in H1(|N(U)|). Because of Proposition 6, we can assume that
γ = |γ′|, where γ′ is a 1-cycle in the 1-skeleton of N(U). We construct a 1-cycle γU in XU
so that π(γU ) = γ. Recall the map ζ : X → XU in the construction of the nerve map φU
where φU = π ◦ ζ. There exists a class [γX ] in H1(X) so that ζ∗([γX ]) = [γU ] because ζ∗ is
an isomorphism by Fact 5. Then, φU∗([γX ]) = π∗(ζ∗([γX ])) because φU∗ = π∗ ◦ ζ∗. It follows
φU∗([γX ]) = π∗([γU ]) = [γ] showing that φU∗ is surjective.

Therefore, it remains only to show that a 1-cycle γU can be constructed given γ in |N(U)|
so that π(γU ) = γ. See the full version for this construction. J

Since we are eventually interested in the simplicial homology groups of the nerves rather
than the singular homology groups of their geometric realizations, we make one more
transition using the known isomorphism between the two homology groups. Specifically, if
ιU : Hk(|N(U)|)→ Hk(N(U)) denotes this isomorphism, we let φ̄U∗ denote the composition
ιU ◦ φU∗. As a corollary to Proposition 7, we obtain:

I Theorem 8. If U is path connected, φ̄U∗ : H1(X)→ H1(N(U)) is a surjection.

3.3 From nerves to nerves
In this section we extend the result in Theorem 8 to simplicial maps between two nerves
induced by cover maps. The following proposition is key to establishing the result.

I Proposition 9 (Coherent partitions of unity). Suppose {Uα}α∈A = U θ−→ V = {Vβ}β∈B are
open covers of the paracompact topological space X and θ : A→ B is a map of covers. Then
there exists a partition of unity {ϕα}α∈A subordinate to the cover U such that if for each
β ∈ B we define

ψβ :=
{ ∑

α∈θ−1(β) ϕα if β ∈ im(θ);
0 otherwise.

then the set of functions {ψβ}β∈B is a partition of unity subordinate to the cover V.

Proof is deferred to the full version.
Let {Uα}α∈A = U θ−→ V = {Vβ}β∈B be two open covers ofX connected by a map of covers.

Apply Proposition 9 to obtain coherent partitions of unity {ϕα}α∈A and {ψβ}β∈B subordinate
to U and V, respectively. Let the nerve maps φU : X → |N(U)| and φV : X → |N(V)| be
defined as in (1) above. Let N(U) τ→ N(V) be the simplicial map induced by the cover map
θ. Then, τ can be extended to a continuous map τ̂ on the image of φU as follows: for x ∈ X,
τ̂(φU (x)) = Σα∈Aϕα(x) vθ(α).

I Proposition 10. Let U and V be two covers of X connected by a cover map U θ→ V. Then,
the nerve maps φU and φV satisfy φV = τ̂ ◦φU where τ : N(U)→ N(V) is the simplicial map
induced by the cover map θ.
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Proof. For any point p ∈ im(φU ), there is x ∈ X where p = φU (x) = Σα∈Aϕα(x)uα. Then,

τ̂ ◦ φU (x) = τ̂

(∑
α∈A

ϕα(x)uα

)
=
∑
α∈A

ϕα(x)τ(uα) =
∑
α∈A

ϕα(x) vθ(α)

=
∑
β∈B

∑
α∈θ−1(β)

ϕα(x) vθ(α) =
∑
β∈B

ψβ(x)vβ = φV(x) . J

An immediate corollary of the above Proposition is:

I Corollary 11. The induced maps of φU∗ : Hk(X) → Hk(|N(U)|), φV∗ : Hk(X) →
Hk(|N(V)|), and τ̂∗ : Hk(|N(U)|) → Hk(|N(V)|) at the homology levels commute, that
is, φV∗ = τ̂∗ ◦ φU∗.

With transition from singular to simplicial homology, Corollary 11 implies that:

I Proposition 12. φ̄V∗ = τ∗ ◦ φ̄U∗ where φ̄V∗ : Hk(X) → Hk(N(V)), φ̄U∗ : Hk(X) →
Hk(N(U)) and τ : N(U)→ N(V) is the simplicial map induced by a cover map U → V.

Proposition 12 extends Theorem 8 to the simplicial maps between two nerves.

I Theorem 13. Let τ : N(U)→ N(V) be a simplicial map induced by a cover map U → V
where both U and V are path connected. Then, τ∗ : H1(N(U))→ H1(N(V)) is a surjection.

Proof. Consider the maps

H1(X) φ̄U∗→ H1(N(U)) τ∗→ H1(N(V)), and H1(X) φ̄V∗→ H1(N(V)).

By Proposition 12, τ∗ ◦ φ̄U∗ = φ̄V∗. By Theorem 8, the map φ̄V∗ is a surjection. It follows
that τ∗ is a surjection. J

3.4 Mapper and multiscale mapper
In this section we extend the previous results to the structures called mapper and multiscale
mapper. Recall that X is assumed to be compact. Consider a cover of X obtained indirectly
as a pullback of a cover of another space Z. This gives rise to the so called Mapper and
Multiscale Mapper. Let f : X → Z be a continuous map where Z is equipped with an open
cover U = {Uα}α∈A for some index set A. Since f is continuous, the sets {f−1(Uα), α ∈ A}
form an open cover of X. For each α, we can now consider the decomposition of f−1(Uα) into
its path connected components, so we write f−1(Uα) =

⋃jα
i=1 Vα,i, where jα is the number of

path connected components Vα,i’s in f−1(Uα). We write f∗U for the cover of X obtained
this way from the cover U of Z and refer to it as the pullback cover of X induced by U via f .
Note that by its construction, this pullback cover f∗U is path-connected.

Notice that there are pathological examples of f where f−1(Uα) may shatter into infinitely
many path components. This motivates us to consider well-behaved functions f : we require
that for every path connected open set U ⊆ Z, the preimage f−1(U) has finitely many open
path connected components. Henceforth, all such functions are assumed to be well-behaved.

I Definition 14 (Mapper [21]). Let f : X → Z be a continuous map. Let U = {Uα}α∈A be
an open cover of Z. The mapper arising from these data is defined to be the nerve simplicial
complex of the pullback cover: M(U , f) := N(f∗U).

SoCG 2017
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When we consider a continuous map f : X → Z and we are given a map of covers
ξ : U → V between covers of Z, we observed in [10] that there is a corresponding map of
covers between the respective pullback covers of X: f∗(ξ) : f∗U −→ f∗V. Furthermore, if
U ξ→ V θ→W are three different covers of a topological space with the intervening maps of
covers between them, then f∗(θ ◦ ξ) = f∗(θ) ◦ f∗(ξ).

In the definition below, objects can be covers, simplicial complexes, or vector spaces.

I Definition 15 (Tower). A tower W with resolution r ∈ R is any collection W =
{
Wε

}
ε≥r

of objects Wε indexed in R together with maps wε,ε′ : Wε → Wε′ so that wε,ε = id and
wε′,ε′′ ◦wε,ε′ = wε,ε′′ for all r ≤ ε ≤ ε′ ≤ ε′′. Sometimes we write W =

{
Wε

wε,ε′−→ Wε′
}
r≤ε≤ε′

to denote the collection with the maps. Given such a tower W, res(W) refers to its resolution.
When W is a collection of covers equipped with maps of covers between them, we call it

a tower of covers. When W is a collection of simplicial complexes equipped with simplicial
maps between them, we call it a tower of simplicial complexes.

The pullback properties described at the end of section 2 make it possible to take the
pullback of a given tower of covers of a space via a given continuous function into another
space, so that we obtain the following.

I Proposition 16 ([10]). Let U = {Uε} be a tower of covers of Z and f : X → Z be a
continuous function. Then, f∗U = {f∗Uε} is a tower of (path-connected) covers of X.

In general, given a tower of covers W of a space X, the nerve of each cover in W together
with each map of W provides a tower of simplicial complexes which we denote by N(W).

I Definition 17 (Multiscale Mapper [10]). Let f : X → Z be a continuous map. Let U be a
tower of covers of Z. Then, the multiscale mapper is defined to be the tower of the nerve
simplicial complexes of the pullback: MM(U, f) := N(f∗U).

As we indicated earlier, in general, no surjection between X and its nerve may exist at
the homology level. It follows that the same is true for the mapper N(f∗U). But, for H1, we
can apply the results contained in previous section to claim the following.

I Theorem 18. Consider the following multiscale mapper arising out of a tower of path
connected covers:

N(f∗U0)→ N(f∗U1)→ · · · → N(f∗Un) .

There is a surjection from H1(X) to H1(N(f∗Ui)) for each i ∈ [0, n].
Consider a H1-persistence module of a multiscale mapper as shown below.

H1
(
N(f∗U0)

)
→ H1

(
N(f∗U1)

)
→ · · · → H1

(
N(f∗Un)

)
. (2)

All connecting maps in the above module are surjections.

The above result implies that, as we proceed forward through the multiscale mapper,
no new homology classes are born. They can only die. Consequently, all bar codes in the
persistence diagram of the H1-persistence module induced by it have the left endpoint at 0.

4 Analysis of persistent H1-classes

Using the language of persistent homology, the results in the previous section imply that one
dimensional homology classes can die in the nerves, but they cannot be born. In this section,
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we analyze further to identify the classes that survive. The distinction among the classes is
made via a notion of ‘size’. Intuitively, we show that the classes with ‘size’ much larger than
the ‘size’ of the cover survive. The ‘size’ is defined with the pseudometric that the space X
is assumed to be equipped with. Precise statements are made in the subsections.

4.1 H1-classes of nerves of pseudometric spaces
Let (X, d) be a pseudometric space, that is, d satisfies the axioms of a metric except that
d(x, x′) = 0 may not necessarily imply x = x′. Assume X to be compact as before. We
define a ‘size’ for a homology class that reflects how big the smallest generator in the class is
in the metric d.

I Definition 19. The size s(X ′) of a subset X ′ of the pseudometric space (X, d) is defined
to be its diameter, that is, s(X ′) = supx,x′∈X′×X′ d(x, x′). The size of a class c ∈ Hk(X) is
defined as s(c) = infz∈c s(z).

I Definition 20. A set of k-cycles z1, z2, . . . , zn of Hk(X) is called a generator basis if the
classes [z1], [z2], . . . , [zn] together form a basis of Hk(X). It is called a minimal generator
basis if Σni=1s(zi) is minimal among all generator bases.

Lebesgue number of a cover. Our goal is to characterize the classes in the nerve of U with
respect to the sizes of their preimages in X via the map φU . The Lebesgue number of a
cover U becomes useful in this characterization. It is the largest number λ(U) so that any
subset of X with size at most λ(U) is contained in at least one element of U . Formally,

λ(U) = sup{δ | ∀X ′ ⊆ X with s(X ′) ≤ δ, ∃Uα ∈ U where Uα ⊇ X ′} .

We observe that a homology class of size no more than λ(U) cannot survive in the nerve.
Further, the homology classes whose sizes are significantly larger than the maximum size of
a cover do necessarily survive where we define the maximum size of a cover as smax(U) :=
maxU∈U{s(U)}.

Let z1, z2, . . . , zg be a non-decreasing sequence of the generators with respect to their sizes
in a minimal generator basis of H1(X). Consider the map φU : X → |N(U)| as introduced
in Section 3. We have the following result.

I Theorem 21. Let U be a path-connected cover of X.
(i) Let ` = g + 1 if λ(U) > s(zg). Otherwise, let ` ∈ [1, g] be the smallest integer so that

s(z`) > λ(U). If ` 6= 1, the class φ̄U∗[zj ] = 0 for j = 1, . . . , `− 1. Moreover, if ` 6= g + 1,
the classes {φ̄U∗[zj ]}j=`,...,g generate H1(N(U)).

(ii) The classes {φ̄U∗[zj ]}j=`′,...,g are linearly independent where s(z`′) > 4smax(U).

The result above says that only the classes of H1(X) generated by generators of large
enough size survive in the nerve. To prove this result, we use a map ρ that sends each
1-cycle in N(U) to a 1-cycle in X. We define a chain map ρ : C1(N(U))→ C1(X) among one
dimensional chain groups as follows 2. It is sufficient to exhibit the map for an elementary
chain of an edge, say e = {uα, uα′} ∈ C1(N(U)). Since e is an edge in N(U), the two cover
elements Uα and Uα′ in X have a common intersection. Let a ∈ Uα and b ∈ Uα′ be two
points that are arbitrary but fixed for Uα and Uα′ respectively. Pick a path ξ(a, b) (viewed

2 We note that the high level framework of defining such a chain map and analyzing what it does to
homologous cycles is similar to the work by Gasparovic et al. [14]. The technical details are different.
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Figure 2 Illustration for proof of Proposition 22.

as a singular chain) in the union of Uα and Uα′ which is path connected as both Uα and Uα′
are. Then, define ρ(e) = ξ(a, b). The following properties of φU and ρ turn out to be useful.

I Proposition 22. Let γ be any 1-cycle in N(U). Then, [φU (ρ(γ))] = [|γ|].

Proof. Let e = (uα, uβ) be an edge in γ with uα and uβ corresponding to Uα and Uβ
respectively. Let a and b be the corresponding fixed points for set Uα and Uβ respectively.
Consider the path ρ(e) = ξ(a, b) in X as constructed above, and set γa,b = φU (ξ(a, b)) to be
the image of ρ(e) in |N(U)|. See Figure 2 for an illustration. Given an oriented path ` and
two points x, y ∈ `, we use `[x, y] to denote the subpath of ` from x to y. For a point x ∈ X,
for simplicity we set x̂ = φU (x) to be its image in |N(U)|.

Now, let w ∈ ρ(e) be a point in Uα∩Uβ , and ŵ = φU (w) be its image in γa,b. Furthermore,
let σw ∈ N(U) be the lowest-dimensional simplex containing ŵ. While uα and uβ may not
be vertices of σw, we can show that V ert(σw) ∪ {uα, uβ} must span a simplex σ̄w, in N(U)
(see full version). Let γa,b[x̂, ŷ] be the maximal subpath of γa,b containing ŵ that is contained
within |σ̄w|. One can construct a homotopy Ha that takes γa,b[â, x̂] to uα under which
any point ẑ ∈ γa,b[â, x̂] moves monotonically along the segment ẑuα within the geometric
realization of the simplex containing both ẑ and uα. See the details in the full version.

Similarly, there is a homotopy Hb that takes γa,b[ŷ, b̂] to uβ under which any point
ẑ ∈ γa,b[ŷ, b̂] moves monotonically along the segment ẑuβ . Finally, for the middle subpath
γa,b[x̂, ŷ], since it is within simplex σ̄w with e = (uα, uβ) being an edge of it, we can construct
a homotopy Hw that takes γa,b[x̂, ŷ] to |uαuβ | under which x̂ and ŷ move monotonically
along the segments x̂uα and ŷuβ within the geometric realization of simplex σ̄w, respectively.
ConcatenatingHa, Hw andHb, we obtain a homotopyHα,β taking γa,b to |e|. A concatenation
of these homotopiesHα,β considered over all edges in γ, brings φU (ρ(γ)) to |γ| with a homotopy
in |N(U)|. Hence, their homology classes are the same. J

I Proposition 23. Let z be a 1-cycle in C1(X). Then, [φU (z)] = 0 if λ(U) > s(z).

Proof of Theorem 21.
Proof of (i): By Proposition 23, we have φU∗[z] = [φU (z)] = 0 if λ(U) > s(z). This

establishes the first part of the assertion because φ̄U∗ = ι ◦φU∗ where ι is an isomorphism
between the singular homology of |N(U)| and the simplicial homology of N(U). To see
the second part, notice that φ̄U∗ is a surjection by Theorem 8. Therefore, the classes
φ̄U∗(z) where λ(U) 6> s(z) contain a basis for H1(N(U)). Hence they generate it.

Proof of (ii): Suppose on the contrary, there is a subsequence {`1, . . . , `t} ⊂ {`′, . . . , g}
such that Σt

j=1[φU (z`j )] = 0. Let z = Σt
j=1φU (z`j ). Let γ be a 1-cycle in N(U) so that

[z] = [|γ|] whose existence is guaranteed by Proposition 6. It must be the case that
there is a 2-chain D in N(U) so that ∂D = γ. Consider a triangle t = {uα1 , uα2 , uα3}
contributing to D. Let a′i = φ−1

U (uαi). Since t appears in N(U), the covers Uα1 , Uα2 , Uα3
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containing a′1, a′2, and a′3 respectively have a common intersection in X. This also means
that each of the paths a′1  a′2, a′2  a′3, a′3  a′1 has size at most 2smax(U). Then,
ρ(∂t) is mapped to a 1-cycle in X of size at most 4smax(U). It follows that ρ(∂D) can be
written as a linear combination of cycles of size at most 4smax(U). Each of the 1-cycles of
size at most 4smax(U) is generated by basis elements z1, . . . , zk where s(zk) ≤ 4smax(U).
Therefore, the class of z′ = φU (ρ(γ)) is generated by a linear combination of the basis
elements whose preimages have size at most 4smax(U). The class [z′] is same as the class
[|γ|] by Proposition 22. But, by assumption [|γ|] = [z] is generated by a linear combination
of the basis elements whose sizes are larger than 4smax(U) reaching a contradiction. J

4.2 H1-classes in Reeb space
In this section we prove an analogue of Theorem 21 for Reeb spaces, which to our knowledge
is new. The Reeb space of a function f : X → Z, denoted Rf , is the quotient of X under the
equivalence relation x ∼f x′ if and only if f(x) = f(x′) and there exists a continuous path
γ ∈ ΓX(x, x′) such that f ◦ γ is constant. The induced quotient map is denoted q : X → Rf
which is of course surjective. We show that q∗ at the homology level is also surjective for H1
when the codomain Z of f is a metric space. In fact, we prove a stronger statement: only
‘vertical’ homology classes (classes with strictly positive size) survive in a Reeb space which
extends the result of Dey and Wang [11] for Reeb graphs.

Let V be a path-connected cover of Rf . This induces a pullback cover denoted U =
{Uα}α∈A = {q−1(Vα)}α∈A on X. Let N(U) and N(V) denote the corresponding nerve
complexes of U and V respectively. It is easy to see that N(U) ∼= N(V) because Uα ∩Uα′ 6= ∅
if and only if Vα ∩ Vα′ 6= ∅. There are nerve maps φV : Rf → |N(V)| and φU : X → |N(U)|
so that the following holds:

I Proposition 24. Consider the sequence X q→ Rf (X) φV→ |N(V)| = |N(U)|. Then, φU =
φV ◦ q.

Let the codomain of the function f : X → Z be a metric space (Z, dZ). We first impose a
pseudometric on X induced by f ; the one-dimensional version of this pseudometric is similar
to the one used in [1] for Reeb graphs. Recall that given two points x, x′ ∈ X we denote by
ΓX(x, x′) the set of all continuous paths γ : [0, 1]→ X such that γ(0) = x and γ(1) = x′.

I Definition 25. We define a pseudometric df on X as follows: for x, x′ ∈ X,

df (x, x′) := inf
γ∈ΓX(x,x′)

diamZ(f ◦ γ).

I Proposition 26. df : X ×X → R+ is a pseudometric.

Similar to X, we endow Rf with a distance d̃f that descends via the map q: for any
equivalence classes r, r′ ∈ Rf , pick x, x′ ∈ X with r = q(x) and r′ = q(x′), then define

d̃f (r, r′) := df (x, x′).

The definition does not depend on the representatives x and x′ chosen. In this manner we
obtain the pseudometric space (Rf , d̃f ). Let z1, . . . , zg be a minimal generator basis of H1(X)
defined with respect to the pseudometric df and q : X → Rf be the quotient map.

I Theorem 27. Let ` ∈ [1, g] be the smallest integer so that s(z`) 6= 0. If no such ` exists,
H1(Rf ) is trivial, otherwise, {[q(zi)]}i=`,...g is a basis for H1(Rf ).
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Proof. Consider the sequence X q→ Rf
φV→ |N(V)| where V is a cover of Rf . It is shown in the

full version that q∗ is a surjection for H1-homology. Then, {[q(zi)]}i=1,...,g generate H1(Rf ).
First, assume that ` as stated in the theorem exists. Let the cover V be fine enough so that
0 < smax(U) ≤ δ where δ = 1

4 min{s(zi) | s(zi) 6= 0}. Then, by applying Theorem 21(ii),
we obtain that [φU (zi)]i=`,...,g are linearly independent in H1(|N(U)|) = H1(|N(V)|. Since
[φU (zi)] = [φV ◦ q(zi)] by Proposition 24, {[q(zi)]}i=`,...,g are linearly independent in H1(Rf ).
But, [q(zi)] = 0 for s(zi) = 0 and {[q(zi)]}i=1,...,g generateH1(Rf ). Therefore, {[q(zi)]}i=`,...,g
is a basis. In the case when ` does not exist, we have s(zi) = 0 for every i ∈ [1, g]. Then,
[q(zi)] = 0 for every i rendering H1(Rf ) trivial. J

4.3 Persistence of H1-classes in mapper and multiscale mapper
To apply the results for nerves in section 4.1 to mappers and multiscale mappers, the Lebesgue
number of the pullback covers of X becomes important. The following observation in this
respect is useful. Remember that the size of a subset in X and hence the cover elements are
measured with respect to the pseudometric df .

I Proposition 28. Let U be a cover for the codomain Z. Then, the pullback cover f∗U has
Lebesgue number λ(U).

Notice that the smallest size smin(f∗U) of an element of the pullback cover can be
arbitrarily small even if smin(U) is not. However, the Lebesgue number of U can be leveraged
for the mapper due to the above proposition.

Given a cover U of Z, consider the mapper N(f∗U). Let z1, . . . , zg be a set of minimal
generator basis for H1(X) where the metric in question is df . Then, as a consequence of
Theorem 21 we have:

I Theorem 29.
(i) Let ` = g + 1 if λ(U) > s(zg). Otherwise, let ` ∈ [1, g] be the smallest integer so that

s(z`) > λ(U). If ` 6= 1, the class φU∗[zj ] = 0 for j = 1, . . . , `− 1. Moreover, if ` 6= g + 1,
the classes {φU∗[zj ]}j=`,...,g generate H1(N(f∗U)).

(ii) The classes {φU∗[zj ]}j=`′,...,g are linearly independent where s(z`′) > 4smax(U).
(iii) Consider a H1-persistence module of a multiscale mapper induced by a tower of path

connected covers:

H1
(
N(f∗Uε0)

) s1∗→ H1
(
N(f∗Uε1)

) s2∗→ · · · sn∗→ H1
(
N(f∗Uεn)

)
. (3)

Let ŝi∗ = si∗ ◦ s(i−1)∗ ◦ · · · ◦ φ̄Uε0∗. Then, the assertions in (i) and (ii) hold for
H1(N(f∗Uεi)) with the map ŝi∗ : X → N(f∗Uεi).

I Remark (Persistence diagram approximation.). The persistence diagram of the H1-persistence
module considered in Theorem 29(iii) contains points whose birth coordinates are exactly zero.
This is because all connecting maps are surjective by (i) and thus every class is born only at
the beginning. The death coordinate of a point that corresponds to a minimal basis generator
of size s is in between the index εi and εj where s ≥ 4smax(Uεi) and s ≤ λ(Uεj ) because of
the assertions (i) and (ii) in Theorem 29. Assuming covers whose λ and smax values are
within a constant factor of each other (such as the ones described in next subsection), we
can conclude that a generator of size s dies at some point cs for some constant c. Therefore,
by computing a minimal generator basis of N(Uε0) and computing their sizes provide a
4-approximation to the persistence diagram of the multiscale mapper in the log scale.
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4.4 Two special covers and intrinsic Čech complex
We discuss two special covers, one can be effectively computed and the other one is relevant
in the context of the intrinsic Čech complex of a metric space. We say a cover U of a metric
space (Y, d) is (α, β)-cover if α ≤ λ(U) and β ≥ smax(U).

A (δ, 4δ)-cover: Consider a δ-sample P of Y , that is, every metric ball B(y, δ), y ∈ Y ,
contains a point in P . Observe that the cover U = {B(p, 2δ)}p∈P is a (δ, 4δ)-cover for Z.
Clearly, smax(U) ≤ 4δ. To determine λ(U), consider any subset Y ′ ⊆ Y with s(Y ′) ≤ δ.
There is a p ∈ P so that dY (p, Y ′) ≤ δ. Let y′ be the furthest point in Y ′ from p. Then,
dY (p, y′) ≤ dY (p, Y ) + diam(Y ′) ≤ 2δ establishing that λ(U) ≥ δ.

A (δ, 2δ)-cover: Consider the infinite cover U of Y where U = {B(y, δ)}y∈Y . These are the
set of all metric balls of radius δ. Clearly, smax(U) ≤ 2δ. Any subset Y ′ ⊆ Y with s(Y ′) ≤ δ
is contained in a ball B(y, δ) where y is any point in Y ′. This shows that λ(U) ≥ δ. A
consequence of this observation and Theorem 21 is that the intrinsic Čech complexes satisfy
some interesting property.

I Definition 30. Given a metric space (Y, dY ), its intrinsic Čech complex Cδ(Y ) at scale δ
is defined to be the nerve complex of the set of intrinsic δ-balls {B(y, δ)}y∈Y .

I Observation 31. Let Cδ(Y ) denote the intrinsic Čech complex of a metric space Y at scale
δ. Let U denote the corresponding possibly infinite cover of Y . Let z1, . . . , zg be a minimal
generator basis for H1(Y ). Then, {φ̄U∗(zi)}i=`,...,g generate H1(Cδ(Y )) if ` is the smallest
integer with s(z`) > δ. Furthermore, {φ̄U∗(zi)}i=`′,...,g are linearly independent if s(z′`) > 8δ.

5 Higher dimensional homology groups

We have already observed that the surjectivity of the map φU∗ : H1(X) → H1(|N(U)|) in
one dimensional homology does not extend to higher dimensional homology groups. This
means that we cannot hope for analogues to Theorem 21(i) and Theorem 29 to hold for
higher dimensional homology groups. However, under the assumption that f : X → Z is a
continuous map from a compact space to a metric space, we can provide some characterization
of the persistent diagrams of the mapper and the multiscale mapper as follows:

We define a metric dδ on the vertex set Pδ of N(U) where smax(U) ≤ δ and then show
that the Gromov-Hausdorff distance between the metric spaces (Pδ, dδ) and (Rf , d̃f ) is
at most 5δ. The same proof also applies if we replace (Rf , d̃f ) with the pseudometric
space (X, df ). See the full version.
Previous result implies that the persistence diagrams of the intrinsic Čech complex of the
metric space (X, df ) and that of the metric space (Pδ, dδ) have a bottleneck distance of
O(δ). This further implies that the persistence diagram of the mapper structure N(U)
(approximated as the metric structure (Pδ, dδ)) is close to that of the intrinsic Čech
complex of the pseudometric space (X, df ).
We show that the intrinsic Čech complexes of (X, df ) interleave with MM(U, f) thus
connecting their persistence diagrams. See Section 5.1.
It follows that the persistence diagrams of the multiscale mapper MM(U, f) and (Pδ, dδ)
are close, both being close to that of (X, df ). This shows that the multiscale mapper
encodes similar information as the mapper under an appropriate map-induced metric.
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I Definition 32 (Intrinsic Čech filtration). The intrinsic Čech filtration of the metric space
(Y, dY ) is

C(Y ) = {Cr(Y ) ⊆ Cr
′
(Y )}0<r<r′ .

The intrinsic Čech filtration at resolution s is defined as Cs(Y ) = {Cr(Y ) ⊆ Cr′(Y )}s≤r<r′ .

Whenever (Y, dY ) is totally bounded, the persistence modules induced by taking homology
of this intrinsic Čech filtration become q-tame [7]. This implies that one may define
its persistence diagram Dg C(Y ) which provides one way to summarize the topological
information of the space Y through the lens of its metric structure dY .

We argue that the pseudometric space (X, df ) is totally bounded. This requires us to
show that for any ε > 0 there is a finite subset of P ⊆ X so that open balls centered at points
in P with radii ε cover X. Recall that we have assumed that X is a compact topological
space, that (Z, dZ) is a metric space, and that f : X → Z is a continuous map. Consider
a cover U of Z where each cover element is a ball of radius most ε/2 around a point in Z.
Then, the pullback cover f∗U of X has all elements with diameter at most ε in the metric df .
Since X is compact, a finite sub-cover of f∗U still covers X. A finite set P consisting of one
arbitrary point in each element of this finite sub-cover is such that the union of df -balls of
radius ε around points in P covers X. Since ε > 0 was arbitrary, (X, df ) is totally bounded.

Consider the mapper N(f∗U) w.r.t a cover U of the codomain Z. We can equip its
vertex set, denoted by Pδ, with a metric structure (Pδ, dδ), where δ is an upper bound on
the diameter of each element in U . Hence we can view the persistence diagram Dg C(Pδ)
w.r.t. the metric dδ as a summary of the mapper N(f∗U). Using the Gromov-Hausdorff
distance between the metric spaces (Pδ, dδ) and (X, df ), we relate this persistent summary
to the persistence diagram Dg C(X) induced by the intrinsic Čech filtration of (X, df ).
Specifically, we show that dGH((Pδ, dδ), (X, df )) ≤ 5δ. Theorem 32 in the full version
extends to this result. With (X, df ) being totally bounded, by results of [7], it follows that
the bottleneck-distance between the two resulting persistence diagrams satisfies:

dB(Dg C(Pδ),Dg C(X)) ≤ 2 ∗ 5δ = 10δ. (4)

5.1 MM(W, f) for a tower of covers W

Above we discussed the information encoded in a certain persistence diagram summary of a
single Mapper structure. We now consider the persistent homology of multiscale mappers.
Given any tower of covers (TOC) W of the co-domain Z, by applying the homology functor
to its multiscale mapper MM(W, f), we obtain a persistent module, and we can thus discuss
the persistent homology induced by a tower of covers W. However, as discussed in [10], this
persistent module is not necessarily stable under perturbations (of e.g the map f) for general
TOCs. To address this issue, Dey et al. introduced a special family of the so-called (c,s)-good
TOC in [10], which is natural and still general. Below we provide an equivalent definition of
the (c,s)-good TOC based on the Lebesgue number of covers.

I Definition 33 ((c, s)-good TOC). Give a tower of covers U = {Uε}ε≥s, we say that it is
(c,s)-good TOC if for any ε ≥ s, we have that (i) smax(Uε) ≤ ε and (ii) λ(Ucε) ≥ ε.

As an example, the TOC U = {Uε}ε≥s with Uε := {Bε/2(z) | z ∈ Z} is an (2,s)-good
TOC of the co-domain Z.

We now characterize the persistent homology of multiscale mappers induced by (c,s)-good
TOCs. Connecting these persistence modules is achieved via the interleaving of towers of
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simplicial complexes originally introduced in [5]. Below we include the slightly generalized
version of the definition from [10].

I Definition 34 (Interleaving of simplicial towers, [10]). Let S =
{
Sε

sε,ε′−→ Sε′
}
r≤ε≤ε′ and

T =
{
Tε

tε,ε′−→ Tε′
}
r≤ε≤ε′ be two towers of simplicial complexes where res(S) = res(T) = r.

For some c ≥ 0, we say that they are c-interleaved if for each ε ≥ r one can find simplicial
maps ϕε : Sε → Tε+c and ψε : Tε → Sε+c so that:
(i) for all ε ≥ r, ψε+c ◦ ϕε and sε,ε+2c are contiguous,
(ii) for all ε ≥ r, ϕε+η ◦ ψε and tε,ε+2c are contiguous,
(iii) for all ε′ ≥ ε ≥ r, ϕε′ ◦ sε,ε′ and tε+c,ε′+c ◦ ϕε are contiguous,
(iv) for all ε′ ≥ ε ≥ r, sε+c,ε′+c ◦ ψε and ψε′ ◦ tε,ε′ are contiguous.
Analogously, if we replace the operator ‘+’ by the multiplication ‘·’ in the above definition,
then we say that S and T are c-multiplicatively interleaved.

Our main results of this section are the following whose proofs are deferred to the full
version. First, Theorem 35 states that the multiscale-mappers induced by any two (c, s)-good
towers of covers interleave with each other, implying that their respective persistence diagrams
are also close under the bottleneck distance. From this point of view, the persistence diagrams
induced by any two (c,s)-good TOCs contain roughly the same information. Next in Theorem
36, we show that the multiscale mapper induced by any (c, s)-good TOC interleaves (at
the homology level) with the intrinsic Čech filtration of (X, df ), thereby implying that the
persistence diagram of the multiscale mapper w.r.t. any (c, s)-good TOC is close to that of
the intrinsic Čech filtration of (X, df ) under the bottleneck distance.

I Theorem 35. Given a map f : X → Z, let V = {Vε
vε,ε′−→ Vε′

}
ε≤ε′ and W = {Wε

wε,ε′−→
Wε′

}
ε≤ε′ be two (c, s)-good tower of covers of Z. Then the corresponding multiscale mappers

MM(V, f) and MM(W, f) are c-multiplicatively interleaved.

I Theorem 36. Let Cs(X) be the intrinsic Čech filtration of (X, df ) starting with resolution
s. Let U = {Uε

uε,ε′−→ Uε′
}
s≤ε≤ε′ be a (c, s)-good TOC of the compact connected metric space

Z. Then the multiscale mapper MM(U, f) and Cs(X) are 2c-multiplicatively interleaved.

Finally, given a persistence diagram Dg, we denote its log-scaled version Dglog to be the
diagram consisting of the set of points {(log x, log y) | (x, y) ∈ Dg}. Since interleaving towers
of simplicial complexes induce interleaving persistent modules, using results of [5, 6], we have
the following corollary.

I Corollary 37. Given a continuous map f : X → Z and a (c, s)-good TOC U of Z, let
DglogMM(U, f) and DglogCs denote the log-scaled persistence diagram of the persistence
modules induced by MM(U, f) and by the intrinsic Čech filtration Cs of (X, df ) respectively.
We have that

dB(DglogMM(U, f),DglogCs) ≤ 2c.
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