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Abstract
We consider the problem of finding a small hitting set in an infinite range space F = (Q,R)
of bounded VC-dimension. We show that, under reasonably general assumptions, the infinite-
dimensional convex relaxation can be solved (approximately) efficiently by multiplicative weight
updates. As a consequence, we get an algorithm that finds, for any δ > 0, a set of size O(sF (z∗F ))
that hits (1− δ)-fraction of R (with respect to a given measure) in time proportional to log( 1

δ ),
where sF ( 1

ε ) is the size of the smallest ε-net the range space admits, and z∗F is the value of
the fractional optimal solution. This exponentially improves upon previous results which achieve
the same approximation guarantees with running time proportional to poly( 1

δ ). Our assumptions
hold, for instance, in the case when the range space represents the visibility regions of a polygon in
R2, giving thus a deterministic polynomial-time O(log z∗F )-approximation algorithm for guarding
(1 − δ)-fraction of the area of any given simple polygon, with running time proportional to
polylog( 1

δ ).
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1 Introduction

Let F = (Q,R) be a range space defined by a (possibly) infinite set of ranges R ⊆ 2Q over a
(possibly) infinite set Q. A hitting set of R is a subset H ⊆ Q such that H ∩R 6= ∅ for all
R ∈ R. Finding a hitting set of minimum size for a given range space is a fundamental problem
in computational geometry. For finite range spaces (that is, when Q is finite), standard
algorithms for SetCover [29, 33, 13] yield (log |Q|+1)-approximation in polynomial time, and
this is essentially the best possible guarantee assuming P 6= NP [17]. Better approximation
algorithms exist for special cases, such as range spaces of bounded VC-dimension [8], of
bounded union complexity [15, 47], of bounded shallow cell complexity [9], as well as several
classes of geometric range spaces [3, 40, 30]. Many of these results are based on showing
the existence of a small-size ε-net for the range space F and then using the multiplicative
weights update algorithm of Brönnimann and Goodrich [8]. For instance, if a range space
F has VC-dimension d, then it admits an ε-net of size O(dε log 1

ε ) [27, 31], which by the
above mentioned method implies an O(d · log OptF )-approximation algorithm for the hitting
set problem for F , where OptF denotes the size of a minimum-size hitting set. Even et
al. [19] observed that this can be improved to O(d · log z∗F )-approximation by first solving
the LP-relaxation of the problem to obtain the value of the fractional optimal solution z∗F ,
and then finding an ε-net, with ε := 1/z∗F .
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40:2 Finding Small Hitting Sets in Infinite Range Spaces of Bounded VC-Dimension

The multiplicative weights update algorithm in [8] works by maintaining weights on the
points. The straightforward extension to infinite (or continuous) range spaces (that is, the
case when Q is infinite) does not seem to work, since the bound on the number of iterations
depends on the measure of the regions created during the course of the algorithm, which can
be arbitrarily small. In this paper we take a different approach, which can be thought of as
a combination of the methods in [8] and [19] (with LP replaced by an infinite-dimensional
convex relaxation1):

We maintain weights on the ranges (in contrast to the method of Brönnimann and
Goodrich [8] which maintains weights on the points, and the second method suggested by
Agarwal and Pan [1] which maintains weights on both points and ranges);
We first solve the covering convex relaxation within a factor of 1+ε using the multiplicative
weights update (MWU) methoid, extending the approach in [21] to infinite-dimensional
covering LP’s (under reasonable assumptions);
We finally use the rounding idea of [19] to get a small integral hitting set from the
obtained fractional solution.

Informal main theorem. There is an algorithm that, given a range space F = (Q,R) of VC-
dimension d and δ > 0, (under mild assumptions) finds a subset of Q of size O(d · z∗F log z∗F )
that hits (1− δ)-fraction of R (with respect to a given measure) in time polynomial in the
input description of F and log( 1

δ ).

This exponentially improves upon previous results2 which achieve the same approximation
guarantees, but with running time depending polynomially on 1

δ . It should be noted that
the main contribution of this paper is an efficient algorithm for approximately solving the
infinite-dimensional covering linear programming relaxation with an infinite number of
constraints. Even though such relaxation is convex, none of the known polynomial-time
methods for convex programming (such as the ellipsoid method and interior point methods)
can be used since their running time depends polynomially on the dimension. For the class of
infinite-dimensional covering linear programs with infinitely many constraints corresponding
to the ranges of a range space, we observe an interesting connection between the convergence
of the MWU method and the fact that the range space has bounded VC-dimension.

We apply this result to a number of problems:
The art gallery problem: given a simple polygon H, our main theorem implies that
there is a deterministic polytime O(log z∗F )-approximation algorithm (with running time
proportional to polylog( 1

δ )) for guarding (1 − δ)-fraction of the area of H. When δ is
(exponentially) small, this improves upon a previous result [12] which gives a polytime
algorithm that finds a set of size O(OptF · log 1

δ ), guarding (1− δ)-fraction of the area of
H. Other (randomized) O(log OptF )-approximation results which provide full guarding
(i.e., δ = 0) also exist, but they either run in pseudo-polynomial time [16], restrict the set
of candidate guard locations [18, 22], or make some general position assumptions [6].
Covering a polygonal region by translates of a convex polygon: Given a collection H of
polygons in the plane and a convex polygon H0, our main theorem implies that there is a
randomized polytime O(1)-approximation algorithm for covering (1− δ) of the total area

1 More precisely, an infinite-dimensional covering linear programming relaxation with an infinite number
of constraints

2 More precisely (as pointed to us by an anonymous reviewer), using relative approximation results (see,
e.g., [26]), one can obtain the same approximation guarantees as our main Theorem by solving the
problem on the set system induced on samples of size O((d ·OptF/δ) log(1/δ))
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of the polygons in H by the minimum number of translates of H0. Previous results with
proved approximation guarantees mostly consider only the case when H is a set of points
[15, 28, 32].
Polyhedral separation in fixed dimension: Given two convex polytopes P1,P2 ⊆ Rd
such that P1 ⊂ P2, our main theorem implies that there is a randomized polytime
O(d · log z∗F )-approximation algorithm for finding a polytope P3 with the minimum
number of facets separating P1 from (1− δ)-fraction of the volume of ∂P2. This improves
the approximation ratio by a factor of d over the previous (deterministic) result [8] (but
which gives a complete separation).

The paper is organized as follows. In the next section we define our notation, recall some
preliminaries, and describe the infinite-dimensional convex relaxation. In Section 3, we state
our main result, followed by the algorithm for solving the fractional problem in Section 4
and its analysis in Section 5. The success of the whole algorithm relies crucially on being
able to efficiently implement the so-called maximization oracle, which essentially calls for
finding, for a given measure on the ranges, a point that is contained in the heaviest subset of
ranges (with respect to the given measure). We utilize the fact that the dual range space has
bounded VC-dimension in Section 6 to give an efficient randomized implementation of the
maximization oracle in the Real RAM model of computation. With more work, we show in
fact that, in the case of the art gallery problem, the maximization oracle can be implemented
in deterministic polynomial time in the bit model. Sections 7.2 and 7.3 describe the two
other applications.

2 Preliminaries

2.1 Notation
Let F = (Q,R) be a range space. For a point q ∈ Q and a subset of ranges R′ ⊆ R,
let R′[q] := {R ∈ R′ : q ∈ R}. The dual range space F∗ = (Q∗,R∗) is defined as the
range space with Q∗ := R and R∗ := {R[q] : q ∈ Q}. For a set of points P ⊆ Q, let
R|P := {R ∩ P : R ∈ R} be the projection of R onto P . Similarly, for a set of ranges
R′ ⊆ R, let R∗|R′ := {R′[q] : q ∈ Q}. For a positive integer r, we denote by gF (r) ≤ 2r the
smallest integer such that for every finite set P ⊆ Q of size r, we have |R|P | ≤ gF (r). For
p ∈ Q and R ∈ R, we denote by 1p∈R ∈ {0, 1} the indicator variable that takes value 1 if
and only if p ∈ R.

2.2 Assumptions
We shall make the following assumptions:
(A1) gF (r) ≤ crγ , for all integers r ≥ 0 and some constants γ ≥ 1 and c > 0 (known to the

algorithm).
(A2) There exists a finite integral optimum whose value OptF is bounded by a parameter

n (that is not necessarily part of the input description).
(A3) There exists an integrable function w0 : R → R+. We assume that the integration of

w0 over any subset of R of input description of size k can be computed in time poly(k).

Note that if assumption (A3) holds then w0 naturally defines a finite measure on R where
the measure for a (measurable) set R′ ⊆ R is w0(R′) :=

∫
R∈R′ w0(R)dR. 3

3 One may also consider a general measure on R. For simplicity of presentation, we assume here the
more restrictive condition (A3), as all the applications we consider have this restriction. However, the

SoCG 2017



40:4 Finding Small Hitting Sets in Infinite Range Spaces of Bounded VC-Dimension

2.3 Range spaces of bounded VC-dimension

We consider range spaces F = (Q,R) of bounded VC-dimension defined as follows. A finite
set P ⊆ Q is said to be shattered by F if R|P = 2P . The VC-dimension of F , denoted
VC-dim(F), is the cardinality of the largest subset of Q shattered by F . If arbitrarily large
subsets of Q can be shattered then VC-dim(F) = +∞. It is well-known [42, 43] that if
VC-dim(F) = d then gF (r) ≤ g(r, d) :=

∑d
i=0
(
r
i

)
= O(rd), and that VC-dim(F∗) < 2d+1.

Thus, if VC-dim(F) = d then Assumption (A1) is satisfied with γ = d.

2.4 ε-nets

Given a range space (Q,R), an integrable function µ : Q → R+, and a parameter ε > 0,
an ε-net for R (w.r.t. µ) is a set P ⊆ Q such that P ∩ R 6= ∅ for all R ∈ R that satisfy
µ(R) ≥ ε · µ(Q), where for Q′ ⊆ Q, we write µ(Q′) :=

∫
q∈Q′ µ(q)dq. We say that a range

space F admits an ε-net of size sF (·), if for any ε > 0, there is an ε-net of size sF ( 1
ε ).

For range spaces of VC-dimension d, it is known [27, 31] that a random sample (w.r.t. to
the probability density function µ

µ(Q) ) of size sF ( 1
ε ) = O(dε log 1

ε ) is an ε-net with (high)
probability Ω(1).

We say that µ : Q → R+ has (finite) support of size K if µ can be written as a conic
combination of K Dirac delta functions4: for any q ∈ Q, µ(q) :=

∑
p∈P µ(p)δp(q), for some

finite P ⊆ Q of cardinality K and non-negative multipliers µ(p), for p ∈ P . If this is the
case, an ε-net for R of size sF ( 1

ε ) = O(dε log d
ε ) can be computed deterministically in time

O(d)3d 1
ε2d logd(dε )K under the following assumption [7, 11, 34]:

(A1′) The range space is given by a subsystem oracle Subsys(F , P ) that, given any finite
P ⊆ Q, returns the set of ranges R|P in time O(|P |)d+1.

It should also be noted that some special range spaces may admit a smaller size ε-net,
e.g., sF ( 1

ε ) = O( 1
ε ) for half-spaces in R3 [35, 36]; see also [9, 30, 15, 47].

2.5 ε-approximations

Given the dual range space F∗, a probability density function w on R, and an ε > 0, an
ε-approximation is a finite subset of ranges R′ ⊆ R such that, for all q ∈ Q,∣∣∣∣ |R′[q]||R′|

− w(R[q])
w(R)

∣∣∣∣ ≤ ε; (1)

see, e.g., [10]. It is known [2, 10, 46] that if F = (Q,R) is a range space of VC-dimension
d, and w is an arbitrary probability density function on R, then for any ε > 0, a random
sample (w.r.t. w) of size O(d2d

ε2 log 1
εσ ) is an ε-approximation for F∗, with probability 1− σ.

2.6 The fractional problem

Given a range space F = (Q,R), satisfying assumptions (A1)–(A3), the fractional covering
problem for F seeks to find an integrable function µ : Q→ R+, such that µ(R) ≥ 1 for all

extension to general measurable sets should be straightforward.
4 A Dirac delta function satisfies

∫
Q′
δp(q)dq = 1 if p ∈ Q′, and

∫
Q′
δp(q)dq = 0, for any Q′ ⊆ Q.
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R ∈ R and µ(Q) is minimized5:

z∗F : = inf
integrable µ

∫
q∈Q

µ(q)dq (F-hitting)

s.t.
∫
q∈R

µ(q)dq ≥ 1, ∀R ∈ R, (2)

µ(q) ≥ 0, ∀q ∈ Q.

Equivalently, it is required to find a probability measure µ on Q that solves the maximin
problem: supµ infR∈R µ(R).

I Proposition 1. For a range space F satisfying (A2), we have OptF ≥ z∗F .

Proof. Given a finite integral optimal solution P ∗, we define an integrable function µ :
Q → R+ of support size OptF by µ(q) :=

∑
p∈P∗ δp(q), for q ∈ Q. Then µ(Q) =∫

q∈Q
∑
p∈P∗ δp(q)dq =

∑
p∈P∗

∫
q∈Q δp(q)dq =

∑
p∈P∗ 1 = |P ∗| = OptF and µ(R) =∫

q∈R
∑
p∈P∗ δp(q)dq =

∑
p∈P∗

∫
q∈R δp(q)dq =

∑
p∈P∗ 1p∈R = |{p ∈ P ∗ : p ∈ R}| ≥ 1,

for all R ∈ R, since P ∗ is a hitting set. Since µ is feasible for (F-hitting), the claim
follows. J

Assume F satisfies (A3). For α ≥ 1, we say that µ : Q→ R+ is an α-approximate solution
for (F-hitting) if µ is feasible for (F-hitting) and µ(Q) ≤ α · z∗F . For β ∈ [0, 1], we say that
µ is β-feasible if µ(R) ≥ 1 for all R ∈ R′, where R′ ⊆ R satisfies w0(R′) ≥ β ·w0(R). Finally,
we say that µ is an (α, β)-approximate solution for (F-hitting) if µ is both α-approximate
and β-feasible.

2.7 Rounding the fractional solution
Brönnimann and Goodrich [8] gave a multiplicative weights update algorithm for approx-
imating the minimum hitting set for a finite range space satisfying (A1′) and admitting
an ε-net of size sF ( 1

ε ). Their algorithm works as follows. It first guesses the value of the
optimal solution (within a factor of 2), and initializes the weights of all points to 1. It
then finds an ε = 1

2OptF -net of size sF ( 1
ε ). If there is a range R that is not hit by the

net (which can be checked by the subsystem oracle), the weights of all the points in R

are doubled. The process is shown to terminate in O(OptF log |Q|
OptF ) iterations, giving an

sF (2OptF )/OptF -approximation. Even et al. [19] strengthen this result by using the linear
programming relaxation to get sF (z∗F )/z∗F -approximation. We can restate this result as
follows.

I Lemma 2. Let F = (Q,R) be a range space admitting an ε-net of size sF ( 1
ε ) and µ be a

measure on Q satisfying (2). Then there is a hitting set for R of size sF (µ(Q)).

Proof. Let ε := 1
µ(Q) . Then for all R ∈ R we have µ(R) ≥ 1 = ε · µ(Q), and hence an ε-net

for R is actually a hitting set. J

I Corollary 3. Let F = (Q,R) be a range space of VC-dimension d and µ : Q → R+ be
an integrable function satisfying (2). Then a random sample of size O(d · µ(Q) log(µ(Q))),
w.r.t. the probability density function µ′ := µ

µ(Q) , is a hitting set for R with probability Ω(1).
Furthermore, if µ has support size K then there is a deterministic algorithm that computes a
hitting set for R of size O(d · µ(Q) log(d · µ(Q))) in time O(d)3dµ(Q)2d logd(d · µ(Q))K.

Further improvements on the Brönnimann-Goodrich algorithm can be found in [1].

5 We may as well restrict µ to have finite support and replace the integrals over Q by summations.

SoCG 2017
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3 Solving the fractional problem – Main result

We shall make the following further assumption:
(A4) There is a deterministic (resp., randomized) oracle Max(F , w, ν) (resp., Max(F , w, σ, ν)),

that given a range space F = (Q,R), an integrable function w : R → R+, and ν > 0, re-
turns (resp., with probability 1−σ) a point p ∈ Q such that ξw(p) ≥ (1−ν) maxq∈Q ξw(q),
where ξw(p) := w(R[p]) =

∫
R∈R w(R)1p∈RdR.

The following is the main result of the paper.

I Theorem 4. Given a range space F satisfying (A1)–(A4), and ε, δ, ν ∈ (0, 1), there is
a deterministic (resp., randomized) algorithm that finds (resp., with probability Ω(1)) a
function µ : Q → R+ of support size K := O( γ

ε3(1−ν) log γ
ε · OptF log OptF

εδ(1−ν) ) that is a
( 1+5ε

1−ν , 1− δ)-approximate solution for (F-hitting), using K calls to the oracle Max(F , w, ν)
(resp., Max(F , w, σ, ν)).

In view of Corollary 3, we get the following theorem as an immediate consequence of
Theorem 4.

I Theorem 5 (Main Theorem). Let F = (Q,R) be a range space satisfying (A1)–(A4) and
admitting a hitting set of size sF ( 1

ε ), and ε, δ, ν ∈ (0, 1) be given parameters. Then there
is a (deterministic) algorithm that computes a set of size sF (z∗F ), hitting a subset of R of
measure at least (1− δ)w0(R), using O( γ

ε3(1−ν) log γ
ε ·OptF log OptF

εδ(1−ν) ) calls to the oracle
Max(. . . , ν) and a single call to an ε-net finder.

In Section 6, we observe that the maximization oracle can be implemented in randomized
polynomial time. As a consequence, we obtain the following corollary of Theorem 5, under
the assumption of the availability of the following oracles:

Subsys(F∗,R′): this is the dual subsystem oracle; given a finite subset of ranges R′ ⊆ R,
it returns the set of ranges R∗|R′ . Note that |R∗|R′ | ≤ g(|R′|, 2d+1).
PointIn(F ,R′): Given F and a finite subset of ranges R′ ⊆ R, the oracle returns a
point p ∈ Q that lies in

⋂
R∈R′ R (if one exists).

Sample(F , ŵ): Given F = (Q,R) and a probability density function ŵ : R → R+, it
samples a range R ∈ R according to ŵ.

I Corollary 6. Let F = (Q,R) be a range space of VC-dimension d satisfying (A2) and (A3)
and ε, δ ∈ (0, 1) be given parameters. Then there is a randomized algorithm that computes a
set of size O(d · z∗F log z∗F ), hitting a subset of R of measure at least (1− δ)w0(R), in time
O(K · (τ1 ·N + τ2(N) + τ3(N) + gF∗(N))), where K := O( dε3 log d

ε ·OptF log OptF
εδ ), and τ1,

τ2(N) and τ3(N), are respectively the maximum times taken by the oracle Sample(F , ŵ),
and the oracles Subsys(F∗,R′), PointIn(F ,R′) on a set R′ of size N := d2dOpt2

F
ε2 log OptF

ε .

Note that gF∗(r) ≤ r2d+1 , but stronger bounds can be obtained for special cases.

4 The algorithm

The algorithm is shown in Algorithm 1 below. For any iteration t, let us define the active
range-subspace Ft = (Q,Rt) of F , where

Rt := {R ∈ R : |Pt ∩R| < T}.
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Data: A range space F = (Q,R) satsfying (A1)–(A4), and approximation accuracies
ε, δ, ν ∈ (0, 1).

Result: A ( 1+5ε
1−ν , 1− δ)-approximate solution µ for (F-hitting).

1 t← 0; P0 ← ∅; set T as in (3)
2 while w0(Rt) ≥ δ · w0(R) do

// define7 wt : Rt → R+ by wt(R)← (1− ε)|Pt∩R|w0(R), for R ∈ Rt
3 pt+1 ←Max(Ft, wt, ν)
4 Pt+1 ← Pt ∪ {pt+1}
5 t← t+ 1
6 end
7 return the measure µ̂ : Q→ R+ defined by µ̂(q)← 1

T

∑
p∈Pt δp(q)

Algorithm 1: The fractional covering algorithm

Clearly, (since these properties are hereditary) VC-dim(Ft) ≤ VC-dim(F), and Ft admits an
ε-net of size sF ( 1

ε ) whenever F does. For convenience, we assume below that Pt is (possibly)
a multi-set (repetitions allowed).

Define6 a := γ

ε2 , b := max{lnT0, 1}, T0 := OptFδ1/γc1/γ

ε(1− ν)δ1/γ

(
ln 1

1− ε + ln 1
εδ

)
, and

T := e2ab(ln(a+ e− 1) + 1) = Θ
(
γ

ε2 log γ
ε

log OptF
εδ(1− ν)

)
. (3)

For simplicity of presentation, we will assume in what follows that the maximization
oracle is deterministic; the extension to the probabilistic case is straightforward.

5 Analysis

Define the potential function Φ(t) := wt(Rt), where wt(R) := (1 − ε)|Pt∩R|w0(R), and
Pt = {pt′ : t′ = 1, . . . , t} is the set of points selected by the algorithm in Step 3 up to time t.
We can also write wt+1(R) = wt(R)(1− ε · 1pt+1∈R).

The analysis is done in three steps: the first one (Section 5.1), which is typical for MWU
methods, is to bound the potential function, at each iteration, in terms of the ratio between
the current solution obtained by the algorithm at that iteration and the optimum fractional
solution. The second step (Section 5.2) is to bound the number of iterations until the desired
fraction of the ranges is hit. Finally, the third step (Section 5.3) uses the previous two steps
to show that the algorithm reaches the required accuracy after a polynomial number of
iterations.

5.1 Bounding the potential
The following three lemmas are obtained by the standard analysis of MWU methods with
"
∑

"′s replaced by "
∫
"′s.

I Lemma 7. For all t = 0, 1, . . ., it holds that Φ(t+ 1) ≤ Φ(t) exp
(
− ε

Φ(t) · wt(Rt[pt+1])
)
.

6 When a polynomial upper bound n on OptF is known, as per Assumption (A2), we can use it instead
of OptF in the formula for T0; otherwise, exponential search can be used to estimate OptF .

SoCG 2017



40:8 Finding Small Hitting Sets in Infinite Range Spaces of Bounded VC-Dimension

Proof.

Φ(t+ 1) =
∫
R∈Rt+1

wt+1(R)dR =
∫
R∈Rt+1

wt(R)(1− ε · 1pt+1∈R)dR

≤
∫
R∈Rt

wt(R)(1− ε · 1pt+1∈R)dR = Φ(t)
(

1− ε
∫
R∈Rt

1pt+1∈R
wt(R)
Φ(t) dR

)
≤ Φ(t) exp

(
−ε
∫
R∈Rt

1pt+1∈R
wt(R)
Φ(t) dR

)
,

where the first inequality is because Rt+1 ⊆ Rt since |Pt ∩R| is non-decreasing in t, and the
last inequality is because 1− z ≤ e−z for all z. J

I Lemma 8. Let κ(t) :=
∑t−1
t′=0

wt′ (Rt′ [pt′+1])
Φ(t′) . Then z∗F · κ(t) ≥ 1−ν

1+ε |Pt|.

Proof. Due to the choice of pt′+1, we have that

ξt′(pt′+1) := wt′(Rt′ [pt′+1]) ≥ (1− ν) max
q∈Q

wt′(Rt′ [q]). (4)

Consequently, for a (1 + ε)-approximate solution µ∗,

z∗F · κ(t) =
t−1∑
t′=0

z∗F
wt′(Rt′ [pt′+1])

Φ(t′) ≥ 1
1 + ε

t−1∑
t′=0

(∫
q∈Q

µ∗(q)dq
)∫

R∈Rt′
1pt′+1∈R

wt′(R)
Φ(t′) dR

≥ 1− ν
1 + ε

t−1∑
t′=0

∫
q∈Q

µ∗(q)
∫
R∈Rt′

1q∈R
wt′(R)
Φ(t′) dRdq

= 1− ν
1 + ε

t−1∑
t′=0

∫
R∈Rt′

(∫
q∈Q

µ∗(q)1q∈Rdq
)
wt′(R)
Φ(t′) dR

= 1− ν
1 + ε

t−1∑
t′=0

∫
R∈Rt′

µ∗(R)wt
′(R)

Φ(t′) dR ≥
1− ν
1 + ε

t−1∑
t′=0

∫
R∈Rt′

wt′(R)
Φ(t′) dR

= 1− ν
1 + ε

t−1∑
t′=0

1 = 1− ν
1 + ε

|Pt|.

where the first inequality is due to the (1 + ε)-approximability of µ∗, the second inequality is
due to (4), and the last inequality is due to the feasibility of µ∗ for (F-hitting). J

I Lemma 9. For all t = 0, 1, . . . , we have

Φ(t) ≤ Φ(0) exp
(
−ε · 1− ν

1 + ε
· |Pt|
z∗F

)
. (5)

Proof. By repeated application of Lemma 7, and using the result in Lemma 8, we can deduce
that

Φ(t) ≤ Φ(0) exp
(
−

t−1∑
t′=0

ε

Φ(t′) · wt
′(Rt′ [pt′+1])

)
= Φ(0) exp (−εκ(t))

≤ Φ(0) exp
(
−ε · 1− ν

1 + ε
· |Pt|
z∗F

)
. J
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5.2 Bounding the number of iterations

I Lemma 10. After at most tmax := OptF
ε(1−ν)

(
T ln 1

1−ε + ln 1
εδ

)
iterations, we have w0(Rtmax) <

δ · w0(R).

Proof. For a range R ∈ R, let us denote by Tt(R) := {0 ≤ t′ ≤ t − 1 : pt′+1 ∈ R ∈ Rt′}
the set of time steps, up to t, at which R was hit by the selected point pt′+1, when it was
still active. Initialize w′0(R) := w0(R) +

∑
t′∈Tt(R) wt′+1(R). For the purpose of the analysis,

we will think of the following update step during the algorithm: upon choosing pt+1, set
w′t+1(R) := w′t(R) − wt(R)1pt+1∈R for all R ∈ Rt. Note that the above definition implies
that w′t(R) ≥ (1− ε)|Tt(R)|w0(R) for all R ∈ R and for all t.

I Claim 11. For all t, w′t+1(Rt+1) ≤
(

1− ε(1−ν)
OptF

)
w′t(Rt).

Proof. Consider an integral optimal solution P ∗ ⊆ Q (which is guaranteed to exist by (A2)).
Then

wt(Rt) =
∫
R∈Rt

wt(R)dR = wt

 ⋃
q∈P∗

Rt[q]

 ≤ ∑
q∈P∗

wt(Rt[q]). (6)

From (6) it follows that there is a q ∈ P ∗ such that wt(Rt[q]) ≥ wt(Rt)
OptF . Note that for

such q we have ξt(q) := wt (Rt[q]) ≥ wt(Rt)
OptF , and thus by the choice of pt+1, ξt(pt+1) ≥

(1− ν)ξt(q) ≥ (1−ν)wt(Rt)
OptF . It follows that

w′t+1(Rt+1) ≤ w′t+1(Rt) =
∫
R∈Rt

(w′t(R)− wt(R)1pt+1∈R)dR

=
∫
R∈Rt

w′t(R)dR−
∫
R∈Rt

wt(R)1pt+1∈RdR = w′t(Rt)− ξt(pt+1)

≤ w′t(Rt)−
(1− ν)wt(Rt)

OptF
. (7)

Note that, for all t,

w′t(R) < wt(R)
∑
t′≥0

(1− ε)t
′

= wt(R)
ε

. (8)

Thus, wt(Rt) > ε · w′t(Rt). Using this in (7), we get the claim. J

Claim 11 implies that, for t = tmax, w′t(Rt) ≤
(

1− ε(1−ν)
OptF

)t
w′0(R) < e

− ε(1−ν)
OptF

t
w′0(R). Since

|R∩Pt| < T for all R ∈ Rt, we have |Tt(R)| ≤ T and hence w′t(Rt) =
∫
R∈Rt w

′
t(R)dR ≥ (1−

ε)Tw0(Rt). On the other hand, (8) implies that w′0(R) < w0(R)
ε . Thus, if w0(Rt) ≥ δ ·w0(R),

we get (1− ε)T δ < 1
ε · e
− ε(1−ν)

OptF
t
, giving t < OptF

ε(1−ν)

(
T ln 1

1−ε + ln 1
εδ

)
= tmax, in contradiction

to t = tmax. J

5.3 Convergence to an (1+5ε
1−ν , 1 − δ)-approximate solution

I Lemma 12. Suppose that T ≥ max{1,ln(gF (tmax)/δ)}
ε2 and ε ≤ 0.67. Then Algorithm 1

terminates with a ( 1+5ε
1−ν , 1− δ)-approximate solution µ̂ for (F-hitting).
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Proof. Suppose that Algorithm 1 (the while-loop) terminates in iteration tf ≤ tmax.
(1 − δ)-Feasibility: By the stopping criterion, w0(Rtf ) < δ · w0(R). Then for t = tf
and any R ∈ R \ Rt, we have µ̂(R) = 1

T

∫
q∈R

∑
p∈Pt δp(q)dq = 1

T

∑
p∈Pt

∫
q∈R δp(q)dq =

1
T

∑
p∈Pt 1p∈R = 1

T |Pt ∩R| ≥ 1, since |Pt ∩R| ≥ T , for all R ∈ R \ Rt.
Quality of the solution µ̂: We can write

Φ(t) =
∑

P∈(Rt)|Pt

(1− ε)|P |w0(Rt[P ]), (9)

where Rt[P ] := {R ∈ Rt : R ∩ Pt = P}. Since Φ(t) satisfies (5), we get by (9) that

(1− ε)|P |w0(Rt[P ]) ≤ Φ(0) exp
(
−ε · 1− ν

1 + ε
· |Pt|
z∗F

)
, for all P ∈ (Rt)|Pt

∴ |P | ln(1− ε) + ln(w0(Rt[P ])) ≤ ln Φ(0)− ε · 1− ν
1 + ε

· |Pt|
z∗F

, for all P ∈ (Rt)|Pt .

Dividing by ε · 1−ν
1+ε · T and rearranging, we get

|Pt|
z∗FT

≤ (1 + ε) (ln Φ(0)− ln(w0(Rt[P ]))
ε(1− ν)T + (1 + ε)|P |

ε(1− ν)T · ln
1

1− ε , for all P ∈ (Rt)|Pt .

(10)

Since w0(Rt) = w0

(⋃
P∈(Rt)|Pt

Rt[P ]
)

=
∑
P∈(Rt)|Pt

w0 (Rt[P ]) , there is a set P̂ ∈ (Rt)|Pt
such that w0(Rt[P̂ ]) ≥ w0(Rt)

|(Rt)|Pt |
.

We apply (10) for t = tf − 1 and P̂ ∈ (Rt)|Pt . By the definition of gF (·), we have
|(Rt)|Pt | ≤ gF (|Pt|) ≤ gF (tmax). Using Φ(0) = w0(R) ≤ w0(Rt)

δ , , µ̂(Q) = |Pt|+1
T , |P̂ | < T

(as P̂ = R ∩ Pt for some R ∈ Rt), T ≥ ln(gF (tmax)/δ)
ε2 and T ≥ 1

ε2 (by assumption), and
zF∗ ≥ 1, we get (for ε ≤ 0.67)

µ̂(Q)
z∗F

≤ (1 + ε) ln(gF (tmax)/δ)
ε(1− ν)T + (1 + ε)

ε(1− ν) · ln
1

1− ε + 1
T · z∗F

≤ ε(1 + ε)
(1− ν) + (1 + ε)

ε(1− ν) · ln
1

1− ε + ε2 <
1 + 5ε
1− ν . J

Finally one can verify that the choice of T in (3) satisfies the precondition in Lemma 12.

6 Implementation of the maximization oracle

Let F = (Q,R) be a range space with VC-dim(F) = d. Recall that the maximization
oracle needs to find, for a given ν > 0 and function w : R → R+, a point p ∈ Q such that
ξw(p) ≥ (1− ν) maxq∈Q ξw(q), where ξw(p) := w(R[p]).

To implement the maximization oracle, we follow the approach in [12], based on ε-
approximations. Recall that an ε-approximation for F∗ is a finite subset of ranges R′ ⊆ R,
such that (1) holds for all q ∈ Q. We use ε := ν

2OptF and σ = o(1), and take a random sample
R′ of size N = O(d2d

ε2 log 1
εσ ) = O(d2dOpt2

F
ν2 log OptF

νσ ) from R according to the probability
density function ŵ := w/w(R) (for this, we use the sampling oracle Sample(F , ŵ)). Then
R′ is an ε-approximation with high probability. We call Subsys(F∗,R′) to obtain the set
R∗|R′ , then return the subset of ranges R′′ ∈ argmaxR′′′∈R∗

|R′
|R′′′|. Finally, we call the

oracle PointIn(F ,R′′) to obtain a point p ∈
⋂
R∈R′′ R.
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I Lemma 13. With probability Ω(1), ξ(p) ≥ (1− ν) maxq∈Q ξ(q).

I Remark. The above implementation of the maximization oracle assumes the unit-cost model
of computation and infinite precision arithmetic (real RAM). In some of the applications in
the next section, we note that, in fact, deterministic algorithms exist for the maximization
oracle, which can be implemented in the bit-model with finite precision.

7 Applications

7.1 Art gallery problem
In the art gallery problem we are given a (non-simple) polygon H with n vertices and h

holes. Two points p, q ∈ H are said to see each other, denoted by p ∼ q, if the line segment
joining them lies inside H (say, including the boundary ∂H). The objective is to find a
subset G ⊆ H such that for every point q ∈ H, there is a point p ∈ G such that p ∼ q.

Let Q = H, R = {VH(q) : q ∈ H}, where VH(q) := {p ∈ H : p ∼ q} is the visibility
region of q ∈ H. For convenience, we shall consider R as a multi-set and hence assume that
ranges in R are in one-to-one correspondence with points in H. We shall see below that the
range space F = (Q,R) satisfies (A1)–(A4).

Note that (A1) is satisfied with γ = VC-dim(F) ≤ 14 by the result of [23] for simple
polygons, while γ = O(log h) for polygons with h holes [45]. (A2) follows immediately from
the fact that each point in the polygon is seen from some vertex. (A3) is satisfied if we use
w0(R) = 1 for all R ∈ R and note that it is integrable over R as

∫
R∈R w0(R)dR = area(H)

(recall that ranges in R are in one-to-one correspondence with points in H). Now we show
that (A4) is also satisfied. Consider the randomized implementation of the maximization
oracle in Section 6. We need to show that the oracles Subsys(F∗,R′), PointIn(F ,R′) and
Sample(F , w) can be implemented in polynomial time. This is more or less standard; we
sketch it here for completeness.

It is known (see, e.g., [18]) that the subsystem oracle Subsys(F∗,R′) can be computed
efficiently, for any (finite) R′ ⊂ R, as follows. Observe that R′ is a finite set of polygons which
induces an arrangement of lines (in R2) of total complexity O(nh|R′|2). We can construct
the set of cells of this arrangement, call it cells(R′), in time O(nh|R′|2 log(nh|R′|)), and label
each cell of the arrangement by the set of visibility polygons from R′ it is contained in. Then
R∗|R′ is the set of different cell labels which can be obtained, for e.g., by a sweep algorithm
in time O(nh|R′|2 log(nh|R′|)). This argument also implies that gF∗(r) ≤ O(nhr2), and
that we can implement PointIn(F ,R′) in O(nh|R′|2 log(nh|R′|)) time. Finally, we can
implement Sample(F , ŵt) given the probability density function ŵt : R → R+ defined by
the subset Pt ⊆ Q as follows. We construct the cell arrangement cells(R), induced by the
current set Pt as described above. We first sample a cell R′ (which corresponds to an infinite
set of ranges with the same weight) with probability ŵt(R′)∑

R′∈cells(R)
ŵt(R′)

, then we sample

a point (corresponding to a range) R uniformly at random from R′. Thus we obtain the
following result from Corollary 6, in the unit-cost model.

I Corollary 14. Given a polygon H with n vertices and h holes and δ > 0, there is
a randomized algorithm that finds in poly(n, h, log 1

δ ) time a set of points in H of size
O(z∗F log z∗F · log(h+ 2)) guarding at least (1− δ) of the area of H, where z∗F is the value of
the optimal fractional solution.

We can also obtain a deterministic version of Corollary 14 in the bit model of computation.
The idea, following [38], is to express the function ξt(q) := wt(Rt[q]) as a sum of continuous
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functions, each of which is a ratio of two polynomials of two variables, namely, the x and
y-coordinates of q. Then maximizing over q amounts to solving a system of two polynomial
equations of degree poly(n, h, log 1

δ ) in two variables, which an be solved using quantifier
elimination techniques, e.g., [5, 25, 41]. However, a technical hurdle that we need to overcome
is that the required bit length may grow from one iteration to the next, resulting in an
exponential blow-up in the bit length needed for the computation. To deal with this issue,
we need to round the set Rt in each iteration so that the total bit length in all iterations
remains bounded by a polynomial in the input size.

I Corollary 15. Given a polygon H with n vertices and h holes with rational representa-
tion of maximum bit-length L and δ > 0, there is a deterministic algorithm that finds in
poly(L, n, h, log 1

δ ) time a set of points in H of size O(z∗F log(h + 2) · log(z∗F · log(h + 2)))
and bit complexity poly(L, n, h, log 1

δ ) guarding at least (1− δ) of the area of H, where z∗F is
the value of the optimal fractional solution.

7.2 Covering a polygonal region by translates of a convex polygon
Let H be a collection of (non-simple) polygons in the plane and H0 be a given full-dimensional
convex polygon. The problem is to minimally cover all the points of the polygons in H by
translates of H0, that is to find the minimum number of translates H1

0 , . . . ,H
k
0 of H0 such

that each point p ∈
⋃
H∈HH is contained in some Hi

0. The discrete case when H is a set
of points has been considered extensively, e.g., covering points with unit disks/squares [28]
and generalizations in 3D [15, 32]. Fewer results are known for the continuous case, e.g.,
[24] which considers the covering of simple polygons by translates of a rectangle8 and only
provides an exact (exponential-time) algorithm; see also [20] for another example, where it is
required to hit every polygon in H by a copy of H0 (but with rotations allowed).

This problem can be modeled as a hitting set problem in a range space F = (Q,R), where
Q is the set of translates of H0 and R :=

{
{Hi

0 ∈ Q : R ∈ Hi
0} : R ∈

⋃
H∈HH

}
. Again

considering R as a multi-set, we have R ↔
⋃
H∈HH, and we shall refer to elements of R as

sets of translates of H0 as well as points in
⋃
H∈HH. It was shown by Pach and Woeginger

[39] that VC-dim(F∗) ≤ 3 and also that F∗ admits an ε-net of size sF∗ = O( 1
ε ). As observed

in [32], this would also imply that VC-dim(F) ≤ 3 and sF = O( 1
ε ). Thus (A1) is satisfied

with γ = 3. Moreover, assuming that H is contained in a box of size D and that H0 contains
a box of size d, then (A2) is satisfied as OptF ≤ D

d . (A3) is satisfied if we use w0(R) = 1 for
all R ∈ R (which defines the area measure over R). Now we show that (A4) is also satisfied.

Consider the randomized implementation of the maximization oracle in Section 6. We
need to show that the oracles Subsys(F∗,R′), PointIn(F ,R′) and Sample(F , w) can be
implemented in polynomial time. Let m be the total number of vertices of the polygons
in H and H0. Note that for a given finite R′ ⊆ R, the set R∗|R′ is the set of all subsets of
points in R′ that are contained in the same copy of H0. Observe that each such subset is
determined by at most two points from R′ that lie on the boundary of a copy of H0. It
follows that Subsys(F∗,R′) can be implemented in O(m2|R′|2 logm) time. This argument
also shows that PointIn(F ,R′) can be implemented in the same time O(m2|R′|3) and
that gF∗(r) ≤ r2. Finally, we can implement Sample(F , ŵt) given the probability density
function ŵt : R → R+ defined by the subset Pt ⊆ Q as follows. Given the current subset
Pt ⊆ Q of translates of H0, we can find (e.g. by a sweep line algorithm) in O(m logm) time
the cells of the arrangement defined by H ∪ Pt (where a cell is naturally defined to be a

8 Note that in [24], each polygon has to be covered completely by a rectangle.
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maximal set of points in R that all belong exactly to the same polygons in the arrangement).
Let us call this set cells(R) and note that it has size O(m). We first sample a cell R′ with
probability ŵt(R′)∑

R′∈cells(R)
ŵt(R′)

, then we sample a point R uniformly at random from R′.

I Corollary 16. Given a collection of polygons in the plane H and a convex polygon H0, with
m total vertices and δ > 0, there is a randomized algorithm that finds in poly(n,m, log 1

δ )
time a set of O(z∗F ) translates of H0 covering at least (1− δ) of the total area of the polygons
in H, where z∗F is the value of the optimal fractional solution.

7.3 Polyhedral separation in Rd

Given two (full-dimensional) convex polytopes P1,P2 ⊆ Rd such that P1 ⊂ P2, it is
required to find a (separator) polytope P3 ⊆ Rd such that P1 ⊆ P3 ⊆ P2, with as few
facets as possible. This problem can be modeled as a hitting set problem in a range
space F = (Q,R), where Q is the set of supporting hyperplanes for P1 and R := {{p ∈
Q : p separates R from P1} : R ∈ ∂P2} (thus, we may assume that R ↔ ∂P2). Note that
VC-dim(F) = d (and VC-dim(F∗) = d+ 1). In their paper [8], Brönnimann and Goodrich
gave a deterministic O(d2 log OptF )-approximation algorithm, improving on earlier results
by Mitchell and Suri [37], and Clarkson [14]. It was shown in [37] that, at the cost of losing
a factor of d in the approximation ratio, one can consider a finite set Q, consisting of the
hyperplances passing through the facets of P1. We can save this factor of d by showing that
F satisfies (A1)–(A4).

Let n and m be the number of facets of P1 and P2, respectively. Then (A1) is satisfied
with γ = d as explained above. Also, (A2) is obviously satisfied since P3 = P2 is a separator
with n facets. For (A3), we use w0 as the surface area measure, i.e., w0(R′) = vold−1(R′)
for R′ ⊆ R. Now we show that (A4) also holds.

Consider the randomized implementation of the maximization oracle in Section 6. We
need to show that the oracles Subsys(F∗,R′), PointIn(F ,R′) and Sample(F , w) can be
implemented in polynomial time. Note that for a given finite R′ ⊆ R, the set R∗|R′ has
size at most g(|R′|, d + 1), and furthermore, for any hyperplane q ∈ Q, R′[q] is the set
of points in R′ separated from P1 by q. Thus, R′[q] is determined by exactly d points
chosen from R′ and the vertices of P1. It follows that the set R∗|R′ can be found (and hence
Subsys(F∗,R′) can be implemented) in time poly((n d2 + |R′|)d). This argument also shows
that PointIn(F ,R′) can be implemented in the time poly((n d2 + |R′|)d). Finally, we can
implement Sample(F , ŵt) given the probability density function ŵt : R → R+ defined by
the current subset Pt ⊆ Q as follows. We first construct the set of cells of the hyperplane
arrangement of Pt, which has complexity O(|Pt|d), in time O(|Pt|d+1); see, e.g., [4, 44]. Next,
we intersect every facet of P2 with every cell in the arrangement. This allows us to identify
the partition of ∂P2 induced by the cell arrangement; let us call it cells(R). The running
time for this is poly(|Pt|d,md). We first sample R′ with probability ŵt(R′)∑

R′∈cells(R)
ŵt(R′)

, then

we sample a point R uniformly at random from R′ (note that both volume computation and
uniform sampling can be done in polynomial time in fixed dimension).

I Corollary 17. Given two convex polytopes P1,P2 ⊆ Rd such that P1 ⊂ P2, with n and m
facets respectively and δ > 0, there is a randomized algorithm that finds in poly((nm)d, log 1

δ )
time a polytope P3 with O(z∗Fd · log z∗F ) facets separating P1 from a subset of ∂P2 of volume
at least (1− δ) of the volume of ∂P2, where z∗F is the value of the optimal fractional solution.
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