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—— Abstract
We study the optimal sample complexity of a given workload of linear queries under the con-
straints of differential privacy. The sample complexity of a query answering mechanism under
error parameter « is the smallest n such that the mechanism answers the workload with error
at most « on any database of size n. Following a line of research started by Hardt and Tal-
war [STOC 2010], we analyze sample complexity using the tools of asymptotic convex geometry.
We study the sensitivity polytope, a natural convex body associated with a query workload that
quantifies how query answers can change between neighboring databases. This is the information
that, roughly speaking, is protected by a differentially private algorithm, and, for this reason, we
expect that a “bigger” sensitivity polytope implies larger sample complexity. Our results identify
the mean Gaussian width as an appropriate measure of the size of the polytope, and show sample
complexity lower bounds in terms of this quantity. Our lower bounds completely characterize the
workloads for which the Gaussian noise mechanism is optimal up to constants as those having
asymptotically maximal Gaussian width.

Our techniques also yield an alternative proof of Pisier’s Volume Number Theorem which
also suggests an approach to improving the parameters of the theorem.
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1 Introduction

The main goal of private data analysis is to estimate aggregate statistics while preserving
individual privacy guarantees. Intuitively, we expect that, for statistics that do not depend
too strongly on any particular individual, a sufficiently large database allows computing
an estimate that is both accurate and private. A natural question then is to characterize
the sample complexity under privacy constraints: the smallest database size for which we
can privately estimate the answers to a given collection of queries within some allowable
error tolerance. Moreover, it is desirable to identify algorithms that are simple, efficient, and
have close to the best possible sample complexity. In this work, we study these questions for
collections of linear queries under the constraints of approximate differential privacy.

We model a database D of size n as a multiset of n elements (counted with repetition)
from an arbitrary finite universe Y. Each element of the database corresponds to the data
of a single individual. To define a privacy-preserving computation on D, we use the strong

* A full version of the paper is available at https://arxiv.org/abs/1612.02914.
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notion of differential privacy. Informally, an algorithm is differentially private if it has almost
identical behavior on any two databases D and D’ that differ in the data of a single individual.
To capture this concept formally, let us define two databases D and D’ to be neighboring
if we can get D’ by replacing a single element of D with another element from /. Then
differential privacy is defined as follows:

» Definition 1 ([5]). A randomized algorithm .4 that takes as input a database and outputs
a random element from the set Y satisfies (g, d)-differential privacy if for all neighboring
databases D, D’ and all measurable S C Y we have that:

P[A(D) € S] < e P[A(D') € S] + 6,
where probabilities are taken with respect to the randomness of A.

One of the most basic primitives in private data analysis, and data analysis in general, are
counting queries and, slightly more generally, linear queries. While interesting and natural in
themselves, they are also quite powerful: any statistical query (SQ) learning algorithm can
be implemented using noisy counting queries as a black box [10]. In our setting, we specify
a linear query by a function ¢: U — [0, 1] (given by a table of its values for each element
of U). Slightly abusing notation, we define the value of the query as ¢(D) = %ZeeD q(e),
where the elements of D are counted with multiplicity, and n is the size of D. For example,
when ¢: U — {0,1}, we can think of ¢ as a property defined on U and ¢(D) as the fraction
of elements of D that satisfy the property: this is a counting query. We call a set Q of linear
queries a workload and an algorithm that answers a query workload a mechanism. We denote
by Q(D) = (¢(D))qeco the vector of answers to the queries in Q. Throughout the paper, we
will use the letter m for the size of a workload Q.

Starting from the work of Dinur and Nissim [4], it is known that we cannot hope to
answer too many linear queries too accurately while preserving even a very weak notion of
privacy. For this reason, we must allow our private mechanisms to make some error. We
focus on average error (in an Lo sense). We define the average error of an algorithm A on a
query workload Q and databases of size at most n as:

1/2

- 2 1/2
err(Q, A, n) = max E Z (.A(D)qQ|q(D)) = max (E;HA(D) — Q(D)|§) ,
qeQ

where the maximum is over all databases D of size at most n, A(D), is the answer to query ¢
given by the algorithm A on input D, and expectations are taken with respect to the random
choices of A. This is a natural notion of error that also works particularly well with the
geometric tools that we use.

In this work we study sample complexity: the smallest database size which allows us to
answer a given query workload with error at most a. The sample complexity of an algorithm
A with error « is defined as:

sc¢(Q, A, ) = min{n : err(Q, A, n) < a}.

The sample complexity of answering the linear queries Q with error o under (e, §)-differential
privacy is defined by:

8Ce,5(Q, ) = inf{sc(Q, A, ) : A is (g, )-differentially private}.

The two main questions we are interested in are:
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1. Can we characterize sce 5(Q, @) in terms of a natural property of the workload Q7
2. Can we identify conditions under which simple and efficient (e, §)-differentially private
mechanisms have nearly optimal sample complexity?

We make progress on both questions. We identify a geometrically defined property of
the workload that gives lower bounds on the sample complexity. The lower bounds also
characterize when one of the simplest differentially private mechanisms, the Gaussian noise
mechanism, has nearly optimal sample complexity in the regime of constant a.

Before we can state our results, we need to define a natural geometric object associated
with a workload of linear queries. This object has been important in applying geometric
techniques to differential privacy [9, 2, 16, 15].

» Definition 2. The sensitivity polytope K of a workload Q of m linear queries is equal to
K = conv{+Q(D) : D is a database of size 1}.

From the above definition, we see that K is a symmetric (i.e. K = —K) convex polytope in
R™. The importance of K lies in the fact that it captures how query answers can change
between neighboring databases: for any two neighboring databases D and D’ of size n and
n' respectively, nQ(D) —n’Q(D’) € K. This is exactly the information that a differentially
private algorithm is supposed to hide. Intuitively, we expect that the larger K is, the larger
sce,5 (K, o) should be.

We give evidence for the above intuition, and propose the width of K in a random direction

as a measure of its “size”. Let hx be the support function of K: hi(y) = max,ecx (z,y).

For a unit vector y, hx(y) + hx(—y) is the width of K in the direction of y; for arbitrary
y, hi(ty) scales linearly with ¢ (and is, in fact, a norm). We define the £*-norm of K,
also known as its Gaussian mean width, as ¢*(K) = E[hg(g)], where g is a standard
Gaussian random vector in R™. The Gaussian mean width is closely related to the mean
width w(K) = EW, where y is distributed according to the rotation invariant
probability measure on the unit sphere. It’s easy to show that £*(K) = E||g||aw(K), where
g~ N(0,I), and E||g|l2 = ©(v/m). The Gaussian mean width of the Euclidean unit ball
B3 is ©(y/m), and, since hx(y) < hpp(y) for any y € R™ and any K C Bj", we have
0*(K) = O(y/m) for any such K.
The following theorem captures our main result.

» Theorem 3. Let O be a workload of m linear queries, and let K be its sensitivity polytope.
The following holds for all ¢ = O(1), 272 < § < 1/ and any o < %7
where C' is an absolute constant, and o(g,0) = (0.5/c + /2log (1/0))/e:
. o 6,(5 *(K) o(e,0)y/m
sees(@0) =0 (min{ FEDCLI) o1y,
o(e, 6)0*(K)? )

m3/2(log 2m)*a

west@a =

The upper bound on the sample complexity is achieved by a mechanism running in time
polynomial in m, n, and |U|. Moreover, if ¢*(K) = Q(m), then sc.5(Q,a) = G(M)

for any a < 1/C, where C is an absolute constant.

The sample complexity upper bounds in the theorem above are known from prior work:
one is given by the projection mechanism from [16], with the sample complexity upper
bound in terms of ¢*(K) shown in [6]; the other upper bound is given by the Gaussian noise
mechanism [4, 7, 5]. The main new contribution in this work are the lower bounds on the
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sample complexity. The gap between upper and lower bounds is small when £*(K) is close to
its maximal value of m. Indeed, when ¢*(K) = ©(m), our results imply that the Gaussian
noise mechanism has optimal sample complexity up to constants. This is, to the best of
our knowledge, the first example of a general geometric condition under which a simple and
efficient mechanism has optimal sample complexity up to constant factors. Moreover, in
the constant error regime this condition is also necessary for the Gaussian mechanism to be
optimal up to constants: when £*(K) = o(m) and « = (1), the projection mechanism has
asymptotically smaller sample complexity than the Gaussian mechanism.

We can prove somewhat stronger results for another natural problem in private data
analysis, which we call the mean point problem. In this problem, we are given a closed
convex set K C R™, and we are asked to approximate the mean D of the database D, where
D = {x1,...,7,} is a multiset of points in K and D = % >, x;. This problem, which will
be the focus for most of this paper, has a more geometric flavor, and is closely related to the
query release problem for linear queries. In fact, Theorem 3 will essentially follow from a
reduction from the results below for the mean point problem.

With respect to the mean point problem, we define the error of an algorithm A as:

err(K, A, n) = sup(E|.A(D) — D|[3)"/?,
D

where the supremum is over databases D consisting of at most n points from K, and the
expectation is over the randomness of the algorithm. The sample complexity of an algorithm
A with error « is defined as:

sc(K, A, &) = min{n : err(K, A,n) < a}.

The sample complexity of solving the mean point problem with error o over K is defined by:
8Ce,s (K, o) = min{sc(K, A, a) : Ais (g, d)-differentially private}.
Our main result for the mean point problem is given in the following theorem:

» Theorem 4. Let K be a symmetric convex body contained in the unit Fuclidean ball
By in R™. The following holds for all e = O(1), 27" < § < 1/p' T2 and any
a < %, where C is an absolute constant, and o(g,d) = (0.5y/ + /2log (1/0))/e:

sces(K,a) = O (min{a(‘g"zf*(K), U(s,i)\/ﬁ}) ;

B o(e,0)l*(K)
sce,s (K, a) = Q <(log2m)2a> .

The upper bound on the sample complexity is achieved by a mechanism running in time poly-

nomial in m, n, and [U|. Moreover, when £*(K) = Q(y/m), then sc. s(K,a) = @<M>

«
for any a <1/C, where C is an absolute constant.

The upper bounds again follow from prior work, and in fact are also given by the projection
mechanism and the Gaussian noise mechanism, which can be defined for the mean point

problem as well. Notice that the gap between the upper and the lower bound is on the order

2
%. If the lower bound was valid for all values of the error parameter « less than a

£ (K)
Cv/m(log 2m)?’
optimal sample complexity for the mean point problem for all constant «. Unfortunately,

fixed constant, rather than for o < Theorem 4 would nearly characterize the

the restriction on « is, in general, necessary (up to the logarithmic terms) for lower bounds
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on the sample complexity in terms of £*(K). For example, we can take K = B}, i.e. a
Euclidean ball in R™ with radius . Then, £*(K) = ©(yy/m), but the sample complexity is
0 when a > =, since the trivial algorithm which ignores the database and outputs 0 achieves
error . Thus, a more sensitive measure of the size of K is necessary to prove optimal lower
bounds. We do, nevertheless, trust that the techniques introduced in this paper bring us
closer to this goal.

We conclude this section with a high-level overview of our techniques. Our starting point
is a recent tight lower bound on the sample complexity of a special class of linear queries: the
1-way marginal queries. These queries achieve the worst case sample complexity for a family
of m linear queries: Q(y/m/a) [3, 22]. The sensitivity polytope of the 1-way marginals is the
cube [—1,1]™, and it can be shown that the lower bound on the sample complexity of 1-way
marginals implies an analogous lower bound on the sample complexity of the mean point
problem with K = Q™ = [-1/y/m,1/+/m]™. For the mean point problem, it is easy to see
that when K’ C K, the sample complexity for K’ is no larger than the sample complexity for
K. Moreover, we can show that the sample complexity of any projection of K is no bigger
than the sample complexity of K itself. So, our strategy then is to find a large scaled copy of
Q™' , m' < m, inside a projection of K onto a large dimensional subspace whenever £* (K) is
large. We solve this geometric problem using deep results from asymptotic convex geometry,
namely the Dvoretzky criterion, the low M* estimate, and the M M* estimate.

We note that in [3], the authors mention a similar idea of showing a lower bound on the
sample complexity of an arbitrary family of counting queries Q by embedding the 1-way
marginals into Q. For average error, their approach gives a lower bound of Q(@) (ignoring

the dependence on € and 4) for any a < %\/% , where d is the the VC-dimension of the set
system {S, : e € U} and S. = {g € Q: q(e) = 1}. This lower bound is at least as strong as
our lower bounds, since % < C/d for a sufficiently large constant C'. (This inequality is a
well-known consequence of Dudley’s chaining inequality and estimates on entropy numbers in
terms of VC-dimension, e.g. Theorem 14.12. in [11].) Our results, however, hold for arbitrary
linear queries, and not just counting queries. Moreover, our lower bound is in terms of the
efficiently computable quantity £*(K), while there is evidence that computing VC-dimension
is hard [18]. Thus, our lower bound can be seen as an efficiently computable relaxation of
the VC-dimension lower bound, and also as a generalization of it to linear queries.

Our techniques also yield an alternative proof of the volume number theorem of Milman
and Pisier [14]. Besides avoiding the quotient of subspace theorem, our proof yields an
improvement in the volume number theorem, conditional on the well-known conjecture (see
e.g. Chapter 6 in [1]) that any symmetric convex body K has a position (affine image) TK
for which ¢*(TK)¢{(TK) = O(m~+/log2m), where ¢(K) is the expected K-norm of a standard
Gaussian. More details about this connection are given in Section 6.

1.1 Prior Work

Most closely related to our work are the results of Nikolov, Talwar, and Zhang [16], who gave
a private mechanism (also based on the projection mechanism, but more involved) which has
nearly optimal sample complexity (with respect to average error), up to factors polynomial
in logm and log [U|. This result was subsequently improved by Nikolov [15], who showed
that the logm factors can be replaced by logn. While these results are nearly optimal for
subconstant values of the error parameter «, i.e. the optimality guarantees do not depend
on 1/a, factors polynomial in log [U| can be prohibitively large. Indeed, in many natural
settings, such as that of marginal queries, |U| is exponential in the number of queries m, so
the competitiveness ratio can be polynomial in m.
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The line of work that applies techniques from convex geometry to differential privacy
started with the beautiful paper of Hardt and Talwar [9], whose results were subsequently
strengthened in [2]. These papers focused on the “large database” regime (or, in our language,
the setting of subconstant error), and pure differential privacy (§ = 0).

2 Preliminaries

We begin with the introduction of some notation. Throughout the paper we use C, Cf,
etc., for absolute constants, whose value may change from line to line. We use (-, -) for the
standard inner product on R™, || - ||z for the standard Euclidean norm, and || - ||; for the
{1 norm in R™. We define Bf* and BJ* to be the ¢; and ¢ unit balls in R™ respectively,
while Q™ = [—\/—%, \/%]m C R™ will refer to the m-dimensional hypercube, normalized to
be contained in the unit Euclidean ball. We use I,,, for the identity operator on R™, as well
as for the m x m identity matrix. For a given subspace E, we define IIg: R™ — R™ as
the orthogonal projection operator onto E. Moreover, when T: £ — F' is a linear operator
between the subspaces E, FF C R™, we define ||T|| = max{||Tx||2 : ||x]l2 = 1} as its operator
norm, which is also equal to its largest singular value o1(T"). For the diameter of a set K
we use the nonstandard, but convenient, definition diam K = max {||z||2 : « € K}. For sets
symmetric around 0, this is equivalent to the standard definition, but scaled up by a factor
of 2. We use N(u, ) to refer to the Gaussian distribution with mean p and covariance 3,
and we use the notation x ~ N(u,X) to denote that z is distributed as a Gaussian random
variable with mean g and covariance ¥. For an m x m symmetric matrix (or equivalently a
self-adjoint operator from ¢5* to £5*) A we use A = 0 to denote that A is positive semidefinite,
ie. (z, Az) > 0 for any x € R™. For positive semidefinite matrices/operators A, B, we use
the notation A < B to denote B — A > 0.

2.1 Convex Geometry

In this section, we outline the main geometric tools we use in later sections. For a more
detailed treatment, we refer to the lecture notes by Vershynin [23] and the books by Pisier [21]
and Artstein-Avidan, Giannopoulos, and Milman [1].

Throughout, we define a conver body K as a compact subset of R” with non-empty
interior. A convex body K is (centrally) symmetric if and only if K = —K. We define the
polar body K° of K as: K° ={y: (x,y) <1 Vz € K}. The following basic facts are easy to
verify and very useful.

» Fact 5. For convex bodies K, L CR™, K C L < L° C K°.

» Fact 6 (Section/Projection Duality). For a convex body K C R™ and a subspace E C
R™:

1. (KNE) =IIg(K°);

2. Ig(K))°=K°NE.

In both cases, the polar is taken in the subspace E.

» Fact 7. For any invertible linear map T and any convez body K, T(K)° = T~*(K°),
where T ~* is the inverse of the adjoint operator T*.

A simple special case of Fact 7 is that, for any convex body K, (rK)° = %KO. Using this
property alongside Fact 5 and Fact 6, we have the following useful corollary.

» Corollary 8. For a convex body K C R™ and E C R™ a subspace with k = dim E, the
following two statements are equivalent:
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2. K°NnEC %(ng NE),
where, as before, taking the polar set is considered in the subspace E. Notice that the second
statement is also equivalent to diam(K° N E) < 1.

Our work relies on appropriately quantifying the “size” of (projections and sections of)
a convex body. It turns out that, for our purposes, the right measure of size is related to
the notion of width, captured by the support function. Recall from the introduction that the
support function of a convex body K C R™ is given by hk(y) = max,ck (x,y) for every
y € R™.

The support function is intimately related to the Minkowski norm | - ||k, defined for a
symmetric convex body K C R™ by ||z||x = min{r > 0:z € rK}, for every z € R™. It
is easy to verify that || - ||k is indeed a norm. The support function hg is identical to the
Minkowski norm of the polar body K*° (which is also the dual norm to |- ||x): hx (y) = ||yl ko
for every y € R™.

Now we come to the measure of the “size” of a convex body which will be central to our
results: the Gaussian mean width of the body, defined next.

» Definition 9. The Gaussian mean width and Gaussian mean norm of a symmetric convex
body K C R™ are defined respectively as:

*(K) = Ellgllke = Elhk(9)], U(K) = Ellgll,
where g ~ N(0, I,,,) is a standard Gaussian random variable.

The next lemma gives an estimate of how the mean width changes when applying a linear
transformation to K. The lemma is standard and the proof is deferred to the full version of
the paper.

» Lemma 10. For any symmetric conver body K C R™, and any linear operator T': (5" — £5*:
C(T(K)) < |77 (K).

Similar to approaches in previous works ([9], [16]), we exploit properties inherent to a
specific position of K to prove lower bounds on its sample complexity.

» Definition 11 (¢-position). A convex body K C R™ is in ¢-position if for all linear operators
T: 05 — 09

C(K) - U(K) < (T(K)) - ((T(K)).

Clearly, K is in f-position if and only if K° is in ¢-position, since ¢*(K) = ¢(K°) for
any convex body K. Note further that the product £*(K) - ¢(K) is scale-invariant, in the
sense that £*(rK) - (rK) = ¢*(K) - £(K) for any nonnegative real r. This is because, for any

x,y € R™, x|k = %HxHK, and h,.x(y) = rhi(y), so £*(rK) = rf*(K) and {(rK) = %K(K).

We will relate the Gaussian mean width of K to another measure of its size, and the size
of its projections and sections, known as Gelfand width. A definition follows.

» Definition 12 (Gelfand width). For a symmetric convex body K C R™, the Gelfand width
of order k of K (with respect to the ¢5 norm) is defined as:

cr(K) = i%finf{r KNECr(ByNE)} = i%fsup{HzHg cx € KNEY,

where the first infimum is over subspaces E C R™ of co-dimension at most k — 1 (i.e. of
dimension at least m — k 4+ 1). When k > m, we define ¢;(K) = 0.

45:7

SoCG 2017



45:8

Lower Bounds for Differential Privacy from Gaussian Width

Note that c;(K) = infg diam(K N E), where the infimum is over subspaces F C R™ of
codimension at most k — 1. Observe also that for any K, ¢;(K) is non-increasing in k. It is
well-known that the infimum in the definition is actually achieved [19].

2.2 Known Bounds

In this section, we recall some known differentially private mechanisms, with bounds on their
sample complexity, as well as a lower bound on the optimal sample complexity. We start
with the lower bound:

» Theorem 13 ([3, 22]). For alle = O(1), 279 < § < 1/n'*2W and o < 1/10:

(1)

SCes (QM, @) = Q(mlogl/d)

ag

Next we recall one of the most basic mechanisms in differential privacy, the Gaussian
mechanism. A proof of the privacy guarantee, with the constants given below, can be found
in [16].

» Theorem 14 (Gaussian Mechanism [4, 7, 5]). Let D = {z1,...,x,} be such that Vi :
llzilla < 0. If w~ N(0,0(g,0)%0%1,), o(s,0) = (/e +2/2log(1/d))/e and I,, € R™*™

is the identity matriz, then the algorithm Agns defined by Agr (D) = D+ 2w is (e,0)-
differentially private.

» Corollary 15. For any symmetric convex K C BY':

1
sce,s(K,a) = O (mlog /6> :
(673

Ve+24/2log (1/6)
g

In the rest of the paper we will use the notation o(e,0) = from the

theorem statement above.
Finally, we also present the projection mechanism from [16], which post-processes the
output of the Gaussian mechanism by projecting onto K.

» Theorem 16 (Projection Mechanism [16, 6]). Let K C BY" be a symmetric convez body,
and define Apps to be the algorithm that, on input D = {x1,...,x,} C K, outputs:

g =argmin{||g —gl3: § € K},

where §j = D + %w, w~ N(0,0(g,6)%L,). Then Apys satisfies (g, 0)-differential privacy and
has sample complexity:

se(K, Apyr,a) = O ("(“W(K)> .

o?

» Corollary 17. For any symmetric conver K C BY':

sces(K, o) =0 <U(E’6)€*(K)) .

a?
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3 Basic Properties of Sample Complexity

In this section, we prove some fundamental properties of sample complexity that will be
extensively used in later sections. The proofs Lemmas 18,20 and Theorem 23 are deferred to
the full version of the paper.

» Lemma 18. L C K = Va € (0,1) : sce5(L, ) < sc. (K, ).

» Corollary 19. For all e = O(1), 279 < § < 1/n' 20 and o < 1/10:

log1/6
50675(B£”7a) :Q(Tnog/>

Qe
Proof. Since @™ C B, this follows directly from Lemma 18 and Theorem 13. <

» Lemma 20. For any a € (0,1), any linear operator T: R™ — R™ and any symmetric
conver body K C R™:

sce s (K, a) > sces(T(K),a- ||T|).
» Corollary 21. For any t > 0:
sce s (K, ta) = sce 5(K, o).

Proof. Taking T = tI,, in Lemma 20, where I,,, is the identity on R"", the lemma implies
sCe,s (LK, tar) < sce (K, ). Since this inequality holds for any ¢ and K, we may apply it to
K'=tK and t' = 1/t, and we get sc. 5(K,a) = sc. s((1/t)tK, (1/t)ta) < sc. s(tK, ta). <«

Since for any subspace E of R™, the corresponding orthogonal projection I1g has operator
norm 1, we also immediately get the following corollary of Lemma 20:

» Corollary 22. For any subspace E:
sce s(K,a) > sce s(Ilg(K), o).

In the next theorem, we combine the lower bound in Theorem 19 and the properties
we proved above in order to give a lower bound on the sample complexity of an arbitrary
symmetric convex body K in terms of its geometric properties. In the following sections we
will relate this geometric lower bound to the mean Gaussian width of K.

» Theorem 23 (Geometric Lower Bound). For all e = O(1), 27 < § < 1/n'T2W) | any
conver symmetric body K CR™, any 1 <k <m and any o < 1/(10¢;(K°)):

V1og1/6 . vVm—k+1
ag cx(K°) '

sce s (K,a) =Q <

4 Optimality of the Gaussian Mechanism

In this section, we present the result that the Gaussian mechanism is optimal, up to constant
factors, when K C Bj" is sufficiently large. More specifically, if the Gaussian mean width of
K is asymptotically maximal, then we can get a tight lower bound on the sample complexity
of the Gaussian mechanism. This is summarized in the theorem below.
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» Theorem 24. For all ¢ < O(1), 279 < § < 1/n'T2W) | sufficiently small constant o,
and any symmetric convex body K C B, if

then:

log1/6
st 5K 0) = @<m0g/>
Qe

and sc. s(K, @) is achieved, up to constants, by the Gaussian mechanism.

By Theorem 15 we have an upper bound for the Gaussian mechanism defined previously.
To prove its optimality, we use a classical result from convex geometry, known as Dvoretzky’s
criterion, to show a matching lower bound for the sample complexity. This result relates the
existence of a nearly-spherical section of a given convex body to the Gaussian mean norm. It
was a key ingredient in Milman’s probabilistic proof of Dvoretzky’s theorem: see Matousek’s
book [12] for an exposition.

» Theorem 25 ([13]; Dvoretzky's Criterion). For every symmetric convexr body K C R™ such
that BY* C K, and every < 1, there exists a constant ¢(8) and a subspace E with dimension
dim E > ¢(B)U(K)? for which:
U(K) U(K)

1-8)—=BI'NECKNEC(1 ——<BI'"NE.

( 6) \/m 2 = = ( + B) \/TH 2
Proof of Theorem 24. Given the matching upper bound on sample complexity in The-
orem 15, it suffices to show the equivalent lower bound, namely that:

sce s (K, a) = Q <m10g1/6> .
ae
To this end, we will show that there exists a k < (1 — ¢)m + 1, for an absolute constant ¢, so
that ¢ (K°) = O(1). Then the lower bound will follow directly from Theorem 23.
We will prove the claim above by applying Dvoretzky’s criterion to K°. By Theorem 5,
K C B = BI* C K°. We can then apply Dvoretzky’s criterion with § = 1/2, ensuring
that there exists a subspace E of dimension dim E > ¢(1/2)¢(K°)? for which:

L(K°)
o C m .
K°NEC QWBQ NE

Let us define k = m—dim E+1; then k < m—c(1/2)((K°)?+1 = m—c(1/2)¢*(K)?+1. Since,

by assumption £*(K) = Q(m), there exists a constant ¢ so that k < (1 — ¢)m + 1. Finally,
by the definition of Gelfand width, ¢ (K°) < ZQ(KTW) = O(1), as desired. This completes the
proof. |

5 Gaussian Width Lower Bounds in £-position

In Section 4 we showed that the Gaussian Mechanism is optimal when the Gaussian mean
width of K is asymptotically as large possible. Our goal in this and the following section is to
show general lower bounds on sample complexity in terms of £*(K). This is motivated by the
sample complexity upper bound in terms of £*(K) provided by the projection mechanism.
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It is natural to follow the strategy from Section 4: use Dvoretzky’s criterion to find a
nearly-spherical projection of K of appropriate radius and dimension. An inspection of the
proof of Theorem 24 shows that the sample complexity lower bound we get this way is
Q (%) (ignoring the dependence on ¢, §, and « here, and in the rest of this informal

discussion). Recall that we are aiming for a lower bound of Q(¢*(K)), so we are off by a
factor of %. Roughly speaking, the problem is that Dvoretzky’s criterion does too much:
it guarantees a spherical section of K°, while we only need a bound on the diameter of the
section. In order to circumvent this difficulty, we use a different result from asymptotic
convex geometry, the low M *-estimate, which bounds the diameter of a random section of
K°, without also producing a large ball contained inside the section. A technical difficulty is
that the resulting upper bound on the diameter is in terms of the Gaussian mean K-norm,
rather than the (reciprocal of the) mean width. When K is in ¢-position, this is not an
issue, because results of Pisier, Figiel, and Tomczak-Jaegermann show that in that case
UK)*(K) = O(logm). In this section we assume that K is in ¢-position, and we remove
this requirement in the subsequent section.
The main result of this section is summarized below.

» Theorem 26. For all ¢ = O(1), 27 < § < 1/n'*t2W) | all symmetric convex bodies

K CR™ in £-position, and for a < C\/%(%, where C' is an absolute constant:
y9ogl/o (*(K
sces (K, ) = os1/ EE) .
' ae log 2m

The following two theorems are the main technical ingredients we need in the proof of
Theorem 26.

» Theorem 27 ([8], [20]; M M* Bound). There exists a constant C' such that for every
symmetric conver body K C R™ in £-position:

UK) LK) < C-mlog2m.

It is an open problem whether this bound can be improved to m+/log 2m. This would be
tight for the cube @™. This improvement would lead to a corresponding improvement in our
bounds.

» Theorem 28 ([17]; Low M™* estimate). ’ There exists a constant C' such that for every

symmetric conver body K C R™ there exists a subspace E C R™ with dim E = m — k for
which:

(K)
7

Combining Theorems 27 and 28, we get the following key lemma.

diam(KNE)<C-

» Lemma 29. There exists a constant C' such that for every symmetric convex body K C R™
in C-position, and every 8 € (0,1 —1/m), there exists a subspace E of dimension at least fm
satisfying:

log 2
diam(K N E) < Cm

VT3 U(K)
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Proof. Let k = |(1 — 8)m| > 1. Using the low M* estimate on K, there exists a subspace
E with dim E = m — k = [8m] for which:

t(K)
e

By the M M* upper bound, since K is in ¢-position, we have that:

diam (KNE)<C -

mlog2m

g*(K) Wa

<(Cy-

and, combining the two inequalities, we get that:

mlog2m <C vmlogm
VE-UK) ~  VI-B-UK)

for an appropriate constant C. This completes the proof. <

diam(K n E) S 0102

The proof of the desired lower bound now follows easily from this lemma.
Proof of Theorem 26. By Theorem 23, it suffices to show that

m \/m_9<£*(K)).

ey cp(K°) " \log2m

(2)

Indeed, if k£* is the value of k for which the maximum on the left hand side is achieved, then

7% is a lower bound on the sample complexity for all a < 1/(10¢x-(K°)), and by (2):

1 —Q( *(K) )—Q( *(K) )
10cy- (K°) vVm—k*+1-log2m/) vm -log2m )’
In the rest of the proof, we establish (2).

Since K (and thus also K°) are in ¢-position by assumption, from Lemma 29 applied to
K° we have that there exists a subspace E such that dim £ > m/2 and:

diam(K° N E) = O (@f)m) 0 (@l&ifm> .

Setting kg = m —dim E+1 < m/2+1, and because ¢, (K°) < diam(K° N E) by definition,
we get that:

m\/m> Vdim E Q(E*(K)>’

BT T p(K°) < diam(K° N E) log 2m

as desired. <

6 Gaussian Width Lower Bounds for Arbitrary Bodies

In this section, we remove the assumption that K is in ¢-position from the previous section.
Instead, we use a recursive charging argument in order to reduce to the ¢-position case. The
resulting guarantee is worse than the one we proved for bodies in ¢-position by a logarithmic
factor.

The main lower bound result of this section is the following theorem.
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» Theorem 30. For all e = O(1), 27 < § < 1/n'+W) | any symmetric convex body

K CR™, and any a < %, where C is an absolute constant:

see (K, a) = 0 ("@‘”“K)) .

(log 2m)%a

The lower bound follows from the geometric lemma below, which may be of independent
interest.

» Lemma 31. There exists a constant C such that, for any symmetric convex body K C R™,

0*(K) < C(log 2m) (Z \/501+1(K)> . (3)

Lemma 31 is closely related to the volume number theorem of Milman and Pisier [14],
which states that the inequality (3) holds with ﬁ replaced by the volume number
v;(K), defined as:

vol(Il g (K))'/
Vi K = su =y
) = o ol(Ilg (By))

where the supremum is over subspaces F of R™. Inequality (3) is stronger than the volume
number theorem, because m < v(K). Indeed, setting r = ﬁ, by Theorem 8
and the definition of Gelfand width we have that there exists a subspace E of dimension i
such that rIg(BY) C UK. Therefore, vol(Ilg(K)) > r® vol(Ilg(B*)), which implies the
desired inequality.

Even though the volume number theorem is weaker than (3), the proof given by Pisier in
his book [21], with minor modifications, appears to yield the stronger inequality we need.
In the full version of the paper we give an alternative proof, which only uses the low M*
estimate, the M M* estimate, and elementary linear algebra.

Proof of Theorem 30. As in the proof of Theorem 26, it is sufficient to prove that:

m \/m——/m:9<(£*(K) )

et ek (K°) log 2m)?

(4)

But this inequality follows easily from Lemma 31 and the trivial case of Holder’s inequality:

* - ; (o) m . 1 . mnixL
t(K) < C(log2m) <; Vi - Cm—i—i-l(KO)) = Cllos2m) (Z Z) <i1 C”L_”l(KO))

=1

= O((log 2m)?) - (m’;{x ﬂ) .

=1 Cm—i+1(K°)
Then, the proof of the theorem follows from (4) analogously to the proof of Theorem 26. <«
We now have everything in place to prove our main result for the mean point problem.

Proof of Theorem 4. The upper bounds on sample complexity follow from Theorem 14,
Theorem 15, Theorem 16, and Theorem 17. The lower bounds follow from Theorem 30. The
statement after “moreover” follows from Theorem 15 and Theorem 24. <
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7 From Mean Point to Query Release

All the bounds we proved so far were for the mean point problem. In this section we show
reductions between this problem, and the query release problem, which allow us to translate
our lower bounds to the query release setting and prove Theorem 3. We will show that the
problem of approximating Q(D) for a query workload Q under differential privacy is nearly
equivalent to approximating the mean point problem with universe K’ = LmK , where K is
the sensitivity polytope of Q. We state this reduction next, and defer its proof to the full
version of the paper.

» Lemma 32. Let Q be a workload of m linear queries over the universe U with sensitivity
polytope K. Define K' = -— K. Then, we have the inequalities:

vm
sce,5(Q, ) <sces(K', ) -
sce,s(K', a) < max {sc%,%(g, a/d), 16(112;;1(}()} - -

Moreover, we can use an (g,9)-differentially private algorithm A’ as a black box to get an
(¢, 0)-differentially private algorithm A such that sc(Q, A, a) = sc(K', A',a). A makes a
single call to A’, and performs additional computation of worst-case complexity O(mn), where
n 1s the size of the database.

We also use a simple lemma that relates the sample complexity at an error level « to the
sample complexity at a lower error level o/ < a.. The proof is a padding argument and can
be found in [22].

» Lemma 33. For any workload Q, any 0 < o < a < 1, and any privacy parameters €, 0,
we have

«a
SC€,5<Q7 O/) =0 (@) : SCE,§(Q7a>7
for an absolute constant C.

We are now ready to finish the proof of our main result for the query release problem.

Proof of Theorem 3. The upper bounds on sample complexity follow from the upper bounds
in Theorem 4 together with Lemma 32.

Denote K' = ﬁK, and let o = C\/T%((lgg%m)Q = Cmilo(gKZ)m)Q be the smallest error
parameter for which Theorem 30 holds. Then, by Theorem 30 and Lemma 32:

%}:Q(\/m)

It is easy to show that sce 5(Q, ag) = Q(diam(K')/(ag/m)) for all sufficiently small ¢ and 6.
Therefore, we have:

max {SCE}(;(Q, ap),

vm(log 2m)?

By Lemma 33, we get that for any a < ap the sample complexity is at least:
o(g,0)0"(K)ag\ Q o(e, 0)0*(K)?

vm(log2m)2a ) = \m3/2(log2m)ia )

An analogous proof, with ag = 1/C set to the smallest error parameter for which
Theorem 24 holds, establishes the statement after “moreover”. <

sce,5(Q, ap) = Q (CM“K)> :

SCe,5(Q,a) = Q (



A. Kattis and A. Nikolov

—— References

1

10

11

12

13

14

15

16

Shiri Artstein-Avidan, Apostolos Giannopoulos, and Vitali D. Milman. Asymptotic geo-
metric analysis. Part I, volume 202 of Mathematical Surveys and Monographs. American
Mathematical Society, Providence, RI, 2015. doi:10.1090/surv/202.

Aditya Bhaskara, Daniel Dadush, Ravishankar Krishnaswamy, and Kunal Talwar. Uncon-
ditional differentially private mechanisms for linear queries. In Proceedings of the 44th
Symposium on Theory of Computing, STOC’12, pages 1269-1284, New York, NY, USA,
2012. ACM. doi:10.1145/2213977.2214089.

Mark Bun, Jonathan Ullman, and Salil Vadhan. Fingerprinting codes and the price of
approximate differential privacy. In Proceedings of the 46th Annual ACM Symposium on
Theory of Computing, pages 1-10. ACM, 2014.

Irit Dinur and Kobbi Nissim. Revealing information while preserving privacy. In Proceed-
ings of the 22nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, pages 202-210. ACM, 2003.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In Theory of Cryptography Conference, pages 265-284.
Springer, 2006.

Cynthia Dwork, Aleksandar Nikolov, and Kunal Talwar. Using convex relaxations for
efficiently and privately releasing marginals. In 80th Annual Symposium on Computational
Geometry, SOCG’14, Kyoto, Japan, June 08-11, 201}, page 261. ACM, 2014. doi:10.
1145/2582112.2582123.

Cynthia Dwork and Kobbi Nissim. Privacy-preserving datamining on vertically partitioned
databases. In Annual International Cryptology Conference, pages 528-544. Springer, 2004.
T. Figiel and Nicole Tomczak-Jaegermann. Projections onto Hilbertian subspaces of Banach
spaces. Israel J. Math., 33(2):155-171, 1979. doi:10.1007/BF02760556.

Moritz Hardt and Kunal Talwar. On the geometry of differential privacy. In Proceedings of
the 42nd ACM Symposium on Theory of Computing, STOC’10, pages 705714, New York,
NY, USA, 2010. ACM. doi:10.1145/1806689.1806786.

Michael Kearns. Efficient noise-tolerant learning from statistical queries. J. ACM,
45(6):983-1006, 1998. doi:10.1145/293347.293351.

Michel Ledoux and Michel Talagrand. Probability in Banach spaces. Classics in Math-
ematics. Springer-Verlag, Berlin, 2011. Isoperimetry and processes, Reprint of the 1991
edition.

Jit{ Matousek. Lectures on discrete geometry, volume 212 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 2002. doi:10.1007/978-1-4613-0039-7.

V.D. Milman. A new proof of A. Dvoretzky’s theorem on cross-sections of convex bodies.
Funkcional. Anal. i PriloZen., 5(4):28-37, 1971.

V.D. Milman and G. Pisier. Gaussian processes and mixed volumes. Ann. Probab.,
15(1):292-304, 1987. URL: http://links. jstor.org/sici?sici=0091-1798(198701)15:
1<292:GPAMV>2.0.C0;2-A&origin=MSN.

Aleksandar Nikolov. An improved private mechanism for small databases. In Automata,
Languages, and Programming — 42nd International Colloquium, ICALP 2015, Kyoto, Ja-
pan, July 6-10, 2015, Proceedings, Part I, volume 9134 of Lecture Notes in Computer
Science, pages 1010-1021. Springer, 2015. doi:10.1007/978-3-662-47672-7_82.
Aleksandar Nikolov, Kunal Talwar, and Li Zhang. The geometry of differential privacy:
the sparse and approximate cases. In Symposium on Theory of Computing Conference,
STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 351-360. ACM, 2013. doi:10.
1145/2488608.2488652.

45:15

SoCG 2017


http://dx.doi.org/10.1090/surv/202
http://dx.doi.org/10.1145/2213977.2214089
http://dx.doi.org/10.1145/2582112.2582123
http://dx.doi.org/10.1145/2582112.2582123
http://dx.doi.org/10.1007/BF02760556
http://dx.doi.org/10.1145/1806689.1806786
http://dx.doi.org/10.1145/293347.293351
http://dx.doi.org/10.1007/978-1-4613-0039-7
http://links.jstor.org/sici?sici=0091-1798(198701)15:1<292:GPAMV>2.0.CO;2-A&origin=MSN
http://links.jstor.org/sici?sici=0091-1798(198701)15:1<292:GPAMV>2.0.CO;2-A&origin=MSN
http://dx.doi.org/10.1007/978-3-662-47672-7_82
http://dx.doi.org/10.1145/2488608.2488652
http://dx.doi.org/10.1145/2488608.2488652

45:16

Lower Bounds for Differential Privacy from Gaussian Width

17

18

19

20

21

22

23

Alain Pajor and Nicole Tomczak-Jaegermann. Subspaces of small codimension of finite-
dimensional Banach spaces. Proc. Amer. Math. Soc., 97(4):637-642, 1986. doi:10.2307/
2045920.

Christos H. Papadimitriou and Mihalis Yannakakis. On limited nondeterminism and the
complexity of the V-C dimension. J. Comput. Syst. Sci., 53(2):161-170, 1996. doi:10.
1006/jcss.1996.0058.

Allan Pinkus. n-widths in approzimation theory, volume 7 of Ergebnisse der Mathematik
und threr Grenzgebiete (3) [Results in Mathematics and Related Areas (8)]. Springer-Verlag,
Berlin, 1985. doi:10.1007/978-3-642-69894-1.

G. Pisier. Sur les espaces de Banach K-convexes. In Seminar on Functional Analysis,
1979-1980 (French), pages Exp. No. 11, 15. Ecole Polytech., Palaiseau, 1980.

Gilles Pisier. The volume of convex bodies and Banach space geometry, volume 94 of
Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1989. doi:
10.1017/CB09780511662454.

Thomas Steinke and Jonathan Ullman. Between pure and approximate differential privacy.
CoRR, abs/1501.06095, 2015. URL: http://arxiv.org/abs/1501.06095.

R. Vershynin. Lectures in geometric functional analysis. 2009. URL: http://
www-personal.umich.edu/~romanv/papers/GFA-book.pdf.


http://dx.doi.org/10.2307/2045920
http://dx.doi.org/10.2307/2045920
http://dx.doi.org/10.1006/jcss.1996.0058
http://dx.doi.org/10.1006/jcss.1996.0058
http://dx.doi.org/10.1007/978-3-642-69894-1
http://dx.doi.org/10.1017/CBO9780511662454
http://dx.doi.org/10.1017/CBO9780511662454
http://arxiv.org/abs/1501.06095
http://www-personal.umich.edu/~romanv/papers/GFA-book.pdf
http://www-personal.umich.edu/~romanv/papers/GFA-book.pdf

	Introduction
	Prior Work

	Preliminaries
	Convex Geometry
	Known Bounds

	Basic Properties of Sample Complexity
	Optimality of the Gaussian Mechanism
	Gaussian Width Lower Bounds in ell-position
	Gaussian Width Lower Bounds for Arbitrary Bodies
	From Mean Point to Query Release

