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—— Abstract

Hilbert geometry is a metric geometry that extends the hyperbolic Cayley-Klein geometry. In this
video, we explain the shape of balls and their properties in a convex polygonal Hilbert geometry.
First, we study the combinatorial properties of Hilbert balls, showing that the shapes of Hilbert
polygonal balls depend both on the center location and on the complexity of the Hilbert domain
but not on their radii. We give an explicit description of the Hilbert ball for any given center
and radius. We then study the intersection of two Hilbert balls. In particular, we consider the
cases of empty intersection and internal/external tangencies.
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1 Introduction: Hilbert geometry

Hilbert geometry is a projective geometry relying on the properties of the cross-ratio:

» Definition 1 (Cross-ratio). For four collinear points a, b, ¢, d the cross ratio is defined as
follows:

[lacllllbd]|

a,bye,d) = ———— 1
(a:bie.d) = aaloe] W

The cross-ratio is an invariant measure under perspective transformation:

» Property 2 (Projective invariance of the cross-ratio). Given four points a,b,c,d and
A, B,C, D their images through a projective transformation, (a,b;c,d) = (A, B;C, D). [5]

In a Hilbert geometry, the distance between two points is defined using the cross-ratio as
follows:

» Definition 3 (Hilbert distance). A Hilbert distance is defined in the interior of a convex
bounded domain C. Given two distinct points, a and b of the domain, the distance is defined
as follows:

duc(a,b) = log((a,b; A, B)) (2)

where (a, b; A, B) is the cross-ratio where A and B denote the intersection points of line (a, b)
with the domain. By definition, dgg(z,z) = 0 for all x € C.
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Figure 1 Left: In blue, two Hilbert balls in a circular domain. Right: In blue, three Hilbert balls
in a polygonal convex domain.

» Property 4 (Properties of the Hilbert distance). Given two points a and b.
The Hilbert distance is a signed distance: dgg(a,b) = —dpa(b, a).
dug(a,a) =0 (law of the indiscernibles).
When a is on the boundary of the convex, Vb € C,dya(a,b) = co.
|drc| respects the triangular inequality and therefore |dpc| is a metric distance [1].

A key property in Hilbert geometry is that shortest-path geodesics are straight lines. The
Klein disk representation of hyperbolic geometry is an example of Hilbert geometry for the
unit disk (convex and smooth) domain.

In this work, we consider convex polygonal Hilbert geometries, that is, Hilbert geometries
defined on a convex polygonal domain. C now refers to a convex polygon with s vertices:
e1,..es. The distance between two points p and ¢ in this domain is noted d¢(p,q) . The ball
of radius r and center ¢ is denoted by B(c,r). The sphere is denoted by S(c,r). See [4] for
an application of Hilbert geometry to clustering in the open probability simplex.

2 Combinatorial properties of Hilbert balls

In Klein ball hyperbolic geometry or Cayley-Klein hyperbolic geometry, the balls have the
shape of (Euclidean) Mahalanobis balls with displaced centers, see [2, 3]. To contrast with
this smooth shape representation of balls, let us observe that when the domain is a convex
polygon, the shapes of Hilbert balls are (Euclidean) polygons.

» Definition 5 (Rays). Given a center point ¢ in the domain, line (c,e;),i € [s] = {1,...,s}
is a ray.

» Lemma 6 (Description of a Hilbert ball). B(c,r) is a Euclidean polygon with at most 2s
edges and at least s edges. Each vertex of B(c,r) belongs to a ray.

Proof. We first partition the polygonal domain with s to 2s triangles, by tracing rays
(c,ei),i € [s]. We will show that each triangle induces a linear edge of the Hilbert ball.

We consider a pair of triangles (A, B,c) and (¢,C, D) such that A,¢,D and B,c,C are
respectively collinear. Let P € [A,c]NB(c,r) and O = (A4, B)N(C, D), we will show that line
(O, P) clipped to the triangle (A, B, c) is an edge of B(c,r). Let U be a point on the clipped
line, and M, N the intersections points of line (Uc) with the domain such that M € [A, B] and
N € [C,D]. Then M,U, ¢, N and A, P, ¢, D are related by the same projective transformation.
Using the invariance property of the cross-ratio, we conclude that d¢(c, P) = de(e,U) = 7.
Thus, we proved Lemma 6. It is remarkable that depending on the position of the center,
the number of triangles (and hence the complexity of the ball) varies. <
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Figure 2 Left: Configuration for proof 2 (see text). Right: Varying number of rays in a square
domain depending on the position of the center of the ball.

Figure 3 Left: Configuration for proof of Lemma 8 when E; = Ej. Right: Configuration for
proof of Lemma 8 when all edges are distinct.

» Definition 7. Given an edge [P, Q] of a Hilbert ball that belongs to a pair of triangles
(A,B,c) and (¢, D, E), we say that [P, Q] is induced by edges E; and E; of the domain, if
[A, B] C E; and [D,E] - Ej.

» Lemma 8 (Shape invariance with varying radius). For ¢ a fized center point, and r a varying
radius, B(c,r) has the same number of edges.

Proof. Let [P, Q] and [Q, R] be two adjacent edges of a Hilbert ball such that E;, E; induces
[P, Q] and Ey, E; induces [Q, R]. We show that P, @, R cannot be collinear. We note M the
intersection points of the lines supported by E; and E; and N the intersection points of the
lines supported by Ej and F;. According to the previous proof, P,Q, M and Q, R, N are
respectively collinear.
If E;, E;, Ey, E; are distinct edges, because [P, Q] and [Q, R] are adjacent, we can assume
without loss of generality that F; is adjacent to Ej and E; is adjacent to E;. If P,Q, R
are collinear, then F; = Ej or F; = E;, which contradicts the previous assumption.
Otherwise, we can assume that F; = Ej. In this case, if P,@Q, R are collinear, then they
belong to line (M, N) C E;. Which is impossible unless r = oo.
Therefore, as the radius varies but stay finite, the number of edges remains constant. See
Figure 3 for a visualization of the proof. For infinite radius, all balls fully cover the polygonal
domain. |

» Lemma 9 (Shape invariance in a simplex domain). In a simplex domain A, Hilbert polygonal
balls do not change shape, and have a fixred complexity of 2s edges.

Proof. It is a direct consequence of the two previous lemmas. <
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Figure 4 In a triangular domain. Left: Two cases of outer tangency. The red sphere is externally
tangent to the blue spheres and share one edge with one sphere and one vertex with the other.
Middle and Right: Two cases of inner tangency between the red sphere and the blue sphere. Middle:
The two spheres share one edge. Right: the two spheres share two edges.

3 Intersection of Hilbert spheres

We now consider the interaction scenario of two spheres. First, let us mention a simple
condition to check whether two spheres intersect or not:

» Lemma 10 (Condition for empty intersection). Given two points c1,co € C and two reals
ri,1r9 >0, with ro >=11:

S(Cl,’l”l) OS(CQ,TQ) ;é @ =>1r9—1r1 < dC(C17CQ) <7ri+ry (3)
Proof. This follows from the fact that d¢ respects the triangular inequality [1]. |

In the case of external tangency, i. e., dc¢(c1,c2) = 11 +72, if o is a vertex of B(cq,r1 +12),
the intersection of the two Hilbert spheres is reduced to a vertex. Otherwise, the two Hilbert
spheres share part of an edge. In the case of internal tangency, i. e., de(c1,c2) =19 — 11,
if ¢; is a vertex of B(ca,72 — r1), the two spheres share part of two edges. Otherwise
the shared part is one edge. See Figure 4 for some illustrating examples. The Java™
applet is available from https://www.lix.polytechnique.fr/~nielsen/software.html:
The pop menu let one choose the demo to play. The online explanatory video is available
at https://www.youtube.com/watch?v=XE5x5rAK8Hk
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