
Contracts in the Wild: A Study of Java Programs∗

Jens Dietrich1, David J. Pearce2, Kamil Jezek3, and Premek Brada4

1 School of Engineering and Advanced Technology, Massey University
Palmerston North, New Zealand
j.b.dietrich@massey.ac.nz

2 School of Engineering and Computer Science
Victoria University of Wellington, Wellington, New Zealand
djp@ecs.vuw.ac.nz

3 NTIS – New Technologies for the Information Society
Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czech
Republic
kjezek@kiv.zcu.cz

4 NTIS – New Technologies for the Information Society
Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czech
Republic
brada@kiv.zcu.cz

Abstract
The use of formal contracts has long been advocated as an approach to develop programs that

are provably correct. However, the reality is that adoption of contracts has been slow in practice.
Despite this, the adoption of lightweight contracts — typically utilising runtime checking — has
progressed. In the case of Java, built-in features of the language (e.g. assertions and exceptions)
can be used for this. Furthermore, a number of libraries which facilitate contract checking have
arisen.

In this paper, we catalogue 25 techniques and tools for lightweight contract checking in Java,
and present the results of an empirical study looking at a dataset extracted from the 200 most
popular projects found on Maven Central, constituting roughly 351,034 KLOC. We examine
(1) the extent to which contracts are used and (2) what kind of contracts are used. We then
investigate how contracts are used to safeguard code, and study problems in the context of two
types of substitutability that can be guarded by contracts: (3) unsafe evolution of APIs that may
break client programs and (4) violations of Liskov’s Substitution Principle (LSP) when methods
are overridden. We find that: (1) a wide range of techniques and constructs are used to represent
contracts, and often the same program uses different techniques at the same time; (2) overall,
contracts are used less than expected, with significant differences between programs; (3) projects
that use contracts continue to do so, and expand the use of contracts as they grow and evolve;
and, (4) there are cases where the use of contracts points to unsafe subtyping (violations of Liskov
Substitution Principle) and unsafe evolution.

1998 ACM Subject Classification D.1.5 Object-oriented Programming, D.2.4 Software/Pro-
gram Verification, D.3.3 Language Constructs and Features

Keywords and phrases verification, design-by-contract, assertions, preconditions, postconditions,
runtime checking, java, input validation

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.9

∗ This project was supported by a gift from Oracle Labs Australia to the first author and by the Ministry
of Education, Youth and Sports of the Czech Republic under the project PUNTIS (LO1506) under the
program NPU I.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Jens Dietrich, David J. Pearce, Kamil Jezek, and Premek Brada;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 9; pp. 9:1–9:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2 Contracts in the Wild

Supplementary Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.3.2.6

1 Introduction

The idea of providing formal specifications of computer programs in the form of pre- and
post-conditions has a long history in Computer Science. The seminal works of Floyd, Hoare,
and Naur proposed rigorous techniques for reasoning about programs and establishing their
specifications [65, 58, 82]. Hoare, for example, provided an axiomatic means for relating pre-
conditions to post-conditions. By the mid-seventies the vernacular of contracts, specifically
pre- and post-conditions, was widespread. The idea of one program mechanically verifying
another soon arose, and early efforts included that of King [74], Deutsch [46], the Gypsy
Verification Environment [61] and the Stanford Pascal Verifier [78].

A verifying compiler, following Hoare’s vision, “uses automated mathematical and logical
reasoning to check the correctness of the programs that it compiles” [64]. The modern
era of verifying compilers can be traced back to the pioneering work at Compaq Systems
Research Center which led to the Extended Static Checker for Modula-3 and subsequently for
Java [45, 57]. Since then a variety of other tools employing contracts have blossomed, including
JML [42], Spec# [18, 19], Dafny [76, 77], Why3 [56], VeriFast [69, 68], Frama-C [43, 62] and
Whiley [84, 85]. Spark/ADA is a notable exception as a commercially developed system used
extensively in industry [70, 17]. Examples of this include space-control systems [28], aviation
systems [37], automobile systems [66] and railway systems [50].

At this point we must acknowledge that, despite some success stories, tools for compile-
time checking of contracts are not in widespread use [27, 81]. Spec# is a pertinent example as
a project that aimed to “build a real system that real programmers can use on real programs to
do real verification” [18]. But, despite considerable investment, the project failed to deliver on
this and wrapped up without making it into production. 1 However, one idea stemming from
the project has made its way into production. Specifically, Code Contracts were introduced
in .NET 4.0 which, essentially, constitutes a library for static and runtime checking of pre-
and post-conditions [55].

1.1 Contracts and Their Checking

Whilst the adoption of static verification has been hampered by a lack of effective tooling,
runtime contract checking remains a cost-effective and pragmatic alternative [39]. Empirical
studies have consistently shown runtime contracts as effective at identifying faults and aiding
diagnosis [92, 95, 15, 32]. Testing and coverage frameworks compound these benefits by giving
mechanisms to exercise contracts and establish when a program is “correct enough” [63, 88].

Our notion of contract respects the general assume-guarantee principle and follows
the Design by Contract viewpoint promoted by Meyer [80], where contracts are viewed as
lightweight specifications: “The principles of Design by Contract form the basis of the Eiffel
approach and account for a good deal of its appeal. Eiffel’s contracts are the result of a design
trade-off between the full extent of formal specifications and what is acceptable to practicing
software developers.”

1 Despite these comments, we do believe the project was a success in many respects and has helped to
advance the field considerably.

http://dx.doi.org/10.4230/DARTS.3.2.6

J. Dietrich, D. J. Pearce, K. Jezek, and P. Brada 9:3

A key observation here is that usability is as important as the strength of the formalism.
That is, techniques which are heavy in formalism and specialized syntax have a low chance
of being adopted by ordinary programmers [80]. Simpler forms like type annotations and
assertions should therefore have higher adoption rates in general. As an example, Hoare
reported that the Microsoft Office source code contained (at that time) around 250M runtime
assertions [63].

In practice, contracts manifest themselves in a variety of ways: firstly, testing frameworks
typically provide specialised constructs (e.g. JUnit’s assertNotNull()); secondly, most
languages support runtime assertions (e.g. Java assert) within the code itself; finally,
one can always utilise more ad-hoc methods (e.g. Java IllegalArgumentException) and,
indeed, a number of libraries have sprung up here (e.g. Guava with its Preconditions.check*
methods, etc). There are also specific language extensions which support contracts to various
degrees. For example, Eiffel [79] and the contract languages of JML [75] and Spec# [18]
support runtime contract checking.

1.2 Contracts and Evolution
Another aspect related to the use of contracts in practice is evolution — that is, how the
contracts vary between different versions of a program and how this can affect its clients.
This is important with the prevalence of modern build tools, like Maven and Gradle, which
automate dependency resolution. Frameworks like OSGi [98] take this further and resolve
dependencies at runtime against components supplied via repositories. Such systems support
declarative dependencies using version ranges and, oftentimes, checks normally performed
at build time (e.g. testing) are bypassed as dependencies are automatically updated at
deployment or runtime. In this context, contracts of different kinds [24] play an important
part to safeguard this process of composition using “contractually specified interfaces” [96].
This is especially true if they can be aggregated in computed and automatically enforced
meta-data such as semantic versions [89].

1.3 Research Questions and Contributions
This paper is concerned with how contracts are used in practice in the world of Java programs.
We first examine a number of different ways that contracts can manifest themselves in Java.
Then we investigate two related issues: firstly, whether contracts are actually being used and
how often; secondly, how they evolve and whether or not they identify breaking changes in
client-supplier composition. Specifically, we try to answer the following research questions:

RQ1 Which language features are used to represent contracts in real-world Java programs?
RQ2 How does the use of contracts change throughout the evolution of a program?
RQ3 Are contracts used correctly in the context of program evolution in real-world Java

programs?
RQ4 Are contracts used correctly in the context of subtyping in real-world Java programs?

Note, RQ4 can be rephrased roughly as: are there contract-based violations of Liskov’s
Substitution Principle in real-world Java programs? In an attempt to answer these questions,
we performed a detailed analysis of a data set extracted from the Maven Central repository
of Java-based program artefacts which is unbiased with respect to contract use. The
contributions of this paper are:

1. We present a classification of contract constructs in existing Java programs and a
lightweight static analysis for their identification. Our analysis looks for patterns in the

ECOOP 2017

9:4 Contracts in the Wild

program source, e.g. the use of Java assert, throwing of IllegalArgumentExceptions,
use of various contract APIs (such as Guava’s Preconditions) and annotations (like
JSR303 and JSR305). Altogether, we investigated the presence of 25 different techniques
to represent contracts.

2. We report on an empirical study of 176 projects with 6,934 versions hosted on Maven
central, constituting 351,034 KLOC. Our findings suggest that: firstly, contracts of
different types are being used (though less than might perhaps be expected); and,
secondly, that problems with respect to contracts do indeed arise in the wild in the
contexts of subtyping and evolution.

2 Contract Patterns in Java

2.1 Terminology
For the purpose of our analysis, we consider a contract as composed of contract elements.
Contracts are associated with code artefacts such as methods, fields or classes. The contract
elements associated with a method are pre- and post-conditions which specify the constraints
on its input and output values, representing the methods’s assumptions and guarantees,
respectively. We also consider class invariants as contract elements associated with classes
and fields. Class invariants are not associated with particular methods, but apply to all
(public) methods of the respective class. According to Meyer [80], class invariants can be
considered as quantified contract elements for all (public) methods of a class: “In effect,
then, the invariant is added to the precondition and postcondition of every exported routine
of the class”.

Contracts can be used for static verification and/or evaluated at runtime. Contract
elements generally fit into the pattern condition-action-message, though this is sometimes
hidden or implicit. That is, a condition that can be evaluated to true or false, indicating
whether the constraint is satisfied or not, and an action that is executed in case the constraint
is violated. A contract element might also include an optional message to provide additional
information useful for diagnosis. If the condition and action are explicit, then the element
carries its own enforcement semantics. For instance, this is the case for assertion-based
contracts in Java: at runtime, if assertion checking is enabled and the evaluation of the
asserted expression fails, an AssertionError is created and thrown. If a contract element is
not associated with a condition and action, the enforcement semantics is provided by other
means such as naming convention, tooling or documentation. For instance, this is the case
for certain annotation-based contracts where pluggable annotation processors are used for
this purpose.

Our notion of contract element corresponds to assertions used by Meyer [80] and in
Eiffel: “Eiffel encourages software developers to express formal properties of classes by writing
assertions, which may in particular appear in the following roles: .. routine preconditions
.. routine postconditions .. class invariants” 2. Unfortunately, the term assertion has a
slightly different meaning in Java as it is associated with the assert statement. As we will
discuss in more detail below, assert statements can be used to write post-conditions and
class invariants, but they are not suitable for pre-conditions. Furthermore, they can also be
used in a manner where they do not represent any contract element.

2 https://archive.eiffel.com/doc/online/eiffel50/intro/language/invitation-07.html (ac-
cessed 10 January 2017)

https://archive.eiffel.com/doc/online/eiffel50/intro/language/invitation-07.html

J. Dietrich, D. J. Pearce, K. Jezek, and P. Brada 9:5

Table 1 Contract constructs and their classification.

Category Example constructs
CREs IllegalArgumentException
(2 types) IllegalStateException

NullPointerException
IndexOutOfBoundsException
ArrayIndexOutOfBoundsException
StringIndexOutOfBoundsException
UnsupportedOperationException

APIs com.google.common.base.Preconditions.* (Guava)
(4 types) org.apache.commons.lang3.Validate.*

org.springframework.util.Assert.*
Assertions assert (Java)
(1 type)
Annotations javax.annotation.* (JSR305)
(17 types) javax.annotation.concurrent.* (JSR305)

javax.validation.constraints.* (JSR303, JSR349)
org.jetbrains.annotations.*
org.intellij.lang.annotations.*
edu.umd.cs.findbugs.annotations.*

Other (1 type) (jContractor)

In the following subsections we discuss the various categories of contract element patterns
and forms we investigated, and for each one provide examples of concrete types of constructs
by which they are expressed. The list of categories and the initial set of types was extracted
from a study of academic and grey literature (wikipedia, stackoverflow, c2.com). Table 1
summarises the classification. The numbers in the first column indicate the number of
patterns found in the respective category; the total number of patterns we considered is 25.

2.2 Conditional Runtime Exceptions (CRE) and Unsupported
Operations

This is the most basic approach, and constitutes throwing an exception on condition failure,
enforcing the contract at runtime. In Effective Java, Bloch suggests using runtime exceptions
to indicate programming errors, typically pre-condition violations [26, item 58]. Rudimentary
support is provided in the Java standard library through exceptions specifically aimed at
signalling violations, such as IllegalArgumentException. Listing 1 illustrates an example.

We are particularly interested in these runtime exceptions: IllegalStateException,
IllegalArgumentException, NullpointerException, IndexOutOfBoundsException, Un-
supportedOperationException (all in the java.lang package). Of these, Unsupported-
OperationException is especially interesting as it indicates when a method is unavailable.
This models the semantics of optional methods (such as Iterator.remove()), and also
the absence of platform-specific operations (e.g. for the user interface). In this sense,
UnsupportedOperationException represents the strongest possible pre-condition that can-
not be satisfied by any caller. The common usage pattern is that a method only instantiates
and throws the exception without using a guard condition.

ECOOP 2017

9:6 Contracts in the Wild

1 static public double binomial(int k, int n, double p) {
2 if((p < 0.0) || (p > 1.0))
3 throw new IllegalArgumentException();
4 if((k < 0) || (n < k))
5 throw new IllegalArgumentException();
6 ...
7 }

Listing 1 Use of conditional runtime exceptions in pre-condition checks in
cern.jet.stat.Probability (in colt 1.2.0).

1 public static void checkArgument(boolean expression) {
2 if (!expression) {
3 throw new IllegalArgumentException();
4 }
5 }

Listing 2 Contract API method defined in com.google.common.base.Preconditions (in
Guava 19.0).

2.3 Contract APIs

The next level of sophistication is to provide a contract API consisting of wrappers around
conditional exceptions (see for example Listing 2). This provides a potentially richer language
for expressing contracts, conveys the programmer’s intention more clearly, and introduces
less clutter. Contract API methods are typically facilitated by making them static (i.e.
to be used as though locally defined via static imports). Static methods also facilitate fast
execution as static dispatch (via invokestatic) is used.

The popular Guava [6] library contains the com.google.common.base.Preconditions
class with multiple static check* methods (e.g. checkArgument(), checkState(), etc). The
documentation stipulates this class contains “Static convenience methods that help a method
or constructor check whether it was invoked correctly (whether its preconditions have been
met)”. 3 The same document also indicates that these methods are not to be used for other
checks (including post-condition and invariant checks): “It is of course possible to use the
methods of this class to check for invalid conditions which are not the caller’s fault. Doing
so is not recommended because it is misleading to future readers of the code and of stack
traces.”. Listing 3 shows some code from the Hadoop project illustrating the use of Guava to
represent a pre-condition.

Likewise, Apache Commons provides the class Validate [1] with similar semantics which
the documentation states “assists in validating arguments”.4 Other examples are Spring
Assert [12] (org.springframework.util.Assert) and valid4j [13] which has similar goals
and is notable for using the hamcrest internal DSL [7] for representing conditions.

There are two caveats concerning contract APIs in practical use. Firstly, they introduce
some performance overhead, because the message is always constructed and the condition

3 https://google.github.io/guava/releases/19.0/api/docs/com/google/common/base/
Preconditions.html (accessed 10 January 2017)

4 https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/
lang3/Validate.html (accessed 10 January 2017)

https://google.github.io/guava/releases/19.0/api/docs/com/google/common/base/Preconditions.html
https://google.github.io/guava/releases/19.0/api/docs/com/google/common/base/Preconditions.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/Validate.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/Validate.html

J. Dietrich, D. J. Pearce, K. Jezek, and P. Brada 9:7

1 import com.google.common.base.Preconditions;
2 ...
3 FileDistributionCalculator(Configuration conf,
4 long maxSize,int steps,PrintWriter out) {
5 this.conf=conf;
6 this.maxSize=maxSize==0?MAX_SIZE_DEFAULT:maxSize;
7 this.steps=steps==0?INTERVAL_DEFAULT:steps;
8 this.out=out;
9 long numIntervals=this.maxSize/this.steps;

10 // avoid OutOfMemoryError when allocating an array
11 Preconditions.checkState(numIntervals<=MAX_INTERVALS,
12 "Too many distribution intervals (maxSize/step): " +
13 numIntervals + ", should be less than " +
14 (MAX_INTERVALS+1) + ".");
15 this.distribution=new int[1+(int)(numIntervals)];
16 }

Listing 3 Use of the Guava contract API in org.apache.hadoop.hdfs.tools.offlineImage-
Viewer.FileDistributionCalculator (in Hadoop 2.5.0).

evaluated completely (i.e. to pass them to the contract API method). With conditional
exceptions, error messages are only constructed if the condition is violated. The Guava
documentation explicitly recommends reverting to conditional exceptions in performance-
critical situations for this reason. Secondly, the use of APIs adds a dependency to projects.
This makes the use of APIs a less obvious choice. A good example is the decision of the
ElasticSearch project to remove the use of the Guava pre-condition API for those reasons5.

Apart from the example APIs mentioned above, it is possible that further contract APIs
exist. In some cases, these are only defined and used locally within the scope of a certain
project or a group of related projects. One such case will be discussed in section 4.2.

2.4 Assertions
Java has supported assertions through the assert keyword since version 1.4 released in 2002.
Assertions implement runtime checks by evaluating boolean conditions. If this check fails, an
error (AssertionError) is thrown.

By default, runtime assertion checking is disabled and an explicit parameter must be
used in order to switch assertion checking on when the JVM starts. While the ability to
switch off assertions centrally is useful for addressing performance overhead, this has some
implication on how assertions can be used. Most importantly, assert statements are not
primarily intended for checking pre-conditions. An Oracle tech note warns: “Do not use
assertions to check the parameters of a public method. An assert is inappropriate because
the method guarantees that it will always enforce the argument checks. It must check its
arguments whether or not assertions are enabled.”6 The same note then outlines the use of
asserts in invariants and post-conditions. The note explicitly suggests how to use assertions
for class invariants. However, the suggested pattern does not fully comply to the definition

5 https://github.com/elastic/elasticsearch/issues/13224 (accessed 10 January 2017)
6 https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html#

preconditions (accessed 10 January 2017)

ECOOP 2017

https://github.com/elastic/elasticsearch/issues/13224
https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html#preconditions
https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html#preconditions

9:8 Contracts in the Wild

1 import javax.validation.constraints.*;
2 ..
3 @Max(-42)
4 public int negate(@Min(42) int i) {..}

Listing 4 Using JSR303 annotations for pre- and post-conditions.

of class invariants according to Meyer [80] that requires that the invariants are applied to
all public methods of a class. In many cases, the invariants expressed by assertions are
method-local invariants, such as control flow invariants.

2.5 Contract Annotations

The idea of annotation-based approaches is to add meta-data to artefacts (methods, fields,
classes and method parameters) that describe their validity. The standard Java annotation
API is widely used for implementation. Some older tools predate the annotation API and
simulate annotations using, for example, structured comments. Annotation-based approaches
are very declarative in nature, and as such can be interpreted and used by a wide-range of
tools for both static and runtime checks. For runtime checks, additional code that enforces
the constraints must be generated and deployed. This is often done, for example, using
injection-based techniques like AOP [72]. We now examine some popular approaches in more
detail, loosely grouped by their major usage.

Bean Validation. The Bean Validation specification, JSR303 (version 1.0) [23] and JSR349
(version 1.1) [22], and a popular reference implementation, the hibernate validator [8], aim
at providing a set of standard annotations and associated processing APIs for server-based
enterprise (J2EE) applications. It offers an API to request validation which must be called
explicitly by the programmer. The API is intended for use with higher-level frameworks
that intercept program flow to check constraints. This is described in the documentation
as follows: “This service only deals with the actual validation of method parameters/return
values itself, but not with the invocation of such a validation. It is expected that this invocation
is triggered by an integration layer using AOP or similar method interception facilities such
as the JDK’s Proxy API or CDI. Such an integration layer would typically intercept each
method call to be validated, validate the call’s parameters, proceed with the method invocation
and finally validate the invocation’s return value.”7.

Bean Validation represents post-conditions as constraints on method return values. An
example is given in Listing 4. The standard states that “As of version 1.1, Bean Validation
constraints can also be applied to the parameters and return values of methods of arbitrary
Java types. Thus the Bean Validation API can be used to describe and validate the contract
(comprising pre- and postconditions) applying to a given method (“Programming by Contract”,
PbC).” [22, sect. 1.2]. The Bean Validation standard also contains several restrictions to
ensure correct behavioural subtyping according to the Liskov’s Substitution Principle (LSP)
[22, sect. 4.5.5].

7 https://docs.jboss.org/hibernate/validator/4.2/api/org/hibernate/validator/method/
MethodValidator.html (accessed 10 January 2017)

https://docs.jboss.org/hibernate/validator/4.2/api/org/hibernate/validator/method/MethodValidator.html
https://docs.jboss.org/hibernate/validator/4.2/api/org/hibernate/validator/method/MethodValidator.html

J. Dietrich, D. J. Pearce, K. Jezek, and P. Brada 9:9

Static Checking. Various tools offer limited static analysis of annotations, such as for
null analysis. The Checker Framework [83] provides annotations that can then be checked
via compiler plugins. Many IDEs and static analysis tools provide similar capabilities for
finding bugs at compile time, such as Eclipse, IntelliJ and FindBugs. This has lead to an
unfortunate situation where annotations such as @NonNull and @Nullable with the same
name exist in different name spaces. To rectify this, JSR305 aims to establish a set of
standard annotations [90].

The Java Modelling Language (JML) is a mature framework that aims to bring full-
fledged programming by contract to Java, and uses comment-based annotations to express
constraints. The latest version of OpenJML also supports true annotations. JML supports
both runtime checks and static verification [75] using additional tools like ESC/Java2 [42].

There are numerous other, somehow less popular approaches to annotation-based contracts,
including oval [11], CoFoJa [4], Jass/ModernJASS [20], lombok [73], c4j [2], and the dormant
iContract [51], AssertMate [5], javadbc [10] and chex4j [3] projects.

2.6 Other Approaches
While the above patterns cover the majority of cases, other means of expressing contracts
exist in the Java world. jContractor [71] is unique in associating constraints with methods via
naming conventions. For instance, the pre-conditions for a method named push are written
by implementing a method push_Precondition. Constraints can also be written in separate
contract classes which are again recognised by a certain naming convention. Behavioural
subtyping is supported by aggregating inherited contracts (with “or” for pre-, and “and” for
post-conditions). Contracts are weaved into code using bytecode instrumentation.

3 Methodology

In the following subsections we discuss how we obtained, processed and analysed the data
when looking for the use of contracts in Java programs.

3.1 Data Sets
We initially considered several curated data sets, such as the Qualitas Corpus [97] and
DaCapo [25]. However, we found DaCapo to be too small, outdated and without evolution
data, and found that Qualitas does not contain the latest version of many programs and
completely omits some widely used libraries (including Guava). Furthermore, for Qualitas,
the projects do not have a canonical format making automated analysis difficult. Instead, we
chose to extract a data set from the Maven Central Repository.

The Maven Central Repository is a simple directory-based repository of open-source
projects. It contains a large number of Java programs in a canonical structure with meta-data
that facilitates automated analysis. We used the ranking of projects by popularity from
https://mvnrepository.com/, where popularity is determined by the number of incoming
dependencies from other projects hosted on Maven. We extracted our data set as follows: first,
we parsed the name, group and version of the first 200 artefacts from the MVN Repository
website on the 3 August 2016; second, we used the search API 8 to download all available
versions of the respective artefacts; finally, we removed projects for which Java source code

8 http://search.maven.org/#api (accessed 10 January 2017)

ECOOP 2017

https://mvnrepository.com/

9:10 Contracts in the Wild

Table 2 Data set metrics.

metric value
programs 176
program versions 6,934
compilation units 2,233,298
unparsable compilation units 223
classes 2,787,686
methods (all) 22,263,421
constructors (all) 2,465,260
methods (public and protected) 18,744,459
constructors (public and protected) 2,002,327
KLOC incl comments 351,034

was not available (e.g. projects containing only Scala source code, or projects consisting only
of meta data, etc). This resulted in 176 projects with 6,934 versions, and with an overall size
of 4.6GB.

Metrics extracted from our data set are reported in Table 2. The number of compilation
units corresponds to top-level classes but excludes inner classes. There were some compilation
units where parsing failed, but they were relatively few (less than 0.01 %) and should not
significantly impact our results. The number of classes and methods is significant here, since
contracts are primarily applied to – and analysed for – these program elements. Note that
only public and protected methods/constructors were considered in our studies. This is
because private members do not play any role from a program’s clients viewpoint and,
from the perspective of evolution, cannot introduce breaking changes. Thus, to be consistent
across our various experiments, we excluded them. Overall, the amount of code investigated
is similar to the data set used in [53]; however, we use only released versions and not revisions,
and have therefore significantly more variability in our data set.

Finally, we note that our data set does not include project dependencies. Since we also
study contracts in inheritance hierarchies, we considered including the dependency closure of
each project to ensure all supertype references could be resolved. We investigated this and
found that this would have added another 14,832 versions from 972 programs, increasing
the overall size by 5.9 GB. Unfortunately, this would have slowed down our experiments
considerably. We therefore opted against including dependencies, but added the source for
openjdk 1.8.0_91, assuming that a vast number of supertype relationships can be resolved
against the Java core class libraries, and since the core libraries are known for their high
level of stability (i.e. public APIs don’t disappear between JDK versions).

3.2 Contract Element Classification
The studies reported on in this paper focus on the usage, classification and evolution of
contract elements found. This requires a simple and mechanical means to classify the contract
elements. In particular, we cannot attempt to determine the programmer’s intention behind
a particular programming construct (e.g. whether throwing an exception guarded by a
conditional is checking a pre- or post-condition, etc). Fortunately, there are many signals
that we can use to help classify concrete program code constructs as contract elements:

CREs. As discussed previously, the names of runtime exceptions in many cases indicate
they are designed for signalling contract violations (e.g. IllegalArgumentException),

J. Dietrich, D. J. Pearce, K. Jezek, and P. Brada 9:11

and standard Java literature clearly indicates that the purpose of certain runtime excep-
tions is to enforce pre-conditions [26, item 58]. Our data analysis methods exploit this to
classify the uses of (conditional) runtime exceptions accordingly.
APIs. These provide a potentially richer language for expressing pre- and potentially
also post-conditions, and class and method names and documentation usually signal their
purpose. The purpose of all APIs we have encountered and investigated is to represent
pre-conditions only.
Assertions. In contrast to those above (and as already discussed in section 2.4) assert
statements are not intended for checking pre-conditions. Therefore, we can only infer
that some assertions might represent post-conditions or class invariants. We therefore
decided to include assertions as potential contract elements in the study. But, we take a
conservative approach and do not to classify them as this could have a significant impact
on the precision of the study.
Annotations. A special case are annotation-based approaches. Here the type of contract
can often be inferred from how the annotation is used. For instance, consider again
Listing 4. Here, two JSR303 annotations are used. The annotation on the method is
actually a contract element on the method return value and is therefore a post-condition,
while the @Min annotation is a contract element on the parameter and is therefore a
pre-condition. Annotations on classes and fields are interpreted as class invariants.
Other. jContractor contract elements can be easily classified based on the naming
patterns used. However, we did not include this in the classification scheme used as we
did not find any use of jContractor in the data set used in this study.

Figure 1 summarises the classification algorithm employed in this study. In classifying
contract elements according to the above rules, we do not consider the relative position of a
particular check within a method. That is, one might argue that a check near the entry of
a method is “likely” to be a pre-condition check. However, our experience suggests that it
is quite common to find legitimate pre-condition checks embedded deep within a method’s
body. Listing 3 illustrates such an example taken from a real-world codebase. The contract
on line 11 should be classified as a pre-condition check, but we note it is not located near the
method’s entry. Indeed, if we just consider its relative position within the method, then it
would look more like a post-condition check. One could further argue that this use actually
denotes a class invariant as it checks the state of an object (rather than the parameters of
the method). What is more, concepts like “at method entry” or “before method exit” are
further complicated – for the purpose of source code analysis – by the presence of comments
and the potential presence of injected code from cross-cutting concerns such as logging or
security checks. Sometimes these concerns are present in source code, but often tools like
AOP [72] are used to inject or “weave” additional code (into source or byte code) at method
entry and/or exit.

For this study, we therefore decided to use a set of classification rules extracted from the
definition of the respective construct language. For annotations in particular, we take into
account the type of annotation as discussed above.

3.3 Methodology for Contract Usage Study
This study looks at and classifies the usage of the several types of contract elements across
our dataset, providing also the base data for subsequent studies described below. The
approach taken was to identify the contract element using source code analysis, which is
able to check all annotations including those which might be removed by the compiler.

ECOOP 2017

9:12 Contracts in the Wild

API ?

pre-conditionCRE ?

assert ? not classified

contract element

annotation
?

class invariant

pre-condition

method
annot.? post-condition

method
param ann.

?
pre-condition

YES

YES

YES

YES

YES

NO

NO

NO

YES

NO

field
annot.?

class
annot.?

not classified

NO

class invariant

not classified

NO

NO

NO

YES

YES

Figure 1 Contract element classification algorithm.

Furthermore, comment-based annotations used by some older tools (e.g. JML) also require
source code-based analysis. Analysing conditional runtime exceptions and assertions in this
manner was relatively straightforward. However, for the remaining contract patterns, we
investigated their actual use in two stages.

In stage one, we developed screening scripts that looked for any sign that a certain pattern
of contract construct might be present. These scripts use simple text matching algorithms
and look mainly for the presence of type-specific package names (for APIs and annotations)
or comment patterns (for comment-based annotations). These scripts revealed that only the
following API and annotation-based contract types are present in programs in our data set:
Commons Validate, Guava preconditions, Spring asserts, Bean Validation (JSR303, JSR349),
JSR305, FindBugs, IntelliJ, Lombok. We however removed Lombok because of its particular
contract semantics: annotations are translated into conditional runtime exceptions at build
time, and this would have lead to double-counting. Lombok is also only used by itself.

We later found that the preprocessing screening scripts produced false positives for
FindBugs and IntelliJ tool-bound annotations. Specifically, the data set contains programs

J. Dietrich, D. J. Pearce, K. Jezek, and P. Brada 9:13

defining FindBugs contract annotations but not actually using them, and IntelliJ annotations
are only referenced in comments (using their fully qualified class names). The result of this
was that we did not find any instances of the respective tool-bound contract patterns in
actual use, and we do not report them explicitly in the results tables.

In stage two of the extraction, a collection script was used to extract contract construct
data and export it to JSON files stored for further analysis. This script uses a set of pluggable
extractors for each contract pattern, the extractors perform a detailed AST analysis using
the Java parser API [9].

3.4 Methodology for Evolution Study
The evolution study asked how contracts change between adjacent program versions, from
the viewpoint of what effects this can have on a program’s existing clients. This required
us to identify the adjacent versions which is easy for projects that use common versioning
schemes (i.e. <major,minor, micro> plus an optional qualifier or build number). However,
some projects do not follow this convention which makes adjacency detection rather difficult.
For instance, we encountered cases with letters in the major version number and cases with
alphanumeric qualifiers with unclear semantics. The script which detects adjacent versions
therefore uses a set of rules to correctly order versions by qualifier status (such as alpha,
beta, release candidate, final, etc) in addition to the numerical versioning scheme. However,
this still left us with 138 program versions that did not fit; we therefore blacklisted those
and excluded them from the evolution study as it was not clear how they fit into a linear
program evolution.

The evolution study uses contract data extracted in the previous step, and builds diff
records that contain contracts for the same artefact (method or class) in two adjacent
program versions. These records are then classified using pluggable diff rules to detect
contract evolution patterns such as non-critical changes (e.g. only the program messages are
changed), the addition of post-conditions, etc. These diff rules are not intended to provide a
completely precise classification – this might actually be impossible, but they can be used to
automatically classify a vast number of simple cases.

Diff rules do not capture cases when contract elements specified informally (for instance,
in comments) are formalised using any of the approaches described above, or vice versa. This
study is about the correct use of contracts in the context of evolution, and correctness is
defined with respect to actual program behaviour. While informal contracts specify intended
program behaviour, they do not influence actual behaviour. Therefore, (de)formalising
contract elements is a potentially critical operation.

We use the following set of diff rules, corresponding to the principles of substitutability:
1. Unchanged – the two contracts compared are the same.
2. IgnoreOrderAndMessage – the order of contract constructs attached to an artefact and

the message (used as message in exception -, annotation- and API-type contracts) of
some of these constructs has changed. Although scenarios can be constructed where this
changes the semantics of a program, this change is probably benign.

3. PreconditionsStrengthened – a pre-condition has been added to a method, or a clause
(boolean expression) has been added to an existing pre-condition using the & or &&
operator. This is potentially critical.

4. PreconditionsWeakened – a pre-condition has been removed from a method, or a clause
has been added to an existing pre-condition using the | or || operator. This is benign.

5. PostconditionsWeakened – a post-condition has been removed from a method, or a
clause has been added to an existing post-condition condition using the | or || operator.

ECOOP 2017

9:14 Contracts in the Wild

This is potentially critical.
6. PostconditionsStrengthened – a post-condition has been added to a method, or a

clause has been added to an existing post-condition using the & or && operator. This is
benign.

7. NullablePostconditionRemoved – the removal of a Nullable post-condition annotation
is not considered as a significant weakening of guarantees made, this is classified as a
benign change.

The data reported later in sections 4.2 and 4.4 show that with these simple rules, a large
percentage of contract changes can be automatically classified.

3.5 Methodology for LSP Study
In this study we look for violations of Liskov’s Substitution Principle (LSP), i.e. we look
for contradictory specifications between super- and sub-classes, and then use the respective
contracts to analyse whether they are used correctly. The experimental setup uses the same
infrastructure as the evolution study, the main difference is that the diff records are extracted
differently. Here we look for contracts on methods in an override relationship and analyse
imports and inner classes to compute precise inheritance information. We also filter the
extracted diff records in order to remove those that duplicate the same issue in a different
version of the same program.

For the internal representation of contract data, we encode methods similarly to descriptors
used in byte code, but with return types removed. This allows us to capture overriding with
covariant return types.

3.6 Verifiability
The data sets (raw data, and contract data extracted) are available here: https://goo.gl/
2R28gS. The code used for extraction and analysis is available from https://bitbucket.org/
jensdietrich/contractstudy. The repository readme.md contains detailed instructions
how to build the project, add the data for analysis, and reproduce the results reported.

4 Results

4.1 Contract Usage (RQ1)
Table 3 reports the different types of contract elements and their appearance in the data
set. In column 3, the overall number of contract elements of the respective type is reported.
These numbers are high. However, one reason for this is that the same elements are counted
again and again in different versions. We therefore also computed the number of contract
elements found for the latest versions of each program within the data set, this is reported in
column 4. These values are much lower. We also investigated the number of programs using
constructs of the respective type in any version. These numbers are displayed in column 5.
The adoption of the various API and annotation-based approaches is surprisingly low, and
even the number of projects using assertions is lower than expected.

We also computed the gini coefficient [60] in order to measure the distribution of constructs
amongst the latest versions of each program. The gini is very high at 0.74 indicating that
while there are a few projects that use contracts very intensively, the vast majority of
projects do not use them significantly. Interestingly, the gini computed for the distribution
of assertions is 0.83 — much higher than the overall gini. On the other hand, the gini for

https://goo.gl/2R28gS
https://goo.gl/2R28gS
https://bitbucket.org/jensdietrich/contractstudy
https://bitbucket.org/jensdietrich/contractstudy

J. Dietrich, D. J. Pearce, K. Jezek, and P. Brada 9:15

Table 3 Number of contract elements found in dataset by type.

type category
constructs
(all ver.)

constructs
(latest
v.)

programs

assert assertion 131,340 3,284 52
conditional runtime exceptions CRE 484,964 15,720 155
unsupported operation exception CRE 123,966 3,084 122
guava preconditions API 49,021 1,188 6
spring assert API 100,232 2,148 13
commons validate API 879 110 6
JSR303, JSR349 annotation 586 20 1
JSR305 annotation 33,281 911 6

Table 4 Top programs using contracts (latest versions only). The numbers in brackets are the
numbers of contract elements found in the respective program.

category programs
CRE open-jdk (3,695), elasticsearch (1,348), lucene-core (612), netty (553),

hadoop-common (550)
API guava (948), spring (661), spring-test (262), spring-web (218), spring-core

(208)
assertion lucene-core (1,000), elasticsearch (656), open-jdk (390), gwt-user (371),

gwt-servlet (371)
annotation guava (859), reflections (46), hibernate-validator (20), annotations (4),

jsr305 (2)

the distribution of APIs is lower (0.6), indicating a more equal distribution. This seems
counter-intuitive as there are many more programs using assertions than contract APIs. But
while more programs use assertions, most of them use very few — in several cases only one
single assertion.

Table 4 shows the programs with the highest usage of contract elements of each type,
with indication of their number in the respective latest version. This data also shows the
uneven distribution of contract usage, as the numbers quickly trail off.

We also investigated popular combinations of contract types. We found that 16 programs
do not use any contracts, 32 programs use one type of contract element (of which 28 use
conditional runtime exceptions), 63 use two types of contracts (the most popular combination
being unconditional “unsupported operation” exceptions and conditional runtime exceptions
with 54 occurrences). There were 59 programs with three types, 4 with four types and
finally 2 programs with five types of contracts (elasticsearch and guava both use assertions,
conditional and unconditional exceptions, the Guava contract API and JSR305 annotations).

Finally, in Table 5 we report the classification of the contract elements found. As discussed
earlier, a precise classification is not possible. But this data suggests that pre-conditions
are more frequently used than post-conditions. This would still be the case if all assertions
encountered (and reported as not classified in Table 5) were classified as post-conditions.

A possible explanation for the dominance of pre-conditions is the high level of reuse
of (library) code in general, and of open source programs in particular. This implies that
modern libraries have to provide defensive API surfaces to deal with unknown clients. As
Meyer [80] notes: “A pre-condition violation indicates a bug in the client (caller). The caller
did not observe the conditions imposed on correct calls. A post-condition violation is a bug

ECOOP 2017

9:16 Contracts in the Wild

Table 5 Number of contract elements found in dataset by classification.

kind constructs (all versions) constructs (latest version) programs
pre-condition 786,723 22,969 160
post-condition 2,413 112 6
class invariant 3,793 100 5
not classified 131,340 3,284 52

in the supplier (routine). The routine failed to deliver on its promises.’ ’. Therefore, by
using pre-conditions, clients can shift the responsibility to comply to clients. This has many
practical advantages with respect to program maintenance: if a program fails and an illegal
argument or similar exceptions occur in stacktraces due to a failed pre-condition, this makes
it very clear who is to blame, and reduces the workload on the side of the supplier as it does
not have to deal with bug reports.

While this may explain the relative popularity of pre-conditions, it does not explain why
post-conditions are not as widely used. One possible reason is the widespread use of unit
testing. Since method callers are often unknown at build time, tests are written that create
synthetic callers in test fixtures. The test assertions comparing computed values against test
oracles are basically post-conditions specialised for a particular fixture. We note that tests
written in modern testing frameworks like junit are following a contract-oriented pattern: “if
the assumptions (pre-conditions) are true before the method under test is invoked then the
assertions (post-conditions) must be true after the method under test has been invoked”. But
the focus is clearly on the post-condition check, and we believe that many developers are not
aware that pre-condition checks are supported by junit in the form of org.junit.Assume or
(less explicit) by TestNG through org.testng.SkipException.

4.2 Contract Evolution (RQ2)

We also tried to answer the question whether there is some evidence that programs use more
contracts as they evolve, similarly to [53] but with a coarser granularity due to the extent
of our study. To answer this, we divided the number of contracts found by the number
of methods, and compared the respective ratio between the first and last version of each
program. The aggregated result of this experiment is shown as a box plot in Figure 2. The
median value of the ratio does not change much (from 0.021 to 0.023) between the first and
the last version within the version ranges investigated. This indicates that if projects use
contracts, they keep using them.

To see if this observation is of importance, we also considered the growth of the size of
the respective programs. The average growth in the number of methods between the first
and the last version is 174 % (although this is dominated by a few outliers — for instance,
the first version of spring-core in the dataset (1.2.1) has 324 methods, while the last version
(4.3.2.RELEASE) has 3,276 methods). But even when considering the median, the number
of methods still increases significantly, by 68.5 %. This means that the overall number of
contract elements used increases proportionally with the size of the programs.

There are only two programs in the data set for which the number of contract elements
used declines significantly between the first and the last version investigated, both in
relative and absolute terms: httpclient (from 1,154 methods with 298 contract elements
in version 4.0-beta1 to 2,772 methods with 26 contract elements in version 4.5.2) and
the related httpcore (from 923 methods with 252 contract elements in version 4.0-beta2

J. Dietrich, D. J. Pearce, K. Jezek, and P. Brada 9:17

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

first versions last versions

Min Outlier Max Outlier

Figure 2 Comparison of contract-to-method ratios between first and last versions

to 1,584 methods with 46 contract elements in version 4.4.5). A more detailed analysis
shows that both projects adopted a shared project-specific contract API very similar to
Guava’s Preconditions, the respective API is org.apache.http.util.Args, introduced in
httpcore 4.3-alpha1. When taking this into account, the situation changes: httpclient-4.5
has 584 call sites for methods defined in Args corresponding to API-type contracts , while
this class is not used at all in 4.0-beta1. While Args provides a centralised API for input
validation that is used to replace IllegalArgumentExeptions, there are also two documented
cases where IllegalStateExceptions are replaced by a project-specific checked exception
(ConnectionClosedException) that are not captured in our analysis9.

We also looked into contract evolution in programs that made heavy use of contracts
in their respective first version. For this purpose, we filtered out programs with at least
100 contract elements in their first version. This is the case for 27 programs. Of these
programs, only three show significant changes in contract usage, which we defined by a
change of the contract element-to-method count ratio larger than 0.1. Two of those programs
are httpclient and httpcore, already discussed above, the third program is lucene-core that
shows a significant increase of contract usage between versions 2.3.0 (3,096 methods with
158 contract elements) and 6.1.0 (8,954 methods with 1,612 contract elements), respectively.

From this we conclude that projects that use contracts continue to do so, and expand the
use of contracts as they grow and evolve, presumably because contracts are seen as beneficial.

4.3 Contract Safety and Program Evolution (RQ3)
Next, we looked for evolution patterns. In particular, we were interested in cases where
contract evolution was unsafe in terms of substitutability. This means, if there are cases
where a client using an API with a contract could break after an upgrade because an API
method had either strengthened its pre-conditions, or weakened its post-conditions. Table 6
gives an overview of the results. As discussed in section 3.4, our classification is not complete
as it is not feasible to precisely capture the notion of strengthening and weakening constraints
if the respective constructs can be written in a full-fledged programming language. But we
did extract some interesting results, and discuss some examples in more detail.

9 https://archive.apache.org/dist/httpcomponents/httpcore/RELEASE_NOTES.txt (accessed 10
January 2017)

ECOOP 2017

https://archive.apache.org/dist/httpcomponents/httpcore/RELEASE_NOTES.txt

9:18 Contracts in the Wild

Table 6 Contract evolution data result summary.

evolution critical count
unchanged no 652,395
minor change no 1,512
pre-conditions weakened no 12,675
post-conditions strengthened no 18
pre-conditions strengthened yes 2,777
post-conditions weakened yes 7
unclassified ? 5,028

Table 7 Contract hierarchy data result summary

evolution critical count
unchanged no 351
minor change no 193
pre-conditions weakened no 40
post-conditions strengthened no 0
pre-conditions strengthened yes 1,242
post-conditions weakened yes 0
unclassified ? 556

In slf4j-api (logging library) the class org.slf4j.LoggerFactory has the method get-
ILoggerFactory(). A JSR305 Nonnull post-condition annotation is present in this method
in version 1.7.8 but removed in version 1.7.9. This breaks the guarantees made to clients
using this class. Note that the change happens during a micro version change, which is
supposed to maintain API compatibility according to the rules of semantic versioning.

In commons-cli (CLI library), the method addValue(String) in org.apache.commons.-
cli.Option has a (rather complex) implementation in version 1.0, but support for this
method was then removed in version 1.1 by throwing an UnsupportedOperationException
with the message “The addValue method is not intended for client use. ..’.

4.4 LSP Study (RQ4)
We analysed our data set for cases where contracts gave an indication of potential violations
of Liskov’s Substitution Principle (LSP), and found numerous such cases summarised in Table
7. Closer inspection of the data also revealed certain programming patterns where runtime
exceptions were not being used to communicate violated contracts, but to return information
to the applications. A good example for this are certain adapters in ASM 5.0 that perform
various checks on byte code, such as org.objectweb.asm.util.CheckSignatureAdapter.
To do so, these adapters have to override visit methods in the adapter supertypes. The
rules to check for are implemented using the unconditional runtime exception pattern. I.e.,
a runtime exception is thrown if the check fails. Here runtime exceptions are used with a
semantics similar to return values.

We provide some examples of programs that violate the rules of behavioural subtyping
according to how they use contracts.

In hibernate-core-3.5.0, the class org.hibernate.dialect.Dialect is subclassed by
IngresDialect in the same package. Dialect implements the method getLimitString(
String,int,int), the implementation does not throw a runtime exception. It is overridden in

J. Dietrich, D. J. Pearce, K. Jezek, and P. Brada 9:19

IngresDialect, and an UnsupportedOperationException is thrown if the second argument
(offset) is negative. This is a case of unsafe substitution, where a pre-condition on a
parameter is added in a subclass. There is no indication in the documentation of the method
in Dialect warning developers that a runtime exception might be thrown in overriding
methods.

In spring-webmvc-3.2.11.RELEASE, in the package org.springframework.web.serv-
let.tags.form, FormTag extends AbstractHtmlElementTag and overrides setCssError-
Class(String). While the implementation in the superclass is a plain setter, the overridden
method throws an unsupported operation exception with the message “The ’cssErrorClass’
attribute is not supported for forms”. There is again no indication in the super class that
some subclasses might not support this method.

5 Limitations and Threats to Validity

5.1 Data Set
The data set used only consists of open source programs. This is a consequence of (1)
our methodology that requires source code to be analysed and (2) the simple fact that we
did not have access to real-world commercial code. It is therefore not clear whether our
results apply to closed-source commercial programs. We also suspect the data set is biased
towards libraries as they are re-used by many other programs (hence have a higher ranking
on Maven Central). In particular, this could cause an under-reporting of annotation-based
contracts which might be more common in J2EE applications using frameworks providing
those annotations.

5.2 Contract Extraction
While we carefully studied academic as well as grey literature for references to tools and
APIs used to represent contracts in Java, there is no guarantee that our list is complete.
The bigger limitation however is that we did not capture project-specific techniques such as
custom annotations or APIs. We discovered one such case in httpclient, discussed in more
detail in Section 4.2.

Our extraction of pattern-based contracts could lead to under-reporting. First, we
could have considered other runtime exception classes. The ones we used were chosen after
inspecting the documentation and assessing their suitability of expressing pre-conditions.
Our choice is consistent with the various contract APIs which use exactly those classes to
offer API-based pre-condition checking. But there could still be (project-specific) classes
we missed. Furthermore, we might have missed certain patterns for how these exceptions
are used. We can at least approximate the worst case scenario for this by counting all
instantiation sites for the respective exception classes. We found 841,815 instantiation sites
across all versions. This compares to 624,269 contracts found (combined conditional and
unconditional exceptions), i.e. we have a precision of at least 74 % for this type of contract
construct.

One of the annotation-based APIs we investigated has a proprietary mechanism for
“contract inheritance”. JSR305 [90] defines the annotation javax.annotation.Parameters-
AreNullableByDefault with the following semantics: if a class is annotated, then all method
parameters in all methods of this class are nullable by default. There are only two annotations
we are aware of that have this semantics, and we did not model this in this study. This
therefore leads to an under-approximation of the contracts found in programs.

ECOOP 2017

9:20 Contracts in the Wild

We already discussed the special case of assertions (see Section 2.4). This leads to some
over-approximation in the overall number of contract elements extracted as not all assertions
represent contract elements, and to an under-approximation of post-conditions extracted as
we do not classify assertions. This is discussed in the result section in detail.

5.3 Evolution

There are two limitations here. Firstly, our analysis under-approximates inheritance-related
problems as we miss some inheritance relationships due to the fact that we did not investigate
the full dependency closure of our data set, as discussed in section 3.5.

Secondly, our analysis is completely mechanical and detects possible problems, but does
not attempt to weigh them and to assess their actual impact. For instance, many issues
detected in the PreconditionsStrengthened category flag potential problems that may have
an impact on clients. But many of these changes are cases where contracts are introduced to
methods. This might just be a case of making existing “closet contracts” [16] more explicit.
In many cases this will change the way in which a contract violation is reported, i.e. the type
of runtime exception that is being thrown. This is of course a semantic change that could
break existing clients, but it is unlikely that it actually does. A similar case is when a project
decides to change its approach to contracts completely, for instance by replacing contract
API calls by runtime exceptions or vice versa. We are aware of one such case, discussed is
section 2.3. Secondly, evolution issues impact on clients with separate lifecycles. This means
that even incompatible changes of public methods may not be critical if they are not part of
the public API of a given program. This is partially caused by the properties of the Java
programming language that offers no easy way to enforce program-private access to APIs10.

5.4 LSP Study

The analysis shares some issues around the validity of potential problems discussed with
the evolution study. A specific issue are LSP violations with annotation-based contracts.
These contracts are usually deployed using injection-based techniques, and at this stage the
respective contract framework can take care of merging the constraints of methods with the
constraints of overridden methods in order to satisfy LSP. We found however that only 2.76
% of the diff records extracted and investigated use annotations.

With the more explicit, code-based approaches like APIs and explicit runtime exceptions,
this kind of contract merging would require the use of super. We excluded all methods using
super references from the analysis for this reason, but this again produces a conservative
under-approximation of potential LSP issues. However, only 2.77 % of diff records refer to
methods overriding with super.

6 Related Work

We now review a cross-section of related work, paying particular attention to empirical work
and contract languages.

10Although this can be achieved via classloader-based add-on technologies, such as OSGi.

J. Dietrich, D. J. Pearce, K. Jezek, and P. Brada 9:21

6.1 Empirical Studies

Casalnuovo et al. undertook an empirical study of the 100 most popular C/C++ projects
on GitHub [32]. Their primary interest was the connection between assertions and defect
occurrences and their main finding was that the presence of assertions in a method had a
small (but significant) effect on reducing defects within it. In taking these measurements
they correctly identified — and controlled for — a number of well-known confounds, such
as method size and number of contributors. However, they later identified a flaw in their
experimental setup related to the reliance on git for identifying the enclosing method of
a commit [31]. Having fixed and repeated this part of the study, they subsequently found
the opposite result — namely, that the presence of assertions in a method had a small (but
significant) effect on increasing the number of defects. Indeed, this is perhaps more intuitive
as one expects the presence of assertions to increase the observability of faults [99, 39]. That
said, the authors conservatively concluded “that there is no evidence that non-test asserts
have an effect on defects”. Of most relevance here was their finding that 69 out of 100
projects contained “more than a minimal presence” of assert statements. This contrasts
with our observations that only 52 out of 176 projects used them, and one explanation for
this maybe their focus on C/C++ projects compared with our focus on Java projects. For
example, Java developers may eschew assert statements in favour of conditional runtime
exceptions which are always enabled (Table 3 supports this to some extent). Finally, another
interesting finding of Casalnuovo et al. was that “methods with asserts are more likely to take
on the role of hubs” (roughly speaking, methods which call many other methods). Whilst
our results do not provide any specific insight into this, it would certainly be interesting to
see whether contracts are similarly correlated (as one might expect them to be).

Another relevant work is that of Estler et al. who examined contract usage in practice
[53]. Their empirical study looked at a suite of projects written in Eiffel, C# and Java across
7700 revisions and totalling 260MLOC. For the C# and Java projects, the contract languages
employed were (respectively) Microsoft Code Contracts [14] and JML [75]. Contrasting
with our work, they only considered projects which actually used contracts in a meaningful
way (roughly speaking, around 5% of methods had to have some kind of specification to
be included). As such, the occurrence of contracts was much higher and, on average, the
proportion of methods with contracts was around 40%. Regarding usage patterns, they
found no strong preference for the kind of contract used (i.e. pre-/post-condition, class
invariant, etc). However, they did find that preconditions, when used, tended to be larger.
This contrasts with our observations that preconditions were, by far, the more frequent (recall
Table 5). This difference may be explained in two ways: firstly, the contract constructs we
analysed tend to favour preconditions (recall Figure 1); secondly, there was a considerable
difference in the nature of projects considered, as Estler et al. specifically selected projects
with significant contract usage. Indeed, they comment that “In the majority of projects
in our study, developers devoted a considerable part of their programming effort to writing
specifications”. Another relevant aspect of their work was an attempt to examine how
contracts evolve over time and, consistent with our findings, concluded that “the fraction of
routines and classes with some specification is quite stable over time”. They also considered a
concept of “strength” similar to ours by counting the number of clauses in a contract. Again,
they observed that the average strength of a contract was relatively stable over time. Finally,
they also compared implementation code against contracts and, as perhaps expected, found
that a method’s implementation changes much more frequently that its contract. These
latter findings complemented their earlier work where they identified a general trend for
contracts [54]. Specifically, that they tend to change frequently in the early phases of a
project, before stabilising.

ECOOP 2017

9:22 Contracts in the Wild

Schiller et al. examined the use of Code Contracts across a corpus of 90 C# programs
listed on Ohloh comprising around 3.5MLOC, with the goal of providing guidance for the
design of contract languages [94]. Their approach was multi-pronged. Of particular relevance
here is their use of an automatic analysis to categorise contract properties (i.e. clauses).
Their focus was on whether contracts were checking common or simple properties (e.g. null
checks) or richer application-specific properties and, unfortunately, found that by far the
majority of contracts (around 73%) focused on null checks. Their conclusion was that writing
nullness contracts may be consuming developer’s limited time and "crowding out" other
(more interesting) application-specific contracts. Their results also provide another data
point on the question of pre-conditions versus post-conditions. Specifically, consistent with
our findings, they observed a clear bias towards developers writing pre-conditions over post-
conditions (68% vs 26%, with the rest being class invariants). Schiller et al. also employed a
dynamic invariant synthesis tool (Daikon [52]) to infer contracts and then compared them
with what the programmer wrote. They found that the tool inferred more post-conditions
than pre-conditions, and concluded that “the strong developer bias towards preconditions ...
cannot be attributed to an absence of potential postconditions”.

An earlier study on the use of contracts was conducted by Chalin [34]. His corpus consisted
of 85 Eiffel projects totalling 7.9MLOC, including many freely available and open-source
projects as well as a large number of proprietary projects. The study counted the lines of code
used for contract elements, and categorised them according to use (e.g. pre-/post-condition,
class/loop invariant, inline assertion, etc). Categorisation was simpler than in our case, since
Eiffel provides explicit keywords signalling usage (e.g. requires for pre-condition, ensures for
post-condition, etc). The experiment found that, roughly speaking, around 5% of measured
lines were for contract elements. Of these, slightly more pre-conditions (50%) were observed
than post-conditions (40%), with relatively few class invariants (7.1%). Compared with our
findings and that of Schiller et al., this shows a larger proportion of post-conditions and
is more consistent with the findings of Estler et al. Chalin also found that only 35% of
contract elements were null checks and, perhaps more surprisingly, that only 3% were for
inline assertions. The latter suggests programmers find writing contracts more beneficial
than checking internal invariants, perhaps because they aid interaction with others (e.g. via
APIs).

Arnout and Meyer investigated the implicit contracts found in languages without linguistic
support for them [16]. Their basic assumption was that, despite language limitations,
programmers will still encode contracts using whatever means they have available and they
refer to this as the Closet Contract Conjecture. This includes using exceptions to check
pre- and post-conditions, but also includes mechanisms (i.e. encapsulation) for maintaining
invariants over state. Their approach was to manually investigate a small number of classes
from the .NET standard library (ArrayList, Stack, Queue and some related interfaces).
Most importantly, from the perspective of this paper, they found strong evidence that
exceptions were used to enforce contracts.

The work of Shrestha and Rutherford provides useful insight into the benefits of contracts
with runtime assertion checking [95]. For a small set of Java classes, they measured the
effectiveness of JML contracts in finding faults injected using mutation analysis, and observed
a significant improvement over the null oracle (i.e. the underlying runtime system).

6.2 Contract Languages
There have been numerous attempts to add contracts to existing languages, such as Java,
C# and C. Early examples include that of App [92] and Turing [67], and we now examine
the more widely-used systems in detail.

J. Dietrich, D. J. Pearce, K. Jezek, and P. Brada 9:23

Eiffel is perhaps the most influential and widely used language to support contracts [79].
Through this, Meyer promoted the idea of “Design by Contract” as a lightweight alternative
to formal specification [80]. Numerous studies (some discussed above) have explored the
use of contracts in Eiffel. For example, to automatically repair programs [86], to investigate
strong specifications [88], to model programs in other programming languages [16] and much
more.

The Java Modelling Language (JML) was an attempt to extend the Java language
with a standard notation for expressing contracts [35, 36, 75]. The intention was that
contracts in JML could be statically verified using ESC/Java [57]. Although ESC/Java was
demonstrated on several real-world examples (e.g. for checking specifications for an electronic
purse implementation [33]), the tool suffered many problems in practice. To help, JML
also supported runtime assertion checking [38, 30, 75, 36]. Finally, work on JML continues
through the OpenJML initiative [41, 93, 40]

The Spec# system followed ESC/Java, included a number of linguistic improvements
over JML, and employed the Z3 automated theorem prover (as opposed to Simplify) [44].
Both of these meant it is capable of verifying a much wider range of programs than ESC/Java.
Whilst the Spec# project has wrapped up, the authors did provide some reflections on their
experiences [18]. Of particular relevance here is the following comment: “There is a spectrum
of possibilities for checking Spec# contracts. One extreme would be to verify all of them
statically, another extreme would be to check them all dynamically. Either is impractically
expensive.”. Here, they argued that the “runtime overhead is prohibitive” when using runtime
checking.

6.3 Contracts in Component Composition and Evolution
In the context of component-based software engineering, contracts are used with a more
general meaning and also include aspects such as API compatibility, quality of service
attributes and more [24]. Several component frameworks have been proposed which use
such contractual specifications, including Fractal [29], SOFA [87] and Treaty [47]. Dietrich
and Stewart [49] looked into extracting formal contracts from Eclipse extension point
documentations and found that by formalising them, they could find violations of social
coding etiquette (Eclipse house rules [59]). Empirical studies on component and library
evolution indicate significant potential for contract-breaking changes leading to compatibility
problems [91, 48, 21, 49].

7 Conclusion

We have studied the use of contracts in a large set of widely-used, real-world Java programs.
Although we found contracts being used, there is no evidence of their widespread application.
If the Closet Contract Conjecture of Arnout and Meyer holds, then the contracts referred to
are hidden deeper, where we couldn’t find them. We also found no evidence that the adoption
of contracts is increasing. However, when projects do use contracts, they continue to do so
and expand the use of contracts as they grow and evolve, presumably because contracts are
seen as beneficial. We did also find cases of incorrect use, that is, where the use of contracts
does not guarantee safe substitution, neither in the context of evolution nor in the context of
inheritance.

We do not have any ultimate answer as to the reasons for these findings, and can merely
offer some possible explanations. Aspects that we think are of importance here include:
the fragmentation of technologies and the lack of standardisation; the actual and perceived

ECOOP 2017

9:24 Contracts in the Wild

performance overhead of enforcing contracts; the lack of tooling; and, the widespread use
of testing that has a similar purpose. In summary, all of this impacts on the (actual and
perceived) return on investment from using contracts. A more detailed study to explore the
reasons behind our findings is an interesting and important area of future research.

Finally, an interesting question is how our results can be actioned. For researchers the
novel insights gained into the kinds of contracts used in practice facilitates the development
of new tooling. We have demonstrated, for example, that it is not difficult to extract rich
semantic information regarding contracts from real-world programs. Likewise, this paper
and the associated artifact (data and scripts) help to address the limited data available on
real-world systems for comparison purposes. For practitioners the study has revealed a
significant amount of technology fragmentation that hampers progress. As such, practitioners
would ideally work towards better standards (e.g. for contract APIs / annotations), and
create tools for processing contracts (as illustrated in this paper).

Acknowledgements. We would like the thank the anonymous readers for their helpful
comments on this paper.

References
1 Apache commons lang. Accessed 12 August 2016. URL: https://commons.apache.org.
2 C4J - DBC for Java. Accessed 12 August 2016. URL: https://sourceforge.net/

projects/c4j/.
3 chex4j. Accessed 12 August 2016. URL: https://sourceforge.net/projects/chex4j/.
4 cofoja. Accessed 12 August 2016. URL: https://github.com/nhatminhle/cofoja.
5 Design by contract. Accessed 12 August 2016. URL: http://c2.com/cgi/wiki?

DesignByContract.
6 Google core libraries for java 6+. Accessed 12 August 2016. URL: https://github.com/

google/guava.
7 Hamcrest. Accessed 12 August 2016. URL: http://hamcrest.org/.
8 Hibernate validator. Accessed 12 August 2016. URL: http://hibernate.org/validator/.
9 Java parser. Accessed 12 August 2016. URL: http://javaparser.org/.

10 javadbc. Accessed 12 August 2016. URL: https://www.openhub.net/p/javadbc.
11 Oval - object validation framework for java. Accessed 12 August 2016. URL: http://oval.

sourceforge.net/.
12 Spring framework. Accessed 12 August 2016. URL: http://spring.io/.
13 Valid4j. Accessed 12 August 2016. URL: http://www.valid4j.org/.
14 Code contracts, 2008. URL: https://www.microsoft.com/en-us/research/project/

code-contracts/.
15 Wladimir Araujo, Lionel C. Briand, and Yvan Labiche. On the effectiveness of contracts as

test oracles in the detection and diagnosis of functional faults in concurrent object-oriented
software. IEEE Transactions on Software Engineering, 40(10):971–992, 2014.

16 Karine Arnout and Bertrand Meyer. Finding implicit contracts in.NET components. In
Proceedings of the Formal Methods for Components and Objects (FMCO), volume 2852 of
LNCS, pages 285–318. Springer-Verlag, 2002.

17 J. Barnes. High Integrity Ada: The SPARK Approach. Addison Wesley Longman, Inc.,
1997.

18 M. Barnett, M. Fähndrich, K. R. M. Leino, P. Müller, W. Schulte, and H. Venter. Specific-
ation and verification: the Spec# experience. Communications of the ACM, 54(6):81–91,
2011.

https://commons.apache.org
https://sourceforge.net/projects/c4j/
https://sourceforge.net/projects/c4j/
https://sourceforge.net/projects/chex4j/
https://github.com/nhatminhle/cofoja
http://c2.com/cgi/wiki?DesignByContract
http://c2.com/cgi/wiki?DesignByContract
https://github.com/google/guava
https://github.com/google/guava
http://hamcrest.org/
http://hibernate.org/validator/
http://javaparser.org/
https://www.openhub.net/p/javadbc
http://oval.sourceforge.net/
http://oval.sourceforge.net/
http://spring.io/
http://www.valid4j.org/
https://www.microsoft.com/en-us/research/project/code-contracts/
https://www.microsoft.com/en-us/research/project/code-contracts/

J. Dietrich, D. J. Pearce, K. Jezek, and P. Brada 9:25

19 Mike Barnett, Robert De ine, Manuel Fähndrich, K. Rustan M. Leino, and Wolfram Schulte.
Verification of object-oriented programs with invariants. Journal of Object Technology,
3(6):27–56, 2004.

20 Detlef Bartetzko, Clemens Fischer, Michael Möller, and Heike Wehrheim. Jass—Java with
assertions. Electronic Notes in Theoretical Computer Science, 55(2):103–117, 2001.

21 Jaroslav Bauml and Premek Brada. Automated Versioning in OSGi: a Mechanism for
Component Software Consistency Guarantee. In Proceedings of the Conference on Software
Engineering and Advanced Applications (SEAA), pages 428–435, 2009.

22 Emmanual Bernard. Jsr 349: Bean validation 1.1, 2013. URL: http://beanvalidation.
org/1.1/.

23 Emmanuel Bernard and Steve Peterson. Jsr 303: Bean validation, 2009. URL: http:
//beanvalidation.org/1.0/.

24 Antoine Beugnard, Jean-Marc Jézéquel, Noël Plouzeau, and Damien Watkins. Making
Components Contract Aware. Computer, 32(7):38–45, 1999.

25 Stephen M Blackburn, Robin Garner, Chris Hoffmann, Asjad M Khang, Kathryn S McKin-
ley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z Guyer, et al.
The DaCapo benchmarks: Java benchmarking development and analysis. In Proceedings
of the ACM conference on Object-Oriented Programming, Systems, Languages and Applic-
ations (OOPSLA), number 10, pages 169–190. ACM, 2006.

26 Joshua Bloch. Effective Java. Pearson Education, 2008.
27 J. Bowen and M. Hinchey. Ten commandments of Formal Methods . . . ten years later.

IEEE Computer, 39(1):40–48, 2006.
28 Carl Brandon and Peter Chapin. A SPARK/Ada CubeSat control program. In Proceedings

of the Conference on Reliable Software Technologies (RST), pages 51–64, 2013.
29 Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean Stefani.

The fractal component model and its support in Java. Software: Practice and Experience,
36:1257–1284, 2006.

30 Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joseph Kiniry, Gary T.
Leavens, K. Rustan M. Leino, and Erik Poll. An overview of JML tools and applications.
Electronic Notes in Computer Science, 80:75–91, 2003.

31 Casey Casalnuovo, Premkumar T. Devanbu, Vladimir Filkov, and Baishakhi Ray. Replic-
ation of assert use in github projects. Technical report, 2015.

32 Casey Casalnuovo, Premkumar T. Devanbu, Abilio Oliveira, Vladimir Filkov, and
Baishakhi Ray. Assert use in github projects. In Proceedings of the International Con-
ference of Software Engineering (ICSE), pages 755–766. IEEE Computer Society Press,
2015.

33 Néstor Cataño and Marieke Huisman. Formal specification and static checking of Gemplus’
electronic purse using ESC/Java. In Proceedings of the Symposium on Formal Methods
Europe (FME), volume 2391 of LNCS, pages 272–289. Springer-Verlag, 2002.

34 Patrice Chalin. Are practitioners writing contracts? In Rigorous Development of Complex
Fault-Tolerant Systems [FP6 IST-511599 RODIN project], pages 100–113, 2006.

35 Patrice Chalin, Joseph R. Kiniry, Gary T. Leavens, and Erik Poll. Beyond assertions: Ad-
vanced specification and verification with JML and ESC/Java2. In Symposium on Formal
Methods for Components and Objects (FMCO), pages 342–363, 2005.

36 Patrice Chalin and Frédéric Rioux. JML runtime assertion checking: Improved error re-
porting and efficiency using strong validity. In Proceedings of the Symposium on Formal
Methods (FM), volume 5014 of LNCS, pages 246–261. Springer-Verlag, 2008.

37 Roderick Chapman and Florian Schanda. Are we there yet? 20 years of industrial theorem
proving with SPARK. In Proceedings of the Conference on Interactive Theorem Proving
(ITP), pages 17–26, 2014.

ECOOP 2017

http://beanvalidation.org/1.1/
http://beanvalidation.org/1.1/
http://beanvalidation.org/1.0/
http://beanvalidation.org/1.0/

9:26 Contracts in the Wild

38 Y. Cheon and G. T. Leavens. A simple and practical approach to unit testing: The JML and
JUnit way. In Proceedings of the European Confereince on Object-Oriented Programming
(ECOOP), pages 231–255, 2002.

39 L. A. Clarke and D. S. Rosenblum. A historical perspective on runtime assertion checking
in software development. ACM Software Engineering Notes, 31(3):25–37, 2006.

40 David R. Cok. OpenJML: JML for Java 7 by extending OpenJDK. In Proceedings of the
NASA Formal Methods Symposium (NFM), volume 6617 of LNCS, pages 472–479. Springer-
Verlag, 2011.

41 David R. Cok. OpenJML: Software verification for Java 7 using JML, OpenJDK, and
eclipse. In Proceedings of the Workshop on Formal Integrated Development Environment
(F-IDE), volume 149, pages 79–92, 2014.

42 David R. Cok and Joseph Kiniry. ESC/Java2: Uniting ESC/Java and JML. In Proceedings
of the Conference on Construction and Analysis of Safe, Secure, and Interoperable Smart
Devices (CASSIS), volume 3362 of LNCS, pages 108–128. Springer-Verlag, 2005.

43 P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski. Frama-C:
A Software Analysis Perspective. In Proceedings of the Conference on Software Engineering
and Formal Methods (SEFM), pages 233–247. 2012.

44 Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Proceedings
of the conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), pages 337–340, 2008.

45 David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe. Extended static
checking. SRC Research Report 159, Compaq Systems Research Center, 1998.

46 L. Peter Deutsch. An interactive program verifier. Ph.D., 1973.
47 Jens Dietrich and Graham Jenson. Components, contracts and vocabularies-making dy-

namic component assemblies more predictable. Journal of Object Technology, 8(7):131–148,
2009.

48 Jens Dietrich, Kamil Jezek, and Premek Brada. Broken promises: An empirical study
into evolution problems in Java programs caused by library upgrades. In Proceedings of
the Conference on Software Maintenance, Reengineering and Reverse Engineering (CSMR-
WCRE), pages 64–73. IEEE Computer Society Press, 2014.

49 Jens Dietrich and Lucia Stewart. Component contracts in Eclipse - A case study. In
Proceedings of the Symposium on Component-Based Software Engineering (CBSE), volume
6092, pages 150–165, 2010.

50 C. Dross, P. Efstathopoulos, D. Lesens, D. Mentre, and Y. Moy. Rail, space, security:
Three case studies for SPARK 2014. In Proceedings of the Embedded Real Time Software
And Systems (ERTS), 2014.

51 Oliver Enseling. icontract: Design by contract in Java. Accessed 12
August 2016. URL: http://www.javaworld.com/article/2074956/learn-java/
icontract--design-by-contract-in-java.html.

52 Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco,
Matthew S. Tschantz, and Chen Xiao. The Daikon system for dynamic detection of likely
invariants. Science of Computer Programming, 69(1-3):35–45, 2007.

53 H.-Christian Estler, Carlo A. Furia, Martin Nordio, Marco Piccioni, and Bertrand Meyer.
Contracts in practice. In Proceedings of the Symposium on Formal Methods (FM), volume
8442 of LNCS, pages 230–246. Springer-Verlag, 2014.

54 H.-Christian Estler, Marco Piccioni, Carlo A. Furia, Martin Nordio, and Bertrand Meyer.
How specifications change and why you should care. Computing Research Repository
(CoRR), abs/1211.4775, 2012.

http://www.javaworld.com/article/2074956/learn-java/icontract--design-by-contract-in-java.html
http://www.javaworld.com/article/2074956/learn-java/icontract--design-by-contract-in-java.html

J. Dietrich, D. J. Pearce, K. Jezek, and P. Brada 9:27

55 Manuel Fähndrich, Michael Barnett, and Francesco Logozzo. Embedded contract languages.
In Proceedings of the Symposium on Applied Computing (SAC), pages 2103–2110. ACM,
2010.

56 J. Filliâtre and A. Paskevich. Why3 — where programs meet provers. In Proceedings of
the European Symposium on Programming (ESOP), pages 125–128, 2013.

57 C. Flanagan, K. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata. Extended
static checking for Java. In Proceedings of the ACM conference on Programming Language
Design and Implementation (PLDI), pages 234–245, 2002.

58 R. W. Floyd. Assigning meaning to programs. In Proceedings of Symposia in Applied
Mathematics, volume 19, pages 19–31. American Mathematical Society, 1967.

59 Erich Gamma and Kent Beck. Contributing to Eclipse: principles, patterns, and plug-ins.
Addison-Wesley Professional, 2004.

60 Olga Goloshchapova and Markus Lumpe. On the application of inequality indices in compar-
ative software analysis. In Proceedings of the Australasian Software Engineering Conference
(ASWEC), pages 117–126. IEEE, 2013.

61 D. I. Good. Mechanical proofs about computer programs. In Mathematical logic and
programming languages, pages 55–75, 1985.

62 Alwyn E. Goodloe, César Muñoz, Florent Kirchner, and Loïc Correnson. Verification of
numerical programs: From real numbers to floating point numbers. In Proceedings of the
NASA Formal Methods Symposium (NFM), pages 441–446, 2013.

63 C. A. R. Hoare. Assertions: A personal perspective. IEEE Annals of the History of
Computing, 25(2):14–25, 2003.

64 C.A.R. Hoare. The verifying compiler: A grand challenge for computing research. Journal
of the ACM, 50(1):63–69, 2003.

65 Charles Antony Richard Hoare. An axiomatic basis for computer programming. Commu-
nications of the ACM, 12(10):576–580, 1969.

66 Ashlie B. Hocking, John C. Knight, M. Anthony Aiello, and Shinichi Shiraishi. Arguing soft-
ware compliance with ISO 26262. In Proceedings of the Symposium on Software Reliability
Engineering (ISSRE), pages 226–231. IEEE Computer Society, 2014.

67 Richard C. Holt, Philip A. Matthews, J. Alan Rosselet, and James R. Cordy. The Turing
Programming Language. Design and Definition. Prentice Hall, 1988.

68 B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and F. Piessens. Verifast:
A powerful, sound, predictable, fast verifier for C and Java. In Proceedings of the NASA
Formal Methods Symposium (NFM), pages 41–55, 2011.

69 B. Jacobs, J. Smans, and F. Piessens. A quick tour of the verifast program verifier. In
Proceedings of the Asian Symposium on Programming Languages and Systems (APLAS),
pages 304–311, 2010.

70 T. J. Jennings and B. A. Carré. A subset of Ada for formal verification (SPARK). Ada
User, 9(Supplement):121–126, 1989.

71 Murat Karaorman, Urs Hölzle, and John Bruno. jContractor: A reflective Java library to
support design by contract. In Proc. REFLECTION, pages 175–196, 1999.

72 Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-
Marc Loingtier, and John Irwin. Aspect-oriented programming. In Proceedings of the
European Confereince on Object-Oriented Programming (ECOOP), pages 220–242, 1997.

73 Michael Kimberlin. Reducing boilerplate code with project lombok. URL: http://jnb.
ociweb.com/jnb/jnbJan2010.html.

74 S. King. A Program Verifier. PhD thesis, Carnegie-Mellon University, 1969.
75 G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R. Cok. How the design of JML ac-

commodates both runtime assertion checking and formal verification. Science of Computer
Programming, 55(1-3):185–208, March 2005.

ECOOP 2017

http://jnb.ociweb.com/jnb/jnbJan2010.html
http://jnb.ociweb.com/jnb/jnbJan2010.html

9:28 Contracts in the Wild

76 K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness.
In Proceedings of the Conference on Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR), volume 6355 of LNCS, pages 348–370. Springer-Verlag, 2010.

77 K. Rustan M. Leino. Developing verified programs with Dafny. In Proceedings of the
Conference on Verified Software: Theories, Tools, Experiments (VSTTE), volume 7152 of
LNCS, pages 82–82. Springer-Verlag, 2012.

78 D. Luckham, SM German, F. von Henke, R. Karp, P. Milne, D. Oppen, W. Polak, and
W. Scherlis. Stanford Pascal Verifier user manual. Technical Report CS-TR-79-731, Stan-
ford University, Department of Computer Science, 1979.

79 B. Meyer. Eiffel: A language and environment for software engineering. Journal of Systems
and Software, 8(3):199–246, 1988.

80 B. Meyer. Applying ’design by contract’. Computer, 25(10):40–51, 1992.
81 Emerson Murphy-Hill and Dan Grossman. How programming languages will co-evolve with

software engineering: a bright decade ahead. In Proceedings of the on Future of Software
Engineering (FOSE). ACM, 2014.

82 Peter Naur. Proof of algorithms by general snapshots. BIT Numerical Mathematics, 6,
1966.

83 Matthew M Papi, Mahmood Ali, Telmo Luis Correa Jr, Jeff H Perkins, and Michael D
Ernst. Practical pluggable types for Java. In Proceedings of the International Symposium
on Software Testing and Analysis (ISSTA), pages 201–212, 2008.

84 D. J. Pearce and L. Groves. Whiley: a platform for research in software verification. In
Proceedings of the Conference on Software Language Engineering (SLE), pages 238–248,
2013.

85 D. J. Pearce and L. Groves. Designing a verifying compiler: Lessons learned from developing
whiley. Science of Computer Programming, 113(2):191–220, 2015.

86 Yu Pei, Carlo A. Furia, Martin Nordio, Yi Wei, Bertrand Meyer, and Andreas Zeller.
Automated fixing of programs with contracts. IEEE Transactions on Software Engineering,
40(5):427–449, 2014.

87 Frantisek Plasil and Stanislav Visnovsky. Behavior protocols for software components.
IEEE transactions on Software Engineering, 28(11):1056–1076, 2002.

88 N. Polikarpova, C. Furia, Y. Pei, Y. Wei, and B. Meyer. What good are strong specific-
ations? In Proceedings of the International Conference of Software Engineering (ICSE),
pages 262–271, 2013.

89 Tom Preston-Werner. Semantic versioning 2.0.0. Accessed 12 August 2016. URL: http:
//semver.org/.

90 William Pugh. Jsr305: Annotations for software defect detection, 2013. URL: https:
//jcp.org/en/jsr/detail?id=305.

91 S. Raemaekers, A. van Deursen, and J. Visser. Semantic versioning versus breaking changes:
A study of the Maven repository. In Proceedings of the Working Conference on Source Code
Analysis & Manipulation, pages 215–224. IEEE Computer Society Press, 2014.

92 David S. Rosenblum. A practical approach to programming with assertions. IEEE Trans-
actions on Software Engineering, 21(1):19–31, 1995.

93 José Sánchez and Gary T. Leavens. Static verification of PtolemyRely programs using
OpenJML. In Proceedings of the Workshop on Foundations of Aspect-Oriented Languages
(FOAL), pages 13–18. ACM Press, 2014.

94 Todd W. Schiller, Kellen Donohue, Forrest Coward, and Michael D. Ernst. Case studies
and tools for contract specifications. In Proceedings of the International Conference of
Software Engineering (ICSE), pages 596–607, 2014.

95 Kavir Shrestha and Matthew J. Rutherford. An empirical evaluation of assertions as oracles.
In ICST, pages 110–119. IEEE Computer Society Press, 2011.

http://semver.org/
http://semver.org/
https://jcp.org/en/jsr/detail?id=305
https://jcp.org/en/jsr/detail?id=305

J. Dietrich, D. J. Pearce, K. Jezek, and P. Brada 9:29

96 Clemens Szyperski. Component Software, Second Edition. ACM Press, Addison-Wesley,
2002.

97 Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li, Markus Lumpe, Hayden
Melton, and James Noble. The Qualitas Corpus: A curated collection of Java code for
empirical studies. In Asia Pacific Software Engineering Conference (APSEC), pages 336–
345. IEEE, 2010.

98 The OSGi Alliance. OSGi service platform, 2012. Release 4.3.
99 Jeffrey M. Voas and Keith W. Miller. Putting assertions in their place. In Proceedings of

the Symposium on Software Reliability Engineering (ISSRE), pages 152–157, 1994.

ECOOP 2017

	Introduction
	Contracts and Their Checking
	Contracts and Evolution
	Research Questions and Contributions

	Contract Patterns in Java
	Terminology
	Conditional Runtime Exceptions (CRE) and Unsupported Operations
	Contract APIs
	Assertions
	Contract Annotations
	Other Approaches

	Methodology
	Data Sets
	Contract Element Classification
	Methodology for Contract Usage Study
	Methodology for Evolution Study
	Methodology for LSP Study
	Verifiability

	Results
	Contract Usage (RQ1)
	Contract Evolution (RQ2)
	Contract Safety and Program Evolution (RQ3)
	LSP Study (RQ4)

	Limitations and Threats to Validity
	Data Set
	Contract Extraction
	Evolution
	LSP Study

	Related Work
	Empirical Studies
	Contract Languages
	Contracts in Component Composition and Evolution

	Conclusion

