
A Linear Decomposition of Multiparty Sessions for
Safe Distributed Programming∗

Alceste Scalas1, Ornela Dardha2, Raymond Hu3, and
Nobuko Yoshida4

1 Imperial College London, UK
alceste.scalas@imperial.ac.uk

2 University of Glasgow, UK
ornela.dardha@glasgow.ac.uk

3 Imperial College London, UK
raymond.hu@imperial.ac.uk

4 Imperial College London, UK
n.yoshida@imperial.ac.uk

Abstract
Multiparty Session Types (MPST) is a typing discipline for message-passing distributed pro-
cesses that can ensure properties such as absence of communication errors and deadlocks, and
protocol conformance. Can MPST provide a theoretical foundation for concurrent and distrib-
uted programming in “mainstream” languages? We address this problem by (1) developing the
first encoding of a full-fledged multiparty session π-calculus into linear π-calculus, and(2) using
the encoding as the foundation of a practical toolchain for safe multiparty programming in Scala.

Our encoding is type-preserving and operationally sound and complete. Crucially, it keeps the
distributed choreographic nature of MPST, illuminating that the safety properties of multiparty
sessions can be precisely represented with a decomposition into binary linear channels. Previous
works have only studied the relation between (limited) multiparty and binary sessions via cent-
ralised orchestration means. We exploit these results to implement an automated generation of
Scala APIs for multiparty sessions, abstracting existing libraries for binary communication chan-
nels. This allows multiparty systems to be safely implemented over binary message transports,
as commonly found in practice. Our implementation is the first to support distributed multiparty
delegation: our encoding yields it for free, via existing mechanisms for binary delegation.

1998 ACM Subject Classification D.1.3 Concurrent Programming; D.3.1 Formal Definitions
and Theory; F.3.3 Studies of Program Constructs — Type structure

Keywords and phrases process calculi, session types, concurrent programming, Scala

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.24

Supplementary Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.3.2.3

1 Introduction

Correct design and implementation of concurrent and distributed applications is notoriously
difficult. Programmers must confront challenges involving protocol conformance (are messages

∗ Partially supported by EPSRC (grants EP/K034413/1, EP/K011715/1, EP/L00058X/1, EP/N027833/1,
EP/N028201/1) and EU (FP7 612985 “Upscale”). Dardha was awarded a SICSA PECE bursary for
visiting Imperial College London in January–March 2016.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 24; pp. 24:1–24:31

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.24
http://dx.doi.org/10.4230/DARTS.3.2.3
http://www.sicsa.ac.uk/research-exchanges-pece/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


24:2 A Linear Decomposition of Multiparty Sessions

Q Pa Pb Pc

–

– – –

Unordered

Alt

Alt

Alt
Loop

PlayA(s[a])

PlayB(s[b])

PlayC(s[c])

InfoBC(String)

InfoCA(String)

InfoAB(String)

Mov1AB(Int)

Mov1BC(Int)

Mov1CA(Int)

Mov2CA(Bool)

Mov2AB(Bool)

Mov2BC(Bool)

Mov1CA(Int)

Mov2CA(Bool)

—

G
am

e

Figure 1 Game server with 3 clients.

sent/received according to a specification?) and communication mechanics (how are the
interactions actually performed?). These difficulties are worsened by the potential complexity
of interactions among multiple participants, and if the communication topology is not fixed.

For example, consider a common scenario for a peer-to-peer multiplayer game: the clients,
initially unknown to each other, connect to a “matchmaking” server, whose task is to group
players and setup a game session in which they can interact directly. Figure 1 depicts this
scenario: Q is the server, connected to three clients Pa, Pb and Pc. To set up a game, Q
sends to each client some networking information (denoted by s[a]/s[b]/s[c], payloads of the
PlayA/B/C messages) to “introduce” the clients to each other and allow them to communicate.
Then, the clients follow the game protocol (marked as “Game”), consisting in some initial
message exchanges (Info), and a game loop: Pa chooses a message to send to Pb (Mov1AB or
Mov2AB) followed by a message from Pb to Pc, who chooses which message send back to Pa.

Figure 1 features structured protocols with inter-role message dependencies, and a dynamic
communication topology (starting client-to-server, becoming client-to-client). Implementing
them is not easy: programmers would benefit from tools to statically detect protocol violations
in source code, and realise the communication topology changes.

Multiparty Session Types (MPST) [27] are a theoretical framework for channel-based
communication, capable of modelling our example. In MPST, participants are modelled
as roles (e.g., game players a, b, c) and programs are session π-calculus processes; the
“networking information payloads” s[a]/s[b]/s[c] can be modelled as multiparty channels,
for interpreting roles a/b/c on the game session s. Notably, channels can themselves be
sent/received: this allows to delegate a multiparty interaction to another process, thus
changing the communicating topology. In Figure 1, the server Q sends (i.e., delegates) the
channel s[b] to Pb; the latter can then use s[b] to interact with the processes owning channels
s[a] and s[c] (i.e., Pa and Pc, after two more delegations).



A. Scalas, O. Dardha, R. Hu, N. Yoshida 24:3

The MPST framework formalises protocols as session types: structured sequences of
inputs/outputs and choices. The MPST typing system assigns such types to channels, and
checks the processes using them. In our example, channel s[b] could have type:

Sb = c!InfoBC(String) . a?InfoAB(String) .
µt.
(
a & {?Mov1AB(Int).c!Mov1BC(Int).t , ?Mov2AB(Bool).c!Mov2BC(Bool).t }

)
Sb says that s[b] must be used to realise the Game interactions of Pb in Figure 1: first to send
InfoBC(String) to c, then receive InfoAB from a, then enter the recursive game “loop” µt.(. . .).
Inside the recursion, a & {. . .} is a branching from a: depending on a’s choice, the channel will
deliver either Mov1AB(Int) (in which case, it must be used to send Mov1BC(Int) to c, and loop), or
Mov2AB (then, it must be used to send Mov2BC to c, and loop). Analogous types can be assigned
to s[a] and s[c]. Delegation is represented by types like q?PlayB(Sb).end, meaning: from role
q, receive a message PlayB carrying a channel that must be used according to Sb above; then,
end the session. Session type checking ensures that, e.g., process Pb uses its channels abiding
by the types above — thus safely implementing the expected channel dynamics and fulfilling
role b in the game. Finally, MPST can formalise the whole Game protocol in Figure 1 as
a global type, and validate that it is deadlock-free; then, via typing, ensure that a set of
processes interacts according to the global type (and is, thus, deadlock-free).

MPST in practice: challenges. MPST could offer a promising formal foundation for safe
distributed programming, helping to develop type-safe and deadlock-free concurrent programs.
However, bridging the gap between theory and implementation raises several challenges:
C1 Multiparty sessions can have 2, 3 or more interacting roles; but in practice, communication

occurs over binary channels (e.g., TCP sockets). Can multiparty channels be implemented
as compositions of binary channels, preserving their type safety properties?

C2 MPST are far from the types of “mainstream” programming languages, as shown by Sb

above. Can they be rendered, e.g., as objects? If so, what are their API and internals?
C3 How should multiparty delegation be realised, especially in distributed settings?

The current state-of-the-art has not addressed these challenges. On one hand, exist-
ing theoretical works on encoding multiparty sessions into binary sessions [8, 9] introduce
centralised medium (or arbiter) processes to orchestrate the interactions between the multi-
party session roles: hence, they depart from the choreographic (i.e., decentralised) nature
of the MPST framework [27], and preclude examples like our peer-to-peer game in Fig-
ure 1. On the other hand, there are no existing implementations of full-fledged MPST; e.g.,
[57, 32, 33, 42, 52, 61, 55] only support binary sessions, while none of [29, 64, 17, 20] support
session delegation.

Our approach. In this work, we tackle the three challenges above with a two-step strategy:

S1 we give the first choreographic encoding of a “full” MPST calculus into linear π-calculus;
S2 we implement a multiparty session API generation for Scala, based on our encoding.

By step S1, we formally address challenge C1. Linear π-calculus provides a theoretical
framework with typed channels that cater only for binary communication, and may only be
used once for input/output. These “limitations” are key to the practicality of our approach.
In fact, they force us to figure out whether multiparty channels can be represented by a
decomposition into binary channels — and whether multiparty session types can be represented
by a decomposition into linear types. To solve these issues, we need study how to “decompose”
the intricate MPST theory in (much simpler) π-calculus terms. This endeavour was not
tackled before, and its feasibility was unclear. Its practical payoff is that linear π-calculus

ECOOP 2017



24:4 A Linear Decomposition of Multiparty Sessions

channels/types are amenable for an (almost) direct object-based representation (shown in
[61]): this tackles challenge C2. Further, using π-calculus we can prove whether such a
decomposition is “correct”, i.e., whether MPST processes can be encoded to only interact on
binary channels, preserving their type-safety and behaviour and “inheriting” deadlock-freedom.

In step S2, we generate high-level typed APIs for multiparty session programming,
ensuring their “correctness” by reflecting the types and process behaviours formalised in
step S1. Following the binary decomposition in step S1, we can implement such APIs as a
layer over existing libraries for binary sessions (available for Java [30], Haskell [57, 32, 42],
Links [44], Rust [33], Scala [61], ML [55]), in a way that solves challenge C3 “for free”.

Contributions. We present the first encoding (Section 5) of a full multiparty session π-
calculus (Section 2) into standard π-calculus with linear, labelled tuple and variant types
(Section 3).

We present a novel, streamlined MPST formulation, sharply separating global/local
typing. Using this formulation, we “close the gaps” between the intricacies of the MPST
theory and the (much simpler) π-calculus, and spot a longstanding issue with type merging
[18] (Definition 2.9, Section 2.1 “On Consistency”). We fix it, with a revised subject
reduction (Theorem 2.16).
At the heart of our encoding there is the discovery that the type safety property of MPST
is precisely characterised as a decomposition into linear π-calculus types (Theorem 6.3).
Our encoding of types preserves duality and subtyping (Theorem 6.1);our encoding of
processes is type-preserving and operationally sound and complete (Theorem 6.2 and
Theorem 6.5).
We subsume the encodings of binary sessions into π-calculus [14, 15], and support recursion
(Section 4), which was not properly handled in [13]. Further, we show that multiparty
sessions can be encoded into binary sessions choreographically, i.e., while preserving
process distribution (homomorphically w.r.t. parallel composition), in contrast to [8, 9].

In Section 7, we use our encoding as formal basis for the first implementation of mul-
tiparty sessions supporting distributed multiparty delegation, over existing Scala libraries
(paper’s artifact1).

Conventions. Derivations use single/double lines for inductive/coinductive rules. Recursive
types µt.T are always closed, and guarded: e.g., µt1.. . . µtn.t1 is not a type. We define
unf(µt.T )=unf(T{µt.T/t}), and unf(T )=T if T 6=µt.T ′. Type equality is syntactic: µt.T is
not equal to unf(µt.T ). We write P→P ′ for process reductions,→∗ for the reflexive+transitive
closure of →, and P6→ iff 6 ∃P ′ such that P→P ′. We assume a basic subtyping 6B capturing
e.g. Int6B Real. For readability, we use blue/red for multiparty/standard π-calculus.

2 Multiparty Session π-Calculus

In this section we illustrate a multiparty session π-calculus [27] (Definition 2.1), and its
typing system — including recursion, subtyping [19] and type merging [67, 18] (Section 2.1).
The calculus models processes that interact via multiparty channels connecting two or more
participants: this is a departure from many “classic” and simpler process calculi, like the

1 http://dx.doi.org/10.4230/DARTS.3.2.3

http://dx.doi.org/10.4230/DARTS.3.2.3


A. Scalas, O. Dardha, R. Hu, N. Yoshida 24:5

Q

b
a

c

q

q

q

Pa p

Pb p

Pc
p

sa

sb

sc

s →

Q′

a
c

q

q

Pa p

Pb
′ b

Pc
p

sa

sc

s →→

Pa
′

a

Pb
′′

b

Pc
′

c
s

(a) (b) (c)

Figure 2 Multiparty peer-to-peer game. Dashed lines represent session scopes, and circled roles
represent channels with roles. (a) initial configuration; (b) delegation of channel with role s[b] (and
end of session sb); (c) clients directly interacting on session s, after “complete” delegation.

linear π-calculus (Section 3), that model binary channels. We provide various examples based
on the scenario in Section 1.

I Definition 2.1. The syntax of multiparty session π-calculus processes and values is:
Processes P ,Q ::= 0 | P |Q | (νs)P (inaction, composition, restriction)

c[p]⊕ 〈l(v)〉.P (selection towards role p)
c[p] &i∈I {li(xi).Pi} (branching from role p — with I 6= ∅)
def D inQ | X〈x̃〉 (process definition, process call)

Declarations D ::= X(x̃) = P (process declaration)
Channels c ::= x | s[p] (variable, channel with role p)

Values v ::= c | false | true | 42 | . . . (channel, base value)
fc(P ) is the set of free channels with roles in P , and fv(P ) is the set of free variables in P .

A channel c can be either a variable or a channel with role s[p], i.e., a multiparty
communication endpoint whose user impersonates role p in the session s. Values v can be
variables, or channels with roles, or base values. The inaction 0 represents a terminated
process. The parallel composition P |Q represents two processes that can execute concur-
rently, and potentially communicate. The session restriction (νs)P declares a new session
s with scope limited to process P . Process c[p]⊕ 〈l(v)〉.P performs a selection (internal
choice) towards role p, using the channel c: the labelled value l(v) is sent, and the execution
continues as process P . Dually, process c[p] &i∈I {li(xi).Pi} uses channels c to wait for a
branching (external choice) from role p: if the labelled value lk(v) is received (for some
k ∈ I), then the execution continues as Pk (with xk holding value v). Note that for all i ∈ I,
variable xi is bound with scope Pi. In both branching and selection, the labels li (i ∈ I) are
all different and their order is irrelevant. Process definition def D inQ and process call
X〈x̃〉 model recursion, with D being a process declaration X(x̃) = P : the call invokes
X by expanding it into P , and replacing its formal parameters with the actual ones. We
postulate that process declarations are closed, i.e., in X(x̃) = P , we have fv(P ) ⊆ x̃ and
fc(P ) = ∅. Note that our syntax is simplified in the style of [19]: it does not have dedicated
input/output prefixes, but they can be easily encoded using & (with one branch) and ⊕.

I Example 2.2. The following MPST π-calculus process implements the scenario in Figure 1:
def Loopb(x) = x[a] &

{
Mov1AB(y).x[c]⊕ 〈Mov1BC(y)〉.Loopb〈x〉 , Mov2AB(z).x[c]⊕ 〈Mov2BC(z)〉.Loopb〈x〉

}
in

def Clientb(y) = y[q] & PlayB(z) . z[c]⊕ 〈InfoBC(“...”)〉 . z[a] & InfoBA(y) . Loopb〈z〉 in
(νsa, sb, sc)

(
Q | Pa | Pb | Pc

)
where: Pb = Clientb〈sb[p]〉 (for brevity, we omit the definitions of Pa and Pc)

Q = (νs)
(
sa[q][p]⊕〈PlayA(s[a])〉 | sb[q][p]⊕〈PlayB(s[b])〉 | sc[q][p]⊕〈PlayC(s[c])〉

)

ECOOP 2017



24:6 A Linear Decomposition of Multiparty Sessions

In the 3rd line, sa, sb, sc are the sessions between the server process Q and the clients
Pa, Pb, Pc, which are composed in parallel with |. Each sessions has 2 roles: q (server) and
p (client); e.g., sb is accessed by the server (through the channel with role sb[q]) and by
the client Pb (through sb[p]); similarly, sa (resp. sc) is accessed by Pa (resp. Pc) through
sa[p] (resp. sc[p]), while the server owns sa[q] (resp. sc[q]). The body of the server process Q
defines a session s (with 3 roles a, b, c) for playing the game. Note that the scope of s does
not include Pa, Pb, Pc: see Figure 2(a) for a schema of processes and sessions.

The server Q uses the channel with role sb[q] (resp. sa[q], sc[q]) to send the message PlayB

(resp. PlayA, PlayC) carrying the channel with role s[b] (resp. s[a], s[c]) to p. The result is a
delegation of the channel to the client process Pb (resp. Pa, Pc). This way, each client obtains
a channel endpoint to interact in the game session s, interpreting a role among a, b and c.

The client Pb is implemented by invoking Clientb〈sb[p]〉 (defined in the 2nd line). Here,
y[q] & PlayB(z) means that y (that becomes sb[p] after the invocation) is used to receive PlayB(z)
from q, while z[c]⊕ 〈InfoBC(“...”)〉 means that z (that becomes s[b] after the delegation is
received) is used to send InfoBC(“...”) to c. The game loop is implemented with the recursive
process call Loopb〈z〉 (defined in the 1st line) — which becomes Loopb〈s[b]〉 after delegation.

I Definition 2.3. The operational semantics of multiparty session processes is:
(R-Comm) s[p][q] &i∈I {li(xi).Pi} | s[q][p]⊕ 〈lj(v)〉.Q → Pj{v/xj} |Q (if j ∈ I and fv(v) = ∅)

(R-Call) def X(x̃) = P in (X〈ṽ〉 |Q) → def X(x̃) = P in (P{ṽ/x̃} |Q)
(if x̃ = x1, . . . , xn, ṽ = v1, . . . , vn, fv(ṽ) = ∅)

(R-Par) P → Q implies P |R→ Q |R (R-Res) P → Q implies (νs)P → (νs)Q
(R-Def) P → Q implies def D inP → def D inQ

(R-Struct) P ≡P ′ and P→Q and Q′≡Q implies P ′→Q′ (with ≡ standard — see [60])

Rule (R-Comm) models communication: it says that the parallel composition of a branching
and a selection process, both operating on the same session s respectively as roles p and
q (i.e., via s[p] and s[q]) and targeting each other (i.e., s[p] is used to branch from q, and
s[q] is used to select towards p) reduces to the corresponding continuations, with a value
substitution on the receiver side. (R-Call) says that a process call X〈ṽ〉 in the scope of
def X(x̃) = P in . . . reduces by expanding X〈ṽ〉 into P , and replacing the formal parameters
(x̃) with the actual ones (ṽ). The remaining rules are standard: reduction can happen under
parallel composition, restriction and process definition. By (R-Struct), reduction is closed
under a structural congruence [60] stating, e.g., that | is commutative and associative, and
has 0 as neutral element (i.e., P |Q ≡ Q | P , P | (Q |R) ≡ (P |Q) |R and P | 0 ≡ P ).

I Example 2.4. The process in Example 2.2 reduces as (see also Figure 2(b), noting the
scope of s):

(νsa, sb, sc)
(
Q | Pa | Pb | Pc

)
→ (by (R-Comm) between Q and Pb, (R-Par), (R-Struct), (R-Res))

(νsa, sc)
(

(νs)
((
sa[q][p]⊕〈PlayA(s[a])〉 | sc[q][p]⊕〈PlayC(s[c])〉

)
| s[b][c]⊕〈InfoBC(“...”)〉 . . .

)
| Pa | Pc

)
2.1 Multiparty Session Typing
We now illustrate the typing system for the MPST π-calculus, and its properties. We adopt
standard definitions from literature — except for some crucial (and duly noted) adaptations.

The goal of the MPST typing system is to ensure that processes interact on their channels
according to given specifications, represented as session types. MPST foster a top-down
approach: a global type G describes a protocol involving various roles — e.g., the game with
roles a, b, c in Section 1; G is projected into a set of (local) session types Sa, Sb, Sc, . . . (one per



A. Scalas, O. Dardha, R. Hu, N. Yoshida 24:7

role) that specify how each role is expected to use its channel endpoint; finally, session types
are assigned to channels, and the processes using them are type-checked. Typing ensures that
processes (1) never go wrong (i.e., use their channels type-safely), and (2) interact according
to G, by respecting its projections — thus realising a multiparty, deadlock-free session.

In the following, we provide a revised and streamlined presentation that clearly outlines
the interplay between the global/local typing levels. For this reason, unlike most papers, we
discuss local types first, and global types later, at the end of the section.

Session Types: Local and Partial. Session types describe the expected usage of a channel,
as a communication protocol involving two or more roles. They allow to declare structured
sequences of input/output actions, specifying who is the source/target role of interaction.

I Definition 2.5 (Types and roles). The syntax of (local) session types is:
S ::= p &i∈I ?li(U i).Si (branching from role p — with I 6= ∅)

p⊕i∈I !li(U i).Si (selection towards role p — with I 6= ∅)
µt.S | t | end (recursive type, type variable, termination)

B ::= Bool | Int | . . . (base type) U ::= B | S (closed) (payload type)

We omit &/⊕ when I is a singleton: p!l1(Int).S1 stands for p⊕i∈{1} !li(Int).Si.
The set of roles in S, denoted as roles(S), is defined as follows:

roles(p⊕i∈I !li(Ui).Si) , roles(p &i∈I ?li(Ui).Si) , {p} ∪
⋃
i∈I roles(Si)

roles(end) , ∅ roles(t) , ∅ roles(µt.S) , roles(S)

We will write p ∈ S for p ∈ roles(S), and p ∈ S\q for p ∈ roles(S) \ {q}.

The branching type p &i∈I ?li(U i).Si describes a channel that can receive a label li
from role p (for some i ∈ I, chosen by p), together with a payload of type Ui; then, the
channel must be used as Si. The selection p⊕i∈I !li(U i).Si, describes a channel that can
choose a label li (for any i ∈ I), and send it to p together with a payload of type Ui; then, the
channel must be used as Si. The labels of branch/select types are all distinct and their order
is irrelevant. The recursive type µt.S and type variable t model infinite behaviours.
end is the type of a terminated channel (often omitted). Base types B,B′, . . . can be
types like Bool, Int, etc. Payload types U,U ′, . . . are either base types, or closed session
types.

I Example 2.6. See the definition and description of session type Sb in Section 1 (p. 3).

To define session typing contexts later on, we also need partial session types.

I Definition 2.7. Partial session types, denoted by H, are:
H ::= &i∈I ?li(Ui).Hi | ⊕i∈I !li(Ui).Hi (branching, selection) (with I 6= ∅, Ui closed)

µt.H | t | end (recursive type, type variable, termination)

A partial session type H is either a branching, a selection, a recursion, a type variable, or a
terminated channel type. Unlike Definition 2.5, partial types have no role annotations: they
are similar to binary session types (but the payloads Ui can be multiparty) — and similarly,
they endow a notion of duality: the outputs of a type match the inputs of its dual, and vice
versa.

I Definition 2.8. H is the dual of H, defined as:
⊕i∈I !li(U i).Hi , &i∈I ?li(Ui).Hi &i∈I ?li(U i).Hi , ⊕i∈I !li(Ui).Hi

end , end t , t µt.H , µt.H

ECOOP 2017



24:8 A Linear Decomposition of Multiparty Sessions

The dual of a selection type is a branching with dualised continuations, and vice versa; the
payloads Ui are the same. Duality is the identity on end and t, and homomorphic on µt.H.

Multiparty session types can be projected onto a role q (Definition 2.9 below): this yields
a partial type that only describes the communications where q is involved. This is technically
necessary for typing rules, as we will see in Definition 2.11 later on.

I Definition 2.9. S � q is the partial projection of S onto q:

end � q , end t � q , t (µt.S) � q ,

{
µt.(S � q) if S � q 6= t′ (∀t′)
end otherwise

(p⊕i∈I !li(Ui).Si) � q ,

{
⊕i∈I !li(Ui).(Si � q) if q = p,
d
i∈I (Si � q) if p 6= q

(p &i∈I ?li(Ui).Si) � q ,

{
&i∈I ?li(Ui).Si � q if q = p,
d
i∈I (Si � q) if p 6= q

where
d

is the merge operator for partial session types:
end u end , end t u t , t µt.H u µt.H ′ , µt.(H uH ′)

&i∈I ?li(Ui).Hi u &i∈I ?li(Ui).H ′i , &i∈I ?li(Ui).(Hi uH ′i)
⊕i∈I !li(Ui).Hi u ⊕j∈J !lj(Uj).H ′j ,(

⊕k∈I∩J !lk(Uk).(Hk uH ′k)
)
⊕
(
⊕i∈I\J !li(Ui).Hi

)
⊕
(
⊕j∈J\I !lj(Uj).H ′j

)
The projection of end or a type variable t onto any role is the identity. Projecting a
recursive type µt.S onto q, means projecting S onto q, if S � q is not some t′, for all
possible recursive variables t′; otherwise, the projection is end. The projection of a selection
p⊕i∈I !li(Ui).Si (resp. branching p &i∈I ?li(Ui).Si) on role p, produces a partial selection type
⊕i∈I !li(Ui).(Si � p) (resp. branching &i∈I ?li(Ui).Si � p) with the continuations projected on
p. Otherwise, if projecting on q 6= p, the select/branch is “skipped”, and the projection is
the merging of the continuations, i.e.,

d
i∈I (Si � q). The u operator (introduced in [67, 18])

expands the set of session types whose partial projections are defined, which allows to type
more processes (as we will see in Definition 2.11 and Example 2.14 later on). Crucially, u
can compose different internal choices, but not external choices (because this could break
type safety).

Subtyping. The subtyping relation (Definition 2.10) says that a session type S is “smaller”
than S′ when S is “less demanding” than S′ — i.e., when S permits more internal choices,
and imposes less external choices, than S′. When typing processes (Definition 2.12), a
channel with a smaller type can be used whenever a channel with a larger type is required,
according to Liskov’s Substitution Principle [45]. Subtyping is defined on both local and
partial types.

I Definition 2.10 (Subtyping). The subtyping 6S on multiparty session types is the largest
relation such that
(i) if S 6S S

′, then ∀p∈(roles(S)∪roles(S′)) S�p6PS
′�p, and

(ii) is closed backwards under coinductive rules at the top of Figure 3.
The subtyping 6P on partial session types is coinductively defined by the rules at the bottom
of Figure 3.

Definition 2.10 uses coinduction to support recursive types [56, Section 20 and Section 21].
Clause (i) links local and partial subtyping, and ensures that if two types are related, then their
partial projections exist: this will be necessary later, for typing contexts (Definition 2.11).
The gist of Definition 2.10 lies in clause (ii). Rules (S-Brch)/(S-Sel) define subtyping on



A. Scalas, O. Dardha, R. Hu, N. Yoshida 24:9

∀i ∈ I Ui 6S U
′
i Si 6S S

′
i (S-Brch)

================================
p &i∈I ?li(U i).Si 6S p &i∈I∪J ?li(U ′i).S′i

∀i ∈ I U ′i 6S Ui Si 6S S
′
i (S-Sel)

==============================
p⊕i∈I∪J !li(Ui).Si 6S p⊕i∈I !li(U ′i).S′i

B 6B B
′

======= (S-B)
B 6S B

′
========== (S-End)
end 6S end

S{µt.S/t} 6S S
′

============ (S-µL)
µt.S 6S S

′

S 6S S
′{µt.S′

/t
}

============= (S-µR)
S 6S µt.S′

∀i ∈ I Ui 6S U
′
i Hi 6P Hi

′ (S-ParBrch)
==================================

&i∈I ?li(U i).Hi 6P &i∈I∪J ?li(U ′i).Hi′
∀i ∈ I U ′i 6S Ui Hi 6P Hi

′ (S-ParSel)
=================================
⊕i∈I∪J !li(Ui).Hi 6P ⊕i∈I !li(U ′i).Hi′

========== (S-ParEnd)
end 6P end

H{µt.H/t} 6P H
′

============= (S-ParµL)
µt.H 6P H

′

H 6P H
′{µt.H′

/t
}

============== (S-ParµR)
H 6P µt.H ′

Figure 3 Subtyping for session types (top) and partial session types (bottom).

branch/select types. Both rules are covariant in the continuation types, i.e., they require
Si 6S S

′
i. (S-Brch) is covariant also in the number of branches offered, whereas (S-Sel) is

contravariant. (S-B) relates base types, if they are related by 6B. (S-End) relates terminated
channel types. (S-µL) and (S-µR) are standard under coinduction: they say that a recursive
session type µt.S is related to S′, iff its unfolding is related, too. The subtyping 6P for
partial types is similar, except for the lack of role annotations (thus resembling the binary
session subtyping [22]).

Multiparty Session Typing System. Before delving into the session typing rules (Defini-
tion 2.12), we need to formalise the notions of typing context and typing judgement, defined
below.

I Definition 2.11. A session typing context Γ is a partial mapping defined as:

Γ ::= ∅ | Γ, x :U | Γ, s[p] :S (with p 6∈ S)

We say that Γ is consistent iff for all s[p] :Sp, s[q] :Sq ∈ Γ with p 6= q, we have Sp � q 6P Sq � p.
We say that Γ is complete iff for all s[p] :Sp ∈ Γ, q ∈ Sp implies s[q] ∈ dom (Γ). We say that
Γ is unrestricted, un(Γ), iff for all c ∈ dom(Γ), Γ(c) is either a base type or end. The typing
contexts composition ◦ is the commutative operator with ∅ as neutral element:

Γ1, c :U ◦ Γ2, c
′ :U ′ , (Γ1 ◦ Γ2), c :U, c′ :U ′ (if dom (Γ2) 63 c 6= c′ 6∈ dom (Γ1))

Γ1, x :B ◦ Γ2, x :B , (Γ1 ◦ Γ2), x :B

A typing context can map a channel with role s[p] to a session type S (that cannot refer
to p itself, ruling out “self-interactions”), but not to a base type. Variables can be mapped
to either session or base types. The clause “∀c :S ∈ Γ : S � p is defined” is discussed below.

On Consistency. In Definition 2.11, and in the rest of this work, we emphasise the import-
ance of consistency of the context Γ for session typing: this condition is, in fact, necessary
to prove subject reduction, and will be central for our encoding (Section 5 and Section 6).
As an example of non-consistent typing context, consider s[p] :end, s[q] :p?l(U).S: we have
end � q = end 66P ?l(U).S = (p?l(U).S) � p.

Note that our consistency in Definition 2.11 is weaker than the one in previous papers
(where it is sometimes called coherency): we use 6P, instead of (syntactic) type equality
=, to relate dual partial projections. The reason being: if we use =, and adopt partial
projections with type merging (Definition 2.9), subject reduction does not hold. Hence, by

ECOOP 2017



24:10 A Linear Decomposition of Multiparty Sessions

(T-Name)
un(Γ)

Γ, c :S ` c :S

(T-Basic)
un(Γ) v ∈ B

Γ ` v :B

(T-DefCtx)

Θ, X : Ũ ` X : Ũ

(T-Sub)
Θ · Γ, c :U ` P U ′ 6S U

Θ · Γ, c :U ′ ` P

(T-Nil)
un(Γ)

Θ · Γ ` 0
(T-Par)

Θ · Γ1 ` P Θ · Γ2 ` Q
Θ · Γ1 ◦ Γ2 ` P |Q

(T-Res)
Θ · Γ,Γ′ ` P Γ′ = {s[p] :Sp}p∈I complete

Θ · Γ ` (νs :Γ′)P

(T-Brch)
∀i ∈ I Θ · Γ, xi :Ui, c :Si ` Pi

Θ · Γ, c :p &i∈I ?li(U i).Si ` c[p] &i∈I {li(xi).Pi}
(T-Sel)

Γ1 ` v :U Θ · Γ2, c :S ` P
Θ · Γ1 ◦ Γ2, c :p⊕ !l(U).S ` c[p]⊕ 〈l(v)〉.P

(T-Def)
Θ, X : Ũ · x̃ : Ũ ` P Θ, X : Ũ · Γ ` Q

Θ · Γ ` def X(x̃ : Ũ) = P inQ
(T-Call)

∀i ∈ {1..n} Γi ` vi :Ui un(Γ)
Θ, X :U1, . . . , Un · Γ1 ◦ . . . ◦ Γn ◦ Γ ` X〈v1, . . . , vn〉

Figure 4 Typing rules for the multiparty session π-calculus.

relaxing our definition, and proving Theorem 2.16 later on, we fix a longstanding mistake
appearing e.g., in [67, 18].

I Definition 2.12 (Session typing judgements). The process declaration typing context Θ
maps process variables X to n-tuples of types Ũ (one per argument of X), and is defined as:

Θ ::= ∅ | Θ, X : Ũ
Typing judgements are inductively defined by the rules in Figure 4, and have the forms:

for processes: Θ · Γ ` P (with Γ consistent, and ∀c :S ∈ Γ, S � p is defined ∀p ∈ S)
for values: Γ ` v :U for process variables: Θ ` X : Ũ

The judgement Θ · Γ ` P reads: “process P is well-typed in Θ and Γ”. Θ and Γ, in turn,
type respectively process variables (judgement Θ ` X : Ũ) and values, including channels
(judgement Γ ` v :U). Rule (T-Name) says that a channel has the type assumed in the session
typing context. (T-Basic) relates base values to their type. By (T-DefCtx), a process name
has the type assumed in the process declaration typing context. (T-Sub) is the standard
subsumption rule, using 6S (Definition 2.10). By (T-Nil), the terminated process is well typed
in any unrestricted typing context. By (T-Par), the parallel composition of P and Q is well
typed under the composition of the corresponding typing contexts, as per Definition 2.11.
By (T-Res), (νs)P is well typed in Γ, if s occurs in a complete set of typed channels with
roles (denoted with Γ′), and the open process P is well typed in the “full” context Γ,Γ′. For
convenience, we annotate the restricted s with Γ′ in the process, giving (νs :Γ′)P . (T-Brch)
(resp. (T-Sel)) state that branching (resp. selection) process on c[p] is well typed if c[p] is of
compatible branching (resp. selection) type, and the continuations Pi, for all i ∈ I, are well
typed with the continuation session types. By (T-Def), a process definition def X(x̃) = P inQ
is well typed if both P and Q are well typed in their typing contexts enriched with x̃ : Ũ .
For convenience, we annotate x̃ with types Ũ . By (T-Call), process call X〈v1, . . . , vn〉 is well
typed if the actual parameters v1, . . . , vn have compatible types w.r.t. X.

As mentioned above, we emphasise consistency by restricting typing judgements to
consistent typing contexts — i.e., those allowing to prove subject reduction. The clause
“∀c :S ∈ Γ : S � p is defined” is unusual in MPST works, but arises naturally: by requiring the
existence of partial projections, it rejects processes containing
(a) a channel with role s[p] :S that, for some q ∈ S, cannot be (consistently) paired with

s[q], or
(b) a variable x :S that, in a consistent and complete Γ, cannot be substituted by any s[p] :S.

Rejected processes cannot join any complete session (case (a)), or are never-executed
“dead code” (case (b)).



A. Scalas, O. Dardha, R. Hu, N. Yoshida 24:11

I Remark 2.13. Unlike most MPST papers (e.g., [19, 11]), our rule (T-Res) does not directly
map a session s to a global type: this is explained in the next section, “Global Types”.

I Example 2.14. Consider the session type Sb in Section 1 (p. 3), and the client process
Pb = Clientb〈sb[p]〉 from Example 2.2. By Definition 2.12, the following typing judgement
holds:

Clientb :q?PlayB(Sb), Loopb :µt. a &
{

?Mov1AB(Int).c!Mov1BC(Int).t ,
?Mov2AB(Bool).c!Mov2BC(Bool).t

}
· sb[p] :q?PlayB(Sb) ` Clientb〈sb[p]〉

It says that the channel with role sb[p] is used following type q?PlayB(Sb).end (with a
delegation of a Sb-typed channel); the argument of Clientb has the same type; the argument
of Loopb is used following the game loop. This example cannot be typed without merging u
(Definition 2.9): its derivation requires to compute
Sb�c = !InfoBC(String).µt.(!Mov1BC(Int).t u !Mov2BC(Bool).t) = !InfoBC(String).µt.(!Mov1BC(Int).t⊕!Mov2BC(Bool).t),
which is undefined without merging.

The typing rules in Figure 4 satisfy a subject reduction property (Theorem 2.16) based
on typing context reductions. Reduction relations for typing contexts are common in typed
process calculi, and reflect the communications required by the types in Γ.

I Definition 2.15 (Typing context reduction). The reduction Γ→ Γ′ is:

s[p] :Sp, s[q] :Sq → s[p] :Sk, s[q] :S′k if
{

unf(Sp) = q⊕i∈I !li(Ui).Si k ∈ I

unf(Sq) = p &i∈I∪J ?li(U ′i).S′i Uk 6S U
′
k

Γ, c :U → Γ′, c :U ′ if Γ→ Γ′ and U 6S U
′

Our Definition 2.15 is a bit less straightforward than the ones in literature: it accommod-
ates subtyping (hence, uses 6S) and our iso-recursive type equality (hence, unfolds types
explicitly).

I Theorem 2.16 (Subject reduction). If Θ·Γ`P and P→P ′, then ∃Γ′: Γ→∗Γ′ and Θ·Γ′`P ′.

Global Types. We conclude this section with global types, mentioned in Section 2.1 and
Remark 2.13.

I Definition 2.17. The syntax of global types, ranged over by G, is:
G ::= p→ q :{li(Ui).Gi}i∈I (interaction — with Ui closed)

µt.G | t | end (recursive type, type variable, termination)

Type p→ q :{li(U i).Gi}i∈I states that role p sends to role q one of the (pairwise distinct)
labels li for i ∈ I, together with a payload Ui (Definition 2.5). If the chosen label is lj , then
the interaction proceeds as Gj . Type µt.G and type variable t model recursion. Type end
states the termination of a protocol. We omit the braces {...} from interactions when I is a
singleton: e.g., a→b : l1(U1).G1 stands for a→b :{li(U i).Gi}i∈{1}.

I Example 2.18. The following global type formalises the Game described in Section 1 and
Figure 1:

GGame = b→c : InfoBC(String) . c→a : InfoCA(String) . a→b : InfoAB(String) .

µt.a→b :


Mov1AB(Int).b→c : Mov1BC(Int).c→a :

{
Mov1CA(Int).t ,
Mov2CA(Bool).t

}
,

Mov2AB(Bool).b→c : Mov2BC(Bool).c→a :
{

Mov1CA(Int).t ,
Mov2CA(Bool).t

}


ECOOP 2017



24:12 A Linear Decomposition of Multiparty Sessions

In MPST theory, a global type G with roles pi (i ∈ I) is used to project2 a set of session
types Si (one per role). E.g., projecting GGame in Example 2.18 onto b yields the session
type Sb (p. 3). When all such projections Si are defined, and all partial projections of each
Si are defined (as per Definition 2.9), then we can define the projected typing context of G:

ΓG = {s[pi] :Si}i∈I where ∀i ∈ I : Si is the projection of G onto pi
and ΓG can be shown to be:
(a) consistent and complete, i.e., can be used to type the session s by rule (T-Res) (Figure 4),

and
(b) deadlock-free, i.e.: ΓG→∗Γ′G 6→ implies ∀i ∈ I : Γ′G(s[pi])=end.
Similarly, it can be shown that ΓG reduces as prescribed by G.

Now, from observation (a) above, we can easily define a “strict” version of rule (T-Res)
(Figure 4) in the style of [19, 11], where
1. the clause “Γ′ complete” is replaced with “Γ′ is the projected typing context of some G”,

and
2. in the conclusion, the annotation (νs :Γ′) is replaced with (νs :G).
Further, observation (b) allows to prove Theorem 2.19 below, as shown e.g. in [5]: a typed
ensemble of processes interacting on a single G-typed session is deadlock-free (note: with our
rules in Figure 4, the annotation (νs :G) would be (νs :ΓG)).

I Theorem 2.19 (Deadlock freedom). Let ∅·∅ ` P , where P ≡ (νs :G)
∣∣
i∈IPi and each Pi

only interacts on s[pi]. Then, P is deadlock-free: i.e., P →∗ P ′ 6→ implies P ′ ≡ 0.

Note that the properties above emerge by placing suitable session types Si in the premises
of (T-Res) — but our streamlined typing rules in Figure 4 do not require it, nor mention
G. The main property of such rules is ensuring type safety (Theorem 2.16). We will exploit
this insight (obtained by our separation of global/local typing) in our encoding (Section 5),
preserving semantics and types (and thus, Theorem 2.19) without explicit references to global
types.

3 Linear π-Calculus

The π-calculus is the canonical model for communication and concurrency based on message-
passing and channel mobility. It was developed in the late 1980’s, with the first publication
in 1992 [47], followed by various proposals for types and type systems. In this section we
summarise the theory of the π-calculus with linear types [37], adopting a standard formulation
and well-known results from [59]. We will present new π-calculus-related results in Section 4.

I Definition 3.1. The syntax of π-calculus processes and values is:
P ,Q ::= 0 | P |Q | (νx)P (inaction, parallel composition, restriction)

∗P | x〈v〉.P | x(y).P (process replication, output, input)
case v of {li(xi) . Pi}i∈I (variant destruct)
with [li :xi]i∈I =v doP (labelled tuple destruct)

u, v ::= x, y, w, z | l(v) | [li : vi]i∈I (name, variant value, labelled tuple value)
false | true | 42 | . . . (base value)

In π-calculus, names x, y, . . . can be intutively seen as variables (i.e., they can be substi-
tuted with values), and as communication channels (i.e., they can be used for input/output).
Values can be names, base values like false or 42, variant values l(v) and labelled tuples

2 We use a standard projection with merging [67, 18]: for its definition (not crucial here), see [60].



A. Scalas, O. Dardha, R. Hu, N. Yoshida 24:13

[li : vi]i∈I . The inaction 0 and the parallel composition P |Q are similar to Definition 2.1.
The restriction (νx)P creates a new name x and binds it with scope P . The replicated
process ∗P represents infinite replicas of P , composed in parallel. The output x〈v〉.P
uses the name x to send a value v, and proceeds as P ; the input x(y).P uses x to receive
a value that will substitute y in the continuation P . Process case v of {li(xi) . Pi}i∈I pat-
tern matches a variant value v, and if it has label li, substitutes xi and continues as Pi.
Process with [li :xi]i∈I =v doP destructs a labelled tuple v, substituting each xi in P .
For brevity, we will often write “record” instead of “labelled tuple”.

I Definition 3.2. The π-calculus operational semantics is the relation → defined as:
(Rπ-Com) x〈v〉.P | x(y).Q → P |Q{v/y}
(Rπ-Case) case lj(v) of {li(xi) . Pi}i∈I → Pj{v/xj} (j ∈ I)
(Rπ-With) with [li :xi]i∈I =[li : vi]i∈I doP → P{vi/xi}i∈I

(Rπ-Res) P → Q implies (νx)P → (νx)Q
(Rπ-Par) P → Q implies P |R → Q |R

(Rπ-Struct) P ≡ P ′ ∧ P → Q ∧ Q′ ≡ Q implies P ′ → Q′

Rule (Rπ-Com) models communication between output and input on a name x: it reduces to
the corresponding continuations, with a value substitution on the receiver process. (Rπ-Case)
says that case applied on a variant value lj(v) reduces to Pj , with v in place of xj — provided
that lj is one of the supported cases (i.e., lj = li for some i ∈ I). Rule (Rπ-With) deconstructs
a labelled tuple [li : vi]i∈I : it says that with reduces to its continuation P with vi in place of
each xi, for all i ∈ I. By (Rπ-Res) and (Rπ-Par), reductions can happen under restriction and
parallel composition, respectively. By (Rπ-Struct), reduction is closed under the structural
congruence ≡, whose definition is standard (see [59, Table 1.1] and [60]).

π-Calculus Typing. We now summarise the π-calculus types, subtyping, and typing rules.

I Definition 3.3 (π-types). The syntax of a π-calculus type T is given by:
T ::= Li(T ) | Lo(T ) | L](T ) (linear input, linear output, linear connection)

](T ) | • (unrestricted connection, no capability)
〈li_Ti〉i∈I | [li :Ti]i∈I (variant, labelled tuple a.k.a. “record”)
µt.T | t | Bool | Int | . . . (recursive type, type variable, base type)

Linear types Li(T ), Lo(T ) denote, respectively, names used exactly once to input/output
a value of type T . L](T ) denotes a name used once for sending, and once for receiving, a
message of type T . ](T ) denotes an unrestricted connection, i.e., a name that can be used
both for input/output any number of times. • is assigned to names that cannot be used for
input/output. 〈li_Ti〉i∈I is a labelled disjoint union of types, while [li :Ti]i∈I (that we will
often call “record”) is a labelled product type; for both, labels li are all distinct, and their
order is irrelevant. As syntactic sugar, we write (Ti)i∈1..n for a record with integer labels
[i :Ti]i∈{1,..,n}. Recursive types and variables, and base types like Bool, are standard.

The predicate lin(T ) (Definition 3.4 below) holds iff T has some linear input/output
component.

I Definition 3.4 (Linear/unrestricted types). The predicate lin is inductively defined as:

lin(Li(T )) lin(Lo(T ))
∃j ∈ I : lin(Tj)
lin(〈li_Ti〉i∈I)

∃j ∈ I : lin(Tj)
lin([li :Ti]i∈I)

lin (T )
lin (µt.T )

We write un(T ) iff ¬ lin(T ) (i.e., T is unrestricted iff is not linear).

ECOOP 2017



24:14 A Linear Decomposition of Multiparty Sessions

(Tπ-Name)
un(Γ)

Γ, x :T ` x :T
(Tπ-Basic)

un(Γ) v ∈ B
Γ ` v :B

(Tπ-LVal)
Γ ` v :T

Γ ` l(v) :〈l_T 〉

(Tπ-LTup)
un(Γ) ∀i ∈ I Γi ` vi :Ti(⊎
i∈I Γi

)
] Γ ` [li : vi]i∈I : [li :Ti]i∈I

(Tπ-Sub)
Γ ` x :T T 6π T

′

Γ ` x :T ′
(Tπ-Nil)

un(Γ)
Γ ` 0

(Tπ-Par)
Γ1 ` P Γ2 ` Q

Γ1 ] Γ2 ` P |Q
(Tπ-Res1)

Γ, x :†(T ) ` P † ∈ {L], ]}
Γ ` (νx)P

(Tπ-Res2)
Γ, x :• ` P
Γ ` (νx)P

(Tπ-Inp)

Γ1 ` x :†(T ) † ∈ {Li, ]}
Γ2, y :T ` P

Γ1 ] Γ2 ` x(y).P
(Tπ-Out)

Γ1 ` x :†(T ) † ∈ {Lo, ]}
Γ2 ` v :T Γ3 ` P
Γ1 ] Γ2 ] Γ3 ` x〈v〉.P

(Tπ-Repl)
Γ ` P un(Γ)

Γ ` ∗P

(Tπ-Case)
Γ1 ` v :〈li_Ti〉i∈I ∀i ∈ I Γ2, xi :Ti ` Pi

Γ1 ] Γ2 ` case v of {li(xi) . Pi}i∈I
(Tπ-With)

Γ1 ` v : [li :Ti]i∈I Γ2, {xi :Ti}i∈I ` P
Γ1 ] Γ2 ` with [li :xi]i∈I =v doP

Figure 5 Typing rules for the linear π-calculus.

I Definition 3.5. Subtyping 6π for π-types is coinductively defined as:
B 6B B

′

======= (S-LB)
B 6π B

′
===== (S-LEnd)
• 6π •

T 6π T
′

============ (S-Li)
Li(T ) 6π Li

(
T ′
) T ′ 6π T

============= (S-Lo)
Lo(T ) 6π Lo

(
T ′
)

∀i ∈ I Ti 6π T
′
i

====================== (S-Variant)
〈li_Ti〉i∈I 6π

〈
li_T ′i

〉
i∈I∪J

∀i ∈ I Ti 6π T
′
i

================== (S-LTuple)
[li :Ti]i∈I 6π

[
li :T ′i

]
i∈I

T{µt.T/t} 6π T ′
============ (S-LµL)
µt.T 6π T ′

By rule (S-LB), 6π includes basic subtyping 6B. (S-LEnd) relates types without I/O capabilities.
By (S-Li) (resp. (S-Lo)), linear input (resp. output) subtyping is covariant (resp. contravariant)
in the carried type. By (S-Variant), subtyping for variant types is covariant in both carried
types and number of components. By (S-LTuple), subtyping for labelled tuples, a.k.a records,
is covariant in the carried types. (Note: “full” record subtyping allows to add/remove
entries [59, §7.3]; but here, “record” just means “labelled tuple”.) Rule (S-LµL) (and its
symmetric, omitted) relates a recursive type µt.T to T ′ iff its unfolding is related to T ′.

I Definition 3.6 (Typing context, type combination). The linear π-calculus typing context Γ
is a partial mapping defined as: Γ ::= ∅ | Γ, x :T
We write lin(Γ) iff ∃x :T ∈Γ : lin(T ), and un(Γ) iff ¬ lin(Γ). The type combinator ] is defined
as follows (and undefined in other cases), and is extended to typing contexts as expected.

Li(T ) ] Lo(T ) , L](T ) Lo(T ) ] Li(T ) , L](T ) T ] T , T if un(T )

(Γ1 ] Γ2)(x) ,

{
Γ1(x) ] Γ2(x) if x ∈ dom(Γ1) ∩ dom(Γ2)
Γi(x) if x ∈ dom(Γi) \ dom(Γj)

Figure 5 shows the typing system for the linear π-calculus. Typing judgements have
two forms: Γ ` v :T and Γ `P . (Tπ-Name) says that a name has the type assumed in the
typing context; (Tπ-Basic) relates base values to their types; both rules require unrestricted
typing contexts. By (Tπ-LVal), a variant value l(v) is of type 〈l_T 〉 if value v is of type
T . By (Tπ-LTup), a record value [li : vi]i∈I is of type [li :Ti]i∈I if for all i ∈ I, vi is of type
Ti. (Tπ-Sub) is the subsumption rule: if x has type T in Γ, then it also has any supertype
of T . By (Tπ-Nil), 0 is well typed in every unrestricted typing context. By (Tπ-Par), the
parallel composition of two processes is typed by combining the respective typing contexts.
By (Tπ-Res1), the restriction process (νx)P is well typed if P is typed by augmenting the
context with x :L](T ). or x :]T . In the first case, by applying Definition 3.6 (]), we have
x :L](T ) = x :Li(T ) ] Lo(T ): this implies that P owns both capabilities of linear input/output



A. Scalas, O. Dardha, R. Hu, N. Yoshida 24:15

letx=v inP , (νz) (z〈v〉.0 | z(x).P ) (where z 6∈ {x} ∪ fn(v) ∪ fn(P ))

(Rπ-Let) letx=v inP → P{v/x} (Tπ-Let)
Γ1 ` v :T Γ2, x :T ` P

Γ1 ] Γ2 ` letx=v inP

(Tπ-Narrow)
Γ, x :T `P T ′6π T

Γ, x :T ′ ` P
(Tπ-MSubst)

∀i ∈ I Γi ` vi :Ti Γ, {xi :Ti}i∈I ` P(⊎
i∈I Γi

)
] Γ ` P{vi/xi}i∈I

Figure 6 “Let” binder (definition, reduction, typing), and narrowing / substitution rules.

of x. By (Tπ-Res2), the restriction (νx)P is typed if P is typed and x has no capabilities.
By (Tπ-Inp) (resp. (Tπ-Out)), the input and output processes are typed if x is a (possibly
linear) name used in input (resp. output), and the carried types are compatible with the
type of y (resp. value v). The typing context used to type the input and output process is
obtained by applying ] on the premises. By (Tπ-Repl), a replicated process ∗P is typed in
the same unrestricted context that types P . By (Tπ-Case), case v of {li(xi) . Pi}i∈I is typed
if the guard value v has variant type, and every Pi is typed assuming xi :Ti, for all i ∈ I.
By (Tπ-With), process with [li :xi]i∈I =v doP is typed if v is of record type and for all i ∈ I,
each vi has the same type as xi, i.e., Ti.

4 Some Typed π-Calculus Extensions and Results

We introduce some definitions and results on typed π-calculus: we will need them in Section 5
and Section 6, to state our encoding and its properties. As we target standard typed π-
calculus (Section 3), all our extensions are conservative, so to preserve standard results (e.g.,
subject reduction).

“Let” binder, narrowing, substitution. Figure 6 shows several auxiliary definitions and
typing rules. letx=v inP binds x in P , and reduces by replacing x with v in P . It is a macro
on other π-calculus contructs: hence, rules (Rπ-Let)/(Tπ-Let) are based on the reduction/typing
of its expansion (details in [60]). Rule (Tπ-Narrow) derives from the narrowing lemma [59,
7.2.5]. (Tπ-MSubst) represents zero or more applications of the substitution lemma [59, 8.1.4].

Duality and Recursive π-Types. The duality for linear π-types relates opposite but compat-
ible input/output capabilities. Intuitively, the dual of a Li(T ) is Lo(T ) (and vice versa) [15].
Note that the carried type T is the same: i.e., dual types can be combined with ] (Defini-
tion 3.6), yielding L](T ). However, defining duality for recursive π-types is not straightforward:
what is the dual of T = µt.Lo(t)? Is it maybe T ′ = µt.Li(t)? Since ] is not defined for
µ-types, we can check whether it is defined for the unfoldings of our hypothetical duals T and
T ′. Unfortunately, we have unf(T ) = Lo(µt.Lo(t)) and unf(T ′) = Li(µt.Li(t)): i.e., ] is again
undefined, so T ,T ′ cannot be considered duals. Solving this issue is crucial: in Section 5, we
will need to encode recursive partial types, preserving their duality (Definition 2.8) in linear
π-types.

What we want is a notion of duality that commutes with unfolding, so that if two recursive
types are dual, and we unfold them, we get a dual pair Lo(T )/Li(T ) that can be combined
with ] (since they carry the same T ). We address this issue by extending the π-calculus type
variables (Definition 3.3) with their dualised counterpart, denoted with t. We allow recursive
types such as µt.Li

(
t
)
(but not µt.. . .), and postulate that when unfolding, t is substituted

by a “dual” type µt.Lo(t), as formalised in Definition 4.1 below. Quite interestingly, our

ECOOP 2017



24:16 A Linear Decomposition of Multiparty Sessions

approach reminds of the “logical duality” for session types [43], but we study it in the context
of π-calculus (we will further discuss this topic in Section 8).

I Definition 4.1. T is the dual of T , and is defined as follows:
Li(T ) , Lo(T ) Lo(T ) , Li(T ) • , • (t) , t

(
t
)
, t µt.T , µt.T

{
t/t
}

The substitution of T for a type variable t or t is: t{T/t} , T t{T/t} , T

The dual of a linear input type Li(T ) is a linear output type Lo(T ), and vice versa, with the
payload type T unchanged, as expected. The dual of a terminated channel type • is itself.
The dual of a type variable t is t, and the dual of a dualised type variable t is t, implying
that duality on linear π-types is convolutive. The dual of µt.T is µt.T

{
t/t
}
, where type T is

dualised to T , and every occurrence of t is replaced by its dual t by Definition 4.1. Now, the
desired commutativity between duality and unfolding holds, as per Lemma 4.2 below.

I Lemma 4.2. unf
(
T
)

= unf(T ).

I Example 4.3. Let T = µt.Li
(
(t, t)

)
. Then:

unf(T ) = Li
((
µt.Li

(
(t, t)

)
, µt.Li

(
(t, t)

)))
= Li

((
µt.Li

(
(t, t)

)
, µt.Lo

(
(t, t)

)))
; and

unf
(
T
)

= unf
(
µt.Lo

(
(t, t)

))
= Lo

((
µt.Li

(
(t, t)

)
, µt.Lo

(
(t, t)

)))
= unf(T )

By adding dualised type variables in Definition 3.3, we naturally extend the definition of
fv(T ) (with µt.. . . binding both t and t), the subtyping relation 6π in Definition 3.5 (by
letting rules (S-LµL) and (S-LµR) use the substitution in Definition 4.1) and ultimately the
typing system in Definition 3.6. Using these extensions, we will obtain a rather simple
encoding of recursive session types (Definition 5.1), and solve a subtle issue involving duality,
recursion and continuations (Example 5.3).

The reader might be puzzled about the impact of dualised variables in the π-calculus
theory. We show that dualised variables do not increase the expressiveness of linear π-types,
and do not unsafely enlarge subtyping 6π: this is proved in Lemma 4.4, that allows to erase
dualised variables from recursive π-types. It uses
1. a substitution that only replaces dualised variables, i.e.: t{t′

/t}=t′; and
2. the equivalence =π defined as: 6π∩6π−1.

I Lemma 4.4 (Erasure of t). µt.T =π µt.T
{
µt′.T{t′/t}/t

}
, for all t′6∈ fv(T ).

I Example 4.5 (Application of erasure). Take T from Example 4.3. By Lemma 4.4, we have:
T =π µt.Li

((
t, µt′.Li

(
(t, t)

)
{t′
/t}
))

= µt.Li((t, µt′.Lo((t, t′)))).

Since T =π T
′ implies T 6π T ′ and T ′6π T , Lemma 4.4 says that any µt.T is equivalent to

a µ-type without occurrences of t: i.e., any typing relation with instances of t corresponds to
a t-free one. As a consequence, any typing derivation using t can be turned into a t-free one.
Summing up: adding dualised variables preserves the standard results of typed π-calculus.

Type Combinator
p
. Definition 4.6 introduces a type combinator that is a “relaxed”

version of ] (Definition 3.6) extended with subtyping. We will use it to encode MPST typing
contexts (Definition 5.6).

I Definition 4.6. The π-calculus type combinator C is defined on π-types as follows (and
undefined in other cases), and naturally extended to typing contexts:

Lo(T ) C Li(T ′) , Li(T ) ] Lo(T )
Li(T ′) C Lo(T ) , Li(T ) ] Lo(T )

}
if T 6π T ′ T C T , T if un(T )

(Γ1 C Γ2)(x) ,

{
Γ1(x) C Γ2(x) if x ∈ dom(Γ1) ∩ dom(Γ2)
Γi(x) if x ∈ dom(Γi) \ dom(Γj)



A. Scalas, O. Dardha, R. Hu, N. Yoshida 24:17

The difference between ] and C is that the former combines linear inputs/outputs with the
same carried type, while C is more relaxed: it allows a carried type to be subtype of the other
— more exactly, the type carried by the output side can be smaller than the type carried by
the input side. This is shown in Lemma 4.7 and Example 4.8 below.

I Lemma 4.7. If T =T1CT2, and T ′1]T ′2 = T , then either
(a) T ′1 6π T1 and T ′2 6π T2, or
(b) T ′1 6π T2 and T ′2 6π T1.

Lemma 4.7 says that T1CT2 (when defined) is a type that, when split using ], yields
linear I/O types that are subtypes of the originating T1, T2. Intuitively, it means that C can
be soundly used to simplify typing derivations: if used to type some name x, it will yield
(when defined) a type that can also be obtained by suitably using ] and (Tπ-Sub) (Figure 5).

I Example 4.8. Let T1 = Li(Real), T2 = Lo(Int), and T = T1 C T2. We have T = L](Int);
if we let T ′1 ] T ′2 = T , then we get either (a) T ′1 = Li(Int) 6π T1 and T ′2 = Lo(Int) 6π T2,
or (b) T ′1 = Lo(Int) 6π T2 and T ′2 = Li(Int) 6π T1.

5 Encoding Multiparty Session-π into Linear π-Calculus

We now present our encoding of MPST π-calculus into linear π-calculus. It consists of an
encoding of types and an encoding of processes: combined, they preserve the safety properties
of MPST communications, both w.r.t. typing and process behaviour.

Encoding of Types. Our goal is to decompose MPST channel endpoints into point-to-point
π-calculus channels. This leads to the main intuition behind our approach: encode MPST
channel endpoints as labelled tuples, whose labels are roles, and whose values are names (for
communication). The idea is that if a multiparty channel of type S allows to talk with role
p, then the corresponding π-calculus record should have a label p, mapping to a name that
can send/receive messages to/from the process that plays the role p. This suggests the type
of an encoded MPST channel endpoint: it should be a π-calculus record — and since each
name appearing in such record is used to communicate, it should have an input/output type.

IDefinition 5.1. The encoding of session type S into linear π-types is: JSK , [p : JS � pK]p∈S
where the encoding of the partial projections JS � pK is:

J⊕i∈I !li(Ui).HiK , Lo
(
〈li_(JUiK, JHiK)〉i∈I

)
JBK , B JendK , •

J&i∈I ?li(Ui).HiK , Li
(
〈li_(JUiK, JHiK)〉i∈I

)
JtK , t Jµt.HK , µt.JHK

The encoding of a session type S, namely JSK, is a record that maps each role p∈S to the
encoding of the partial projection JS�pK. The latter adopts the basic idea of the encoding
of binary, non-recursive session types [36, 15]: it is the identity on a base type B, while
a terminated channel type end becomes •, with no capabilities. Selection ⊕i∈I !li(Ui).Hi

and branching &i∈I ?li(Ui).Hi are encoded as linear output and input types, respectively,
adopting a continuation-passing style (CPS). In both cases, the carried types are variants:
〈li_(JUiK, JHiK)〉i∈I for select and 〈li_(JUiK, JHiK)〉i∈I for branch, with the same labels as
the originating partial projections. Such variants carry tuples (JUiK, JHiK) and (JUiK, JHiK):
the first element is the encoded payload type, and the second (i.e., the encoding of Hi) is
the type of a continuation name: it is sent together with the encoded payload, and will be
used to send/receive the next message (unless Hi is end). Note that selection sends the
dual of JHiK: this is because the sender must keep interacting according to JHiK, while the

ECOOP 2017



24:18 A Linear Decomposition of Multiparty Sessions

recipient must operate dually (cf. Definition 4.1). E.g., if JHiK requires to send a message,
the recipient of JHiK must receive it. The encodings of type variables and recursive types are
homomorphic.

Note that by encoding session types as labelled tuples, we untangle the order of the
interactions among different roles. We will recover this order later, when encoding processes.

I Example 5.2. Consider the session type S , p!l1(Int).q?l2(S′).end, where S′ ,
r!l3(Bool).q?l4(String).end. By Definition 5.1, the encoding of S is:

JSK = [p : JS � pK, q : JS � qK] = [p : J!l1(Int)K, q : J?l2(S′)K]
= [p : Lo(〈l1_(Int, •)〉), q : Li(〈l2_([r : Lo(〈l3_(Bool, •)〉), q : Li(〈l4_(String, •)〉)], •)〉)]

Recursion, Continuations and Duality. We now point out a subtle (but crucial) difference
between Definition 5.1 and the encoding of binary, non-recursive session types in [15]. When
encoding partial selections, our continuation type is the dual of the encoding of Hi, i.e., JHiK;
in [15], instead, it is the encoding of the dual of Hi, i.e., JHiK. This difference is irrelevant
for non-recursive types (Example 5.2); but for recursive types, using JHiK would yield the
wrong continuations. Using JHiK, instead, gives the expected result, by generating dualised
recursion variables (cf. Definition 4.1). We explain it in Example 5.3 below.

I Example 5.3. Let H = µt.!l(Bool).t. By Definition 5.1, we have:

JHK = Jµt.!l(Bool).tK = µt.Lo
(
〈l_(JBoolK, JtK)〉

)
= µt.Lo

(
〈l_(Bool, t)〉

)
Let us now unfold the encoding of H. By Definition 4.1, we have:

unf(JHK) = unf
(
µt.Lo

(
〈l_(Bool, t)〉

))
= Lo

(
〈l_
(

Bool, µt.Li(〈l_(Bool, t)〉)
)
〉
)

This is what we want: since H requires a recursive output of Booleans, its encoding should
output a Boolean, together with a recursive input name as continuation. Hence, the recipient
will receive the first Boolean together with a continuation name, whose type mandates to
recursively input more Bools. If encoding continuations as in [15], instead, we would have:

JHK = µt.Lo
(
〈l_(JBoolK, JtK)〉

)
= µt.Lo(〈l_(Bool, t)〉) (t is not dualised)

unf(JHK) = Lo(〈l_(Bool, µt.Lo(〈l_(Bool, t)〉))〉)
which is wrong: the recipient is required to recursively output Bools. This wrong encoding
would also prevent us from obtaining Theorem 6.1 later on.

Encoding of Typing Contexts. In order to preserve type safety, we want to encode a session
judgement (Figure 4) into a π-calculus typing judgement (Figure 5). For this reason, we now
use the encoding of session types (Definition 5.1) to formalise the encoding of session typing
contexts.

I Definition 5.4. The encoding of a session typing context is:
J∅K,∅ JΘ · ΓK, JΘK, JΓK Jc :UK , JcK :JUK Js[p]K , zs[p]r

Θ, X : Ũ
z
, JΘK,

r
X : Ũ

z
JΓ, c :UK, JΓK, Jc :UK JxK , x JXK , zX

JΓ1 ◦ Γ2K, JΓ1K ] JΓ2K JX :U1, . . . , UnK , JXK :]
(
(JUiK)i∈1..n

)
When encoding typing contexts, variables (x) keep their name, while process variables (X)
and channels with roles (s[p]) are turned into distinguished names with a subscript: e.g., X
becomes zX . The composition Γ1◦Γ2 (Definition 2.11) is encoded using ] (Definition 3.6):
such an operation is always defined, since the domains of JΓ1K,JΓ2K can only overlap on basic
types.

Note that encoded process variables have an unrestricted connection type, carrying an
n-tuple of encoded argument types; encoded sessions, instead, are linearly-typed, similarly



A. Scalas, O. Dardha, R. Hu, N. Yoshida 24:19

to [15]: this will allow to exploit the (partial) confluence properties of linear π-calculus [37]
to prove Theorem 6.5 later. Moreover, this will lead to the implementation discussed in
Section 7.

Encoding Typing Judgements: Overview. With these definitions at hand, we can now
have a first look at the encoding of session typing judgements in Figure 7 (but we postpone the
formal statement to Definition 5.7 later on, as it requires some more technical developments).

Terminated processes are encoded homomorphically. Parallel composition is also
encoded homomorphically — i.e., our encoding preserves the choreographic distribution of
the originating processes. Note that JP KΘ·Γ1 and JQKΘ·Γ2 are the encoded processes yielded
respectively by JΘ · Γ1 ` P K and JΘ · Γ2 ` QK: they exist because such typing judgements
hold, by inversion of (T-Par) (Figure 4). Similar uses of sub-processes encoded w.r.t. their
typing occur in the other cases. Process declaration def X(x̃ :U) = P inQ is encoded
as a replicated π-calculus process that inputs a value z on a name JXK = zX (matching
Definition 5.4), deconstructs it into x1, . . . , xn (using with, and hence assuming that z is an
n-tuple), and then continues as the encoding of the body P ; meanwhile, the encoding of Q
runs in parallel, enclosed by a delimitation on zX (that matches the scope of the original
declaration). Correspondingly, a process call X〈ṽ〉 is encoded as a process that sends the
encoded values JṽK on zX and ends (in MPST π-calculus, process calls are in tail position).

Selection on c[p] is encoded using information from the session typing context: the fact
that c has type S = p⊕ !l(U).S′ — i.e., JSK is a record type with one entry q :zq for each
q ∈ S. Therefore, the encoding first deconstructs JcK (using with), an then uses the (linear)
name in its p-entry to output on zp. Before performing the output, however, a new name z
is created: it is the continuation of the interaction with p. Then, one endpoint of z is sent
through zp as part of l(JvK, z), which is a variant value carrying a tuple. The other endpoint
of z is kept, and used to rebind JcK (using let) with a “new” record, consisting in all the
entries of the “original” JcK, except zp (which has been used for output). More in detail, the
“new” JcK has an entry for p (mapping p to z) iff S′ still involves p (otherwise, if p 6∈S′, then z
is discarded, since it has type JS′�pK=JendK=•). After let, the encoding continues as JP K.

Symmetrically, branching on c[p] is also encoded using information from the typing
context, i.e., that c has type S = p &i∈I ?li(U i).S′i — and therefore, JSK is a record type
with one entry q :zq for each q ∈ S. As above, the encoded process deconstructs JcK (using
with), an then uses the (linear) name in its p-entry to perform an input zp(y); y is assumed
to be a variant, and is pattern matched to determine the continuation. If y matches li (for
some i ∈ I), and it carries a tuple zi = (xi, z) (where z is a continuation name), then JcK is
rebound (using let) and the process continues as JPiK. The rebinding of JcK depends on li and
the continuation type S′i: the “new” JcK is a record with all the linear names of the “original”
JcK, except zp (which has been used for input); as above, an entry for p will exist (and map p
to z) iff S′i still involves p (otherwise, if p 6∈ S′i, then z has type • and is discarded).

We will explain the encoding of session restriction (νs)P later, after Definition 5.7,
as it requires some technicalities: namely, the substitution σ(Γ′). We can, however, have
an intuition about the role of σ(Γ′) by considering an obvious discrepancy. Consider the
following session π-calculus process, that reduces by communication (cf. Definition 2.3):

Γ, s[p] :S, s[q] :S′ ` s[p][q]&{l(x).P} | s[q][p]⊕ 〈l(v)〉.Q → P{v/x} |Q (1)

We would like its encoding to reduce and communicate, too — but it is not the case:

with [r : zr]r∈S=Js[p]K do . . . | with [r : zr]r∈S′ =Js[q]K do . . . 6→ (2)

ECOOP 2017



24:20 A Linear Decomposition of Multiparty Sessions

JΓ ` 0K , JΓK ` 0 JΘ · Γ1 ◦ Γ2 ` P |QK , JΘ · Γ1 ◦ Γ2K ` JP KΘ·Γ1 | JQKΘ·Γ2

r
Θ · Γ ` def X(x̃ : Ũ) = P inQ

z

︸ ︷︷ ︸
where Ũ = U1, . . . , Un and x̃ = x1, . . . , xn and ṽ = v1, . . . , vn

,
JΘ · ΓK `
(νJXK)

(
∗
(
JXK(z).with (xi)i∈{1..n}=z do JP KΘ,X:Ũ ·x̃:Ũ

)
| JQKΘ,X:Ũ ·Γ

)
︷ ︸︸ ︷r

Θ, X : Ũ · Γ1 ◦ . . . ◦ Γn ◦ Γ ` X〈ṽ〉
z
,

r
Θ, X : Ũ · Γ1 ◦ . . . ◦ Γn ◦ Γ

z
` JXK〈(JviK)i∈{1..n}〉.0

JΘ · c :S,Γ1 ◦ Γ2 ` c[p]⊕ 〈l(v)〉.P K︸ ︷︷ ︸
where S = p⊕ !l(U).S′

,
JΘ, c :S,Γ1 ◦ Γ2K `
with

[
q : zq

]
q∈S=JcK do (νz)zp〈l(JvK, z)〉.let JcK=z in JP KΘ·Γ2,c:S′︸ ︷︷ ︸
where z =

{
[p : z, q : zq]q∈S′\p if p ∈ S′[
q : zq

]
q∈S′ otherwise

JΘ · c :S,Γ ` c[p] &i∈I {li(xi).Pi}K︸ ︷︷ ︸
where S = p &i∈I ?li(U i).S′i

,

JΘ, c :S,ΓK ` with
[
q : zq

]
q∈S=JcK do zp(y).case y of

{
li(zi) .with (xi, z) =zi do let JcK=zi in JPiKΘ·Γ′

}
i∈I︸ ︷︷ ︸

where Γ′ = Γ, xi :Ui, c :S′i and zi =
{

[p : z, q : zq]q∈S′
i
\p if p ∈ S′i[

q : zq
]

q∈S′
i

otherwise

JΘ · Γ ` (νs :Γ′)P K︸ ︷︷ ︸
where conn(s,Γ′) = {{p1, q1}, . . . , {pn, qn}}

, JΘ · ΓK ` J(νs)KJP KΘ·Γ,Γ′σ(Γ′)︸ ︷︷ ︸
where J(νs)K = (νz{s,pi,qi})i∈{1..n}

Figure 7 Encoding of typing judgements. Here, JP KΘ·Γ =Q iff JΘ·Γ`P K = JΘ·ΓK`Q (Defini-
tion 5.7).

and the reason is that Js[p]K, Js[q]K are “just” record-typed names (respectively zs[p], zs[q],
as per Definition 5.4), whereas with-prefixes only reduce when applied to record values (cf.
Definition 3.2). Hence, to let our encoded terms reduce, we must first substitute Js[p]K, Js[q]K
with two records; moreover, to let the two encoded processes synchronise and exchange JvK,
such records must be suitably defined: we must ensure that the entries for q (in one record)
and p (in the other) map to the same (linear) name. In the following, we show how σ(Γ′)
handles this issue.

Reification of Multiparty Sessions. By simply translating a channel with role s[p] into a
π-calculus name zs[p], we have not yet captured the insight behind our approach, i.e., the
idea that a multiparty session can be decomposed into a labelled tuple of linear channels
(i.e., π-calculus names), connecting pairs of roles. We can formalise “connections” as follows.

IDefinition 5.5. The connections of s in Γ are: conn(s,Γ) ,
{
{p, q}

∣∣ s[p] :Sp ∈ Γ ∧ q ∈ Sp
}

Intuitively, two roles p, q are connected by s in Γ if p occurs in the type Γ(s[q]) (but q
might not occur in Γ(s[p]); note, however, that q will always occur if Γ is consistent).
Now, as anticipated above, we want to substitute each Js[p]K with a suitably defined record,
containing π-calculus names; moreover, such names must be typed in the typing context.
But what are exactly such names, and their types? This is answered by Definition 5.6.

I Definition 5.6 (Reification and decomposition of MPST contexts). The reification of a
session typing context ΓS is the substitution:

σ(ΓS) =
{ [q : z{s,p,q}]q∈Sp/Js[p]K

}
s[p]:Sp∈ΓS

The linear decomposition of ΓS is the π-calculus typing context δ(ΓS), defined as:

δ(ΓS) =
p
s[p]:Sp∈ΓS

{
z{s,p,q} :

q
unf
(
Sp � q

)y}
{p,q}∈conn(s,ΓS)



A. Scalas, O. Dardha, R. Hu, N. Yoshida 24:21

JQK

b

a

c

q

q

q

JPaK p

JPbK p

JPcK
p

JsaK

JsbK

JscK

JsK →∗

JQ′K

a

c

q

q

JPaK p

JPb
′K b

JPcK
p

JsaK

JscK

JsK →∗

JPa
′K

a

JPb
′′K

b

JPc
′K

cJsK

(a) (b) (c)

Figure 8 Multiparty peer-to-peer game: encoded version of Figure 2. Lines are binary channels.

The π-calculus reification typing rule is (note that ΓS,Γ′S are MPST typing contexts):
JΘ · ΓSK, JΓ′SK ` P

JΘ · ΓSK, δ(Γ′S) ` Pσ(Γ′S)
(Tπ-Reify)

The simplest part of Definition 5.6 is σ(ΓS): it is a substitution that, for each s[p] :Sp ∈ ΓS,
replaces Js[p]K with a record containing one entry q :z{s,p,q} for each q∈ Sp. Note that if
there is also some s[q] :Sq ∈ ΓS with p∈Sq, then the corresponding record (replacing Js[q]K)
has an entry p :z{s,q,p} = z{s,p,q}; i.e., p (in one record) and q (in the other) map to the same
name. This realises the intuition of “multiparty sessions as records of interconnected binary
channels”.

The definition of σ(ΓS) was the last ingredient needed to formalise our encoding, presented
in Definition 5.7 below. The rest of Definition 5.6 will be used later on, to prove its correctness
(Theorem 6.2): hence, we postpone its explanation to page 22.

I Definition 5.7 (Encoding). The encoding of session typing judgements is given in Figure 7.
We define JP KΘ·Γ = Q iff JΘ · Γ ` P K = JΘ · ΓK ` Q. Sometimes, we write JP K for JP KΘ·Γ
when Θ,Γ are empty, or clear from the context.

We conclude by explaining the last case in Figure 7, which was not addressed on p.19.
The process (νs :Γ′)P is encoded by generating one delimitation for each z{s,pi,qi} whenever
{pi, qi} is a connection of s in Γ′ (Definition 5.5). Then, P is encoded, and the substitution
σ(Γ′) is applied: it replaces each Js[pi]K, Js[qi]K in JP K with records based on the delimited
z{s,pi,qi}.

I Example 5.8. Consider (1). If we delimit s and encode the resulting process, we obtain
a π-calculus process based on (2), enclosed by the delimitations yielded by J(νs)K, and the
substitution σ(s[p] :S, s[q] :S′, . . .). Since the latter replaces Js[p]K, Js[q]K with records whose
entries reflect roles(S) and roles(S′), the encoding can now reduce, firing the two withs.

I Example 5.9. Consider the main server/clients parallel composition in Example 2.2:
(νsa, sb, sc)

(
Q | Pa | Pb | Pc

)
where

Q = (νs)
(
sa[q][p]⊕〈PlayA(s[a])〉 | sb[q][p]⊕〈PlayB(s[b])〉 | sc[q][p]⊕〈PlayC(s[c])〉

)
Its encoding is the following process, with s decomposed into 3 linear channels (see Figure 8):
(νz{sa,p,q}, z{sb,p,q}, z{sc,p,q})

(
JQK | JPaK | JPbK | JPcK

)
where

JQK = (νz{s,a,b}, z{s,b,c}, z{s,a,c})
(
Jsa[q][p]⊕〈PlayA(s[a])〉K | Jsb[q][p]⊕〈PlayB(s[b])〉K | Jsc[q][p]⊕〈PlayC(s[c])〉K

)

6 Properties of the Encoding

In this section we present some crucial properties ensuring the correctness of our encoding.

ECOOP 2017



24:22 A Linear Decomposition of Multiparty Sessions

Encoding of Types. Theorem 6.1 below says that our encoding
1. commutes the duality between partial session types (Definition 2.8) and π-types (Defini-

tion 4.1), and
2. also preserves subtyping.
I Theorem 6.1 (Duality/subtyping preservation). JHK=JHK; if U6SU

′, then JUK6π JU ′K.

Encoding of Typing Judgements. Theorem 6.2 shows that the encoding of session typing
judgements into π-calculus typing judgements is valid. As a consequence, a well-typed MPST
process also enjoys the type safety guarantees that can be expressed in standard π-calculus.
I Theorem 6.2 (Correctness of encoding). Γ`v :U implies JΓK`JvK:JUK, Θ `X : Ũ implies
JΘK ` JXK : J̃UK, and Θ·Γ`P implies JΘ·Γ`P K.
The proof is by induction on the MPST typing derivation, and yields a corresponding
π-calculus typing derivation. One simple case is the following, that relates subtyping:

(T-Sub)
Θ · Γ, c :U ` P U ′6SU

Θ · Γ, c :U ′ ` P
implies

JΘ · Γ, c :U ` P K
q
U ′

y
6π JUK

q
Θ · Γ, c :U ′

y
` JP KΘ·Γ,c:U

(Tπ-Narrow)
(Figure 6)

and holds by the induction hypothesis and Theorem 6.1. The most delicate case is the
encoding of session restriction Θ·Γ ` (νs :Γ′)P (Figure 7): its encoding turns (νs) into a
set of delimited names, used in the substitution σ(Γ′) applied to JP KΘ·Γ,Γ′ . Hence, to prove
Theorem 6.2 in this case, we need to type such names, i.e., produce a context that types
JP KΘ·Γ,Γ′σ(Γ′). This is where δ(Γ′) and (Tπ-Reify) (Definition 5.6) come into play, as we
now explain.

More on reification and decomposition. By Definition 5.6, the typing context δ(ΓS), when
defined, δ(ΓS) has an entry for each role of each channel in ΓS; more precisely, an entry z{s,p,q}
for each s[p] :Sp ∈ ΓS and q ∈ Sp. Such entries are used to type the records yielded by σ(ΓS).
The type of z{s,p,q} is based on the encoding of the unfolded partial projection Sp � q, that
can be either •, or Li(T )/Lo(T ) (for some T ). Note that if there is also some s[q] :Sq ∈ ΓS
with p ∈ Sq, the type of z{s,q,p} = z{s,p,q} (when defined) is

q
unf
(
Sp � q

)y
C

q
unf
(
Sq � p

)y
.

This creates a deep correspondence between the consistency of ΓS and the existence of δ(ΓS),
shown in Theorem 6.3: the precondition for MPST type safety (i.e., consistency of ΓS) is
precisely characterised in π-calculus by the linear decomposition at the roots of our encoding.
I Theorem 6.3 (Precise decomposition). ΓS is consistent if and only if δ(ΓS) is defined.

The final part of Definition 5.6 is the π-calculus typing rule (Tπ-Reify), that uses δ(Γ′S)
to type a process on which σ(Γ′S) has been applied. Intuitively, δ(Γ′S) provides a typing
context that types each record yielded by σ(Γ′S). We now explain how the rule works and
why it is sound (with a slight simplification). Let Γ′S =

{
s[p] :Sp

}
p∈I , for some I. Then, by

Definition 5.6:
δ(Γ′S) =

p
p∈I
{
z{s,p,q} :

q
unf
(
Sp � q

)y}
{p,q}∈conn(s,ΓS) σ(Γ′S) =

{ [q : z{s,p,q}]q∈Sp/Js[p]K
}

p∈I

(Note: δ(Γ′S) is defined iff Γ′S is consistent, by Theorem 6.3). Take the I/O types yielded by
δ(Γ′S), i.e.,

{
T(s,p,q)

}
{p,q}∈conn(s,ΓS) such that δ(Γ′S) =

⊎
p∈I
{
z{s,p,q} :T(s,p,q)

}
{p,q}∈conn(s,ΓS)

(note T(s,p,q), T(s,q,p) are distinct). If we assume JΘ · ΓSK, JΓ′SK ` P , this derivation holds:∀q ∈ Sp

(Tπ-Name)
z{s,p,q} :T(s,p,q) ` z{s,p,q} :T(s,p,q) T(s,p,q) 6π

q
Sp � q

y

z{s,p,q} :T(s,p,q) ` z{s,p,q} :
q
Sp � q

y (Tπ-Sub){
z{s,p,q} :JSp � qK

}
q∈Sp

`
[
q : z{s,p,q}

]
q∈Sp

(Tπ-Rec)


p∈I JΘ · ΓSK, JΓ′SK ` P

JΘ · ΓSK, δ(Γ′S) = JΘ · ΓK ] δ(Γ′S) ` Pσ(Γ′S) (Tπ-MSubst - Figure 6)



A. Scalas, O. Dardha, R. Hu, N. Yoshida 24:23

In particular, the assumptions T(s,p,q) 6π
q
Sp � q

y
hold by Lemma 4.7, since each T(s,p,q)

is obtained by splitting δ(Γ′S) (that combines types with C) using ]. The equivalence in
the conclusion holds since dom(JΘ·ΓSK)∩dom(δ(Γ′S))=∅. Hence: if the (Tπ-Reify) premise
(JΘ · ΓSK, JΓ′SK ` P ) holds, the above derivation holds, proving the conclusion of (Tπ-Reify).

Now, we can finish the proof of Theorem 6.2 for the case Θ·Γ`(νs :Γ′)P . Assuming that
the judgement holds, we also have Θ · Γ,Γ′ ` P and Γ′ complete (by the premise of (T-Res),
Figure 4): hence, Γ′ is consistent, and δ(Γ′) is defined (by Theorem 6.3). Assuming that
JΘ·Γ,Γ′ ` P K holds (by the induction hypothesis), we obtain:

JΘ · ΓK, JΓ′K ` JP KΘ·Γ,Γ′

JΘ · ΓK, δ(Γ′) ` JP KΘ·Γ,Γ′σ(Γ′)
(Tπ-Reify)

where δ(Γ′) types all the names z{s,p,q} in σ(Γ′), that are also delimited by J(νs)K. We can
conclude by applying (Tπ-Res1) to type such delimitations (cf. Figure 5 — this is allowed by
the completeness of Γ′): we get JΘ · ΓK ` J(νs)KJP KΘ·Γ,Γ′σ(Γ′), i.e., we match Figure 7.

Finally, notice (from Figure 7) that our encoding of processes uses some typing information.
In principle, a process could be typed by applying the rules in multiple ways (especially
(T-Sub) in Figure 4), and one might wonder whether an MPST process could have multiple
encodings. Proposition 6.4 says that this is not the case: the reason is that the only typing
information being used is the set of roles in each session type, which does not depend on the
typing rule — and is constant w.r.t. subtyping (i.e., S6SS

′ implies roles(S)=roles(S′)).

I Proposition 6.4 (Uniqueness). If Θ · Γ ` P and Θ′ · Γ′ ` P , then JP KΘ·Γ = JP KΘ′·Γ′ .

Encoding and Reduction. One usual way to assess that an encoding is “behaviourally
correct” (i.e., a process and its encoding behave “in the same way”) consists in proving
operational correspondence. Roughly, it says that the encoding is:
1. complete, i.e., any reduction of the original process is simulated by its encoding; and
2. sound, i.e., any reduction of the encoded process matches some reduction of the original

process.
This is formalised in Theorem 6.5, where with−−−→ denotes a reduction induced by (Rπ-With)
(Definition 3.2).

I Theorem 6.5 (Operational correspondence). If ∅ ·∅ ` P , then:
1. (Completeness) P→∗P ′ implies ∃x̃, P ′′ such that JP K→∗ (νx̃)P ′′ and P ′′ = JP ′K;

2. (Soundness) JP K→∗P∗ implies ∃x̃,P ′′,P ′ s.t. P∗→∗(νx̃)P ′′, P→∗P ′ and JP ′K with−−−→∗P ′′.

The statement of Theorem 6.5 is standard [23, §5.1.3]. Item 1 says that if P reduces to
P ′, then the encoding of the former can reduce to the encoding of the latter. Item 2 says
(roughly) that no matter how the encoding of P reduces, it can always further reduce to the
encoding of some P ′, such that P reduces to P ′. Note that when we write JP ′K, we mean
JP ′K∅·∅, which implies ∅ ·∅ ` P ′ (cf. Definition 5.7). The restricted variables x̃ in items 1-2
are generated by the encoding of selection (Figure 7): it creates a (delimited) linear name to
continue the session. To see why item 2 uses with−−−→∗, consider the following MPST process:

∅ · Γ, s[p] :S ` s[p][q]&{l(x).P} 6→ (the process is stuck)
If we encode it (and apply σ(Γ, s[p] :S) as per Example 5.8), we get a π-calculus process
that gets stuck, too — but only after firing one internal with-reduction:

with [r : zr]r∈S=
[
r : z{s,p,r}

]
r∈S do zq(y). . . . with−−−→ z{s,p,q}(y). . . . 6→

This happens whenever a process is deadlocked, because in Figure 7, the “atomic” MPST
branch/select actions are encoded with multiple π-calculus steps: first with to deconstruct

ECOOP 2017



24:24 A Linear Decomposition of Multiparty Sessions

the channels tuple, and then input/output. In general, if an MPST process is stuck, its
encoding fires one with for each branch/select, then blocks on an input/output.

Theorem 6.5 yields a corollary on deadlock freedom (Corollary 6.6), that in turn allows to
transfer deadlock freedom (Theorem 2.19) from MPST to π-calculus processes (Corollary 6.7
below).

I Corollary 6.6. P is deadlock-free if and only if JP K is deadlock-free, i.e.: JP K→∗ P ′ 6→
implies ∃Q ≡ 0 such that P ′ = JQK.

I Corollary 6.7. Let ∅·∅ ` P , where P ≡ (νs :G)
∣∣
i∈IPi and each Pi only interacts on s[pi].

Then, JP K is deadlock-free.

7 From Theory to Implementation

We can now show how our encoding directly guides the implementation of a toolchain
for generating safe multiparty session APIs in Scala, supporting distributed delegation. We
continue our Game example from Section 1, focusing on player b: we sketch the API generation
and an implementation of a client, following the results in Section 6. Our approach is to:
1. exploit type safety and distribution provided by an existing library for binary session

channels, and then
2. treat the ordering of communications across separate channels in the API generation.

Scala and lchannels. Our Scala toolchain is built upon the lchannels library [61, 62].
lchannels provides two key classes, Out[T] and In[T], whose instances must be used lin-
early (i.e., once) to send/receive (by method calls) a T-typed message: i.e., they represent
channel endpoints with π-calculus types Lo(T ) and Li(T ) (Definition 3.3). This approach
enforces the typing of I/O actions via static Scala typing; the linear usage of channels,
instead, goes beyond the capabilities of the Scala typing system, and is therefore enforced
with run-time checks.

lchannels delivers messages by abstracting over various transports: local memory, TCP
sockets, Akka actors [41]. Notably, lchannels promotes session type-safety through a
continuation-passing-style encoding of binary session types [61] that is close to our en-
coding of partial projections (formalised in Definition 5.1). Further, lchannels allows to
send/receive In[T]/Out[T] instances for binary session delegation [61, Example 4.3]; on dis-
tributed message transports, instances of In[T]/Out[T] can be sent remotely (e.g., via the
Akka-based transport).

Type-safe, distributed multiparty delegation. By Theorem 6.2, Definition 5.1 and The-
orem 6.3, we know that the game player session type Sb in our example (see Section 1, page 3)
provides the type safety guarantees of a tuple of (linear) channels, whose types are given by
the encoded partial projections of Sb onto a and c (Definition 2.9). This suggests that, using
lchannels, the delegation of an Sb-typed channel (as seen in Section 1) could be rendered in
Scala as:

In[PlayB] with definitions: case class PlayB(payload: Sb)
case class Sb(a: In[InfoAB],c: Out[InfoBC])

i.e., as a linear input channel carrying a message of type PlayB, whose payload has type Sb;
Sb, in turn, is a Scala case class, which can be seen as a labelled tuple, that maps a,c to
I/O channels — whose types derive from JSb�aK and JSb�cK (in fact, they carry messages of
type InfoAB/InfoBC). In this view, Sb is our Scala rendering of the encoded session type JSbK.
As said above, lchannels allows to send channels remotely — hence, also allows to remotely



A. Scalas, O. Dardha, R. Hu, N. Yoshida 24:25

send tuples of channels (e.g., instances of Sb); thus, with this simple approach, we obtain
type-safe distributed multiparty delegation of an JSbK-typed channel tuple “for free”.

Multiparty API generation. Corresponding to the π-calculus labelled tuple type yielded by
the type encoding JSbK, the Sb class outlined above can ensure communication safety, i.e., no
unexpected message will be sent or received on any of its binary channels. Like JSbK, however,
Sb does not convey any ordering to communications across channels: i.e., Sb does not suggest
the order in which its fields a,c should be used. (Indeed, JSbK may type π-processes that use
its separate channels in any order, while preserving type safety.) To recover the “desired”
ordering of communications, and implement it correctly, we can refine our classes so that:
1. each multiparty channel class (e.g., Sb) exposes a send() or receive() method, according

to the I/O action expected by the multiparty session type (e.g., Sb);
2. the implementation of such method uses the binary channels as per our process encoding.
E.g., consider again Sb and Sb. Sb requires to send towards c, so Sb could provide the API:
case class Sb(a: In[InfoAB], c: Out[InfoBC]) {

def send(v: String) = { // v is the payload of InfoBC message
val c′ = c !! InfoBC(v)_ // lchannels method: send v, and return continuation
S′b(a, c′) } } // return a "continuation object"

Now, Sb.send() behaves exactly as our process encoding in Figure 7 (case for selection ⊕):
it picks the correct channel from the tuple (in this case, c), creates a new tuple S′b where c
maps to a continuation channel, and returns it — so that the caller can use it to continue the
multiparty session interaction. The class S′b should be similar, with a receive() method that
uses a for input (by following the encoding of &). This way, a programmer is correctly led to
write, e.g., val x = s.send(...).receive() (using method call chaining) — whereas attempting,
e.g., s.receive() is rejected by the Scala compiler (method undefined). These send()/receive()

APIs are mechanical, and can be automatically generated: we did it by extending Scribble.

Scribble-Scala Toolchain. Scribble is a practical MPST-based language and tool for de-
scribing global protocols [63, 68]. To implement our results, we have extended Scribble (both
the language and the tool) to support the full MPST theory in Section 2, including, e.g.,
projection, type merging and delegation (not previously supported). Our extension supports
protocols with the syntax in Figure 9 (left), by augmenting Scribble with a projection operator
@; then, it computes the projections/encodings explained in Section 5, and automates the
Scala API generation as outlined above (producing, e.g., the Sb, S’b,. . . classes and their
send/receive methods). This approach reminds the Java API generation in [29] — but we
follow a formal foundation and target the type-safe binary channels provided by lchannels
(that, as shown above, takes care of most irksome aspects — e.g., delegation). As a result,
the Pb client in Figure 1 can be written as in Figure 9 (right); and although conceptually
programmed as Figure 2, the networking mechanisms of the game will concretely follow
Figure 8.

8 Conclusion and Related Works

We presented the first encoding of a full-fledged multiparty session π-calculus into standard
π-calculus (Section 5), and used it as the foundation of the first implementation of multiparty
sessions (based on Scala API generation) supporting distributed multiparty delegation, on top
of existing libraries (Section 7). We proved that the type safety property of MPST is precisely
characterised by our decomposition into linear π-calculus (Theorem 6.3). We encode types by
preserving duality and subtyping (Theorem 6.1); our encoding of processes is type-preserving,

ECOOP 2017



24:26 A Linear Decomposition of Multiparty Sessions

global protocol ClientA(role p, role q) {
PlayA(Game@a) from q to p; } // Delegation payload

global protocol ClientB(role p, role q) {
PlayB(Game@b) from q to p; }

global protocol ClientC(role p, role q) {
PlayC(Game@c) from q to p; }

global protocol Game(role a, role b, role c) {
InfoBC(String) from b to c;
InfoCA(String) from c to a;
InfoAB(String) from a to b;
rec t { choice at a {

Mov1AB(Int) from a to b;
Mov1BC(Int) from b to c;
choice at c { Mov1CA(Int) from c to a; continue t; }

or { Mov2CA(Bool) from c to a; continue t; }
} or {
Mov2AB(Bool) from a to b;
Mov2BC(Bool) from b to c;
choice at c { Mov1CA(Int) from c to a; continue t; }

or { Mov2CA(Bool) from c to a; continue t; }
} } }

def P_b(c_bin: In[binary.PlayB]) = { // Cf. Ex.2.2
// Wrap binary chan in generated multiparty API
Client_b(MPPlayB(c_bin))

}

def Client_b(y: MPPlayB): Unit = {
// Receive Game chan (wraps binary chans to a/c)
val z = y.receive().p // p is the payload field
// Send info to c; wait info from a; enter loop
Loop_b(z.send(InfoBC("...")).receive())

}

def Loop_b(x: MPMov1ABOrMov2AB): Unit = {
x.receive() match { // Check a’s move

case Mov1AB(p, cont) => {
// cont only allows to send Mov1BC
Loop_b(cont.send(Mov1BC(p)))

}
case Mov2AB(p, cont) => {

// cont only allows to send Mov2BC
Loop_b(cont.send(Mov2BC(p)))

}}} // If e.g. case Mov2AB missing: compiler warn

Figure 9 Game example (Section 1). Left: Scribble protocols for client/server setup sessions,
and main Game (Example 2.18). Right: Scala code for player b, using Scribble-generated APIs to
mimick Example 2.2.

and operationally sound and complete (Theorem 6.2 and Theorem 6.5); hence, our encoding
preserves the type-safety and deadlock-freedom properties of MPST (Corollary 6.7). These
results ensure the correctness of our (encoding-based) Scala implementation. Moreover, our
encoding preserves process distribution (i.e., is homomorphic w.r.t. parallel composition);
correspondingly, our implementation of multiparty sessions is decentralised and choreographic.

Session Types for “Mainstream” Languages. We mentioned binary session implementa-
tions for various languages in Section 1. Notably, [57, 32, 33, 42, 52, 61, 55] seek to integrate
session types in the native host language, without language extensions, to avoid hindering
their use in practice. To do so, one approach (e.g. in [61, 55]) is combining static typing of
I/O actions with run-time checking of linear channel usage. Our implementation adopts this
idea (Section 7). Haskell-based works exploit its richer typing system to statically enforce
linearity — with various expressiveness/usability trade-offs based on their session types
embedding strategy.

Implementations of multiparty sessions are few and limited, due to the intricacies of the
theory (e.g., the interplay between projections, mergability and consistency), and practical
issues (e.g., realising multiparty abstractions over binary transports, including distributed
delegation), as discussed in Section 1. [64] was the first implementation of MPST, based
on extending Java with session primitives. [29] proposes MPST-based API generation for
Java, based on CFSMs [7], but has no formalisation — unlike our implementation, that
follows our encoding. [17, 20] develop MPST-influenced networking APIs in Python and
Erlang; [50] implements recovery strategies in Erlang. [17, 20, 50] focus on purely dynamic
MPST verification via run-time monitoring. [51, 48] extends [17] with actors and timed
specifications. [46] uses a dependent MPST theory to verify MPI programs. Crucially, none
of these implementations supports delegation (nor projection merging, needed by our Game
example, cf. Example 2.14).

Encodings of Session Types and Processes. [16] encodes binary session π-calculus into
an augmented π-calculus with branch/select constructs. [15], following [36], and [21] encode



A. Scalas, O. Dardha, R. Hu, N. Yoshida 24:27

non-recursive, binary session π-calculus, respectively into linear π-calculus and the Generic
Type System for π-calculus [31], proving correctness w.r.t. typing and reduction. All the
above works investigate binary and (except [16]) non-recursive session types, while in this
paper we study the encoding of multiparty session types, subsuming binary ones; and unlike
[16], we target standard π-calculus. We encode branching/selection using variants as in
[15, 13], but our treatment of recursion, and the rest of the MPST theory, is novel.

Encodings of multiparty into binary sessions are studied in [9, 8]. Both use orchestration
approaches that add centralised medium/arbiter processes, and target session calculi (not
π-calculus). [53] uses a limited class of global types to extract “characteristic” deadlock-free
π-calculus processes — without addressing session calculi, nor proving operational properties.

Recursion and Duality. The interplay between recursion and duality has been a thorny
issue in session types literature, requiring our careful treatment in Section 4. [6, 1] noticed
that the standard duality in [26] does not commute with the unfolding of recursion when
type variables occur as payload, e.g., µt.!t.end. To solve this issue, [6, 1] define a new notion
of duality, called complement [1], then used in [13] to encode recursive binary session types
into linear π-types. Unfortunately, [2] later noticed that even complement does not commute,
e.g., when unfolding µt.µt′.!t.t′. As observed in Section 4, to encode recursive session types
we encounter similar issues in π-types. The reason seems natural: π-types do not distinguish
“payloads” and “continuations”, and in recursive linear inputs/outputs, type variables always
occur as “payload”, e.g., µt.Lo(t). Since, in the light of [2], we could not adopt the approach
of [13], we propose a solution similar to [43]: introduce dualised type variables t. [43] also
sketches a property similar to our Lemma 4.4. The main difference is that we add dualised
variables to π-types (while [43] adds t to session types). An alternative idea is given in [61]:
encoding recursive session types as non-recursive linear I/O types with recursive payloads.
This avoids dualised variables (e.g., Lo(µt.Li(t)) instead of µt.Lo

(
t
)
), but if adopted, would

complicate Definition 5.1. Moreover, [61] studies the encoding of recursive types, but not
processes.

Future work. On the practical side, we plan to study whether Scala language extensions
could provide stronger static channel usage checks. E.g., [25, 24] (capabilities) could allow
to ensure that a channel endpoint is not used after being sent; [58, 65] (effects) could allow
to ensure that a channel endpoint is actually used in a given method. We also plan to
extend our multiparty API generation approach beyond Scala and lchannels, targeting other
languages and implementations of binary sessions/channels [57, 32, 33, 42, 52, 55].

On the theoretical side, our encoding provides a basis for reusing theoretical results
and tools between MPST π-calculus and standard π-calculus. E.g., we could now exploit
Corollary 6.6, to verify deadlock-freedom of processes with interleaved multiparty sessions
(studied in [3, 10, 12]) by applying π-calculus deadlock detection methods to their encodings
[38, 35, 66]. Moreover, we can prove that our encoding is barb-preserving: hence, we plan to
study its full abstraction properties w.r.t. barbed congruence in session π-calculus [40, 39]
and π-calculus.

Thanks to the reviewers for their remarks, and to B. Toninho for fruitful discussions.
Thanks to S.S. Jongmans, R. Neykova, N. Ng, B. Toninho for testing the companion artifact.

ECOOP 2017



24:28 A Linear Decomposition of Multiparty Sessions

References

1 Giovanni Bernardi and Matthew Hennessy. Using higher-order contracts to model session
types (extended abstract). In CONCUR, 2014. doi:10.1007/978-3-662-44584-6_27.

2 Giovanni Bernardi and Matthew Hennessy. Using higher-order contracts to model session
types. Logical Methods in Computer Science, 12(2), 2016. doi:10.2168/LMCS-12(2:10)
2016.

3 Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola Dezani-
Ciancaglini, and Nobuko Yoshida. Global progress in dynamically interleaved multiparty
sessions. In CONCUR, 2008. doi:10.1007/978-3-540-85361-9_33.

4 Laura Bocchi, Julien Lange, and Nobuko Yoshida. Meeting Deadlines Together. In CON-
CUR, 2015. doi:http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.283.

5 Laura Bocchi, Julien Lange, and Nobuko Yoshida. Meeting Deadlines Together (long ver-
sion). Technical report, 2015. Long version of [4]. URL: http://mrg.doc.ic.ac.uk/
publications/meeting-deadlines-together/long.pdf.

6 Viviana Bono and Luca Padovani. Typing copyless message passing. Logical Methods in
Computer Science, 8(1), 2012. doi:10.2168/LMCS-8(1:17)2012.

7 Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. J. ACM,
30(2), April 1983. doi:10.1145/322374.322380.

8 Luís Caires and Jorge A. Pérez. Multiparty session types within a canonical binary theory,
and beyond. In FORTE, 2016. doi:10.1007/978-3-319-39570-8_6.

9 Marco Carbone, Sam Lindley, Fabrizio Montesi, Carsten Schürmann, and Philip Wadler.
Coherence generalises duality: A logical explanation of multiparty session types. In CON-
CUR, 2016. doi:10.4230/LIPIcs.CONCUR.2016.33.

10 Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and Nobuko Yoshida. In-
ference of global progress properties for dynamically interleaved multiparty sessions. In
COORDINATION, 2013. doi:10.1007/978-3-642-38493-6_4.

11 Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and Nobuko Yoshida. A
gentle introduction to multiparty asynchronous session types. In Formal Methods for Mul-
ticore Programming, 2015. doi:10.1007/978-3-319-18941-3_4.

12 Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca Padovani.
Global Progress for Dynamically Interleaved Multiparty Sessions. Mathematical Structures
in Computer Science, 760, 2015. doi:10.1017/S0960129514000188.

13 Ornela Dardha. Recursive session types revisited. In BEAT, 2014. doi:10.4204/EPTCS.
162.4.

14 Ornela Dardha. Type Systems for Distributed Programs: Components and Sessions,
volume 7 of Atlantis Studies in Computing. Atlantis Press, July 2016. doi:10.2991/
978-94-6239-204-5.

15 Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types revisited. In PPDP,
2012. doi:10.1145/2370776.2370794.

16 Romain Demangeon and Kohei Honda. Full abstraction in a subtyped pi-calculus with
linear types. In CONCUR, 2011. doi:10.1007/978-3-642-23217-6_19.

17 Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida.
Practical interruptible conversations: Distributed dynamic verification with multiparty
session types and Python. Formal Methods in System Design, 2015. doi:10.1007/
s10703-014-0218-8.

18 Pierre-Malo Deniélou, Nobuko Yoshida, Andi Bejleri, and Raymond Hu. Parameterised
multiparty session types. Logical Methods in Computer Science, 8(4), 2012. doi:10.2168/
LMCS-8(4:6)2012.

http://dx.doi.org/10.1007/978-3-662-44584-6_27
http://dx.doi.org/10.2168/LMCS-12(2:10)2016
http://dx.doi.org/10.2168/LMCS-12(2:10)2016
http://dx.doi.org/10.1007/978-3-540-85361-9_33
http://dx.doi.org/http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.283
http://mrg.doc.ic.ac.uk/publications/meeting-deadlines-together/long.pdf
http://mrg.doc.ic.ac.uk/publications/meeting-deadlines-together/long.pdf
http://dx.doi.org/10.2168/LMCS-8(1:17)2012
http://dx.doi.org/10.1145/322374.322380
http://dx.doi.org/10.1007/978-3-319-39570-8_6
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.33
http://dx.doi.org/10.1007/978-3-642-38493-6_4
http://dx.doi.org/10.1007/978-3-319-18941-3_4
http://dx.doi.org/10.1017/S0960129514000188
http://dx.doi.org/10.4204/EPTCS.162.4
http://dx.doi.org/10.4204/EPTCS.162.4
http://dx.doi.org/10.2991/978-94-6239-204-5
http://dx.doi.org/10.2991/978-94-6239-204-5
http://dx.doi.org/10.1145/2370776.2370794
http://dx.doi.org/10.1007/978-3-642-23217-6_19
http://dx.doi.org/10.1007/s10703-014-0218-8
http://dx.doi.org/10.1007/s10703-014-0218-8
http://dx.doi.org/10.2168/LMCS-8(4:6)2012
http://dx.doi.org/10.2168/LMCS-8(4:6)2012


A. Scalas, O. Dardha, R. Hu, N. Yoshida 24:29

19 Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Svetlana Jaksic, Jovanka Pantovic, and
Nobuko Yoshida. Precise subtyping for synchronous multiparty sessions. In PLACES, pages
29–43, 2015. doi:10.4204/EPTCS.203.3.

20 Simon Fowler. An Erlang implementation of multiparty session actors. In ICE, 2016.
doi:10.4204/EPTCS.223.3.

21 Simon J. Gay, Nils Gesbert, and António Ravara. Session types as generic process types.
In EXPRESS/SOS, 2014. doi:10.4204/EPTCS.160.9.

22 Simon J. Gay and Malcolm Hole. Subtyping for session types in the pi calculus. Acta
Informatica, 42(2-3), 2005. doi:10.1007/s00236-005-0177-z.

23 Daniele Gorla. Towards a unified approach to encodability and separation results for process
calculi. Inf. Comput., 208(9), 2010. doi:10.1016/j.ic.2010.05.002.

24 Philipp Haller and Alexander Loiko. LaCasa: lightweight affinity and object capabilities in
Scala. In OOPSLA, 2016. doi:10.1145/2983990.2984042.

25 Philipp Haller and Martin Odersky. Capabilities for uniqueness and borrowing. In ECOOP,
2010. doi:10.1007/978-3-642-14107-2_17.

26 Kohei Honda, Vasco Vasconcelos, and Makoto Kubo. Language primitives and type
disciplines for structured communication-based programming. In ESOP, 1998. doi:
10.1007/BFb0053567.

27 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session
types. In POPL, 2008. Full version in [28]. doi:10.1145/1328438.1328472.

28 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session
types. J. ACM, 63(1), March 2016. doi:10.1145/2827695.

29 Raymond Hu and Nobuko Yoshida. Hybrid session verification through endpoint API
generation. In FASE, 2016. doi:10.1007/978-3-662-49665-7_24.

30 Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-based distributed programming
in java. In ECOOP, 2008. doi:10.1007/978-3-540-70592-5_22.

31 Atsushi Igarashi and Naoki Kobayashi. A generic type system for the pi-calculus. Theo.
Comput. Sci., 311(1-3), 2004. doi:10.1016/S0304-3975(03)00325-6.

32 Keigo Imai, Shoji Yuen, and Kiyoshi Agusa. Session type inference in Haskell. In PLACES,
2010. doi:10.4204/EPTCS.69.6.

33 Thomas Bracht Laumann Jespersen, Philip Munksgaard, and Ken Friis Larsen. Session
types for Rust. In WGP@ICFP, 2015. doi:10.1145/2808098.2808100.

34 Naoki Kobayashi. Type systems for concurrent programs. In 10th Anniversary Colloquium
of UNU/IIST, 2002. doi:10.1007/978-3-540-40007-3_26.

35 Naoki Kobayashi. A new type system for deadlock-free processes. In CONCUR, 2006.
doi:10.1007/11817949_16.

36 Naoki Kobayashi. Type systems for concurrent programs. Extended version of [34],
Tohoku University, 2007. URL: http://www.kb.ecei.tohoku.ac.jp/~koba/papers/
tutorial-type-extended.pdf.

37 Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and the pi-calculus.
ACM Trans. Program. Lang. Syst., 21(5), September 1999. doi:10.1145/330249.330251.

38 Naoki Kobayashi and Davide Sangiorgi. A hybrid type system for lock-freedom of mobile
processes. ACM Trans. Program. Lang. Syst., 32(5), 2010.

39 Dimitrios Kouzapas and Nobuko Yoshida. Globally governed session semantics. In CON-
CUR, 2013. doi:10.1007/978-3-642-40184-8_28.

40 Dimitrios Kouzapas and Nobuko Yoshida. Globally governed session semantics. Logical
Methods in Computer Science, 10(4), 2014. doi:10.2168/LMCS-10(4:20)2014.

41 Lightbend, Inc. The Akka framework, 2017. URL: http://akka.io/.
42 Sam Lindley and J. Garrett Morris. Embedding session types in Haskell. In Haskell, 2016.

doi:10.1145/2976002.2976018.

ECOOP 2017

http://dx.doi.org/10.4204/EPTCS.203.3
http://dx.doi.org/10.4204/EPTCS.223.3
http://dx.doi.org/10.4204/EPTCS.160.9
http://dx.doi.org/10.1007/s00236-005-0177-z
http://dx.doi.org/10.1016/j.ic.2010.05.002
http://dx.doi.org/10.1145/2983990.2984042
http://dx.doi.org/10.1007/978-3-642-14107-2_17
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1145/1328438.1328472
http://dx.doi.org/10.1145/2827695
http://dx.doi.org/10.1007/978-3-662-49665-7_24
http://dx.doi.org/10.1007/978-3-540-70592-5_22
http://dx.doi.org/10.1016/S0304-3975(03)00325-6
http://dx.doi.org/10.4204/EPTCS.69.6
http://dx.doi.org/10.1145/2808098.2808100
http://dx.doi.org/10.1007/978-3-540-40007-3_26
http://dx.doi.org/10.1007/11817949_16
http://www.kb.ecei.tohoku.ac.jp/~koba/papers/tutorial-type-extended.pdf
http://www.kb.ecei.tohoku.ac.jp/~koba/papers/tutorial-type-extended.pdf
http://dx.doi.org/10.1145/330249.330251
http://dx.doi.org/10.1007/978-3-642-40184-8_28
http://dx.doi.org/10.2168/LMCS-10(4:20)2014
http://akka.io/
http://dx.doi.org/10.1145/2976002.2976018


24:30 A Linear Decomposition of Multiparty Sessions

43 Sam Lindley and J. Garrett Morris. Talking bananas: Structural recursion for session types.
In ICFP, 2016. doi:10.1145/2951913.2951921.

44 Links homepage. http://links-lang.org/. S. Fowler and D. Hillerström and S. Lindley
and G. Morris and P. Wadler.

45 Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM Trans.
Program. Lang. Syst., 16(6), November 1994. doi:10.1145/197320.197383.

46 Hugo A. Lopez, Eduardo R. B. Marques, Francisco Martins, Nicholas Ng, Casar San-
tos, Vasco Thudichum Vasconcelos, and Nobuko Yoshida. Protocol-based verification of
message-passing parallel programs. In OOPSLA, 2015. doi:10.1145/2814270.2814302.

47 Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, parts I
and II. Inf. Comput., 100(1), 1992. doi:10.1016/0890-5401(92)90008-4.

48 Rumyana Neykova, Laura Bocchi, and Nobuko Yoshida. Timed Runtime Monitoring for
Multiparty Conversations. In BEAT, volume 162. EPTCS, 2014. Full version in [49].
doi:10.4204/EPTCS.162.3.

49 Rumyana Neykova, Laura Bocchi, and Nobuko Yoshida. Timed runtime monitoring
for multiparty conversations. Formal Aspects of Computing, 2017. doi:10.1007/
s00165-017-0420-8.

50 Rumyana Neykova and Nobuko Yoshida. Let It Recover: Multiparty Protocol-Induced
Recovery. In CC, 2017. doi:10.1145/3033019.3033031.

51 Rumyana Neykova and Nobuko Yoshida. Multiparty Session Actors. Logical Methods in
Computer Science, 13(1), March 2017. doi:10.23638/LMCS-13(1:17)2017.

52 Dominic A. Orchard and Nobuko Yoshida. Effects as sessions, sessions as effects. In POPL,
2016. doi:10.1145/2837614.2837634.

53 Luca Padovani. Deadlock and lock freedom in the linear π-calculus. Online version of [54],
January 2014. URL: https://hal.inria.fr/hal-00932356.

54 Luca Padovani. Deadlock and lock freedom in the linear π-calculus. In CSL-LICS. ACM,
2014. doi:10.1145/2603088.2603116.

55 Luca Padovani. A simple library implementation of binary sessions. Journal of Functional
Programming, 27, 2017. Website: http://www.di.unito.it/~padovani/Software/FuSe/
FuSe.html. doi:10.1017/S0956796816000289.

56 Benjamin C. Pierce. Types and programming languages. MIT Press, MA, USA, 2002.
57 Riccardo Pucella and Jesse A. Tov. Haskell session types with (almost) no class. In Haskell,

2008. doi:10.1145/1411286.1411290.
58 Lukas Rytz, Martin Odersky, and Philipp Haller. Lightweight polymorphic effects. In

ECOOP, 2012. doi:10.1007/978-3-642-31057-7_13.
59 Davide Sangiorgi and David Walker. The π-calculus: a Theory of Mobile Processes. Cam-

bridge University Press, 2001.
60 Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. A linear decomposition

of multiparty sessions for safe distributed programming. Technical Report 2, Imperial
College London, 2017. URL: https://www.doc.ic.ac.uk/research/technicalreports/
2017/#2.

61 Alceste Scalas and Nobuko Yoshida. Lightweight session programming in scala. In ECOOP,
2016. doi:10.4230/LIPIcs.ECOOP.2016.21.

62 Alceste Scalas and Nobuko Yoshida. Lightweight Session Programming in Scala (Artifact).
Dagstuhl Artifacts Series, 2(1), 2016. doi:http://dx.doi.org/10.4230/DARTS.2.1.11.

63 Scribble homepage. http://www.scribble.org.
64 K. C. Sivaramakrishnan, Karthik Nagaraj, Lukasz Ziarek, and Patrick Eugster. Efficient

session type guided distributed interaction. In COORDINATION, 2010. doi:10.1007/
978-3-642-13414-2_11.

http://dx.doi.org/10.1145/2951913.2951921
http://links-lang.org/
http://dx.doi.org/10.1145/197320.197383
http://dx.doi.org/10.1145/2814270.2814302
http://dx.doi.org/10.1016/0890-5401(92)90008-4
http://dx.doi.org/10.4204/EPTCS.162.3
http://dx.doi.org/10.1007/s00165-017-0420-8
http://dx.doi.org/10.1007/s00165-017-0420-8
http://dx.doi.org/10.1145/3033019.3033031
http://dx.doi.org/10.23638/LMCS-13(1:17)2017
http://dx.doi.org/10.1145/2837614.2837634
https://hal.inria.fr/hal-00932356
http://dx.doi.org/10.1145/2603088.2603116
http://www.di.unito.it/~padovani/Software/FuSe/FuSe.html
http://www.di.unito.it/~padovani/Software/FuSe/FuSe.html
http://dx.doi.org/10.1017/S0956796816000289
http://dx.doi.org/10.1145/1411286.1411290
http://dx.doi.org/10.1007/978-3-642-31057-7_13
https://www.doc.ic.ac.uk/research/technicalreports/2017/#2
https://www.doc.ic.ac.uk/research/technicalreports/2017/#2
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.21
http://dx.doi.org/http://dx.doi.org/10.4230/DARTS.2.1.11
http://www.scribble.org
http://dx.doi.org/10.1007/978-3-642-13414-2_11
http://dx.doi.org/10.1007/978-3-642-13414-2_11


A. Scalas, O. Dardha, R. Hu, N. Yoshida 24:31

65 Matías Toro and Éric Tanter. Customizable gradual polymorphic effects for Scala. In
OOPSLA, 2015. doi:10.1145/2814270.2814315.

66 TYPICAL. Type-based static analyzer for the pi-calculus. http://www-kb.is.s.u-tokyo.
ac.jp/~koba/typical/.

67 Nobuko Yoshida, Pierre-Malo Deniélou, Andi Bejleri, and Raymond Hu. Parameterised
multiparty session types. In FOSSACS, 2010. doi:10.1007/978-3-642-12032-9_10.

68 Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng. The Scribble protocol
language. In TGC, 2013. doi:10.1007/978-3-319-05119-2_3.

ECOOP 2017

http://dx.doi.org/10.1145/2814270.2814315
http://www-kb.is.s.u-tokyo.ac.jp/~koba/typical/
http://www-kb.is.s.u-tokyo.ac.jp/~koba/typical/
http://dx.doi.org/10.1007/978-3-642-12032-9_10
http://dx.doi.org/10.1007/978-3-319-05119-2_3

	Introduction
	Multiparty Session -Calculus
	Multiparty Session Typing

	Linear -Calculus
	Some Typed -Calculus Extensions and Results
	Encoding Multiparty Session- into Linear -Calculus
	Properties of the Encoding
	From Theory to Implementation
	Conclusion and Related Works

