Retargeting Gradual Typing

Ross Tate

Cornell University, Ithaca, NY, USA
ross@cs.cornell.edu

—— Abstract

Gradual typing is often motivated by efforts to add types to massive untyped code bases. A major
challenge here is the fact that these code bases were not written with types in mind, yet the goal
is to add types to them without requiring any significant changes in their implementation. Thus,
critical to this application is the notion that gradual typing is being added onto a preexisting
system.

But gradual typing also has applications in education, prototyping, and scripting. It allows
programmers to ignore types while they are learning programmatic reasoning, while they are
experimenting with new designs, or while they are interacting with external systems. At the
same time, gradual typing allows these programmers to utilize APIs with types that provide
navigable documentation, that concisely describe interfaces, and that enable IDEs to provide
assistance. In these applications, programmers are working with types even when they are not
writing types. By targeting just these applications, we can lift a major burden from gradual
typing. Rather than being added to something that already exists, here gradual typing can
be integrated into the software-development process, into the core language design, and into the
run-time environment, with each component designed to support gradual typing from conception.

This retargeting provides significant flexibility, enabling designers to tradeoff various capabil-
ities of gradual typing. For example, a designer might choose to require some minor annotation
burden in untyped programs for, say, a hundred-fold improvement in run-time performance. For
the past half decade I have been exploring gradual typing behind the scenes in both academia
and industry, and I will be presenting my experiences with these design tradeoffs so far.

1998 ACM Subject Classification D.3.1 [Programming Languages]: Formal Definitions and The-
ory — Semantics; D.3.2 [Programming Languages|: Language Classifications — Object-oriented
languages; D.3.4 [Programming Languages]: Processors — Run-time environments; F.3.3 [Pro-
gramming Languages]: Studies of Program Constructs — Type structure

Keywords and phrases Design, Efficiency, Gradual Typing, Nominal Types
Digital Object Identifier 10.4230/LIPIcs. ECOOP.2017.3

Category Invited Talk

© Ross Tate;
37 licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Miiller; Article No. 3; pp. 3:1-3:1

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

