EVF: An Extensible and Expressive Visitor
Framework for Programming Language

Reuse (Artifact)*

Weixin Zhang! and Bruno C. d. S. Oliveira2

1 The University of Hong Kong, Hong Kong, China

wxzhang2@cs.hku.hk

2 The University of Hong Kong, Hong Kong, China

bruno@cs.hku.hk

— Abstract

This artifact is based on EVF, an extensible and
expressive Java VISITOR framework. EVF aims at
reducing the effort involved in creation and reuse of
programming languages. EVF an annotation pro-
cessor that automatically generate boilerplate ASTs
and AST for a given an Object Algebra interface.

This artifact contains source code of the case study
on “Types and Programming Languages”, illustrat-
ing how effective EVF is in modularizing program-
ming languages. There is also a microbenchmark in
the artifact that shows that EVF has reasonable
performance with respect to traditional visitors.

1998 ACM Subject Classification D.1.5 Object-oriented Programming, D.3.3 Language Constructs and
Features, D.3.4 Processors

Keywords and phrases visitor pattern, object algebras, modularity, domain-specific languages

Digital Object ldentifier 10.4230/DARTS.3.2.10

Related Article Weixin Zhang and Bruno C. d. S. Oliveira, “EVF: An Extensible and Expressive Visitor
Framework for Programming Language Reuse”, in Proceedings of the 31st European Conference on
Object-Oriented Programming (ECOOP 2017), LIPIcs, Vol. 74, pp. 29:1-29:32, 2017.
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.29

Related Conference European Conference on Object-Oriented Programming (ECOOP 2017), June
18-23, 2017, Barcelona, Spain

1 Scope

The artifact is designed to support repeatability of all the experiments of the companion paper,
allowing users to test the framework on a variety of benchmarks. It includes EVF, an extensible
and expressive Java VISITOR framework that aims at reducing the effort involved in creating and
reusing programming languages. EVF is best used with an IDE like Eclipse, which automatically
generates boilerplate ASTs and AST traversals for an annotated standard Object Algebra interface
by saving. This artifact also contains the source code of the case study on “Types and Programming
Languages” and the microbenchmark that we discussed in the companion paper.

* This work has been sponsored by the Hong Kong Research Grant Council projects number 27200514 and
17258816.

© Weixin Zhang and Bruno C. d. S. Oliveira;
oY licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)
Dagstuhl Artifacts Series, Vol. 3, Issue 2, Artifact No. 10, pp. 10:1-10:2

\\v DAGSTUHL Dagstuhl Artifacts Series
ARTIFACTS SERIES Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://dx.doi.org/10.4230/DARTS.3.2.10
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.29
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/darts
http://www.dagstuhl.de

10:2

EVF (Artifact)

2 Content

The artifact package includes:

VisitProcessor: the Java annotation processor;

tapl: the case study on “Types and programming languages”;

benchmark: the microbenchmark.
Detailed instructions for using the artifact and for rebuilding it from scratch, provided as an
README.md file.

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). The latest version of our code is available
on GitHub: https://github.com/wxzh/EVF.

4 Tested platforms

The artifact is known to work on any platform running JDK (version 1.8 or later) with an Eclipse
IDE (version 4.5.1 or later). To run the scripts, the artifact additionally requires ruby (version
2.0.0 or later) and cloc (version 1.62 or later) installed.

5 License

BSD

6 MD5 sum of the artifact

afe518a203489ef8fc1{7¢93435dd35¢

7 Size of the artifact

698KB

Acknowledgements. We would like to thank the anonymous reviewers for their helpful comments
and suggestions.


https://github.com/wxzh/EVF

	Scope
	Content
	Getting the artifact
	Tested platforms
	License
	MD5 sum of the artifact
	Size of the artifact

