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— Abstract

This artifact is based on EVF, an extensible and
expressive Java VISITOR framework. EVF aims at
reducing the effort involved in creation and reuse of
programming languages. EVF an annotation pro-
cessor that automatically generate boilerplate ASTs
and AST for a given an Object Algebra interface.

This artifact contains source code of the case study
on “Types and Programming Languages”, illustrat-
ing how effective EVF is in modularizing program-
ming languages. There is also a microbenchmark in
the artifact that shows that EVF has reasonable
performance with respect to traditional visitors.
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1 Scope

The artifact is designed to support repeatability of all the experiments of the companion paper,
allowing users to test the framework on a variety of benchmarks. It includes EVF, an extensible
and expressive Java VISITOR framework that aims at reducing the effort involved in creating and
reusing programming languages. EVF is best used with an IDE like Eclipse, which automatically
generates boilerplate ASTs and AST traversals for an annotated standard Object Algebra interface
by saving. This artifact also contains the source code of the case study on “Types and Programming
Languages” and the microbenchmark that we discussed in the companion paper.
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EVF (Artifact)

2 Content

The artifact package includes:

VisitProcessor: the Java annotation processor;

tapl: the case study on “Types and programming languages”;

benchmark: the microbenchmark.
Detailed instructions for using the artifact and for rebuilding it from scratch, provided as an
README.md file.

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). The latest version of our code is available
on GitHub: https://github.com/wxzh/EVF.

4 Tested platforms

The artifact is known to work on any platform running JDK (version 1.8 or later) with an Eclipse
IDE (version 4.5.1 or later). To run the scripts, the artifact additionally requires ruby (version
2.0.0 or later) and cloc (version 1.62 or later) installed.

5 License

BSD

6 MD5 sum of the artifact

afe518a203489ef8fc1{7¢93435dd35¢

7 Size of the artifact

698KB
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