Interprocedural Specialization of Higher-Order
Dynamic Languages Without Static

Analysis (Artifact)

Baptiste Saleil' and Marc Feeley?

1 Université de Montréal
Montreal, Quebec, Canada
baptiste.saleil@umontreal.ca

2 Université de Montréal
Montreal, Quebec, Canada
feeley@Qiro.umontreal.ca

— Abstract

This artifact is based on LC, a research oriented
JIT compiler for Scheme. The compiler is extended
to allow interprocedural, type based, code special-
ization using the technique and its implementation
presented in the paper. Because the technique is
directly implemented in LC, the package contains
the build of the compiler used for our experiments.

To support repeatability, the artifact allows the
user to easily extract the data presented in the pa-
per such as the number of executed type checks or
the generated code size. The user can repeat the
experiments using a set of standard benchmarks as
well as its own programs. Instructions for building
the compiler from scratch are also provided.

1998 ACM Subject Classification D.3.4 Processors

Keywords and phrases just-in-time compilation, interprocedural optimization, dynamic language, higher-
order function, scheme

Digital Object Identifier 10.4230/DARTS.3.2.14

Related Article Baptiste Saleil and Marc Feeley, “Interprocedural Specialization of Higher-Order Dy-
namic Languages Without Static Analysis”, in Proceedings of the 31st European Conference on Object-
Oriented Programming (ECOOP 2017), LIPIcs, Vol. 74, pp. 23:1-23:23, 2017.
http://dx.doi.org/10.4230/LIPIcs.ECO0P.2017 .23

Related Conference European Conference on Object-Oriented Programming (ECOOP 2017), June
18-23, 2017, Barcelona, Spain

1 Scope

The artifact is designed to support repeatability of all the experiments presented in the paper.
Users can obtain the result from the metrics used for the experiments such as the number of
executed type checks, the size of the generated machine code or the execution time using a set of
standard benchmarks as well as their own Scheme programs. A tool allowing to automatically
gather the data presented in the paper is also included in the artifact.

2 Content

This artifact contains a build of the LC compiler used for the experiments presented in the
paper. The archive contains a virtual appliance packaged using the Open Virtualization Format
(OVF) and the artifact documentation. This appliance can be imported and started using the
virtualization software VirtualBoz.

When the system is booted, the user can find the artifact in a folder named artifact on the
desktop. To facilitate the use of the artifact, two windows are opened on boot:

© Baptiste Saleil and Marc Feeley;
oY licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)
Dagstuhl Artifacts Series, Vol. 3, Issue 2, Artifact No. 14, pp. 14:1-14:2

\\v DAGSTUHL Dagstuhl Artifacts Series
ARTIFACTS SERIES Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://dx.doi.org/10.4230/DARTS.3.2.14
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.23
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/darts
http://www.dagstuhl.de

14:2 Interprocedural Specialization of Higher-Order Dynamic Languages Without Static Analysis

A file explorer window showing the content of the artifact folder
A terminal window opened in the artifact folder

The artifact folder contains:

The artifact documentation

The paper

The sources of the compiler

The benchmarks used for the experiments

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). The latest version of the compiler is
available on Github: https://github.com/bsaleil/lc

4 Tested platforms

Because the compiler targets x86-64 assembly, the artifact must be executed on a platform using
a x86-64 CPU supporting SSE extensions. The artifact is known to work on any operating system
satisfying this condition and running Oracle VirtualBox version 5 (https://www.virtualbox.
org/) with at least 8 GB of free space on disk and at least 3 GB of free space in RAM.

5 License

BSD-3-Clause (https://opensource.org/licenses/BSD-3-Clause)

6 MD5 sum of the artifact

7a431b74c95241dc09445eeed4790cal

7 Size of the artifact

2.8 GB


 https://github.com/bsaleil/lc
 https://www.virtualbox.org/
 https://www.virtualbox.org/
 https://opensource.org/licenses/BSD-3-Clause

	Scope
	Content
	Getting the artifact
	Tested platforms
	License
	MD5 sum of the artifact
	Size of the artifact

