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Preface

It is my pleasure to welcome you to the proceedings of the 17th International Workshop on
Worst-Case Execution Time Analysis (WCET 2017). This year the proceedings are published
prior to the workshop in order to further stimulate interaction among participants at the
event. WCET 2017 is going to take place in Dubrovnik, Croatia as a satellite event of the
29th Euromicro Conference on Real-Time Systems (ECRTS 2017), the premier European
venue for research in the broad area of real-time and embedded systems.

The goal of the workshop is to bring together people from academia, tool vendors and
users in industry who are interested in all aspects of timing predictability of real-time
systems. This is reflected by the makeup of the program committee, as well as the authors
of the papers in the proceedings, which consists of academic researchers, tool vendors, and
colleagues from industry. This year we received 14 high-quality submissions, out of which
the program committee selected 10 for presentation at the workshop and for publication in
the proceedings. These papers cover a broad range of timely topics, including, among others,
parallel real-time benchmarks, early-stage WCET prediction using machine learning, and
approaches to multi-core WCET analysis. I hope that you will find the program interesting
and inspiring for your future work!

Putting together this year’s workshop program was a team effort. First of all, I would
like to thank the authors for their submissions. The program committee and the external
reviewers did a great job in evaluating the submissions and in providing constructive feedback
to the authors. Thank you for that! I am also grateful to the ECRTS 2017 general chair,
Martina Maggio and her team, and the Real-Time Technical Committee Chair of Euromicro,
Gerhard Fohler, for their support in organizing the workshop. Thank you also to the team at
Schloss Dagstuhl, in particular Marc Herbstritt, for their help in preparing these proceedings.

I am looking forward to welcoming you to WCET 2017 in Dubrovnik! I encourage all
participants to embrace the opportunity for discussion and interaction with the authors and
other workshop attendees.

Saarbrücken, May 26, 2017
Jan Reineke
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STR2RTS: Refactored StreamIT Benchmarks into
Statically Analyzable Parallel Benchmarks for
WCET Estimation & Real-Time Scheduling
Benjamin Rouxel1 and Isabelle Puaut2

1 University of Rennes 1, Rennes, France
benjamin.rouxel@irisa.fr

2 University of Rennes 1, Rennes, France
isabelle.puaut@irisa.fr

Abstract
We all had quite a time to find non-proprietary architecture-independent exploitable parallel
benchmarks for Worst-Case Execution Time (WCET) estimation and real-time scheduling. How-
ever, there is no consensus on a parallel benchmark suite, when compared to the single-core era
and the Mälardalen benchmark suite [11]. This document bridges part of this gap, by present-
ing a collection of benchmarks with the following good properties: (i) easily analyzable by static
WCET estimation tools (written in structured C language, in particular neither goto nor dynamic
memory allocation, containing flow information such as loop bounds); (ii) independent from any
particular run-time system (MPI, OpenMP) or real-time operating system. Each benchmark
is composed of the C source code of its tasks, and an XML description describing the struc-
ture of the application (tasks and amount of data exchanged between them when applicable).
Each benchmark can be integrated in a full end-to-end empirical method validation protocol on
multi-core architecture. This proposed collection of benchmarks is derived from the well known
StreamIT [21] benchmark suite and will be integrated in the TACleBench suite [10] in a near
future. All these benchmarks are available at https://gitlab.inria.fr/brouxel/STR2RTS.

1998 ACM Subject Classification C.3 Real-Time and Embedded Systems

Keywords and phrases Parallel benchmarks, Tasks scheduling, Worst-Case Execution Time es-
timation

Digital Object Identifier 10.4230/OASIcs.WCET.2017.1

1 Motivations

In the past, the benchmark suite provided by the Mälardalen institute [11] has been widely
accepted by the community studying the Worst-Case Execution Time (WCET) of real-
time applications on single-core architectures. While multi-cores tend to replace mono-core
architectures, no consensus emerged on a parallel benchmark suite when studying the Worst-
Case Response Time (WCRT) of a parallel application or its global WCET. The main
unsatisfied requirement of such a benchmark suite lies on the identification of parallel tasks
to benefit from the multiplicity of available cores.

Current research papers on real-time multi-core mapping and scheduling already face
this issue and already use representative application codes for validation. However, it is
a common practice to use proprietary applications from the automotive or avionic world
[1, 18], unfortunately preventing other researchers to replay tests or to compare results.

Several non proprietary parallel benchmarks already exist for the experimental validation
of real time systems. However, they have some limitations. Some consist of periodical
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1:2 STR2RTS

independent task sets [4, 6] only, with no synchronization/communication between tasks.
Some others lack information to perform WCET estimation or scheduling, e.g.: source code
[8, 9, 20], dependency representation [16, 13, 2, 19, 12], or are hardware or run-time system
dependent. Other studies prefer task set generators for validation, but cannot be used for a
full end-to-end experimental validation as they lack source code.

This document aims at providing a collection of parallel benchmarks for experimental
evaluation of real-time systems on multi-/many-core architectures. The targeted audience is
the real-time system research community at large, including researchers on WCET estimation
and real-time scheduling. This document can be of benefit to experts in multi-core scheduling
to experiment their techniques for task mapping and scheduling. It can be of benefit to
researchers on worst-case execution time estimation, both on single-core architectures, by
analyzing each task of the parallel application, and on multi-core architectures through an
analysis of the entire parallel application, including for instance analyses of contentions at
the shared resources such as bus, cache, etc.

To ease the creation of a collection of benchmarks with all the required information for
WCET estimation and scheduling, we started from the StreamIT benchmark suite [21], which
consists of a set of Digital Signal Processing (DSP) applications. Such applications consume
incoming data and produce outgoing data at a specific rate, which is representative of many
real-time applications.

The provided information for each application is an XML file and a C source file. The XML
file describes the structure of the application through a directed acyclic graph (identification
of tasks and dependencies between them, volume of data to be transmitted between tasks,
WCET of tasks on a particular architecture if the benchmark is to be used for real-time
scheduling only). The C code contains the source code of each task. The source code is
statically analyzable and self-contained, to allow static WCET estimation techniques on
any specific architecture, (but obviously other estimation techniques such as probabilistic or
measurement-based are not left aside). In particular, the C code contains pragmas expressing
loop bounds in the format used in the TACleBench benchmark suite [10]. We plan to integrate
them in the TACleBench benchmark suite as it aims to be the reference benchmark suite for
WCET estimation at code level for both single-core and multi-/many-core architecture.

The rest of this document is organized as follows. First, Section 2 compares our work with
existing benchmark suites. Section 3 presents background knowledge about the StreamIT
benchmark suite, which is used as the basis for STR2RTS. Section 4 provides an overview
of the provided material, and finally Section 5 gives some qualitative and quantitative
information on the provided benchmarks, before concluding in Section 6.

2 Related Work

The usefulness of benchmarks for the validation of systems no longer has to be demonstrated.
They have been vastly used in the past to experiment new algorithms, new software, or new
pieces of hardware. In computer science, there exists hundreds of different benchmark suites
with different purposes and different sizes: SPEC CPU 2006, PolyBench [17], ParMiBench
[12], UTDSP [13], Parsec [2], JemBench [19], ParaSuite [16], and many more. However very
few of them have been engineered for multi-core real-time systems. This kind of systems
requires more information in the benchmark suite than just the code, typical input data
and a description, which is the general provided material. Indeed, to be largely accepted
by the real-time community a benchmark suite must include a source code that is statically
analyzable, to allow experiments with both static and non-static WCET estimation methods.
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A non-exhaustive list of the requirements for benchmarks targeting real-time embedded
systems would include (i) structured self-contained source code – i.e.: no goto, no dynamic
memory allocation, no call to external libraries, (ii) statically computable loop bounds or flow
facts for loop bounds, (iii) deadlines and periods of tasks. Adding the multi-core constraints
to the system would also add new requirements to the benchmark suite, such as the amount of
data exchanged between communicating tasks, and a representation of dependencies between
tasks if applicable. The benchmark suite should also remain independent from any specific
run-time environment (i.e.: OpenMP, MPI, etc.) to be used as easily as possible.

Starting from the single-core era, the Mälardalen benchmark suite [11] has been accepted
by the WCET estimation community. It consists of small pieces of key code representing some
well-known code structures found in embedded real-time software. Although representative
of embedded software, this benchmark suite contains sequential codes only, and the large
majority of provided codes are very small.

A common practice to evaluate scheduling strategies is to use task graph generators.
They have the benefit to be architecture independent and generate a vast amount of different
topologies. Task Graph For Free (TGFF) [9], Synchronous Dataflow 3 (SDF3) [20] can
generate task graphs with dependent tasks in a deterministic way, allowing anybody to
replay an experiment as long as the configuration parameters are known. UUniFast [4] is
an algorithm generating task sets with uniform distribution in a given space. Task graph
generators are very useful when the goal is to empirically validate a method on a large variety
of task graph topologies. However we all need concrete representative applications with code
for further empirical validation which is what we aim at providing here.

Three real parallel applications targeting real-time systems are often used as benchmarks
– i.e.: Debie1 [7], Papabench [14] and Rosace [15]. All are control applications respectively
for a satellite, a drone and a plane. But three concrete applications are not enough. Our
objective with the benchmark suite we provide is to enrich the set of applications that can
be used to validate multi-core real-time systems, and enlarge the scope of applications to
include signal processing applications with dependencies between tasks.

De Bock et al. [6] proposed a benchmark generator targeting multi-core platforms. The
generator input is sequential code for each task. All tasks are independent. The benchmark
generator output is a task-set fitting some requirements. In comparison, the benchmarks we
provide include dependent tasks and a representation of these dependencies as well as the
amount of data exchanged between dependent tasks.

To the best of our knowledge the benchmark suite closest to this work is the StreamIT
benchmark suite [21] that we use as a baseline. In the original version of StreamIT, the
authors provide a representation of task’s dependencies – a task graph – with communication
(exchanged tokens) and source code. However, the provided C source code is only sequential,
and the generated code is not WCET-friendly as some benchmarks are impossible to statically
analyze, i.e. statically extracting loop bounds might not be possible with available tools.
In addition, there is nearly no cache reuse, since tasks performing the same function are
systematically duplicated in the generated code. Moreover, dynamic memory allocation is
used for allocating messages used for inter-task communication. The C version we provide
respects the task graph extracted from the original StreamIT tool, with the benefit of allowing
static analyses on each function in isolation.

Finally the new TACleBench suite [10] aims at becoming the de facto standard benchmark
suite for timing analysis. This work will be integrated in TACleBench in order to strengthen
the multi-/many-core dimension of this suite.

WCET 2017
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1 void->void pipeline FFT4 {
2 add OneSource(); add FFTKernel(2);
3 add FloatPrinter();
4 }
5 float->float pipeline FFTKernel (int N) {
6 for (int i=1; i<N; i*=2) {
7 add Butterfly(i, N);
8 }
9 }

10 float->float pipeline Butterfly (int N, int
W){

11 add splitjoin {
12 split roundrobin(N, N);
13 add Identity<float>(); add Multiply();
14 join roundrobin();
15 };
16 add splitjoin {
17 split duplicate;
18 add Add(); add Subtract();
19 join roundrobin(N, N);
20 };
21 }
22 void->float filter OneSource {...}
23 float->float filter Multiply {...}
24 float->float filter Add {
25 init {}
26 work push 1 pop 2 {
27 push(pop() + pop());
28 }
29 }
30 float->float filter Subtract {...}
31 float->void filter FloatPrinter {...}

Listing 1 FFT4 stream program’s
structure. Figure 1 FFT4 SDF graph.

3 Background on StreamIT

StreamIT [21] is a high-level language for developing streaming applications (applications
acting on flows of data) modeled as Synchronous Dataflow Graphs (SDF). The StreamIT
language has a portable run-time environment and is architecture-independent. The main
difference of StreamIT as compared with other streaming languages lies on a required well-
defined structure on the streams, that are not an arbitrary network of nodes. One of the
major properties of the StreamIT benchmarks lies on the data rate which is imposed to be
fixed, thus known at compile time.

All graphs in the StreamIT languages consist of a hierarchical composition of nodes
structured in pipeline, split-join and feedbackloop constructs. Streaming applications can
then be represented as a Cyclo Static DataFlow graph (CSDF) [3]. They are constructed
over the execution of two phases : the initialization and the steady state, where the latter is
considered indefinitely repeating, whereas the former is performed only once and aims at
registering the tasks of the steady-state in the StreamIT scheduler.

A streaming application can be seen as a flow of computational units producing and
consuming data, the data stream. The basic computational unit of StreamIT applications is
the filter. Each filter is a task that produces and consumes tokens. Communicating filters
are organized in a stream in order to create a pipeline (chain) of filters. More complex
stream structures can be realized with split-join and feedbackloop constructs. The former
splits the data stream in parallel streams before joining them again, whereas the latter
re-injects upstream data produced downstream. Conditional control-flow is not allowed at
the application level (there is no concept of conditional execution of filters). In contrast,
there may be control flow inside filter code. The data stream is propagated through the
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Figure 2 StreamIT Tool-chain.

filters in the graph at a constant rate known, at compile time. This allows to statically know
the amount of data exchanged between filters. Such data are transmitted through dataflow
channels implemented as FIFO (First In First Out) queues.

The StreamIT language is illustrated on one of the smallest application from the StreamIT
benchmark suite: the radix-2 case of a Fast Fournier Transform (FFT4.str). The application
source code in StreamIT language is presented in Listing 1. Lines 1–21 specify the structure of
the streaming applications, while lines 22–31 give the source code of the filters (for conciseness
only the StreamIT code for filter Add is given).

The first element (line 1: FFT4) is the top-level envelope (equivalent to the main function
in C code); it registers three other elements which are added to the global structure (a
pipeline, i.e. chain of elements for FFT4). Elements are added directly or recursively explored
depending of their type. For instance, OneSource, line 22 is added directly because it is a
simple filter, whereas Butterfly, line 10 is explored because it is a composition of elements
(here, a pipeline). The code of a very simple filter (Add) is given in lines 24–29. It is
decomposed into two functions : the initialization part (line 25) and the work function for
the steady-state (lines 26–28). Due to the simplistic nature of this example the initialization
part is empty, but one could easily imagine some constant initialization for the steady-state.
The work function corresponds to the C-like code that will be executed at each iteration of
the steady-state. This function calls, at line 27, two functions pop/push to respectively fetch
and store data from/to the FIFO channels connected to the previous/next dependent tasks.

The program structure extracted from the StreamIT application from Listing 1 is presented
in Figure 1 and it illustrates the steady-state of the application.

The StreamIT benchmark suite comes with an end-to-end compilation tool chain illus-
trated in Figure 2. It first parses the StreamIT language and generates a Java version of the
streaming application. This Java version is then converted to an intermediate representation
used by internal tools to analyze the application. Following is a short summary of those
tools:

Partitioning: determining the number of fissions and fusions, used to determine where to
insert/remove split-join nodes in the generated code;
Mapping: determining on which core each job implementing a filter will run;
Scheduling: determining in which order jobs will be executed;
Code generation: generating code for the targeted architecture (generally C/C++)
through the provision of several back-ends.

The last step generates a code which can be compiled in order to run the application on the
targeted architecture (RAW processor, Tilera, RStream and so on). The Java version can

WCET 2017



1:6 STR2RTS

1 <?xml version="1.0" encoding="UTF-8" ?>
2 <appl>
3 <tasks>
4 <task id="fft4_split2_duplicate" WCET="2286">
5 <prev id="fft4_join1_round_robin" data-sent="2" data-type="float" />
6 </task>
7 <task id="fft4_join2_weighted_round_robin" WCET="1380">
8 <prev id="fft4_add" data-sent="1" data-type="float" />
9 <prev id="fft4_subtract" data-sent="1" data-type="float" />

10 </task>
11 <task id="fft4_add" WCET="1600">
12 <prev id="fft4_split2_duplicate" data-sent="2" data-type="float" />
13 </task>
14 <task id="fft4_subtract" WCET="1600">
15 <prev id="fft4_split2_duplicate" data-sent="2" data-type="float" />
16 </task>
17 <task id="fft4_float_printer" WCET="1614">
18 <prev id="fft4_join2_weighted_round_robin" data-sent="2" data-type...
19 </task>
20 <task id="fft4_one_source" WCET="1198"></task>
21 <task id="fft4_split1_weighted_round_robin" WCET="1380">
22 <prev id="fft4_one_source" data-sent="2" data-type="float" />
23 </task>
24 <task id="fft4_join1_round_robin" WCET="1198">
25 <prev id="fft4_identity" data-sent="1" data-type="float" />
26 <prev id="fft4_multiply" data-sent="1" data-type="float" />
27 </task>
28 <task id="fft4_identity" WCET="1054">
29 <prev id="fft4_split1_weighted_round_robin" data-sent="1" data-type...
30 </task>
31 <task id="fft4_multiply" WCET="1070">
32 <prev id="fft4_split1_weighted_round_robin" data-sent="1" data-type...
33 </task>
34 </tasks>
35 </appl>

Listing 2 XML representation of the FFT4 application.

also be executed using a simulation library included in the StreamIT project. This simulator
runs a sequential version of the streaming application.

Despite the work done on the StreamIT toolchain, none of the provided back-ends
generate code ready to be analyzed in the context of real-time systems. The simpleC back-
end generates only one big main function containing all the code, leading to a sequential
version not suitable for multi-core analysis/execution. The newSimple back-end generates
hard to read and to analyze source code, where it is not possible anymore to identify
tasks. The cluster back-end generates code that may not be analyzable by loop bound
extractors, and includes libraries provided by StreamIT with C++ classes and dynamic
memory allocation, thus not suitable for static WCET analysis. In addition, when the same
filter is used several times, its code is duplicated, thus degrading the WCET of tasks when
considering architectures with caches.

As no back-end fulfills all the requirements implied by real-time systems and corresponding
analyses, we modified the StreamIT benchmarks code, as detailed in Section 4.2, to fit the
needs of the real-time system community. Among the tools coming with the StreamIT tool
chain, we only used the simulation library to ensure that our modifications to the StreamIT
codes are functionally equivalent to the original code.

4 Benchmarks overview

This section presents an example of the provided information: (i) an XML description, (ii) a
C source code ; and how to use it. Then, it presents how this information was extracted
from the StreamIT benchmark suite [21].
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4.1 Provided information

Each benchmark is divided in 4 files, an XML file, a DOT file, a C source file and its
corresponding header file. The DOT file is a graphical representation of the tasks and their
dependencies using the graphviz software1, and will not be presented here, as well as the
header file. Following is an example of an XML description with its corresponding C source
code.

An XML file summarizing all the provided information is presented by Listing 2 and
corresponds to our previous example from Figure 1. This file basically describes the structure
of the application as a Directed Acyclic Graph (DAG), with tasks as nodes and channels as
edges. It can be used by mapping/scheduling tools as input to experimentally evaluate new
mapping/scheduling strategies involving either a single application or multiple applications
both modeled as DAGs. Another usage, once tasks have been assigned to cores in a multi-core
platform, is to use the XML file together with the code of tasks to perform WCET estimation
on the application, in particular integrating contentions to access shared resources in the
WCET of the application. For each task, the XML file contains the set of predecessors of the
task with the amount of data received by each of them, as well as the task WCET. The XML
tag prev represents task’s dependencies as precedences, e.g. line 15 where Split2DUPLICATE
is a predecessor of Subtract. The associated attribute data-sent specifies the amount of data
needed for one execution of the task, and the attribute data-type specified the type of data
(e.g. : int, double, float, etc.).

The attribute WCET is provided as information for people aiming at performing experi-
ments on mapping/scheduling techniques and do not wishing to perform an initial WCET
analysis step. Provided WCETs were estimated by our static WCET analysis tool Heptane
[5] for a the MIPS instruction set, for an architecture without caches or pipelines (roughly
the provided WCET corresponds to the worst-case number of instructions executed by each
task).

Listing 3 introduces the structure of the provided C source code. Each task from the
aforementioned graph appears as a C function in the source file. The code of filter/task Add
is given as an example in lines 8–14. Depending on the value of GLOBAL_N (constant
evaluated by the C pre-processor), this filter reads two float items from the input channel
(pop_float), then sums them before writing the result into the output channel (push_float).
The loop is annotated with a pragma specifying the loop bound, according to the TACleBench
syntax for flow-facts annotations. The value of GLOBAL_N has an impact on the number
of added tasks (number of added Butterfly from the Listing 1). In the C source code, we
fix such parameter in the header file to have the C source code consistent with the XML
description. In this example the value of GLOBAL_N is set to 2.

Lines 22–41 point to the sequential_main function that corresponds to an execution of
all tasks on a single-core architecture. Function sequential_main first calls the initialization
function of all tasks having a non-empty initialization phase (line 23). This initialization step
sets up every C structure, buffers or pre-computed data required by filters for the steady-state
run. The sequential_main then calls each filter function in a loop of MAX_ITERATION
iterations (lines 28–39) for the steady-state execution. Functions are called in an order
that respects dependencies between tasks. This function is provided for users interested in
single-core WCET estimation. It was also used to check the correctness of code modifications
applied to the StreamIT benchmark, by comparing the results to those produced by the
StreamIT Java simulator.

1 http://www.graphviz.org/
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1 #include "FFT4.h"
2 // GLOBAL_N is defined in the header file and its value is 2
3
4 void fft4_one_source() { ... }
5 void fft4_identity() { ... }
6 void fft4_multiply() { ... }
7 void fft4_add() {
8 _Pragma("loopbound min "GLOBAL_N/2" max "GLOBAL_N/2)
9 for(int i=0 ; i < GLOBAL_N/2 ; i++) {

10 float v1 = pop_float(&AddBuf.buffer_in);
11 float v2 = pop_float(&AddBuf.buffer_in);
12 push_float(&AddBuf.buffer_out, v1+v2);
13 }
14 }
15 void fft4_subtract() { ... }
16 void fft4_float_printer() { ... }
17 void fft4_init() { ... }
18 void fft4_split1_weighted_round_robin( uint32_t nb ) { ... }
19 void fft4_join1_round_robin() { ... }
20 void fft4_split2_duplicate() { ... }
21 void fft4_join2_weighted_round_robin( uint32_t nb ) { ... }
22 int sequential_main( int argv, char **argc ) {
23 fft4_init();
24 _Pragma("loopbound min "MAX_ITERATION" max "MAX_ITERATION)
25 for( int i=0 ; i < MAX_ITERATION ; i++ ) {
26 fft4_OneSource();
27 _Pragma("loopbound min "(GLOBAL_N/2-1)" max "(GLOBAL_N/2-1))
28 for( int j = 1 ; j < GLOBAL_N ; j *= 2 ) {
29 fft4_split1_weighted_round_robinv(j);
30 fft4_identity();
31 fft4_multiply();
32 fft4_join1_round_robin();
33 fft4_split2_duplicate();
34 fft4_add();
35 fft4_subtract();
36 fft4_join2_weighted_round_robin(j);
37 }
38 fft4_float_printer();
39 }
40 return EXIT_SUCCESS;
41 }

Listing 3 C version of the FFT4 stream program.

Regarding communications between tasks, a C file implementing the push/pop commu-
nication functions has to be provided and linked with the code of each application. Since
the implementation of communications is architecture and system dependent, this file has
to be provided for every (architecture, system) pair. As a start point we provide a simple
implementation of push/pop operations that implement communications through shared
memory, using statically allocated FIFO buffers. This simple implementation can be used on
single-core architectures and multi-core architectures with shared memory.

4.2 Benchmark construction process

In order to extract the above information for each benchmark, we relied on the StreamIT
compilation tools as much as possible and we then adapted their output to fit our needs. As
presented by the dashed line in Figure 2, we modified the Java pretty-printer to generate a
preliminary C version of the streaming application that later needs to be modified manually
to match the analysis requirements. When finalizing the C source code through handmade
modifications, we stayed independent from any specific run-time library and inter-core
communication mechanism. Despite the error proneness of this method, this hand-made step
is necessary to guaranty easy read/analyze/understand code with all required annotations. To
validate the functional correctness of the final C source version, we performed non-regression
tests considering the Java simulator output as the baseline.
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Table 1 Description of provided benchmarks.

Name #tasks #split-join Description
802.11a [119;132] [17;18] 802.11a wireless LAN protocol transmitter

data rate 6/9/12/18/24/36 with different configurations
Audiobeam 20 1 Real-time beam-forming

on a microphone input array
Beamformer 56 2 Application to perform beam-forming

on a set of inputs
CFAR 4 0 Constant False Alarm Rate detection

Complex-FIR 3 0 FIR filter with complex data types
DCT2 40 2 Discrete Cosine Transforms

from Asplos’06 paper super-set
DES 423 80 DES encryption algorithm
FFT2 26 1 Fast Fourier Transform, blocked,

coarse-grained version
FFT4 42 10 Fast Fourier Transform, more fine-grained

FilterBankNew 52 1 Creates a filter bank to perform multi-rate
signal processing

FMRadio 43 7 FM radio with multi-band equalizer

To create the XML description, we needed the WCET of each task, the amount of data
exchanged between task and the topology of the application’s graph. For the first information,
we relied on our tool Heptane [5] that gives us the WCET of each task in isolation. The
amount of data exchanged and the topology of the graph are extracted manually from files
generated by the Java simulator.

5 Provided benchmarks

Table 1 summarizes the benchmarks that are ready to use at the time of writing. The first
column presents the name of the benchmark (identical to the name in the original StreamIT
benchmark suite), followed by the number of tasks, the number of split-join nodes and a quick
description (also extracted from the original StreamIT benchmark suite). For application
802.11a coming in multiple versions (to be explained later), we provide the minimum and
maximum of provided values among all versions.

Table 2 shows the complexity of each benchmark. After the name of the benchmark,
the second column shows the width of the graph (the maximum number of tasks at the
same topological rank) which gives an idea of the amount of concurrency in the application.
Following are information about task’s WCET and amount of data exchanged between tasks.
Both fields are described with an average and standard deviation.

Table 3 indicates which benchmarks need a mathematic library to compile, and use
input and/or output file. Nonetheless to ensure self-containment, we provide a dummy
implementation (empty shell) for the needed functions.

We found some benchmarks with multiple usages of the same task with different input
parameters at different points in the application. We thus generated two versions of each
benchmark: one with shared code to allow cache reuse, and another one with duplicated
code. The difference between both versions lies on the ability to exploit cache reuse or not,
and also accuracy of flow-facts annotations (which are more precise with duplicated code).

WCET 2017
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Table 2 Statistics for provided benchmarks.

Name Width WCET Data #Basic blocks #Cond. #mem.
(cycles) (tokens) (avg #instr.) br. instr.

<avg, standard deviation>
802.11a [7;18] 2.39e5, 6.35e5 596, 2238 1584 (6) 222 3519

6/9/12/18/24/36

Audiobeam 15 273, 1094 3, 5 386 (7) 72 893
Beamformer 12 1.25e4, 9.65e4 4.6, 10 459 (10) 87 1188

CFAR 1 1.58e4, 1.55e4 288, 425 375 (6) 70 821
Complex-FIR 1 501, 655 1.3, 0 336 (6) 60 804

DCT2 16 1.69e4, 3958 57.6, 91 437 (6) 86 894
DES 8 2045, 1417 35.7, 29 621 (6) 111 1079
FFT2 2 2.94e5, 3.03e5 137.8, 49 477 (6) 81 1003
FFT4 2 1337, 450 23.6, 8 566 (5) 85 860

FilterBankNew 6 6315, 8306 8.9, 11 446 (6) 84 913
FMRadio 12 1632, 2234 1.6, 1 486 (6) 91 1037

Table 3 Properties of provided benchmarks.

Name Use math library Use I/O file Two versions / code reuse
802.11a yes no yes

Audiobeam yes yes no
Beamformer yes no no

CFAR yes no no
Complex-FIR no yes no

DCT2 yes yes no
DES no no yes
FFT2 yes no no
FFT4 no no no

FilterBankNew no no no
FMRadio yes no no

The last column of Table 3 indicates whether we created multiple versions of the benchmark
with code reuse or not.

Finally, some benchmarks are customizable by modifying the value of some parameters
inside the StreamIT source code, e.g. the data rate of the 802.11a application. As modifying
such values has an impact on the application’s structure, we generated multiple versions of
the same benchmark for the different configurations.

We successfully compiled the list of benchmarks presented in Table 1 for x86_64 archi-
tecture and validated their behavior by comparing their results with the one from the Java
simulator provided by StreamIT. All these benchmarks are available at

https://gitlab.inria.fr/brouxel/STR2RTS.

6 Conclusion

This document has presented a collection of benchmarks written in analyzable C language and
based on the StreamIT benchmarks suite [21]. The purpose of the refactoring of StreamIT

https://gitlab.inria.fr/brouxel/STR2RTS
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applications we have performed is to create self-contained analyzable architecture-independent
parallel C applications to allow any kind of experiments on WCET analysis and real-time
scheduling on multi-core architectures. To largely spread our work, we will integrate this
collection of benchmarks into the TACLeBench project.

Due to the required handmade refactoring, we will be continuously adding new test cases
over time while there are still some StreamIT applications to refactor. We foresee the end of
refactoring in a couple of year for the 60% remaining benchmarks.
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Abstract
Single-path code has some unique properties that make it interesting to explore different caching
and prefetching alternatives for the stream of instructions. In this paper, we explore different
cache organizations and how they perform with single-path code.
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1 Introduction

Worst-case execution time (WCET) analysis is a non-trivial analysis problem. It becomes
especially difficult with more complex processor architectures. A strategy to simplify WCET
analysis is to write programs that have a constant execution time, i.e., the best-case and
worst-case execution time are equal. In that case, we do not need to analyze the program, but
can simply measure the execution time. Single-path code gives constant execution time [15].

Single-path code is code that is structured so that there are no data dependent control
flows. On an if/else condition both conditions are executed. However, to retain the
program’s semantics and data flow, all instructions are executed with a predicate. The
compiler sets these predicates according to the original conditions of the branching code.
When executing single-path code, instructions whose predicate evaluates to false do not
update the processor state, i.e., they act as nop instructions. Loops always execute the
maximum number of iterations (the so-called loop bound), which is a known number in a
real-time context. Like the if/else case, the original loop condition is used to evaluate to a
predicate and all instructions within loops are predicated.
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Single-path code can be manually coded or a compiler can translate normal code to
single-path code. The translation of an if/else condition is also a common technique in
compilers applied on small code fragments to avoid expensive branches. This is called if
conversion [1].

The time-predictable execution of single-path code demands two features from a processor:
(1) the processor needs to support predicates or a conditional move and (2) a predicated
instruction shall have the same execution time irrespective of whether the predicate evaluates
to true or false. Therefore, we explore single-path code on a processor that fulfills both
conditions. Patmos is a processor that is designed especially for real-time systems [21]. Patmos
contains features that shall make WCET analysis simpler, but also supports execution of
single-path code with a predicated instruction set and constant execution time of instructions.

Patmos contains also a special instruction cache that caches full functions [4]. For historical
reasons this cache is named method cache (it appeared first in a Java processor [18]). Cache
misses can only occur at function calls or returns. Caching full functions has one drawback:
code that is not executed is still loaded into the cache. However, as programs organized as
single-path code execute all their instructions, this main drawback disappears. Therefore,
our hypothesis is that the method cache is a good cache organization for single-path code.

This paper explores the method cache in the context of single-path code. We compare
and evaluate the method cache against a standard instruction cache using the TACLeBench
benchmarks [6]. Furthermore, we explore performance benefits of an extension of a standard
instruction cache with a prefetcher that has been especially designed for single-path code.

The paper is organized in 6 sections: The following section presents related work. Sec-
tion 3 provides background on single-path code generation and the time-predictable Patmos
processor. Section 4 describes different options of caching for single-path code. Section 5
evaluates the different caching options on the Patmos processor and compares them. Section 6
concludes the paper.

2 Related Work

For real-time systems, caches are one of the main sources of temporal uncertainty. State-of-
the-art cache analysis tools are using abstract interpretation for classifying cache accesses [12].
However, even if these approaches derive safe bounds, the precision of the results derived
from the abstract models strongly vary depending on the cache architecture and replacement
policy [9]. For example, an abstract model for the LRU replacement policy achieves better
predictability than a model for FIFO or PLRU [17].

Another mechanism that aims at making caches more predictable is cache locking [14].
This technique loads memory contents into the cache and locks it to ensure that it will
remain unchanged afterwards. The benefit of cache locking is that all accesses to the locked
cache lines will always result into cache hits. The cache content can be locked entirely [7] or
partially, it can be locked for the whole system lifetime (static locking) or it can be changed
at runtime (dynamic locking) [5]. Although cache locking increases predictability, it reduces
performance by restricting the temporal locality of the cache to a set of locked cache lines.

In contrast to conventional code, single-path conversion overcomes predictability issues
by generating code that has only a single trace of execution. Thus, keeping traces of possible
cache states is no more needed. Furthermore, the use of single-path code eliminates the
necessity for cache locking.
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3 Background

This paper builds on prior research work on single-path code and research on the time-
predictable computer architecture developed for the T-CREST platform [19].

3.1 Single-path Code Generation
Puschner and Burns propose single-path code to simplify WCET analysis by avoiding data-
dependent control flow decisions [15]. The defining property of single-path code is that any
execution follows a single instruction trace, independent from input data. This is achieved by
conversion of control dependence to data dependence, with the use of predicated instructions.
In code that is WCET analyzable, loops must be bounded. The compiler transforms input-
data dependent loops such that they iterate for a fixed number of times, which is the local
loop bound [13].

The resulting single-path code may have a longer execution path, due to the serialization
of otherwise alternative paths in the original program. Also, in some scenarios it is undesirable
to always consume the computational resources required for the worst-case, e.g., in mixed-
critical systems where slack time is used for non-critical tasks. Nonetheless, single-path
code generation provides a constructive approach to time-predictable real-time code. On a
“well-behaved” hardware platform, the execution time for single-path tasks is constant. In
this ideal case, WCET analysis simplifies to measurement.

One requirement is that the instruction timing is independent of the instruction operands.
Memory accesses introduce another source of variability in execution time. Though, the single-
path property makes the code easier to analyze with regards to instruction memory. Abstract
interpretation based analysis becomes superfluous, there is no need for approximation. The
known singleton instruction stream can be directly applied to a hardware model of the
instruction cache (as in simulation). This knowledge is exploited to implement perfectly
accurate prefetching schemes for instructions [2].

Data accesses are also subject to execution-time variability. Enforcing local availability
of the required data during the task execution may alleviate the problem, e.g., by data cache
locking or usage of a scratchpad memory. However, we restrict ourselves to the instruction
cache in this paper.

3.2 Patmos and the T-CREST Platform
We explore instruction caching options on the Patmos processor [21], which itself is part of
the T-CREST multicore platform [19]. The T-CREST platform aims to build a processor,
network-on-chip, and compiler toolchain [16] to simplify WCET analysis. We optimized all
components to be time-predictable, even when average-case performance is reduced. AbsInt
aiT [8] static WCET analyzer supports the Patmos processor. T-CREST also includes the
research WCET analyzer platin [11].

Patmos is a RISC architecture supporting dual-issue instructions. To the best of our
knowledge, Patmos is timing anomaly free. There is no timing dependency between any
two instructions. Even all cache misses (instruction or data) happen in the same pipeline
stage (the memory stage). Therefore, only a single cache miss can happen any clock cycle.
Patmos uses special forms of instruction and data cache that shall simplify cache analysis.
For instructions, Patmos has a method cache [4], which caches whole functions. Besides
these special caches Patmos also supports a standard instruction cache, a standard data
cache, and instruction and data scratchpad memories.

WCET 2017
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One issue with a method cache is that complete functions are loaded into the method
cache, even when only part of it is executed. We attack this issue by splitting larger functions
into smaller subfunctions [10]. However, with single-path code there is no code that is not
executed. The processor executes all instructions of a called function. Therefore, a method
cache may well fit for caching single-path code, especially when callee functions are not
evicted by called functions.

We extended a standard instruction cache by a prefetching unit [3] to improve single-path
execution time. The prefetcher uses the static “knowledge” of single-path code to anticipate
the upcoming instructions and bring them into the cache before they are needed. Such a
property allows the prefetcher to perform in time-predictable fashion without polluting the
cache with unused instructions.

4 Caching of Single-Path Code

Single-path code is instruction-cache friendly as all instructions that are loaded into the
cache are executed, except at the end of a function.

4.1 Standard Instruction Cache
A standard instruction cache is organized in cache blocks and can be configured as direct
mapped cache or set associative cache. Some single-path code can benefit from a direct
mapped instruction cache, especially when the cache is small [3]. We will evaluate direct
mapped and set-associative instruction caches for single-path code.

4.2 Method Cache
The method cache is an instruction cache designed to simplify WCET analysis. The method
cache caches full functions/methods. Therefore, a cache miss can only happen on a call or
a return. All other instructions are guaranteed hits and cache analysis can ignore those.
Method cache analysis only needs to consider functions and not individual instructions.

One disadvantage of the method cache is that instructions in a function that are not
executed are still loaded on a cache miss. However, with single-path code all instructions
of a function are always executed. Therefore, the method cache should perform well with
single-path code.

4.3 Time-predictable Prefetcher with a Standard Cache
Prefetching hides large memory access latencies by loading instructions into the cache before
they are needed. However, to take advantage of this improvement, the prefetcher needs to
guess the right prefetch target and issue the request at the right time. Any wrong speculation
on these two parameters can degrade the system performance.

The time-predictable prefetcher exploits properties of single-path code to anticipate the
future instruction cache accesses with full accuracy and bring those instructions into the
cache at the right moment [3]. For higher efficiency, the prefetcher implements an aggressive
algorithm that prefetches every cache line of the code. Its direction is controlled through a
Reference Prediction Table (RPT), which is an optimized projection of single-path code that
captures the control-flow behavior of the code.

The entries of the RPT control the behavior of the prefetcher. They contain addresses
at which the prefetcher should switch between sequential and non-sequential prefetching.
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Figure 1 Generation of the Reference Prediction Table (RPT).

Figure 1 shows the generation of the RPT. It begins with obtaining the execution trace of
the single-path code. We use the Patmos simulator to export the program counter values
during a program run. We extract the start addresses of the functions from the symbol table
of the executable. The trace analyzer uses the trace and the start addresses to produce a
dynamic control-flow graph of the single-path function, where nodes are addresses of single
instructions. The trace analyzer identifies call sites, loops, loop nests, and loop iteration
counts. The RPT creator then creates entries containing an address that shall trigger a
change in the behavior of the prefetcher, a destination where to continue prefetching, and
additional information depending on the entry type.

Generation of the RPT is based on a form of dynamic program analysis, without instru-
mentation of the original program. However, the extracted instruction trace is invariable
regardless of the program inputs because of the single-path code. Also, in contrast to
trace-based and profile-guided optimization, the analysis results are not directed back to the
compiler. Instead, the execution is optimized by means of hardware in form of the specialized
prefetcher.

5 Evaluation

We evaluate the program performance of single-path code with different caching methods.
For the comparison, we use the Patmos processor. We configure Patmos for the Altera
DE2-115 FPGA board, which means that the main memory is a 16-bit SRAM. This memory
results in 21 clock cycles for a burst of 4 32-bit words to fill or spill a 16-byte cache line. All
standard caches have the line size of the burst length, 16 bytes. We configure the instruction
or method cache to be 8 KB large and the method cache to cache up to 16 functions. The
data cache is 4 KB and the stack cache 2 KB. We use hardware simulation to get cycle
accurate measurements.

For the evaluation, we use the TACLeBench benchmark collection [6] in version 1.9. We
have added an attribute to the benchmarks’ main function to avoid that it is inlined by the
compiler. Otherwise we did not touch the source of TACLeBench. This main function is also
the root function for the single-path code generation. We measure the execution time of the
whole program, including initialization and result comparison code, in clock cycles.

We used a subset of the benchmarks. The variation of the execution time of the benchmarks
is high, i.e., between hundreds and a billion clock cycles. For practical reasons, we did not
use the long running benchmarks, as cycle accurate hardware simulation is time consuming.1

1 The simulation of the remaining benchmarks, just for a single cache size configuration, still takes 6–8
hours on a contemporary notebook.
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Figure 2 Relative average-case performance comparing the method cache with a standard cache
on normal programs.

However, a large execution time does not necessarily mean that those benchmarks would
have a larger memory foot print. Furthermore, we dropped benchmarks where we cannot
generate single-path code, e.g., recursive benchmarks. Also, we removed two outliers (ludcmp
and minver) as their results showed improvements of factors 3 to 4 for the method cache
compared to a standard instruction cache.

All the following figures show measured performance improvements, where a bigger
number means a better result. The figures show relative performance as one execution time
scaled by the other execution time. That means a number larger than 1 is an improvement,
and a number less than 1 is a regression. E.g., when comparing the method cache with
the standard cache, the figure shows how much better (or worse) the configuration of the
method cache is compared with the standard cache. For this example, the relation is the
execution time of the benchmark with the standard cache divided by the execution time of
the benchmark with the method cache (as a shorter execution time is better).

5.1 Baseline
As a baseline, we show the performance difference between using a method cache and a
direct mapped instruction cache on normal compiled code. Figure 2 shows the execution
time relation between those two configurations (normalized to the execution time with the
standard cache). The geometric mean of the comparison is 0.88, which means that on
average the configuration with the direct mapped instruction cache performs better. Those
measurements are average case measurements and cannot be an indication of WCET analysis
bounds. In these average case measurements, we see that some benchmarks perform equally
for the two cache configurations. We assume those cases are when the benchmark fits entirely
into the cache. Several benchmarks perform better with a normal instruction cache than
with the method cache. However, this is an average case measurement and the method cache
was designed to simplify WCET analysis.

5.2 Single-Path Comparison and Prefetching
Figure 3 shows the performance comparison between a method cache and a standard cache
with single-path generated code. The figure is now more diverse than the average-case figure.



M. Schoeberl, B. Cilku, D. Prokesch, and P. Puschner 2:7

ad
pc

m
de

c

ad
pc

m
en

c

bi
na

ry
se

ar
ch

bs
or

t

cj
pe

g
w
rb

m
p

co
m

pl
ex

up
da

te
s

co
un

tn
eg

at
iv

e
co

ve
r

du
ff

fa
c

g7
23

en
c

gs
m

de
c

h2
64

de
c

hu
ff

de
c iir

in
se

rt
so

rt
jfd

ct
in

t
lif

t
lm

s
m

at
ri
x1

m
d5

nd
es

pe
tr

in
et

po
w
er

w
in

do
w

pr
im

e
sh

a st

st
at

em
at

e

0

0.5

1

R
el
a
ti
ve

p
er
fo
rm

a
n
ce

Figure 3 Relative single-path performance comparing the method cache with a standard cache.
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Figure 4 Relative single-path performance comparing the method cache with a prefetching cache.

Some benchmarks gain and some lose when using a method cache. There is no clear winner.
The geometric mean of the comparison is 0.96, which means that on average the standard
cache configuration performs slightly better.

Figure 4 show the performance comparison between a method cache and an instruction
cache that includes the prefetching unit. The results are similar to the results in Figure 3.
Some benchmarks gain a little bit with the prefetching unit. The geometric mean of the
comparison is 0.94. We assume that most benchmarks are almost fitting into the cache and
leaving not enough room for improvement by prefetching. It has been shown that smaller
caches benefit most from the prefetcher [3].

5.3 Associativity
Figure 5 shows the comparison of a 2-way cache with LRU replacement with a direct mapped
instruction cache. Originally we assumed that a direct mapped cache is a better fit for
single-path code as is avoids cache thrashing on loops that are larger than the cache. However,
we see in the figure that some benchmarks benefit from a higher associativity. Only statemate
performs better with a direct mapped cache. Therefore, we deduct that the 4 KB of one way
is large enough for the larger loops in the benchmarks. The geometric mean of the comparison
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Figure 5 Relative single-path performance comparing a 2-way cache with a direct mapped cache.
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Figure 6 Benchmark dynamic sizes (instruction memory footprint).

is 1.014, which means that on average the configuration with the 2-way instruction cache
performs slightly better than the configuration with the direct mapped cache.

5.4 Benchmark Sizes

To better understand the benchmark results, we measure the instruction memory footprint
of the benchmarks. We collect actual runtime data of which code is executed. We trace
the execution of a benchmark with the Patmos simulator and collect which functions are
executed. We extract the function sizes from the executable. As single-path code executes the
whole function, we simply add all sizes of the executed functions to retrieve the instruction
memory footprint. We exclude startup and exit code.

Figure 6 shows the memory footprint of the benchmarks. We can see three typical sizes
of benchmarks: (1) very small benchmarks, such as binarysearch or duff where the memory
footprint is less than 1 KB, (2) medium sized benchmarks with a memory footprint of 4–5 KB,
and (3) larger benchmarks with a memory footprint of around 10 KB. The largest benchmark
is lms with 14.7 KB. These numbers do not include any startup or exit code executed, which
by itself is 7048 bytes. That means for the small benchmarks the startup and exit code
dominates the memory footprint.
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Figure 7 Relative single-path performance comparing the method cache with a standard cache
(2 KB size).

With our standard configuration of 8 KB instruction cache, 23 out of the 30 benchmarks
will fit into the cache (excluding startup and exit code). This means that many of the
TACLeBench benchmarks are too small for the evaluation of different instruction caches.
Therefore, we explore artificial small caches in the following subsection.

5.5 Small Caches
For further experiments we reduce the size of the instruction and method cache to just 2 KB,
a very small size for current embedded processors. Figure 7 compares the method cache with
the direct mapped instruction cache. For this evaluation we leave the compiler parameter
preferred subfunction size at the default value of 256. The geometric mean of the comparison
is 0.92, which means that on average a direct mapped instruction cache is a slightly better
solution for small caches.

Figure 8 compares a 2-way cache with LRU replacement with a direct mapped instruction
cache. Compared to Figure 5 we see different benchmarks benefitting from associativity.
Furthermore, with the larger cache only a single benchmark (statemate) performed worse with
the 2-way cache. For the small configuration, several benchmarks perform worse with a 2-way
set associative cache. Therefore, for small caches there is no clear winner when comparing a
direct mapped and a 2-way set associative instruction cache. The geometric mean of the
comparison is 1.05, which means that on average a 2-way set associative instruction cache is
a slightly better solution than a direct mapped instruction cache for small cache sizes.

5.6 Discussion
Single-path code has different characteristics than normal code. We see some of the different
characteristics when comparing different caching methods. The method cache, which works
not so well in the average-case, is a better fit when using single-path code. Prefetching with
a standard cache provides some benefit.

As we see in the results, there is no clear winner for all benchmarks. Therefore, if we use
an FPGA as execution platform, we can select an application specific caching method. This
is like an application specific instruction set in a processor.

It might also be interesting to compare the different caching methods for single-path code
with either cache locking or allocation in a scratchpad memory (SPM). In earlier work, we
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Figure 8 Relative single-path performance comparing a 2-way cache with a direct mapped cache
(2 KB size).

compared two alternatives to a standard instruction cache: an SPM and a method cache [22].
The comparison considers the true WCET and the estimated WCET bound. We found that
a method cache is preferable to an SPM for the true WCET. However, if WCET bounds
are derived by analysis, the WCET bounds for an instruction SPM are often lower than the
bounds for a method cache. As there is no WCET overestimation in single-path code, it
would be interesting to repeat this comparison with single-path code.

5.7 Reproducing the Results

We think reproducibility is of primary importance in science. As we are working in the
context of an open-source project, it is relative easy to provide pointers and a description
how to reproduce the presented results.

The T-CREST project is open-source and the README2 of the Patmos repository
provides a brief introduction how to setup an Ubuntu installation for T-CREST and how to
build T-CREST from the source. More detailed installation instructions, including setup
on Mac OS X, are available in the Patmos handbook [20]. To simplify the evaluation, we
also provide a VM3 where all needed packages and tools are already preinstalled. However,
that VM is currently used in teaching and does not contain the latest version of T-CREST,
including the scripts for the experiments. Therefore, you need to reinstall and build T-CREST
as described in the README.

We have scripted all experiments and host those scripts in the misc repository of T-
CREST. Details to rerun the experiments are described in a README.4 The Makefile is
setup to run the base experiments and for producing the figures as PDFs. Variations can be
obtained by changing the respective variables.

2 https://github.com/t-crest/patmos
3 http://patmos.compute.dtu.dk/
4 https://github.com/t-crest/patmos-misc/tree/master/experiments/cache_prefetch_lock/
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6 Conclusion

In this paper, we compared different caching methods for single-path code. We found that
the method cache, which performs not so well in the average case, shows an improvement
on some benchmarks when compared to a standard instruction cache. With small cache
configurations the best solution is in most cases a set associative instruction cache. When we
use an FPGA as execution platform we have the freedom to choose the best caching solution
for each individual application.
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Abstract
The Measurement-Based Probabilistic Timing Analysis (MBPTA) infers probabilistic Worst-Case
Execution Time (pWCET) estimates from measurements of tasks execution times; the Extreme
Value Theory (EVT) is the statistical tool that MBPTA applies for inferring worst-cases from ob-
servations/measurements of the actual task behavior. MBPTA and EVT capability of estimating
safe/pessimistic pWCET rely on the quality of the measurements; in particular, execution time
measurements have to be representative of the actual system execution conditions and have to
cover multiple possible execution conditions. In this work, we investigate statistical dependences
between execution time measurements and tasks with multiple runtime operational modes. In
the first case, we outline the effects of dependences on the EVT applicability as well as on the
quality of the pWCET estimates. In the second case, we propose the best approaches to account
for the different task execution modes and guaranteeing safe pWCET estimates that cover them
all. The solutions proposed are validated with test cases.
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1 Introduction

Multi-core and many-core processors are becoming common implementations for real-time
systems. The large amount of available resources allows increasing performance and em-
bedding multiple functionalities within systems. However, real-time modeling and analysis
become more complex due to the increased source of unpredictabilities, [11, 22]; for instance,
tasks execution time exhibits variabilities from the runtime dependence/interference between
system elements which are difficult to model accurately e.g., access to shared mameory, [21].

Probabilistic timing analysis approaches are being proposed to cope with real-time system
unpredictabilities. They consider both the task average execution behavior and the worst-
case execution behavior as random variables. In particular, the probabilistic Worst-Case
Execution Time (pWCET) extends the notion of Worst-Case Execution Time (WCET) as the
worst-case distribution that upper bounds the task execution times. pWCET models have
multiple values, each with an associated probability of being the task worst-case execution
time; very unlikely cases such as faults are included. This makes pWCET task models more
flexible and potentially less pessimistic than classical deterministic WCET (either statically
or measurement-based driven) in representing the task behavior. Figure 1 gives an example
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Figure 1 WCET and pWCET representations.

of pWCET and WCET representations to the task behavior; both upper bound the task
actual execution times which could be different execution time profiles depending on the
system execution conditions.

Measurement-Based Probabilistic Timing Analysis. The Measurement-Based Probabil-
istic Timing Analysis (MBPTA) is a probabilistic timing analysis that makes use of measure-
ments of task execution times for computing pWCET estimates. The Extreme Value Theory
(EVT) applied in the MBPTA allows for inferring the rare events (worst-case bounds) from
observations of the actual task behavior (measurements). MBPTA does not need accurate
system nor task models, instead they demand measurements of execution time representative
of all the system execution behaviors.

A first application of the EVT for the timing analysis of real-time systems considers
Gumbel distributions for the pWCET estimates, [4]. In [6, 1, 5], only artificially1 time
randomized real-time systems are analyzed with the EVT. Last developments in MBPTA
propose a generalized version of the EVT [18, 12] which can be applied to both non-time
randomized real-time systems and artificially time randomized real-time systems.

MBPTA Open Problems. Today’s MBPTA works have completely defined the EVT and its
applicability to the pWCET problem. The hypotheses for applying the EVT have been deeply
investigated, and the quality (as safety and accuracy) of the resulting pWCET estimates
has reached good levels. Actual MBPTA challenges are moving to the representativity of
the execution time measurements, since in order to let the EVT be able to estimate safe
worst-case distributions2, the measurements have to be "good representation" of the system
behavior,[20]. We hereby consider a notion of measurement representativity as the capability
of capturing any event that characterizes the current system behavior. Those events would
be dependence between consecutive executions, pattern of executions e.g., cyclic execution
times or clusters, multiple execution conditions or operational modes, etc..

In [1], the system is artificially randomized in order to make the appearance of worst-case
measurements more probable. For those systems, some works have approached the problem of
measurement representativity [2, 20] where the representativity notion considered restricted

1 By artificially time randomized systems we mean systems where there have been added randomization
mechanisms such as random replacement caches or random task re-mapping in memory at each execution.

2 Safe worst-case execution time distributions (pWCETs) are distributions that upper bound any possible
task execution.
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to the capability of measurements of capturing worst-case events. instead, we hereby consider
a broader notion of representativity that includes the capability of capturing dependence or
pattern of executions.

Full coverage of tasks/system input conditions and measurements, which needs to include
pathological cases and their large execution times, have to be guaranteed to MBPTA. As
today, they remain open problems related to the representativity of the measurements of any
architecture, including artificial randomized real-time systems.

In this paper we focus on two aspects of the representativity which real-time systems face
constantly: statistical dependence between measurements and tasks with multiple operational
modes.

We intend to demonstrate that measurements which are representative of the dependent
system behavior have to be preserved and not modified whatsoever. Instead, with meas-
urements which are representative of multiple execution condition, worst-case behaviors or
modes cannot be neglected.

The statistical dependence between measurements is when from one set of measurements
it is possible to infer future measurements e.g., clusters of measurements or consecut-
ive measurements with similar values appearing periodically. With real-time systems,
examples of dependences are series of specific execution conditions e.g., bursts of inter-
ferences or cache locality, or task inputs/execution conditions that appear periodically.
Would it possible to apply the EVT in case of dependence between measurements? What
is the impact that dependences have on pWCET estimates?
Real-time tasks can be implemented with multiple operational modes e.g., taking-off,
cruising and landing modes which alternate at runtime in avionic systems. More simple
examples are multi-path tasks where, depending on the input applied a path can be
triggered with consequently different execution time. How is it possible to apply the
EVT to multi-mode execution time measurements? What is the pWCET estimate that
guarantees all the modes, a.k.a. a safe pWCET estimates?

If the system shows dependent behavior and multi-mode tasks, the measurements have to
embed such events in order to characterize the system behavior and being representative for
it. To the previous questions we provide answers with this work.

Contributions: We propose guidelines for letting EVT and MBPTA tackle with dependent
measurements of execution times and multi-mode real-time tasks. We describe what has to be
done in both cases in order to correctly apply the EVT and obtain safe and accurate pWCET
estimates. We provide also a statistical analysis to the measurements for identifying the limits
of the EVT application and the conditions for qualitatively defining the representativity of
the measurements in terms of dependence and multi-mode tasks. This would allow to extend
EVT applicability to more realistic real-time systems e.g., with statistical dependence or
multi-path tasks. Our contributions are validated with test cases from industrial applications,
multi- and many-core real-time systems and artificial traces of execution time measurements.

Organization of the paper: In Section 2 we state some background for the MBPTA, the
EVT and the probabilistic modeling of average and worst-case task execution behavior.
Section 3 details the EVT applicability in case of statistical dependent measurements and
the effects that dependence has on pWCET estimates; case studies are applied to validate
the guarantees that EVT offers to task pWCETs in case of dependence. Section 4 approaches
the challenge of EVT applicability to multi-mode tasks; solutions to guarantee pWCET

WCET 2017
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estimates with multiple execution conditions are developed and validated with case studies.
Section 5 is for conclusions and future work.

2 Background: Probabilistic Modeling and Extreme Value Theory

A trace T is a collection of execution time measurements Cj , T = {Cj | j ∈ [[1 : n]]}, n is the
size of the trace. Given T , the Execution Time Profile (ETP) C is the discrete random variable
defined on the finite support ΩC of possible execution time values C(k), ΩC = (C(k))k∈[[1:N ]]
with C(k) ∈ T ; N is the number of different value in C. The ETP is an empirical discrete
random variable3 that describes the task actual execution behavior. Representations for C are:
the discrete probability mass function or Probability Distribution Function (PDF) pdfC , such
that pdfC(C(k)) = P (C = C(k)), the empirical Cumulative Distribution Function (CDF) cdfC
as the discrete function cdfC(C) = P (C ≤ C) with cdfC(C) ∈ [0; 1] and the Complementary
Cumulative Distribution Function (CCDF) icdfC defined by the probability of exceeding the
execution time threshold C (risk probability), icdfC(C) = P (C > C) = 1 − cdfC(C) with
icdfC(C) ∈ [0; 1].

Probabilistic timing analysis approaches look for pWCET distribution estimates C that
upper bounds any possible task execution behavior. Representations for C are the PDF
pdfC(C) either continuous or discrete, the CDF cdfC(C) and the CCDF icdfC(C). C has to be
a safe/pessimistic representation of the task worst-case behavior: it has to be larger than or
equal to4 any ETP Cj the task can have, icdfC(c) ≥ icdfCj (c) for every c and every execution
condition j. C has also to be a tight upper bound to the ETPs; the tightness is for the quality
of the pWCET estimates.

2.1 The Extreme Value Theory in a Nutshell
The EVT applies with the Block Maxima (BM) paradigm or with the Peak over Threshold
(PoT) paradigm. The BM EVT models the limit law of execution time maxima of blocks of
execution time measurements; the PoT EVT models the limit law of the execution times
greater than a threshold (peaks above the threshold).

At the infinite (infinite number of block maxima or infinite number of peaks over the
threshold) the law of extreme measurements tends to a Generalized Extreme Distribution
(GED) or a Generalized Pareto Distribution (GPD) if and only if: i) the input TC is composed
of independent and identically distributed (iid) measurements and ii) the resulting distribution
C belongs to the Maximum Domain of Attraction (MDA) of the limit distribution. GED and
GPD are the limit distribution respectively for the BM and the PoT EVT.

The identical distribution hypothesis assumes that all the measurements Cj follow the
same distribution C. The independence hypothesis (statistical independence) assumes that
the individual execution time measurements C1, . . . , Cn are not correlated with each other.
The MDA hypothesis (also named matching) seeks if the limit law of the input distribution
C converges to a GEV or a GPD. The limit law from the EVT is the pWCET estimates C.

Generalized EVT. Recent works prove the EVT applicability with more relaxed hypotheses
than iid and MDA, [17, 12, 18]. They formalize the so called generalized EVT or practical EVT,

3 C is a discrete distribution since execution time Cj can only assume values multiple of the system
tick. Calligraphic letters are for both random variables, discrete or continuous, and traces, C and T .
Non-calligraphic letters are for single value variables Cj and C(k).

4 The partial ordering between distribution is defined according to [8].
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since it applies to practical cases of real-time systems e.g., not infinite measurements, system
without artificially time randomization. The generalized EVT relies on: the stationarity
hypothesis h′

1, the short range independence (negation of short range dependence) hypothesis
h′

2.1, the extremal independence (long range dependence) hypothesis h′
2.2 and the matching

hypothesis h′
3. If the EVT follows all the hypothesis, then it provides a safe estimation of

the extreme execution times of C.
The stationarity hypothesis h′

1 tests if the measurements are stationary and follow the
same distribution i.e. the identical distribution. The Kwiatowski Philips Schmidt Shin (KPSS)
test [13] checks if the trace is stationarity.

The dependence between measurements instantiates into local dependence i.e. close
dependent measurements in TC, and dependence between extreme measurements i.e. far
measurements.

The short range dependence (or local dependence) h′
2.1 focuses on the relationship between

measurements close-within-TC . Condition D in [16] formalizes the minimum degree of short
range dependence for the EVT applicability; it ensures that for distant enough dependent
measurements (short range dependence), the limit law of the peaks over a threshold is still a
GPD. A valuable test for the short range dependence h′

2.1 is the Brock Dechert Scheinkman
(BDS) test [3]. Figure 2 gives an example of local dependence between measurements of
execution times: execution times above a threshold can cluster as a result of dependence and
consecutive interferences between system elements.

The long range dependence (or extremal dependence) h′
2.2 focuses on the relationship

between far-in-time measurements. Condition D′ in [16] formalizes the minimum degree
of long range dependence for the EVT applicability. The extremal index θ, θ ∈]0; 1] [9],
indicates the degree of clustering of either the PoT or the BM. θ expresses the probability
of having distant enough measurements which are independent: the more the peaks or the
maxima are distant from each other the more the independence is, and the higher is the
probability of having independence it is. θ, with one of its estimators is applied to verify
the extremal independence h′

2.2 [12, 10]. Figure 3 gives an example of extremal dependence
between measurements of execution times; patterns that repeat are impacted one another.

The matching hypothesis h′
3 is for verifying that C belongs to the MDA of the GPD. A

good matching test is the Cramer Von Mises criterion (CVM) which measures the distance
between the empirical CDF of the extreme measurements and the C estimated. The CVM
test verifies the validity of h′

3 and it has been chosen because it performs well in the case of
extreme value distributions [14].

DIAGXTRM [12] is a MBPTA tool that implements the generalized EVT and we use
it to investigate statistical dependence and multi-mode tasks in this work. It implements
the PoT EVT version as well as the tests previously described. It also defines confidence
levels cli to verify the confidence on the EVT applicability hypotheses, thus the confidence
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on the pWCET estimates; cli defines the confidence level on h′
i ∈ H ′. cli is an integer value,

cli ∈ N , and defined in [0, 4], cli ∈ [0, 4], such that for cli = 0 there is no confidence in
accepting h′

i; for cli = 1 there is moderate confidence in accepting h′
i; for cli = 2 there is

good confidence in accepting h′
i and so until level 4 with the maximum confidence. The

cls are represented with radar plots. Hypothesis testing and other statistics are applied by
diagXtrm to evaluate execution time patterns and other characteristics that traces can
exhibit. diagXtrm is available at https://forge.onera.fr/projects/diagxtrm2.

3 EVT & Dependences

In this section we detail the effects that statistical dependence of measurements has on
pWCET estimates.

The pWCET estimate in case of extremal independence Cei is greater than or equal
to The pWCET estimate in case of independence Ci: icdfCei ≥ icdfCi , [10]. The partial
ordering between Cei and Ci is ensured if and only if both Cei and Ci follow the same average
distribution C.

The inequality states that dependence, up to a certain degree which assure EVT applic-
ability (local dependence and extreme dependence h2,1 ∧ h2,2), provides more pessimistic
pWCET estimates than the independence. In other words, clusters of execution times
within the trace (short range dependences) or patterns between far away measurements
(extremal dependences) make rare events more probable. The EVT accounts for that with
more pessimistic pWCET i.e. more conservative pWCET estimates, and the pWCET with
dependence remains a safe modeling of the task worst-case.

We remark that the former condition poses some issues to works that aim at creating
independence between measurements, [19, 10]. Techniques like re-sampling and de-clustering
that are normally applied in some domains, have to be thoroughly investigated before being
applied to the pWCET problem because they can produce optimistic pWCETs.

Trace TC cannot be changed if we aim at guaranteeing safe pWCET. The representativity
of the measurements in characterizing the actual task behavior with dependence effects cannot
be modified. Eventual changes to assure full statistical independence between measurements
and "better-to-apply-EVT" could produce optimistic pWCETs. The lost of representativity
of the measurements could end up into unsafe pWCET estimates.

Dependence Case Study. Some test cases are applied for validating the dependence impact
on pWCET estimates we propose; each test case is represented by a trace of execution time
measurements. The execution times which are measured with the tools available for the test
cases, are all in CPU cycles.

trace1 is a trace of execution time measurements from an industrial avionic safety-critical
multi-core system, [24]; the task under observation executes on one core while another
core is doing interfering I/O activities. In its original version (V1), trace1 has weak
extreme independence; from V1 we obtain a modified version of trace1, V2 by randomly
re-sampling the measurements; V2 has stronger extreme independence than V1.
trace2 is a trace of execution time from the dijkstra task of the TACLeBench5 executing
on a Kalray many-core platform, [21]. The task under observation executes on one core,
while other cores produce interference through shared memory. In its original version V1,

5 http://www.tacle.eu/index.php/activities/taclebench.

https://forge.onera.fr/projects/diagxtrm2
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trace2 has weak extreme independence. We define 4 more versions of trace2 by randomly
re-sampling the measurements; intermediate versions V2, V3 and V4 have decreasing
degree of extreme dependence (more extreme independence); V5 has full independence
between measurements.
trace3 and trace4 are artificial traces of execution time measurements extracted from
a Gaussian distribution. To trace3 there has been added local dependence between
measurements to reproduce the effect of non-time randomized system elements to the
task execution behavior e.g., locality effects from caches. To trace4 there has been added
extremal dependence between measurements to reproduce the effect of periodic inputs.
trace3 has been modified from its original version V1 with local dependence with 4 more
versions. V5 has full independence obtained by randomly re-sampling measurements in
trace3 while intermediate versions V2, V3 and V4 have decreasing degree of dependence.
trace4 has been modified from its original version V1 with extreme dependence by
randomly re-sampling the measurements; V2 is the least re-sampled version of trace4
with still strong dependence, V3 is more re-sampled than V2 and V4 is an even more
re-sampled version of trace4.

The proposed case study is a small fraction of the benchmarks investigated; it is representative
because the composing traces exhibit dependence and through which it is possible to illustrate
the effects of artificially induced independence on the safety of the pWCETs. The traces are
processed with diagXtrm for deriving safe and confident pWCETs; all of them and more,
except the industrial one, are available at https://forge.onera.fr/projects/diagxtrm2.

Dependence Results. Figure 6 details the confidence level of trace1 in its original version
V1 and for the modified version V2; cl2.2 increases from V1 to V2 as result of the artificially
induced independence on the measurements. Figure 7 illustrates the effect of extreme
independence on the pWCET estimates: by increasing the independence the pWCET estimate
decreases.

To trace1 the EVT is not applicable i.e. the matching hypothesis fails with cl3 = 0;
nonetheless, it helps us to understand the impact of extremal independence on pWCET
estimates. Artificially inducted independence, even if with small effects as for trace1, acts
reducing the pWCET estimates. If the representativity of a system with dependence is not
guaranteed in case of dependent measurements, the risk is to have unsafe pWCET estimates.

Figure 8 details the radar plot for the EVT approach applied to trace2. The confidence
levels for the 5 versions of trace2 are represented and tells that the EVT is confidently
applicable to all the versions, included those with certain degree of dependence; cl2.2 increases
from V1 to V5, meaning that the random re-sampling applied is able to break the extreme
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dependence existing within trace2 V1. For trace2, the pWCET variations due to artificial
induced independence are negligibly small with respect to the dependent case V1: there is no
impact on the pWCET of extreme dependence estimates for trace2. It is a particular case,
due to the trace small variability and the shape of the resulting pWCET.

Figure 9 illustrates a portion of the trace of measurements for trace2 V1; although no
particular input or execution condition are exercised (dijkstra task in a many-core execution
with interference generated from a concurrent task with no particular input imposed, [21]),
the behavior of the peaks over the threshold selected (horizontal line) could follow a oscillatory
periodic pattern, hence some degree of extreme dependence exists. Future work will focus on
defining possible patterns with statistics.

Figure 11 details the PoT EVT approach applied to trace3. The pWCET variations of
the version V2, V3, V4 and V5 are small with respect to the dependent case V1, but they all
act reducing the pWCET estimates. The guarantee of having safe pWCETs from artificially
independent traces reduces because the trace modifications are not conservative. Figure 10
illustrates the radar plot of the confidence levels for the 5 versions of trace3 : the EVT is
confidently applicable to all the versions, including those with certain degree of dependence.

We hereby specialize the comparison between PoT and BM, proposed first in [23], to the
statistical dependence case. The BM EVT is applicable to more dependent cases than the
PoT, since grouping consecutive measurements into blocks and selecting only the maximum
of each block would break possible local dependences and extremal dependences. We say
that the BM EVT is more robust with respect to dependence (local dependence and/or
extremal dependences) than the PoT because of the capacity of block maxima of filtering
measurements. Also, the PoT filters measurements i.e. those below the threshold, but it does
not with respect to dependences. The problem with BM is that filtering dependences with
large block sizes would reduce the impact of dependence on the rare events, thus resulting
into possibly optimistic pWCET estimates. Figure 13 details the BM EVT applied to trace4
with different block sizes. The continuous line pWCET is for block size of 10 measurements,
the dotted line for block size of 20, and so on. The more the block size increases and the
dependence between block maxima decreases, the more the pWCET estimates decreases
augmenting the risk of optimistic pWCET estimates.

Figure 12 details the PoT EVT approach applied to trace4. The pWCET variations
induced by less dependence (versions V2 to V5) are small with respect to V1, but act reducing
the pWCET estimates questioning the safety of pWCET estimates with artificial independent
traces.

By comparing BM and PoT with respect to dependence effects, we observe that the PoT is
a more robust approach than BM to independence effects (artificially created independence).
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Nonetheless, with neither of them it is possible to guarantee safe pWCET estimates if the
traces loose their representativity with artificially reduced dependence. We are currently
employing robustness as intuitive notion, future work will be devoted to formalize it for the
EVT.

Forcing independence into dependent execution time measurements makes the trace not
representative anymore of the dependent system behavior. As a result, the pWCET could
end up into a non safe anymore worst-case estimation of the task execution behavior.

4 EVT & Multi-Mode Tasks

The pWCET estimate depends on the execution conditions applied for the measurements;
the EVT is able to produce the worst-case bound for that condition only.

Measurement-based timing analysis, either probabilistic MBPTA or deterministic [15],
have to cover every possible execution condition and inputs in order to guarantee the absolute
worst-case bound estimate. Thus, the measurements have to be representative of all the
possible execution conditions the system can experience.

With J = {j} the finite set of possible measurement execution conditions for a system,
there exist two ways of integrating all the scenarios into the MBPTA:
Trace-merging consists of merging all the traces TCj ∀j ∈ J within a unique trace TC,
TC

def=
⋃

j∈J TCj ; the EVT is applied to TC for deriving C as the worst-case distribution for J .
Envelope consists of applying the EVT to each measurement condition j and get Cj for
all j ∈ J . The worst-case distribution C that upper bounds every j ∈ J is such that:
C def= maxj∈J{C

j} and icdfC(C) def= maxj∈J{icdfCj (C)}.
Measurements representativity with respect to the system behaviors needs the measure-

ments to include every possible execution behavior for the task. Instead of enumerating
all the possible execution conditions for a system, the dominance between some of them
(icdfC1 ≥ icdfC2) and the knowledge of worst conditions would keep the measurements rep-
resentative and allow for worst/safe pWCET estimates. Both trace-merging and envelope
approaches rely on knowing all the measurement conditions.

Task inputs and operational modes contribute to define the execution conditions of the
system and its tasks. Hence, the behavior of multi-mode tasks is assimilated to multiple
execution conditions; trace-merging and envelope are the approaches that can be applied to
multi-mode tasks for guaranteeing worst pWCET and measurement representativity. Figure 4
presents a trace of execution time measurements for a two-mode task, while Figure 5 presents
the three-mode task case.

Multi-Mode Case Study. Some test cases are applied for validating the multi-mode task
study we propose; each test case is represented by a trace of execution times measurements.
The traces are representative of actual execution conditions; the execution times, which are
measured using the tools available for the test cases, are all in CPU cycles.

trace5 is a trace from an industrial avionic safety-critical embedded system (different
than trace1 ) where the task is a two-mode application executing on a multi-core platform.
The task under observation executes on one core, while another core is doing interfering
I/O activities, [24];
trace6 comes from the ns Mälardalen benchmark task implementation6 executed in

6 http://www.mrtc.mdh.se/projects/wcet/benchmarks.html.
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Figure 16 CCDF represent-
ation of trace5 decomposed into
trace5_1 and trace5_2.

isolation on a multi-core real-time system, [12]. trace6 describes a four-mode task where
the 4 inputs (for 4 task paths) are randomly picked at runtime;
trace7 is a trace from a FPGA implementation of a multi-core real-time system; it is
obtained from the lms task of the Malardalen benchmark which trace has been obtained
by running the task under observation with interference from other tasks, [7]. The task
trace results into a two operational mode of execution times not controlled whatsoever
(no particular input exercised), and the measurements capture the two different modes
with their effects on the execution time.

Among the possible benchmarks investigated, we report few representative cases of multi-
mode tasks. The traces are processed with diagXtrm; all of these, except the industrial
one, are available at https://forge.onera.fr/projects/diagxtrm2.

Multi-Mode Results. Figure 14 illustrates the two-mode task represented by trace5 ; Fig-
ure 15 details the first part of the trace trace5_1, which describe task execution mode 1. In
order to apply the EVT, trace5 has to be decomposed into two traces trace5_1 and trace5_2,
respectively for the first mode and for the second mode. Only the envelope approach can
be used with trace5 and the reason is that without decomposing trace5 into two traces, h′

1
and h′

3 cannot be verified since the peaks above the threshold would belong to both modes.
Figure 16 details the pWCETs from the two parts of trace5, with trace5_2 dominating
trace5_1. For trace5 if is sufficient to have measurements representative of the worst mode
to guarantee the worst pWCET.

The two-mode trace6 is illustrated in Figure 17; it is possible to apply the EVT to trace6
with the trace-merging approach, because the peak above the threshold would belong only
to the mode with larger execution times (worst mode). With that, both h′

1 and h′
3 can be

confidently verified. The envelope and the trace-merging approaches produces same pWCETs
for ns (trace6 ) because the worst-case condition dominates all the others. Figure 18 depicts
the pWCET estimate and the perfect fit between the pWCET distribution and the measured
execution time peaks (best fitting the input measurements is a critical element for the EVT
application).

The two-mode trace7 is detailed in Figure 19. In order to apply the EVT, trace7 has
to be decomposed into trace7_1 and trace7_2, respectively for the first mode and for the
second mode. Only the envelope approach can be used with trace7 and the two separated
traces. Figure 20 details the pWCETs from the two parts of trace7. The worst pWCET is
the maximum of the two pWCET because none of the modes dominates; the knowledge of
both modes (representativity) is essential in order to conclude about the worst pWCET.

https://forge.onera.fr/projects/diagxtrm2
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As a marginal note, we observe that diagXtrm infers two different shapes for the
pWCET distributions of trace7_1 and trace7_2 ; this is because diagXtrm applies a best fit
procedure to the input measurements, and in [24] it has been demonstrated that only the best
fit guarantees safe pWCET estimates. Only the best fit allows respecting the representativity
of measurements and seeking for the best pWCET shape to cope with that.

When the EVT is not applicable to the full trace (trace-merging) i.e. trace5 and trace7,
the trace has to be decomposed into sub traces each characterizing a task mode; the
representativity has to be preserved by not neglecting any sub trace/mode. Then, the EVT
can applied to all the sub traces (envelope) and with the guarantee of having inferred the
worst pWCET estimate.

5 Conclusions

MBPTA and EVT demand for representative trace of execution time measurements in order
to provide safe and confident pWCET estimates.

In case of statistical dependence, changing execution time measurements and artificially
create independence in order to have "better EVT applications" may cause the effect of
reducing the safety of the pWCET estimates; this is not affordable with worst-case execution
time estimates. The only allowed modifications to execution time traces are the conservative
ones. Instead, with multi-mode tasks and multiple execution conditions, representative
measurements have to include all the execution conditions in order to be able to infer the
worst pWCET; execution conditions cannot be neglected, especially worst-case conditions.

Full coverage of system execution conditions and the dominance between execution
conditions will be thoughtfully investigated in future work. The representativity of the
measurements will be quantified including also the identical distribution hypothesis and other
system parameters. Statistic metrics will be developed to identify pattern and execution
behavior for real-time task. Moreover, the differences between BM EVT and PoT EVT will
continue to be investigated. Special attention will be given to measurements robustness,
measurements representativity and trace changes.
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Abstract
Limited Preemptive Fixed Preemption Point scheduling (LP-FPP) has the ability to decrease
and control the preemption-related overheads in the real-time task systems, compared to other
limited or fully preemptive scheduling approaches. However, existing methods for computing
the preemption overheads in LP-FPP systems rely on over-approximation of the evicting cache
blocks (ECB) calculations, potentially leading to pessimistic schedulability analysis.

In this paper, we propose a novel method for preemption cost calculation that exploits the
benefits of the LP-FPP task model both at the scheduling and cache analysis level. The method
identifies certain infeasible preemption combinations, based on analysis on the scheduling level,
and combines it with cache analysis information into a constraint problem from which less pess-
imistic upper bounds on cache-related preemption delays (CRPD) can be derived.

The evaluation results indicate that our proposed method has the potential to significantly
reduce the upper bound on CRPD, by up to 50% in our experiments, compared to the existing
over-approximating calculations of the eviction scenarios.
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1 Introduction

Preemption-related overheads are of significant importance in real-time scheduling, as they
may have a decisive impact on the overall system schedulability. It has been shown that, in
some cases, the cumulative preemption overhead may increase a task’s execution time up
to 33% [11].

In this context, the Limited Preemptive Scheduling (LPS) paradigm has emerged as a
valuable scheduling approach in order to reduce the overall preemption overhead of such
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systems, and, consequently, to increase their schedulability. In this paper, within LPS we
consider Fixed Preemption Points (LP-FPP) because it provides more predictability with
respect to the calculation of the preemption-related overhead, compared to Preemption
Thresholds Scheduling and Deferred Preemption Scheduling. The dominance considering
the overhead calculation predictability in LP-FPP comes from the fact that the preemption
points are selected off-line, during the design phase of the system, unlike the other two LPS
approaches where the preemption points are known only at runtime.

In order to calculate the preemption-related overhead we need to consider different types
of costs such as: scheduling cost, pipeline cost, bus-related cost, et cetera. However, the
cache-related preemption delay (CRPD) is often the largest part of the preemption-related
overhead [3], and it denotes the time that is needed for reloading the cache lines evicted by
the preempting task.

The basic CRPD calculation needs to consider the following factors: (1) The point P in
the code of the preempted task where the preemption occurs; (2) Cache blocks used until P
that may be evicted by one or more higher priority (preempting) tasks and reused afterwards
in the remaining execution of the preempted task; and finally (3) The evicting cache blocks
of the preempting tasks. Considering this knowledge, we can see that the major difference
between fully preemptive and LP-FPP scheduling comes from the fact that in LP-FPP a
preemption point selection defines the non-preemptive regions between consecutive points
and consequently affects the set of useful cache blocks for each selected preemption point.
Contrary, in a fully preemptive scheduling we cannot control the number of preemption
points and useful cache blocks per preemption point, therefore the CRPD value is defined per
task. Despite the significant research done for the CRPD computation under fully preemptive
scheduling, e.g., [1, 2, 10], relatively little work is done considering the LP-FPP approach.
This led to the bifurcation in the research between scheduling and CRPD analysis, that is
visible in the fact that a majority of the papers considering LP-FPP schedulability tests
e.g., [4, 12] assumed that the upper bound CRPD values are provided for each preemption
point. Such model for CRPDs introduces a considerable overestimation of a cumulative
CRPD value per task, especially in the sporadic task model where we need to assume that
the preempting tasks may be released at any time instant after the minimum inter-arrival
time from their previous deadline. Consequently, we need to assume that each preemption
point may experience the worst case eviction scenarios which is often not feasible for all
preemption points of a task.

Recently, Cavicchio et al. [8] proposed the CRPD computation for the LP-FPP approach
that considers the CRPD for each pair of adjacent preemption points, and it significantly
improves the CRPD estimation under LP-FPP. However, the assumption about the evicting
cache blocks from preempting tasks still remains an overestimation as it assumes that each
pair of adjacent preemption points is affected by all higher priority tasks.

In this paper, we propose the methodology for tightening the upper bounds on the CPRD
values in sporadic task sets, scheduled under the Fixed Priority LP-FPP paradigm, by using
a less pessimistic calculation of the evicting cache blocks of the preempting tasks. In our
proposed approach, we calculate a single CRPD value per preempted task by integrating the
scheduling- and cache level analysis to identify infeasible preemptions and further formulate
a constraint satisfaction models. The preliminary evaluation results indicate that our
methodology can significantly reduce the upper bound of CRPD values up to 50% compared
to the existing methods for ECB calculation.

The remainder of the paper is organised as follows: In Section 2 we introduce the system
model, terminology and notations used in the paper which describe the task and cache model.
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Figure 1 Task model with two selected preemption points (PPi,1 and PPi,2 with respective
CRPD overheads ξi,1 and ξi,2) which form three non-preemptive regions (δi,1, δi,2 and δi,3 with
respective worst case execution times qi,1, qi,2 and qi,3)

In Section 3 we describe the related work and problem formulation of the paper. In Section 4
we describe the proposed methodology for tightening the upper CRPD bound in the LP-FPP
task model. In Section 5 we discuss the preliminary evaluation of the methodology and
Section 6 concludes the paper.

2 System Model

We consider a real-time sporadic task model Γ composed of n tasks τi (1 ≤ i ≤ n) scheduled
under the Fixed Priority (FP) paradigm on a single processor. Tasks are ordered in a
decreasing priority order (and each task τi generates an infinite number of task instances τi,j).
Each task is described with a tuple {Pi, Cnp

i , Di, Ti} where Pi denotes the task’s priority,
Cnp
i denotes the non-preemptive worst case execution time of τi,j . Considering each task

instance, Di denotes a relative deadline, and the minimum inter-arrival time between two
consecutive instances of τi is denoted with Ti.

We also consider the LP-FPP approach and therefore assume the sequential task splitting
model such that each task is divided by d selected preemption points PPi,k (1 ≤ k ≤ d) with
an estimated preemption-related overhead value ξi,k. Furthermore, selection points form d+1
non-preemptive regions δi,k with worst case execution times qi,k such that

∑d+1
k=1 qi,k = Cnp

i

(see Figure 1).
We furthermore extend the system model in order to consider preemption-related overhead

calculation assuming a direct-mapped cache.
As previously mentioned, the preemption-related overhead is primarily caused by the

cache-related preemption delay (CRPD) compared to the other cost types such as scheduling
cost, pipeline cost etc., which we consider as constants that are already included in the
non-preemptive execution time Cnp

i of a task τi. We denote the upper bound on CRPD of a
task τi with γi and furthermore we denote with Cγi the worst case execution time considering
preemptions on τi such that Cγi = Cnp

i + γi.
As γi represents the time needed for reloading the cache blocks of the preempted task

τi that are evicted by the preempting tasks τh, it is bounded by the following equation
γi = g × BRT where g is the upper bound on the number of needed cache block reloads
caused by preemptions, precisely evictions of cache blocks belonging to τi, and BRT is a
cache block reload time. Furthermore, in order to calculate g we define two concepts of cache
blocks considering the preemptions:

Useful cache block (UCB) – As proposed by Lee et al. [10], UCB at preemption point
PPi,k is a memory block m of the preempted task such that: a) m may be cached at PPi,k,
and b) m may be reached from PPi,k and reused at program point P that is reachable
from PPi,k without eviction of m on this path. If the preemption occurs at PPi,k we need
to address only the memory blocks that are cached and may be reused. More formally,
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considering a non-preemptive region δi,k we define a set of useful cache blocks UCBi,k

such that m ∈ UCBi,k if and only if non-preemptive region δi,k has m as a useful cache
block at point PPi,k. Furthermore, we define the set of useful cache blocks UCBi per τi:
UCBi =

⋃
δi,k∈τi

UCBi,k (1 ≤ k ≤ d). Notice that we do not consider the useful cache blocks
of the last non-preemptive region δi,d+1 as it cannot be preempted.

Evicting cache block (ECB) – defines a memory block m of the preempting task that may
be accessed during the execution of the preempting task.

In this paper we also consider the evicting cache set ECBi of a task τi such that a memory
block m ∈ ECBi if and only if τi may evict cache block m.

Finally, in some cases we consider the upper bound on the single preemption cost ξi,k at
preemption point PPi,k which is computed considering the useful memory blocks UCBi,k

and the union of the evicting cache blocks ECBh from all possibly preempting tasks:

ξi,k =
∣∣UCBi,k ∩

( ⋃
h∈hp(i)

ECBh

)∣∣× BRT .

3 Related Work

In the seminal paper that considered preemption cost aware schedulabity tests, Busquets et
al. [6] considered an upper bound on the preemption cost of a single job of a preempting task
τh that executes during the response time of a preempted task τi, which is defined by a term
γi,h. This value is calculated for each higher priority job that may be released during the
response time. Later, Petters et al. [13] proposed the more precise analysis considering the
upper bound on the preemption cost of all jobs of τh executing during the response time of τi.
By using this approach they were able to reduce the pessimism from the previously proposed
method that considered the upper bound on preemption cost of each τh’s job separately.
Considering exact γi,h computation there are two dominant approaches: UCB-union and
ECB-union, and both of them assume that the evicting cache blocks of the preempting jobs
are given and will definitely evict intersected useful cache blocks of the preempted task.
However, those approaches do not account for the fact that the additional preemptions may
result in a smaller preemption costs than the prior accounted ones. This fact was accounted
by introducing the multiset-based computation of CRPD, proposed by Staschulat et al. [15]
with a drawback that it over-estimates the number of preemptions that have an impact on the
response time and does not account for the variability in the number of possible intermediate
preemptions. Therefore, Altmeyer et al. [1] proposed ECB/UCB-Union Multiset approaches,
which account for the precise number of possible intermediate preemptions.

Considering periodic task systems, Ramaprasad and Miller [14] analysed the feasible pree-
mptions by analysing each job of a preempted task throughout the hyper-period considering
the worst-case placement of preemptions of preempting tasks. In this paper, they considered
that not every preempting job of τh can cause a preemption on the preempted task τi.

In the LP-FPP approach, the majority of the papers defining the schedulability tests
e.g., [4, 7, 12] assume the upper bound on preemption cost values for each preemption
point. In sporadic task systems this approach can lead to a huge overestimation of the
preemption cost because the release time of the higher priority job is not definitely known,
thus we would need to assume that each point suffers from the worst case eviction scenario.
Improving the assumption of per point preemption cost, Cavicchio et al. [8] proposed the
CRPD computation for the LP-FPP approach that considers the CRPD for each pair of
adjacent preemption points which significantly improved the CRPD estimation under LP-FPP.
However, the assumption about the evicting cache blocks from preempting tasks still remains
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Data: Task set Γ
Result: Set of tightened preemption overhead values for each task from Γ

1 for i← 2 to n do
2 V ← Generate a set of variables that represent a preemption affection by τh at PPi,k of τi
3 C ← Generate a set of constraints that define infeasible preemption combinations
4 G← Generate a goal function for the given constraint problem
5 γi ← compute CRPD of τi by solving the constraint problem defined by V,C and G
6 Cγi ← Cnp

i + γi

7 end

Algorithm 1: Algorithm for tightening the upper bound of CRPD in a taskset.

an overestimation as it assumes that each pair of adjacent preemption points is affected by
all higher priority tasks.

Contrasting these methods, we propose an improved method for tightening the bounds
on the preemption cost calculations in sporadic LP-FPP task scheduling, by identifying
infeasible eviction scenarios.

4 Computing CRPD bounds

In order to reduce the CRPD overestimation we propose a method that for each preempted
task τi in a taskset first identifies infeasible preemption combinations, and then calculates
the maximum CRPD considering the remaining preemption combinations. Concretely, the
basic idea of the method is to identify cases where two instances of a higher priority task τh
cannot affect the preemption costs at two preemption points of the same τi instance.

Considering the taskset Γ, we propose an algorithm that computes a CRPD upper bound
γi for each task in a decreasing priority order (see Algorithm 1).

For each task, we first (line 2) generate a set of variables, each representing the case when
a certain higher priority task τh affects the preemption cost of a certain preemption point
PPi,k of the considered task τi. Next (line 3), we generate a set of constraints that capture
identified infeasible preemption combinations, and a goal function (line 4) representing the
preemption cost associated with the different preemption scenarios. Furthermore (line 5),
we compute the upper-bounded cache-related cost γi of the preempting task τi by solving
the constraint problem defined by V , C and G. Next, we compute the execution time of τi
considering the CRPD upper bound Cγi (line 6), to be used in the following iterations. This
is done because the preemptive execution time of the higher priority task may impact the
CRPD computation of the lower priority task and because we need to address the case of
nested preemptions.

We describe in detail each of the computations in the following subsections. To illustrate
the approach, we will use the tasks depicted in Figure 2 as a running example, focusing on the
second iteration of the algorithm, meaning that the preempted task τ3 is being considered.

In the example, we also consider the preempting tasks (τ1 and τ2). Furthermore, τ1 has
the worst case execution time C1 = 30 and the minimum inter-arrival time T1 = 100. Its
set of evicting cache blocks ECB1 consists of two cache blocks presented by integers 1 and
2. The preempted task τ3 is divided by three selected preemption points (PP3,1, PP3,2 and
PP3,2) and it consists of four non-preemptive regions with given WCET values (q3,1 = 20,
q3,2 = 10, etc.). Set of useful cache blocks, e.g., UCB3,1, is defined for each preemption point.

WCET 2017



4:6 Tightening the Bounds on CRPD in Fixed Preemption Point Scheduling
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Figure 2 Running example: Two higher priority tasks τ1 and τ2 and the preempted task τ3.

4.1 Variable declaration
Considering a preemption point PPi,k of a preempted task τi and a single preempting task
τh, we declare a boolean variable Xh,k which represents the case when τi is preempted at
PPi,k and the associated preemption cost ξi,k is affected by an instance of τh. Consequently,
for τi we generate d× (i− 1) boolean variables Xh,k where d is the number of preemption
points of τi, since (i− 1) is the number of tasks with a higher priority than τi. Formally, the
set V of generated variable declarations is defined as:

V =
{
Xh,k ∈ {0, 1}

∣∣ (1 ≤ h < i) ∧ (1 ≤ k ≤ d)
}
.

The set of variable declarations for τ3 in the running example is:

V =
{
X1,1∈{0, 1}, X1,2∈{0, 1}, X1,3∈{0, 1}, X2,1∈{0, 1}, X2,2∈{0, 1}, X2,3∈{0, 1}

}
.

4.2 Constraint formulation
Considering the constraints, we are interested in identifying infeasible preemption combin-
ations, focusing on preemption scenarios where two instances of a preempting task τh can
directly affect the cost of only one of the two preemption points PPi,k and PPi,l (k < l ≤ d)
of a preempted task τi, but not both.

To formally define the constraint generation, we first define the computation of the
maximum time interval Ik,li from the start time of δi,k until the start time of δi,l+1. Informally,
Ik,li represents the time interval during which the two instances of τh must be released in
order to affect both preemption points.

The definition of Ik,li is based on the traditional response time analysis, but considering
only a subset of the task, from δi,k to δi,l. The longest interval is found by assuming
that the higher priority tasks arrive as early and as often as possible in the considered
interval. Since there is no possibility of blocking by lower priority tasks in this case, we
only sum the execution time of the non-preemptive regions with respective upper-bounded
preemption costs (from k to l) and the interference from the higher priority tasks. Each
upper-bounded preemption cost ξi,w is added to the respective execution time qi,w of the
non-preemptive region δi,w in order to account for the impact of the CRPD on the length of
the non-preemptive region. The iterative computation of Ik,li is defined as follows:

Ik,li (0) =
l∑

w=k
(qi,w + ξi,w) +

∑
h∈hp(τi)

Cγh ,

Ik,li (z) =
l∑

w=k
(qi,w + ξi,w) +

∑
h∈hp(τi)

(⌊
Ik,li (z − 1)

Th

⌋
+ 1
)
Cγh .
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Finally, we define Ik,li to be the least fixed point of the recursion, i.e., Ik,li = Ik,li (z) where z
is the lowest value for which Ik,li (z) = Ik,li (z + 1).

Next, we show how the time interval Ik,li can be used to identify infeasible preemption
combinations.

I Lemma 1. If task τh affects the preemption cost at PPi,k, then an instance of τh was
released between the start of δi,k and the start of δi,k+1.

Proof. An instance of τh released before the start of δi,k will either not preempt τi at all, or
execute during a preemption before the start of δi,k. An instance released after the start of
δi,k+1 clearly did not affect a preemption at PPi,k. J

Note that an instance released after the end of δi,k cannot cause a preemption at PPi,k, but
it can still affect the preemption overhead if it arrives during the execution of some other
task that caused the preemption.

I Corollary 2. If task τh affects the preemptions at both preemption points PPi,k and PPi,l

(where k < l) in the same instance of τi, then two instances of τh were released between the
start of δi,k and the start of δi,l+1.

Proof. A single instance of τh cannot affect both preemptions, and the interval in which
they were released is given by Lemma 1. J

I Proposition 3. If Ik,li ≤ Th then task τh cannot affect one instance of τi at both preemption
points PPi,k and PPi,l.

Proof. Proof by contradiction: Assume that Ik,li ≤ Th and that τh affects one instance of τi
at both preemption points PPi,k and PPi,l. Then, by Corollary 2, two instances of τh were
released between the start of δi,k and the start of δi,l+1, and thus within an interval of length
Ik,li . This contradicts the minimum inter-arrival time Th. J

Finally, per τi we generate a set C of constraints stating that at most one of Xh,k and
Xh,l be true at the same time, for all cases where the inequality Ik,li ≤ Th holds:

C =
{
Xh,k +Xh,l ≤ 1

∣∣ (1 ≤ h < i) ∧ (k + 1 ≤ l ≤ d) ∧ (Ik,li ≤ Th)
}
.

Continuing the running example from Figure 2, we first compute the following Ik,li
values: I1,2

3 = 94, I2,3
3 = 83 and I1,3

3 = 167. In order to generate constraints, we check the
proposed inequality by comparing the derived values with T1 = 100 and T2 = 130 and e.g,
get that: I1,2

3 ≤ 100, therefore, we generate the constraint X1,1 +X1,2 ≤ 1 denoting that τ1
cannot directly affect the preemption cost of both preemption points: PP3,1 and PP3,2. The
complete set of constraints for τ3 of the running example is:

C =
{

X1,1 +X1,2 ≤ 1; X1,2 +X1,3 ≤ 1; X2,1 +X2,2 ≤ 1; X2,2 +X2,3 ≤ 1
}
.

↑ ↑ ↑ ↑
I1,2

3 ≤ 100 I2,3
3 ≤ 100 I1,2

3 ≤ 130 I2,3
3 ≤ 130

4.3 Goal function formulation
For the final part of the constraint problem, we define the following goal function:

G = Maximize :
∑

PPi,k∈τi

∑
m∈UCBi,k

min
(

1,
∑
{Xh,k | τh ∈ hp(τi) ∧m ∈ ECBh}

)
× BRT
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The minimum function stands for the calculation of the impact of single memory block m
that may be in the ECB set of many higher priority tasks but still only contributes at most
once to the preemption cost of one preemption. During the generation, min functions that
only contain a single Xh,k variable (or none) can be simplified.

The optimized goal function for τ3 of the running example is:

G = Maximize : BRT ×
(

X1,1 + ← k = 1
X1,2 + min(1, X1,2 +X2,2) + X2,2 + ← k = 2

X1,3 + X2,3 + X2,3
)

← k = 3

↑ ↑ ↑ ↑
m = 1 m = 2 m = 3 m = 4

The m and k values indicate the different parts of the nested sum of the goal function by
denoting the actual memory block m and the preemption point k that are considered by the
specified element of the sum. The empty positions in the array come from the definition
of the second sum over m ∈ UCBi,k. For example, since the useful cache block set of the
first preemption point of τ3 is UCB3,1 = {1}, the first row (k = 1) intersects only with the
m = 1 column. In this example, only one min function remained after the simplification,
since memory block m = 2 is the only block that is in the ECB sets of both preempting
tasks τ1 and τ2.

The final result from the solver for the running example corresponds to the preempting
scenario where PP3,2 is affected by τ1 and PP3,3 is affected by τ2. Concretely, τ1 evicts
the useful cache blocks 2 and 3 from UCB3,1, and τ2 evicts useful cache blocks 3 and 4
from UCB3,3. Since the block reload time is BRT = 1, the finally computed upper-bounded
preemption cost of the task τ3 is γ3 = 4.

5 Experimental Results

We conducted two experiments, using the open-source Java constraint programming library
Choco [9], in order to investigate the possibility of tightening the CRPD per taskset using
the proposed method. Each point in the experiment represents an average of applying the
algorithm to 2000 randomly generated tasksets.

In each experimental setup we generate tasksets consisting of the defined number of
tasks. Each taskset is generated with the utilization level of 0.8 and the tasks’ individual
utilizations are generated using the U-unifast algorithm [5]. Then, the minimum inter-arrival
time for each task is generated using a uniform distribution from the range [5ms, 5s], thus
reasonably corresponding to real systems. Next, we calculate the execution times such that
Cnp
i = Ui × Ti and assign priorities in a rate monotonic order. The number of resulting

non-preemptive regions are generated from the uniform distribution in range [1, 10].
Regarding the cache simulation we represent evicting and useful cache block sets using

the integer values from 0 to 256, corresponding to the maximum cache set size CS = 256.
Following the setup used by Altmeyer et al. [3], we use the following values:

BRT = 8µs.
ECBi for each task is generated using the U-unifast algorithm such that the total cache
utilization CU =

∑n
1 |ECBi|/CS . If the utilization of the evicting set is above 1, it means

that it uses all cache sets.
UCBi for each task is generated from the ECBi using the reload factor RF which is
uniformly generated from the range [0, 0.3], thus UCBi = RF × |ECBi| where |ECBi| is
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Figure 3 CRPD estimation per taskset for different levels of cache utilization, calculated as the
average over the 2000 generated tasksets.
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Figure 4 Left: CRPD estimation per taskset, for different taskset sizes, calculated as the average
over the 2000 generated tasksets. Right: Analysis time of the proposed method per taskset, for
different taskset sizes.

the number of cache sets in the ECBi. The reload factor is used to adapt the assumed
reuse factor, thus reflecting systems with a low reuse up to control-based applications
with heavy reuse (up to 0.3).
Each UCBi,k is generated using the uniform distribution from [0, 100× |UCBi|].

In the first experiment, we evaluated the CRPD estimation varying the total cache
utilization from 20% to 90% (see Figure 3). Taskset utilization was fixed to 0.8 and the
number of tasks was fixed to 10. We show the CRPD values computed by the proposed
method, compared to the method where the worst case eviction scenario is assumed for each
preemption point. As expected, the proposed method succeeds in tightening the CRPD value
by identifying infeasible eviction cases. The increase of cache utilization is followed by an
increase of the computed CRPD values. However, we see that the CRPD reduction ratio is
decreasing by the increase of the cache utilization (when CU = 20%, the reduction ratio is
49% and when CU = 90% it is less than 30%). This is the case because of the fact that with
high cache utilization each higher priority task evicts a significant part of the total cache.
Therefore, the benefit of identifying infeasible eviction cases is reduced since the remaining
cases still evict much of the total cache in each point.

In the second experiment, we evaluated the CRPD estimation varying the taskset size
from 3 to 12 (see Figure 4). Taskset utilization was fixed to 0.8 as well as the total cache
utilization, CU = 40%. From 3 to 9 tasks, the ratio between the CRPD estimated by the
proposed method and the over-approximating ECB computation remains roughly the same
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(48% for 3 tasks in a taskset, and 42% for 9 tasks). From this point, the over-approximated
CRPD values drop because the evicting cache blocks of the tasks are significantly reduced as
we fix the total cache utilization per taskset. Therefore, considering 12 tasks in a taskset the
CRPD reduction ratio is 35%. To investigate scalability of the approach, we also measured
the analysis time as the number of tasks increases. We can see that on average the method
needs approximately 12 seconds for tasksets consisting of 12 tasks, and only 48 ms for tasksets
consisting of 3 tasks. Note that the analysis time varies a lot for different tasksets, and in
this experiment there are some cases for which the constraint solver needs several minutes to
solve the given problem. Therefore we used a time limit of 40 seconds, and if the method
failed to provide a value within this time, it instead reported the over-approximated CRPD
value.

6 Conclusions

In this paper we proposed a novel method for computing the cache-related preemption delay
(CRPD) in sporadic task model scheduled under the Fixed Preemption Point approach. The
method identifies infeasible preemption combinations for a given preempted task based on
scheduling level analysis and then calculates the maximum CRPD value considering the
remaining preemption combinations and cache level analysis information. Furthermore, we
defined an algorithm that iteratively estimates the upper bound on CRPD values in a taskset,
using the derived upper bounds for computing the tighter CRPD estimates for lower priority
tasks. In the evaluation of the proposed method, we showed that it can significantly reduce
the CRPD of a preempted task and moreover all tasks in a taskset, up to 50% as shown in
some cases.

For future work, we envision a preemption point selection algorithm that will exploit the
proposed method for CRPD computation to achieve CRPD minimisation by the appropriate
preemption point placement, benefiting from the information of the infeasible evicting
scenarios defined in this paper. We also plan to investigate a way to manage the scalability
limitations by restricting the algorithm to consider only a selected subset of tasks. In
particular, the higher priority tasks since any tightening of their CRPD impacts the response
times of all lower priority tasks, but there might be also other indicators to be included
in the analysis. Another way to manage scalability limitations would be to combine the
multiset-based CRPD estimation approaches with the analysis of infeasible preemption
combinations in order to derive safe but to some extent pessimistic CRPD upper-bounds,
compared to those computed with the constraint solving approach.

Finally, future work will also focus on developing an analogical method for tightening
the CRPD bounds in fully preemptive systems. In this context, we envision a method that
would first virtually divide the preempted task into subsections such that it accounts for
the variability of useful cache blocks throughout the execution of the preempted task. By
analysing the infeasible preemption scenarios among those subsections we would be able to
furthermore tighten the CRPD bounds in such systems as well.
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Abstract
For delivering a precise Worst Case Execution Time (WCET), the WCET static analysers need
the executable program and the target architecture. However, a prediction – even coarse – of
the future WCET would be helpful at design stages where only the source code is available.
We investigate the possibility of creating predictors of the WCET based on the C source code
using machine-learning (work in progress). If successful, our proposal would offer to the designer
precious information on the WCET of a piece of code at the early stages of the development
process.
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1 Introduction

Context and Motivation

The Worst Case Execution Time (WCET) static analysers operate – for most of them [10, 7, 3,
12] – on the binary of the program under analysis, taking into account the target architecture.
With these elements the WCET estimate can be proven safe and might hopefully be precise.
Unfortunately these requirements make that the WCET estimate is available late in the
development process when many choices linked to the WCET have already been done.

I Situation 1. At Continental Automotive, any new SW project version is based on already
existing components on the shelf, as well as newly developed components. The existing
components usually have associated WCET (obtained by measurement) for some architectures.
For the components that have no timing attached or only timings for too distinct architectures,
a tool operating on source code and providing a prediction of the future WCET would be of
great help. In particular in multi-core context, an early estimation of the runtime would help
the integrator to choose the right core for integration.

Work In Progress

We are currently investigating the possibility of applying machine learning to obtain source-
code-based WCET predictors (specific to the compilation chain and architecture on which
they were learnt). In this article:
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Figure 1 Two ways to approach the WCET.

We introduce a framework for creating the so-called predictors (Section 2). This framework
rely on static analysis of the source code, on machine learning and on a set of programs
which final WCET estimate is known or can be computed.
We present a novel source code static analysis that counts certain events occurring in the
worst case execution (Section 3).
We discuss the application of machine learning in our setting (Section 4). In particular,
we list several questions that have not received satisfying answers yet.

2 Overview

In some industrial settings, as illustrated in Situation 1, the size of the project (e.g. 1.5 M
effective lines of code) or the complexity of the compilation chain makes it time consuming
to create the program binary and thus to obtain the WCET. In addition, the company
organisation might imply that distinct persons from distinct departments provide the source
code, integrate and build the binary. Due to the size of the projects, and the short development
times, a parallelization of the developments is mandatory, and therefore iterative integration
cycles are done. When doing an integration step, having an idea of the future WCET of a
given component (newly developed, or old but not measured nor analysed) is important since
it might influence the selection of the core, the position in the task, or in worst case, the
whole project architecture. Early availability of the information is here more important than
accuracy of the result, the effective real time behaviour being tested extensively or statically
analysed in a further phase. This need of an early WCET is also mentioned by [11, 6, 1].

Our current work pursues the idea that it might be possible to get a satisfying prediction
of the future WCET by applying a formula on some characteristics of the source code
(Figure 1). This formula has to be learnt from a set of programs which WCET estimate is
already known (Figure 2).

In Figure 1, we depict two ways of getting an idea of the WCET.
The top line is the usual WCET derivation, we call its result WCET estimate. This
estimate is by construction an over-approximation of the WCET.
The bottom line is our proposal. We call its result a WCET prediction. This prediction
cannot be safely used as WCET estimate but should give an relatively close approximation
of the top line WCET estimate if we can find a satisfying formula.

A similar pattern is followed by [6, 1] but relies on measurements (related work is detailed in
Section 5).
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Figure 2 Learning WCET source code predictors.

Discovering a formula linking precisely enough the WCET to the source code for a given
compilation chain and architecture is the main goal of our work. In order to achieve this
goal we put our faith in machine learning.

First of all, we note that machine learning cannot be applied straightforward on programs.
The best it can deliver us is to link the WCET estimate with discrete or continuous attributes
of the program source code. We identified two classes of attributes that can be fed to the
machine learning:
1. Count attributes. For example the maximal number of arithmetic operations, function

calls or global variable read accesses. These attributes give a concrete idea of the program
duration and could be assembled by the learning tool into a nice formula.

2. Style attributes. For example the number of lines of code, the maximal loop nesting,
whether the program was generated or hand-written. These attributes are by themselves
insufficient to get an idea of the program duration but they can help the learning tool to
define classes of programs.

We defined a static source code analysis that we call worst case event count analysis. It
extracts count attributes (Item 1) from the source code. This analysis provides more than
source-code-based WCET analysis [9] since it delivers counts for several categories of events
and not a single already-aggregated WCET estimate. In our process, aggregation is left to
machine learning. Details are given in Section 3.

The worst case event count analysis is performed in two situations:
Before applying the formula on a given source code (bottom line of Figure 1),
Before feeding a set of programs to the machine learning process (first step of Figure 2).

Figure 2 depicts the learning process. This process starts with a set of programs for
which the WCET estimates are known. The only assumption that we make on these WCET
estimates is that they intend to reflect the WCET of the source code compiled for a given
architecture. The worst case event counts are then extracted for these programs and paired
with the WCET estimates. The spreadsheet obtained is then fed to the machine learning tool
that will output a formula predicting the WCET estimate in function of the event counts.
Depending on the method used by the tool the formula can range from a linear combination
of the events to a neural network.

In Section 4 we discuss the problems we face in that learning process.

3 Count Attributes Extraction

In this section, we present how we extract worst case event counts from the C source code.
Our proposal is linked with source code timing scheme [9] but the data manipulated are
more complex (count by categories and sets of such metrics).
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Figure 3 Two reasons for ignoring metric X in front of metric Y .

3.1 Analysis Principles
Our analysis is an evaluation of the source code syntax, aware of the loop bounds.

Analysis Domain

We consider an if-then-else statement where the then and else branch evaluations gave
respectively the metrics T and E such that:

T = [Arith 7→ 10;Load 7→ 3], E = [Arith 7→ 2,Load 7→ 5] .

Where Arith and Load respectively stand for performing a basic arithmetic operation and read
access to a variable. What should then be the evaluations of the if-then-else statement?
An imprecise but “sound” solution would be to use the smallest metric greater than T and
E, also known as the least upper bound T t E of T and E:

T t E = [Arith 7→ max(10, 2);Load 7→ max(3, 5)]
= [Arith 7→ 10;Load 7→ 5] .

This option is appealing because it seems to mimic the over-approximation that will be
performed by the timing analysis. This is not the case. When the binary WCET analysis
has to select the then or the else branch it reasons on numbers of cycles that are totally
ordered. The solution it retains might really be the worst case. In our case, the metric T tE

is wrong: no “execution” can reach these figures. Using the average or the minimum instead
of the maximum would not deliver a more satisfying result.

The metrics are structured as a partially ordered set (poset) isomorphic to Nc where c is
the set of event categories. A precise solution is to to keep track of sets of maximal metrics.
For the if-then-else statement above the evaluation would be the set {T, E} since none of
them is greater than the other. Potentially an evaluation could contain as many elements as
the number of permutations on c ie. |c|!. In practice the size of the set does not grow that
fast and we use some architectural knowledge in order to state for example that:

[Load 7→ 5;Store 7→ 2] ≺ [Load 7→ 40;Store 7→ 1] .

The argument that sustains this ordering is the fact that one extra store cannot be more
expensive than 35 extra loads. More formally, each category receives a pessimistic and an
optimistic evaluation in terms of cycles. With these ranges we define the two functions
evalpess and evalopt that assign a numerical value to a metric. We then redefine the order on
the metrics as follows:

X ≺ Y ⇐⇒ evalopt(X − Z) < evalpess(Y − Z) with Z = X u Y .
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Table 1 Categories used by our worst case event count analysis.

Family Category Optimistic Pessimistic

Operations
Simple 0.5 1
Multiplication 1 5
Division 1 10

Control

Unconditional branch 0.5 1
Conditional branch 1 1
Computed branch 1 4
Call 0.5 10

Memory
Address setting 0.5 1
Load 2 20
Store 2 20

where the metric X u Y is the greater lower bound of X and Y (it is computed by keeping
the minimum for each category) and the metric X −Z is the difference of X and Z, category
by category. This ordering on metrics encompasses the point-wise ordering. Figure 3 can
give the visual intuition of this ordering.

Eventually, the set of maximal metrics computed for the whole program needs to be
brought back to a single metric in order to be fed to the learning process. At that stage
there is often few elements Ri in the set because when numbers of events get large, the
ordering eliminates many metrics that cannot be the worst-case path. We approximate to
R1 t . . . tRn.

Analysis Rules

The sets of maximal metrics (A, B) are combined according to these rules:

A and B are in sequence ↑ {X + Y | X ∈ A, Y ∈ B},
A and B are alternatives ↑ (A ∪ B),
A is repeated n times {n×X | X ∈ A},

where the metric X + Y is the sum of X and Y , category by category, the metric n×X is
the multiplication of each category of X by n and the set ↑ S is the set of metrics S where
non-maximal elements have been removed.

3.2 Implementation

We implemented the analysis presented in Section 3.1 on top of the oRange static analysis
tool for C [8]. Table 1 shows the considered categories and associated optimistic and
pessimistic evaluation for events of these categories (in cycles).

4 Machine Learning

In this section, we present our machine learning environment (Section 4.1), discuss the
difficulties we face setting up the framework of Figure 2 (Section 4.2) and present our plans
for the near future (Section 4.3).

WCET 2017



5:6 Early WCET Prediction Using Machine Learning

4.1 Machine Learning Methods
We will use Weka [5], a machine learning software. It is a collection of state-of-the-art
visualization tools and algorithms for data analysis and predictive modelling. Among other
techniques, it supports data preprocessing, clustering, classification and regression.

Once data has been collected on a large set of programs, the software will provide us
classifications, and ways to visualize our data. It allows the systematic comparison of the
predictive performance of Weka’s machine learning algorithms on a collection of datasets.

Weka can be set up to compute the error while learning: the data is divided in 10 packs;
in turn, 9 are used to learn and remaining one is used to compute the error.

The validity of the learnt formula depends on the quantity and the quality of the data.

4.2 Learning WCET Predictors
Program Set

In order to have a precise learning, the program set should be large and representative –
preferably thousands of elements. Finding such a set of programs is definitely an issue:

Benchmarks, like the TACLeBench [4], seldom contain more than a hundred programs.
These programs are representative but heterogeneous (size, style, purpose).
Program generators, like CSmith [13], offer as many programs as needed. These programs
might be far from representative. In addition, their lack of meaning makes that clever
compiler may optimize them in unpredictable proportions (dead code elimination, pre-
computation) thus breaking any correlation between the source and the binary.
Industrial program base, like the one mentioned in Situation 1, may contain hundred of
software components. These program are representative and homogeneous.

The set of programs used should also be correlated with the categories of event considered.
Events that are absent or simply invariant in the program set might be integrated to the
formula in an absurd way.

Choice of the Learning Method

The Weka machine learning application offers a huge number of learning methods, some
of them presenting tricky parameters. The exploration of this possibilities is a non-trivial
dimension of our problem.

Validation of the Predictor

As mentioned in Section 4.1, the machine learning algorithms already offer a notion of relative
error. When considering large programs, we would consider as successful a relative error
of ±20%.

If the chosen method delivers us a weight for each event category we can validate that:
The weights are within the optimistic/pessimistic ranges used in Section 3.
The weights are sensible values for a WCET expert.

Relevant Event Categories

The categories listed in Table 1 where chosen because they seem relevant from a WCET
point-of-view. For example, multiplication and division have been set aside from the other
operations because their compilation can range from a shift to an emulation function.
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Some of these categories can be shown to be useless by our future work while some might
need to be refined. If our proposal is successful, the final categories could be considered as
an interesting production.

Feasibility

Eventually, we need to consider this hypothesis:

I Hypothesis 2. The formula we are looking for does not exists.

For a given compilation process and micro-architecture Hypothesis 2 means that it is
impossible to correlate any source code characteristics to the WCET of the binary. This
hypothesis is not absurd since the impact of the compilation and the hardware on the WCET
can be huge and far from regular. This hypothesis cannot be proven because failing to learn
can be the consequence of either nothing to learn or bad learning method.

If Hypothesis 2 holds, then we propose two ways to fight against it:
Make a step toward the binary by performing the front-end compilation passes, then
applying the worst case event count on the intermediate representation. Hopefully these
passes will be common to most compilation chains.
Restrict our claim to a family of programs.

4.3 Roadmap
A modified version of the static analyser oRange [8] provides us the worst case event count
analysis. The WCET analysis framework Otawa [2] will be used to compute the WCETs of
the program base. The machine learning will be provided by the Weka platform.

We have proceeded to a first experiment in order to get a proof of concept. We did the
experiment on random generated programs. The learnt formulae were too complex and the
imprecisions were too wide. We believe that this failure is due to the use of programs having
WCET of different magnitudes. We tried to learn from programs being too different.

Thus, for this work, our roadmap is as follow:
Getting a random program generator in order to calibrate the programs. We want to get
a classification prior to submit to Weka: program having similar size, similar structure
(loops/no loop, conditions/no condition, nested/non nested loops, number of event...).
At first, we used CSmith [13] but we need more calibration possibilities.
For each category of programs, getting a formula
Combining the class of programs and getting a new valid formula
Classifying the programs of a benchmark (or use case) and running the formula.

5 Related Work

In [6, 1], Gustafsson et al. address the same problem with a different tool. From a set of
measurement on several programs, they infer a timing model. Once learnt, this timing
model can be applied to the measurements of a new piece of code. The technique used
to learn the model is a variation of a linear regression adapted to the fact that only some
of the measurements might reflect worst case behaviours. This technical point prevents
the exploration of the learning techniques we can afford since it would lead to learning an
average behaviour. A important distinction between this work and our proposal is that our
proposal requires no access to the effective hardware but an already set up static analysis
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tool (e.g. OTAWA and the hardware model) while their work requires no pre-existing model
but an access to the execution platform.

As already mentioned in Section 2 and in the header of Section 3 our proposal offer a
feature similar to [9] with the difference that we transfer the task of aggregating cleverly the
software events to a machine learning tool. Our proposal is thus more complex (need worst
case event count analysis) but we benefit from machine learning and we can (try to) learn
any architecture.

6 Conclusion

Early WCET evaluation is a recurrent request in the domain. Our approach face two main
issues: finding relevant attributes and applying relevant machine learning analysis.

Our expertise on classical WCET evaluation by static analysis is solid. We think we are
able to identify and compute qualitative attributes for C programs.

The second issue will obviously require machine learning expertise in addition to time
analysis expertise. Once the programs are classified, we are confident that we will be able
to obtain a calculus for early WCET. Applying this approach to general programs is more
ambitious, our study will tell the conditions of applications.

Acknowledgements. We wish to thank Mathieu Serrurier for patiently sharing with us bits
of its expertise in machine learning.
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Abstract
The time-predictable design of computer architectures for the use in (hard) real-time systems is
becoming more and more important, due to the increasing complexity of modern computer archi-
tectures. The design of predictable processor pipelines recently received considerable attention.
The goal here is to find a trade-off between predictability and computing power.

Branches and jumps are particularly problematic for high-performance processors. For one,
branches are executed late in the pipeline. This either leads to high branch penalties (flushing)
or complex software/hardware techniques (branch predictors). Another side-effect of branches is
that they make it difficult to exploit instruction-level parallelism due to control dependencies.

Predicated computer architectures allow to attach a predicate to the instructions in a program.
An instruction is then only executed when the predicate evaluates to true and otherwise behaves
like a simple nop instruction. Predicates can thus be used to convert control dependencies into
data dependencies, which helps to address both of the aforementioned problems.

A downside of predicated instructions is the precise worst-case execution time (WCET) ana-
lysis of programs making use of them. Predicated memory accesses, for instance, may or may not
have an impact on the processor’s cache and thus need to be considered by the cache analysis.
Predication potentially has an impact on all analysis phases of a WCET analysis tool. We thus
explore a preprocessing step that explicitly unfolds the control-flow graph, which allows us to
apply standard analyses that are themselves not aware of predication.

1998 ACM Subject Classification C.3 [Special-Purpose and Application-Based Systems] Real-
Time and Embedded Systems

Keywords and phrases Predication, Worst-Case Execution Time Analysis, Real-Time Systems

Digital Object Identifier 10.4230/OASIcs.WCET.2017.6

1 Introduction

Embedded real-time systems, as most computer systems, faced a steady increase in require-
ments [4] during more than three decades. An increase in requirements frequently also
translates into an increased performance need. Simple and predictable micro-controllers
cannot satisfy these needs in many cases. To address this issue new architecture designs
have recently been explored that promise a high degree of (time-)predictability while offering
an acceptable performance level [20, 16, 23, 18]. Due to its high-latency, designs focusing
on the memory hierarchy have been explored extensively [17, 13, 19, 2]. Also the design

∗ This work was supported by a grant (2014-0741D) from Digiteo France: “Profiling Metrics and Techniques
for the Optimization of Real-Time Programs” (PM-TOP).

© Florian Brandner and Amine Naji;
licensed under Creative Commons License CC-BY

17th International Workshop on Worst-Case Execution Time Analysis (WCET 2017).
Editor: Jan Reineke; Article No. 6; pp. 6:1–6:13

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WCET.2017.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de


6:2 Worst-Case Execution Time Analysis of Predicated Architectures

of processor pipelines has recently received considerable attention [3, 20, 16, 24]. The goal
behind all this work is to find a trade-off between time-predictability and computing power.

The handling of branches and jumps is particularly problematic for the design of time-
predictable high-performance processors. The new value of the program counter (PC) can
usually only be computed late in the processor pipeline.1 As the branch advances through the
pipeline the processor is unable to tell which instructions need to be fetched next. A simple
solution is to simply fetch the instructions immediately after the branch. These instructions
are typically flushed from the pipeline, i.e., discarded, once the actual value of the PC is
available. This solution induces a considerable branch penalty. Branch prediction techniques
may be used to guess the branch direction and/or address earlier. Static techniques rely
on the compiler to provide good predictions, while dynamic predictors require additional
hardware. Both approaches allow to reduce the branch penalty. However, the state of
hardware-based branch predictors needs to be taken into consideration during Worst-Case
Execution Time (WCET) analysis. Conflicts between branches of the program itself and
interference from other tasks further complicate the analysis. An alternative solution is
to let the instructions following a branch execute. The instructions in these branch delay
slots might then perform useful work – if the compiler is able to rearrange the instructions
accordingly. This approach has drawbacks, despite being predictable: (a) unused branch
delay slots have to be filled with nop instructions and thus increase code size and (b) tools,
including the compiler and WCET analyzer, have to be aware of the branch delay slots.

Branches, furthermore, introduce control dependencies, i.e., instructions after a branch
can only be executed safely when the branch direction/address has been determined. This
even applies when branch prediction is used: the processor may only execute instructions
speculatively as long as the instructions do not cause any side-effects.2 Inversely, instruc-
tions before the branch can usually not be moved to locations after the branch. Branches
consequently make it more difficult to exploit instruction-level parallelism [7].

One solution to these issues is predication, where an additional predicate is attached
to instructions. The predicate is evaluated at runtime and allows to conditionally nullify
the effect of the instruction, i.e., the instruction is discarded and behaves like a simple nop
instruction when the predicate evaluates to false. The aforementioned problems can be
addressed using predication by moving instructions past branches. The control dependence,
with regard to the original branch instruction, is then effectively transformed into a data
dependence on the predicate. This, for instance, simplifies the compiler’s task to fill branch
delay slots or to exploit instruction-level parallelism. In some cases branches can even be
eliminated completely. This is particularly advantageous for short code sequences, where
the branch penalty often outweighs the cost of executing a few predicated instructions.
Some real-time systems actually take advantage of the possibility to entirely eliminate all
conditional branches. This is known as the single-path programming paradigm [15].

Despite these advantages, predicated instructions can be problematic during WCET ana-
lysis. Side-effects of predicated instructions need to be analyzed, which depend on the
runtime value of the instruction’s predicate. This may have an impact on many analysis
steps, including value range analysis, loop bounds analysis, infeasible path analysis, but also
the cache and pipeline analyses. Predicated memory accesses, for instance, may or may not
have an impact on the processor’s cache, depending on the predicate. The simplest solution

1 After reading register values at the level where regular arithmetic operations are often handled.
2 Visible according to the processor’s programming conventions, which usually does not include hidden

states (caches, branch predictors, . . . ).
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for the analysis would be to ignore predicates and conservatively consider the effect of both
cases. This may result in very conservative results, since the implicit information available
in the program’s original control flow before the elimination of branches is entirely lost. The
analysis could also be extended to be aware of predicates. Note, however, that this may
require changes to virtually all analysis steps in a WCET analyzer and may thus require a
considerable engineering effort. We thus explore a much simpler solution that consists in
recovering the (hidden) control flow. Instructions that define (set) a predicate are handled
similar to branch instructions and lead to a control-flow split. The succeeding instructions
are then duplicated, once assuming that the predicate evaluates to true and once assuming
that the predicate value is false. Subsequent instructions that are predicated with that
predicate are now trivial to handle: an instruction either always corresponds to a nop or
always corresponds to the regular unpredicated instruction.

The remainder of this paper is structured as follows. We will first give some background
regarding the Patmos platform on which our work builds, covering the architecture design as
well as the tool suite (compiler, analyzer). Section 4 then describes a simple algorithm that
allows us to recover the hidden control flow of predicated code. We then present the results
from preliminary experiments in Section 5. Related work, concerning predication in real-time
systems and related analysis techniques, is finally discussed in Section 6 before concluding.

2 Background

Patmos Architecture

The Patmos architecture [20] is intended as a test bed to evaluate and design new time-
predictable computer architecture concepts, covering cache designs [19, 2], on-chip net-
works [12], as well as instruction set architecture design. Among many other features,
Patmos supports predicated execution. An additional predicate operand is attached to each
instruction, which allows to refer to one out of the 8 predicate registers (p0 through p7). The
predicate operand, in addition, allows to invert the predicate value (e.g., !p0). Consequently,
4 bits of the instruction encoding are reserved for the predicate operand (3 bits for the
predicate register, 1 bit for negation). The predicate registers themselves consist of a single
bit each. Predicate register p0 always evaluates to true and cannot be overwritten.

Predicate registers can be defined using dedicated comparison instructions (e.g., cmpeq),
which allow to compare 32-bit integer values from general-purpose register operands and
immediate values. These instructions allow to specify a destination predicate, which sets the
predicate register accordingly. In addition, basic logical operations can be performed on two
predicate register operands using dedicated logical-predicate instructions (e.g., por). The
result of the operation is again written into a predicate register. Note that these instructions
can be predicated themselves, which facilitates the handling of nested if statements.

Patmos is a Very Long Instruction Word (VLIW) architecture that can issue and execute
multiple instructions in parallel in a five-stage, in-order pipeline: fetch (FE), decode (DEC),
execute (EX), memory access (MEM), and register writeback (WB). Instructions are fetched
from a special instruction cache, the so-called method cache [2], which guarantees that an
instruction fetch always hits in the cache. Method cache misses may only occur in the EX stage
during the execution of dedicated branch instructions (e.g., brcf) or function calls (e.g., call,
ret). Several variations of branch and call instructions exist, having (a) no branch delay
slots (e.g., callnd, brcfnd), (b) 2 branch delay slots (e.g., br), and (c) 3 branch delay slots
(e.g., call, brcf). Similarly, misses in the data cache may only occur in the MEM stage. The
FE and DEC pipeline stages are thus free from undesirable side-effects (apart from updating
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the PC), while the EX, MEM, and WB stages may cause side-effects on the processor’s registers or
caches. Predicate registers are read and written in the execute stage (EX). The processor thus
is able to detect whether a predicated instruction needs to be nullified before any undesirable
side-effects may become visible.

Compiler

The Patmos toolchain is based on the LLVM compiler framework,3 which compiles all
source files to an internal bitcode representation. In our case, this also applies to user- and
system libraries, which are also linked together at the bitcode level. The final machine-code
generation is postponed to the very end of the compilation process when all bitcode is
available [1]. The code generator thus has a complete view of the entire program, which can
be optimized and analyzed before the final executable file is generated.

The LLVM code generator is able to produce predicated code at several stages. Firstly,
the instruction selector is able to recognize simple select statements that are directly compiled
to conditional moves. A generic if-conversion optimization is also available, which allows to
eliminate conditional branches of complex control-flow and produce predicated code. Finally,
patmos-specific code transformations are available to generate single-path programs [8].

The Application Binary Interface (ABI) defined by Patmos states that all predicate
registers are callee saved. This means that, during a function call, the called function needs
to save and restore any predicate register that it modifies. Predicate registers cannot be used
to pass arguments to other functions. Predicates are, in terms of the ABI, strictly function
local. Consequently, predicates can be freely used across function calls, while called functions
are independent from predicates computed before entering the function. It is still possible
that call instructions themselves are predicated, i.e., the function is called conditionally.

WCET Analyses

As mentioned above, all code of the final program is available within the compiler. This
enables us to immediately perform machine-code-level analyses covering the entire program
(and all system libraries) before the final code emission. Several such analyses [19] are available
in the compiler whose results can be exported to other WCET analyzers or used within
the compiler itself to perform further analyses or optimizations [10]. The internal analyses
either operate directly on the intermediate representation of the LLVM code generator or an
enriched inter-procedural representation that allows to easily attach various analysis results
to the code generator’s intermediate representation in a context-dependent manner.

3 Motivating Example

Before giving a formal description of our proposed approach, we will give a simple motivating
example. Figure 1 illustrates the implementation of a switch statement using a jump table
and predication. The original C code is shown in Subfigure 1a and the resulting Control-Flow
Graph (CFG) from LLVM in Subfigure 1b. Basic blocks C1 through C3 represent the three
case statements, while basic block DFT corresponds to the default statement. The code of
the switch statement itself can be found in the SWT block, whose machine code is shown in
Subfigure 1c.

3 http://www.llvm.org

http://www.llvm.org
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switch (x) {
case 1: ... break ;
case 2: ... break ;
case 3: ... break ;
default : ... break ;

}

(a) Initial C code

C1 C2 C3 DFT

SWT

(b) Original control-flow graph

cmplt $p1=x, 3
( $p1) shl $r1=x, 2
(! $p1) brcf DFT
( $p1) lwc $r1 =[ $r1+jt]

nop
( $p1) brcfnd $r1

(c) Code of basic block SWT C1 C2 C3

shl $r1=x, 2
nop
lwc $r1=[$r1+jt]
nop
brcfnd $r1

{p0, p1}

nop
brcf DFT
nop
nop
nop

{p0}

DFT

cmplt $p1=x, 3

{p0}

(d) Unfolded control-flow graph

Figure 1 Implementation of a simple switch statement using a jump table, the corresponding
control-flow graph, the predicated machine code of basic block SWT, and the unfolded control flow.

The machine code uses a jump table (jt) that is implemented as an array holding the
addresses of basic blocks C1 through C3. After verifying that the value of variable x is within
the array bounds (cmplt), the address of the destination block is loaded (lwc) and control
is transferred (after a 1 cycle load delay slot) via an indirect branch (brcfnd). If x’s value
exceeds the array bounds, a conditional branch (brcf) immediately transfers control to basic
block DFT. Note that this branch instruction has 3 branch delay slots and that one of these
slots even contains another branch instruction.

The predicated code may pose several challenges in a WCET analyzer. One particular
challenge is the reconstruction of the program’s CFG from the binary machine code, which
usually represents the input to most WCET analysis tools. The compiler placed a branch
instruction in one of the branch delay slots of another branch. In this example it is trivial
to detect that the predicates of the respective branches are disjoint. However, different
predicates might be used, which makes it difficult to reconstruct the actual control flow from
such code. In our case this is not necessary, since the analysis is part of the compiler and
thus has direct access to its intermediate representation.4

Another challenge, as noted before, are potential side-effects on caches or registers caused
by predicated instructions. This issue is resolved by unfolding the hidden control flow from
the predicated code – as depicted by Subfigure 1d. Each time when a predicate register is
defined (cmplt) a control-flow split is performed at the level of the control-flow graph. The
instruction defining the predicate is then treated in a similar way as conditional branches
and subsequent code is duplicated considering both of the potential predicate values (true
or false). The basic block on the left side of the subfigure here corresponds to an execution
where predicate register p1 evaluates to false, while the basic block on the right is executed
only when p1 evaluates to true. In fact, each basic block is associated with a set of predicates
that are known to be true when entering the basic block (indicated in the top corner of
each block). Inversely, predicates that do not appear in this set are known to be false.5
Note that the predicates in the code are no longer needed. Predicated instructions are either
duplicated unconditionally or are otherwise replaced by an explicit nop.

4 Note that this also solves many unrelated issues during the control-flow reconstruction from binary code
such as computed branch targets, function pointers, et cetera.

5 This is safe, since LLVM inserts pseudo definitions on all program paths where a register is not defined.
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In the unfolded control-flow graph it is now much easier to analyze the instructions’
side-effects. The load (lwc) from the jump table, for instance, is only executed when the
variable x is known to be less than 3 (cmplt). This means that any side-effects of this
instruction on the data cache are only visible in basic blocks C1 through C3, but not in basic
block DFT. Another implicit side-effect concerns the value of variable x after the comparison.
Due to the control-flow split at the cmplt instruction, it is very easy for a value range analysis
to show that the value of x has to be larger then 3 when reaching basic block DFT. Delayed
branches and potential redefinitions of register operands make this much more challenging
in the original CFG. The algorithm to construct such an unfolded CFG, while considering
predication and delayed branches, is discussed in the next section.

4 Control-Flow Unfolding

Due to space considerations, Algorithm 1 only shows a simplified version of our approach.
The presented algorithm assumes a single issue architecture, which avoids the need to
handle several parallel uses and (re-)definitions of predicates, parallel branches and predicate
operations, et cetera. The algorithm also assumes that the predicates of branches that
appear in branch delay slots are disjoint, i.e., only a single branch is known to be taken
at any moment at runtime. Lastly, the presented approach only operates on the CFG of a
single function. Extensions to the algorithm, included in the actual implementation, which
allow us to handle these cases are briefly highlighted later. Finally, the algorithm invokes
several helper functions whose code is not shown. We will briefly define these functions in an
informal way before discussing the algorithm in detail.

4.1 Helper Functions

Several helper functions are needed in order to operate on individual instructions in LLVM’s
intermediate representation. The function Next allows to obtain the instruction immediately
following an instruction i in its parent basic block, PKill returns the set of predicate registers
whose live ranges end after instruction i, while the functions PDef and IsPredDef allow
to obtain/test whether an instruction defines a predicate register. The function IsNop is
used to test whether an instruction i is nullified given the current set of predicates P .

Several helper functions are related to branches, allowing to test for branch instructions
(IsBranch), obtain the number of the branche’s delay slots (BranchDelay), and obtain the
successor basic blocks to which control may be transferred by a branch (BranchTargets).
FallThroughTarget is used to obtain the fall-trough target basic block of the last
instruction of a basic block, i.e., control is transferred to another basic block without an
explicit jump or branch instruction.

Finally, three functions are related to the construction of the enriched intermediate
representation of our analysis tool. GetCFNode allows to obtain the control-flow node
associated with a start instruction f , the remaining number of delay slots d, and a set of
predicates P – if such a control-flow node was created before. Nodes are created using the
function MakeCFNode, which duplicates all instructions between the instruction f and e

provided as arguments. The new node is also associated with d, the number of branch delay
slots remaining, and P , the set of predicates. Finally, MakeCFEdge creates control-flow
edges between two control-flow nodes provided as arguments.



F. Brandner and A. Naji 6:7

Algorithm 1 Simplified algorithm to recover the hidden control flow from predicated code
by code duplication on a single-issue architecture.
1: function UnFold(MachInstr f , MachInstr l, Pred d, BasicBlockSet T , PredSet P )
2: if n =GetCFNode(f, d, P) then return n . Check if control-flow node exists
3: PredSet L = P ; Pred pd = p0; MachInstr e = f . Initialize variables
4: for each instruction i between l and f do
5: L = L \PKill(i) . Remove dead predicates
6: e = i . Track end of control-flow node
7: if ¬IsNop(i, P ) then . Skip nop instructions
8: if IsPredDef(i) then . Predicate definition
9: pd = PDef(i) . Track defined predicate

10: break . Immediately split control flow
11: else if IsBranch(i) then . Branch instruction
12: d = BranchDelay(i) . Track branch delay slots
13: T = BranchTargets(i) . Track branch target(s)
14: if d = 0 then break . Split control flow after branch delay
15: d = d− 1 . Update remaining branch delay slots

16: CFNode n = MakeCFNode(f, e, d, P ) . Create a new control-flow node
17: if e = l ∧ T = ∅ then . Handle fall-through
18: T = FallThroughTarget(l)
19: else if d 6= 0 ∧ pd 6= p0 then . Handle split due to predicate definition
20: for each P ′ ∈ {L ∪ pd, (L \ pd) ∪ {p0}} do . Compute successor predicates
21: CFNode n′ = UnFold(Next(e), l, d, T, P ′)
22: MakeCFEdge(n, n′)
23: return n

24: for each s ∈ T do . Create successor control-flow nodes
25: for each P ′ ∈ {L ∪ pd, (L \ pd) ∪ {p0}} do . Compute successor predicates
26: Let f ′, l′ be the first/last instruction of s in
27: CFNode n′ = UnFold(f ′, l′,∞, ∅, P ′)
28: MakeCFEdge(n, n′)
29: return n

30: procedure UnFoldCFG(G)
31: Let f , l be the first/last instruction of the entry block of G in UnFold(l, f,∞, ∅, {p0})

4.2 Discussion of the Algorithm

Algorithm 1 consists of two functions: the algorithm’s main function UnFoldCFG and
the recursive function UnFold, which actually constructs the unfolded CFG. The latter
function’s parameters f (first) and l (last) represent machine instructions that need to be
unfolded next. The integer argument d (delay) is needed to track branch delay slots across
control-flow node boundaries. The argument T (targets), likewise, is used to track the set
of potential branch targets during the handling of branch delay slots. The function’s last
argument P (predicates) represents the set of active predicates known to be true.

The algorithm starts off by processing the CFG of a function provided by LLVM (l. 31),
considering the instructions at the function’s entry point, which are not in a branch delay
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slot (d = ∞) and not executed under any specific predicate condition (P = {p0}). This
triggers the recursive processing of all instructions in the CFG provided by LLVM and the
construction of the unfolded CFG. The actual unfolding then proceeds in two steps.

First, all the instructions between the arguments l and f of function UnFold are
analyzed (l. 4 – 15) in order to find locations where the control-flow needs to be split. A split
may be necessary due to one of the following reasons: (a) the end of the original basic block
of LLVM is reached (fall-through), (b) a branch effectively transfers control to another basic
block after its branch delay slots, or (c) a predicate definition is encountered.

Each instruction is analyzed in turn. Instructions that are nullified under the current
predicate set P (IsNop, l. 7) are ignored. Two instruction classes need special attention, since
they may cause a control-flow split: instructions that define a predicate (IsPredDef) and
branches (IsBranch). Predicate definitions are handled similar to branches in traditional
CFGs and immediately lead to a control-flow split (break), remembering the current end
location (e) and the newly defined predicate (pd). Branches, on the other hand, may cause a
delayed control-flow split (BranchDelay). The variable d tracks the number of remaining
branch delay slots (the variable is initialized to ∞ if the analyzed code is not in a branch
delays slot). Once this counter reaches 0 the actual control-flow split occurs (l .14). Note
that predicate definitions may also appear in branch delay slots. In this case the variable d is
passed as an argument to subsequent recursive calls to the function UnFold. Since a branch
was encountered, the branch targets also need to be remembered and potentially passed on
the recursive calls using variable T . If no control-flow split is encountered by the analysis,
i.e., no instruction defines a predicate or branches, the for loop terminates normally. This
only happens for basic blocks with a fall-through.

The set of live predicates (L) is tracked additionally, while instructions are processed.
This set is initialized with the incoming argument P (l. 3) and updated whenever the live
range of a predicate ends (l. 5). Note that a location, where the live range of a predicate
ends, could be exploited to rejoin the control flow. The algorithm does not take advantage
of this and essentially extends the live ranges of predicates up to a control-flow split.

The second step of the algorithm (l. 17 – 29) is concerned with the actual construction of
the unfolded CFG. After leaving the for loop, a new control-flow node is created representing
the instructions between f and e that are executed under the predicate set P (l. 16). It
remains then to discover and unfold the successor control-flow nodes, depending on the
nature of the control-flow split determined during the first step.

Fall-throughs (case a from above) and completed branches (case b) always transfer
control to another basic block in LLVM’s CFG. The main difference is that no branch
target is known for fall-throughs (case a), which can simply be obtained using the function
FallThroughTarget (l. 18). The remainder of the processing is identical (l. 24 – 29).
Each branch target is analyzed through a recursive call to UnFold, considering the new
set of active predicates P ′ as well as the branch target’s first/last instruction. Note that
a predicate definition (case c) may coincide with cases (a) and (b). The active predicates
are thus computed from the live predicates L and the newly defined predicate pd (l. 25).
The targets are then visited by the algorithm with the predicate true (L ∪ pd) and false
(L \ pd). Note that p0 always remains true and consequently needs to be readded.

The remaining control-flow splits, that are not covered by the previous paragraph, are
due to predicate definitions (case c), which may either occur in the middle of basic blocks
or in a branch delay slot. Both situations require a slightly different handling (l. 19 – 23),
since control is not (yet) transferred to another basic block of LLVM’s CFG. The set of
active predicates P ′ is computed as in the regular case. However, the remaining instructions
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(Next, l. 21) of LLVM’s current basic block need to be analyzed after the control-flow split,
while remembering potentially ongoing branches. This is accomplished by passing the values
of d and T to the recursive invocation of UnFold. This allows the recursive invocation
to correctly track the branch targets and the number of branch delay slots, i.e., if the split
actually occurred in a branch delay slot.

Extensions

The presented algorithm is a somewhat simplified version of the actual implementation.
Most notably, the Patmos processor can fetch and issue multiple operations in parallel using
instruction bundles. This means that corner cases may arise that need to be considered. For
instance, predicate definitions and branches can be combined into the same bundle. The
implemented algorithm considers function calls and returns, whose branch delay slots also
need to be accounted for. The handling of function calls was omitted for brevity. These
extensions slightly complicate the algorithm, but do not impact its overall structure.

Another, more involved extension, is the handling of branches nested within other branch
delay slots. The presented algorithm is only correct as long as the predicates of the nested
branches are disjoint. This can be handled by replacing the arguments d and T of the
function UnFold by a stack data structure. This allows to track all executing branches at
the same time, detect the completion of a branch, and split the control flow accordingly.

Complexity

The UnFold function essentially performs a depth first search on the CFG provided by
LLVM. Each instruction is processed once for every set of potentially active predicates, whose
number can be bounded by 128 (27). Note that p0 is always true and thus cannot impact
this bound. The algorithm thus is linear in the number of instructions and control-flow edges.

5 Preliminary Experiments

The following section presents the results from preliminary experiments measuring the
overhead induced by unfolding. The implementation is part of the analysis framework of
the Patmos compiler, which is based on LLVM 3.5. The unfolded CFG is merely used for
analysis purposes and essentially represents an additional annotation layer on top of the
data structures of LLVM. The binary code of the analyzed programs is thus not modified.
The extended version of the previously described algorithm was applied to a subset of the
TACLe benchmarks [6], i.e., those adopted from the MiBench suite. The programs were
compiled with optimizations enabled (-O2), while varying the issue-width (single-issue vs.
VLIW) and the compiler’s handling of branch delay slots (non-delayed only, delayed only,
mixed). This results in 6 configurations overall. The size of the unfolded CFGs for each of
these configurations is compared against the original instruction count in LLVM’s CFG.

Figure 2 shows the normalized increase in the number of instructions for the three
configurations with VLIW instruction bundles. As can be seen, the overhead induced by
unfolding is usually low, ranging between 10% and 20%. The susan benchmark is the only
exception, showing an increase between 43% and 45%. The if-conversion optimization is
particularly effective for this benchmark, covering larger regions and producing more complex
predicates. Note that the observed overhead does not come as a surprise. It is well known
that the share of conditional branches in typical programs roughly falls into a similar range
as the observed overhead. This indicates that, overall, only a few instructions are duplicated
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Figure 2 Increase in the number of instructions due to unfolding for the delayed ( ), mixed
( ), and non-delayed ( ) configurations with VLIW instruction bundles, normalized to the size of
LLVM’s original CFG (lower is better).

by the unfolding algorithm for each computed condition – despite the fact that the algorithm
artificially extends the live ranges of predicates. The configurations for the single-issue
processor follow a similar trend (not shown for brevity).

The runtime overhead of the proposed algorithm is negligible and amounts to 0.1s on
average, which represents 0.9% of the code generation time (excluding other WCET analysis
steps). Also note that the unfolded CFG allowed us to improve other analyses. The value
range analysis, for instance, is able to take advantage of control-flow splits at predicate
definitions as explained in Section 3.

6 Related Work

Predicated computer architectures received considerable attention in the 1990s with the de-
velopment of VLIW and EPIC architectures that tried to exploit instruction-level parallelism
through static compilation techniques rather than hardware [7].

Various compiler optimizations have been developed targeting the transformation of
regular code into predicated code [14, 25] and the optimization of predicated code [5, 22].
A common problem for these optimizations is the need to understand the relations between
predicates [11, 21], i.e., which predicates can be live at the same time. The underlying
machine code may evolve through optimizations in the compiler, which might require these
analyses to be performed multiple times. The analyses thus need to be fast and only reason
about predicate relations that can be deduced from the structural relations between predicates.
Information on the actual conditions, e.g., the tested values, are not captured. The work
is somewhat orthogonal to our approach and might help to reduce some of the overhead
induced by useless code duplications. The techniques are, in addition, concerned with the
analysis of the predicates themselves and do not allow to obtain other analysis results.

Hu [9] addressed this issue by refining the semantics of predicated code and redefining
several typical concepts used in compilers/static analyzers (e.g., dominance and data depend-
encies). She also showed how predicate-aware data-flow analysis can be realized using the
example of reaching definitions. Similar techniques could be applied to many other analysis
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techniques, including those used in typical WCET analyzers. However, this would require a
considerable engineering effort in order to adapt all existing analyes accordingly.

The single-path programming paradigm, which can often be found in the context of
real-time systems, takes predication to the extreme: (almost) all control-flow is eliminated
from the program and replaced by predicated code [15]. The idea is to avoid WCET analysis
altogether and instead generate code that exhibits the same execution time under all execution
conditions. Geyer et al. [8] propose a code generator that is able to produce single-path code
from a given input program. The proposed approach heavily relies on predication, which
generally leads to constant timing. However, some timing variations can still be encountered
due to variations of the program inputs and due to memory accesses to the data cache.

Starke et al. [24] propose a lightweight approach for predicated execution for their time-
predictable VLIW. The proposed approach consist of only a single predicate register, which
limits the compiler’s ability to handle complex predicate expressions and may also impact
the attainable instruction-level parallelism. The results indicate that predicated execution
is mostly beneficial with regard to the WCET. However, the authors do not describe how
the WCET analysis handles predicated operations. The technique proposed in the previous
section might allow to further improve the estimation of the WCET for their processor.

7 Conclusion

In this work a lightweight approach to the handling of predicated code in WCET analyzers was
presented. Predicate definitions are treated similar to conventional branches and immediately
lead to a control-flow split. Subsequent instructions are then analyzed twice, once assuming
that the predicate evaluates to true and once assuming it evaluates to false. The hidden
control flow in predicated code is recovered and explicitly represented in an unfolded CFG.
The presented algorithm is able to perform the desired control-flow unfolding and keep track
of branch delay slots for a simplified single-issue architecture. The actual implementation is
able to handle parallel instruction bundles, function calls, and nested delayed branches. Our
preliminary evaluation shows that the unfolding does not result in excessive code duplication
and yields a moderate code size increase of about 16% on average.
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Abstract
AbsInt is the leading provider of commercial tools for static code-level timing analysis. Its
aiT Worst-Case Execution Time Analyzer computes tight bounds for the WCET of tasks
in embedded real-time systems. However, the results only incorporate the core-local latencies,
i.e. interference delays due to other cores in a multicore system are ignored. This paper presents
some of the work we have done towards multicore WCET analysis. We look into both static and
measurement-based timing analysis for COTS multicore systems.
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1 Introduction

“The problem of determining upper bounds on execution times for single tasks and for quite
complex processor architectures has been solved” [23]. While this statement was true a
decade ago, when safety-critical embedded systems only used singlecore processors, it no
longer holds since the emergence of the multicore processor in the hard real-time context.

The problem for the timing analysis of multicore systems are the interference delays due
to conflicting, simultaneous accesses to shared resources, like for example the main memory
(see Figure 1). On a singlecore system, the latency of a memory access mostly depends
on the accessed memory region (e.g. slow flash memory vs. fast static RAM) and whether
the accessed memory cell has been cached or not. On a multicore system, the latency also
depends on the memory accesses of the other cores, because multiple simultaneous accesses
might lead to a resource conflict, where only one of the accesses can be served directly, and
the other accesses have to wait. These interference delays need to be included in a worst-case
assessment.

As part of our ongoing work towards multicore timing analysis, we looked in the last
few years into methods for multicore timing analysis, strategies to reduce resource conflicts,
and COTS multicore architectures. The paper at hand contains the findings of this survey.
Additionally, we reviewed the AURIX TC27x and its potential for multicore timing analysis.
To the best of our knowledge, such a review of the AURIX TC27x has not been published
yet.

This paper is organized as follows: In Section 2, we describe approaches for multicore
WCET analysis. In Section 3, we present some strategies to reduce the amount of resource
conflicts, which helps to improve the results of a multicore WCET analysis. In Section 4, we
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Shared Memory

Task 2Task 1

Shared Memory

Task 2

Task 1

Figure 1 Two tasks which access the shared memory. On a singlecore system (left), each access
takes a certain amount of time, but is not delayed due to resource conflicts. On a multicore system
(right), resource conflicts happen due to simultaneous accesses to the shared memory. Consequently,
the overall execution time of each task is increased.

introduce two multicore architectures and give some hints concerning their suitability for
WCET analysis. In Section 5, we list some related work. Finally, in Section 6, we conclude
and present some of the future work.

2 WCET Analysis for Multicore Systems

Any sound WCET analysis targeting multicore systems must take the interference delays
into account that are caused by resource conflicts. Ignoring these delays might result in
underestimation of the real WCET. Assuming full interferences at all times, however, is also
not a solution, but might result in huge overestimation. Therefore, the interferences, and
consequently, the resource conflicts, have to be analysed in order to get precise results. There
a basically two possibilities for such an analysis:

One can perform a joint analysis of all tasks and cores of the system. This way, the
scheduling of the tasks and their allocation to the cores is known to the microarchitectural
analysis. While this type of analysis may produce the most precise results, it is often
disregarded due to the high computational complexity, rendering this approach infeasible.
One can first perform separate WCET analyses for each task on each core, ignoring all
interferences from the outside. Later, in a second step, the costs due to the interferences
are analysed and incorporated into the results from the former analyses. This is the same
scheme that is already applied on singlecore systems to derive the worst-case response
time which incorporates communication delays and task switch/preemption costs into the
WCET bound. Albeit being computationally easier, this approach needs to take extra
care for the many non-timing-compositional features of modern processor architectures.

2.1 Static WCET Analysis
For static WCET analysis, we propose to use the second approach to tackle multicore systems,
i.e. separate singlecore WCET analysis on the code level and an interference analysis on the
system level. For singlecore WCET analysis, AbsInt provides aiT [1]. Supported multicore
architectures are, among others, the Infineon AURIX TC275 and TC277.

To support interference analysis, we currently implement Worst-Case Resource Access
(WCRA) analyses in the aiT framework. Here, the microarchitectural analysis is used to
determine the maximal number of accesses to a shared resource that can occur during a
task’s execution. One example for such a resource is the shared memory. This number can
be used to estimate the influence of a task on the timing of other tasks.

As always, the more predictable a system is, the easier it is to analyse it statically, and
the more precise are the results [6, 8, 24]. This is in particular true for the interference delays.
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However, since memory accesses are orders of magnitude slower than normal instructions,
one can argue that the pipeline will drain during the processing of memory accesses. Thus,
the interference delays imposed by resource conflicts do not cause timing anomalies and can
be added later to the singlecore WCET bound [19].

Under this assumption (timing compositionality), singlecore WCET bounds and WCRA
bounds can be used to estimate the multicore WCET in a system level analysis. The precise
design of such an analysis depends on the type of delay caused by resource contention. An
overview on the different kinds of approaches concerning contention on accesses to shared
resources is given in [10].

Clearly, the assumption that interference delays do not cause timing anomalies is a rather
strong assumption. According to recent research [13], there are two possible ways to gain
timing compositionality: sound penalties and compositional base bounds. A sound penalty
comprises all direct and indirect effects on the execution time in case of a resource conflict.
Unfortunately, there is no known method to compute such sound penalties that generally
hold. However, the authors conducted some experiments to find sound penalties for a set
of benchmark programs. They observed that the impact of indirect effects increases with
shorter memory latencies, because the pipeline is less likely to hide these effects behind long
running memory accesses. This observation gives some justification for the above assumption,
although no thorough research has been conducted yet to validate it.

The second approach are compositional base bounds. Here, the singlecore WCET bound
is augmented with a safe approximation of the possible indirect effects. Then, in the system-
level analysis, the direct costs of resource conflicts (the interference delays) are added to
the singlecore WCET bound. Since the indirect effects are already incorporated, this gives
sound results – even for non-compositional architectures. However, computing the safe
approximation of the indirect effects might be computationally expensive. We refer to [13]
for the details of this approach.

2.2 Hybrid (Measurement-based) WCET Analysis
In the last years, we also investigated hybrid measurement-based approaches to WCET
analysis of multicore systems. For example, we developed together with Accemic and TU
Darmstadt a system for the non-intrusive continuous analysis of a dualcore system based on
the ARM Cortex-A9 [9].

By its nature, an analysis using measurements to derive timing information is always a joint
analysis, because the effects of other running cores are directly visible in the measurements.
The quality of the measurements depends on the source of measured events. To avoid the
probe effect, one needs to forego software instrumentation. Embedded trace units of modern
processors, like Nexus 5001™ [14] or ARM CoreSight™ [5] allow the fine-grained observation
of a core’s program flow.

When using measurement-based methods, one needs to take care that all possible execution
scenarios are observed during the measurements. With end-to-end measurements, this is
normally not possible. Instead, one applies hybrid approaches where short snippets are
measured and later combined in a static path analysis. The assumption is that it is easier to
measure the worst case for each of the snippets the more fine-grained they are. Moreover,
when the snippets match the basic block model often used in static WCET analysis, it is
easier to perform the path analysis.

For modern Nexus-based ETUs like the one found in the NXP QorIQ P- and T-Series,
this is unfortunately not the case. Here, Branch History Messages (BHM) are emitted for
indirect branches. The program flow of the taken/not-taken direct branches since the last
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BHM is encoded in the message as a sequence of bits. Thus, we do not get timing information
for every branch. While the information in the BHM trace is enough to fully reconstruct
the control flow, it does not directly map to the basic block model we normally use for path
analysis. This is in particular true for small loops consisting of only one or two basic blocks
which might be covered by only one BHM although multiple iterations have been executed.

Besides the obvious problem that one needs to generate enough input data to observe all
possible (or all important) scenarios for measurement-based approaches, there are (at least)
two more multicore-specific problems to consider:

When multiple cores are running, they also generate a multiple of the trace messages a
singlecore system would emit. Thus, the limited bandwidth of the system’s trace port
might not suffice to transport all trace messages to the debugger. Consequently, some
messages are lost (the trace contains “holes”) and important timing information cannot
be obtained. This leads to lower confidence in the resulting WCET estimate.
Measurements also observe the timing effects of events like DRAM refreshes and resource
conflicts. While this is exactly the reason why we consider measurement-based approaches
for multicore timing analysis, this might also lead to huge overestimation. Consider the
interference delays induced by the use of a shared interconnect. Assume now that one
in ten accesses will suffer a severe interference delay. These delays will possibly occur
for any access in the program. During the observation of the program’s execution we
measure for most accesses both the case where no interference happens as well as the case
where the delay occurs. Due to the worst-case assessment, we will incorporate the delay
for all these accesses. Thus, we overestimate the real WCET because many more accesses
on the critical path will incorporate the delay than the “one in ten” ratio suggests.

Besides their use in WCET analysis, measurements can be used to construct execution
time profiles [7]. These are particularly useful for performance analysis, because they also
cover the average case.

3 Strategies to Reduce Resource Conflicts

There are several strategies to reduce the amount of resource conflicts, either by controlling
when accesses to shared resources happen or by limiting the amount of accesses to shared
resources. In the following, we want to present some of them.

3.1 Privatisation of Shared Resources
One idea to avoid resource conflicts is the privatisation of shared resources. This can be done
by assigning the resource to a specific core for a limited amount of time. In this timespan,
the core has the sole ownership over the resource and no other core is allowed to access the
resource.

Schranzhofer et al. presented in [22] a TDMA-based resource scheduling, where each task
is split into an input/output phase at the beginning, a computation phase in the middle,
and an input/output phase again at the end of its runtime. The tasks on the different cores
are then started with an offset in such a way that the input/output phases of the different
tasks do not overlap (see Figure 2). This scheduling avoids the resource conflicts altogether,
but needs changes to existing code (and maybe operating system (OS) support) in order to
be implemented.

Another scheme for resource privatisation was presented in [8]. Here, warm-up and
cool-down phases are added to each task (see Figure 3). In the warm-up phase, data is copied
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Task 1

Task 2

Shared Memory

I/O I/O

I/OI/O

Figure 2 Privatisation of shared resources by applying a TDMA-based scheduling of accesses to
shared resources. Resource conflicts are avoided because the input/output phases of different tasks
do not overlap.

Task

Local Memory

Shared Memory

Figure 3 Privatisation of shared resources by copying data from shared to local memory and
back again in warm-up and cool-down phases. Resource conflicts are avoided because no accesses
happen to shared memory during the task’s execution.

from the shared memory to local memory. In the cool-down phase, data is copied from the
local memory to shared memory. This approach gives some control when resource conflicts
occur, as they can only happen during warm-up and cool-down phases. To completely avoid
them, use a TDMA-based scheduling for the warm-up and cool-down phases, similar as
above. Naturally, this scheme only works if the target architecture has some local memory
that can be used for privatisation. Moreover, tool or OS support is needed to implement
the warm-up and cool-down phases. On the other hand, existing code does not need to be
changed. However, the scheme may have severe performance overhead.

3.2 Runtime Resource Capacity Enforcement

Instead of avoiding resource conflicts, one can also limit them to an amount such that all
tasks still do not miss their deadline, even when we assume full interference for the amount
of accesses which equals the aforementioned limit. This concept is called runtime resource
capacity enforcement and was presented in [19].

Here, one analyses each task regarding WCET and WCRA (see Section 2.1). Then, one
determines how many accesses assuming full interference are allowed for a task t0 in order
to not miss its deadline. This is the amount of resource accesses that all other tasks are
allowed to perform during the execution of t0. Each other task tx is then assigned its capacity,
i.e. its fair share of this amount. A runtime monitoring system observes the number of actual
resource accesses of each task. The OS checks that the capacity of a task is not exceeded
(and suspends the task otherwise). This scheme is in particular helpful for mixed-criticality
scenarios.
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Figure 4 Block diagram of the Freescale P4080.

4 Multicore Platforms

In the following, we assess two different multicore platforms and their suitability for WCET
analysis. The Freescale QorIQ P4080 has been used as one of the evaluation platforms in the
German research project ARAMiS [3]. It was also the platform of choice for several research
papers (e.g. [18, 19]). The Infineon AURIX TC27x is considered as an evaluation platform
in the German research project ARAMiS II [4].

4.1 Freescale QorIQ P4080
The Freescale P4080 [11] is a prominent example of a multicore platform where the interference
delays have a huge impact on the memory access latencies. Nowotsch et al. [19] measured
maximal write latencies of 39 cycles when only one core was active, and maximal write
latencies of 1007 cycles when all eight cores were running.

The P4080 consists of eight PowerPC e500mc cores running at 1.5 GHz. The memory
hierarchy of the P4080 looks as follows (see also Figure 4): Each core has separate L1
instruction/data caches and a unified L2 cache. The L1 caches have a capacity of 32 KB1

each, whereas the L2 cache has a capacity of 128 KB. The cores communicate with each
other and the main memory over a shared interconnect, the CoreNet Coherency Fabric. Via
this interconnect, two memory controllers attach DDR2/DDR3 RAM to the cores. Each of
them sits behind 1 MB of unified L3 cache.

The P4080 is a non-compositional architecture according to the classifications in [24] due
to its use of PLRU and FIFO replacement policies in caches, translation lookaside buffers,
branch target buffers and branch history tables. However, it can be configured in a more
predictable way avoiding domino effects:

Dynamic branch prediction can be switched off.
TLBs can be preloaded to avoid misses.
The L1 data cache can be used in write-through mode.
The L2 cache can be used as scratchpad memory.
Partial cache locking can be used to gain LRU replacement policy.

1 For reasons of compatibility with the processor manuals, we use the abbreviation KB for 210 bytes, and
MB for 220 bytes.
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Figure 5 Block diagram of the Infineon AURIX TC27x.

Unfortunately, there is not enough documentation publicly available concerning the
CoreNet. Thus, no static analysis predicting its behaviour can be developed. Latencies
of memory accesses crossing the interconnect must therefore be obtained by other means,
e.g. measurements and incorporated in a response time analysis.

The e500mc core is a complex processor architecture. Constructing and validating a
mathematical model suitable for static singlecore timing analysis might take several man-
years. aiT currently does not support the P4080. However, aiT supports the Freescale
MPC7448 which has a similarly complex core but is a singlecore architecture.

4.2 Infineon AURIX TC27x
The Infineon AURIX TC27x [15] (Figure 5) is a multicore processor widely used in the auto-
motive domain. It consists of two TC1.6P (performance) cores and one TC1.6E (efficiency)
core. One of the performance cores and the efficiency core have attached a checker core
such that they can run in lockstep mode. This lockstep mode does not affect the timing
behaviour of the system (except in case of disagreement, then a failure is reported to the
Safety Management Unit, which may trigger a handler).

Memory and Caches. Each of the performance cores has 120 KB of data scratchpad RAM
and 32 KB of program scratchpad RAM. Additionally, each of them has 16 KB of instruction
cache and 8 KB of data cache. The efficiency core has 112 KB of data scratchpad RAM and
24 KB of program scratchpad RAM. Additionally, it has 8 KB of instruction cache and a
128 bytes wide read buffer. The caches are organized as two-way set associative caches with
LRU replacement strategy. The data caches are write-back caches, but they can be bypassed.

The three cores of the AURIX TC27x are attached via the Program Memory Interface
(PMI) to the SRI Cross Bar (SRI), and via the Data Memory Interface (DMI) to the SRI
and the System Peripheral Bus (SPB). All peripherals are attached to the SPB except the
On-Chip Debug Support (OCDS), which is connected to the SRI via the DMA interface.

WCET 2017



7:8 Towards Multicore WCET Analysis

SRI
Master

SRI
Master

SRI
Master

SRI
Slave

SRI
Slave

SRI
Slave

M
C

I 0
M

C
I 1

M
C

I 2

SC
I 0

SC
I 1

SC
I 2

SRI
Default Slave

SCI 15

Figure 6 Overview of the structure of the SRI Cross Bar.

Attached to the SRI are also the Local Memory Unit (LMU) and the Program Memory
Unit (PMU). The LMU provides 32 KB of shared SRAM to the system, whereas the PMU
provides two independent program flash memories (2 MB each) and a data flash memory
(464 KB). Each of the flash memories has its own port on the SRI.

SRI Cross Bar

The SRI (Shared Resource Interconnect) Cross Bar connects up to 16 bus masters with up
to 15 slaves (and one additional default slave) via point-to-point connections (see Figure 6).
The default slave has two purposes. First, it handles the accesses to the SRI configuration
registers. Second, the error handling concerning the SRI is done here. The three DMIs and
three PMIs are master devices for the SRI, as is the DMA interface. A resource conflict
happens when two or more master devices try to access the same slave device. Each slave
has its own arbiter to handle these resource conflicts (see Figure 7).

The arbitration rules are as follows: On the top level, the priorities of the master devices
decide which request is handled first. The highest priority is 0, the lowest priority is 7. Only
one master is allowed to have the same priority, except for the priorities 2 and 5. Here,
an additional level of arbitration is performed. All masters with priority 2 form a round
robin group, the masters with priority 5 form another one. Within these groups, round robin
scheduling is done for arbitration.

Moreover, the arbiters contain a mechanism for starvation prevention. Starvation can
happen if some high priority master continuously accesses the same slave such that a master
with lower priority never gets its access granted. To prevent this, some kind of priority ceiling
is performed when an access is not granted for a configurable timespan.
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Figure 7 Detailed view on one point-to-point connection in the SRI Cross Bar. Each slave has
its own arbiter.

The SRI Cross Bar is well documented (about 70 pages) in the AURIX TC27x user
manual [15]. It should be possible to derive the necessary formulas to predict the number of
wait cycles depending on the number of conflicting accesses. However, the concrete derivation
of these formulas remains future work.

Branch Prediction. Both the TC1.6P and the TC1.6E cores use branch prediction mech-
anisms to improve the performance. The TC1.6E core uses a static branch prediction
scheme with the following rules: Branches in the 16-bit instruction format are predicted
taken. Branches in the 32-bit instruction format which point backwards are predicted taken.
Branches in the 32-bit instruction format which point forwards are predicted not taken.
The TC1.6P core uses a dynamic branch prediction scheme that is not further explained in
the manual. A sound static analysis thus has to take both cases – correct prediction and
misprediction – into account.

Predictability and Proposed Configuration. Given the fact that the TC1.6P pipeline can
execute up to three instructions in one clock cycle, and its use of dynamic branch prediction,
the occurrence of timing anomalies is likely. However, we assume that the AURIX is a
compositional architecture with constant-bounded effects [24].

aiT supports the Infineon AURIX TC27x and can be used to compute singlecore WCET
bounds for each of the three cores. The only thing that is not supported by aiT are the
write-back caches. Hence, the data caches need to be bypassed. Moreover, the analysis model
of aiT assumes that no other SRI master devices besides the analysed core access the same
slaves, i.e. that no resource conflicts happen in the SRI Cross Bar.

In the following, we propose a configuration to minimise the amount of resource conflicts
when used in a multicore scenario:

Use one dedicated program flash memory for each of the performance cores to avoid
conflicting accesses. Use the data flash for the efficiency core, if needed.

WCET 2017



7:10 Towards Multicore WCET Analysis

Use the core-local data scratchpad whenever possible instead of the shared RAM to
reduce conflicting accesses. If possible, preload data from the shared RAM and data
flash to the local scratchpad memories to control when accesses to the shared memory
happens.
Place the stack in the core-local data scratchpad.
Do not access the core-local scratchpad memories from other cores.
I/O channels (CAN, FlexRay, . . . ) should not be accessed by multiple cores. Assign each
I/O channel in use to a specific core.

5 Related Work

WCET Analysis for multicore systems is an active area of research. At least 17 publications
concerning multicore timing analysis have been presented at the past five instances of the
International Workshop on Worst-Case Execution Time Analysis. These cover all areas of
timing analysis, e.g. static approaches [12], measurement-based approaches [17], resource
arbitration [16], hardware [21], mixed-criticality [2] and response time analysis [20].

6 Conclusion and Future Work

In this paper, we presented some of the work that has been carried out at AbsInt to provide
tool support for multicore WCET analysis. We currently focus on WCRA analysis to
estimate the influence of resource conflicts on the timing of a task, and on BHM traces
for hybrid measurement-based timing analysis. Moreover, we gave hints how the Freescale
QorIQ P4080 and the Infineon AURIX TC27x, two popular multicore architectures, can be
used for real-time embedded systems. In the course of ARAMiS II, we want to evaluate our
newly developed analyses in industrial multicore scenarios.

Acknowledgements. I want to thank Michael Schmidt for providing me with the neatly
drawn pictures, and Gernot Gebhard and Markus Pister for their valuable comments regarding
the AURIX TC27x and the P4080.
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Abstract
Estimation of worst-case execution times (WCETs) is required to validate the temporal behavior
of hard real time systems. Heptane is an open-source software program that estimates upper
bounds of execution times on MIPS and ARM v7 architectures, offered to the WCET estima-
tion community to experiment new WCET estimation techniques. The software architecture of
Heptane was designed to be as modular and extensible as possible to facilitate the integration of
new approaches. This paper is devoted to a description of Heptane, and includes information on
the analyses it implements, how to use it and extend it.

1998 ACM Subject Classification C.3 Real-time and embedded systems

Keywords and phrases Worst-Case Execution Time Estimation, Static Analysis, WCET Estim-
ation Tool, Implicit Path Enumeration Technique

Digital Object Identifier 10.4230/OASIcs.WCET.2017.8

1 Introduction

Knowing task worst-case execution times (WCET) is of prime importance for the timing
analysis of hard real-time systems. Timing analysis of multi-task software is in general made
of two levels: WCET analysis and schedulability analysis. WCET analysis estimates the
worst-case timing requirements of an isolated task. At this level, activities other than ones
related to the considered task (interrupts, blocking, pre-emptions or any kind of interference
from other tasks in the system) are ignored. At the schedulability analysis level, the analysis
considers multiple tasks executing on the processor and competing for resources, and thus
may block while attempting to access the resources.

WCETs may be obtained using static analysis techniques, measurement-based techniques
or hybrid techniques (see [29] for a survey). A static WCET analysis tool provides an
upper bound (WCET estimate) on the time required to execute a given code on a given
hardware without program execution. A static WCET analysis tool should be able to work
at a high level to determine the longest path in a code. It should also work at low-level
(hardware-level), to capture the worst impact of the target processor on timing. Static
WCET analysis is complicated due to the presence of architectural features that improve the
processor performance: instruction and/or data caches, branch prediction and pipelines for
example. Precisely modeling these architectural features is the key to have precise WCET
estimates.
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A number of static WCET analysis tools exist. The objective of this paper is to give
a high-level and up-to-date view of the static WCET analysis tool we have designed and
maintained over the years, named Heptane1. The first version of Heptane was developed
in the late nineties during the PhD thesis of Antoine Colin. That first version, described
in [6] was a research prototype written in OCaml, and originally implemented tree-based
WCET calculation. At that time, it included the analyses required to obtain WCETs for a
Pentium 1 processor (cache analysis, pipeline analysis, branch prediction analysis). Heptane
was re-developed in 2003 to have a cleaner software architecture, use C++ instead of OCaml,
and support more target processors. This second version [29] implemented both tree-based
and IPET calculation. This version was used up to 2010 to implement all research related
to WCET estimation in our group (compiler-directed branch prediction, cache locking,
scratchpad management, analysis of data caches and shared caches in multi-cores, etc.). We
then decided to change our development strategy to ease code readability and development
of new analyses. We selected to integrate in the main branch of the tool only a minimum
number of robust analyses. At that point in time, the software architecture of Heptane was
refined again based on our past experience. This paper describes the last version of Heptane.

The aim of Heptane is to produce upper bounds of the execution times of applications.
It targets applications with hard real-time requirements (automotive, railway, aerospace
domains). Heptane computes WCETs using static analysis at the binary code level. It
includes static analyses of micro-architectural elements such as caches and cache hierarchies.

Heptane is an open source software program available under GNU General Public License
v32. Heptane is now a reliable research prototype, developed in C++ (approximately 13,000
lines of code) and supports MIPS and ARM v7 instruction sets. In particular, we are using
a continuous integration framework to check that the tool builds correctly and perform non
regression testing, for the supported target processors and host operating systems. Heptane
was demonstrated during the 1st Tutorial on Tools for Real-Time Systems [28].

As compared to other open-source static WCET analyzer tools, Heptane has a special focus
on cache analysis (analysis of cache hierarchies, support for multiple replacement policies),
but currently supports only two target processors. OTAWA [20] supports more processor
architectures than Heptane but implements less advanced cache analyses. SWEET [26]
focuses on flow fact analysis and does not include any hardware-level analysis. Bound-T [4]
supports different processor architectures but does not provide a cache analysis. Platin is
a static WCET estimation tool dedicated to the analysis of the Patmos architecture [24].
Chronos [5] implements advanced low-level analyses, but is limited to the SimpleScalar
architecture.

The commercial tool aiT [2] is the most advanced static WCET analysis tool, but
unfortunately is not open-source and as such cannot be extended for research studies that
require the tool to be modified.

The remainder of the paper provides more details on Heptane and is organized as follows.
An overview of Heptane is presented in Section 2. Section 3 describes the WCET estimation
techniques implemented in Heptane. The usage of Heptane is detailed in Section 4. Some
number to evaluate the performance of Heptane are given in Section 5. Some hints to extend
Heptane are mentioned in Section 6. Finally, conclusions and plans for future extensions of
the tool are given in Section 7.

1 The web site of Heptane is: https://team.inria.fr/pacap/software/heptane/.
2 Heptane is registered with APP (Agence de Protection des Programmes) under number

IDDN.FR.001.510039.000.S.P.2003.000.10600.

https://team.inria.fr/pacap/software/heptane/.
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Figure 1 Heptane toolchain: from source code to WCET estimate.

2 Overview of Heptane

2.1 The Heptane toolchain

As illustrated in Figure 1, Heptane is divided in two parts: HeptaneExtract for Control Flow
Graph (CFG) extraction and HeptaneAnalysis for the actual WCET estimation.

HeptaneExtract generates a control flow graph (CFG) from a set of program source-code
files written in C or assembly language. It calls the compiler and linker to generate the
binary file and then construct the CFG. After the construction of the CFG, HeptaneExtract
identifies the different loops, attaches the loop bounds information provided in the source
file and attaches the instruction addresses based on the binary file. The CFG is stored in
XML format to be used by HeptaneAnalysis or be manually inspected if needed.

HeptaneAnalysis applies low-level and high-level analyses to produce the WCET estimate.
HeptaneAnalysis can also be used to generate extra information like a graphical representation
of the CFG, a HTML version of the source that highlights the lines on (one of) the longest
execution path(s) and some statistics of the application under study.

The CFG produced by HeptaneExtract will be gradually enriched by every analysis of
HeptaneAnalysis with the analysis results. For that purpose, a library named cfglib has
been developed. This library is designed to manage an extensible program representation
that includes objects for programs, functions, loops, basic blocks, edges, instruction, etc.
The library also provides so-called attributes that can be attached to any of the objects
that represent the program. The library provides a small number of built-in attribute types
(string, integers, floats, etc.), and new attribute types can be defined for the purpose of an
analysis. When attaching an attribute to an object (e.g. a loop), an analysis developer calls
the attribute attachment function of cfglib for the corresponding attribute type (e.g. integer)
and provides as inputs the name of the attribute to be attached (e.g. “maxiter”) and the
corresponding value (e.g. 10). The library includes serialization and deserialization facilities
for objects and built-in attribute types. As explained later, each analysis may export its
results in XML.

WCET 2017
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2.2 Source code constraints
Since Heptane does not include any analysis of maximum numbers of loop iterations, the
source code has to be augmented by the user with annotations to provide loop bounds. At
the beginning of each loop body, a dedicated macro named ANNOT_MAXITER has to
be inserted (see Listing 1). The macro is defined in the header “annot.h” that has to be
included. Loop bounds are local loop bounds (maximum number of iterations for each entry
in the loop) and should be constant values. The macro expands to assembly code, that will
create a specific section in the final binary with the maximum number of iterations.

# include "annot.h"
int i,j;
for (i = 0; i < 20; i++) {

ANNOT_MAXITER (20);
for (j = 0; j < 10; j++) {

ANNOT_MAXITER (10);
...
}

}

Listing 1 ANNOT_MAXITER usage.

Furthermore, some restrictions on the C code are required to be able to generate the
CFG statically:

Pointers to functions are not supported to be able to generate the call graph.
Indirect jumps and jump tables are not supported. They can be generated for instance
by switches constructs.
Each loop must have a single entry. The identification of loops in Heptane uses DJ
Graphs [25]
Pointer arithmetic is not supported by the data address analysis

Programs not meeting these restrictions are detected and reported as errors. Finally, to
be able to perform a correct matching between the loop bounds defined in the source file
and the binary file the use of compiler optimization should not affect this matching. It is the
user responsibility to select the compiler optimizations that do not change loop bounds.

3 WCET estimation in Heptane

Static WCET estimation methods are generally divided into two steps, commonly named
high-level analysis and low-level analysis. The high-level analysis determines the longest
execution path among all possible flows in a program. The low-level analysis is used to
account for the processor microarchitecture. In HeptaneAnalysis, each analysis is contextual,
meaning the analysis of a function is performed for every call path of the function (e.g. main
→ g → f and main → f for a function f called directly by function main and also called by
g that is called by main).

3.1 High-level analysis
For the high-level analysis, HeptaneAnalysis implements the most prevalent technique,
named IPET for Implicit Path Enumeration Technique[17]. IPET is based on an Integer
Linear Programming (ILP) formulation of the WCET calculation problem. It reflects
the program structure and the possible execution flows using a set of linear constraints.
An upper bound of the program’s WCET is obtained by maximizing objective function
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∑
i∈BasicBlocks Ti ∗ fi. Ti (constant in the ILP problem) is the timing information of basic

block i. Ti integrates the effects of micro-architecture, and is determined by the low-level
analysis.

The variable fi in the ILP system, to be instantiated by the ILP solver, corresponds to
the number of times basic block i is executed. The values of all variables fi, once set by the
ILP solver to maximize the objective function, identify a set of paths in the program leading
to the estimated WCET.

3.2 Low-level analysis
For the low-level analysis, HeptaneAnalysis implements a data address analysis, a cache
analysis and a pipeline analysis.

Data address analysis

The data address analysis conservatively determines the addresses of referenced data. In
case the exact address of the referenced data cannot be determined, a range of addresses
is conservatively provided. The addresses of instructions are determined during the CFG
extraction thanks to the addresses present in the binary file.

Heptane includes a stack analysis, that calculates the range of addresses for every stack
frame, in any call context. The analysis assumes an acyclic call graph, which is common in
real-time systems because recursion raises predictability issues. The analysis relies on the
knowledge of the base of the stack based address, given as input to HeptaneAnalysis, and
the size of all functions’ stack frames, obtained by scanning the first instruction of every
function, responsible for allocating the stack frame. The address of every stack frame is
obtained by propagating the address of the stack frame for every callee of every function
along the acyclic call graph.

Data address analysis is implemented by an inter-procedural data flow analysis based on
abstract interpretation, that evaluates the contents of every register before and after each
instruction. Since Heptane does not currently support pointers, it is sufficient to analyze
register contents to compute the addresses of load and store instructions and thus no analysis
of memory contents is required. The possible abstract values for a register are: ⊥ , > or an
interval of addresses. Value ⊥ represents an invalid register content; it is used as an initial
register value for the first instruction of every basic block. Value > represents a correct but
unknown value (any possible value but ⊥). We use > to specify the contents of a register
after a load from memory because memory contents are not analyzed. Data flow equations,
detailed in [9] for an early version of the data address analysis, are defined for all instructions,
to specify the impact of the instruction on the registers abstract values. When the address
of a static variable is loaded into a register (e.g. when loading the start address of an array
in a register), the symbol table is used to determine the corresponding address interval; for
local data the entire stack frame is used as interval.

Cache analysis

The cache analysis is the most developed analysis in HeptaneAnalysis. It allows to analyze
set-associative3 instruction and data cache hierarchies under different cache replacement
policies (LRU, PLRU, FIFO, MRU, Random).

3 Direct mapped caches and fully-associative caches are specific cases of set-associative caches.

WCET 2017
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The cache analysis of a cache level in HeptaneAnalysis is an implementation of the Must,
May and Persistence analyses [27, 13] based on abstract interpretation [7]. The principle
of the analyses is to statically associate a Cache Hit/Miss Classification (CHMC) for every
memory reference. The CHMC defines for each reference its worst-case behavior with respect
to the cache under analysis (e.g. the CHMC is set to always-hit only when it is guaranteed
the reference will always result in a cache hit, regardless of the execution path followed at
run-time).

The Must, May and Persistence analyses calculate for every basic block and every call
context a corresponding Abstract Cache State (ACS) whose semantics depend on the analysis.
For example, the ACS for the Must analysis at a given program point contains the addresses
of the memory blocks that are guaranteed to be in the cache at that point. The structure of
ACS depends on the cache replacement policy. For the most predictable replacement policy
LRU [23], the associativity of the ACS is the same as the one of the concrete cache. For
LRU replacement, the position of a memory block in a set and a dataflow equations depends
on the type of analysis (Must, May and Persistence); for example, for the Must analysis, a
memory block in the Must ACS has an age that is higher than or equal to the age of the
block in the LRU stack.

To analyze cache replacement policies other than LRU, we have implemented a method
using the metrics proposed in [23] that characterize the life time of references in a cache
for different replacement policies. These metrics are used to set the associativity of the
ACS to a value lower than the associativity of the concrete cache state for the Must and
Persistence analyses. For example, for a cache with a random replacement policy, any memory
block in a set may be replaced upon cache replacement, making such caches equivalent to a
direct-mapped cache for the Must and Persistence analyses regarding CHMC classification.

To analyze cache hierarchies, we have implemented the method proposed in [10, 14] that
introduces in the cache analysis a Cache Access Classification (CAC) to take into account
the filtering effect of the previous cache level in the hierarchy.

For data caches, we assume a write-through no-write-allocate policy. A write-through
policy was analyzed because it is easier to analyze than a write-back strategy (in contrast
to write-back caches, it is easy to know for write-through caches when memory accesses will
take place). A no-write-allocate policy is assumed because write-through no-write-allocate is
the most common configuration found for write-through caches.

Pipeline analysis

The pipeline analysis for all supported architectures, currently considers a simple in-order
pipeline free from timing anomalies, [18] with one cycle per stage except for the fetch and
memory stages where the results of the cache analysis are taken into account.

Interactions between analyses

The initial CFG is gradually enriched with the results of the analyses, thanks to the attribute
attachment facilities provided by the cfglib library. For instance, the instruction cache analysis
attaches to every instruction and cache level an attribute defining the instruction CHMC
and CAC. The attribute will be used by the pipeline analysis to compute the worst-case
execution time of every basic block, that will be attached as an attribute to every basic
block. The WCET calculation phase will use WCETs of basic blocks to compute the overall
WCET. Every analysis has a dedicated method that checks the presence of its inputs (i.e. the
corresponding attributes were attached by the analyses executed before). Checking is based
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on attribute names. For example, the WCET calculation analysis checks that all loops have
an attribute named maxiter attached.

4 Using Heptane

Heptane can be installed on Linux and Mac OS X. For its installation, Heptane has some
requirements: libxml2 and an ILP solver (lpsolve or IBM CPLEX). To use the optional
analyses of Heptane described at the end of this section (graphical output, documentation
extraction), dot, epstopdf and Doxygen have to be installed as well. The rest of this
section gives an overview of how to use HeptaneAnalysis, after CFG extraction (complete
documentation can be found in the Heptane web page).

HeptaneAnalysis takes as parameter an XML configuration file describing the architecture
under analysis and the analyses to be applied. The analyses operate on a CFG produced by
the CFG extractor HeptaneExtract. The extracted CFG, whose format is not presented here
for space considerations, is a human-readable file with one XML tag per object (program,
function, basic block, edge, loop, instruction) with attributes attached when relevant (loop
bounds, instruction addresses, etc). A unique identifier is assigned to each object as an XML
attribute for deserialization.

4.1 Description of the architecture under analysis
In case the user wishes to use custom parameters describing the architecture or the analyses
to perform, a template of configuration file is available in the config_files directory. The
configuration file starts with an INPUTOUTPUTDIR XML tag to set the working directory:
<INPUTOUTPUTDIR name=" HEPTANE_ROOT / benchmarks / simple "/>

This directory should contain the XML files resulting from CFG extraction and, will contain
the result files of the analyses. Then the processor type, the cache hierarchy and the memory
have to be described as follows:
<ARCHITECTURE >

<TARGET NAME="MIPS" ENDIANNESS ="BIG"/>
<CACHE nbsets ="32" nbways ="2" cachelinesize ="32"
replacement_policy ="LRU" type=" icache " level="1" latency ="1"/>
<CACHE nbsets ="64" nbways ="8" cachelinesize ="64"
replacement_policy ="LRU" type=" icache " level="2" latency ="10"/>
<CACHE nbsets ="32" nbways ="2" cachelinesize ="32"
replacement_policy ="LRU" type=" dcache " level="1" latency ="1"/>
<CACHE nbsets ="64" nbways ="8" cachelinesize ="64"
replacement_policy ="LRU" type=" dcache " level="2" latency ="10"/>
<MEMORY load_latency ="100" store_latency ="100"/>

</ ARCHITECTURE >

The user has to provide the target processor (i.e. MIPS or ARM) and the architecture
endianness, the memory latency for the loads and stores in processor cycles and for each
level of cache:

the number of sets, the number of ways (associativity), the size of a cache line in Bytes;
the replacement policy (LRU, PLRU, MRU, FIFO or RANDOM):
the type of the cache (icache/picache for an instruction cache and dcache/pdcache for
a data cache). Letter p indicates that the cache is a perfect cache that always hits. In
this case, only one cache level can be specified and the other parameters except the hit
latency are ignored.
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the level in the hierarchy (1 for L1, 2 for L2 and so on)
the hit latency in processor cycles

4.2 Using the main analyses
The main part of the configuration file is the description of the analyses the user wants to
perform. They have to be defined inside an ANALYSIS XML Tag and they are applied in
their order of appearance in the configuration file. In case an analysis A relies on the results
of previously applied analyses, analysis A checks the presence of all its mandatory input
information. Each analysis has three common parameters:

keepresults set to true to keep CFGs and the results of the analysis in memory and false
otherwise
input_file set to empty string in case the user wants to reuse the results of a previous
analysis, or to a XML file previously exported by an analysis,
output_file set to empty string in case the user does not want to serialize the modifications
done by the analysis or to file.xml to store it in the mentioned file

The first analysis to apply is to fix the entry point of the program and to compute the
calling context of functions accordingly. This is illustrated below:
<ENTRYPOINT keepresults ="on" input_file =" simple .xml" output_file =""

entrypointname ="main"/>

In case the user wants to perform a data cache analysis, the data address analysis has to be
performed beforehand, to determine the memory addresses of load and store instructions.
This analysis takes as parameter the address of the stack pointer before the execution of the
entry point, as shown below:
<DATAADDRESS keepresults ="on" input_file ="" output_file ="" sp="7FE000"/>

For the cache analysis, an analysis has to be defined for each cache4 of the architecture, and
the different levels of caches have to be analyzed in order (i.e. L1 before L2 and so on). The
name of the analyses are ICACHE and DCACHE for an instruction cache and a data cache
respectively. The analysis has to indicate the cache level and if the must, persistence and
may analyses has to be performed, as shown below for a L1 instruction cache:
<ICACHE keepresults ="true" input_file ="" output_file =""

level="1" must="on" persistence ="on" may="off"/>

The pipeline analysis can be called once the caches have been analyzed only. The analysis
is defined by a PIPELINE XML tag, with only the common parameters. Finally, WCET
estimation is performed by the IPET analysis:
<IPET keepresults ="on" input_file ="" output_file =""

solver =" lp_solve " attach_WCET_info ="true" generate_node_freq ="true"/>

The declaration should provide the name of the ILP solver (i.e. lp_solve or cplex). Fur-
thermore, the user should indicate if the estimated WCET of the program as well as the
estimated frequency of each basic block have to be kept for the next analyses.

4 In case of a perfect cache, the analysis has to be performed as well and the corresponding cache level
has to be set to 1.
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4.3 Other useful analyses
HeptaneAnalysis can provide useful feedback to the user through additional analyses. The
first one is the cache statistics analysis, that provides for each cache the number of references,
the number of hits and misses along the longest path identified by IPET. The analysis is
defined by a CACHESTATISTICS XML tag with only the common parameters.

The user may want to have a graphical representation of the program. HeptaneAnalysis
can generate a pdf file representing the CFG of the benchmark by inserting a DOTPRINT
XML tag with only the common parameters.

The user can also print in text format the estimated WCET, the CFG, the call graph, and
the loop structure and loop bounds of the benchmark. This is achieved by the SIMPLEPRINT
analysis:
<SIMPLEPRINT keepresults ="on" input_file ="" output_file =""

printWCETinfo ="on" printcfg ="off"
printcallgraph ="off" printloopnest ="off"/>

Finally, HeptaneAnalysis offers the possibility to display the path identified by IPET as the
longest path on the source code, with the estimated execution frequency of each line of code
in a HTML file (several times in presence of different calling contexts). To do so, a mapping
between the source and the binary5 is first performed by calling the addr2line tool on the
binary. In the configuration file, this is performed in two steps: (i) the mapping and (ii) the
production of the HTML file:
<CODELINE keepresults ="on" input_file ="" output_file =""

binaryfile =" simple .exe"
addr2lineCommand =" HEPTANE_ROOT / CROSS_COMPILERS /MIPS/bin/mips - addr2line "

/>
<HTMLPRINT keepresults ="on" input_file ="" output_file =""

colorize ="true" html_file =" simple .html"/>

5 Performance of Heptane

Table 5 gives the analysis time in seconds (total and per analysis) and WCET in cycles for the
set of Mälardalen benchmarks6 that are supported by Heptane. The analysis was performed
on MIPS code, with two levels of instruction and data caches with the same structure (2-way
set-associative cache with 32 sets and 32-byte blocks for L1, 8-way set-associative cache with
64 sets and 64-byte blocks for L2). The analysis was executed on an Intel Core i7 quad-core .
The solver used by the IPET analysis is lp_solve 5.5.2.

The analysis time of all benchmarks except the biggest ones (nsichneu and statemate) is
very low (below one second and up to 3.1 seconds for fft). The worst-case analysis time was
observed on nsichneu and was clearly dominated by the cache analysis time.

6 Extending Heptane

The software architecture of Heptane was designed to be modular and extensible. In
addition, it was decided to keep in the main branch of Heptane only the analyses that
we think can be useful to a wide audience. Other analyses, developed over the year to

5 The benchmark has to be compiled with the -ggdb gcc option.
6 http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
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Table 1 Analysis time (seconds) per analysis steps and resulting WCET (cycles).

benchmark icache icache dcache dcache IPET Total WCET
(L1) (L2) (L1) (L2)

bs 0.005 0.009 0.007 0.010 0.005 0.079 4020
bsort100 0.010 0.016 0.009 0.014 0.006 0.150 5812114
crc 0.038 0.049 0.034 0.058 0.013 0.630 1782419
expint 0.012 0.024 0.012 0.020 0.008 0.224 647343
fft 0.261 0.297 0.136 0.175 0.063 3.144 1253683
fibcall 0.002 0.004 0.003 0.005 0.003 0.050 14023
insertsort 0.003 0.006 0.004 0.008 0.004 0.090 52355
jfdctint 0.017 0.019 0.022 0.023 0.011 1.026 100331
lcdnum 0.074 0.116 0.021 0.057 0.009 0.366 9106
ludcmp 0.068 0.085 0.324 0.283 0.016 1.289 381353
matmult 0.014 0.023 0.017 0.027 0.008 0.317 1795585
minver 0.039 0.069 0.044 0.060 0.020 2.784 66835
ns 0.007 0.013 0.011 0.015 0.005 0.153 146208
nsichneu 18.314 21.468 2.815 3.250 0.874 52.775 515015
qurt 0.070 0.089 0.059 0.080 0.027 1.599 111554
select 0.068 0.073 0.023 0.034 0.014 0.547 91798
sqrt 0.012 0.016 0.010 0.018 0.011 0.183 20159
statemate 3.563 5.643 0.322 0.391 0.141 10.730 229575
ud 0.042 0.068 0.096 0.101 0.015 0.674 210770

experiment research techniques are kept in dedicated folders (non exhaustively: analysis
of shared cache interference [8, 21], analysis of cache hierarchy management policies [11],
cache related preemption delay estimation [19, 22], cache-partitioning [15], traceability of
flow information [16], static probabilistic WCET analysis [1, 12] analysis of code caches in
just-in-time compilers [3]).

Each analysis is located in a distinct directory and inherits from an Analysis base class
such that the developer of a new analysis respects good practice (checks the presence of
the inputs required by the analyses and cleans up internal attributes). A dummy ana-
lysis DummyAnalysis is provided as an example. Moreover, the cfglib library, central for
implementing analyses, is well documented.

7 Conclusion and future work

We have described in this paper Heptane, an open-source software program for WCET
estimation, that estimates WCETs from program binaries. Heptane has reached over the
years sufficient reliability to be used by researchers external to our group. The most advanced
analyses integrated in Heptane are the static cache analyses (support for multiple replacement
policies and cache hierarchies). Its weaknesses, that we hope to address in the future, are its
lack for automatic extraction of loop bounds, its small number of target processors, and its
pessimistic albeit safe data address analysis. Our current work on the tool is to address the
latter issue, in particular for stack-allocated data and accesses to arrays. Another direction
is to use the XML format used by our open-source CFG management library cfglib as an
exchange format between tools, to gather the best analysis techniques from different groups
into a common WCET estimation infrastructure.
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Abstract
Critical embedded systems are generally composed of repetitive tasks that must meet hard timing
constraints, such as termination deadlines. Providing an upper bound of the worst-case execution
time (WCET) of such tasks at design time is necessary to guarantee the correctness of the system.
In static WCET analysis, a main source of over-approximation comes from the complexity of the
modern hardware platforms: their timing behavior tends to become more unpredictable because
of features like caches, pipeline, branch prediction, etc. Another source of over-approximation
comes from the software itself: WCET analysis may consider potential worst-cases executions
that are actually infeasible, because of the semantics of the program or because they correspond
to unrealistic inputs. The W-SEPT project, for “WCET, Semantics, Precision and Traceability”,
has been carried out to study and exploit the influence of program semantics on the WCET
estimation. This paper presents the results of this project : a semantic-aware WCET estimation
workflow for high-level designed systems.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages, D.2.2 Design
Tools and Techniques, D.2.4 Software/Program Verification, D.2.5 Testing and Debugging, C.3
Special-Purpose and Application-Based Systems, B.4.4 Performance Analysis and Design Aids

Keywords and phrases Worst-case execution time analysis, Static analysis, Program analysis

Digital Object Identifier 10.4230/OASIcs.WCET.2017.9

1 Introduction

Critical embedded systems are generally composed of repetitive tasks that must meet strong
timing constraints, such as termination deadlines. Providing an upper bound of the worst-case
execution time (WCET) of such tasks at design time is necessary to guarantee the correctness
of the system.

Test based methods, widely used in practice, provide actual execution times but cannot
guarantee that the worst case has been reached. Static analysis methods aim at providing a
guaranteed upper bound to the WCET, by considering an abstract model of the program
execution. In order to be safe, and also to keep the analysis tractable, the models are
necessarily pessimistic and often lead to a possibly large over-approximation of the WCET.

In static WCET estimation, a main source of over-approximation comes from the com-
plexity of the modern hardware platforms: their timing behavior tends to become more
unpredictable because of features like caches, pipeline, test prediction, etc. Another source of
over-approximation comes from the software itself: WCET analysis may consider potential
worst-case executions that are actually infeasible, because of the semantics of the program or
because they correspond to unrealistic inputs.

For instance, in the automotive application (Engine Management System : EMS) of
Continental Corporation the modules of the application are mostly implementing generic
algorithms that use calibration data for possible adaptation : a worst-case path could
correspond to an unrealistic system state like high-engine speed with low-injection set point.

In the classical WCET estimation framework, the data-flow analysis is in charge of
discovering infeasible execution paths. It must at least provide constant bounds for all the
loops in the program, otherwise a finite WCET is not even guaranteed to exist. Apart from
loop-bounds, control-flow analysis usually identifies simple semantics properties such as tests
exclusions, that may prune infeasible execution paths when computing the WCET.

http://dx.doi.org/10.4230/OASIcs.WCET.2017.9
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Figure 1 Work-flow and general organization of a semantic aware WCET estimation tool.

The W-SEPT project, for “WCET, Semantics, Precision and Traceability”, has been
carried out to study and exploit the influence of program semantics on the WCET estimation.
This paper presents the results of this project: a semantic-aware WCET estimation workflow
for high-level designed systems.

1.1 Workflow of a semantic-aware WCET estimation tool
The goal of the W-SEPT project1 was to define and prototype a complete semantic-aware
WCET estimation workflow [1]. It gathers researchers in the domain of timing and program
analysis, together with an industrial partner from the real-time domain. The project mainly
focuses on the semantic aspects, and thus, the pruning of infeasible paths. As far as possible,
the idea is to extend and adapt the classical WCET estimation workflow. In particular, all
that concerns the hardware analysis is inherited from previous work, through the use of the
tool OTAWA2.

This paper summarizes the main achievements of the project. We give the general picture:
more details can be found in referenced papers. These achievements are structured according
to the general workflow of the project, depicted by Figure 1.

It retains the general organization of classical existing tools [24]. The bottom block is
the WCET computation tool itself, organized in three steps: Control-Flow graph (CFG)
construction, micro-architecture analysis, and worst-path search on the CFG. Generally, this

1 http://wsept.inria.fr
2 http://www.otawa.fr
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last step uses the classical Implicit Path Enumeration Technique (IPET) [14]. This WCET
estimation takes as input the binary code of the program, and a set of semantic informations
classically named annotation file, and containing at least the loop bounds.

These binary annotations come from program analysis. This analysis is generally per-
formed at the source level, C language most of the time, rather than at the binary level.
Indeed, analyzing C code is technically much simpler than analyzing binary code, but more
importantly, the analysis often requires extra information that only the user can provide
(e.g., inputs ranges, exclusion, implications). The user can probably express these properties
in terms of the C variables, but it would be much harder or even impossible to do it in terms
of the compiled binary code. This two-layers description raises the well-known problem of
traceability of annotations when transferring information between layers.

So far, the principles depicted in Figure 1 are rather classical. An innovation of the project
was to take into account a third layer in the design flow: the use of high-level design languages
that are common in the domain of (critical) real-time applications. Classical examples of
high-level design tools are Scade suite3, used in avionics, energy or transportation, and
Simulink/Stateflow4 widely used in control engineering systems. These high-level design
tools provide automatic code generation to C, which is no longer the source code, but only
an intermediate code. A consequence is that user annotations and program analysis can
be expressed and performed at the design level. The coupling of timing analysis and high
level design is not new in itself. For instance the tool aIt (from the Absint company) has
been coupled with the Scade Tool Suite5. However, this integration does not consider the
extraction and exploitation of properties at the Scade level for enhancing the analysis of aIt.

The project proposed to focus on three main issues depicted by enclosing boxes in Figure 1:

Program analysis, that can be performed at high-level design, C or binary level, and may
take into account information provided by the user.

Annotations and traceability between the language levels, which strongly involve the
compilers: as far as possible, the compilation process should be annotation-aware, in the
sense that the program transformations performed by the compiler should be reflected as
annotation transformations.

WCET estimation tool and the worst-path search step, must be adapted to take into
account the richer kind of annotations produced by the workflow.

In this summary, we briefly describe the obtained results concerning each step of this
workflow. In Section 2, we present how, at each stage, we can generate properties (automat-
ically extracted) in order to discard infeasible paths. Then we show how to annotate these
properties and automatically translate them through the compilation process, in Section 3.
In Section 4, we describe how an existing WCET estimation tool was adapted in order to
exploit this new kind of annotations. Even enhanced thanks to semantic information, the
WCET estimation is still necessarily a pessimistic upper bound. Section 5 presents two
methods for assessing the pessimism, by finding a guaranteed (big) lower bound, and thus
an interval containing the actual WCET. Indeed, the smaller is the interval, the better is the
estimation.

3 http://www.esterel-technologies.com/products/scade-suite
4 http://mathworks.com/products/simulink/
5 http://www.absint.com/ait/scade.htm
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Figure 2 A typical high-level dataflow design.

2 Extraction of semantic properties

In this section, we explain what kind of semantic properties may help to enhance the WCET
estimation: where do they come from and which step of the application development do
they refer to (binary, code, design). We consider the automatic extraction of properties.
The set of analyses should lead to a cumulative improvement as the kind of properties they
cover should be exclusive. The annotation language, necessary to express and transfer user
assumptions and discovered properties, is presented in the next section.

2.1 High-level properties

Critical embedded systems are often designed using high level modeling languages, such as
Scade or Simulink. The system is then automatically compiled into classical imperative code
(C in general), and then into binary code (cf. Fig 1).

Figure 2 shows a typical high-level data-flow design. For simplicity, it is represented as a
diagram, while the actual program is written in Lustre [7], the academic textual language
which is the ancestor of the industrial Scade language. This application consists of two sub
modules, A and B, each of them consisting in two parts: a control part and a data processing
part. The data processing part has different computation modes (e.g., A0, A1 and A2),
controlled by a clock (e.g., idle, low and high). An important property of such a design is
that these modes are exclusive: at each reaction exactly one of the modes is activated. This
information, obvious at the design level, may or may not be obvious at the C or binary level:
depending on the compilation process, the (high level) mode exclusion may result or not into
structurally exclusive pieces of code. In a more subtle way, we also know, for this particular
program, that there is a logical exclusion between the modes of the two sub-modules: if A is
not idle (A1 or A2), then B is necessarily in degraded mode (B1). This property is neither
structural nor obvious: it is an invariant of the infinite cyclic behavior of the application
that holds if we suppose toggle and onoff are never true at the same time (which is an
hypothesis on the system environment). It is therefore almost impossible to discover it at
the low-level.

Based on these remarks, we have developed a prototype for discovering such properties,
propagate them through the compilation process, and exploit them to enhance the WCET
estimation. Details on how these properties are transferred and used to enhance the WCET
are in Section 3.2 and 4.1.
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To extract properties that may reveal infeasible paths, we identified the high-level
expression that influences a branch at binary level. In a second step, we use a model-checker
(Lesar [18]) to check the validity of properties at the Lustre level. We use two heuristics:

a pairwise algorithm: The high level code is analyzed to find a set of interesting control
variables, according to a simple heuristic: any Boolean variable that controls computation
modes (often called the logical clocks) is likely to control big pieces of binary code, and thus,
has a big influence on the computation time. In the example, the five control variables
are selected. We “blindly” search for all possible pairwise relations (either exclusions or
implications) between these variables. For n variables, there are 4(n∗(n−1)/2) = 2n(n−1)
such (potential) relations (40 in the example). For each relation proven by Lesar, we
generate the corresponding constraints at the binary level thanks to the traceability
information; in the example, 5 over 40 relations are proven.
an iterative algorithm: according to the traceability information, the validity of the worst-
case path is translated (if possible) into a logical condition on the high-level variables
(e.g. ¬idle ∧ low ∧ nom); Lesar is called to check this condition; if the condition is
unsatisfiable, the WCET path candidate is proven unfeasible, the corresponding constraint
gives an infeasible path that we give to the WCET estimation tool; we restart to find a
new candidate, and so on. If the condition is found satisfiable, the process stops with the
current WCET.

The improvement on the WCET estimation is important and similar for both strategies
(up to 50% on a realistic Lustre benchmark). The iterative algorithm may be relatively costly.
The pairwise strategy has a constant overhead. The whole experiment is presented in details
in [20].

2.2 C level properties
The discovery of bounds and relations on numerical variables is a classical goal in program
analysis [5]. These bounds and relations can obviously be used to restrict the set of feasible
paths considered in WCET evaluation. This can be helped by adding some counters to the
code of the program: of course, adding a loop counter may result in finding a bound to this
counter, and thus to the iteration number. Moreover, adding block counters, and finding
relations between these counters can reveal subtle restrictions in the possible executions of
the program.

An analysis of this instrumented program with counters using an analyser of linear
relations (here, we used the tool PAGAI [8]), automatically discovers some linear relations
on counters. This approach has been implemented in a prototype tool [2], and applied in
combination with OTAWA to several examples. Results show improvements of the evaluated
WCET (with or without counters) up to 50% on TACLeBenchs6.

2.3 Low-level properties
Looking for infeasible paths at binary level benefits from the exact matching of the program
with the hardware, and to inject found properties immediately in the WCET computation.
The price is an increase of the analysis time caused by the program size and the loss of
expressivity implied by machine instructions. Consequently, existing analyses either look for
very simple infeasible paths [6, 22], or design a new WCET computation method [22]. Our

6 http://www.tacle.eu/index.php/activities/taclebench

http://www.tacle.eu/index.php/activities/taclebench
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approach tries to get rid of these limitations by using SMT solvers (Satisfiability Modulo
Theories) to generate infeasible path properties [21]. This approach finds a large set of
infeasible paths on the TACLeBenchs: it cuts from 1 to some thousands of edges in the
control flow graph.

2.4 Delta-guided extraction
In order to lower the real WCET, some approaches compute execution time profiling (using the
estimation of program part execution time with respects to the global WCET) [3] or generate
a static profile using probabilities for decisions at branching points [25]. The delta tool [27]
aims at identifying the conditional statements that are unbalanced in terms of execution
time weight (obtained so far by a naive counting of instructions). This highlights, to the user
or the program analyzers, the parts of code where a semantic analysis or user annotation
should focus to gain more accuracy on the WCET estimation. Branching statement analysis
allows identifying parameters as important or not due to their unbalanced weight.

This method may be combined with any of the extraction method presented in this
section. For instance, it may help reducing the number of pairwise properties to check at the
high-level: if the validity of a pairwise property does not influence the WCET, there is no
need to call the model-checker.

3 Annotation language and traceability

In order to express most of the properties, we use and extend the existing FFX annotation
language [26]. FFX is an open, portable, and expandable annotation format. It allows
combining flow fact information from different high-level tools. It is used as an intermediate
format for WCET analysis; in particular it is both the source and target language for the
traceability tools, that transfer information from one level to the next one.

3.1 Annotation language
The principle of FFX is to express a wide class of information that may be helpful to compute
or enhance the WCET estimation by Otawa. It is specifically dedicated to sequential
programs (C or binary), and allows expressing both data-flow and control-flow properties.

Data-flow: FFX allows one to identify data and express properties such as the type, the
range, the mutability status (local, global, input or output); such information is given
“as is” to Otawa and, may (or may not) be used for the computation of the WCET.
Control-flow: FFX allows one to identify control points and express constraints and
relations between them. Control points are typically identified by line numbers in C code,
or with address offsets in binary code. Classical flow information concerns the maximum
occurence number of a program point (loop bound), the fact that a branch is always or
never taken etc.

The FFX language and associated tools have been extended and adapted to meet the goals
of the project:

Transfer of ILP constraints: the principle of control point counters and constraints,
already existing for expressing the loop bounds has been extended to any kind of linear
relations between counters. This way, flow information discovered by analyzing tools (cf.
Section 2) can be directly transferred to the worst-path analysis module.
Logical paths constraints: the language has been extended to express path properties
in a more logical way; the exclusion between several control points within a particular
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scope. This kind of information can be translated later into classical ILP constraints, or
be handled by the new concept of Path Property Automata (PPA), as presented in the
next Section 4.
Expression of specific scenarios: a strong requirement from the industrial partner is to be
able to evaluate the WCET under some specific use cases. This notion is different from
the classical constraints, since scenarios can contradict each other, and a single FFX file
may contain several scenarios. Since FFX is not designed to be used by humans, a mini
language of user annotations has been designed to be used directly as “pragmas” in the C
code. These source-code annotations are extracted and automatically translated in FFX.

3.2 Traceability

From design level to source code, we transfer the properties by tracing them in the code
generator (by inserting additional comments in the C code).

From C to binary, hundreds of compiler optimizations may have a strong impact on the
structure of the code, making it impossible to match source-level and binary-level control
flow graphs. This ends up in a loss of useful information. For this reason, the current
practice is to turn off compiler optimizations, resulting in low average-case and worst-case
performance. To safely benefit from optimizations (as in [11]), we propose a framework to
trace and maintain flow information up-to-date from source code to machine code [12].

The transformation framework, for each compiler optimization, defines a set of formulas,
that rewrite available semantic properties into new properties depending on the semantics
of the concerned optimization. Supported semantic properties are loop bounds and linear
inequations constraining the execution counts of basic blocks. Consider, for example, loop
unrolling, that replicates a loop body k times to reduce loop branching overhead and increase
instruction level parallelism. The associated rewriting rule divides the initial loop bound by
k, and introduces constraints on the execution counts of the basic blocks within the loop
(see [12, 13] for details).

We have implemented this traceability in the LLVM compiler infrastructure (local patches).
Each LLVM optimization was modified to implement the rewriting rules corresponding to
the optimization. Semantic information is initially read from a file in the FFX format, and
then represented internally in the LLVM compiler, and finally transformed jointly with the
code transformations. Note that, if a transformation happens to be too complex to trace the
information, it can be disabled. This is a better situation than the general current practice
which is disabling all optimizations.

4 Exploitation of semantic properties in WCET estimation

Sections 2 and 3 respectively presented how properties are extracted, expressed and traced.
This section presents how the properties are taken into account in the WCET analysis.

There are basically two ways for handling infeasible path properties in WCET analysis.
The explicit way proceeds by control-flow graph transformations and aims at pruning (any)
infeasible paths from the model. This general method is virtually able to handle any kind
of pruning properties, but may lead to the explosion of the model size. The implicit way,
as formalized in the classical IPET/IPET method, prevents the model size explosion by
summarizing “big” families of infeasible paths with “small” numerical relations. In the
project, we have first considered the implicit way, and then proposed a more versatile method
allowing a mix between explicit and implicit exploitation
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4.1 Exploitation in ILP
In many cases, the properties found at the C or high level can be expressed relatively directly
into ILP constraints, exploitable in the classical IPET framework.

This is typically the case for branch conflicts properties: a conflict is a set of control
points in the program that cannot be all taken during the same execution. Expressing simple
conflict patterns in ILP is rather classical, and numerous examples can be found in literature.
For instance, a conflict between three control points a, b, c, within a loop bounded by the
constant n, can be expressed with: a+ b+ c ≤ 2× n.

We have presented in [19] a method that generalizes the encoding of conflicts with ILP
constraints. In contrast with many existing approaches, it is not based on patterns, but on
the ability of counting how many times a conflict occurs. Thanks to this principle, one can
handle for instance conflicts occurring between different loop scopes. Consider for instance
the following program structure, with two nested loops:

for i = 1 to n do
if ... then a else ...
for j = 1 to m do

if .. then b else ...

and suppose that some analysis has established that, if a is taken during one outer iteration,
b cannot be taken during the whole forthcoming inner loop. Our method gives that this
particular conflict can be expressed with the following ILP constraint:

m · a+ b ≤ n ·m.

The main advantage of the ILP encoding is that the results of semantic analysis can be directly
exploited into existing WCET tools based on the Implicit Path Enumeration Technique.
However, even if the ILP encoding is safe (only infeasible paths are pruned), it is not
necessarily exact (it may still accept some infeasible paths).

4.2 Exploitation through automata
We propose a general, versatile, and non-intrusive process for the integration of the paths
properties [15, 16, 17]. This process assumes that the WCET tool internally handles CFGs
and integer linear constraints, which is the case of every IPET-based WCET analyzers. The
internal representation of the program is extracted, improved according to the annotations
and set back in the tool. The transformation relies on a novel automata-based formalism
that can represent both the program CFG and the annotations. The transformation itself is
defined as an automata product; it results is an automaton whose paths are both existing in
the original CFG and valid with respect to the annotations7.

Figure 3 shows two Path Property Automata (PPA). On the left, a PPA isomorphic to a
program CFG. On the right, a corresponding PPA that additionally reflects the property “in
each iteration of the loop starting with E and ending with X, at most one of A or B can be
taken”.

Note that our formalism mixes explicit (state/transition) and implicit (local counter α,
bounded by one) concerns, and can be exploited accordingly. The purely explicit exploitation
consists in producing a flat product of the graph and the property automaton. In this case,

7 http://www.mrtc.mdh.se/projects/WTC/
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Figure 3 Path Property Automaton.

the resulting modified control graph is a graph where the core of the iteration is replaced by
3 exclusive paths: (1) A is executed and B is not, (2) A is not executed and B is, (3) none of
them are executed.

In order to limit the size explosion, we have also defined a specific product that keeps, as
far as possible, the counter constraints implicit. In this particular example, the algorithm
results on an unchanged control graph decorated with constraints: α = A + B α ≤ E,
which are equivalent to the classical conflict constraint A+B ≤ X.

The analysis performed on the enriched CFG delivers a WCET improvement up to 10%
on the benchmarks of the WCET Tool Challenge.

5 Assessment of WCET estimations

The approaches presented in this paper aim at increasing the precision of WCET estimations
by enhancing the knowledge of possible execution paths. A reduction on the estimated
WCET reflects a tighter analysis due to taking the program semantics into consideration.
However, whether the new estimation is far from or close to the real WCET remains unknown.
In order to evaluate the precision of static WCET analysis, two approaches have been studied.
The first approach is based on simulation, and aims to assess the precision by comparing
the estimated WCET with the longest observed execution time. The second approach is
integrated to the estimation process, and aims at self-assessing the pessimism of the static
analysis.

5.1 Simulation-based assessment
We have developed a simulator (Osim [23]) that uses the same hardware model as Otawa, in
order to provide execution times that are consistent with those provided by the static analysis.
Therefore, for a given program, the simulation provides a guaranteed lower bound, MW CET ,
that forms with the guaranteed upper bound EW CET an uncertainty interval. The relative
size of this interval can be measured by an over-estimation ratio: ρ=(EW CET - MW CET ) /
MW CET . The first way to reduce ρ is to decrease EW CET with more precise static analysis.
The second way is to increase the MW CETwith more thorough test generation.

In the case of reactive programs, which continuously interact with their environment,
performing intensive test generation requires to simulate environments that can react to the
system outputs. This is achieved via the use of Lutin [9, 10], a language for specifying and
playing random constrained reactive scenarios.

The scenario written for simulation must at least integrate the same hypothesis as the
static analysis. If it is not the case, MW CET and EW CET are considering different sets of
realistic executions, and their results are not inconsistent. Consider for instance, the example
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in Section 2.1: the estimation EW CET is obtained under the assumption that the inputs
toggle and onoff are exclusive. When simulating the program without this assumption we
obtain a MW CET which is 60% greater than the EW CET [23].

Writing in Lutin a random scenario, that takes only input constrains into account,
requires very little effort. In many cases, such a simple scenario gives good results. For
instance, for the example of Section 2.1, we have obtained this way a ratio ρ of about 5%.

In some cases, simple random testing is not sufficient to get close to the worst case, and
the user expertise is necessary to write more sophisticated scenarios, that drive the generation
to uncommon and costly executions.

5.2 Quantification of static analysis pessimism
The simulation-based approach provides a safe upper bound on the pessimism of the estimated
WCET, but it does not give any insight into the sources of pessimism: it could be due to
highly dynamic hardware schemes, the behavior of which must be approximated at analysis
time, or to under-specified flow information.

In [4], we introduced a framework that extends static WCET analysis to quantify the
possible overestimation. The approach consists in identifying, during the analysis, whether
the intermediate timing information is certain or uncertain. This identification is done when
over-approximation is necessary (e.g., when merging abstract program states). This way, two
WCETs estimations are computed: one that is a classical and pessimistic upper bound of
the real WCET, and one that results from program/hardware states that are known to be
reachable.

6 Conclusion and future work

In this paper, we summarized the semantic-aware WCET estimation workflow proposed in
the W-SEPT project. From semantic properties extracted at high level, C level or binary level
by static analysis or user annotation, we express them with the FFX annotation language,
and trace them down to the binary level. The WCET estimation tool OTAWA has been
adapted to integrate those properties through CFG modifications or ILP-based constraints.
Generally, the results are good and show that the semantic-aware WCET workflow is a good
opportunity to gain precision in WCET estimation. Moreover, we propose two methods for
assessing the estimated WCET, by computing an over-estimation ratio that measures its
(possible) relative pessimism; one method is based on constrained random simulation, while
the other proceeds directly during the analysis.

This W-SEPT project highlighted that in the context of reactive systems, the semantic-
aware WCET analysis may largely gain precision. In a future project, we aim at focusing
on the specific context of reactive systems and synchronous languages, and consider the
relations between timing analysis and certified code generation (e.g., DO 178C in avionics)
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Abstract
This paper presents the timing analysis methodology developed in the European project P-
SOCRATES (Parallel Software Framework for Time-Critical Many-core Systems). This timing
analysis methodology is defined for parallel applications that must satisfy both performance and
real-time requirements and are executed on modern many-core processor architectures. We dis-
cuss the motivation and objectives of the project, the timing analysis flow that we proposed, the
tool that has been developed to automatize it, and finally we report on some of the preliminary
results that we have obtained when applying this methodology to the three application use-cases
of the project.
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1 Introduction and context of the work

The objective of the European project P-SOCRATES [7] (Parallel Software Framework for
Time-Critical Many-core Systems) was to develop a new design framework to allow current
and future applications with high-performance and real-time requirements to fully exploit the
huge performance opportunities brought by the most advanced many-core processors, whilst
ensuring a predictable performance and maintaining (or even reducing) the development
costs of the applications. The main outcome of the project is the UpScale SDK [1].

Upscale is a framework for the development of real-time high-performance applications
in many-core platforms. The SDK targets systems that demand more and more compu-
tational performance to process large amounts of data from multiple data sources, whilst
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requiring guarantees on processing response times. Many-core processor architectures al-
low these performance requirements to be achieved, by integrating dozens or hundreds of
cores, interconnected with complex networks on chip, paving the way for parallel computing.
Unfortunately, parallelization brings many challenges, by drastically affecting the system’s
timing behavior: providing guarantees becomes harder, because the behavior of the system
running on a multi-core processor depends on interactions that are usually not known by
the system designer. This causes system analysts to struggle to provide timing guarantees
for such platforms. UpScale tackles this challenge by including technologies from different
computing segments to successfully exploit the performance opportunities brought by parallel
programming models used in the high-performance domain and timing analysis from the
embedded real-time domain, for the newest many-core embedded processors available.

Most of the current state-of-the-art software techniques for analysis and scheduling
assume that the system activities (the tasks) are functionally independent and most of their
parameters, including their worst-case execution time (WCET), are known at design time.
However, at run-time, the tasks that are co-scheduled on different cores share hardware
resources, including caches, communication buses and main memory. Those resources
introduce implicit functional dependencies among the tasks, as concurrent accesses to the same
resource are not allowed, affecting their timing behaviour. This effect is exacerbated when
scaling to many-core architectures. Therefore, current analysis and scheduling techniques
cannot be applied as-is and need to be augmented to include all the sources of contention
due to the increased number of shared resources.

As part of P-SOCRATES, we have developed a new timing analysis methodology to
estimate the maximum execution time of parallel applications running on a many-core
architecture. Preliminary results towards this direction have already been presented (see
for example [4, 3, 5, 9, 8]) but we will not elaborate on those works in this paper. Our
timing analysis methodology has been automated and the corresponding tool is now part
of the UpScale SDK. In this paper, we describe the methodology, its automation tool, and
we discuss briefly the results obtained by running it on the three project use-cases on the
Kalray MPPA-256 many-core development board [2].

2 Overview of the application structure and execution model

In the P-SOCRATES execution model, the real-time applications start their execution on
the host cores of the accelerator (i.e. the IO cores in the Kalray MPPA). To execute faster,
they can offload some parts of their computation onto the accelerator at any time during
their execution. The offloaded parts are organized in sets of potentially parallel segments of
code that may be modeled as a directed acyclic graph (DAG). DAG nodes are implemented
with OpenMP tasks with edges representing dependencies among these tasks (implemented
with the depend OpenMP clause). We call each offloaded part, a “phase” of the application.
Each phase can thus be seen as a graph of openMP tasks that can execute concurrently on
different clusters. The focus of our analysis work is on the DAGs, where little previous works
exist. Traditional real-time techniques can then be used to integrate the full computation,
i.e. the sequential execution on the host cores and the offloaded phases.

To analyze the timing behavior of the applications, we define two different analysis
flows: one for systems that use dynamic mapping and scheduling techniques and another
one for static techniques. Due to space limitations, we only provide a brief summary of
the differences between these two approaches. When dynamic techniques are used, the
task-to-thread mapping of the lightweight runtime is performed during execution, based on



V. Nelis, P.M. Yomsi, and L.M. Pinho 10:3

Figure 1 P-SOCRATES analysis flow using dynamic mapping and scheduling.

OpenMP task mapping algorithms, and the scheduling in the operating system uses global
migration of threads. Therefore the system adapts better to variability in the load, achieving
in principle higher performance (due to better load balancing). However, as variability is
higher, less information exists to perform both timing and schedulability analyses, which
may lead to pessimistic theoretical worst-case scenarios (which in practice may not occur).
When static approaches are used, a specific mapping algorithm assigns the OpenMP tasks
to particular threads in the OpenMP runtime, with each thread then statically assigned to
a particular core, with the operating system using partitioned per-core schedulers. In this
case, the system is less adaptable, in many cases incapable of taking advantage of eventual
spare capacity (a core may be idle while tasks wait in other cores), which may lead to worse
average performance. However, there is more information on the configuration of the system,
which may allow a tighter analysis, leading to improved worst-case scenarios.

3 Analysis flow for systems using dynamic mapping and scheduling
techniques

Figure 1 depicts the end-to-end analysis flow. As mentioned above, adopting the dynamic
scheduling scheme means that all the OpenMP tasks are not pinned to a specific thread and
can migrate from one core to another at runtime. In this case, there is only one queue for
all pending/waiting OpenMP tasks. As soon as a core finishes the execution of a task, it
starts (or resumes) the execution of the first task in that single shared queue. To analyze
this configuration, the implemented steps are as follows.

Step ¬. The application is compiled and the compilation of its source code generates at
least two files: a multibinary file – the executable file to be run on the MPPA – and one DAG
per application phase. Every phase (i.e., every “#pragma omp target” directive found in the
source code that offload parts of the computation to the MPPA accelerator) leads to the
creation of a set of omp tasks generated and executed in the accelerator. This set of tasks
and their inter-dependencies are represented by a Task Dependency Graph (TDG) created
at this point by the compiler. More precisely, the TDG represent the graph of dependencies
between all the tasks.
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Step . In this step, we estimate the maximum execution time of every openMP task when
it suffers a maximum interference on the shared resources. We call this execution time the
MEET of the tasks (Maximum Extrinsic Execution Time). The MEET is thus measured by
enforcing the “nastiest” execution environment in which the analyzed tasks suffer as much
interference as possible from other tasks and applications running concurrently. In these
execution conditions, every analyzed task is executed multiple times over the same set of
“worst” input data. This step requires to slightly modify the source code of the application
and insert specialized code that will artificially generate those nasty execution conditions at
runtime. In short, in this step all the openMP tasks of the application execute sequentially
on the same core, by a single thread, while all the other threads execute on the other cores
and generate as much interference as possible on the shared resources (memory, NoC, etc.).
At the end of this step, every node of every TDG (which represents an OpenMP task) is
annotated with its MEET.

Step ®. The annotated TDGs and the timing parameters of the applications (period and
deadline) are given as input to the schedulability analysis tool to check whether all the timing
requirements are met (i.e., no deadline is missed). Since in the case of dynamic mapping and
scheduling we do not know beforehand on which core the tasks will execute, nor concurrently
with which other tasks, the schedulability analysis must use the MEET as the worst-case
execution time of every task, i.e., it assumes a maximum interference on every task. If the
schedulability analysis fails, we have no other option than changing the timing parameters of
the application (period and deadline) or optimizing its source code. We will see in the next
section that we can reduce this pessimism by using a static scheduler.

4 Analysis flow for systems using static mapping and scheduling
techniques

By using a static scheduling scheme, more information is available at design time. For
example, the task-to-thread and thus the task-to-core mappings are known and, for every
application, the subset of openMP tasks running concurrently is also known. This additional
information allows us to considerably reduce the inherent pessimism of a dynamic scheduler,
using a more complex analysis flow (see Figure 2).

Steps ¶. The first step is similar to Steps ¬ and  for dynamic scheduling. The MEET is
computed for every OpenMP task of the TDGs and is annotated to the graphs.

Steps ·. The mapping tool is used to define a static task-to-core mapping that is schedulable.
If the tool finds a valid mapping then the process ends and returns it. Note that the actual
execution time of the tasks at runtime can only be lower than their MEET since the runtime
interference will be lower. This means that any mapping found at this step that meets all
the deadlines while assuming the MEET of every task is also guaranteed to meet all the
deadlines for shorter tasks execution times.

Step ¸. If the mapping tool does not find any mapping that meets all the timing require-
ments, then we check if there exists a feasible mapping in the opposite scenario, i.e. while
assuming the best execution conditions. That is, we measure in this step the maximum
execution time of every openMP task when there is no interference whatsoever on the shared
resources. To do so, similarly to the extraction of the MEET, we run all the openMP tasks
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Figure 2 P-SOCRATES analysis flow using static mapping and scheduling.

sequentially on one core, by a single thread, but this time all the threads running on the
other cores stay idle (busy-waiting) and do not use any resource. We call this maximum
execution time the “MIET” of the tasks (Maximum Intrinsic Execution Time). At the end
of this step, the MIET of every OpenMP task is annotated to the TDGs. The reason for
measuring the MIET of the tasks is because in the case of static scheduling, we know that
some tasks will not execute concurrently with some others (if they are mapped to the same
core for example) and thus assuming the MEET was the most pessimistic assumption we
could make. The MIET, on the other hand, is the most optimistic one.

Steps ¹. This step is similar to step ·. The mapping tool tries to derive a mapping that
meets all the timing requirements but contrary to step ·, it assumes that all the OpenMP
tasks execute for their MIET (instead of using the MEET estimates as in step ·). If it
does not find a feasible mapping then the process stops. In this case, there is no way to
find a feasible mapping since the tool did not even find one assuming the best execution
conditions, i.e. no interference whatsoever between the OpenMP tasks. The application is
thus not schedulable. If the tool did find a valid mapping, then we need to check whether
that mapping still meets all the timing requirements even with the interference that will
occur at runtime, which is the next step.

Step º. This step runs the application by using the static mapping found at step ¹ and
records the maximum actual execution time of every OpenMP task (also referred to as
MAET – Maximum Actual Execution Time). Those MAETs are also added to the TDGs
information.
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Step ». The schedulability analysis tool is now used to check if the mapping that has been
tested at the previous step is still schedulable when assuming for each OpenMP task its
maximum actual/observed execution time (MAET) recorded at Step º. If this is the case,
then the process stops and returns the mapping. Otherwise, the process moves on to Step ¼.

Step ¼. At this stage, we know that the mapping defined at step ¹ meets all the timing
requirements if the tasks do not execute for longer than their MIET. However, when executed
at step º, it turned out that some of the tasks took longer to complete (as potentially
expected) and with those new estimations of their execution times (i.e., the MAETs), the
mapping failed the test at step ». In this case, we display a table containing for each task:
its MIET, MAET, MEET, and the set of tasks it has potentially been executed concurrently
with (i.e., the subset of tasks allocated to a different core). If a task has a MAET closer to
its MEET than to its MIET, we can conclude that the execution of that task is strongly
impacted by the tasks that execute concurrently. Hence, it may be wise not to execute them
on different cores. On the contrary, if its MAET is closer to its MIET, it means that the task
is barely affected by the execution of the concurrent tasks and it may be judicious not to
change that task-to-core allocation. During that step, we let the user register a “restriction”,
telling the mapper that in the next mapping to be produced a particular task cannot be
assigned to the same core as the set of tasks it is currently mapped with. Those restrictions
will be taken into account by the mapping tool at the next step ½ when trying to find another
mapping.

Steps ½. The mapping tool is used again to derive a new mapping. This time the tool
considers the restrictions defined by the user at step ¼ and assumes the tasks execution
times obtained at step º, i.e. the MAETs. If the tool still does not find any valid mapping,
then the user may try another set of restrictions with less, or different constraints. If this
time a valid mapping is found, then we must re-test it, i.e., we must re-extract the maximum
execution times (i.e., the MAETs) observed at runtime for that particular mapping and
re-check the schedulability of the system while assuming those new MAETs. That is, the
process goes back to Step º with the mapping obtained at this step.

Except for these last two steps of defining task restrictions to guide the mapping, which
requires manual intervention, the whole analysis process has been automatized within the
analysis tool presented in the next section. The feedback loop could also be automatized, but
there is yet no known heuristic for the mapping which is able to converge to a stable state.

5 Our P-SOCRATES timing analysis tool

Figure 3 is a screenshot of the tool developed to run the entire timing analysis methodology
for a given application. The tool is written in Python 2.7 and is now part of the UpScale
SDK, available at [1]. It offers a generic interface to easily implement, connect, and run
together different application scripts, possibly written in different programming languages.
The tool is based on three main concepts: commands, actions, and variables.

The commands are the basic blocks of the tool. A command is defined in a specific
programming language and has a pre-defined type. A command is typically a small script
that is used to perform a specific operation and its type describes how it must execute it.
For example, one can define the commands “Upload the source code to the testing device”
or “Compile the code remotely on that device”. The former is of type “SFTP – Put” and its
code lists the files to be uploaded (following a pre-defined syntax), whereas the latter can be
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Figure 3 Screenshot of the P-SOCRATES analysis tool-chain that is part of the UpScale SDK.

a Shell script of type “SSH - Remote command[s]”, meaning that it will be executed by a
remote terminal through SSH. The current version of the tool supports scripts written in
Python, R, as well as in any shell script supported by the machine running the script. Files
can be sent and received through SSH or SFTP and Shell scripts can be executed remotely
through SSH.

The variables are defined by the user. They are simply characterised by a name, a
type, and a value. Before each command is executed, the tool performs a simple “search
and replace” on the code of the command to replace every reference to a variable with its
value. Therefore, variables can be used and accessed by every command, irrespective of its
programming language, simply by referring to it as “@{variable name}” in the command’s
code.

The actions are the means to connect the commands together. Each action is defined as
a set of commands and executing an action simply runs all its commands in the order defined
by the user. Note that the tool also provides special control-flow commands that allow to
implement loops and simple conditional statements. Those control-flow commands are kept
relatively simple as the ambition of the tool is (for now) not to design a new programming
language.

6 Results and conclusions

Our timing analysis methodology has been tested on three use-case applications at the end of
the project: a pre-processing sampling application for infra-red detectors, an online semantic
analysis tool, and a complex event processing engine. Although it is difficult to draw general
conclusions from the analysis of these use-cases, the results did provide information which
allows to reason on the static and dynamic scheduling and mapping approaches proposed in
the project, as well as on the use of the overall analysis flow. It is infeasible in this short
paper to summarize the three application use-cases down to a level of details that would allow
the reader to verify our conclusions, or to make his own. This is why we simply summarize
here the main results that we obtained and the conclusions we made.
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One focus of our analysis was on the difference between the MIET, MEET, and MAET of
the openMP tasks. That is, we wanted to evaluate the gap between the maximum execution
time measured for every openMP task in situations where (a) there is no interference at all
on the shared resources (MIET), (b) there is an extreme contention for the shared resources
(MEET), and (c) the tasks are executed normally (globally or statically) and their inter-task
interference is thus accounted for (MAET).

In [6], we showed that on the Kalray MPPA-256 (Andey) many-core platform the
interference generated by concurrent tasks can slow down the execution of a given task by a
factor 8, i.e. a task’s MEET may be up to 8 times higher than its MIET. In the second half
of the P-SOCRATES project, we change the board from a Kalray MPPA Andey to a Kalray
MPPA Bostan because the company officially announced that they will no longer support the
Andey. Unfortunately, those slow-down factors of 8 could not be reproduced on the Bostan.
The reason is that on the Andey, the task interference generated when measuring the MEET
of a given task was artificially created by (1) allocating data in the same memory banks as
the data of the analyzed task, and then (2) repeatedly accessing those data at runtime. This
way we were saturating the controllers of the memory banks used by the task under analysis,
thereby slowing down its overall execution. On the Bostan board, we were no longer able to
apply this approach because the linker scripts that allowed us (in the Andey) to allocate
data to specific banks were not yet implemented at the time on the Bostan.

An interesting observation that we made while analyzing the execution time of the
openMP tasks running on the Bostan board is that, by repeatedly calling the built-in
“printf()” function from the other cores (that do not run the analyzed tasks), we were able
to generate a near-starvation scenario. That is, for some tasks, the execution was taking
around 49 milli-seconds (with interference) against 117 micro-seconds (without interference)
and 124 micro-seconds (when executed normally). This means a slow-down factor or more
than 400. Note however, that this result may be due to the internal implementation of the
printf function that may temporarily freeze all the cores for some debugging reasons. We
have not yet investigated further the reasons for such a slow-down factor.

The results obtained in this analysis allowed to note that static approaches are more time
predictable than the dynamic ones. Although for a large number of tasks static mapping
and scheduling approaches may experience lower performance at the runtime due to their
by-nature conservativeness (thus increasing the actual response time of the application), their
prediction on the worst-case response time are tighter and more accurate. The work also
leads to conclusions on the need to research on more accurate interference analysis, which
leads to less pessimism than worst-case.
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