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Abstract
Dynamic Time Warping (DTW) and Geometric Edit Distance (GED) are basic similarity meas-
ures between curves or general temporal sequences (e.g., time series) that are represented as
sequences of points in some metric space (X, dist). The DTW and GED measures are massively
used in various fields of computer science and computational biology, consequently, the tasks of
computing these measures are among the core problems in P. Despite extensive efforts to find
more efficient algorithms, the best-known algorithms for computing the DTW or GED between
two sequences of points in X = Rd are long-standing dynamic programming algorithms that
require quadratic runtime, even for the one-dimensional case d = 1, which is perhaps one of the
most used in practice.

In this paper, we break the nearly 50 years old quadratic time bound for computing DTW or
GED between two sequences of n points in R, by presenting deterministic algorithms that run
in O

(
n2 log log logn/ log logn

)
time. Our algorithms can be extended to work also for higher

dimensional spaces Rd, for any constant d, when the underlying distance-metric dist is polyhedral
(e.g., L1, L∞).
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1 Introduction

Searching for optimal algorithms is a standard routine in the study of algorithm design.
Among the most popular basic problems in P are those that have standard algorithms
that run in O(nc) time, where c = 2 or 3. For c = 3 (cubic time), we can find many
kinds of combinatorial matrix multiplication algorithms, and for c = 2 (quadratic time), we
can find many fundamental problems, such as 3SUM, and many basic matching problems
between strings, curves, and point-sequences, such as Edit Distance, Geometric Edit Distance
(GED), Dynamic Time Warping (DTW), Discrete Fréchet Distance, and Longest Common
Subsequence (LCS). These problems are usually referred to as “quadratic problems”.
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25:2 Dynamic Time Warping and Geometric Edit Distance

Motivated to find optimal algorithms for these basic problems, researchers have come
up with time bounds of the form O(nc/polylog(n)), where polylog(n) stands for logk n, for
some constant k > 0. By now, many classical quadratic problems have upper bounds of the
form O(n2/ polylog(n)), including all of the problems mentioned above, except for DTW and
GED; see [3, 29, 18, 21] for such upper bounds. Among the very few archetypal quadratic
problems for which no o(n2)-time algorithm is known, DTW and GED seem to be prominent
examples, considering the decades of extensive efforts to break the quadratic barrier.

Motivation. Complementary to the standard theoretical interest in finding optimal al-
gorithms for basic problems in P, a significant progress has been made in recent years
towards a better understanding these problems, by proving conditional lower bounds via
reductions from basic problems, such as 3SUM and CNF-SAT. Assuming that CNF-SAT
takes Ω

(
2(1−o(1))n) time (the so-called Strong Exponential Time Hypothesis (SETH) [22, 23]),

has led to recent lower bounds for a growing list of problems, including most of the quad-
ratic problems mentioned above. Specifically, assuming SETH, there is no O

(
n2−Ω(1))-time

algorithm for Discrete Fréchet Distance [8], Edit Distance [6], LCS [1, 9], and DTW [1, 9].
A recent seminal work by Abboud et al. [2] shows that even an improvement by a sufficient

polylogarithmic factor for any of these basic problems would lead to major consequences,
such as faster Formula-SAT algorithms, and new circuit lower bounds. Hence, the work of
Abboud et al. highly motivates and revives the study of polylogarithmic-factor improvements
for these basic problems, since it may be the only way to push the efficiency of the solution
“to the limit”.

Problem Statement. Let A = (p1, . . . , pn) and B = (q1, . . . , qm) be two sequences of points
(also referred to as curves) in some metric space (X, dist). A coupling C = (c1, . . . , ck)
between A and B is an ordered sequence of distinct pairs of points from A×B, such that
c1 = (p1, q1), ck = (pn, qm), and

cr = (pi, qj)⇒ cr+1 ∈
{

(pi+1, qj), (pi, qj+1), (pi+1, qj+1)
}
,

for r < k. The DTW-distance between A and B is

dtw(A,B) = min
C: coupling

∑
(pi,qj)∈C

dist(pi, qj). (1)

The coupling C for which the above sum is minimized is called the optimal coupling. The
DTW problem is to compute dtw(A,B), and sometimes also the optimal coupling C.

A monotone matching M = {m1, . . . ,mk} between A and B is a set of pairs of points
from A×B, such that any two pairs (pi, qj), (pi′ , qj′) ∈M satisfy that i ≤ i′ iff j ≤ j′, and
each point in A is matched with at most one point in B and vice versa (possibly some points
in A ∪ B do not appear in any pair of the matching); Note the difference from coupling
(defined above), which covers all points of A ∪B and a point can appear in multiple pairs of
the coupling. The cost ofM is defined to be the sum of all the distances between the points
of each pair inM, plus a gap penalty parameter ρ ∈ R, for each point in A ∪B that does
not appear in any pair ofM.

The Geometric Edit Distance (GED) between A and B is

ed(A,B) = min
M

∑
(pi,qj)∈M

dist(pi, qj) + ρ (n+m− 2|M|) , (2)

where the minimum is taken over all setsM of monotone matchings in the complete bipartite
graph A×B. The monotone matchingM for which the above sum is minimized is called
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the optimal matching. The GED problem is to compute ed(A,B), and sometimes also the
optimal matching. More sophisticated gap penalty functions have been proposed [14], but
for this presentation, we focus on the standard linear gap penalty function, although our
presented algorithm supports more complex gap penalty, such as taking ρ to be a linear
function in the coordinates of the points A∪B. By tuning ρ correctly, meaningful matchings
can be computed even when faced with outlier points that arise from measurement errors or
short deviations in otherwise similar trajectories.

The DTW-distance and GED are massively used in dozens of applications, such as speech
recognition, geometric shape matching, DNA and protein sequences, protein backbones,
matching of time series data, GPS, video and touch screen authentication trajectories, music
signals, and countless data mining applications; see [11, 13, 15, 28, 27, 25, 30, 32, 26] for
some examples.

The best-known worst-case running times for solving DTW or GED are given by long-
standing dynamic programming algorithms that require Θ(nm) time. We review the standard
quadratic-time DTW and GED algorithms in the full version of this paper [19].

DTW was perhaps first introduced as a speech discrimination method [33] back in the
1960’s. GED is a natural extension of the well-known string version of Edit Distance, however,
the subquadratic-time algorithms for the string version do not seem to extend to GED (see
below).

A popular setting in both theory and practice is the one-dimensional case X = R (under
the standard distance dist(x, y) = |x− y|). Even for this special case, no subquadratic-time
algorithms have been known. We mainly consider this case throughout the paper.

Prior Results. Since no subquadratic-time algorithm is known for computing DTW, a
number of heuristics were designed to speed up its exact computation in practice; see Wang
et al. [34] for a survey. Very recently, Agarwal et al. [4] gave a near-linear approximation
scheme for computing DTW or GED for a restricted, although quite large, family of curves.

Recently, Bringmann and Künnemann [9] proved that DTW on one-dimensional point se-
quences whose elements are taken from {0, 1, 2, 4, 8} ⊂ R has no O(n2−Ω(1))-time algorithm,
unless SETH fails. They proved a similar hardness result also for Edit Distance between two
binary strings, improving the conditional lower bound of Backurs and Indyk [6]. This line of
work was extended in a very recent work by Abboud et al. [2], mentioned above, where they
show that even a sufficiently large polylog(n)-factor improvement over the quadratic time
upper bound for Edit Distance or DTW, will lead to major consequences.

Masek and Paterson [29] showed that Edit Distance between two strings of length at most
n over an O(1)-size alphabet can be solved in O(n2/ logn) time. More recent works [7, 20]
managed to lift the demand for O(1)-size alphabet and retain a subquadratic-time bound by
making a better use of the word-RAM model. However, these works do not seem to extend
to GED, especially not when taking sequences of points with arbitrary real coordinates. In
the string version, the cost of replacing a character is fixed (usually 1), hence, we only need
to detect that two characters are not identical in order to compute the replacement cost,
unlike in GED, where the analogous cost for two matched points is taken to be their distance,
under some metric.

Our Results and Related Work. Efforts for breaking the quadratic time barrier for basic
similarity measures between curves and point-sequences were recently stimulated by the
result of Agarwal et al. [3] who showed that the discrete Fréchet distance can be computed in
O(n2/ logn) time. Their algorithm for (discrete) Fréchet distance does not extend to DTW
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or GED, as the recursive formula for the (discrete) Fréchet distance uses the max function,
while the formula for DTW and GED involves the sum. As a result, the Fréchet distance is
effectively determined by a single pair of sequence elements, which fits well into the use of
the Four-Russians technique [5], while the DTW and GED are determined by many pairs
of elements. This makes our algorithms much more subtle, involving a combination and
extension of techniques from computational geometry and graph shortest paths.

To simplify the presentation, we present our results only for the “balanced” case m = n;
extending them to the general case m ≤ n is easy. The standard Θ(mn)-time algorithm is
superior only when m is subpolynomial in n.

I Theorem 1. Given two sequences A = (p1, . . . , pn) and B = (q1, . . . , qn), each of n points
in R, the DTW-distance dtw(A,B) (and optimal coupling), or the GED ed(A,B) (and optimal
matching) can be computed by a deterministic algorithm in O(n2 log log logn/ log logn) time.

Theorem 1 gives the very first subquadratic-time algorithm for solving DTW, breaking the
nearly 50 years old Θ(n2) time bound. In the full version of this paper [19], we extend our
algorithm to give a more general result, which supports high-dimensional polyhedral metric
spaces, as stated in Theorem 2. Additionally, in [19], we extend our algorithm for solving
GED.

I Theorem 2. Let A = (p1, . . . , pn) and B = (q1, . . . , qn) be two sequences of n points in a
polyhedral metric space1 (Rd, dist). Then dtw(A,B) (and optimal coupling), or ed(A,B) (and
optimal matching) can be computed by a deterministic algorithm in O(n2 log log logn/ log logn)
time, for any constant d.

2 Preliminaries

Throughout the paper, we view matrices with rows indexed in increasing order from bottom
to top and columns indexed in increasing order from left to right, so, for example, M [1, 1]
the leftmost-bottom cell of a matrix M .

In Fredman’s classic 1976 articles on the decision tree complexity of (min,+)-matrix
multiplication [17], and on sorting X + Y [16], he often uses the simple observation that
a+ b < a′ + b′ iff a− a′ < b′ − b. This observation is usually referred to as Fredman’s trick.
In our algorithm, we will often use the following extension of Fredman’s trick.

a1 − b1 + · · ·+ ar − br < a′1 − b′1 + · · ·+ a′t − b′t
if and only if

a1 + · · ·+ ar − a′1 − · · · − a′t < b1 + · · ·+ br − b′1 − · · · − b′t. (3)

Our algorithm uses the following geometric domination technique, based on an algorithm
by Chan [12]. Given a finite set Q of red points and blue points in Rd, the bichromatic
dominating pairs reporting problem is to report all the pairs (p, q) ∈ Q2 such that p is red, q
is blue, and p dominates q, i.e., p is greater than or equal to q at each of the d coordinates.
A natural divide-and-conquer algorithm [31, p. 366] runs in O(|Q| logd |Q|+K) time, where
K is the output size. Chan [12] provided an improved strongly subquadratic time bound
(excluding the cost of reporting the output) when d = O(log |Q|), with a sufficiently small
constant of proportionality.

1 That is, the underlying metric is induced by a norm, whose unit ball is a symmetric convex polytope
with O(1) facets (e.g., L1, L∞).
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I Lemma 3 (Chan [12]). Given a finite set Q ⊂ Rd of red and blue points, one can compute
all bichromatic dominating pairs (p, q) ∈ Q2 in time O(cdε |Q|1+ε +K), where K is the output
size, ε ∈ (0, 1) is an arbitrary prespecified parameter, and cε = 2ε/(2ε − 1).

Throughout the paper, we invoke Lemma 3 many times, with ε = 1/2, cε ≈ 3.42, and
d = δ logn, where δ > 0 is a sufficiently small constant, chosen to make the overall running
time of all the invocations dominated by the total output size; see below for details.

We denote by [N ] = {1, . . . , dNe}, the set of the first dNe natural numbers, for any
N ∈ R+.

Throughout the paper, we sometimes refer to a square matrix as a box.
Our model of computation is a simplified Real RAM model, in which “truly real” numbers

are subject to only two unit-time operations: addition and comparison. In all other respects,
the machine behaves like a w = O(logn)-bit word RAM with the standard repertoire of
unit-time AC0 operations, such as bitwise Boolean operations, and left and right shifts.

3 Dynamic Time Warping in Subquadratic Time

As above, the input consists of two sequences A = (p1, . . . , pn) and B = (q1, . . . , qn) of n
points in R. Our algorithm can easily be modified to support the case where A and B have
different lengths.

Preparations. We fix some (small) parameter g, whose value will be specified later; for
simplicity, we assume that n

g−1 is an integer. We decompose A and B into s = n
g−1

subsequences A1, . . . , As, and B1, . . . , Bs, such that for each i, j ∈ {2, . . . , s}, each of Ai and
Bj consists of g − 1 consecutive elements of the corresponding sequence, prefixed by the
last element of the preceding subsequence. We have that A1 and B1 are both of size g − 1,
each Ai and Bj is of size g, for each i, j ∈ {2, . . . , s}, and each consecutive pairs Ai, Ai+1 or
Bj , Bj+1 have one common element.

For each i, j ∈ [s], denote by Di,j the all-pairs-distances matrix between points from Ai
and points from Bj ; specifically, Di,j is a g × g matrix (aka box) (see below for the cases
i = 1 or j = 1) such that for every `,m ∈ [g],

Di,j [`,m] =
∣∣Ai(`)−Bj(m)

∣∣.
For all i ∈ [s], we add a leftmost column with ∞ values to each box Di,1, and similarly, we
add a bottommost row with ∞ values to each box D1,i. In particular, D1,1 is augmented by
both new leftmost column and new bottommost row. The common element D1,1[0, 0] of this

row and column is set to 0. Overall, we have s2 =
(

n
g−1

)2
boxes Di,j , all of size g × g.

We define a staircase path P on a g×g matrix Di,j as a sequence of positions from [g]× [g]
that form a monotone staircase structure, starting from a cell on the left or bottom boundary
and ending at the right or top boundary, so that each subsequent position is immediately
either to the right, above, or above-right of the previous one. Formally, by enumerating the
path positions as P (0), . . . , P (t∗), we have P (t+1) ∈ {P (t)+(0, 1), P (t)+(1, 0), P (t)+(1, 1)},
for each t = 0, . . . , t∗ − 1. The path starts at some point P (0) = (·, 1) or (1, ·), which lies
on either the left or the bottom boundary, and ends at some t∗ (not necessarily the first
such index) for which P (t∗) = (·, g) or (g, ·); that is, P ends on either the right or the top
boundary. Note that t∗ can have any value in [2g − 2]. The number of possible monotone
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staircase paths in a box Di,j is trivially bounded by O(g232g−2), and by observing more
carefully, we can bound it by O(32g), as is easily checked.2

We define the cost of a staircase path P in a box Di,j by

costi,j(P ) =
t∗∑
t=1

Di,j(P (t)).

(For technical reasons, that will become clear in the sequel, we generally do not include the
first position P (0) of the path in evaluating its cost, except in the boxes Di,1 and D1,j for all
i, j ∈ [s].) In the algorithm that follows, we want to assume (or ensure) that no two distinct
paths in a box Di,j have the same cost. This will be the case if we assume that the input
sequences are in sufficiently general position. We omit in this study perturbation techniques
that can handle degenerate situations.

We denote by L the set of positions in the left and bottom boundaries of any box Di,j ,
and by R the set of positions in the right and top boundaries (note that L and R have two
common positions). Given a starting position v ∈ L, and an ending position w ∈ R, we
denote by S(v, w) the set of all staircase paths Pv,w that start at v and end at w (if there is
no staircase path between v and w, then S(v, w) = ∅). We say that P ∗v,w ∈ S(v, w) is the
shortest path between v and w in Di,j iff

costi,j
(
P ∗v,w

)
= min
Pv,w∈S(v,w)

{costi,j (Pv,w)} .

Note that according to our general position assumption, the shortest path between v and w,
within a given box, is unique.

First Stage: Preprocessing. The first stage of our algorithm is to construct a data structure
in subquadratic time (and storage), such that for each box Di,j , and for each pair of positions
(v, w) ∈ L×R, we can retrieve the shortest path P ∗v,w and costi,j(P ∗v,w) in O(1) time, when
such a path exists (i.e., when S(v, w) is nonempty).

The algorithm enumerates all (2g−1)2 pairs of positions (v, w) in a g×g matrix (box) such
that v ∈ L and w ∈ R, discarding pairs that cannot be connected by a monotone staircase
path, and referring to the surviving pairs as admissible. Again, we simplify the notation
by upper bounding this quantity by 4g2. For each such admissible pair (v, w) ∈ L × R,
we enumerate every possible staircase path in S(v, w) as Pv,w : [t∗]→ [g]× [g], where we
write Pv,w =

(
P r
v,w, P

c
v,w

)
as a pair of row and column functions P r

v,w, P
c
v,w : [t∗] → [g],

so that Pv,w(k) =
(
P r
v,w(k), P c

v,w(k)
)
, for each k ∈ [t∗]. (Note that t∗ is a path-dependent

parameter, determined by v, w and the number of diagonal moves in the path.) There are
O(32g) possible staircase paths Pv,w (for all admissible pairs (v, w) ∈ L×R combined), so in
total, we enumerate O(32g) staircase paths. These enumerations can be done in a natural
lexicographic order, so that they induce an order on the < 4g2 admissible pairs of positions of
L×R, and for each such pair (v, w), an order on all possible staircase paths Pv,w ∈ S(v, w).

Given two staircase paths Pv,w and P ′v,w with the same starting and ending posi-
tions in a box Di,j , we want to use the extended Fredman’s trick (as in (3)) to com-
pare costi,j (Pv,w) with costi,j

(
P ′v,w

)
, by comparing two expressions such that one de-

2 Each staircase path can be encoded by its first position, followed by its sequence of moves, where
each move is in one of the directions up/right/up-right. Thus, the number of staircase paths that
start in some position (r, 1) (resp. (1, r)) on the left (resp. bottom) boundary is bounded by 32g−1−r.
Thus, the total number of staircase paths that start in the left or the bottom boundary is bounded by
2
∑g

r=1 32g−1−r = O(32g).
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pends on points from Ai only and the other depends on points from Bj only. Sup-
pose that Pv,w = ((`1,m1), . . . , (`r,mr)) and P ′v,w = ((`′1,m′1), . . . , (`′t,m′t)) (note that
(`r,mr) = (`′t,m′t) = w, since both paths end at w, and that we ignore the starting positions
(`0,m0) = (`′0,m′0) = v). We have

costi,j (Pv,w) =
∣∣Ai(`1)−Bj(m1)

∣∣+ · · ·+
∣∣Ai(`r)−Bj(mr)

∣∣,
and

costi,j
(
P ′v,w

)
=
∣∣Ai(`′1)−Bj(m′1)

∣∣+ · · ·+
∣∣Ai(`′t)−Bj(m′t)∣∣,

and we want to test whether, say, costi,j (Pv,w) < costi,j
(
P ′v,w

)
(recall that we assume that

equalities do not arise), that is, testing whether∣∣Ai(`1)−Bj(m1)
∣∣+· · ·+∣∣Ai(`r)−Bj(mr)

∣∣ < ∣∣Ai(`′1)−Bj(m′1)
∣∣+· · ·+∣∣Ai(`′t)−Bj(m′t)∣∣. (4)

The last term in each side of (4) is actually unnecessary, since they are equal. In order to
transform this inequality into a form suitable for applying the extended Fredman’s trick (3),
we need to replace each absolute value |x| by either +x or −x, as appropriate. To see what
we are after, assume first that the expressions Ai(`k)−Bj(mk) and Ai(`′k)−Bj(m′k) are all
positive, so that (4) becomes

Ai(`1)−Bj(m1) + · · ·+Ai(`r)−Bj(mr) < Ai(`′1)−Bj(m′1) + · · ·+Ai(`′t)−Bj(m′t).

By (3) we can rewrite this inequality as

Ai(`1)+· · ·+Ai(`r)−Ai(`′1)−· · ·−Ai(`′t) < Bj(m1)+· · ·+Bj(mr)−Bj(m′1)−· · ·−Bj(m′t),

which can be written as

Ai(P r
v,w(1)) + · · ·+Ai(P r

v,w(r))−Ai(P ′ rv,w(1))− · · · −Ai(P ′ rv,w(t)) (5)
< Bj(P c

v,w(1)) + · · ·+Bj(P c
v,w(r))−Bj(P ′ cv,w(1))− · · · −Bj(P ′ cv,w(t)). (6)

If Pv,w = P ∗v,w (i.e., if Pv,w is the shortest path from v to w) in Di,j then the inequality above
holds for all pairs (Pv,w, P ′v,w), where P ′v,w ∈ S(v, w) is any other staircase path between v
and w.

For each admissible pair of positions (v, w) ∈ L×R, we guess a staircase path Pv,w as
a candidate for being the shortest path from v to w. The overall number of such guesses
is fewer than (32g)4g2 = 38g3 . For a fixed choice of paths, one for each admissible pair
(v, w) ∈ L×R, we want to test whether all the < 4g2 guessed paths are the shortest paths
between the corresponding pairs of positions. As unfolded next, we will apply this test for all
boxes Di,j , and output those boxes at which the outcome is positive (for the current guessed
set of shortest paths). We will repeat the procedure for all < 38g3 possible sets of guessed
paths Pv,w.

Testing a fixed guess of shortest paths. For each group Ai, we create a (blue) point
αi, and for each group Bj we create a (red) point βj , such that, for every admissible pair
(v, w) ∈ L × R, we have one coordinate for each path P ′v,w ∈ S(v, w), different from the
guessed path. The value of αi (resp., βj) at that coordinate is the corresponding expression (5)
(resp., (6)). The points αi and βj are embedded in Rdg , where dg =

∑
(v,w) Γv,w is the sum

over all admissible pairs (v, w) ∈ L×R, and Γv,w is the number of monotone staircase paths
from v to w minus 1. As discussed earlier, dg = O(32g).
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We have that a (blue) point

αi =
(
. . . , Ai(P r

v,w(1)) + · · ·+Ai(P r
v,w(r))−Ai(P ′ rv,w(1))− · · · −Ai(P ′ rv,w(t)), . . .

)
is dominated by a (red) point

βj =
(
. . . , Bj(P c

v,w(1)) + · · ·+Bj(P c
v,w(r))−Bj(P ′ cv,w(1))− · · · −Bj(P ′ cv,w(t)), . . .

)
,

if and only if each of the paths that we guessed (a path for every admissible pair (v, w) ∈ L×R)
are the shortest paths between the corresponding positions v, w in box Di,j . The number
of points is 2s = Θ(n/g), and the time to prepare the points, i.e., to compute all their
coordinates, is O(2s · 32g · g) = O(32gn).

By Lemma 3, we can report all pairs of points (αi, βj) such that αi is dominated by βj ,
in O

(
c3

2g

ε (n/g)1+ε +K
)
time, where K is the number of boxes at which the test of our

specific guesses comes out positive. As mentioned earlier, we use ε = 1/2, with cε ≈ 3.42.
This runtime is for a specific guess of a set of shortest paths between all admissible pairs

in L × R. As already mentioned, we repeat this procedure at most 38g3 times. Overall,
we will report exactly s2 = Θ

(
(n/g)2) dominating pairs (red on blue), because the set of

shortest paths between admissible pairs in L × R in each box Di,j is unique (recall, we
assumed that any pair of distinct staircase paths in a box do not have the same cost). Since
the overall number of guesses is bounded by 38g3 , the overall runtime for all invocations of
the bichromatic dominance reporting algorithm (including preparing the points) is

O
(

38g3
(

32gn+ c3
2g

ε (n/g)1+ε
)

+ (n/g)2
)
.

Recall that, so far, we have assumed that all the differences within the absolute values
Di,j [`,m] =

∣∣Ai(`)−Bj(m)
∣∣ are positive, which allowed us to drop the absolute values, and

write Di,j [`,m] = Ai(`)−Bj(m), for every i, j ∈ [s], and `,m ∈ [g], thereby facilitating the
use of (the extended) Fredman’s trick (3). Of course, in general this will not be the case, so,
in order to still be able to drop the absolute values, we also have to guess the signs of all
these differences.

For each box Di,j , there is a unique sign assignment σ∗ : [g]× [g]→ {−1, 1} such that

Di,j [`,m] =
∣∣Ai(`)−Bj(m)

∣∣ = σ∗(`,m)(Ai(`)−Bj(m)),

for every `,m ∈ [g] (our “general position” assumption implies that each difference is nonzero).
Thus for any staircase path P = (P r, P c) in Di,j , of length t∗, we have

costi,j(P ) =
t∗∑
t=1

σ∗(P (t)) (Ai(P r(t))−Bj(P c(t))) .

Now we proceed as before, guessing sets of paths, but now we also guess the sign
assignment of the box, by trying every possible assignment σ : [g] × [g] → {−1, 1}, and
modify the points αi and βj , defined earlier, by (i) adding sign factors to each term, and
(ii) adding coordinates that enable us to test whether σ is the correct assignment σ∗ for the
corresponding boxes Di,j .

Denote by P the guessed shortest path for some admissible pair of positions (v, w) ∈ L×R,
and let σ be the guessed sign assignment. Then, for every other path P ′ ∈ S(v, w), we have
the following modified coordinates for αi and βj respectively.(
. . . , σ(P (1))Ai(P r(1)) + · · · + σ(P (r))Ai(P r(r)) − σ(P ′(1))Ai(P ′ r(1)) − · · · − σ(P ′(t))Ai(P ′ r(t)), . . .

)
,(

. . . , σ(P (1))Bj(P c(1)) + · · · + σ(P (r))Bj(P c(r)) − σ(P ′(1))Bj(P ′ c(1)) − · · · − σ(P ′(t))Bj(P ′ c(t)), . . .
)
,
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where we use the same notations as in (4), (5), and (6). In addition, to validate the correctness
of σ, we extend αi and βj by adding the following g2 coordinates to each of them. For every
pair (`,m) ∈ [g]× [g], we add the following coordinates to αi and βj respectively.

(. . . ,−σ(`,m)Ai(`), . . .) ,
(. . . ,−σ(`,m)Bj(m), . . .) .

This ensures that a point αi is dominated by a point βj if and only if Di,j [`,m] =
σ(`,m) (Ai(`)−Bj(m)), for every `,m ∈ [g], and all the < 4g2 paths that we guessed
are indeed shortest paths in box Di,j .

The runtime analysis is similar to the preceding one, but now we increase the number of
guesses by a factor of 2g2 for the sign assignments, and the dimension of the space where
the points are embedded increases by g2 additional coordinates. We now have 2s = Θ(n/g)
points in Rdg+g2 (dg = O(32g) is as defined earlier), and the time to prepare them (computing
the value of each coordinate) is O((n/g)(dg + g2)g) = O(32gn). There are at most 38g3 sets
of paths to guess, and for each set, there are at most 2g2 sign assignment guesses, so in total,
we invoke the bichromatic dominance reporting algorithm at most 2g238g3

< 38g3+g2 times,
for an overall runtime (including preparing the points) of

O
(

38g3+g2
(

32gn+ c3
2g+g2

ε (n/g)1+ε
)

+ (n/g)2
)
.

By setting ε = 1/2 and g = δ log logn, for a suitable sufficiently small constant δ, the first
two terms become negligible (strongly subquadratic), and the runtime is therefore dominated
by the output size, that is O

(
(n/g)2) = O

(
n2/(log logn)2). Each reported pair (αi, βj)

certifies that the current set of < 4g2 guessed paths are all shortest paths in box Di,j . Each
of the s2 = Θ

(
(n/g)2) sets of shortest paths is represented by O(g3) = O((log logn)3) bits

(there are < 4g2 shortest paths connecting admissible pairs, each of length at most 2g − 1,
and each path can be encoded by its first position, followed by the sequence of its at most
2g − 2 moves, where each move is in one of the three directions up/right/up-right), and thus
it can easily be stored in one machine word (for sufficiently small δ). Moreover, we have an
order on the pairs (v, w) (induced by our earlier enumeration), so for each set, we can store
its shortest paths in this order, and therefore, accessing a specific path (for some admissible
pair) from the set takes O(1) time.

Note, however, that we obtain only the positions that the paths traverse and not their
cost. In later stages of our algorithm we will also need to compute, on demand, the cost of
certain paths, but doing this naively would take O(g) time per path, which is too expensive
for us. To handle this issue, when we guess a sign assignment σ, and a set S of the < 4g2

paths as candidates for the shortest paths, we also compute and store, for each path P ∈ S
that we have not yet encountered, the rows-value of P in Ai,

V r
i (P, σ) = σ(P (1))Ai(P r(1)) + · · ·+ σ(P (t∗))Ai(P r(t∗)),

for every i ∈ [s], and the columns-value of P in Bj ,

V c
j (P, σ) = σ(P (1))Bj(P c(1)) + · · ·+ σ(P (t∗))Bj(P c(t∗)),

for every j ∈ [s], where t∗ is the length of P . Observe that, for the correct sign assignment
σ∗ of box Di,j ,

costi,j(P ) = V r
i (P, σ∗)− V c

j (P, σ∗). (7)
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We do not compute V r
i (P, σ) − V c

j (P, σ) yet, but only compute and store (if not already
stored) the separate quantities V r

i (P, σ) and V c
j (P, σ), for each P ∈ S, for every guessed

set S, and sign assignment σ. We store the values V r
i (P, σ) and V c

j (P, σ) in arrays, ordered
by the earlier enumeration of all staircase paths, so that given a staircase path P , and
indices κ, κ′ ∈

[
n
g−1

]
, we can retrieve, upon demand, the values V r

κ(P, σ∗) and V c
κ′(P, σ∗),

and compute costκ,κ′(P ) by using (7), in O(1) time. In total, over all our guessed paths
and sign assignments, this takes O(2g232g · (n/g) · g) = O(3g2+2gn) time and space, which is
already subsumed by the time (and space) bound for reporting dominances from the previous
stage.

To summarize this stage of the algorithm, we presented a subquadratic-time preprocessing
procedure, which runs in O

(
(n/g)2) = O

(
n2/(log logn)2) time, such that for any box Di,j ,

and an admissible pair of positions (v, w) ∈ L×R, we can retrieve the shortest path P ∗v,w
in O(1) time, as well as compute costi,j(P ∗v,w) in O(1) time. This will be useful in the next
stage of our algorithm.

Second Stage: Compact Dynamic Programming. Our approach is to view the (n +
1) × (n + 1) matrix M from the dynamic programming algorithm as decomposed into
s2 =

(
n
g−1

)2
boxes Mi,j , each of size g × g, so that each box Mi,j occupies the same

positions as does the corresponding box Di,j . That is, the indices of the rows (resp.,
columns) of Mi,j are those of Ai (resp., Bj). In particular, for each i, j ∈ [s], the positions
(·, g) on the right boundary of each box Mi,j coincide with the corresponding positions
(·, 1) on the left boundary of Mi,j+1, and the positions (g, ·) on the top boundary of Mi,j

coincide with the corresponding positions (1, ·) on the bottom boundary of Mi+1,j . Formally,
Mi,j [`,m] = M [(i− 1)(g − 1) + `, (j − 1)(g − 1) +m], for each position (`,m) ∈ [g] × [g].
See Figure 1 for an illustration.

Our strategy is to traverse the boxes, starting from the leftmost-bottom one M1,1, where
we already have the values of M at the positions of its left and bottom boundaries L, and
we compute the values of M on its top and right boundaries R. We then continue to the box
on the right, M1,2, now having the values on its L-boundary (where its left portion overlaps
with the R-boundary of M1,1 and its bottom portion is taken from the already preset bottom
boundary), and we compute the values of M on its R-boundary. We continue in this way
until we reach the rightmost-bottom box M1,s. We then continue in the same manner in the
next row of boxes, starting at M2,1 and ending at M2,s, and keep going through the rows of
boxes in order. The process ends once we compute the values of M on the R-boundary of
the rightmost-top box Ms,s, from which we obtain the desired entry M [n, n].

For convenience, we enumerate the positions in L as L(1), . . . , L(2g − 1) in “clockwise”
order, so that L(1) is the rightmost-bottom position (1, g), and L(2g − 1) is the leftmost-
top position (g, 1). Similarly, we enumerate the positions of R by R(1), . . . , R(2g − 1)
in “counterclockwise” order, with the same starting and ending locations. Let Mi,j(L) =
{Mi,j [L(1)], . . .Mi,j [L(2g−1)]} andMi,j(R) = {Mi,j [R(1)], . . .Mi,j [R(2g−1)]}, for i, j ∈ [s].

By definition, for each position (`,m) ∈ [n+ 1]× [n+ 1], M [`,m] is the minimal cost of a
staircase path from (0, 0) to (`,m). It easily follows, by construction, that for each box Di,j ,
and for each w ∈ R, we have

Mi,j [w] = min
u∈L

(u,w) admissible

{
Mi,j [u] + costi,j(P ∗u,w)

}
. (8)

(Note that, by definition, the term Di,j [u] is included in Mi,j [u] and not in P ∗u,w, so it is not
doubly counted.) For each box Mi,j and each position w ∈ R, our goal is thus to compute
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Mi;jMi;j−1

Mi−1;j

L

R

Figure 1 The L-boundary (shaded in gray) of box Mi,j overlaps with the top boundary of Mi−1,j

and the right boundary of Mi,j−1. Once we have the values of M at the positions of the L-boundary
of Mi,j , our algorithm computes the values of M at the positions of its R-boundary (shaded in blue).

the position u ∈ L that attains the minimum in (8). We call such (u,w) the minimal pair
for w in Mi,j .

For each box Di,j , and each admissible pair (v, w) ∈ L × R, we refer to the value
Mi,j [v] + costi,j(P ∗v,w) as the cumulative cost of the pair (v, w), and denote it by c-cost(v, w).

We can rewrite (8), for each w ∈ R, as

Mi,j [w] = min
{
ML
i,j [w], MB

i,j [w]
}
,

where MB
i,j [w] is the minimum in (8) computed only over u ∈ {L(1), . . . , L(g)}, which is the

portion of L that overlaps the R-boundary of the bottom neighbor Mi−1,j (when i > 1),
and ML

i,j [w] is computed over u ∈ {L(g), . . . , L(2g − 1)}, which overlaps the R-boundary of
the left neighbor Mi,j−1 (when j > 1). See Figure 1 for a schematic illustration. (Recall
that the bottommost row and the leftmost column of M are initialized with ∞ values,
except their shared cell M [0, 0] that is initialized with 0.) The output of the algorithm is
Ms,s[R(g)] = Ms,s[g, g] = M [n, n]. We can also return the optimal coupling, by using a
simple backward pointer tracing procedure.

Computing minimal pairs. We still have to explain how to compute the minimal pairs
(u,w) in each box Mi,j . Our preprocessing stage produces, for every box Di,j , the set of
all its shortest paths Si,j = {P ∗v,w | (v, w) ∈ L×R} (ordered by the earlier enumeration of
L×R and including only admissible pairs), and we can also retrieve the cost of each of these
paths in O(1) time (as explained earlier in the preprocessing stage). The cumulative cost
(defined above) of each such pair (v, w) can also be computed in O(1) time, assuming we have
already computed Mi,j [v]. A naive, brute-force technique for computing the minimal pairs is
to compute all the cumulative costs c-costi,j(v, w), for all admissible pairs (v, w) ∈ L×R,
and select from them the minimal pairs. This however would take O(g2) time for each of the
s2 boxes, for a total of Θ(g2s2) = Θ(n2) time, which is what we want to avoid.

Luckily, we have the following important lemma, which lets us compute all the minimal
pairs within a box, significantly faster than in O(g2) time.

I Lemma 4. For a fixed box Di,j , and for any two distinct positions w,w′ ∈ R, let u, u′ ∈ L be
the positions for which (u,w) and (u′, w′) are minimal pairs inMi,j . Then their corresponding
shortest paths P ∗u,w and P ∗u′,w′ can partially overlap but can never cross each other. Formally,
assuming that w > w′ (in the counterclockwise order along R), we have that for any
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u′

u

w′

w

h

Mi,j

Figure 2 By Lemma 4, if (u,w) and (u′, w′) are minimal pairs in Mi,j , then the illustrated
scenario is impossible, since the path P ∗u,w (in green) is a portion of the shortest path from M [0, 0]
to Mi,j [w], and the path P ∗u′,w′ (in orange) is a portion of the shortest path from M [0, 0] to Mi,j [w′].
The illustrated intersection implies that one of the latter paths can decrease its cumulative cost by
replacing its portion that ends at h by the respective portion that ends in h of the other path, which
contradicts the fact that both of these paths are shortest paths.

`, `′,m ∈ [g], if (`,m) ∈ P ∗u,w and (`′,m) ∈ P ∗u′,w′ then ` ≥ `′. That is, P ∗u,w lies fully above
P ∗u′,w′ (partial overlapping is possible). In particular, we also have u ≥ u′ (in the clockwise
order along L)

Lemma 4 asserts the so-called Monge property of shortest-path matrices (see, e.g., [10, 24]).
See Figure 2 for an illustration (of an impossible crossing) and a sketch of a proof.

We can therefore use the following divide-and-conquer paradigm for computing the
minimal pairs within a box Di,j . We start by setting the median index k = b|R|/2c of
|R|, and compute the minimal pair (u,R(k)) and c-cost(u,R(k)), naively, in O(g) time, as
explained above. The path P ∗u,R(k) decomposes the box Di,j into two parts, so that one part,
X, consists all the positions in Di,j that are (weakly) above P ∗u,R(k), and the other part,
Y , consists all the positions in Di,j that are (weakly) below P ∗u,R(k), so that X and Y are
disjoint, except for the positions along the path P ∗u,R(k) which they share. By Lemma 4, the
shortest paths between any other minimal pair of positions in L×R can never cross P ∗u,R(k).
Thus, we can repeat this process separately in X and in Y . Note that the input to each
recursive step is just the sequences of positions of X and Y along L and R, respectively (and
we encode each sequence simply by its first and last elements); there is no need to keep track
of the corresponding portion of Di,j itself.

Denote by T (a, b) the maximum runtime for computing all the minimal pairs (u,w),
within any box Mi,j , for u in some contiguous portion L′ of a entries of L, and w in some
contiguous portion R′ of b entries of R. Clearly, T (1, b) = O(b), and T (a, 1) = O(a). In
general, the runtime is bounded by the recurrence

T (a, b) = max
k∈[a]

{
T (k, b/2) + T (a− k + 1, b/2)

}
+O(a).

It is an easy exercise to show that the solution of this recurrence satisfies T (a, b) =
O ((a+ b) log b). Thus, the runtime of the divide-and-conquer procedure described above,
for a fixed box Mi,j , is O ((|R|+ |L|) log |R|) = O(g log g).

The runtime of computingMi,j(R) for all s2 = Θ
(
(n/g)2) boxes is thusO ((n/g)2g log g

)
=

O
(
n2 log g/g

)
. Overall, including the preprocessing stage, the total runtime of the algorithm

is O
(
(n/g)2 + n2 log g/g

)
= O

(
n2 log g/g

)
. As dictated by the preprocessing stage, we

need to choose g = Θ(log logn), so the overall runtime is O
(
n2 log log logn/ log logn

)
. This

completes the proof of Theorem 1 for DTW. J
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