
Models and Termination of Proof Reduction in
the λΠ-Calculus Modulo Theory
Gilles Dowek

Inria and École normale supérieure de Paris-Saclay, Cachan Cedex, France
gilles.dowek@ens-paris-saclay.fr

Abstract
We define a notion of model for the λΠ-calculus modulo theory and prove a soundness theorem.
We then define a notion of super-consistency and prove that proof reduction terminates in the
λΠ-calculus modulo any super-consistent theory. We prove this way the termination of proof
reduction in several theories including Simple type theory and the Calculus of constructions.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases model, proof reduction, Simple type theory, Calculus of constructions

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.109

1 Introduction

1.1 Models and termination
In Predicate logic, a model is defined by a domain M, a set B of truth values, and an
interpretation function, parametrized by a valuation φ, mapping each term t to an element
JtKφ ofM, and each proposition A to an element JAKφ of B.

Predicate logic can be extended to Deduction modulo theory [11, 12], where a congruence
on propositions defining a computational equality, also known as definitional equality in
Constructive type theory [17], is added. Proofs of a proposition A are then considered to also
be proofs of any proposition congruent to A. In Deduction modulo theory, like in Predicate
logic, a model is defined by a domain M, a set B of truth values, and an interpretation
function.

Usually, the set B is the two-element set {0, 1}, but the notion of model can be extended
to a notion of many-valued model, where B is an arbitrary Boolean algebra, a Heyting
algebra, a pre-Boolean algebra [5], or a pre-Heyting algebra [9]. Boolean algebras permit to
introduce intermediate truth values for propositions that are neither provable nor disprovable,
Heyting algebras to construct models of constructive logic, and pre-Boolean and pre-Heyting
algebras, where the order relation ≤ is replaced by a pre-order relation, to distinguish a
notion of weak equivalence: JAKφ ≤ JBKφ and JBKφ ≤ JAKφ, for all φ, from a notion of strong
equivalence: JAKφ = JBKφ, for all φ. In Deduction modulo theory, the first corresponds to
the provability of A⇔ B and the second to the congruence.

In a model valued in a Boolean algebra, a Heyting algebra, a pre-Boolean algebra, or
a pre-Heyting algebra, a proposition A is said to be valid when it is weakly equivalent to
the proposition >, that is when, for all φ, JAKφ ≥ >̃, and this condition can be rephrased as
JAKφ = >̃ in Boolean and Heyting algebras. A congruence ≡ defined on propositions is said
to be valid when, for all A and B such that A ≡ B, A and B are strongly equivalent, that is,
for all φ, JAKφ = JBKφ. Note that the relation ≤ is used in the definition of the validity of a
proposition, but not in the definition of the validity of a congruence.

EA
T

C
S

© Gilles Dowek;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 109; pp. 109:1–109:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.109
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

109:2 Models and Termination of Proof Reduction in the λΠ-Calculus Modulo Theory

Proof reduction terminates in Deduction modulo a theory defined by a set of axioms T
and a congruence ≡, when this theory has a model valued in the pre-Heyting algebra of
reducibility candidates [12]. As a consequence, proof reduction terminates if the theory is
super-consistent, that is if, for all pre-Heyting algebras B, it has a model valued in B [9].
This theorem permits to completely separate the semantic and the syntactic aspects that are
often mixed in the usual proofs of termination of proof reduction. The semantic aspect is in
the proof of super-consistency of the considered theory and the syntactic in the universal
proof that super-consistency implies termination of proof reduction.

For the termination of proof reduction, the congruence matters, but the axioms do not.
Thus, the pre-order relation ≤ does not matter in the algebra of reducibility candidates and
it is possible to define it as the trivial pre-order relation such that C ≤ C ′, for all C and C ′.
Such a pre-Heyting algebra is said to be trivial. As the pre-order is trivial, all the conditions
defining pre-Heyting algebras, such as a ∧̃ b ≤ a, a ∧̃ b ≤ b... are always satisfied in a trivial
pre-Heyting algebra, and a trivial pre-Heyting algebra is just a set equipped with arbitrary
operations ∧̃, ⇒̃... Thus, in order to prove that proof reduction terminates in Deduction
modulo a theory defined by a set of axioms T and a congruence ≡, it is sufficient to prove
that for all trivial pre-Heyting algebras B, the theory has a model valued in B.

1.2 The λΠ-calculus modulo theory
In Predicate logic and in Deduction modulo theory, terms, propositions, and proofs belong
to three distinct languages. But, it is more thrifty to consider a single language, such as
the λΠ-calculus modulo theory [8], which is implemented in the Dedukti system [1], or
Martin-Löf’s Logical Framework [21], and express terms, propositions, and proofs, in this
language. For instance, in Predicate logic, 0 is a term, P (0) ⇒ P (0) is a proposition and
λα : P (0) α is a proof of this proposition. In the λΠ-calculus modulo theory, all these
expressions are terms of the calculus. Only their types differ: 0 has type nat, P (0)⇒ P (0)
has type Type and λα : P (0) α has type P (0)⇒ P (0).

Like the λΠ-calculus, the λΠ-calculus modulo theory is a λ-calculus with dependent
types, but, like in Deduction modulo theory, its conversion rule is extended to an arbitrary
congruence, typically defined with a confluent and terminating rewrite system. This idea
of extending the conversion rule beyond β-reduction is already present in Martin-Löf type
theory. It is used, in various ways, in different systems [20, 6, 13, 3].

1.3 From pre-Heyting algebras to Π-algebras
The first goal of this paper is to extend the notion of pre-Heyting algebra to a notion of
Π-algebra, adapted to the λΠ-calculus modulo theory.

In Predicate logic and in Deduction modulo theory, the propositions are built from atomic
propositions with the connectors and quantifiers >, ⊥, ∧, ∨, ⇒, ∀, and ∃. Accordingly, the
operations of a pre-Heyting algebra are >̃, ⊥̃, ∧̃, ∨̃, ⇒̃, ∀̃, and ∃̃. In the λΠ-calculus and in
the λΠ-calculus modulo theory, the only connector is Π. Thus, a Π-algebra mainly has an
operation Π̃. As expected, its properties are a mixture of the properties of the implication
and of the universal quantifier of the pre-Heyting algebras.

1.4 Layered models
The second goal of this paper is to extend the usual notion of model to the λΠ-calculus
modulo theory.

G. Dowek 109:3

Extending the notion of model to many-sorted predicate logic requires to consider not
just one domain M, but a family of domains Ms indexed by the sorts. For instance, in
a model of Simple type theory, the family of domains is indexed by simple types. In the
λΠ-calculus modulo theory, the sorts also are just terms of the calculus. Thus, we shall
define a model of the λΠ-calculus modulo theory by a family of domains (Mt)t indexed by
the terms of the calculus and a function J.K mapping each term t of type A and valuation φ
to an element JtKφ ofMA.

The functionsM and J.K are similar, in the sense that both their domains is the set of
terms of the calculus. The goal of the model construction is to define the function J.K and
the functionM can be seen as a tool helping to define this function. For instance, if f is a
constant of type A→ A, where A is a term of type Type, and we have the rule f(x) −→ x,
we want to define the interpretation JfK as the identity function over some set, but to state
which, we must first define the functionM that maps the term A to a setMA, and then
define JfK as the identity function over the setMA.

In Predicate logic and in Deduction modulo theory, terms may be typed with sorts, but
the sorts themselves have no type. In the λΠ-calculus modulo theory, in contrast, terms
have types that have types... This explains that, in some cases, constructing the function
M itself requires to define first another function N , that is used as a tool helping to define
this function. This can be iterated to a several layer model, where the function J.K is defined
with the help of a functionM, that is defined with the help of a function N , that is defined
with the help... The number of layers depends on the model. Such layered constructions are
common in proofs of termination of proof reduction [14, 18, 4], for instance for Pure Type
Systems where sorts are stacked: Type0 : Type1 : Type2 : Type3.

Note that, in this definition of the notion of model, when a term t has type A, we do
not require JtKφ to be an element of JAKφ, but ofMA. This is consistent with the notion of
model of many-sorted predicate logic, where we require JtKφ to be an element ofMs and
where JsKφ is often not even defined.

Valuations must be handled with care in such layered models. In a three layer model, for
instance, the definition of Nt is absolute, the definition ofMt is relative to a valuation ψ,
mapping each variable of type A to an element of NA, and the definition of JtK is relative to
a valuation ψ and to a valuation φ mapping each variable of type A to an element ofMA,ψ.

1.5 Super-consistency and proof reduction

The third goal of this paper is to use this notion of Π-algebra to define a notion of super-
consistency and to prove that proof reduction, that is β-reduction, terminates in the λΠ-
calculus modulo any super-consistent theory.

We prove this way the termination of proof reduction in several theories expressed
in the λΠ-calculus modulo theory, including Simple type theory [11] and the Calculus of
constructions [8]. Together with confluence, this termination of proof reduction is a property
required to define these theories in the system Dedukti [1].

In Section 2, we recall the definition of the λΠ-calculus modulo theory and give three
examples of theories expressed in this framework. In Section 3, we introduce the notion of
Π-algebra and that of model for the λΠ-calculus modulo theory and we prove a soundness
theorem. In Section 4, we define the notion of super-consistency and prove that the three
theories introduced in Section 2 are super-consistent. In Section 5, we prove that proof
reduction terminates in the λΠ-calculus modulo any super-consistent theory.

ICALP 2017

109:4 Models and Termination of Proof Reduction in the λΠ-Calculus Modulo Theory

Empty[] well-formed
Γ ` A : Type x 6∈ Γ Declaration (for object variables)Γ, x : A well-formed
Γ ` A : Kind x 6∈ Γ Declaration (for type family variables)Γ, x : A well-formed
Γ well-formed SortΓ ` Type : Kind
Γ well-formed

x : A ∈ Γ VariableΓ ` x : A
Γ ` A : Type Γ, x : A ` B : Type Product (for types)Γ ` Πx : A B : Type
Γ ` A : Type Γ, x : A ` B : Kind Product (for kinds)Γ ` Πx : A B : Kind

Γ ` A : Type Γ, x : A ` B : Type Γ, x : A ` t : B Abstraction (for objects)Γ ` λx : A t : Πx : A B
Γ ` A : Type Γ, x : A ` B : Kind Γ, x : A ` t : B Abstraction (for type families)Γ ` λx : A t : Πx : A B

Γ ` t : Πx : A B Γ ` u : A ApplicationΓ ` (t u) : (u/x)B
Γ ` A : Type Γ ` B : Type Γ ` t : A A ≡β B Conversion (for types)Γ ` t : B
Γ ` A : Kind Γ ` B : Kind Γ ` t : A A ≡β B Conversion (for kinds)Γ ` t : B

Figure 1 The λΠ-calculus.

2 The λΠ-calculus modulo theory

2.1 The λΠ-calculus

The syntax of the λΠ-calculus is

t = x | Type | Kind | Πx : t t | λx : t t | t t

and the typing rules are given in Figure 1.
As usual, we write A→ B for Πx : A B when x does not occur in B. The α-equivalence

relation is defined as usual and terms are identified modulo α-equivalence. The relation β –
one step β-reduction at the root – is defined as usual. If r is a relation on terms, we write
−→1

r for the congruence closure of r, −→+
r for the transitive closure of −→1

r, −→∗r for its
reflexive-transitive closure, and ≡r for its reflexive-symmetric-transitive closure.

If Σ, Γ, and ∆ are contexts, a substitution θ, binding the variables of Γ, is said to have
type Γ ∆ in Σ if for all x : A in Γ, we have Σ,∆ ` θx : θA. In this case, if Σ,Γ ` t : B,
then Σ,∆ ` θt : θB.

Types are preserved by β-reduction. The β-reduction relation is confluent and strongly
terminating. And each term has a unique type modulo β-equivalence [16].

A term t, well-typed in some context Γ, is a kind if its type in this context is Kind.
For instance, Type and nat → Type are kinds. It is a type family if its type is a kind. In
particular, it is a type if its type is Type. For instance, nat, array, and (array 0) are type
families, among which nat and (array 0) are types. It is an object if its type is a type. For
instance, 0 and [0] are objects.

G. Dowek 109:5

ι : Type

o : Type

⇒ : o→ o→ o

∀A : (A→ o)→ o

ε : o→ Type

(ε (⇒ x y)) −→ (ε x)→ (ε y)
(ε (∀A x)) −→ Πz : A (ε (x z))

with a finite number of quantifiers ∀A

Figure 2 Simple type theory.

2.2 The λΠ-calculus modulo theory
I Definition 1 (Rewrite rule). A rewrite rule is a triple l −→Γ r where Γ is a context and l
and r are β-normal terms. Such a rule is well-typed in the context Σ if, in the λΠ-calculus,
the context Σ,Γ is well-formed and there exists a term A such that the terms l and r both
have type A in this context.

If Σ is a context, l −→Γ r is a rewrite rule well-typed in Σ and θ is a substitution of
type Γ ∆ in Σ, then the terms θl and θr both have type θA in the context Σ,∆. The
relation R – one step R-reduction at the root – is defined by: t R u is there exists a rewrite
rule l −→Γ r and a substitution θ such that t = θl and u = θr. The relation βR – one step
βR-reduction at the root – is the union of β and R.

I Definition 2 (Theory). A theory is a pair formed with a context Σ, well-formed in the
λΠ-calculus, and a set of rewrite rules R, well-typed in Σ in the λΠ-calculus.

The variables declared in Σ are called constants. They replace the sorts, the function
symbols, the predicate symbols, and the axioms of a theory in Predicate logic.

IDefinition 3 (The λΠ-calculus modulo theory). The λΠ-calculus modulo Σ,R is the extension
of the λΠ-calculus obtained modifying the Declaration rules to replace the condition x 6∈ Γ
with x 6∈ Σ,Γ, the Variable rules to replace the condition x : A ∈ Γ by x : A ∈ Σ,Γ, and
the Conversion rules to replace the condition A ≡β B with A ≡βR B.

In this paper, we assume that the relation −→1
βR is confluent and has the subject reduction

property. Confluence and subject reduction are indeed needed to build models and prove
termination of proof reduction. This is consistent with the methodology proposed in [2]: first
prove confluence and subject reduction, then termination.

2.3 Examples of theories
Simple type theory can be expressed in Deduction modulo theory [10]. The main idea in this
presentation is to distinguish terms of type o from propositions. If t is a term of type o, the
corresponding proposition is written ε(t). The term t is a propositional content or a code
of the proposition ε(t). This way, it is not possible to quantify over propositions, but it is
possible to quantify over codes of propositions: there is no proposition ∀X (X ⇒ X), but
there is a proposition ∀x (ε(x)⇒ ε(x)), respecting the syntax of Predicate logic, where the
predicate symbol ε is applied to the variable x to form a proposition. In this presentation,

ICALP 2017

109:6 Models and Termination of Proof Reduction in the λΠ-Calculus Modulo Theory

type : Type

ι : type

o : type

arrow : type→ type→ type

η : type→ Type

⇒ : (η o)→ (η o)→ (η o)
∀ : Πa : type (((η a)→ (η o))→ (η o))
ε : (η o)→ Type

(η (arrow x y)) −→ (η x)→ (η y)
(ε (⇒ x y)) −→ (ε x)→ (ε y)

(ε (∀ x y)) −→ Πz : (η x) (ε (y z))

Figure 3 Simple type theory with a parametric quantifier.

each simple type is a sort and, for each simple type A, there is a quantifier ∀A. Thus, the
language contains an infinite number of sorts and an infinite number of constants.

This presentation can be adapted to the λΠ-calculus modulo theory. To avoid declaring
an infinite number of constants for simple types, we can just declare two constants ι and o of
type Type and use the product of the λΠ-calculus modulo theory to represent the simple
types ι → ι, ι → ι → ι, ι → o... We should declare an infinite number of quantifiers ∀A,
indexed by simple types, but this can be avoided as, in each specific proof, only a finite
number of such quantifiers occur. This leads to the theory presented in Figure 2.

Another possibility is to add the type A as an extra argument of the quantifier ∀. To
do so, we need to introduce a type type for codes of simple types, two constants ι and
o, of type type, and not Type, a constant arrow of type type → type → type, and a
decoding function η of type type→ Type. This way, the quantifier ∀ can be given the type
Πa : type (((η a)→ (η o))→ (η o)). This leads to the theory presented in Figure 3.

The Calculus of constructions [7] can also be expressed in the λΠ-calculus modulo theory
[8] as the theory presented in Figure 4.

3 Algebras and Models

3.1 Π-algebras
The notion of Π-algebra is an adaptation of that of pre-Heyting algebra to the λΠ-calculus.

I Definition 4 (Π-algebra). A Π-algebra is formed with
a set B,
a pre-order relation ≤ on B,
an element >̃ of B,
a function ∧̃ from B × B to B,
a subset A of P+(B), the set of non-empty subsets of B,
a function Π̃ from B ×A to B,

such that
>̃ is a maximal element for ≤, that is for all a in B, a ≤ >̃,
a ∧̃ b is a greatest lower bound of {a, b} for ≤, that is a ∧̃ b ≤ a, a ∧̃ b ≤ b, and for all c,
if c ≤ a and c ≤ b, then c ≤ a ∧̃ b,
a ≤ Π̃(b, S) if and only if for all c in S, a ∧̃ b ≤ c.

A Π-algebra is full if A = P+(B), that is if Π̃ is total on B × P+(B).

G. Dowek 109:7

type : Type

o : type

η : type→ Type

ε : (η o)→ Type

Π̇KK : Πx : type (((η x)→ type)→ type)
Π̇TT : Πx : (η o) (((ε x)→ (η o))→ (η o))
Π̇KT : Πx : type (((η x)→ (η o))→ (η o))
Π̇TK : Πx : (η o) (((ε x)→ type)→ type)

(η (Π̇KK x y)) −→ Πz : (η x) (η (y z))
(ε (Π̇TT x y)) −→ Πz : (ε x) (ε (y z))
(ε (Π̇KT x y)) −→ Πz : (η x) (ε (y z))
(η (Π̇TK x y)) −→ Πz : (ε x) (η (y z))

Figure 4 The Calculus of constructions.

Note that is the relation ≤ is a pre-order, and not necessarily an order, greatest lower
bounds are not necessarily unique, when they exist.

Note also that, from the operation Π̃, we can define an exponentiation operation b →̃ c =
Π̃(b, {c}) that verifies the usual properties of exponentiation: a ≤ b →̃ c if and only if
a ∧̃ b ≤ c. When the set S has a greatest lower bound

∧̃
S, the operation mapping b and S

to b →̃
∧̃
S verifies the same properties as Π̃: a ≤ b →̃

∧̃
S if and only if a ∧̃ b ≤

∧̃
S if and

only if for all c in S, a ∧̃ b ≤ c. But this decomposition is possible only when all sets of A
have greatest lower bounds.

I Example 5. The algebra 〈{0, 1}, 1, ∧̃,P+({0, 1}), Π̃〉, where ∧̃ and Π̃ are defined by the
tables below, is a Π-algebra. Note that, dropping the middle column of the table of Π̃, we
get the table of implication and, dropping the first line, that of the universal quantifier.

∧̃ 0 1
0 0 0
1 0 1

Π̃ {0} {0, 1} {1}
0 1 1 1
1 0 0 1

3.2 Models valued in a Π-algebra B
I Definition 6 (Model). A model is a family of interpretation functions D1, ...,Dn such that
for all i, Di is a function mapping each term t of type B in some context Γ, function φ1
mapping each variable x : A of Γ to an element of D1

A, ..., and function φi−1 mapping each
variable x : A of Γ to an element of Di−1

A,φ1,...,φn−2
, to some Dit,φ1,...,φi−1

in Di−1
B,φ1,...,φi−2

, and
for all t, u, φ1, ..., φn−1

Dn(u/x)t,φ1,...,φn−1
= Dn

t,(φ1,x=D1
u),...,(φn−1,x=Dn−1

u,φ1,...,φn−2
)

For the last function Dn, we write JtKφ1,...,φn−1 instead of Dnt,φ1,...,φn−1
.

In the examples presented in this paper, we use the cases n = 2 and n = 3 only. The
general definition then specializes as follows.

ICALP 2017

109:8 Models and Termination of Proof Reduction in the λΠ-Calculus Modulo Theory

I Example 7. When n = 2, a model is given by two functionsM and J.K such that
M is a function mapping each term t of type B in Γ to someMt,
J.K is a function mapping each term t of type B in Γ and function φ mapping each variable
x : A of Γ to an element ofMA, to some JtKφ inMB , such that for all t, u and φ

J(u/x)tKφ = JtKφ,x=JuKφ .

This generalizes of the usual definition of model for many-sorted predicate logic.
Note that if f is a constant of type A→ A→ A, we can define the function f̂ mapping a

and b inMA to J(f x y)Kx=a,y=b. Using the property J(u/x)tKφ = JtKφ,x=JuKφ , we then get
J(f t u)Kφ = f̂(JtKφ, JuKφ), which is the usual definition of an interpretation.

Note also that the first interpretation functionM does not depend on any valuation, so
it must be very rudimentary. For instance in Definition 15 below, for all objects and most
types, we haveMt = {e}. Only the types o, o→ o... are interpreted in a non trivial way.
Nevertheless, it is sufficient to support the definition of the function J.K.

I Example 8. When n = 3, a model is given by three functions N ,M, and J.K such that
N is a function mapping each term t of type B in Γ to some Nt,
M is a function mapping each term t of type B in Γ and function ψ mapping each
variable x : A of Γ to an element of NA, to someMt,ψ in NB ,
J.K is a function mapping each term t of type B in Γ, function ψ mapping each variable
x : A of Γ to an element of NA, and function φ mapping each variable x : A of Γ to an
element ofMA,ψ, to some JtKψ,φ inMB,ψ, such that for all t, u, ψ, and φ

J(u/x)tKψ,φ = JtK(ψ,x=Mu,ψ),(φ,x=JuKψ,φ) .

I Definition 9 (Model valued in a Π-algebra B). Let B = 〈B, >̃, ∧̃,A, Π̃〉 be a Π-algebra. A
model is valued in B if
Dn−1
Kind,φ1,...,φn−2

= Dn−1
Type,φ1,...,φn−2

= B,
JKindKφ1,...,φn−1 = JTypeKφ1,...,φn−1 = >̃,
JΠx : C DKφ1,...,φn−1 = Π̃(JCKφ1,...,φn−1 , {JDK(φ1,x=c1),...,(φn−1,x=cn−1) | c1 ∈ D1

C , ..., cn−1 ∈
Dn−1
C,φ1,...,φn−2

}).

We often write φ for a sequence φ1, ..., φn and, if c = c1, ..., cn, we write φ, x = c for the
sequence (φ1, x = c1), ..., (φn, x = cn).

I Definition 10 (Validity). A model M valued in some Π-algebra B is model of a theory
Σ,R, or the theory is valid in the model, if

for all constants c : A in Σ, we have JAK ≥ >̃,
and for all A and B well-typed in a context Γ, such that A ≡βR B, we have for all i, for
all φ, Di

A,φ
= Di

B,φ
.

I Theorem 11 (Soundness). Let M be a model, valued in some Π-algebra B, of a theory
Σ,R. Then, for all judgments x1 : A1, ..., xp : Ap ` t : B derivable in Σ,R, and for all φ, we
have

JA1Kφ ∧̃ ... ∧̃ JApKφ ≤ JBKφ .

I Corollary 12 (Consistency).
LetM be a model, valued in some Π-algebra B, of a theory Σ,R. Then, for all judgments
` t : B derivable in Σ,R, we have JBKφ ≥ >̃.

G. Dowek 109:9

LetM be a model, valued in the two-element Π-algebra of Example 5, of a theory Σ,R.
Then, for all judgments ` t : B, derivable in this theory, we have JBKφ = 1.
Let Σ,R be a theory that has a model, valued in the two-element Π-algebra of Example 5.
Then, there is no term t such that the judgment P : Type ` t : P is derivable in Σ,Γ.

4 Super-consistency

4.1 Super-consistency
We now want to define a notion of notion of super-consistency: a theory is super-consistent
if for every Π-algebra, there exists a model of this theory valued in this algebra.

Unfortunately, this constraint is sometimes too strong, as it does not allow to define
interpretations as fixed points, for instance if we have a rule P −→ ((P ⇒ Q)⇒ Q), we want
to define the interpretation of P as the fixed point of the function mapping b to (b ⇒̃ a) ⇒̃ a,
where a is the interpretation of Q, but this function does not have a fixed point in all
Π-algebras. Thus, we weaken this constraint, requiring the existence of model for complete
Π-algebras only. Defining this notion of completeness requires to introduce an order relation
v, that need not be related to the pre-order ≤.

I Definition 13 (Ordered, complete Π-algebra). A Π-algebra is ordered if it is equipped with
an order relation v such that the operation Π̃ is left anti-monotonic and right monotonic
with respect to v, that is

if a v b, then for all S, Π̃(b, S) v Π̃(a, S),
if S v T , then for all a, Π̃(a, S) v Π̃(a, T),

where the relation v is extended to sets of elements of B in a trivial way: S v T if for all a
in S, there exists a b in T such that a v b.

It is complete if every subset of B has a least upper bound for the relation v.

I Definition 14 (Super-consistency). A theory Σ,R, is super-consistent if, for every full,
ordered and complete Π-algebra B, there exists a modelM, valued in B, of Σ,R.

We now prove that the three theories presented in Section 2.3 are super-consistent.

4.2 Simple type theory
Let B = 〈B, >̃, ∧̃,P+(B), Π̃〉 be a full Π-algebra. We construct a model of Simple type theory,
valued in B, in two steps. The first is the construction of the interpretation function M
and the second the construction of the interpretation function J.K. The key idea in this
construction is to takeMo = B, to interpret ε as the identity over B, and ⇒ like → in order
to validate the rewrite rule

ε (⇒ x y) −→ (ε x)→ (ε y) .

Let S and T be two sets, we write F(S, T) for the set of functions from S to T . Let {e} be
an arbitrary one-element set such that e is not in B.

I Definition 15 (A model of Simple type theory).
MKind =MType = B,
MΠx:C D = F(MC ,MD), except ifMD = {e}, in which caseMΠx:C D = {e},
Mι =M⇒ =M∀A =Mε = {e},
Mo = B,

ICALP 2017

109:10 Models and Termination of Proof Reduction in the λΠ-Calculus Modulo Theory

Mx = {e},
Mλx:C t =Mt,
M(t u) =Mt.

JKindKφ = JTypeKφ = >̃,
JΠx : C DKφ = Π̃(JCKφ, {JDKφ,x=c | c ∈MC}),
JιKφ = >̃,
JoKφ = >̃,
J⇒Kφ is the function mapping a and b in B to Π̃(a, {b}),
J∀CKφ is the function mapping f in F(MC ,B) to Π̃(JCKφ, {(f c) | c ∈MC}),
JεKφ is the identity on B,
JxKφ = φx,
Jλx : C tKφ is the function mapping c in MC to JtKφ,x=c, except if for all c in MC ,
JtKφ,x=c = e in which case Jλx : C tKφ = e,
J(t u)Kφ = JtKφ JuKφ, except if JtKφ = e, in which case J(t u)Kφ = e.

We prove that if Γ ` t : B, and φ is a function mapping variables x : A of Γ to elements of
MA, then JtKφ ∈MB . That for all t, u and φ, J(u/x)tKφ = JtKφ,x=JuKφ . And that if t ≡βR u

thenMt =Mu and JtKφ = JuKφ. We thus get the following theorem.

I Theorem 16. Simple type theory is super-consistent.

4.3 Simple type theory with a parametric quantifier
In a model of Simple type theory with a parametric quantifier, like in the previous section,
we want to takeMo = B. But, unlike in the previous section, we do not have o : Type, but
o : type : Type. So o is now an object.

In the previous section, we tookMt = {e} for all objects. This permitted to defineM(t u)
andMλx:C t asMt and validate β-reduction trivially. But this is not possible anymore in
Simple type theory with a parametric quantifier, whereMo is B andMarrow(o,o) is F(B,B).
So, we cannot defineMλx:type x to beMx, but we need to define it as a function. To help
to construct this function, we need to construct first another interpretation function (Nt)t
and parametrize the definition ofMt itself by a function ψ mapping variables of type A to
elements of NA. Thus the model is a three layer model.

Like in the previous section, we want to defineMΠx:C D,ψ, as the set of functions from
MC,ψ toMD,ψ′ . But to define this setMD,ψ′ , we need to extend the function ψ, mapping x
to an element of NC . To have such an element of NC , we need to defineMΠx:C D,ψ as the set
of functions mapping 〈c′, c〉 in NC ×MC,ψ to an element ofMD,(ψ,x=c′). As a consequence,
if φ is a function mapping x of type A to some element ofMA, we need to define J(t u)Kφ
not as JtKφ JuKφ but as JtKφ 〈Mu,ψ, JuKφ〉. As a consequence J.K must be parametrized by
both ψ and φ.

Let B = 〈B, >̃, ∧̃,P+(B), Π̃〉 be a full Π-algebra.
Let {e} be an arbitrary one-element set. Let U be a set containing B and {e}, and closed

by function space and Cartesian product, that is such that if S and T are in U then so are
S × T and F(S, T). Such a set can be constructed, with the replacement scheme, as follows

U0 = {B, {e}},
Un+1 = Un ∪ {S × T | S, T ∈ Un} ∪ {F(S, T) | S, T ∈ Un},

U =
⋃
n

Un.

G. Dowek 109:11

Then, let V be the smallest set containing {e}, B, and U , and closed by Cartesian product
and dependent function space, that is, if S is in V and T is a family of elements of V indexed
by S, then the set of functions mapping an element s of S to an element of Ts is an element
of V . As noted in [19], the construction of the set V , unlike that of U , requires an inaccessible
cardinal. Note that U is both an element and a subset of V.

I Definition 17 (A model of Simple type theory with a parametric quantifier).
NType = NKind = V,
NΠx:C D is the set F(NC ,ND), except if ND = {e}, in which case NΠx:C D = {e},
Ntype = U ,
Nι = No = Narrow = N⇒ = N∀ = Nη = Nε = {e},
Nx = {e},
Nλx:C t = Nt,
N(t u) = Nt.

MKind,ψ =MType,ψ = B,
MΠx:C D,ψ,φ is the set of functions f mapping 〈c′, c〉 in NC ×MC,ψ to an element of
MD,(ψ,x=c′), except if for all c′ in NC ,MD,(ψ,x=c′) = {e}, in which caseMΠx:C D,ψ =
{e},
Mtype,ψ = B,
Mη,ψ is the function of F(U ,V) mapping S to S,
Mε,ψ is the function of F({e},V), mapping e to {e},
Mι,ψ = {e},
Mo,ψ = B,
Marrow,ψ is the function mapping S and T in U to the set F({e} × S, T), except if
T = {e} in which case it maps S and T to {e},
M⇒,ψ =M∀,ψ = e,
Mx,ψ = ψx,
Mλx:C t,ψ is the function mapping c in NC to Mt,(ψ,x=c), except if for all c in NC ,
Mt,(ψ,x=c) = e, in which caseMλx:C t,ψ = e,
M(t u),ψ =Mt,ψ Mu,ψ, except ifMt,ψ = e in which caseM(t u),ψ = e.

JKindKψ,φ = JTypeKψ,φ = >̃,
JΠx : C DKψ,φ = Π̃(JCKψ,φ, {JDK(ψ,x=c′),(φ,x=c) | c′ ∈ NC , c ∈MC,ψ}),
JtypeKψ,φ = >̃,
JιKψ,φ = >̃,
JoKψ,φ = >̃,
JarrowKψ,φ is the function from U × B and U × B to B mapping 〈S, a〉 and 〈T, b〉 to
Π̃(a, {b}),
J⇒Kψ,φ is the function {e} × B and {e} × B to B mapping 〈e, a〉 and 〈e, b〉 to Π̃(a, {b}),
J∀Kψ,φ is the function mapping 〈S, a〉 in U × B, and 〈e, g〉 in {e} × F({e} × S,B) to
Π̃(a, {(g 〈e, s〉) | s ∈ S}),
JηKψ,φ is the function from U × B to B, mapping 〈S, a〉 to a,
JεKψ,φ is the function from {e} × B to B, mapping 〈e, a〉 to a,
JxKψ,φ = φx,
Jλx : C tKψ,φ is the function mapping 〈c′, c〉 in NC ×MC,ψ to JtK(ψ,x=c′),(φ,x=c), except
if for all 〈c′, c〉 in NC ×MC,ψ, JtK(ψ,x=c′),(φ,x=c) = e, in which case Jλx : C tKψ,φ = e,
J(t u)Kψ,φ = JtKψ,φ 〈Mu,ψ, JuKψ,φ〉, except if JtKψ,φ = e, in which case J(t u)Kψ,φ = e.

ICALP 2017

109:12 Models and Termination of Proof Reduction in the λΠ-Calculus Modulo Theory

We prove that if Γ ` t : B and ψ is a function mapping the variables x : A of Γ to
elements of NA, thenMt,ψ ∈ NB . That if Γ ` t : B, ψ is a function mapping variables x : A
of Γ to elements of NA, and φ is a function mapping variables x : A of Γ to elements of
MA,ψ, then JtKψ,φ ∈ MB,ψ and J(u/x)tKψ,φ = JtKψ,x=Mu,ψφ,x=JuKψ,φ . And that if t ≡βR u

then Nt = Nu,Mt,ψ =Mu,ψ, and JtKψ,φ = JuKψ,φ. We thus get the following theorem.

I Theorem 18. Simple type theory with a parametric quantifier is super-consistent.

Note that the set V, thus an inaccessible cardinal, are not really needed to prove the
super-consistency of Simple type theory with a parametric quantifier if we can adapt the
notion of model in such a way that the family N is defined for type families only. The
systematic development of this notion of partial interpretation is left for future work.

A similar proof for the Calculus of constructions is given in the long version of the paper.

5 Termination of proof reduction

We finally prove that proof reduction terminates in the λΠ-calculus modulo any super-
consistent theory.

In Deduction modulo theory, we can define a congruence with non terminating rewrite
rules, without affecting the termination of proof reduction. For instance, the rewrite rule
c −→ c does not terminate, but the congruence it defines is the identity and proofs modulo
this congruence are just proofs in pure Predicate logic. Thus, proof reduction in Deduction
modulo this congruence terminates. So, in the λΠ-calculus modulo this congruence, the
β-reduction terminates, but the βR-reduction does not, as the R-reduction alone does not
terminate. Here, we restrict to prove the termination of β-reduction, not βR-reduction. In
some cases, like for the three theories presented above, the termination of the βR-reduction
is a simple corollary of the termination of the β-reduction. In some others, it is not.

The main notion used in this proof is that of reducibility candidate introduced by Girard
[15]. Our inductive definition, however, follows that of Parigot [22].

I Definition 19 (Candidates). The set >̃ is defined as the set of strongly terminating terms.
Let C be a set of terms and S be a set of sets of terms. The set Π̃(C, S) is defined as the

set of strongly terminating terms t such that if t −→∗β λx : A t′ then for all t′′ in C, and for
all D in S, (t′′/x)t′ ∈ D.

Candidates are inductively defined by the three rules
the set >̃ of all strongly terminating terms is a candidate,
if C is a candidate and S is a set of candidates, then Π̃(C, S) is a candidate,
if S is a non empty set of candidates, then

⋂
S is a candidate.

We write C for the set of candidates. The algebra 〈C,≤, >̃, ∧̃,P+(C), Π̃〉, where ≤ is the
trivial relation such that C ≤ C ′ always, and ∧̃ is any function from C × C to C, for instance
the constant function equal to >̃, is a full Π-algebra. It is ordered by the subset relation and
complete for this order. If C is a candidate, then all the elements of C strongly terminate.

Consider a super-consistent theory Σ,R. We want to prove that β-reduction terminates
in the λΠ-calculus modulo this theory.

As usual, we want to associate a candidate JAK to each term A in such a way that if t
is a term of type A, then t ∈ JAK. In the λΠ-calculus modulo theory, the main difficulty is
to assign a candidates to terms in such a way that if A ≡ B then JAK = JBK. For instance,
if we have the rule P −→ P ⇒ P that permits to type all lambda-terms, including non
terminating ones, we should associate, to the term P , a candidate C such that C = C ⇒̃ C,

G. Dowek 109:13

but there is no such candidate. For super-consistent theories, in contrast, such an assignment
exists, as the theory has a modelM valued in the Π-algebra 〈C,≤, >̃, ∧̃,P+(C), Π̃〉. In this
model, if t is a term of type B in some context Γ, then JBKφ is a candidate.

We then prove that if Γ is a context, φ = φ1, ..., φn is be a sequence of valuations, σ is a
substitution mapping every x : A of Γ to an element of JAKφ and t is a term of type B in Γ,
then σt ∈ JBKφ. We thus get the following theorem.

I Theorem 20. In a super-consistent theory Σ,≡, all well-typed terms strongly terminate.

Acknowledgements. The author wants to thank Frédéric Blanqui for very helpful remarks
on a previous version of this paper.

References
1 A. Assaf, G. Burel, R. Cauderlier, D. Delahaye, G. Dowek, C. Dubois, F. Gilbert,

P. Halmagrand, O. Hermant, and R. Saillard. Dedukti: a logical framework based on
the lambda-Pi-calculus modulo theory. http://www.lsv.ens-cachan.fr/˜dowek/Publi/
expressing.pdf, 2016.

2 A. Assaf, G. Dowek, J.-P. Jouannaud, and J. Liu. Untyped confluence in dependent type
theories. Submitted to publication, 2017.

3 A. Bauer, G. Gilbert, P. Haselwarter, M. Pretnar, and Ch. A. Stone. Design and imple-
mentation of the andromeda proof assistant. Types, 2016.

4 F. Blanqui. Definitions by rewriting in the calculus of constructions. Mathematical Struc-
tures in Computer Science, 15(1):37–92, 2005.

5 A. Brunel, O. Hermant, and C. Houtmann. Orthogonality and boolean algebras for deduc-
tion modulo. In L. Ong, editor, Typed Lambda Calculus and Applications, volume 6690 of
Lecture Notes in Computer Science, pages 76–90. Springer-Verlag, 2011.

6 H. Cirstea, L. Liquori, and B. Wack. Rewriting calculus with fixpoints: Untyped and first-
order systems. In Types, volume 3085 of Lectures Notes in Computer Science. Springer-
Verlag, 2003.

7 T. Coquand and G. Huet. The calculus of constructions. Information and Computation,
pages 95–120, 1988.

8 D. Cousineau and G. Dowek. Embedding pure type systems in the lambda-pi-calculus
modulo. In S. Ronchi Della Rocca, editor, Typed lambda calculi and applications, volume
4583 of Lecture Notes in Computer Science, pages 102–117. Springer-Verlag, 2007.

9 G. Dowek. Truth values algebras and proof normalization. In Th. Altenkirch and
C. McBride, editors, Types for proofs and programs, volume 4502 of Lecture Notes in Com-
puter Science, pages 110–124. Springer-Verlag, 2007.

10 G. Dowek, Th. Hardin, and C. Kirchner. Hol-lambda-sigma: an intentional first-order
expression of higher-order logic. Mathematical Structures in Computer Science, 11:1–25,
2001.

11 G. Dowek, Th. Hardin, and C. Kirchner. Theorem proving modulo. Journal of Automated
Reasoning, 31:33–72, 2003.

12 G. Dowek and B. Werner. Proof normalization modulo. The Journal of Symbolic Logic,
68(4):1289–1316, 2003.

13 S. Foster and G. Struth. Integrating an automated theorem prover into agda. In M. Bobaru,
K. Havelund, G.J. Holzmann, and R. Joshi, editors, NASA Formal Methods, volume 6617
of Lecture Notes in Computer Science. Springer-Verlag, 2011.

14 H. Geuvers. A short and flexible proof of strong normalization for the calculus of construc-
tions. In P. Dybjer, , B. Nordström, and J. Smith, editors, Types for Proofs and Programs,
volume 996 of Lecture Notes in Computer Science, pages 14–38. Springer-Verlag, 1995.

ICALP 2017

109:14 Models and Termination of Proof Reduction in the λΠ-Calculus Modulo Theory

15 J.Y. Girard. Interprétation Fonctionnelle et Élimination des Coupures dans l’Arithmétique
d’Ordre Supérieur. PhD thesis, Université de Paris VII, 1972.

16 R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of the
ACM, 40(1):143–184, 1993.

17 P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.
18 P.-A. Melliès and B. Werner. A generic normalisation proof for pure type systems. In

E. Giménez and Ch. Paulin-Mohring, editors, Types for Proofs and Programs, volume 1512
of Lecture Notes in Computer Science, pages 254–276. Springer-Verlag, 1998.

19 A. Miquel and B. Werner. The not so simple proof-irrelevant model of CC. In H. Geuvers
and F. Wiedijk, editors, Types for Proofs and Programs, pages 240–258. Springer-Verlag,
2003.

20 Q.H. Nguyen, C. Kirchner, and H. Kirchner. External rewriting for skeptical proof assist-
ants. Journal of Automated Reasoning, 29(309), 2002.

21 B. Nordström, K. Petersson, and J.M. Smith. Martin-löf’s type theory. In S. Abramsky,
D. Gabbay, and T. Maibaum, editors, Handbook of Logic in Computer Science, pages 1–37.
Clarendon Press, 2000.

22 M. Parigot. Proofs of strong normalization for second order classical natural deduction. In
Logic in Computer Science, pages 39–46, 1993.

	Introduction
	Models and termination
	The lambda-Pi-calculus modulo theory
	From pre-Heyting algebras to Pi-algebras
	Layered models
	Super-consistency and proof reduction

	The lambda-Pi-calculus modulo theory
	The lambda-Pi-calculus
	The lambda-Pi-calculus modulo theory
	Examples of theories

	Algebras and Models
	Pi-algebras
	Models valued in a Pi-algebra B

	Super-consistency
	Super-consistency
	Simple type theory
	Simple type theory with a parametric quantifier

	Termination of proof reduction

