
A (1 + ε)-Approximation for Unsplittable Flow on
a Path in Fixed-Parameter Running Time∗

Andreas Wiese

Department of Industrial Engineering and Center for Mathematical Modeling,
Universidad de Chile, Santiago, Chile
awiese@dii.uchile.cl

Abstract
Unsplittable Flow on a Path (UFP) is a well-studied problem. It arises in many different settings
such as bandwidth allocation, scheduling, and caching. We are given a path with capacities on
the edges and a set of tasks, each of them is described by a start and an end vertex and a demand.
The goal is to select as many tasks as possible such that the demand of the selected tasks using
each edge does not exceed the capacity of this edge. The problem admits a QPTAS and the best
known polynomial time result is a (2+ ε)-approximation. As we prove in this paper, the problem
is intractable for fixed-parameter algorithms since it is W[1]-hard. A PTAS seems difficult to
construct. However, we show that if we combine the paradigms of approximation algorithms and
fixed-parameter tractability we can break the mentioned boundaries. We show that on instances
with |OPT | = k we can compute a (1 + ε)-approximation in time 2O(k log k)nOε(1) log umax (where
umax is the maximum edge capacity). To obtain this algorithm we develop new insights for UFP
and enrich a recent dynamic programming framework for the problem. Our results yield a PTAS
for (unweighted) UFP instances where |OPT | is at most O(logn/ log logn) and they imply that
the problem does not admit an EPTAS, unless W[1] = FPT.
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1 Introduction

The Unsplittable Flow on a Path problem is motivated by many different settings such as
scheduling, bandwidth allocation, and caching. We are given an undirected path G = (V,E)
with a capacity u(e) ∈ N for each edge e ∈ E. Also, we are given a set of n tasks T . Each task
i ∈ T is specified by a subpath P (i) ⊆ V between (and including) the start (i. e., leftmost)
vertex s(i) ∈ V and the end (i. e., rightmost) vertex t(i) ∈ V , and a demand d(i) ∈ N. For
instance, the tasks can be seen as jobs with start and end times that need some portion of a
shared resource. The goal is to select a subset T ′ ⊆ T of tasks of maximum total size such
that for each edge e the total demand of the selected tasks using e does not exceed u(e).

UFP is NP-hard [7, 14] and therefore approximation algorithms have been studied for
the problem. The best known polynomial time algorithm yields a (2 + ε)-approximation [3]
(improving previous results [5, 7]) and for some cases even a (1 + ε)-approximation is
known [6, 17, 12]. Also, there is a QPTAS [4, 6] which makes it plausible that also a PTAS
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exists. However, despite the recent progress on the problem [6, 17] the best known polynomial
time result is still the mentioned (2 + ε)-approximation [3], and a PTAS seems difficult to
construct. We note that all above algorithms even work in the weighted case of the problem
in which each task has a profit associated with it and one wants to maximize the total profit
of the selected tasks. However, as it is typical in the FPT-literature, in this paper we restrict
ourselves to the unweighted case, i.e., we assume that each task yields a profit of one. No
better results than the above are known for this case.

Another approach for NP-hard problems are fixed-parameter algorithms. For any instance
one identifies a parameter k, e.g., the value of the optimal solution, and searches for an exact
algorithm with a running time of f(k) · nO(1) for some (typically exponential) function f .
A problem is called fixed-parameter tractable (FPT) if it admits such an algorithm. We
refer the reader to the recent textbook by Cygan et al. [13] for an introduction to FPT
algorithms. For UFP, throughout this paper our parameter will be the size of the optimal
solution. Unfortunately, as we show in this paper, it is unlikely that UFP is FPT since the
problem is W[1]-hard.

1.1 Our Contribution
In this paper we show that if we combine the paradigms of approximation and fixed-parameter
algorithms then we can break the mentioned barriers of 2 + ε and W[1]-hardness for UFP.
We present an algorithm with a running time of 2O(k log k)nOε(1) log umax that computes a
(1 + ε)-approximation for any instance with |OPT | = k, i.e., the computed solution contains
at least k/(1 + ε) tasks, where umax = maxe u(e). Hence, we obtain a PTAS for (unweighted)
UFP for instances where |OPT | ≤ O(logn/ log logn).

We first consider the special case where the number of different task demands in the
input is bounded by a parameter k′. We show that then there exists an optimal solution
that has a special structure. We can guess this structure in FPT-time (i.e., the number
of possibilities is bounded by a function f(k, k′)) and based on this we can construct the
solution deterministically.

Then, we generalize this result to the setting where the tasks have arbitrary demands
and the edge capacities are in a bounded range. There, we show that if we have k tasks
with relatively small demand (of at most a 1/k-fraction of the capacities of the edges they
are using) then they form a feasible solution and we are done. Otherwise, in FPT-time we
can guess which of these tasks are contained in the optimal solution and then focus on the
remaining, relatively large tasks. For those we use a result from [6] that shows that there is
a (1 + ε)-approximative solution in which (essentially) each edge has some slack that equals
the minimum size of a large task. Thus, there is still a near-optimal solution if we round up
the task demands so that they have only f(k) many different demands. On the resulting
instance, we apply our FPT-algorithm from above.

To obtain an algorithm for the general case with arbitrary task demands and edge
capacities we use the machinery that was introduced in [17] in order to turn a PTAS for
UFP with resource augmentation (i.e., where the edge capacities are increased by a factor
1 + ε) to a PTAS without resource augmentation. In order to apply it in our setting, we need
several new ideas.

First, we prove that we can identify at most k vertices of the input path such that
each input task uses one of them (for instances in which no k such vertices exist we can
find a solution with k tasks using a greedy algorithm). These vertices divide the path into
k + 1 segments. Our algorithm proceeds in phases and in each phase we process some set
of tasks. These tasks are divided into tiny and non-tiny tasks. A crucial difficulty is to
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estimate how much capacity should be given to each of these groups on each edge. We
cannot afford to guess this for each edge separately. However, we show that there exists a
(1 + ε)-approximative solution in which this allocation has a structure that we can guess
in FPT-time. For each segment S we can essentially argue that (i) either it is not used by
non-tiny tasks and in this case we can give the whole edge capacity to the tiny tasks (ii) or
all tiny tasks use the same capacity on each edge of S which we can guess. Then, for the
remaining decisions for the tiny tasks we call the FPT-algorithm for the case of a bounded
range of edge capacities. For the non-tiny tasks we know that each segment is used by at
most Oε(1) of them and we can guess them step by step in polynomial time.

Finally, we prove that UFP is W[1]-hard (if parametrized by the size of the optimal
solution) which makes it unlikely that there is a fixed-parameter algorithm for it that
computes an optimal solution, instead of an approximation. Also, this implies that UFP
does not admit an EPTAS (i.e., an (1 + ε)-approximation algorithm with a running time of
f(ε) · nO(1) for some function f), unless W[1] = FPT.

We hope that our new techniques yield progress for eventually finding a PTAS for UFP.
For instance, many algorithms for UFP are based on a recursive decomposition of the problem,
embedded into a DP [3, 6, 17]. Using our new algorithm we can now stop such a recursion
once the optimal solution of a considered subproblem has a size of at most O(logn/ log logn).
Also, for the setting of bounded edge capacities we proved that there exist optimal solutions
with a special structure (inherited from the case of few different task demands). This insight
might be useful beyond our result. Note that even for uniform edge capacities no PTAS is
known for UFP.

We would like to point out that in the literature there exists the notion of an FPT-
approximation scheme (FPT-AS) which is a (1 + ε)-approximation algorithm with a running
time of f(ε, k) · nO(1) for some suitable function f , while our algorithm has a running time of
2O(k log k)nOε(1) log umax and thus ε appears in the exponent of n. For UFP, we cannot hope
for an FPT-AS since otherwise we could choose e.g., ε := 1/(2k) and obtain an FPT-algorithm
for UFP, thus contradicting that the problem is W[1]-hard. There are many FPT-ASs known
in the literature, see [18] and references therein.

We note that due to space constraints many proofs and details are omitted in this
extended abstract.

1.2 Other related work
If all input tasks of a UFP instance have (relatively) small demand compared to the capacities
of the edges they use, Chekuri et al. [12] proved that there is a (1 + ε)-approximation via
LP-rounding. This unifies (and improves) previously known results for the special cases
of uniform edge capacities [8] and the no-bottleneck-assumption (NBA) [9] which requires
that maxi∈T d(i) ≤ mine∈E u(e). Under the latter assumption, tasks with relatively large
demands can be handled via dynamic programming, and thus O(1)- and (2+ε)-approximation
algorithms were known for these cases [8, 9, 12] and later such algorithms were also found
for the general case of the problem [7, 3]. Another line of research on UFP is to find good
LP-relaxations for the problem.

The natural LP-relaxation suffers from an integrality gap of Ω(n) [9] but with additional
constraints Chekuri et al. [11] reduced it to O(log2 n) (which was later improved to O(logn)
by the same authors [10]). Anagnostopoulos et al. [2] found a compact LP for the cardinality
case of UFP with constant integrality gap and an extended formulation with a constant gap
for the weighted case. Grandoni et al. [16] prove the currently best integrality gap for an
LP-relaxation without additional variables of O(logn/ log logn).

ICALP 2017
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1.3 Preliminaries and Notation

In a UFP instance, for each edge e ∈ E, let Te ⊆ T be the subset of tasks i using edge
e, i. e., with e ∈ P (i). For every set of tasks T ′ we define d(T ′) :=

∑
i∈T ′ d(i). The goal

of (unweighted) UFP is to select set of tasks T ′ with maximum cardinality |T ′| such that
d(T ′∩Te) ≤ u(e) for each edge e. For a given instance of UFP we denote by OPT an optimal
solution. Without loss of generality, we may assume that |V | = 2n, that each vertex is either
the start-vertex or the end-vertex of exactly one input task, and that each task alone yields
a feasible solution [4]. Throughout this paper, we use the notation Oε(f(n)) for functions
that are in O(f(n)) if ε is a constant. In particular, Oε(1) represents a value that depends
only on ε.

2 Bounded task demands or edge capacities

In this section we first present an algorithm for the special case that the number of different
task demands in the input instance is bounded by a parameter k′. Afterwards we will use it
as a subroutine for the case where the range of edge capacities is bounded by a parameter
k′′ (without a bound on the task demands).

2.1 Bounded number of task demands

Suppose we are given an instance with at most k′ different task demands where |OPT | = k.
We present an algorithm with a running time of f(k, k′) · nO(1) that computes an optimal
solution.

We first guess some properties of OPT . We can assume w.l.o.g. that OPT does not
contain any task i such that there is a task i′ ∈ T \OPT with d(i) = d(i′) and P (i′) ⊆ P (i)
(otherwise we could replace i by i′). Assume that OPT = {i(1), ..., i(k)} such that s(i(`))
lies on the left of s(i(`′)) if and only if ` < `′. We use color-coding (see [1]) to split the input
tasks into k pair-wise disjoint groups T 1, ..., T k such that for each ` the group T ` contains
i(`). Note that in [1] the authors present a version of the color-coding method that does not
require randomization.

I Lemma 1 (implied by [1]). By increasing the running time by a factor 2O(k) logn we can
assume that the input tasks are colored with k colors {1, ..., k} such that for each ` ∈ [k] the
task i(`) is colored with color `.

Next, we guess for each ` ∈ {1, ..., k} the demand of the task i(`). Since for each task
there are k′ possibilities, the total number of guesses is (k′)k. We remove from T ` all tasks
whose demand does not equal the demand that we guessed for i(`). Furthermore, we remove
from T ` each task i such that there is another task i′ ∈ T ` with i 6= i′ and P (i′) ⊆ P (i).
Note that by our assumption about OPT above this does not remove the task i(`). Denote
by T̄ ` the resulting set for each ` ∈ [k].

In the next lemma we define an (optimal) solution OPT ′ with k tasks. It will turn out
that the information guessed so far is sufficient to construct OPT ′. We say that a task i ∈ T
is compatible with a set of tasks T ′ if T ′ ∪ {i} is a feasible solution.

I Lemma 2. There is a solution OPT ′ = {i′(1), ..., i′(k)} (with |OPT ′| = k) that satisfies
for each ` ∈ {1, ..., k} that the task i′(`) is the task in T̄ ` with the leftmost start vertex that
is compatible with the tasks i′(1), ..., i′(`− 1).
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Proof. We prove the lemma by transforming OPT =: OPT0 step by step into OPT ′. For
each ` ∈ {1, ..., k} let OPT` be the solution obtained after ` steps. We will ensure that
each OPT` is feasible and contains k tasks. Let i′(1) be the task in T̄ 1 with the leftmost
start vertex. If i′(1) ∈ OPT0 then we define OPT1 := OPT . If i′(1) /∈ OPT0 then we
replace i(1) by i′(1) and we define OPT1 := OPT \ {i(1)} ∪ {i′(1)}. We claim that OPT1 is
feasible. To this end, let us first consider all edges on the left of s(i(1)). By definition of
i(1), there is no task in OPT starting on the left of s(i(1)). By assumption, the task i′(1)
alone yields a feasible solution. Thus, for each edge e on the left of s(i(1)) we have that
d(OPT1 ∩ Te) ≤ u(e). By construction of the set T̄ 1 we know that P (i(1)) * P (i′(1)) and
thus t(i′(1)) lies on the left of t(i(1)). Since d(i(1)) = d(i′(1)) and OPT is feasible we have
that d(OPT1 ∩ Te) ≤ u(e′) for each edge e′ on the right of s(i(1)).

Assume by induction that we constructed a feasible solution OPT` = {i′(1), ..., i′(`), i(`+
1), ..., i(k)} such that for each `′ ∈ {1, ..., `} the task i′(`′) is the task in T̄ ` with the leftmost
start vertex that is compatible with the tasks i′(1), ..., i′(`′ − 1) and that OPT` contains k
tasks. Let i′(` + 1) be the task in T̄ `+1 with the leftmost start vertex that is compatible
with the tasks i′(1), ..., i′(`). Define OPT`+1 := OPT` \ {i(` + 1)} ∪ {i′(` + 1)}. Clearly,
OPT`+1 contains k tasks. We claim that OPT`+1 is feasible. Let e be an edge on the left
of s(i(` + 1)). Then e is not used by the tasks i(` + 1), ..., i(k). By definition, i′(` + 1) is
compatible with the tasks i′(1), ..., i′(`′) and thus d(OPT`+1 ∩ Te) ≤ u(e). Let e′ be an edge
on the right of s(i(`+ 1)). Again, by construction of the set T̄ `+1 we know that t(i′(`+ 1))
lies on the left of t(i(`+ 1)). Thus, if e′ is used by i′(`+ 1) then it is also used by i(`+ 1).
Since by induction OPT` is feasible, this implies that also OPT`+1 is feasible. J

Note that the start vertices of i′(1), ..., i′(k) are not necessarily ordered, i.e., it could be
that s(i′(`)) lies on the right of s(i′(`+ 1)). Nevertheless, due to Lemma 2 we can use now
the following algorithm to find a solution of size k. We define i′(1) to be the task in T̄ 1 with
the leftmost start vertex. Then, for each ` ∈ {2, ..., k} we inductively define i′(`) to be the
task in T̄ ` with the leftmost start vertex that is compatible with the tasks i′(1), ..., i′(`− 1).
This yields the solution OPT ′ due to Lemma 2.

I Theorem 3. Suppose we are given an UFP instance with k′ different task demands in the
input. Then there is an algorithm that computes a solution of size k in time (k · k′)knO(1) if
such a solution exists.

2.2 FPT-range of edge capacities
We give now a (1 + ε)-approximation algorithm with a running time of f(k, k′′) · nOε(1) for
the case that the edge capacities differ by some parameter k′′. Here, we allow arbitrary task
demands in the input and thus lift the assumption from the previous section. Formally, our
algorithm outputs a solution of size at least k/(1 + ε) or asserts that there is no solution of
size k.

Let umin = mine∈E u(e) and umax = maxe∈E u(e). We assume that umax ≤ k′′ ·umin where
k′′ is a parameter. For each task i we define its bottleneck capacity b(i) := mine∈P (i) u(e).
We define a task i to be large if d(i) ≥ b(i)/k and small otherwise. The next lemma shows
that if there are at least k small tasks then any k of them will form a feasible solution (and
hence we are done). It holds even for arbitrary edge capacities.

I Lemma 4. Any set of at most k small tasks forms a feasible solution.

Proof. Let T ′ be a set of k small tasks. We want to prove that T ′ is a feasible solution. Let e
be an edge. We have that d(T ′∩Te) =

∑
i∈T ′∩Te d(i) <

∑
i∈T ′∩Te b(i)/k ≤

1
k

∑
i∈T ′∩Te u(e) ≤

u(e). J
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If there are at least k small tasks in the input then we output k of them and we are
done. Otherwise, denote by OPTS the small tasks from OPT . We guess in time 2k−1 the
set OPTS , select all these tasks for our final solution, and discard all other small tasks. We
focus on the large tasks now. Denote by OPTL the set of large tasks in OPT .

We borrow an idea from [6, Lemma 2.6] to achieve the following: we sacrifice a factor of
1 +O(ε) in the objective and remove some tasks from OPTL such that if an edge e is used
by at least 1/ε tasks in OPTL we remove at least one task from Te ∩OPTL.

I Lemma 5 ([6]). There is a set OPTL ⊆ OPTL with |OPTL| ≤ O(ε) · |OPTL| such that
for each edge e with |Te ∩OPTL| ≥ 1/ε we have that |Te ∩OPTL| ≥ 1.

We define OPT ′ := OPT \ OPTL with OPTL being defined as in Lemma 5. Assume
for a moment that each edge is used by at least one task in OPTL. Then we know that
d(Te ∩ OPT ′) ≤ u(e) − mini∈OPTL d(i). Since all tasks in OPTL are large we have that
mini∈OPTL d(i) ≥ 1

k · umin. On the other hand, |OPT ′| ≤ k. Thus, OPT ′ remains feasible
if we increase the demand of each large task to the next higher integral multiple of 1

k2umin.
Since d(i) ≤ umax for each task i ∈ T , this yields an instance with only umax

1
k2 ·umin

≤ k2 · k′′

different demands. We can then apply the exact FPT-algorithm from Section 2.1 on the
resulting instance.

This procedure fails if there are edges not used by tasks in OPTL. Denote those edges
by Ef . However, such edges are used by only few tasks in OPTL, at most 1/ε many. Thus,
we can employ a dynamic program (DP) that guesses those edges step by step and guess
their corresponding tasks. Any two consecutive edges eL, eR in Ef yield a subproblem for
which (like above) we can increase the demands of the tasks whose path lies strictly between
eL and eR and then invoke the exact FPT-algorithm from Section 2.1 as a subroutine.

I Theorem 6. There is a (1 + ε)-approximation algorithm with a running time of (k ·
k′′)O(k)nO(1/ε) for UFP-instances with |OPT | = k in which the edge capacities lie within a
factor k′′.

3 General case

In this section we present our main result. For any ε > 0 and any k ∈ N we present an
algorithm with a running time of 2O(k log k) · nOε(1) that computes a solution consisting of at
least k/(1 + ε) tasks on any instance with |OPT | = k or asserts that there is no solution of
size k. We will assume for the moment that the input numbers are bounded by a polynomial
in the input size and later explain how to lift this assumption. Our argumentation consists
of the following steps:

In Section 3.1 we use techniques from [17] in order to gain some slack (i.e., unused
capacity) on the edges while losing only a factor of 1 + ε in the objective. Then we classify
edges into types and supertypes according to their respective amount of slack. We do a
similar classification into types/supertypes for the tasks.
Afterwards in Section 3.2, we identify a set V̄ of k vertices such that each input task
uses at least one of them. They split the input path into k + 1 segments for which we
establish some structural properties.
We present the main algorithm in Section 3.3, described as a (possibly exponential time)
recursion. It processes the tasks in phases with one phase for each supertype.
Finally, we embed our recursive algorithm into a dynamic program with the claimed
running time and lift the assumption that the input numbers are polynomially bounded.
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3.1 Classification of tasks and edges
In this subsection, we apply the machinery presented in [17] in order to classify edges via how
much unused capacity (i.e., slack) they have in some near-optimal solution. Also, we group
tasks into tiny, medium, and huge tasks. Several times we apply some standard shifting
arguments to ensure that we lose at most a factor 1 +O(ε) in the process.

I Lemma 7 ([17]). Let ε > 0 be a constant. Given a UFP instance with optimal solution
OPT , there exists a feasible solution OPT ′ with |OPT ′| ≥ (1−O(ε)) · |OPT | such that for
each edge e there is a value δe ≥ 0 satisfying the following conditions:
1. either δe = (1/ε2)j for some integer j ≥ 0, or δe = 0;
2. d(Te ∩OPT ′) ≤ u(e)− δe;
3. there are at most 1/ε5 tasks i ∈ Te ∩OPT ′ such that d(i) ≥ ε2 · δe;
4. the total demand of all tasks i ∈ Te ∩OPT ′ such that d(i) < ε2 · δe is at most 5δe/ε3.

In our reasoning, we will aim at computing a solution with nearly as many tasks as OPT ′.
Like in [17] we group the edges and the input tasks according to the amount of slack (i.e.,
the δe-values) that they have/that the edges on their respective paths have.

For each edge e ∈ E, we define its type type(e) as follows: If δe = (1/ε2)j for some j ∈ N,
then define type(e) := j; and if δe = 0, then define type(e) := −1. We denote by E(j) the set
of edges of type j in E. We say that a task i ∈ T is of type j if P (i) uses an edge of type j
and no edge of type j − 1 or lower. Let T (j) ⊆ T denote all tasks of type j. We write type(i)
to denote the type of task i.

I Definition 8. A task i ∈ T of type j is huge if d(i) ≥ ε2 · δ(j).

Next, we group the tasks into supertypes. Each supertype consists of 1/ε−1 (usual) types.
We remove the tasks of all types a+ `/ε− 1 with ` ∈ N for some offset a ∈ {0, ..., 1/ε− 1}
and define the tasks supertypes T (`) :=

⋃a+`/ε+1/ε−2
`′=a+`/ε T (`′), one for each ` ∈ Z. For a task

i we say that i is of supertype ` if i ∈ T (`) and we write stype(i) = `. Similarly, we define
for the edges the supertypes E(`) :=

⋃a+`/ε+1/ε−2
`′=a+`/ε E(`′) (for the same offset a as above) and

write stype(e) := ` if e ∈ E(`). This implies that edges of supertype ` have slacks in the range
[
( 1
ε2

)a+`/ε
,
( 1
ε2

)a+`/ε+1/ε−2] =: [s(`)
min, s

(`)
max]. The following proposition follows from a simple

shifting argument.

I Proposition 9. There exists an offset a ∈ {0, ..., 1/ε− 1} such that by reducing the number
of tasks in OPT ′ by a factor 1 +O(ε) we can assume that OPT ′ ⊆

⋃
`∈N T (`).

Since we removed the tasks of all types a+ `/ε− 1 with ` ∈ N we can guarantee that all
non-huge tasks of a supertype T (`) fit into the slack of each edge of supertype `+ 1 or larger.
Let OPT ′NH ⊆ OPT ′ denote the tasks in OPT ′ that are not huge.

I Lemma 10. Let T (`) be a supertype and let e ∈ E(`). Then d(Te ∩ OPT ′NH ∩ T (`)) ≤
10 · 1

ε3 · ( 1
ε2 )a+`/ε+1/ε−2 := d

(`)
max. Moreover, for each edge e′ ∈ E(`′) with `′ ≥ `+ 1 we have

that d(Te ∩OPT ′NH ∩ T (`)) ≤ d(`)
max ≤ 10ε · s(`+1)

min ≤ 10ε · δe′ .

We split the non-huge tasks into tiny and medium tasks. Let µ1, µ2 > 0 with µ1 < µ2
be two constants to be defined later. We say that a non-huge task i ∈ T (`) is tiny if
d(i) ≤ µ1 · s(`)

min and it is medium if d(i) ≥ µ2 · s(`)
min. Note that there are some tasks that are

neither tiny nor medium, i.e., a task i with µ1 · s(`)
min < d(i) < µ2 · s(`)

min. We will neglect such
tasks. Due to the following lemma, we can find values for µ1, µ2 such that this is justified.
Also, there is a large gap between these two values which we will exploit later.

ICALP 2017
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I Lemma 11. For each ε > 0 we can find a set of 1/ε pairs (µ(1)
1 , µ

(1)
2 ), ..., (µ(1/ε)

1 , µ
(1/ε)
2 )

such that for one pair (µ(r)
1 , µ

(r)
2 ) it holds that µ1 ≤ ε

αε
with αε := 1

ε ·
(

2
ε6 + 10ε

µ2
· (1/ε)1/ε

)
and the set OPT ′ ∩

⋃
`{i ∈ T (`)|µ(r)

1 · s
(`)
min < d(i) < µ

(r)
2 · s

(`)
min} contains at most ε · |OPT ′|

tasks.

We assume that we guess the correct pair (µ(r)
1 , µ

(r)
2 ) and define the sets of tiny and

medium tasks according to it.

3.2 Structure via segments
Next, we show that we can compute a set of at most k vertices such that the path of each
input task uses one of them (otherwise we can directly find a solution with k tasks).

I Lemma 12. In polynomial time we can identify (i) a set V̄ ⊆ V of at most k vertices such
that for each task i ∈ T there is a vertex v ∈ V̄ such that v ∈ P (i) or (ii) a set of k tasks
that form a feasible solution.

Proof. Let i be the task with leftmost end vertex t(i). We define T̄ := {i} and V̄ := {t(i)}.
We remove all tasks using t(i) from the input. Note that all remaining tasks start and end
on the right of t(i). We iterate this process k − 1 more times: among the remaining tasks we
identify the task i′ with left most end vertex t(i′) and we add t(i′) to T̄ , we add t(i′) to V̄ ,
and we remove all tasks using t(i′). At the end, we have that |T̄ | = |V̄ | and by construction,
no two tasks in T̄ share a vertex (and thus also no edge) and each input task uses one vertex
in V̄ . Hence, if |T̄ | ≥ k then we found a feasible solution with k tasks. Otherwise, the set V̄
is the set satisfying the claim of the lemma. J

The vertices in V̄ divide the path into a set of at most k + 1 segments S, i.e., any two
vertices v, v′ ∈ V̄ such that there is no vertex of V̄ between v and v′ induce a segment S ⊆ E
which contains all edges between v and v′. Additionally, S contains a segment containing all
edges between the leftmost vertex of G and the leftmost vertex in V̄ and a segment between
the rightmost vertex in V̄ and the rightmost vertex in G. For each supertype T (`) we can
bound the number of huge tasks starting or ending within a segment.

I Lemma 13. Let T (`) be a supertype and let S be a segment. Then there can be at most 2
ε6

huge tasks in T (`) ∩OPT ′ that use an edge of S.

A core problem for our algorithm is that we do not know how to allocate the edge
capacities between the tiny, the medium, and the huge tasks. To this end, we prove the
following lemma that will later allow us to essentially guess this allocation in FPT-time.

I Lemma 14. By reducing the number of tasks in OPT ′ by at most a factor 1 + O(ε) we
can assume that for each segment S ∈ S and each supertype ` one of the following holds:

there is no huge or medium task of supertype ` using any edge of S or
at most αε tiny tasks of supertype ` start or end in S. In this case, the total demand of
all tiny tasks of type j starting or ending in S is bounded by αε · µ1 · s(`)

min ≤ ε · s
(`)
min.

Proof. Consider a segment S and assume that there is a huge or medium task using some
edge e of S. By Lemma 13 there can be at most 2

ε6 such huge tasks. Moreover, there can

be at most d(`)
max

µ2·s(`)
min
≤ 10ε·s(`+1)

min
µ2·s(`)

min
≤ 10ε

µ2
· (1/ε)1/ε such medium tasks and hence at most ε · αε

medium or huge tasks in total. If there are more than αε tiny tasks starting or ending in S
then we remove all medium and huge tasks using an edge of S. We do this operation with



A. Wiese 67:9

all segments S. We charge the cost of the removed huge and medium tasks to the tiny tasks.
Let n′ be the number of removed tasks. Then OPT ′ ≥ 1

2εn
′ and thus n′ ≤ 2ε ·OPT ′. J

If for a segment S and a supertype ` the first case of Lemma 14 applies then we say that
the pair (S, `) is tiny, otherwise we say that (S, `) is huge. As we show in the next lemma, in
time FPT-time we can guess which task supertypes appear in the optimal solution.

I Lemma 15. In time (logn)O(k) ≤ n ·2O(k) we can guess the set L = {` | OPT ∩T (`) 6= ∅}.

Proof. Each supertype ` arising in the optimal solution is an integer between −1 and
log1/ε2 maxe∈E u(e). Since the input numbers are polynomially bounded this yields at most
O(logn) many supertypes. For each of the k tasks in OPT ′ there are O(logn) options for
its supertype. Thus, in time O(logn)k we can guess all supertypes arising in OPT ′. J

Next, we use color-coding [1] in order to guess the correct supertype of each tiny task
from OPT ′. More precisely, we use it in order to obtain sets T̄ (`) for ` ∈ N such that each
tiny task i ∈ OPT ′ of supertype ` is contained in the set T̄ (`) (but the set T̄ (`) possibly
contains more tasks). Note that then we know the set T \

⋃
` T̄ (`) which contains all medium

and huge tasks in OPT ′.

I Lemma 16 ([1]). By increasing the running time by a factor 2O(k) · logn we can assume
that we are given sets T̄ (`), ` ∈ N, such that each tiny task i ∈ OPT ′ of supertype ` is
contained in the set T̄ (`).

3.3 Recursive algorithm
Denote by OPT ′T , OPT ′M , and OPT ′H the tiny, medium and huge tasks in OPT ′, respectively.
We describe now a recursive algorithm that constructs a solution with |OPT ′| many tasks.
We will show later how to embed it into a dynamic program that runs in FPT-time. Our
algorithm proceeds in phases, each phase corresponds to one supertype `. Let ` be the
supertype of the first phase. We assume that stype(e) ≥ ` for each edge e (otherwise we can
reduce the instance to a set of smaller instances in which this holds).

First, in time 2k+1 we guess for each segment S whether (S, `) is huge or tiny. For each
edge e ∈ S we allocate a certain amount of capacity u`(e) for the tiny tasks of supertype
`. A special case arises for the supertype ` containing the type j = −1. There are no tiny
tasks of this supertype and we define u`(e) := 0. Otherwise, if (S, `) is huge then this means
that the tiny tasks of supertype ` starting or ending in S have very little total capacity, at
most ε · s(`)

min. However, there might be more tiny tasks that use the edges of S but do not
start or end in S. Denote by x their total capacity and note that x ≤ d(`)

max. We assign the
same amount of capacity to the tiny tasks in T̄ (`) on each edge e ∈ S. We guess the value
x̄ := min

{
d

(`)
max,

(⌈
x/(s(`)

min · ε)
⌉

+ 1
)
· ε · s(`)

min

}
and we define u`(e) := x̄ for each edge e ∈ S.

There are only Oε(1) many options for x̄. Since there are at most k + 1 segments there are
only 2Oε(k) many guesses for the huge pairs (S, `).

I Lemma 17. Let e be an edge of a segment S such that (S, `) is huge. Then d(OPT ′T ∩
Te ∩ T̄ (`)) ≤ u`(e).

Now assume that (S, `) is tiny. We do not know the supertype of each edge e ∈ S.
However, we know that for each edge e ∈ S of supertype ` there is no huge or medium
task of supertype ` that uses e. For each edge e ∈ S of supertype ` + 1 or larger we
know that the tiny tasks of supertype ` use at most d(`)

max units of its capacity. Therefore,

ICALP 2017
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we can give to the tiny tasks of supertype ` the capacity of each edge e ∈ S that is
not used by the previously guessed huge tasks, up to a maximum of d(`)

max. We define
u`(e) := min{u(e) − d(OPT ′H,≥`−1 ∩ Te) − (1 − ε)s(`)

min, d
(`)
max} for each edge e ∈ S where

OPT ′H,≥`−1 is the set of huge tasks i ∈ OPT ′ that satisfy d(i) ≥ ε2 · s(`−1)
min .

I Lemma 18. Let ` be a supertype. Let e be an edge of a segment S such that (S, `) is tiny.
Then d(OPT ′T ∩ Te ∩ T̄ (`)) ≤ u`(e).

The following lemma implies that after we assigned u`(e) units of capacity to the tiny tasks
the remaining capacity is sufficient for the huge and medium tasks in OPT ′ (in particular
the not yet selected ones of supertype ` or larger). This holds even if we assign the capacity
of the tiny tasks in this manner for all supertypes `′ ≤ `.
I Lemma 19. For each edge e of a segment S we have that

∑
`′:`′≤` u`′(e) +d(OPT ′H ∩Te) +

d(OPT ′M ∩ Te) ≤ u(e)− 1
2 · s

(`)
min where ` := stype(e).

For each edge e we have that u`(e) ∈ [ε · s(`)
min, d

(`)
max], independent on whether e is in a

huge or in a tiny segment. Thus, the u`(e) values are in a constant range. We call our
FPT-algorithm for this case (see Theorem 6) with the input consisting of T̄ (`) and the edge
capacities u`. Due to Lemmas 17 and 18 it will output a solution consisting of at least
|OPT ′T ∩ T̄ (`)| tasks.

Next, we want to guess the huge and medium tasks of supertype ` in OPT ′ and split the
path into subpaths such that each subpath E′ has the property that stype(e′) ≥ `+ 1 for
each edge e′ ∈ E′. First, we guess which segments S have the property that for some edge
e ∈ S we have that stype(e) = `. We can do this in time 2k+1. Denote by S ′ the resulting
set of segments. We process the segments in S ′ from left to right, starting with the leftmost
such segment S ∈ S ′. We guess the leftmost and the rightmost edge in S of supertype `,
denote them by eL and eR, respectively. Then we guess the at most Oε(1) medium and
huge tasks of supertype ` that use eL or eR. We recurse on the subpath consisting all edges
on the left of eL. There, each edge is of supertype at least ` + 1. On the subpath on the
right of eR we continue splitting the remaining path into subpaths. To this end, we take the
next segment S′ ∈ S ′, guess its leftmost and rightmost edges e′L and e′R of supertype `, and
guess the Oε(1) medium and huge tasks of supertype ` using one of them. We recurse on the
subpath between eR and e′L, knowing that each of its edges is of supertype at least ` + 1.
Also, there cannot be any task whose path lies strictly between eL and eR since each input
task has to use some vertex in V̄ . We proceed with splitting the remaining segments in S ′
on the right of S′. To this end, it suffices to know e′R and the Oε(1) medium and huge tasks
using it, rather than also eL, eR, and e′L and the medium and huge tasks using those (apart
from those that use also e′R).

We can embed our whole recursive algorithm into a dynamic program whose running
time is FPT. Here we use ideas from [17], in particular for using the slack on the edges in
order to be able to “forget” some of the previously taken decisions. Crucial here is that
in order to define the u`(e)-values it is not necessary to remember all previously guessed
tasks and all values u`′(e) for all `′ < `, but only the tasks in OPT ′H,≥`−1 that use the
leftmost or the rightmost edge of the subpath of the respective subproblem. One can show
that those can be only Oε(1) many. Thus, each arising subproblem can be described by a
supertype `, a subpath E′ of E, and the Oε(1) tasks in OPT ′H,≥`−1 using the leftmost or
the rightmost edge of E′. This bounds the number subproblems and thus the number of
DP-cells by nOε(1) · log umax. With an additional color coding step and some slight extensions
to the above routine one can remove the assumption that the input values are polynomially
bounded.
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I Theorem 20. There exists a (1 + ε)-approximation algorithm with a running time of
2O(k log k)nOε(1) log umax for UFP-instances with |OPT | = k.

I Corollary 21. There is a PTAS for UFP instances that have satisfy the property that
|OPT | ≤ O(logn/ log logn).

4 W[1]-hardness

In this section we prove that UFP is W[1]-hard if the parameter k represents the number of
tasks in the optimal solution.

I Theorem 22. The unweighted Unsplittable Flow on a Path problem is W[1]-hard when
parametrized by the number of tasks in the optimal solution.

We give a reduction from the k-subset sum problem which is W[1]-hard [15]. Given a set
of n values A = {a1, ..., an}, a target value B and an integer k, the goal is to choose exactly
k values from A that sum up to exactly B. Suppose we are given an instance of k-subset
sum. First, we claim that we can assume w.l.o.g. the following properties for it.

I Lemma 23. W.l.o.g. we can assume that there are values ε1, ..., εn, not necessarily positive,
such that ai = B/k + εi for each i ∈ [n] and that

∑n
i=1 |εi| < B/k.

We construct an instance of UFP that admits a solution with 2k tasks if and only if
the given k-subset sum is a yes-instance. Our UFP instance has a path with n+ 2 vertices
v0, v1, ..., vn+1. Denote the leftmost and the rightmost edge by eL and eR, respectively. We
define u(eL) = u(eR) = B. For all other edges e we define u(e) := B + k ·maxi |εi|. Assume
that the values in S are ordered such that a1 ≥ a2 ≥ ... ≥ an. Let j ∈ [n]. We introduce two
tasks i(j), i′(j) with s(i(j)) := v0, t(i(j)) := vi, d(i(j)) := aj s(i′(j)) := vi, t(i′(j)) = vn+1,
and d(i′(j)) := 2B/k − aj . See Figure 1 for a sketch.

In order to get some intuition about the constructed instance, we observe the following.

I Lemma 24. In the constructed instance there can be no solution with more than 2k tasks.

In the next lemma we show that we can construct a solution with 2k tasks if the given
k-subset sum instance is a yes-instance: for a given set J ⊆ [n] of k indices such that∑
j∈J aj = B we select the tasks i(j) and i′(j) for each j ∈ J . One can easily verify that

this yields a feasible solution.

I Lemma 25. If the given k-subset sum instance is a yes-instance, then the constructed
UFP instance has a solution with 2k tasks.

Conversely, we show that if the UFP instance has a solution with 2k tasks then the
k-subset sum instance is a yes-instance. Suppose we are given such a solution for the UFP
instance. First, we establish that for each j ∈ [n] the solution selects either both i(j) and
i′(j) or none of these two tasks.

I Lemma 26. Given a solution T ′ to the UFP instance with 2k tasks. Then there is a
solution T ′′ with 2k tasks such that for each j ∈ [n] we have that either {i(j), i′(j)} ⊆ T ′′ or
{i(j), i′(j)} ∩ T ′′ = ∅.

Proof. Let j be an index such that neither {i(j), i′(j)} ⊆ T ′ nor {i(j), i′(j)} ∩ T ′ = ∅. First
assume that i(j) ∈ T ′ but i′(j) /∈ T ′. Then by construction the edge {vj , vj+1} is used by at
most k − 1 tasks. Let j′ be the smallest index greater than j such that the edge {vj′ , vj′+1}
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. . .eL eR

B

B + k ·maxi|εi|

i(j)
i′(j)

v0 v1 vn vn+1v2 v3 vn−2 vn−1

Figure 1 Sketch of the reduction used in order to prove Theorem 22. The sketch shows the tasks
i(j) and i′(j) for only one index j.

is used by k tasks. Such an index must exist since eR is used by k tasks from T ′. Since the
edge {vj′−1, vj′} is used by only k − 1 tasks this implies that i′(j′) ∈ T ′ but i(j′) /∈ T ′. We
define T̃ := T ′ ∪ {i′(j)} \ {i′(j′)}. We claim that T̃ is feasible. The task i′(j) does not use
eL and thus T̃ does not violate the capacity bound of eL. Furthermore, s(i′(j)) lies on the
left of s(i′(j′)) and thus aj ≥ aj′ . Hence, d(i′(j)) = 2B/k − aj ≤ 2B/k − aj′ = d(i′(j′)).
Hence, T̃ does not violate the capacity bound of eR. Each edge e with eL 6= e 6= eR is used
by at most k tasks. Hence, we do not violate its capacity bound (same calculation as in the
proof of Lemma 25). The case that i(j) /∈ T ′ but i′(j) ∈ T ′ can be handled with a similar
argumentation. We repeat this process until we cannot find another index j that violates
the property of the lemma. Denote by T ′′ the resulting set. J

Suppose we are given a solution T ′ to the UFP instance with 2k tasks that satisfies
Lemma 26. Let J ′ be the set of indices j such that i(j) ∈ T ′. We show in the next two
lemmas that J ′ is a solution to the k-subset sum instance. Lemma 27 follows from our
assumption that each value ai almost equals B/k (see Lemma 23) and the fact that the
edges eL and eR have capacity B each.

I Lemma 27. The set T ′ contains exactly k tasks using eL and exactly k tasks using eR.
Furthermore, we have that |J ′| = k.

I Lemma 28. We have that
∑
j∈J′ aj = B.

Proof. Let T ′L ⊆ T ′ and T ′R ⊆ T ′ denote the set of tasks in T ′ using eL and eR, respectively.
ThenB = u(eL) ≥

∑
i∈T ′

L
d(i) =

∑
j∈J′ aj . On the other hand, due to Lemma 26 we have that

B = u(eR) ≥
∑
i∈T ′

R
d(i) =

∑
j∈J′ 2B/k− aj and hence

∑
j∈J′ aj ≥ (

∑
j∈J′ 2B/k)−B = B.

Therefore
∑
j∈J′ aj = B. J

Hence, we proved that the constructed UFP instance has a solution with 2k tasks if and only
if the k-subset sum instance is a yes-instance. This completes the proof of Theorem 22.

I Corollary 29. There is no EPTAS for the unweighted Unsplittable Flow on a Path problem,
unless W[1] = FPT.
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