
Multiple Source Dual Fault Tolerant BFS Trees∗

Manoj Gupta1 and Shahbaz Khan†2

1 IIT Gandhinagar, Gandhinagar, India
gmanoj@iitgn.ac.in

2 Department of CSE, IIT Kanpur, Kanpur, India
shahbazk@cse.iitk.ac.in

Abstract
Let G = (V,E) be a graph with n vertices and m edges, with a designated set of σ sources S ⊆ V .
The fault tolerant subgraph for any graph problem maintains a sparse subgraph H = (V,E′) of G
with E′ ⊆ E, such that for any set F of k failures, the solution for the graph problem on G \ F
is maintained in its subgraph H \ F . We address the problem of maintaining a fault tolerant
subgraph for computing Breath First Search tree (BFS) of the graph from a single source s ∈ V
(referred as k FT-BFS) or multiple sources S ⊆ V (referred as k FT-MBFS). We simply refer to
them as FT-BFS (or FT-MBFS) for k = 1, and dual FT-BFS (or dual FT-MBFS) for k = 2.

The problem of k FT-BFS was first studied by Parter and Peleg [ESA13]. They designed
an algorithm to compute FT-BFS subgraph of size O(n3/2). Further, they showed how their
algorithm can be easily extended to FT-MBFS requiring O(σ1/2n3/2) space. They also presented
matching lower bounds for these results. The result was later extended to solve dual FT-BFS by
Parter [PODC15] requiring O(n5/3) space, again with matching lower bounds. However, their
result was limited to only edge failures in undirected graphs and involved very complex analysis.
Moreover, their solution doesn’t seems to be directly extendible for dual FT-MBFS problem.

We present a similar algorithm to solve dual FT-BFS problem with a much simpler analysis.
Moreover, our algorithm also works for vertex failures and directed graphs, and can be easily
extended to handle dual FT-MBFS problem, matching the lower bound of O(σ1/3n5/3) space
described by Parter [PODC15]. The key difference in our approach is a much simpler classification
of path interactions which formed the basis of the analysis by Parter [PODC15].
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1 Introduction

Graph networks are extensively used to study real world applications ranging from communic-
ation networks as internet and telephony, to supply chain networks, road networks etc. Every
now and then, these networks are susceptible to failures of links and nodes, which drastically
affects the performance of these applications. Hence, most algorithms developed for these
applications are also studied in the fault tolerant model, which aims to provide solutions to
the corresponding problem that are resilient to such failures. Since such failures of nodes
or links in the network though unpredictable are rare and are often readily repaired, the
applications generally address the scenarios expecting the number of simultaneous faults to

∗ The full version of the paper can be found in [11].
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be much smaller than the size of the network. This aspect is often modeled by bounding such
failures using some parameter k (typically k << n), and studying fault tolerant structures
resilient to upto k failures.

Among the different approaches to develop fault tolerance in a structure, we use the
approach of computing a fault tolerant subgraph described as follows. For a given graph
G = (V,E), the fault tolerant subgraph for any graph problem maintains a sparse subgraph
H = (V,E′) of G having E′ ⊆ E, such that for any set of edge (or vertex) failures F ⊆ E

(or F ⊆ V ), the solution for the graph problem on G′ = (V,E \ F ) (or G′ = (V \ F,E))
is maintained in its subgraph H ′ = (V,E \ F ) (or H ′ = (V \ F,E)). We shall henceforth
abuse the notation to denote the graphs after such a set of failures F as G \ F and H \ F
respectively. A standard motivation for this approach is a communication network where
each link corresponds to a communication channel [16], where the system designer is required
to purchase or lease the channels to be used by the application. Hence, the aim is to acquire
a minimal set of these channels (the subgraph H of G) for successfully performing the
application with resilience of upto k faults. Fault tolerant subgraphs are also developed
for other graph problems maintaining reachability [13, 2, 3], strong-connectivity [3] and
approximate shortest paths from a single source [12, 17, 5] and all sources [7, 9, 6, 14, 4].

Breadth First Search (BFS) is a fundamental technique for graph traversal. From any
given source s ∈ V , BFS produces a rooted spanning tree in O(m + n) time. For an
unweighted graph, the BFS tree from a source s is also the shortest path tree from s because
it preserves the shortest path from s to every vertex v ∈ V that is reachable from s. We are
thus interested to maintain fault tolerant subgraphs for computing BFS trees from a single
source (referred as k FT-BFS) and multiple sources k FT-MBFS described as follows.

I Definition 1 (k FT-BFS). Given a graph G = (V,E) with a designated source s ∈ V , build
a subgraph H = (V,E′) with E′ ⊆ E, such that after any set F of k failures in G, the BFS
tree from s in H \ F is a valid BFS tree from s in G \ F .

I Definition 2 (k FT-MBFS). Given a graph G = (V,E) with a designated set of sources
S ⊆ V , build a subgraph H = (V,E′) with E′ ⊆ E, such that after any set F of k failures in
G, for each s ∈ S the BFS tree from s in H \ F is a valid BFS tree from s in G \ F .

For convenience of notation, for k = 1 and k = 2 we refer to these problems as FT-BFS
(or FT-MBFS) and dual FT-BFS (or dual FT-MBFS). The problems of k FT-BFS (and k
FT-MBFS) were first studied by Parter and Peleg [16] for a single failure. They designed
an algorithm to compute FT-BFS requiring O(n3/2) space. Further, they showed their
result can be easily extended to FT-MBFS requiring O(σ1/2n3/2) space. Moreover, their
upper bounds were complemented by matching lower bounds for both their results. This
result was later extended to address dual FT-BFS by Parter [15] requiring O(n5/3) space.
However, the application of this result was limited to only edge failures in undirected graphs.
Though the analysis of their result was significantly complex, it paved a way for developing
the theory studying the interaction of replacement paths after a single edge failure, their
classification and corresponding properties. Further, they also generalized the lower bound
for k FT-MBFS to Ω(σ

1
k+1n2− 1

k+1 ) which matches their solution for dual FT-BFS. They also
stated extensions of their result to dual FT-MBFS (or k FT-BFS) as an open problem.

The difference in complexity of dual FT-BFS over FT-BFS also reinforces the idea that
extending such results from one failure to two failures (and beyond) requires a significantly
more advanced analysis. As described by Parter [15], for the problem of maintaining shortest
paths "a sharp qualitative and quantitative difference" has been widely noted while handling
a single failure and multiple failures. For the problem of maintaining fault tolerant distance
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oracles, despite a simple and elegant algorithm for a single edge failure [8], the solution for
two edge failures [10] is significantly complex. In fact, the authors [10] themselves mention
that extending their approach beyond 2 edge failure would be infeasible due to numerous
case analysis involved, requiring a fundamentally different approach. This key difference
is also visible when we compare other problems, as bi-connectivity with tri-connectivity,
single fault tolerant reachability [13, 2] with dual fault tolerant reachability [3], etc. Hence,
simplifying the analysis of dual FT-BFS (and hence dual FT-MBFS) structures seem to be
an essential building block for further developments of the problem for multiple failures.

1.1 Our Contributions
We design optimal algorithms for constructing dual FT-BFS and dual FT-MBFS structures.
In principle, the core algorithm of our construction for dual FT-BFS is same as the one given
by Parter [15], with a much simpler and more powerful analysis. As a result, our algorithm
also works for vertex failures and directed graphs. Also, our dual FT-BFS structure can also
be easily extended to handle dual FT-MBFS (as in case of FT-BFS [16]), which matches the
lower bound described by Parter [15]. Thus, we optimally solve two open problems (dual
FT-BFS for directed graphs and dual FT-MBFS for any graphs) as follows.

I Theorem 3 (Optimal dual FT-BFS). Given any graph G = (V,E) having n vertices and m
edges, with a designated source s ∈ V , there is a polynomial time constructable dual FT-BFS
subgraph H having O(n5/3) edges.

I Theorem 4 (Optimal dual FT-MBFS). Given any graph G = (V,E) having n vertices and
m edges, with a designated set of σ sources S ⊆ V , there is a polynomial time constructable
dual FT-MBFS subgraph H having O(σ1/3n5/3) edges.

Our analysis is performed using simple techniques based on counting arguments. We
classify a set of shortest paths as standard paths and prove the properties of disjointness
and convergence for a designated suffix of such paths. The extension to directed graphs
additionally uses the notion of segmentable paths (similar notion of regions was used in [15])
for every set of converging shortest paths, and establishes several interesting properties for
them. These properties and analysis techniques might be of independent interest in the
theory of shortest paths.

1.2 Related Work
As described earlier BFS is strongly related to shortest paths. Demetrescu et al. [8] showed
that there exist weighted directed graphs, for which a fault tolerant subgraph requires Θ(m)
edges for maintaining shortest paths even from a single source after a vertex failure. Hence,
they designed a data-structure of size Õ(n2) 1 that reports all pairs shortest distances after
a vertex failure in O(1) time. Duan and Pettie [10] extended this result to two failures
requiring nearly same (upto poly logn factors) size and reporting time.

Other related problems include fault tolerant DFS and fault tolerant reachability. Baswana
et al. [1] presented a Õ(m) sized fault tolerant data structure that reports the DFS tree of
an undirected graph after k faults in Õ(nk) time. For single source reachability, Baswana
et al. [3] presented an algorithm for computing fault tolerant reachability subgraphs for k
faults using O(2kn) edges. This result was also shown to be optimal upto constant factors.

1 Õ(·) notation hides poly-log(n) factors
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Figure 1 Showing P0 (in black), D0(P1) (in blue) and D1(P ) (in green). Here P1 = P0[s, a] ∪
D0(P1) ∪ P0[c, v] and P = P0[s, a] ∪D0(P1)[a, d] ∪D1(P ).

1.3 Outline of the paper
We now present a brief outline of our paper. In Section 2, we present the basic notations
that shall be used throughout the paper, which shall be followed by a brief overview of our
approach and analysis in Section 3. In Section 4, we shall first begin with the description of
our algorithm for dual FT-BFS and the properties of the shortest paths found using it, which
shall be followed by the formal analysis. We then present our algorithm for dual FT-MBFS
and its analysis, drawing similarities with solution of dual FT-BFS. Finally, we present the
concluding remarks for our paper in Section 6. Due to page constraints some proofs have
been omitted and deferred to the full paper [11]. For the sake of simplicity, we only describe
our algorithm and analysis for edge failures. However, the same analysis can also be used to
handle vertex failures.

2 Preliminaries

Given a graph G = (V,E) with n vertices and m edges with a set of designated source s ∈ S.
The following notations shall be used throughout the paper.

P,P: A path is denoted by P , where Source(P ) and Dest(P ) represents the source and
destination of path P . In most parts of the paper, Source(P ) = s and Dest(P ) = v. A
set of paths is denoted by P. Generally, we assume a path from s to v starts from the
top (s) and ends at bottom (v). For two paths P ′, P ′′, we say P ′ leaves earlier/higher
(or later/lower) than P ′′ from P , if P ′ leaves P closer to s (or closer to v) than P ′′.
F(P ): For the shortest path P from Source(P ) to Dest(P ) after a set of edge failures, this
set of failed edges is denoted by F(P ) = {e1, e2, . . . , ek} (say), where ei denotes the ith
edge in the sequence. Similarly for some path P ′, e′i denotes the ith edge in the sequence.
Pi: If F(P ) = {e1, e2, . . . , ek}, then Pi is the shortest path avoiding the first i edge of
F(P ), i.e., F(Pi) = {e1, e2, . . . , ei}, where 0 ≤ i < k. Again, for most parts of the paper,
P0 denotes the shortest path from s to v in G.
Di(P ): If |F(P )| = k, the detour path of P from Pi, Di(P ) = P \ {∪ij=0Pj} 2, where
1 ≤ i < k − 1. For dual case, D0(P ) is the detour of P from P0, D1(P ) is the detour of
P from P1, and D0(P1) is the detour of P1 from P0 ( See Figure 1).
LastE(P ) : The last edge of a path P .
P [x, y]: The sub-path of P starting from x to y, where x, y ∈ P .

2 This construction may give a set of disjoint subpaths of P instead of a single subpath. However, in
most cases this path will be a single subpath, else we assume Di(P ) to be the last such subpath on P .
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We define the property of convergence of a set of paths P as follows. The paths in P are
said to be converging if on intersection of any two paths P, P ′ ∈ P, both P and P ′ merge
and do not diverge till the end of the paths.

3 Overview

For analyzing the size of dual FT-BFS subgraph, i.e., the number of edges in shortest paths
from the source s to each vertex v ∈ V after any two failures, it suffices to count only the
last edge of every such path P , for each v ∈ V [16, 15]. The novelty of our approach is
the classification of such paths based on interaction of corresponding P1 and P0, whereas
Parter [15] studied the different interactions of P1 and P ′1, for two such paths P and P ′.

We primarily use the disjointness of a designated suffix of such a path P (referred as
LastLeg(P )) with counting arguments to bound the number of such paths. To achieve this, we
classify some of these paths as standard paths based on the interactions of corresponding P1 and
P0. The number of non-standard paths can be easily bound using simple counting arguments.
The set of standard paths exhibit several interesting properties including convergence of
corresponding paths D0(P1). We further classify the standard paths into long standard
paths and short standard paths, each bounded separately using relatively harder techniques.
For sake of easier presentation we first bound the number of short standard paths only
for undirected graphs, with extension to directed graphs requiring an additional notion of
segmentable paths. The only difference in the analysis of dual FT-MBFS is the definition of
standard paths and dealing with interaction of P1 with P ′0 corresponding to other sources.

4 Dual FT-BFS

We shall now describe our algorithm to compute sparse dual FT-BFS subgraph H from a
source s ∈ V . For every vertex v ∈ V , our algorithm computes the shortest paths from s to
v avoiding upto two failures and adds the last edge of each such path to the adjacency list of
vertex v. Note that repeating the procedure for each vertex on such a path adds the entire
path to H [16, 15].

Our algorithm starts by adding the shortest path between s and v, i.e., P0. It then
processes single edge failures on P0. We then find the replacement path P for all two edge
failures {e1, e2} such that e1 ∈ P0 and e2 ∈ P1. Further, in case e2 ∈ P0 ∩ P1 then e1 is
higher than e2 on P0.

However, we want to process all the failures in some particular order. This ordering plays
a crucial role in the analysis. To this end, we define this ordering π as follows. The first
failure in π is F = ∅, which adds P0. The ordering π then contains single edge failures of
type F = {e} (where e ∈ P0), ordered by their decreasing distance from s on P0. Finally, we
order the remaining failures as follows: for any two failures F = {e1, e2} and F ′ = {e′1, e′2}
(with corresponding replacement paths P and P ′), F ≺π F ′ if either (1) e1 is farther than e′1
from s on P0, or (2) e1 = e′1 and e2 is farther than e′2 from s on P1 (note that P1 = P ′1 in
this case). If F ≺π F ′, F is said to be lower than F ′ in π.

For any failure of F = {e1, · · · , ek}, we define the preferred shortest path avoiding F .
Our preferred shortest path will be a path of shortest length avoiding F . However, there can
be multiple such paths of same length. We use following rules to choose a unique preferred
path.

ICALP 2017
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Procedure Dual-FT-BFS(s, v, π): Augments the dual FT-BFS subgraph H, such that
for BFS tree of G rooted at s after any two edge failures in G, the incoming edges to v
are preserved in H.

1 foreach Failure F , where 0 ≤ |F | ≤ 2, ordered from lower to higher in π do
2 P ← Preferred path from s to v in G avoiding F ;
3 if LastE(P ) /∈ H then
4 Assign P for failure of F ;
5 Add LastE(P ) to H;
6 end
7 end

I Definition 5. Path P is preferred for failure of {e1, · · · , ek} where each ei ∈ Pi−1, if
1. For each i, P leaves Pi−1 before ei exactly once.
2. For any other P ′ also avoiding {e1, · · · , ei}, we have either (i) |P | < |P ′|, (ii) |P | = |P ′|,

and for some 0 ≤ i ≤ k, both P and P ′ leaves each of P0, ..., Pi−1 at the same vertex, but
P leaves Pi earlier than P ′, (iii) P is lexicographically smaller 3 than P ′.

Intuitively, out of all the shortest paths avoiding F (say for |F | = 2), the preferred path
leaves the path P0 and/or P1 as early as possible. In order to avoid the preferred path leaving
P0 (or P1) multiple times just to achieve an earlier point of divergence from P0 (or P1), the
first condition is imposed. The last condition in (2) is just to break ties between two paths
that are of same length and leave P0 and P1 at the same vertex.

Finally, in order to add the preferred shortest path P avoiding a failure F , our algorithm
simply adds LastE(P ) to H, which suffices to add the entire path as described earlier.
Moreover, we also assign the corresponding P to the failure F if it was the first failure
to add this edge in H. As a result, if P and P ′ are two preferred paths avoiding F and
F ′ respectively where LastE(P ) = LastE(P ′), then if F ≺π F ′, only the path P shall be
assigned to F . Refer to Procedure Dual-FT-BFS for the pseudocode of our algorithm.

In order to calculate the size of H, it is sufficient to analyze the number of different last
edges added on each v ∈ V in H. Let the set of all paths from s to v avoiding failures F ⊆ E
(where |F | ≤ 2) be Pv. We thus define the paths that will be counted for establishing the
space bound as follows.

I Definition 6. The path P ∈ Pv is called contributing if while processing F(P ), LastE(P ) /∈
H, i.e., P adds a new edge adjacent to v in H.

In order to count the number of contributing paths to a vertex v, we only need to consider its
interactions with other contributing paths in Pv. This is because, if any other path P ∈ Px
passes through v using some new edge, so does the corresponding P ′ ∈ Pv with F(P ) = F(P ′).
Thus, to analyze the size of H, it suffices to look at last edges of the contributing paths in
Pv for each vertex v separately.

3 Let P and P ′ first diverge from each other to x ∈ P and x′ ∈ P ′ respectively, i.e., P [s, x] \ {x} =
P ′[s, x′] \ {x′}. If the index of x is lower than that of x′ then P is said to be lexicographically smaller
than P ′.
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Figure 2 Classification of contributing paths: Pa: Non-Standard Paths, Pb : Long Standard
Paths and Pc : Short Standard Paths.

4.1 Properties of contributing paths

Parter [15] presented a simple proof bounding the number of contributing paths avoiding
multiple failures on P0 to O(

√
n) for each vertex v (an alternate proof using counting

arguments is presented in the full paper [11]). Hence, excluding these paths, every contributing
path satisfies the following properties (see full paper [11] for proofs).

I Lemma 7. Excluding O(
√
n) paths, each contributing path P from s to v avoiding {e1, e2}

satisfies following properties
P1 : e1 ∈ P0 and e2 ∈ D0(P1).
P2 : Except at v, D0(P ) does not intersect with P0 and D1(P ) does not intersect with P1,

after diverging from P0 and P1 respectively.
P3 : For any path P ′ which avoids {e1, e2}, P is the preferred path over P ′.
P4 : If P also avoids some failure F ′ where F ′ ≺π F , then there exist another path P ′ which

is the preferred path for F ′ over P , where P ′ does not avoid F .

4.2 Space Analysis

As described earlier, in order to bound the size of dual FT-BFS subgraph to O(n5/3), it
suffices to bound the number of contributing paths from s to each vertex v ∈ V avoiding two
edge failures to O(n2/3). Further, using P1 we are only concerned with a contributing path
P if e1 ∈ P0 and e2 ∈ D0(P1).

We first divide the path P0 into two parts as follows. Let vl ∈ P0 be the vertex such that
|P0[vl, v]| = n1/3. We define Phigh = P0[s, vl] and Plow = P0[vl, v]. If |P0| < n1/3, we assume
vl = s where Phigh = φ. We shall now define the standard paths as follows.

I Definition 8 (Standard Paths). A contributing path P is called a standard path if (a) e1 ∈
Phigh, and (b) D0(P1) merges with P0 on Plow, i.e., Dest(D0(P1)) ∈ Plow.

We can thus classify the contributing paths into following three types (see Figure 2):
Pa: Non-standard paths.
Pb: Long standard paths, i.e., standard paths with |D0(P1)| ≥ n2/3.
Pc: Short standard paths, i.e., standard paths with |D0(P1)| < n2/3.

Clearly, the sets Pa,Pb and Pc are mutually disjoint and collectively exhaustive. Further,
we define a set P1x (for x = a, b and c), where for each P ∈Px, we add the corresponding
P1 to P1x. In addition, we identify the disjoint suffix of a path P as follows (see Figure 3).

ICALP 2017
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Figure 3 P avoids {e1, e2}. Its detour D1(P ) (shown in blue) last intersects LastPath(P ) = P ′1.
P diverges from P ′1 at v∗, i.e., LastLeg(P ) = P [v∗, v] (shown in brown).

I Definition 9. For each P ∈Px, for x = a, b or c, we define the following
1. LastPath(P ) : The path in P1x that intersects last with P . If P diverges from P0 and

does not intersect any path in P1x, we set LastPath(P ) = P0.
2. LastLeg(P ) : The part of P after diverging from LastPath(P ), i.e., P [v∗, v], where v∗ is

the last vertex of P on P ∩ LastPath(P ).

The suffix LastLeg(P ) of a contributing path P satisfies the following properties (see full
paper [11] for proofs).

I Lemma 10. For every set Px (for x = a, b or c), we have the following.
(a) For any P, P ′ ∈ Px, LastLeg(P ) and LastLeg(P ′) are disjoint (except at v), i.e.,

LastLeg(P ) ∩ LastLeg(P ′) = {v}. Further, each P, P ′ starts from a distinct vertex
on P1x.

(b) Number of paths P ∈Px with |LastLeg(P )| > n1/3 or LastPath(P ) = P0, is O(n2/3).

Remark: Lemma 102 claims that LastLeg(P ) is disjoint from other LastLeg(P ′), where
P ∈ Px and P ′ ∈ Px′ only when x = x′. However, in case x 6= x′ they can intersect and
our proof does not require their disjointness.

Equipped with these properties we can easily analyze the number of non-standard paths
(Pa) and standard paths (Pb and Pc) in the following sections.

4.2.1 Analyzing non-standard paths Pa

Using Lemma 102, we know that the number of P ∈ Pa with |LastLeg(P )| > n1/3 or
LastPath(P ) = P0 is O(n2/3). We now focus on the case when |LastLeg(P )| ≤ n1/3 and
LastPath(P ) ∈P1a. For any path P , let v∗ = Source(LastLeg(P )). Since LastLeg(P ) is a de-
tour from LastPath(P )[v∗, v] avoiding the entire P0 (using P2), we have |LastPath(P )[v∗, v]| ≤
|LastLeg(P )| ≤ n1/3. By definition, a contributing path P is non-standard if either
(a) e1 ∈ Plow, or (b) D0(P1) merges with P0 on Phigh, i.e., Dest(D0(P1)) ∈ Phigh. Hence,
for every P , LastPath(P ) would correspond to one of the two cases (a) or (b). Case
(b) is clearly not be applicable here because |LastPath(P )[v∗, v]| ≥ |Plow| = n1/3 (since
Dest(LastPath(P )) ∈ Phigh). For case (a), on each LastPath(P ) ∈ P1a, v∗ can be one of
n1/3 vertices of LastPath(P ) closest to v. Further, since e1 ∈ Plow, there are only n1/3 such
paths in P1a because each such path corresponds to failure of unique edge in Plow. Thus,
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there are only n1/3 × n1/3 = n2/3 different vertices v∗ limiting the number of P ∈Pa with
|LastLeg(P )| ≤ n1/3 to O(n2/3) (using Lemma 101).

Properties of standard paths (Pb or Pc)
We shall now prove two important properties of standard paths (see full paper [11] for proofs).
The first result states that if D0(P1) and D0(P ′1) intersect, where P, P ′ ∈P1b ∪P1c, then
they cannot diverge. The second result states that the length of paths in Pb ∪Pc are
different. A similar result was proved by Parter[15].

I Lemma 11. For the set of contributing standard paths, we have the following proper-
ties.
(a) The set of paths {D0(P1)|P1 ∈P1b ∪P1c}, is converging.
(b) (Parter [15]) For any two paths P, P ′ ∈Pb ∪Pc, |P | 6= |P ′|.

4.2.2 Analyzing long standard paths Pb

We first prove a generic technique to bound the number of contributing paths P if the set of
corresponding paths P1 is converging and each P1 sufficiently long.

I Theorem 12. Given a set P of converging paths satisfying Lemma 101, where for each
P1 ∈ P we have |P1| ≥ α2 (where α ≥ 1), the number of contributing paths P having P1 ∈ P
is O(n/α).

Proof. Recall the definition of LastPath(P ), here we shall define LastPath(P ) (and hence
LastLeg(P )) corresponding to paths in P (rather than P1x in Definition 9). Using Lemma 101,
if |LastLeg(P )| ≥ α, then P can be associated with α unique vertices of LastLeg(P ). This
limits the total number of such paths to O(n/α). Hence, we assume that LastLeg(P )) ≤ α.

For each path P1 ∈ P, let vl = Dest(P1). Similarly, for each such P , let the last
intersection vertex of LastLeg(P ) and LastPath(P ) be v∗. Using Lemma 101, we know that
for each such contributing path P , its corresponding LastLeg(P ) starts from a distinct vertex
of P. Since LastLeg(P ) is a detour from LastPath(P )[v∗, vl] avoiding the entire P1 (using
P2), we have |LastLeg(P )| ≥ |LastPath(P )[v∗, vl]|. Since |LastLeg(P )| ≤ α, v∗ can be one of
α vertices of LastPath(P ) closest to vl.

We shall associate each such vertex v∗ on LastPath(P ) ∈ P uniquely with α vertices
of LastPath(P ), for all LastPath(P ) ∈ P, as follows. Let the vertices of some LastPath(P )
be v1, ..., vk where v1 is the closest vertex to vl. For each vi, i = 1, ..., α, we associate the
vertices v(i−1)α, ..., viα. Since |LastPath(P )| ≥ α2 (by definition of P) and i ∈ [1, α] such an
association can be made. Now, in order to prove that such an association is unique, i.e., a
vertex x is not associated with two different vertices v∗1 , v∗2 of P, we exploit the convergence
of P as follows. Clearly if x ∈ P1 for a unique path P1 ∈ P, there is a unique v∗1 ∈ P
to which it is associated. However, if x ∈ P1 and x ∈ P ′1 for any two paths P1, P

′
1 ∈ P,

then P1 and P ′1 will not diverge after intersection (by convergence of P). This implies
P1[x, vl] = P ′1[x, v′l]. Thus, the corresponding v∗1 ∈ P1 and v∗2 ∈ P ′1 would also be same as by
definition v∗1 ∈ P1[x, vl]. Hence, for every P emerging from v∗ with |LastPath(P )[v∗, vl]| ≤ α,
the corresponding v∗ can be uniquely associated with at least α vertices of P. This limits
the total number of such paths to O(n/α) proving the theorem. J

Using Lemma 111 and by definition of long standard paths Pb, Theorem 12 is applicable for
the set D0(P1) for P1 ∈P1b and α = n1/3 limiting the number of paths in Pb to O(n2/3).
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Figure 4 Let P ′1 be LastPath(P ). Then the path P0[s, x] ∪ P1[x, y′] ∪ P ′1[y′, y] ∪ LastLeg(P ) is a
valid path avoiding {e1, e2}.

4.2.3 Analyzing short standard paths Pc

To highlight the simplicity of our approach, we only analyze the paths in Pc for undirected
graphs here. For extension of this proof to handle directed graphs we use the theory of
segmentable paths (refer to full paper [11] for details).

Using Lemma 102, we know that the number of P ∈ Pc with |LastLeg(P )| > n1/3 or
LastPath(P ) = P0 is O(n2/3). We now focus on the case when |LastLeg(P )| ≤ n1/3 and
LastPath(P ) ∈ P1c. Any such contributing path P can be divided into two parts (see
Figure 4), (a) P [s, y], where y = Source(LastLeg(P )), and (b) P [y, v] = LastLeg(P ). We will
now find an alternate path for P [s, y], which will help us in bounding its length. Since P
is a contributing path, it diverges from LastPath(P ) which requires either e1 or e2 to be
on LastPath(P )[y, v]. By definition of standard paths, we have D0(LastPath(P )) terminates
on P0 only on Plow, whereas e1 /∈ Plow ensuring that e1 /∈ LastPath(P ). Thus, e2 ∈
LastPath(P )[y, v] and hence it intersects with P1 as e2 ∈ P1. Using Lemma 111, we can thus
say that LastPath(P ) and P1 merge at some vertex say y′, where e2 ∈ LastPath(P )[y′, v] =
P1[y′, v] (see Figure 4). We have an alternate path for P [s, y] avoiding F(P ) formed by
P1[s, y′] ∪ LastPath(P )[y′, y]. Let x = Source(D0(P1)). Since P [s, v] is the shortest path
avoiding F(P ) we have

|P | = |P [s, y]|+ |P [y, v]|
= |P1[s, y]|+ |P [y, v]|
≤ |P1[s, y′]|+ |LastPath(P )[y′, y]|) + |LastLeg(P )[y, v]|
= (|P1[s, x]|+ |P1[x, y′]|) + |LastPath(P )[y′, y]|+ |LastLeg(P )[y, v]|
≤ |P0|+ |D0(P1)|+ |D0(LastPath(P ))|+ |LastLeg(P )|

≤ |P0|+ n2/3 + n2/3 + n1/3 (by definition of Pc)

Now, using Lemma 112, we know that for any P, P ′ ∈Pc we have |P | 6= |P ′|. We thus
arrange the paths in Pc (except the ones in Lemma 102) in the increasing order of sizes,
where ith such path has the length ≥ |P0|+ i (as all paths at least as long as P0). Since for
any such P ∈Pc we also have |P | ≤ |P0|+ 3n2/3 (described above), clearly the number of
paths in Pc are O(n2/3) (for i upto 3n2/3).
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Procedure Dual-FT-MBFS(S,v,π): Augments the dual FT-MBFS subgraph H, such
that for BFS tree of G rooted at each s ∈ S after any two edge failures in G, the
incoming edges to v are preserved in H.

1 foreach s ∈ S do Dual-FT-BFS(s,v,πs(0)) ;
2 foreach s ∈ S do Dual-FT-BFS(s,v,πs(1)) ;
3 foreach s ∈ S do Dual-FT-BFS(s,v,πs(2)) ;

s1s2

v

x

D0(P1)

D̃0(P1)

D1(P )

×e1×e2

y

z

D̃0(P1)

Figure 5 Shortest path avoiding {e1, e2} is P . D1(P ) last intersects P̃0(P1) = P0(s2, v). P1

diverges from P̃0(P1) at y, i.e., D̃0(P1) = P1[y, z] (shown in blue). P also diverges from P̃0(P ) at y,
i.e., D̃0(P ) = P [y, v].

This completes the proof of our dual FT-BFS result in Theorem 3.

5 Extension to dual FT-MBFS

In this section we shall extend our analysis of the previous section to handle σ sources using
total O(σ1/3n5/3) space. We follow the approach similar to the case for single source. Let S
be the set of sources, where |S| = σ. Given a source s, let πs ⊆ π denote the ordering of
edge failure of size upto 2. Let πs(0), πs(1) and πs(2) be the subset of πs of size 0, 1 and 2
respectively. Our algorithm for finding dual FT-MBFS mimics the single source case.

The first for loop in the above procedure finds shortest path from each source to v. We
shall refer to the set of the shortest paths from each source to v for different s ∈ S as P0.
We then move on to find the shortest path from each source to v avoiding one edge failure
and two failures respectively.

In the previous section, for each contributing path P (that avoids ≥ 1 failure), we saw
that it necessarily diverges from P0. Since we have multiple paths in P0, we define some
new notations (see Figure 5).

I Definition 13 (Modified P0 and D0(P )).
1. For any path P (or its corresponding P1), we define P̃0(P ) (or P̃0(P1)) to be the last

path from P0 which intersects with P (or P1), say at vertex y, such that at least one of
e1 or e2 is present in P̃0(P )[y, v] (or e1 ∈ P̃0(P1)[y, v]).

2. For any path P (or P1), we define D̃0(P ) = P [v∗, v] (or D̃0(P1) = P1[v∗0 , v]), where v∗ is
the last vertex of P (or P1) on P ∩ P̃0(P ) (or P1 ∩ P̃0(P1)).

Note that in the single source case, both P and P1 diverge from the same path P0.
However, in multiple source that path P̃0(P ) and P̃0(P1) may differ. This is one of the
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major changes from the single source case. In fact, the reader will see that all our lemmas in
Section 4 extend here with P0 changed to P̃0(P ) and D0(P ) changed to D̃0(P ). However,
for completeness we have re-proven all lemmas.

5.1 Properties of Contributing paths
We now describe important properties of paths in P0 and contributing paths as follows (see
full paper [11] for proofs).

I Lemma 14. The set of paths P0 is converging.

The number of contributing paths avoiding failures in P0 can easily bounded to O(
√
σn)

for each v (see full paper [11] for details). Excluding these paths, every contributing path
satisfies the following properties.

I Lemma 15. Excluding O(
√
σn) paths, for any contributing path P from s to v avoiding

{e1, e2}, the following properties holds true
P1 : e1 ∈ P0 and e2 ∈ D0(P1).
P2 : D̃0(P ) does not intersect with any path in P0. Also, if D̃0(P ) diverges from P1 it does

not intersect it again.

5.2 Space Analysis
As described earlier, in order to bound the size of dual FT-MBFS subgraph to O(σ1/3n5/3),
it suffices to bound the number of contributing paths from s ∈ S to each vertex v ∈ V

avoiding two edge failures to O(σ1/3n2/3). Further, using P1 we are only concerned with a
contributing path P if e1 ∈ P0 and e2 ∈ D0(P1). For the sake of highlighting similarity with
single source case, we shall use nσ = n/σ throughout the section.

We first divide the paths in P0 into two parts as follows. For each s ∈ S, let P0(s, v) be
the shortest path from s to v. Let vls be the vertex such that |P0(s, v)[vls, v]| = n

1/3
σ . We

define Plow = {P0(s, v)[vls, v] |s ∈ S} and Phigh = {P0(s, v)[s, vls] |s ∈ S}. This definition
naturally extends the Plow and Phigh defined in the single source case.

With this modified Plow and Phigh, we use the same definition of standard paths and hence
Pa and P1a. However, the distinction of long standard paths (Pb) from short standard paths
(Pc) would now be done by using D̃0(P1) instead of D0(P1). Hence, the long standard paths
would be the standard paths with |D̃0(P1)| ≥ n2/3

σ . Finally, the definition of LastPath(P ) and
LastLeg(P ) does not change, except in case LastPath(P ) = φ, we use LastPath(P ) = P̃0(P )
instead of LastPath(P ) = P0 (recall Definition 9). Moreover, the properties of LastLeg(P )
also remain same except for Lemma 102 which is modified as follows.
I Lemma 10. For every set Px (for x = a, b or c), we have the following.
b∗. Number of paths P ∈Px with |LastLeg(P )| > n

1
3
σ or LastPath(P ) = P̃0(P ), is O(σ 1

3n
2
3 ).

Now, using the properties described in Lemma 10 (see full paper [11] for proof), we can
analyze the number of non-standard paths (Pa) using the same counting arguments as in
case of single source, bounding the number of such paths to O(σ1/3n2/3) (see full paper [11]
for details). Hence, we only focus on analyzing the standard paths (Pb and Pc) as follows.

Properties of standard paths (Pb and Pc)
Recall the properties of standard paths described in Lemma 11. For multiple sources,
Lemma 111 does not hold, because for two paths P and P ′, their corresponding paths D0(P1)
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and D0(P ′1) can diverge after intersection, if they start from different sources say s1, s2 (for
s1 = s2, Lemma 111 applies). For example (see Figure 5), P1 avoids e1 on P0[s1, v]. Also,
D0(P1) passes through P0[s2, v]. Let P ′1 be a path avoiding e′1 on P0[s2, v] ∩ P1, such that
D0(P ′1) intersect D0(P1) before D0(P1) enters P0[s2, v]. Hence, D0(P ′1) has to diverge from
D0(P1) as D0(P1) passes through e′1 after the intersection.

This is the primary reason for defining modified detour D̃0(P1), for which a lemma
equivalent to Lemma 111 holds. Thus, the analysis of standard paths for multiple sources,
uses D̃0(P1) instead of D0(P1) satisfying the following properties.

I Lemma 16. For the set of contributing standard paths, we have the following proper-
ties.
(a) The set of paths {D̃0(P1)|P1 ∈P1b ∪P1c}, is converging.
(b) The number of paths P ∈ Pb ∪Pc, which Source(LastLeg(P )) /∈ D̃0(P ′

1) for some
P

′

1 ∈P1b ∪P1c are O(σ1/3n2/3).

Using Lemma 162, we only have to bound the number of standard paths whose LastLeg(P )
originates from some D̃0(P ′

1). Using Lemma 10b∗and by definition of long standard paths
Pb, Theorem 12 is applicable for the set D̃0(P1) for P1 ∈ P1b and α = n

1/3
σ , bounding

number of such paths in Pb to O(σ1/3n2/3). This leaves only the number of short standard
paths that originate from some D̃0(P ′

1) described in the following section.

5.2.1 Analyzing short standard paths Pc

Again, we only analyze the paths in Pc for undirected graphs here (see full paper [11] for
directed graphs). Using Lemma 10b∗and Lemma 162, we know that the number of P ∈Pc

with |LastLeg(P )| > n
1/3
σ or LastPath(P ) = P̃0(P ) or Source(LastLeg(P )) /∈ D̃0(P ′

1) (for
some P ′1 ∈P1c) is O(σ1/3n2/3). We thus focus on the case when |LastLeg(P )| ≤ n

1/3
σ and

LastPath(P ) ∈ P1c with Source(LastLeg(P )) ∈ D̃0(LastPath(P )). Any such path can be
divided into three parts (not necessarily non-empty) including (a) P [s, x] = P1[s, x], where
x = Source(D̃0(P1)), (b) P [x, y] where y = Source(LastLeg(P )) and (c) P [y, v] = LastLeg(P ).

We find alternate paths for P [s, x] and P [x, y], which will help us in bounding their
respective lengths (see Figure 6). By definition P̃0(P1) intersects with P0 and passes through
e1. Further, using Lemma 14 we know that P0 and P̃0(P1) will merge after the intersection
at some point, say x′, where e1 ∈ P̃0(P1)[x′, v] = P0[x′, v]. Hence, we have an alternate path
for P1[s, x] avoiding e1 and e2 (since e2 /∈P0 by P2) formed by P0[s, x′]∪ P̃0(P1)[x′, x]. Now,
bounding P [x, y] is exactly same as in the case of single source, using D̃0(P1) instead of
D0(P1), bounding P [x, y] to 2n2/3

σ as shown in Figure 6 (see full paper [11] for an exhaustive
proof). Since P [s, v] is the shortest path avoiding F(P ) we have

|P | = |P0[s, x]|+ |P1[x, y]|+ |P [y, v]| (by definition of x and y)

≤ (|P0[s, x′]|+ |P̃0(P1)[x′, x]|) + 2n2/3
σ + n1/3

σ (Similar to dual FT-BFS)

≤ |P0[s, v]|+ |P̃0(P1)[x, v]|+ 2n2/3
σ + n1/3

σ

≤ |P0[s, v]|+ |D̃0(P1)[x, v]|+ 2n2/3
σ + n1/3

σ

(D̃0(P1) is a detour from P̃0(P1), hence |D̃0(P1)[x, v]| > |P̃0(P1)[x, v]|)

≤ |P0[s, v]|+ n2/3
σ + 2n2/3

σ + n1/3
σ (by definition of Pc)

Now, for any s ∈ S, let Pc(s) be the set of all contributing paths in Pc that start from
s. Using Lemma 112 (that holds for P ∈Pc(s)), we know that for any P, P ′ ∈Pc(s) we
have |P | 6= |P ′|. We thus arrange the paths in Pc(s) (except the ones in Lemma 10b∗and
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Figure 6 Let P̃0(P1) = P0(s2, v), LastPath(P ) = P ′1 and P̃0(P ′1) = P0(s3, v). Then the path
P0[s, x′] ∪ P̃0(P1)[x′, x] ∪ D̃0(P1)[x, y′] ∪ D̃0(P ′1)[y′, y] ∪ LastLeg(P ) is a valid path avoiding {e1, e2}.

Lemma 162) in the increasing order of sizes, where ith such path has the length ≥ |P0(s, v)|+i
(as all paths at least as long as P0(s, v)). Since for any such P ∈ Pc(s) we also have
|P | ≤ |P0[s, v]|+ 4n2/3 (described above), clearly the number of paths in Pc(s) are O(n2/3

σ )
(for i upto 4n2/3). Hence, overall the number of paths in Pc considering all sources s ∈ S
are O(σ ∗ n2/3

σ ) = O(σ1/3n2/3).
This completes the proof of Theorem 4.

6 Conclusion

In this paper, we simplified the analysis in [15] for dual FT-BFS problem and extended it
to dual FT-MBFS problem. Unfortunately, extending our result to k FT-MBFS (or even
k FT-BFS) problem requires a lot of case analysis. Ideally, one would wish to design a
simple data structure to handle multiple failures using some new insight with little or no
case analysis. A natural step would be to completely understand these simple cases and
derive significant inferences from them to develop new techniques. The simplicity of FT-BFS
structure [16] enables a clear understanding of the basic technique used for its construction
and analysis. Our work aims to be a significant step to achieve the same for dual FT-BFS
by simplifying the result of [15] and generalizing it similar to [16].
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