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Abstract
A word-to-word function is continuous for a class of languages V if its inverse maps V_languages
to V. This notion provides a basis for an algebraic study of transducers, and was integral to the
characterization of the sequential transducers computable in some circuit complexity classes.

Here, we report on the decidability of continuity for functional transducers and some stan-
dard classes of regular languages. Previous algebraic studies of transducers have focused on the
structure of the underlying input automaton, disregarding the output. We propose a comparison
of the two algebraic approaches through two questions: When are the automaton structure and
the continuity properties related, and when does continuity propagate to superclasses?
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1 Introduction

The algebraic theory of regular languages is tightly interwoven with fundamental questions
about the computing power of Boolean circuits and logics. The most famous of these braids
revolves around A, the class of aperiodic or counter-free languages. Not only is it expressed
using the logic FO[<], but it can be seen as the basic building block of AC0, the class of
languages recognized by circuit families of polynomial size and constant depth, this class
being in turn expressed by the logic FO[arb] (see [18] for a lovely account). This pervasive
interaction naturally prompts to lift this study to the functional level, hence to rational
functions. This was started in [4], where it was shown that a subsequential (i.e., input-
deterministic) transducer computes an AC0 function iff it preserves the regular languages of
AC0 by inverse image. Buoyed by this clean, semantic characterization, we wish to further
investigate this latter property for different classes: say that a function f : A∗ → B∗ is
V_continuous, for a class of languages V, if for every language L ⊆ B∗ of V, the language
f−1(L) is also a language of V . Our main focus will be on deciding V_continuity for rational
functions; before listing our main results, we emphasize two additional motivations.

First, there has been some historical progression towards this goal. Noting, in [9], that
inverse rational functions provide a uniform and compelling view of a wealth of natural
operations on regular languages, Pin and Sakarovitch initiated in [10] a study of regular-
continuous functions. It was already known at the time, by a result of Choffrut (see [3,
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115:2 Continuity and Rational Functions

Theorem 2.7]), that regular-continuity together with some uniform continuity property
characterize functions computed by subsequential transducers. This characterization was
instrumental in the study of Reutenauer and Schützenberger [15], who already noticed the
peculiar link between uniform continuity for some distances on words and continuity for
certain classes of languages. This link was tightened by Pin and Silva [11] who formalized this
topological approach and generalized it to rational relations. More recently [12], the same
authors made precise the link unveiled by Reutenauer and Schützenberger, and developed a
fascinating and robust framework in which language continuity has a topological interpretation
(see the beginning of Section 3, as we build upon this theory). Pin and Silva [13] notably
proposed thereafter a study of functions that propagate continuity for a class to subclasses.

Second, the interweaving between languages, circuits, and logic that was alluded to
previously can in fact be formally stated (see again [18, 19]). As a central property towards
this formalization is the correspondence between “cascade products” of automata, stacking
of circuits, and nesting of formulas, respectively. Strikingly, these operations can all be seen
as inverse rational functions [19]. These operations being intrinsic in the construction of
complex objects, decompositions are often naturally used to specify languages, circuits, and
formulas (see, e.g., [17, Section 5.5]). We remark that a sufficient condition for the result
of the composition to be in some given class (of languages, circuits, or logic formulas), is
that each rational function be continuous for that class. Hence deciding continuity allows to
give a sufficient condition for this membership question without computing the result of the
composition, which is subject to combinatorial blowup.

Here, we report on three questions, the first two relating continuity to the main other
algebraic approach to transducers, while allowing a more gentle introduction to the evaluation
of profinite words by transducers:

When is the transducer structure (i.e., its so-called transition monoid) impacting its
continuity? The results of Reutenauer and Schützenberger [15] can indeed be seen as
the starting point of two distinct algebraic theories for rational functions; on the one
hand, the study of continuity, and on the other the study of the transition monoid of the
transducer (by disregarding the output). This latter endeavor was carried by [5].
What is the impact of variety inclusion on the inclusion of the related classes of continuous
rational functions? When the focus is solely on the structure of the transducer, there is a
natural propagation to superclasses; when is it the case for continuity?
When is V_continuity decidable for rational functions? We show decidability for the
varieties J ,R,L,DA,A, COM,AB,Gsol, and G; these constitute our main results.

2 Preliminaries

We assume some familiarity with the theory of automata and transducers, and concepts
related to metric spaces (see, e.g., [3, 8] for presentations pertaining to our topic). Apart from
these prerequisites, for which the notation is first settled, the presentation is self-contained.

We will use A and B for alphabets, and A∗ for words over A, with 1 the empty word.
For each word u, there is a smallest v, called the primitive root of u, such that u = vc for
some c; if c = 1, then u is itself primitive. We write |u| for the length of a word u ∈ A∗ and
alph(u) for the set of letters that appear in u. For a word u ∈ A∗ and a language L ⊆ A∗,
we write u−1L for {v | u · v ∈ L}, and symmetrically for Lu−1, these two operations being
called the left and right quotients of L by u, respectively. We naturally extend concatenation
and quotients to relations, in a component-wise fashion, e.g., for R ⊆ A∗ × A∗ and a pair
ρ ∈ A∗×A∗, we may use ρ−1R and Rρ−1. We write Lc for the complement of L. A variety is
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a mapping V which associates with each alphabet A a set V(A∗) of regular languages closed
under the Boolean operations and quotient, and such that for any morphism h : A∗ → B∗

and any L ∈ V(B∗), it holds that h−1(L) ∈ V(A∗). Reg is the variety that maps every
alphabet A to the set Reg(A∗) of regular languages over A. Given two languages K,L ⊆ A∗,
we say that they are V_separable if there is a S ∈ V(A∗) such that K ⊆ S and L ∩ S = ∅.

Transducers. A transducer τ is a 9-tuple (Q,A,B, δ, I, F, λ, µ, ρ) where (Q,A, δ, I, F ) forms
an automaton (i.e., Q is a state set, A an input alphabet, δ ⊆ Q× A×Q a transition set,
I ⊆ Q a set of initial states, and F ⊆ Q a set of final states), and additionally, B is an output
alphabet and λ : I → B∗, µ : δ → B∗, ρ : F → B∗ are the output functions. We write τq,q′

for τ with I := {q} and F := {q′}, adjusting λ and ρ to output 1 if they were undefined on
these states. Similarly, τq,• is τ with I := {q} and F unchanged, and symmetrically for τ•,q.
For q ∈ Q and u ∈ A∗, we write q.u for the set of states reached from q by reading u. We
assume that all the transducers and automata under study have no useless state, that is,
that all states appear in some accepting path.

With w ∈ A∗, let t_1t_2 · · · t_|w| ∈ δ∗ be an accepting path for w, starting in a state
q ∈ I and ending in some q′ ∈ F . The output of this path is λ(q)µ(t_1)µ(t_2) · · ·µ(t_n)ρ(q′),
and we write τ(w) for the set of outputs of such paths. We use τ for both the transducer and its
associated partial function from A∗ to subsets of B∗. Relations of the form {(u, v) | v ∈ τ(u)}
are called rational relations.

The transducer τ is unambiguous if there is at most one accepting path for each word.
In that case τq,q′ is also an unambiguous transducer for any states q, q′. When τ is unam-
biguous, it realizes a word-to-word function: the set of functions computed by unambiguous
transducers is the set of rational functions. Further restricting, if the underlying automaton
is deterministic, we say that τ is subsequential. If τ is a finite union of subsequential rational
functions of disjoint domains, we say that τ is plurisubsequential.

Word distances, profinite words. For a variety V of regular languages, we define a distance
between words for which, intuitively, two words are close if it is hard to separate them
with V languages. Define d_V(u, v), for words u, v ∈ A∗, to be 2−r where r is the size of
the smallest automaton that recognizes a language of V(A∗) that separates {u} from {v};
if no such language exists, then d_V(u, v) = 0. It can be shown that this distance is a
pseudo-ultrametric [8, Section VII.2]; we make only implicit and innocuous use of this fact.

We simply write d for d_Reg. The complete metric space that is the completion of (A∗, d)
is denoted Â∗ and is called the free profinite monoid, its elements being the profinite words,
and the concatenation being naturally extended. By definition, if (u_n)_n > 0 is a Cauchy
sequence, it should hold that for any regular language L, there is a N such that either all
u_n with n > N belong to L, or none does. For any x ∈ A∗, define the profinite word
xω = lim xn!, and more generally, xω−c = lim xn!−c. That (xn!)_n > 0 is a Cauchy sequence
is a starting point of the profinite theory [8, Proposition VI.2.10]; it is also easily checked
that xc×ω = lim xc×n! is equal to xω for any integer c ≥ 1. Given a language L ⊆ A∗, we
write L ⊆ Â∗ for its closure, and we note that if L is regular, Lc = Lc and for L′ regular,
L ∪ L′ = L ∪ L′, and similarly for intersection (see [8, Theorem VI.3.15]).

Equations. For u, v ∈ Â∗, a language L ⊆ A∗ satisfies the (profinite) equation u = v if for
any words s, t ∈ A∗, [s · u · t ∈ L⇔ s · v · t ∈ L]. Similarly, a class of languages satisfies an
equation if all the languages of the class satisfy it. For a variety V, we write u = _Vv, and
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115:4 Continuity and Rational Functions

say that u is equal to v in V , if V(A∗) satisfies u = v. For a partial function f , f(u) = _Vf(v)
means that either both f(u) and f(v) are undefined, or they are both defined and equal in V .

Given a set E of equations over Â∗, the class of languages defined by E is the class
of languages over A∗ that satisfy all the equations of E. Reiterman’s theorem shows in
particular that for any variety V and any alphabet A, V(A∗) is defined by a set of equations
(the precise form of which being studied in [6]).

More on varieties. Borrowing from Almeida and Costa [2], we say that a variety V is
supercancellative when for any alphabet A, any u, v ∈ Â∗ and x, y ∈ A, if u · x = _Vv · y
or x · u = _Vy · v, then u = _Vv and x = y. This implies in particular that for any word
w ∈ A∗, both w · A∗ and A∗ · w are in V(A∗). We further say that a variety V separates
words if for any s, t ∈ A∗, {s} and {t} are V_separable.

Our main applications revolve around some classical varieties, that we define over any
possible alphabet A as follows, where x, y range over all of A∗, and a, b over A:

J , def. by (xy)ω · x = y · (xy)ω = (xy)ω

R, def. by (xy)ω · x = (xy)ω

L, def. by y · (xy)ω = (xy)ω

DA, def. by xω ·z ·xω = xω for all z ∈ alph(x)∗

A, def. by xω+1 = xω

COM, def. by ab = ba

AB, def. by ab = ba and aω = 1
Gnil, the languages rec. by nilpotent groups
Gsol, the languages rec. by solvable groups
G, the languages rec. by groups

The varieties included in A are called aperiodic varieties and those in G are called group
varieties. Precise definitions, in particular for the group varieties, can be found in [18, 14];
we simply note that in group varieties, xω equals 1 for all x ∈ A∗. All these varieties except
for AB and COM separate words, and only DA and A are supercancellative. They verify:

J = R∩ L
R(

( L (

(

(DA A
AB = G ∩ COM ( Gnil ( Gsol ( G

COM(

On transducers and profinite words. For a profinite word u and a state q of an unambiguous
transducer τ , the set q.u is well-defined; indeed, with u = lim u_n, the set q.u_n is eventually
constant, as otherwise for some state q′, the domain of τq,q′ would be a regular language that
separates infinitely many u_n’s.

A transducer τ : A∗ → B∗ is a V_transducer,1 for a variety V , if for some set of equations E
defining V(A∗), for all (u = v) ∈ E and all states q of τ , it holds that q.u = q.v. A rational
function is V_realizable if it is realizable by a V_transducer.

Continuity. For a variety V , a function f : A∗ → B∗ is V_continuous2 iff for any L ∈ V(B∗),
f−1(L) ∈ V(A∗). We mostly restrict our attention to rational functions, and their being

1 The usual definition of V_transducer is based on the so-called transition monoid of τ , see, e.g., [15]; the
definition here is easily seen to be equivalent by [1, Lemma 3.2] and [4, Lemma 1].

2 A note on terminology: There has been some fluctuation on the use of the term “continuous” in the
literature, mostly when a possible incompatibility arises with topology. In [13], the authors use the
term “preserving” in the more general context of functions from monoids to monoids. In our study, we
focus on word to word functions, in which the natural topological context provides a solid basis for the
use of “continuous,” as used in [11, 4].
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computed by transducers implies that they are countably many. We note that much more
Reg_continuous functions exist, in particular uncomputable ones:

I Proposition 1. There are uncountably many Reg_continuous functions.

3 Continuity: The profinite approach

We build upon the work of Pin and Silva [11] and develop tools specialized to rational functions.
In Section 3.1, we present a lemma asserting the equivalence between V_continuity and the
“preservation” of the defining equations for V. In the sections thereafter, we specialize this
approach to rational functions. As noted in [11], it often occurs that results about rational
functions can be readily applied to the larger class of Reg_continuous functions; here, this is
in particular the case for the Preservation Lemma of Section 3.1.

Our main appeal to a classical notion of continuity is given by the:

I Theorem 2 ([12, Theorem 4.1]). Let f : A∗ → B∗. It holds that f is V_continuous iff f is
uniformly continuous for the distance d_V.

Consequently, if f is Reg_continuous then it has a unique extension to the free profinite
monoids, written f̂ : Â∗ → B̂∗. The salient property of this mapping is that it is continuous
in the topological sense (see, e.g., [8]). For our specific needs, we simply mention that it
implies that for any regular language L, we have that f̂−1(L) is closed (that is, it is the
closure of some set).

3.1 The Preservation Lemma: Continuity is preserving equations
The Preservation Lemma gives us a key characterization in our study: it ties together
continuity and some notion of preservation of equations. This can be seen as a generalization
to functions of equation satisfaction for languages. We will need the following technical
lemma that extends [8, Proposition VI.3.17] from morphisms to arbitrary Reg_continuous
functions; interestingly, this relies on a quite different proof.

I Lemma 3. Let f : A∗ → B∗ be a Reg_continuous function and L a regular language. It
holds that f̂−1(L) = f−1(L).

I Lemma 4 (Preservation Lemma). Let f : A∗ → B∗ be a Reg_continuous function and E a
set of equations that defines V(A∗). The function f is V_continuous iff for all (u = v) ∈ E
and words s, t ∈ A∗, f̂(s · u · t) = _V f̂(s · v · t).

Proof. (Only if) Suppose f is V_continuous. Let u, v ∈ Â∗ such that u = _Vv, and
s, t ∈ A∗. Since by V_continuity f−1(B∗) ∈ V(A∗), either both s · u · t and s · v · t belong to
the closure of this language, or they both do not. The latter case readily yields the result,
hence suppose we are in the former case.

By definition, u = lim u_n and v = lim v_n for some Cauchy sequences of words
(u_n)_n > 0 and (v_n)_n > 0. Since s · u · t = _Vs · v · t, the hypothesis yields that
d_V(s · u_n · t, s · v_n · t) tends to 0. By Theorem 2, f is uniformly continuous for d_V,
hence d_V(f(s · u_n · t), f(s · v_n · t)) also tends to 0 (note that both f(s · u_n · t) and
f(s · v_n · t) are defined for all n big enough). This shows that f̂(s · u · t) = _V f̂(s · v · t).

(If) Suppose that f preserves the equations of E as in the statement. Let L ∈ V(B∗),
we wish to verify that L′ = f−1(L) ∈ V(A∗), or equivalently by definition, that L′ satisfies
all the equations of E. Let (u = v) ∈ E be one such equation, and s, t ∈ A∗; we must show
that s · u · t ∈ L′ ⇔ s · v · t ∈ L′.
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115:6 Continuity and Rational Functions

Suppose s ·u · t ∈ L′. Since f is Reg_continuous, it holds that f̂(s ·u · t) ∈ L (observe that
f̂(s · u · t) is indeed defined). By hypothesis, f̂(s · u · t) = _V f̂(s · v · t); now since L ∈ V(B∗),
it must hold that f̂(s · v · t) ∈ L. Taking the inverse image of f̂ on both sides, it thus holds
that s · v · t ∈ f̂−1(L), and Lemma 3 then shows that s · v · t ∈ L′. As the argument works
both ways, this shows that s · u · t ∈ L′ ⇔ s · v · t ∈ L′, concluding the proof. J

Continuity can be seen as preserving membership to V (by inverse image); this is where
the nomenclature “V_preserving function” of [13] stems from. Strikingly, this could also be
worded as preserving nonmembership to V:

I Proposition 5. A Reg_continuous total 3 function f : A∗ → B∗ is V_continuous iff for
all L ⊆ A∗ that do not belong to V(A∗), f(L) and f(Lc) are not V_separable.

3.2 The profinite extension of rational functions
The Preservation Lemma already hints at our intention to see transducers as computing
functions from and to the free profinite monoids. Naturally, if τ is a rational function, its
being Reg_continuous allows us to do so (by Theorem 2). For u = lim u_n a profinite word,
we will write τ(u) for τ̂(u), i.e., the limit lim τ(u_n), which exists by continuity. In this
section, we develop a slightly more combinatorial approach to this evaluation, and address
two classes of profinite words: those expressed as s · u · t for s, t words and u a profinite word,
and those expressed as xω for x a word.

Recall that for a transducer state q and a profinite word u, q.u is well-defined. As a
consequence, if s and t are words and τ is unambiguous, then there is at most one initial
state q_0, one q ∈ q_0.s and one q′ ∈ q.u such that q′.t is final, and these states exist iff
τ(s · u · f) is defined. Thus:

I Lemma 6. Let τ be an unambiguous transducer from A∗ to B∗, s, t ∈ A∗ and u ∈ Â∗.
Suppose τ(s · u · f) is defined, and let q_0, q, q′ be the unique states such that q_0 is initial,
q ∈ q_0.s, q′ ∈ q.u, and q′.t is final. The following holds: τ(s·u·t) = τ•,q(s)·τq,q′(u)·τq′,•(t) .

I Lemma 7. Let τ be an unambiguous transducer from A∗ to B∗ and x ∈ A∗. If τ(xω) is
defined, then there are words s, y, t ∈ B∗ such that: τ(xω) = s · yω−1 · t.

These constitute our main ways to effectively evaluate the image of profinite words
through transducers. Their use being quite ubiquitous in our study, we will rarely refer to
these lemmata nominally.

3.3 The Syncing Lemma: Preservation Lemma applied to transducers
We apply the Preservation Lemma on transducers and deduce a slightly more combinatorial
characterization of transducers describing continuous functions. This does not provide an
immediate decidable criterion, but our decidability results will often rely on it. The goal of
the forthcoming lemma is to decouple, when evaluating s · u · t (with the notations of the
Preservation Lemma), the behavior of the u part and that of the s, t part. This latter part
will be tested against an equalizer set:

3 In all the varieties we are interested in, one can easily modify any partial function into a total function
while preserving its continuity properties.
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I Definition 8 (Equalizer set). Let u, v ∈ Â∗. The equalizer set of u and v in V is:

Equ_V(u, v) = {(s, s′, t, t′) ∈ (A∗)4 | s · u · t = _Vs′ · v · t′} .

I Remark. The complexity of equalizer sets can be surprisingly high. For instance, letting V
be the class of languages defined by {x2 = x3 | x ∈ A∗}, there is a profinite word u for which
Equ_V(u, u) is undecidable. On the other hand, equalizer sets quickly become less complex
for common varieties; for instance, Lemma 12 will provide a simple form for the equalizer
sets of aperiodic supercancellative varieties.

I Definition 9 (Input synchronization). Let R,S ⊆ A∗×B∗. The input synchronization of R
and S is defined as the relation over B∗ ×B∗ obtained by synchronizing the first component
of R and S: R ./ S = {(u, v) | (∃s)[(s, u) ∈ R ∧ (s, v) ∈ S]}

(
= S ◦R−1).

Naturally, the input synchronization of two rational functions is a rational relation.

I Lemma 10 (Syncing Lemma). Let τ be an unambiguous transducer from A∗ to B∗ and E
a set of equations that defines V(A∗). The function τ is V_continuous iff:
1. τ−1(B∗) ∈ V(A∗), and
2. For any (u = v) ∈ E, any states p, q, any p′ ∈ p.u, and any q′ ∈ q.v, and letting

u′ = τp,p′(u) and v′ = τq,q′(v): (τ•,p ./ τ•,q)× (τp′,• ./ τq′,•) ⊆ Equ_V(u′, v′).

3.4 A profinite toolbox for the aperiodic setting
In this section, we provide a few lemmata pertaining to our study of aperiodic continuity.
We show that the equalizer sets of aperiodic supercancellative varieties are well-behaved.
Intuitively, the larger the varieties are, the more their nonempty equalizer sets will be similar
to the identity. For instance, if s ·xω = _Axω, for words s and x, it should hold that s and x
have the same primitive root. We first note the following easy fact that will only be used in
this section; it is reminiscent of the notion of equidivisibility, studied in the profinite context
by Almeida and Costa [2].

I Lemma 11. Let u, v be profinite words over an alphabet A and V be a supercancellative
variety. Suppose that there are s, t ∈ A∗ such that u · t = _Vs · v, then there is a w ∈ Â∗ such
that u = _Vs ·w and v = _Vw · t. If moreover u = v and V is aperiodic, then u = _Vs · u · t.

I Lemma 12. Let u, v be profinite words over an alphabet A and V be an aperiodic supercan-
cellative variety. Suppose Equ_V(u, v) is nonempty. There are words x, y ∈ A∗ and two pairs
ρ_1, ρ_2 ∈ (A∗)2 such that: Equ_V(u, v) =

(
Id ·
(
(x∗, x∗)ρ_1−1))×((ρ_2−1(y∗, y∗)

)
· Id
)
.

I Lemma 13. Let x, y be words. For every aperiodic supercancellative variety V, it holds
that Equ_V(xω, yω) = Equ_A(xω, yω).
I Remark. For two aperiodic supercancellative varieties V andW , we could further show that
if both Equ_V(u, v) and Equ_W(u, v) are nonempty, then they are equal, for any profinite
words u, v. It may however happen that one equalizer set is empty while the other is not;
for instance, with u = (ab)ω and v = (ab)ω · a · (ab)ω, the equalizer set of u and v in DA is
nonempty, while it is empty in A.

4 Intermezzos

We present a few facts of independent interest on continuous rational functions. Through
this, we develop a few examples, showing in particular how the Preservation and Syncing
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115:8 Continuity and Rational Functions

Lemmata can be used to show (non)continuity. In a first part, we study when the structure
of the transducer is relevant to continuity, and in a second, when the (non)inclusion of variety
relates to (non)inclusion of the class of continuous rational functions.

4.1 Transducer structure and continuity
As noted by Reutenauer and Schützenberger [15, p. 231], there exist numerous natural
varieties V for which any V_realizable rational function is V_continuous. Indeed:

I Proposition 14. Let V be a variety of languages closed under inverse V_realizable rational
function. Any V_realizable rational function is V_continuous. This holds in particular for
the varieties A,Gsol, and G.

I Proposition 15. For V ∈ {J ,L,R,DA,AB,Gnil, COM}, there are V_realizable rational
functions that are not V_continuous.

The converse concern, that is, whether all V_continuous rational functions are
V_realizable, was mentioned by Reutenauer and Schützenberger [15] for V = A.

I Proposition 16. For V ∈ {J ,L,R,DA,A,AB, COM}, there are V_continuous rational
functions that are not V_realizable.

Proof. (The aperiodic cases) Let A = {a}, a unary alphabet. Consider the transducer τ
that removes every second a: its minimal transducer not being a A_transducer, it is not
A_realizable (this is a property of subsequential transducers [15]). However, all the unary
languages of V are either finite or co-finite, and hence for any L ∈ V(A∗), τ−1(L) is either
finite or co-finite, hence belongs to V(A∗).

(The AB and COM cases) Over A = {a, b}, define τ to map words w in aA∗ to (ab)|w|,
and words w in bA∗ to (ba)|w|. Clearly, a and b cannot act commutatively on the transducer.
Now τ(ab) = _COMτ(ba), and moreover τ(xω) = _AB(ab)ω = _AB1 = τ(1), hence τ is
continuous for both AB and COM by the Preservation Lemma. J

We delay the positive answers to that question, namely for Gnil,Gsol,G, to Corollary 27
as they constitute our main lever towards the decidability of continuity for these classes.

4.2 Variety inclusion and inclusion of classes of continuous functions
In this section, we study the consequence of variety (non)inclusion on the inclusion of the
related classes of continuous rational functions. This is reminiscent of the notion of heredity
studied by [12], where a function is V_hereditarily continuous if it is W_continuous for each
subvariety W of V. Variety noninclusion provides the simplest study case here:

I Proposition 17. Let V and W be two varieties. If V 6⊆ W then there are V_continuous
rational functions that are not W_continuous.

The remainder of this section focuses on a dual statement:
If V (W, are all V_continuous rational functions W_continuous?

We first focus on group varieties. Naturally, if 1. V_continuous rational functions
are V_realizable and 2. W_realizable rational functions are W_continuous, this holds.
Appealing to the forthcoming Corollary 27 for point 1 and Proposition 14 for point 2, we
then get:
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I Proposition 18. For V,W ∈ {Gnil,Gsol,G} with V ( W, all V_continuous rational
functions are W_continuous. This however fails for V = AB and for any W ∈ {Gnil,Gsol,G}.

Proof. It remains to show the case V = AB. This is in fact the same example as in the
proof of Proposition 16, to wit, over A = {a, b}, the rational function τ that maps w ∈ aA∗
to (ab)|w|, and words w ∈ bA∗ to (ba)|w|. Indeed, we saw that this function is continuous
for AB, but it holds that τ(a) = ab on the one hand, and τ(bωa) = (ba)ωba = _Wba, but
ab 6= _Wba. The Preservation Lemma then shows that τ is not continuous for W. J

I Proposition 19. All AB_continuous rational functions are COM_continuous.

We now turn to aperiodic varieties. For lesser expressive varieties, the property fails:

I Proposition 20. For V ∈ {J ,L,R} and W ∈ {L,R,DA,A} with V ( W, there are
V_continuous rational functions that are not W_continuous.

I Proposition 21. Any DA_continuous rational function is A_continuous.

Proof. First note that both DA and A satisfy the hypotheses of Lemma 12. Consider a
DA_continuous rational function τ : A∗ → B∗. By the Syncing Lemma, to show that it
is A_continuous, it is enough to show that 1. τ−1(B∗) ∈ A(A∗), and 2. That some input
synchronizations of τ , based on equations of the form xω = _Axω+1, belong to an equalizer
set of the form (by Lemma 7):

Equ_A(α ·yω ·β, α′ ·zω ·β′) = {(s, s′, t, t′) | (s ·α, s′ ·α′, β · t, β′ · t′) ∈ Equ_A(yω, zω)} .

Applying the Syncing Lemma on τ for the variety DA, we get that point 1 is true, since
τ−1(B∗) ∈ DA(A∗). Similarly, point 2 is true since xω = xω+1 is an equation of DA, and
Lemma 13 implies that the equalizer set of the equation above is the same in DA and A. J

I Proposition 22. There are nonrational functions that are continuous for both DA and Reg
but are not A_continuous.

5 Deciding continuity for transducers

5.1 Deciding continuity for group varieties
Reutenauer and Schützenberger showed in [15] that a rational function is G_continuous iff it
is G_realizable. Since this is proven effectively, it leads to the decidability of G_continuity.
In Proposition 14, we saw that the right-to-left statement also holds for Gsol; we now
show that the left-to-right statement holds for all group varieties V that contain Gnil. As
in [15], but with sensibly different techniques, we show that V_continuous transducers
are plurisubsequential. The Syncing Lemma will then imply that such transducers are
V_transducers. Both properties rely on the following normal form:

I Lemma 23. Let τ be a transducer. An equivalent transducer τ ′ can be constructed by
adjoining some codeterministic automaton to τ so that for any states p, q of τ ′:[

(∃x, y)
[
∅ 6= (τ ′p,• ./ τ

′
q,•) ⊆ (x, y) · Id

]]
⇒ p = q .

Alternatively, the “dual” property can be ensured, adjoining a deterministic automaton to τ ,
so that for any states p, q of τ ′:[

(∃x, y)
[
∅ 6= (τ ′•,p ./ τ ′•,q) ⊆ Id · (x, y)

]]
⇒ p = q .

ICALP 2017
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I Lemma 24. Let V be a variety of group languages that contains Gnil. For any V_continuous
unambiguous transducer τ , the transducer obtained by applying the dual of Lemma 23, then
applying its first part, is a plurisubsequential V_transducer.

Proof. Write τ ′ for the result of the dual part of Lemma 23 on τ , and τ ′′ for the result of
the first part of Lemma 23 on τ ′. For these transducers, call a triple a states (p, q, q′) a fork
on a if from p, the transducer can go to q and q′ reading one a, and there is a path from q to
p reading only a’s. Dually, a triple (q, q′, p) is a reverse fork on a if the transducer can go
from q and q′ to p reading one a, and there is a path from p to q that reads only a. In both
cases, the fork is proper if q 6= q′. We rely on two facts:

I Fact 25. There are no proper forks or reverse forks in τ ′′.

I Fact 26. For any state p of τ ′′ and any letter a, it holds that p ∈ p.aω.

Consider a state p in τ ′′ and a letter a. As p ∈ p.aω by Fact 26, there is a cycle of a’s on
p. Call q the first state of that cycle. Next, let q′ be such that (p, a, q′) is a transition of τ ′′.
Clearly, (p, q, q′) forms a fork, hence by Fact 25, q = q′. Thus τ ′′ is plurisubsequential.

It remains to show that τ ′′ is a V_transducer. To do so, consider an equation u = _Vv,
a state q of τ ′′, and let p = q.u and p′ = q.v. We show that p = p′, concluding the proof. We
rely on the Syncing Lemma, since τ ′′ is V_continuous; it ensures in particular that:

(τ ′′•,q ./ τ ′′•,q)× (τ ′′p,• ./ τ
′′
p′,•) ⊆ Equ_V(u′, v′) with u′ = τ ′′q,p(u), v′ = τ ′′q,p′(v) . (1)

Let (s, s, t_1, t_2) be in the left-hand side. It holds that s · u′ · t_1 = _Vs · v′ · t_2, thus
u′ · t_1 = _Vv′ · t_2 (here and in the following, we derive equivalent equations by appealing
to the fact that the free group is embedded, in a precise sense, in V [16, § 6.1.9]). Now
consider another tuple (s′, s′, t_1′, t_2′) again in the left-hand side of Equation (1). It also
holds that u′ · t_1′ = _Vv′ · t_2′, hence we obtain that t_1 · t_2−1 = _Vt_1′ · t_2′−1. This
is in turn equal in V to some α · β−1 such that α and β are words that do not share the same
last letter. This shows that t_1 = α · t and t_2 = β · t for some word t, and similarly for
t_1′ and t_2′. More generally: (τ ′′p,• ./ τ

′′
p′,•) ⊆ (α, β) · Id, and the normal form of Lemma 23

thus shows that p = p′. J

I Corollary 27. For V ∈ {Gnil,Gsol,G}, any V_continuous rational function is V_realizable.

I Theorem 28. Let V be a variety of group languages that includes Gnil and that is closed un-
der inverse V_realizable rational functions. It is decidable, given an unambiguous transducer,
whether it realizes a V_continuous function. This holds in particular for Gsol and G.

5.2 Deciding continuity for aperiodic varieties
We saw in Section 4.1 that the approach of the previous section cannot work: there is no
correspondence between continuity and realizability for aperiodic varieties. Herein, we use
the Syncing Lemma to decide continuity in two main steps. First, note that all of our
aperiodic varieties are defined by an infinite number of equations for each alphabet. The
Syncing Lemma would thus have us check an infinite number of conditions; our first step is to
reduce this to a finite number, which we stress through the forthcoming notion of “pertaining
triplet” of states. Second, we have to show that the inclusion of the second point of the
Syncing Lemma can effectively be checked. This will be done by simplifying this condition,
and showing a decidability property on rational relations.
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I Definition 29. A triplet of states (p, q, q′) is pertaining if there are words s, u, t and an
integer n such that:

I

p

q q′

F

s | ·

s | ·

t | ·

t | ·

u | β′

un−1 | β′′

un | β

where · means “any word.” Further, a pertaining triplet is empty if, in the above picture,
β = β′β′′ = 1 and full if both words are nonempty; it is degenerate if only one of β or β′β′′
is empty.

It is called “pertaining” as the second point of the Syncing Lemma elaborates on properties
of such a triplet, in particular, since uω = uω+1 is an equation of A. The following
characterization of A_continuity is then made without appeal to equations or profinite words:

I Lemma 30. A transducer τ : A∗ → B∗ is A_continuous iff all of the following hold:
1. τ−1(B∗) ∈ A(A∗);
2. For all full pertaining triplets (p, q, q′), there exist x, y ∈ B∗ and ρ_1, ρ_2 ∈ (B∗)2 such

that τ•,p ./ τ•,q ⊆ Id ·
(
(x∗, x∗)ρ_1−1) and τp,• ./ τq′,• ⊆

(
ρ_2−1(y∗, y∗)

)
· Id;

3. For all empty pertaining triplets (p, q, q′) it holds that (τ•,p ./ τ•,q) · (τp,• ./ τq′,•) ⊆ Id;
4. No pertaining triplet is degenerate.

I Example 31. We show that the transducer of Proposition 16 is A_continuous. Let τ be:

p q

a | a

a | 1

First, the function is total, hence the first point of Lemma 30 is verified. Second, there
are no empty nor degenerate pertaining triplets, hence the third and fourth points are
verified. Now the full pertaining triplets are (p, p, p), (p, p, q), (q, q, q), and (q, q, p). We
check that the pertaining triplet (p, p, q) verifies the second condition of Lemma 30, the
other cases being similar or clear. The first half of the condition is immediate. Now
τp,• ./ τq,• = {(abn+1/2c, abn/2c) | n ≥ 0} which verifies the condition.

We now show that the property of Lemma 30 is indeed decidable:

I Proposition 32. It is decidable, given a rational relation R ⊆ A∗ ×A∗, whether there is a
word x ∈ A∗ and a pair ρ ∈ (A∗)2, such that R ⊆ Id ·

(
(x∗, x∗)ρ−1).

I Remark. In general, the problem of deciding, given a rational relation R and a recognizable
relation K, whether R ⊆ Id ·K, is undecidable. Indeed, testing R ∩ Id = ∅ is undecidable [3],
and equivalent to testing:

R ⊆ Id ·
(
(A+ × {1}) ∪ ({1} ×A+) ∪

⋃
_a 6= b ∈ A(a ·A∗ × b ·A∗)

)
,

the right-hand side being of the form Id ·K.
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I Theorem 33. It is decidable, given an unambiguous transducer, whether it realizes an
A_continuous function.

The same approach, with carefully tweaked conditions, yields:

I Theorem 34. For V = J ,R,L,DA, it is decidable, given an unambiguous transducer,
whether it realizes a V_continuous function.

5.3 Deciding COM- and AB-continuity
The case of COM and AB is comparatively much simpler, in particular because these varieties
are defined using a finite number of equations for each alphabet. However, the argument
relies on different ideas:

I Theorem 35. For V = COM,AB, it is decidable, given an unambiguous transducer, whether
it realizes a V_continuous function.

Proof. We apply the Syncing Lemma. Its first point is clearly decidable. We reduce its
second point to decidable properties about semilinear sets (see, e.g., [7]). We also rely on the
notion of Parikh image, that is, the mapping Pkh : A∗ → NA such that Pkh(w) maps a ∈ A
to the number of a’s in the word w.

Since every AB_continuous function is COM_continuous (Proposition 19), the conditions
to test for AB_continuity are included in those for COM_continuity—this can also be seen as
a consequence of the fact that if u, v are words, Equ_AB(u, v) = Equ_COM(u, v).

Let τ : A∗ → B∗ be a given transducer. Consider an equation ab = ba and four states
p, p′, q, q′ of τ . Write u = τp,p′(ab) and v = τq,q′(ba). We ought to check, by the Syncing
Lemma, the inclusion in Equ_COM(u, v) = {(s, s′, t, t′) | s ·u · t = _COMs′ · v · t′} of some input
synchronization. Now this set is the set of (s, s′, t, t′) such that Pkh(s · u · t) = Pkh(s′ · v · t′),
and is thus defined by a simple semilinear property. The input synchronizations themselves,
e.g., τ•,p ./ τ•,q, are rational relations, and their component-wise Parikh image is thus a
semilinear set. Since the inclusion of semilinear sets is decidable, the inclusion of the second
point of the Syncing Lemma is also decidable.

For AB, we should additionally check the equations aω = 1. The reasoning is similar.
Consider three states (p, p′, q), and write x · uω−1 · y for τp,p′(aω). By commutativity and
the fact that uω−1 acts as an inverse of u in the equations holding in AB, we have that
(s, s′, t, t′) ∈ Equ_AB(x · uω−1 · y, 1) iff s · t = _ABs′ · u · t′. This again reduces the inclusion
of the second point of the Syncing Lemma to a decidable semilinear property. J

6 Discussion

We presented a study of continuity in functional transducers, on the one hand focused on
general statements (Section 3), on the other hand on continuity for classical varieties. The
heart of this contribution resides in decidability properties (Section 5), although we also
addressed natural and related questions in a systematic way (Section 4). We single out two
main research directions.

First, there is a sharp contrast between the genericity of the Preservation and Syncing
Lemma and the technicality of the actual proofs of decidability of continuity. To which extent
can these be unified and generalized? We know of two immediate extensions: 1. the generic
results of Section 3 readily apply to Boolean algebras of languages closed under quotient,
a relaxation of the conditions imposed on varieties, and 2. the varieties G_p of languages
recognized by p-groups can also be shown to verify Proposition 14 and Lemma 24, hence



M. Cadilhac, O. Carton, and C. Paperman 115:13

Gp_continuity is decidable for transducers. Beyond these two points, we do not know how to
show decidability for Gnil (which is the join of the Gp), and the surprising complexity of the
equalizer sets for some Burnside varieties (e.g., the one defined by x2 = x3, see the Remark
on page 7) leads us to conjecture that continuity may be undecidable in that case, hence
that no unified way to show the decidability of continuity exists.

Second, the notion of continuity may be extended to more general settings. For instance,
departing from regular languages, it can be noted that every recursive function is continuous
for the class of recursive languages. Another natural generalization consists in studying
(V,W)_continuity, that is, the property for a function to map W_languages to V_languages
by inverse image. This would provide more flexibility for a sufficient condition for cascades
of languages (or stackings of circuits, or nestings of formulas) to be in a given variety.
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