
Admissibility in Concurrent Games∗†

Nicolas Basset1, Gilles Geeraerts2, Jean-François Raskin3, and
Ocan Sankur4

1 Université libre de Bruxelles, Brussels, Belgium
nicolas.basset@ulb.ac.be

2 Université libre de Bruxelles, Brussels, Belgium
gilles.geeraerts@ulb.ac.be

3 Université libre de Bruxelles, Brussels, Belgium
jraskin@ulb.ac.be

4 CNRS, IRISA, Rennes, France
ocan.sankur@irisa.fr

Abstract
In this paper, we study the notion of admissibility for randomised strategies in concurrent games.
Intuitively, an admissible strategy is one where the player plays ‘as well as possible’, because
there is no other strategy that dominates it, i.e., that wins (almost surely) against a superset of
adversarial strategies. We prove that admissible strategies always exist in concurrent games, and
we characterise them precisely. Then, when the objectives of the players are ω-regular, we show
how to perform assume-admissible synthesis, i.e., how to compute admissible strategies that win
(almost surely) under the hypothesis that the other players play admissible strategies only.

1998 ACM Subject Classification D.2.4 Software/Program Verification, F.3.1 Specifying and
Verifying and Reasoning about Programs, I.2.2 Program Synthesis

Keywords and phrases Multi-player games, admissibility, concurrent games, randomized
strategies

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.123

1 Introduction

In a concurrent n-player game played on a graph, all n players independently and simultan-
eously choose moves at each round of the game, and those n choices determine the next state
of the game [14]. Concurrent games generalise turn-based games and it is well-known that,
while deterministic strategies are sufficient in the turn-based case, randomised strategies
are necessary for winning with probability one even for reachability objectives. Intuitively,
randomisation is necessary because, in concurrent games, in each round, players choose their
moves simultaneously. Randomisation makes it possible to choose a good move with some
probability without the knowledge of the moves that the other players are simultaneously
choosing. As a consequence, there are two classical semantics that are considered to analyse
these games qualitatively: winning with certainty (sure semantics in the terminology of [14]),
and winning with probability one (almost sure semantics in the terminology of [14]). We
consider both semantics here.

∗ An extended version of this article is available in [4], http://arxiv.org/abs/1702.06439.
† This work was partially supported by the ERC Starting grant 279499 (inVEST), the ARC project «

Non-Zero Sum Game Graphs: Applications to Reactive Synthesis and Beyond » (Fédération Wallonie-
Bruxelles), J.-F. Raskin is Professeur Francqui de Recherche.

EA
T

C
S

© Nicolas Basset, Gilles Geeraerts, Jean-François Raskin, and Ocan Sankur;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 123; pp. 123:1–123:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.123
http://arxiv.org/abs/1702. 06439
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

123:2 Admissibility in Concurrent Games

s0 s1 s2 Trg
(b, b′) (d, d′)

(a,−), (−, a′) (c,−), (−, c′) (f, g′), (g, f ′)

(f, f ′), (g, g′)

(−,−)

Figure 1 A concurrent game where Player 1 and 2 want to reach Trg and s2 respectively.

SCO

LA

Adm.

(a) Concurrent games.

LA
Adm.

=
SCO

(b) Turn-based games.

SCO

Adm.
=

LA

(c) Safety games.

Figure 2 The relationships between the classes of Admissible, LA, and SCO strategies for three
families of games. All the inclusions are strict.

Previous papers on concurrent games are mostly concerned with two-player zero-sum
games, i.e. two players that have fully antagonistic objectives. In this paper, we consider the
more general setting of n-player non zero-sum concurrent games in which each player has
its own objective. The notion of winning strategy is not sufficient to study non zero-sum
games and other solution concepts have been proposed. One such concept is the notion of
admissible strategy [1].

For a player with objective Φ, a strategy σ is said to be dominated by a strategy σ′ if σ′
does as well as σ with respect to Φ against all the strategies of the other players and strictly
better for some of them. A strategy σ is admissible for a player if it is not dominated by any
other of his strategies. Clearly, playing a strategy which is not admissible is sub-optimal and
a rational player should only play admissible strategies. While recent works have studied the
notion of admissibility for n-player non zero-sum game graphs [5, 15, 10, 8, 7], they are all
concerned with the special case of turn-based games and this work is the first to consider the
more general concurrent games.

Throughout the paper, we consider the running example in Figure 1. This is a concurrent
game played by two players. Player 1’s objective is to reach Trg, while Player 2 wants to
reach s2. Edges are labelled by pairs of moves of both players which activate that transition
(where − means ‘any move’). It is easy to see that no player can enforce its objective with
or without randomisation, so, there is no winning strategy in this game for either player.
This is because moving from s0 to s1 and from s1 to s2 requires the cooperation of both
players. Moreover, the transitions from s2 behave as in the classical ‘matching pennies’ game:
player 1 must chose between f and g; player 2 between f ′ and g′; and the target is reached
only when the choices ‘match’. So, randomisation is needed to make sure Trg is reached
with probability one, from s2. In the paper, we will describe the dominated and admissible
strategies of this game.

Technical contributions. First, we study the notion of admissible strategies for both the
sure and almost sure semantics of concurrent games. We show in Theorem 8 that in both
semantics admissible strategies always exist. The situation is thus similar to the turn-based
case [5, 10]. Nevertheless, the techniques used in this simpler case do not generalise easily to
the concurrent case and we need substantially more involved technical tools here. To obtain

N. Basset, G. Geeraerts, J.F. Raskin, and O. Sankur 123:3

our universal existence result, we introduce two weaker solution concepts: locally admissible
moves and strongly cooperative optimal strategies. While cooperative optimal strategies were
already introduced in [7] and shown equivalent to admissible strategies in the turn based
setting, they are strictly weaker than admissible strategies in the concurrent setting (both
for the sure and the almost sure semantics), and they need to be combined with the notion
of locally admissible moves to fully characterise admissible strategies. In the special case of
safety objectives, we can show that admissible strategies are exactly those that always play
locally admissible moves. This situation is depicted in Figure 2.

Second, we build on our characterisation of admissible strategies based on the notions of
locally admissible moves and strongly cooperative optimal strategies to obtain algorithms
to solve the assume admissible synthesis problem for concurrent games. In the assume
admissible synthesis problem, we ask whether a given player has an admissible strategy
that is winning against all admissible strategies of the other players. So this rule relaxes
the classical synthesis rule by asking for a strategy that is winning against the admissible
strategies of the other players only and not against all of them. This is reasonable as in a
multi-player game, each player has his own objective which is generally not the complement
of the objectives of the other players. The assume-admissible rule makes the hypothesis that
players are rational, hence they play admissible strategies and it is sufficient to win against
those strategies. Our algorithm is applicable to all ω-regular objectives and it is based on
a reduction to a zero-sum two-player game in the sure semantics. While this reduction
shares intuitions with the reduction that we proposed in [8] to solve the same problem in the
turn-based case, our reduction here is based on games with imperfect information [18]. In
contrast, in the turn-based case, games of perfect information are sufficient. The correctness
and completeness of our reduction are proved in Theorem 11.

Related works. Concurrent two player zero-sum games are studied in [14] and [11]. We
rely on the algorithms defined in [11] to compute states from which players have almost
surely winning strategies. States where players have (deterministic) winning strategies can
be computed by a reduction to more classical turn-based game graphs [2]. Nash equilibria
have been studied in concurrent games [6], but without randomised strategies. None of those
papers consider the notion of admissibility.

We use the notion of admissibility to obtain synthesis algorithms for systems composed of
several sub-systems starting from non zero-sum specifications. Other approaches have been
proposed based the notion of Nash equilibria (which suffer from the well-known limitation
of non-credible threats): assume-guarantee synthesis [12] and rational synthesis [16, 17].
Those works assume the simpler setting of turn-based games and so they do not deal with
randomised strategies.

Finally, in [13], Damm and Finkbeiner use the notion of dominant strategy to provide a
compositional semi-algorithm for the (undecidable) distributed synthesis problem. However,
the notion of dominant strategy is strictly stronger than the notion of admissible strategies,
and dominant strategies are not guaranteed to exist, unlike admissible ones.

2 Preliminaries

Concurrent games played on graphs. Let P = {1, 2, . . . n} be a set of players. A concurrent
game played on a finite graph by the players in P is a tuple G = (S,Σ, sinit, (Σp)p∈P , δ)
where,
(i) S is a finite set of states; and sinit ∈ S the initial state;
(ii) Σ is a finite set of actions;

ICALP 2017

123:4 Admissibility in Concurrent Games

(iii) For all p ∈ P , Σp : S → 2Σ \ {∅} is an action assignment that assigns, to all states s ∈ S,
the set of actions available to player p from state s.

(iv) δ : S × Σ× . . .× Σ→ S is the transition function.
We write Σ(s) = Σ1(s) × . . . × Σn(s) for all s ∈ S. It is often convenient to consider a
player p separately and see the set of all other players P \ {p} as a single player denoted
−p. Hence, the set of actions of −p in state s is: Σ−p(s) =def

∏
q∈P\{p}Σq(s). We assume

that Σi(s) ∩ Σj(s) = ∅ for all s ∈ S and i 6= j. We denote by Succ(s, a) = {δ(s, a, b) | b ∈
Σ−p(s)} the set of possible successors of the state s ∈ S when player p performs action
a ∈ Σp(s). A particular case of concurrent games are the turn-based games. A game
G = (S,Σ, sinit, (Σp)p∈P , δ) is turn-based iff for all states s ∈ S, there is a unique player p s.t.
the successors of s depend only on p’s choice of action, i.e., Succ(s, a) contains exactly one
state for all a ∈ Σp(s).

A history is a finite path h = s1s2 . . . sk ∈ S∗ s.t.
(i) k ∈ N;
(ii) s1 = sinit; and
(iii) for every 2 ≤ i ≤ k, there exists (a1, . . . , an) ∈ Σ|P | with si = δ(si−1, a1, . . . , an).
The length |h| of a history h = s1s2 . . . sk is its number of states k; for every 1 ≤ i ≤ k, we
denote by hi the state si and by h≤i the history s1s2 . . . si. We denote by last(h) the last
state of h, that is, last(h) = h|h|. A run is defined similarly as a history except that its
length is infinite. For a run ρ = s1s2 . . . ∈ Sω and i ∈ N, we also write ρ≤i = s1s2 . . . si and
ρi = si. Let Hist(G) (resp. Runs(G)) denote the set of histories (resp. runs) of G. The game
is played from the initial state sinit for an infinite number of rounds, producing a run. At each
round i ≥ 0, with current state si, all players p select simultaneously an action aip ∈ Σp(si),
and the state δ(si, ai1, . . . , ain) is appended to the current history. The selection of the action
by a player is done according to strategies defined below.

Randomised moves and strategies. Given a finite set A, a probability distribution on A
is a function α : A→ [0, 1] such that

∑
a∈A α(a) = 1; and we let Supp(α) = {a | α(a) > 0}

be the support of α. We denote by α(B) =
∑
a∈B α(a) the probability of a given set B

according to α. The set of probability distributions on A is denoted by D(A). A randomised
move of player p in state s is a probability distribution on Σp(s), that is, an element of
D(Σp(s)). A randomised move that assigns probability 1 to an action and 0 to the others
is called a Dirac move. We will henceforth denote randomised moves as sums of actions
weighted by their respective probabilities. For instance 0.5f + 0.5g denotes the randomised
move that assigns probability 0.5 to f and g (and 0 to all other actions). In particular, we
denote by b a Dirac move that assigns probability 1 to action b.

Given a state s and a tuple β = (βp)p∈P ∈
∏
p∈P D(Σp(s)) of randomised moves from s,

one per player, we let δr(s,β) ∈ D(S) be the probability distribution on states s.t. for
all s′ ∈ S: δr(s,β)(s′) =

∑
a|δ(s,a)=s′ β(a), where β(a1, . . . , an) =

∏n
i=1 βi(ai). Intuitively,

δr(s,β)(s′) is the probability to reach s′ from s when the players play according to β.
A strategy for player p is a function σ from histories to randomised moves (of player p)

such that, for all h ∈ Hist(G): σ(h) ∈ D(Σp(last(h))). A strategy is called Dirac at history
h, if σ(h) is a Dirac move; it is called Dirac if it is Dirac at all histories. We denote by Γp(G)
the set of player-p strategies in the game, and by Γdet

p (G) the set of player-p strategies that
only use Dirac moves (those strategies are also called deterministic); we might omit G if it
is clear from context. A strategy profile σ for a subset A ⊆ P of players is a tuple (σp)p∈A
with σp ∈ Γp for all p ∈ A. When the set of players A is omitted, we assume A = P . Let
σ = (σp)p∈P be a strategy profile. Then, for all players p, we let σ−p denote the restriction

N. Basset, G. Geeraerts, J.F. Raskin, and O. Sankur 123:5

of σ to P \ {p} (hence, σ−p can be regarded as a strategy of player −p that returns, for all
histories h, a randomised move from

∏
p∈P\{p}D(Σp(s)) ⊆ D(Σ−p(last(h)))). We sometimes

denote σ by the pair (σp,σ−p). Given a history h, we let (σp)p∈A(h) = (σp(h))p∈A.
Let h be a history and let ρ be a history or a run. Then, we write h ⊆pref ρ iff h is a prefix

of ρ, i.e., ρ≤|h| = h. Given two strategies σ, σ′ ∈ Γp, and a history h, we let σ〈h← σ′〉 be the
strategy that follows σ and shifts to σ′ as soon as h has been played (i.e. σ〈h← σ′〉 is s.t. for
all histories h′: σ〈h← σ′〉(h′) = σ′(h′) if h ⊆pref h

′; and σ〈h← σ′〉(h′) = σ(h′) otherwise).

Probability measure and outcome of a profile. Given a history h, we let Cyl(h) = {ρ |
h ⊆pref ρ} be the cylinder of h. To each strategy profile σ, we associate a probability measure
Pσ on certain sets of runs. First, for a history h, we define Pσ(Cyl(h)) inductively on the
length of h: Pσ(Cyl(sinit)) = 1, and Pσ(Cyl(h′s′)) = Pσ(Cyl(h′)) · δr(last(h′),σ(h′))(s′)when
|h| > 1 and h = h′s′. Based on this definition, we can extend the definition of Pσ to any
Borel set of runs on cylinders. In particular, the function Pσ is well-defined for all ω-regular
sets of runs, that we will consider in this paper [19]. We extend the Hist notation and let
Hist(σ) be the set of histories h such that Pσ(Cyl(h)) > 0. Given a profile σ we denote
by Outcome(σ) the set of runs ρ s.t. all prefixes h of ρ belong to Hist(σ). In particular,
Pσ(Outcome(σ)) = 1. Note that when σ is composed of Dirac strategies then Outcome(σ)
is a singleton. The outcome (set of histories) of a strategy σ ∈ Γp, denoted by Outcome(σ)
(Hist(σ)), is the union of outcomes (set of histories, respectively) of profile σ s.t. σp = σ.

Winning conditions. To determine the gain of all players in the game G, we define winning
conditions that can be interpreted with two kinds of semantics denoted by the symbols
S for the sure semantics or and A for the almost sure semantics. A winning condition
Φ is a subset of Runs(G) called winning runs. From now on, we assume that concurrent
games are equipped with a function Φ, called the winning condition, and mapping all
players p ∈ P to a winning condition Φ(p). A profile σ is A-winning for Φ(p) if Pσ(Φ) = 1
which we write G,σ |=A Φ(p). A profile σ is S-winning for Φ(p) if Outcome(G,σ) ⊆ Φ(p)
which we write G,σ |=S Φ(p). Note that when σ is Dirac, the two semantics coincide:
G,σ |=S Φ(p) iff G,σ |=A Φ(p). The profile σ is A-winning from h if h ∈ Hist(G,σ) and
Pσ(Φ(p) | Cyl(h)) = Pσ(Φ(p)∩Cyl(h))/Pσ(Cyl(h)) = 1 which we denote G,σ |=A

h Φ(p). The
profile σ is S-winning from h if {ρ ∈ Outcome(G,σ) | h ⊆pref ρ} ⊆ Φ(p), which we denote
G,σ |=S

h Φ(p). We often omit G in notations when clear from the context. Most of our
definitions and results hold for both semantics and we often state them using the symbol
? ∈ {S, A} as in the following definition. Given a semantics ? ∈ {S, A}, a strategy σ for
player p (from a history h) is called ?-winning for player p if for every τ ∈ Γ−p, the profile
(σ, τ) is ?-winning for player p (from h). Note that a strategy σ for player p is S-winning iff
Outcome(σ) ⊆ Φ(p). We often describe winning conditions using standard linear temporal
operators � and ♦; e.g. �♦S means the set of runs that visit infinitely often S. See [3] for a
formal definition.

A winning condition Φ(p) is prefix-independent if for all s1s2 . . . ∈ Φ(p), and all i ≥ 1:
sisi+1 . . . ∈ Φ(p). When Φ(p) contains all runs that do not visit some designated set
Badp ⊆ S of states, we say that Φ(p) is a safety condition. A safety game is a game whose
winning condition Φ is such that Φ(p) is a safety condition for all players p. Without loss of
generality, we assume that safety games are so-called simple safety games: a safety game
(S,Σ, sinit, (Σp)p∈P , δ) is simple iff for all players p, for all s ∈ S: s ∈ Badp implies that no
s′ 6∈ Badp is reachable from s. That is, once the safety condition is violated, then it remains
violated forever at all future histories.

ICALP 2017

123:6 Admissibility in Concurrent Games

I Example 1. Let us consider three player-1 strategies in Figure 1.
(i) σ1 is any strategy that plays a in s0;
(ii) σ2 is any strategy that plays b in s0, d in s1 and f in s2; and
(iii) σ3 is any strategy that plays b in s0, d in s1, and 0.5f + 0.5g in s2.
Clearly, σ1 never allows one to reach Trg while some runs respecting σ2 and σ3 do (remember
that there is no ?-winning strategy in this game). We will see later that the best choice of
player 1 (among σ2, σ3) depends on the semantics we consider. In the almost-sure semantics,
σ3 is ‘better’ for player 1, because σ3 is an A-winning strategy from all histories ending in s2,
while σ2 is not. On the other hand, in the sure semantics, playing σ2 is ’better’ for player
1 than σ3. Indeed, for all player-2 strategies τ , either Outcome(σ3, τ) contains only runs
that do not reach s2 (hence, do not reach Trg either), or Outcome(σ3, τ) contains at least a
run that reaches s2, but, in this case, it also contains a run of the form hsω2 that does not
reach Trg (because, intuitively, player 1 plays both f and g from s2). So, σ3 is not S-winning
against any τ , while σ2 wins at least against a player 2 strategy that plays b′ in s0, d′ in s1
and f ′ in s2. We formalise these intuitions in the next section.

3 Admissibility

In this section, we define the central notion of the paper: admissibility [5, 9]. Intuitively, a
strategy is admissible when it plays ‘as well as possible’. Hence the definition of admissible
strategies is based on a notion of domination between strategies: a strategy σ′ dominates
another strategy σ when σ′ wins every time σ does. Obviously, players have no interest in
playing dominated strategies, hence admissible strategies are those that are not dominated.
Apart from these (classical) definitions, we characterise admissible strategies as those that
satisfy two weaker notions: they must be both strongly cooperative optimal and play only
locally-admissible moves. Finally, we discuss important characteristics of admissible strategies
that will enable us to perform assume-admissible synthesis (see Section 4).

In this section, we fix a game G, a player p, and, following our previous conventions, we
denote by Γ−p the set {σ−p | σ ∈ Γ}.

Admissible strategies. We first recall the classical notion of admissible strategy [5, 1]. Given
two strategies σ, σ′ ∈ Γp, we say that σ is ?-weakly dominated by σ′, denoted σ 4? σ′, if
for all τ ∈ Γ−p: (σ, τ) |=? Φ(p) implies (σ′, τ) |=? Φ(p). This indeed captures the idea
than σ′ is not worse that σ, because it wins (for p) every time σ does. Note that 4? is not
anti-symmetric, hence we write σ ≈? σ′ when σ and σ′ are equivalent, i.e. σ 4? σ′ and
σ′ 4? σ. In other words σ ≈? σ′ iff for every τ ∈ Γ−p, (σ, τ) |=? Φ(p) ⇔ (σ′, τ) |=? Φ(p).
When σ 4? σ′ but σ′ 64? σ we say that σ is ?-dominated by σ′, and we write σ ≺? σ′.
Observe that σ ≺? σ′ holds if and only if σ 4? σ′ and there exists at least one τ ∈ Γ−p, such
that (σ, τ) 6|=? Φ(p) and (σ′, τ) |=? Φ(p). That is, σ′ is now strictly better than σ. Then, a
strategy σ is ?-admissible iff there is no strategy σ′ s.t. σ ≺? σ′, i.e., σ is ?-admissible iff it
is not ?-dominated.

I Example 2. Let us continue our running example, by formalising the intuitions we have
sketched in Example 1. Since σ1 does not allow to reach the target, while some runs
respecting σ2 and σ3 do, we have: σ1 ≺? σ2 and σ1 ≺? σ3. Moreover, σ2 ≺A σ3 because σ3 is
A-winning from any history that ends in s2 while σ2 is not because it does not A-win against
a player 2 strategy that would always play g′ in s2 (and both strategies behave the same way
in s0 and s1). On the other hand, σ3 ≺S σ2 since we saw in Example 1 that every profile
containing σ3 is not S-winning while some profiles containing σ2 are. We will see later that
σ3 is A-admissible and σ2 is S-admissible.

N. Basset, G. Geeraerts, J.F. Raskin, and O. Sankur 123:7

Values of histories. Before we discuss strongly cooperative optimal and locally admissible
strategies, we associate values to histories. Let h be a history, and σ be a strategy of player p.
Then, the value of h w.r.t. σ for semantics ? ∈ {S, A} is defined as follows. χ?σ(h) = 1 if σ
is ?-winning from h; χ?σ(h) = 0 if there are τ ∈ Γ−p and τ ′ ∈ Γ−p s.t. (σ, τ) |=?

h Φ(p), and
(σ, τ ′) 6|=?

h Φ(p); and −1 otherwise.
Value χ?σ(h) = 1 corresponds to the case where σ is ?-winning for player p from h (thus,

against all possible strategies in Γ−p). When χ?σ(h) = 0, σ is not ?-winning from h (because
of τ ′ in the definition), but the other players can still help p to reach his objective (by playing
some τ s.t. (σ, τ) |=?

h Φ(p), which exists by definition). Last, χ?σ(h) = −1 when there is no
hope for p to ?-win, even with the collaboration of the other players. In this case, there is
no τ s.t. (σ, τ) |=?

h Φ(p). Hence, having χ?σ(h) = −1 is stronger than saying that σ is not
winning—when σ is not winning, we could have χ?σ(h) = 0 as well.

We define the value of a history h for player p as the best value he can achieve with his
different strategies: χ?p(h) = maxσ∈Γp χ

?
σ(h). Last, for v ∈ {−1, 0, 1}, let Val?p,v be the set of

histories h s.t. χ?p(h) = v.

Strongly cooperative optimal strategies. We are now ready to define strongly cooperative
optimal (SCO) strategies. Recall that, in the classical setting of turn-based games, admissible
strategies are exactly the SCO strategies [9]. We will see that this condition is still necessary
but not sufficient in the concurrent setting.

A strategy σ of Player p is ?-SCO at h iff χ?σ(h) = χ?p(h); and σ is ?-SCO iff it is ?-SCO
at all h ∈ Hist(σ). Intuitively, when σ is a ?-SCO strategy of Player p, the following should
hold:
(i) if p has a ?-winning strategy from h (i.e. χ?p(h) = 1), then, σ should be ?-winning (i.e.

χ?σ(h) = 1); and
(ii) otherwise if p has no ?-winning strategy from h but still has the opportunity to ?-win

with the help of other players (hence χ?p(h) = 0), then, σ should enable the other players
to help p fulfil his objective (i.e. χ?σ(h) = 0).

Observe that when χ?p(h) = −1, no continuation of h is ?-winning for p, so χ?σ(h) = −1 for
all strategies σ.

I Example 3. Consider again the example in Figure 1. For the almost-sure semantics, we
have ValA

p,1 =
{
h | last(h) ∈ {s2,Trg}

}
, and ValA

p,0 =
{
h | last(h) ∈ {s0, s1}

}
. For the sure

semantics, we have: ValS
1,1 = {h | last(h) = Trg}, and ValS

1,0 = {h | last(h) 6= Trg}. Consider
again the three strategies σ1, σ2 and σ3 from Example 1. We see that σ2 is S-SCO but it is
not A-SCO because, for all profiles h ending in s2: χA

σ2
(h) = 0 while h ∈ ValA

1,1. On the other
hand, σ3 is A-SCO; but it is not S-SCO. Indeed, one can check that, for all strategies τ ∈ Γ2:
if Outcome(σ3, τ) contains a run reaching Trg, then it also contains a run that cycles in s2.
So, for all such strategies τ , Outcome(σ3, τ) 6|=S Φ(1), hence χS

σ3
(h) = −1 for all histories that

end in s2; while χS
p(h) = 0 since χS

σ′(h) = 0 for all Dirac strategies σ′.
Next, let us build a strategy σ′3 that is A-dominated by σ3 (hence, not A-admissible), but

A-SCO. We let σ′3 play as σ3 except that σ′3 plays c the first time s1 is visited (hence ensuring
that the self-loop on s1 will be taken after the first visit to s1). Now, σ′3 is A-dominated by
σ3, because
(i) σ3 A-wins every time σ′3 does; but
(ii) σ′3 does not A-win against the player 2 strategy τ that plays d′ only when s1 is visited

for the first time, while σ3 A-wins against τ .
However, σ′3 is SCO because playing c keeps the value of the history equal to 0 = χA

1(h)
(intuitively, playing c once does not prevent the other players from helping in the future).

ICALP 2017

123:8 Admissibility in Concurrent Games

As similar example can be built in the S semantics. Thus, there are ?-SCO strategies
which are not admissible, so, being ?-SCO is not a sufficient criterion for admissibility.

Locally admissible moves and strategies. Let us now discuss another criterion for admiss-
ibility, which is more local in the sense that it is based on a domination between moves
available to each player after a given history. Let h be a history, and let α and α′ be two ran-
domised moves in D(Σp). We say that α is ?-weakly dominated at h by α′ (denoted α 6?h α′)
iff for all σ ∈ Γp such that h ∈ Hist(σ) and σ(h) = α, there exists σ′ ∈ Γp s.t. h ∈ Hist(σ′),
σ′(h) = α′ and σ 4? σ′. Observe that the relation 6?h is not anti-symmetric. We let '?h be
the equivalence relation s.t. α '?h β iff α 6?h β and β 6?h α. When α 6?h α′ but α′ 66?h α
we say that α is ?-dominated at h by α′ and denote this by α <?h α′. When a randomised
move α is not ?-dominated at h, we say that α is ?-locally-admissible (?-LA) at h. This
allows us to define a more local notion of dominated strategy: a strategy σ of player p is
?-locally-admissible (?-LA) if σ(h) is a ?-LA move at h, for all histories h.

I Example 4. Consider the Dirac move f and the non-Dirac move 0.5f + 0.5g played from
s2 in the example in Figure 1. One can check that 0.5f + 0.5g <S

s2
f . Indeed, consider a

strategy σ s.t. σ(h) = 0.5f + 0.5g for some h with last(h) = s2. Then, playing σ(h) from h

will never allow Player 1 to reach Trg surely at the next step, whatever Player 2 plays; while
playing, for instance, f (Dirac move) ensures player 1 to reach Trg surely at the next step,
against a Player-2 strategy that plays f ′. Thus, σ2 is S-LA but σ3 is not.

On the other hand, after every randomised move played in state s2, the updated state
is s2 or s3 from which A-winning strategies exist, thus f 'A

h g 'A
h λf + (1 − λ)g for all

λ ∈ [0, 1] and all histories h s.t. last(h) = s2 (so, in particular, λf + (1 − λ)g 6A
h f and

λf + (1 − λ)g 6A
h g). It follows that both σ2 and σ3 are A-LA. However, in the long run,

player 1 needs to play λf + (1− λ)g, with λ ∈ (0, 1), infinitely often in order to A-win. In
fact, σ3 is A-winning from s2 while σ2 is not. Thus, there are ?-LA strategies which are
not admissible, so being ?-LA is not a sufficient criterion for ?-admissibility.

We close this section by several lemmata that allow us to better characterise the notion
of LA strategies. First, we observe that, while randomisation might be necessary for winning
in certain concurrent games (for example, in Figure 1, no Dirac move allows player 1 to reach
Trg surely from s2, while playing repeatedly f and g with equal probability ensures to reach
Trg with probability 1) randomisation is useless when a player wants to play only locally
admissible moves. This is shown by the next Lemma (point (1)), saying that, if a randomised
move α plays some action a with some positive probability, then α is weakly dominated by
the Dirac move a. However, this does not immediately allow us to characterise admissible
moves: some Dirac moves could be dominated (hence non-admissible), and some non-Dirac
moves could be admissible too. Points (2) and (3) elucidate this: among Dirac moves, the
non-dominated ones are admissible, and a non-Dirac move is admissible iff all the Dirac
moves that occur in its support are admissible and equivalent to each other.

I Lemma 5. For all histories h and all randomised moves α:
(i) For all a ∈ Supp(α): α 6?h a;
(ii) Dirac moves that are not ?-dominated at h by another Dirac move are ?-LA;
(iii) A move α is ?-LA at h iff, for all a ∈ Supp(α):

1. a is ?-LA at h; and
2. a '?h b for all b ∈ Supp(α).

I Example 6. As we have seen in Example 4, 0.5f + 0.5g <S
s2
f . Note that a strategy σ′ s.t.

σ′(h) = 0.5f + 0.5g for all h with last(h) = s2 has value χS
σ′(h) = −1, while χS

1(h) = 0.

N. Basset, G. Geeraerts, J.F. Raskin, and O. Sankur 123:9

This example seems to suggest that the local dominance of two moves coincide with the
natural order on the values of histories that are obtained when playing those moves (in other
words x <?h y would hold iff the value of the history obtained by playing x is smaller than or
equal to the value obtained by playing y). This is not true for histories of value 0: we have
seen that a and b are 6?h-incomparable, yet playing a or b from s0 yields a history with value
0 in all cases (even when s1 is reached). The next Lemma gives a precise characterisation of
the dominance relation between Dirac moves in terms of values:

I Lemma 7. For all players p, histories h with last(h) = s and Dirac moves a, b ∈ Σp(s):
a 6?h b if, and only if the following conditions hold for every c ∈ Σ−p(s) where we write
s(a,c) = δ(s, (a, c)) and s(b,c) = δ(s, (b, c)):
(i) χ?p(hs(a,c)) ≤ χ?p(hs(b,c));
(ii) if χ?p(hs(a,c)) = χ?p(hs(b,c)) = 0 then s(a,c) = s(b,c).

Characterisation and existence of admissible strategies. Equipped with our previous
results, we can now establish the main results of this section. First, we show that ?-
admissible strategies are exactly those that are both ?-LA and ?-SCO (Theorem 8(i)). Then,
we show that admissible strategies always exist in concurrent games (Theorem 8(ii)).

I Theorem 8 (Characterisation and existence of admissible strategies). The following holds
for all strategies σ in a concurrent game with semantics ? ∈ {S, A}:
(i) σ is ?-admissible iff σ is ?-LA and ?-SCO; in the special case of simple safety objectives,

if σ is ?-LA then σ is ?-admissible.
(ii) there is a ?-admissible strategy σ′ such that σ 4? σ′.
In particular, point (2) implies that admissible strategies always exist in concurrent games.

I Example 9. We consider again the example in Figure 1, and consider strategies σ2 and σ3
as defined in Example 1. Remember that these two strategies do their best to reach s2, and
that, from s2, σ2 plays deterministically f , while σ3 plays f and g with equal probabilities.
From Example 3, we know that σ2 is S-SCO but not A-SCO; while σ3 is A-SCO but not
S-SCO. Indeed, we have already argued in Example 2 that σ2 is not A-admissible, and that
σ3 is not S-admissible. However, from Example 4, we know that σ2 is S-LA and that σ3 is
A-LA. So, by Theorem 8, σ2 is S-admissible and σ3 is A-admissible as expected.

Finally, we close the section by a finer characterisation of ?-admissible strategies. We
show that:
(i) in the sure semantics, there is always an S-admissible strategy that plays Dirac moves

only; and
(ii) in the almost-sure semantics, there is always an A-admissible strategy that plays Dirac

moves only in histories of values 0 or −1.
The difference between the two semantics should not be surprising, as we know already that
randomisation is sometimes needed to win (i.e., from histories of value 1) in the almost sure
semantics:

I Proposition 10. For all player-p strategies σ in a concurrent game:
(i) If σ is S-admissible then there exists a Dirac strategy σ′ such that σ 'S σ′.
(ii) If σ is A-admissible then there exists a strategy σ′ that plays only Dirac moves in histories

of value ≤ 0 such that σ 'A σ′.

ICALP 2017

123:10 Admissibility in Concurrent Games

4 Assume admissible synthesis

In this section we discuss an assume-admissible synthesis framework for concurrent games.
With classical synthesis, one tries to compute winning strategies for all players, i.e., strategies
that always win against all possible strategies of the other players. Unfortunately, it might
be the case that such unconditionally winning strategies do not exist, as in our example.
As explained in the introduction, the assume-admissible synthesis rule relaxes the classical
synthesis rule: instead of searching for strategies that win unconditionally, the new rule
requires winning against the admissible strategies of the other players. So, a strategy may
satisfy the new rule while not winning unconditionally. We claim that winning against
admissible strategies is well enough assuming that the players are rational; if we assume that
players only play strategies that are good for achieving their objectives, i.e. admissible ones.

The general idea of the assume-admissible synthesis algorithm is to reduce the problem
(in a concurrent n-player game) to the synthesis of a winning strategy in a 2-player zero-
sum concurrent game of imperfect information, in the S-semantics (even when the original
assume-admissible problem is in the A-semantics), where the objective of player 1 is given by
an LTL formula. Such games are solvable using techniques presented in [11].

More precisely, from a concurrent game G in the semantics ? ∈ {S, A} and player p, we
build a game G?p with the above characteristics, which is used to decide the assume-admissible
synthesis rule. If such a solution exists, our algorithm constructs a witness strategy. For
example, the game G?1 corresponding to the game in Figure 1 is given in Figure 3. The main
ingredients for this construction are the following.

(i) In G?p , the protagonist is player p, and the second player is −p.
(ii) Although randomisation is needed to win in such games in general, we interpret G?p

in the S-semantics only. In fact, we have seen that for the protagonist, Dirac moves
suffice in states of value 0; so the only states where he might need randomisation are
those of value 1 (randomisation does not matter if the value is −1 since the objective is
lost anyway). Hence we define winning condition to be Φ(p) ∨ ♦Val?p,1 enabling us to
consider only histories of values 0 in G?p ; and thus hiding the parts of the game where
randomisation might be needed. We also prove that we can restrict to Dirac strategies
for −p when it comes to admissible strategies.

(iii) In order to restrict the strategies to admissible ones, we only allow ?-LA moves in G?p .
These moves can be computed by solving classical 2-player games ([2]) using Lemma 7.
For example, in Figure 3, moves c and c′ are removed since they are not A-LA.

(iv) Last, since ?-admissible strategies are those that are both ?-LA and ?-SCO (see The-
orem 8), we also need to ensure that the players play ?-SCO. This is more involved than
?-LA, as the ?-SCO criterion is not local, and requires information about the sequence
of actual moves that have been played, which cannot be deduced, in a concurrent game,
from the sequence of visited states. So, we store, in the states of G?p , the moves that
have been played by all the players to reach the state. For example, in Figure 3, the
state labelled by s1, (b, b′) means that G has reached s1, and that the last actions played
by the players were b and b′ respectively. However, players’ strategies must not depend
on this extra information since they do not have access to this information in G either.
We thus interpret G?p as a game of imperfect information where all the states labelled
by the same state of G are in the same observation class. We can then encode that the
players must play ?-SCO strategies in the new objective of the games, which will be
given as an LTL formula, as we describe below.

N. Basset, G. Geeraerts, J.F. Raskin, and O. Sankur 123:11

To ensure we can effectively solve subproblems mentioned above, we consider ω-regular
objectives. We also restrict ourselves to prefix-independent winning conditions to simplify
the presentation. In the case of ω-regular objectives, prefix-independence is not a restrictive
hypothesis (we can always compute the product of the game graph with a deterministic parity
automaton that accepts the ω-regular objective and consider a parity winning condition).
The values of the histories depend thus only on their last states, i.e. for all pairs of histories
h1 and h2: last(h1) = last(h2) implies that χ?p(h1) = χ?p(h2). We denote by χ?p(s) the value
χ?p(h) of all histories h s.t. last(h) = s. Last, we assume that a player cannot play the same
action from two different states, i.e. ∀s1 6= s2, Σs1(p) ∩ Σs2(p) = ∅. Thus, we say that move
a is ?-LA when a is ?-LA from all histories ending in the unique state where a is available.

The game G?p . Let us now describe precisely the construction of G?p . Given an n-player
concurrent game G = (S,Σ, sinit, (Σp)p∈P , δ) with winning condition Φ considered under
semantics ? ∈ {S, A}, and given a player p, we define the two-player zero-sum concurrent
game G?p = (S,Σ, sinit, (Σp,Σ−p), δ) where:
(i) S = S × Σn ∪ {sinit};
(ii) Σ is the set of Dirac ?-LA moves in Σ;
(iii) sinit = sinit is the initial state;
(iv) Σp is such that Σp(s) is the set of Dirac ?-LA moves of p in s, for all s ∈ S;
(v) Σ−p is s.t. for all s ∈ S: Σ−p(s) is the set of moves a of −p in s s.t. for all q 6= p, aq is

a Dirac ?-LA move;
(vi) δ updates the state according to δ, remembering the last actions played: δ(sinit, b) =

(δ(sinit, b), b) and δ((s,a), b) = (δ(s, b), b) for all s ∈ S.
Note that the game G?p depends on whether ? = A or ? = S because the two semantics yield
different sets of LA-moves. However, we interpret G?p in the sure semantics, so both players
can play Dirac strategies only in G?p .

Let us now explain how we obtain an imperfect information game by defining an observa-
tion function o. Note that histories in G?p are of the form: h = sinit(s1,a1)(s2,a2) · · · (sn,an).
Then, let o : S → S be the mapping that, intuitively, projects moves away from states.
For example, in Figure 3, states with observation s0 are in the dashed rectangle. That
is: o(s,a) = s for all states s, and o(sinit) = sinit. We extend o to histories recursively:
o(sinit) = sinit and o(h(sn,an)) = o(h)sn. To make G?p a game of imperfect information, we
request that, in G?p , players play only strategies σ s.t. σ(h1) = σ(h2) whenever o(h1) = o(h2).

We relate the strategies in the original game G with the strategies in G?p , which we need
to extract admissible strategies in G from the winning strategies in G?p and thus perform
assume-admissible synthesis. First, given a player-p strategy σ in G (i.e., σ ∈ Γp(G)), we say
that a strategy σ ∈ Γdet

p (G?p) is a realisation of σ iff:
(i) σ is Dirac; and
(ii) σ(h) ∈ Supp(σ(h))) for all h.
Note that every ?-LA strategy σ ∈ Γi(G) admits realisations σ in Γi(G?p). Second, given a
player-p Dirac strategy σ in G?p (i.e., σ ∈ Γdet

p (G?p)) we say that σ̂ ∈ Γp(G) is an extension of
σ iff, for all h ∈ Hist(G?p , σ): σ̂(o(h)) = σ(h).

The assume-admissible synthesis technique. As explained above, the assume-admissible
rule boils down to computing a winning strategy σ for player-p in G?p w.r.t. the winning
condition ΦG?

p
, and extracting, from σ, the required admissible strategy in G.

ICALP 2017

123:12 Admissibility in Concurrent Games

We will now formally define ΦG?
p
. Let p be a player (in G); and let us denote by st(a) the

(unique) state from which a is available, for all actions a. We define AfterHelpMove?p as

AfterHelpMove?p = {(s,a) ∈ S | ∃s′ ∈ Succ(st(ap), ap) : χ?p(s′) ≥ 0 ∧ s′ 6= s ∧ χ?p(s) = 0}.

That is, when (s,a) ∈ AfterHelpMove?p, in G, player p has played ap from st(ap) and,
due to player −p’s choice, G has reached s. However, with another choice of player −p,
the game could have moved to a different state s′ from which −p can help p to win as
χ?p(s′) ≥ 0. Intuitively, in runs that visit states of value 0 infinitely often, states from
AfterHelpMove?p should be visited infinitely often for player p to play SCO, i.e. such runs
might not be winning, but this cannot be blamed on player p who has sought repeatedly
the collaboration of the other players to enforce his objective. Observe further that the
definition of this predicate requires the labelling of the states (by actions) we have introduced
in G?p . For example, in Figure 3, AfterHelpMoveA

2 =
{(
s0, (a, b′)

)
,
(
s1, (b, b′)

)}
. We let

Φ?
0(p) = ♦¬Val?p,0 ∨ Φ(p) ∨ �♦AfterHelpMove?p and Φ?

1(p) =
(
♦Val?p,1

)
→ Φ(p). Let us

define ΦG?
p

=
(∧

q 6=p Φ?0(q) ∧ Φ?1(q)
)
→
(
Φ(p) ∨ ♦Val?p,1

)
.

I Theorem 11 (Assume-admissible synthesis). Player p has a ?-admissible strategy σ that is
?-winning against all player −p ?-admissible strategies in G iff Player p has an S-winning
strategy in G?p for the objective ΦG?

p
. Such a ?-admissible strategy σ can be effectively computed

(from any player p S-winning strategy in G?p).

Let us explain how we build a strategy in G with the desired properties, from any player p
strategy enforcing ΦG?

p
in G?p . Remember that G?p ensures that the players play ?-LA moves

only. We will use ΦG?
p
to make sure that, when SCO strategies are played by −p (relying

on the extra information we have encoded in the states), then p reaches a state of value 1.
First, consider Φ?

0(q) for q 6= p. Runs that satisfy this formula are either those that visit
states of value 0 only finitely often (♦¬Val?q,0); or those that stay in states of value 0, in
which case they must be either winning (Φ(q)) or visit infinitely often states where Player
q could have been helped by the other players (�♦AfterHelpMove?q). This is a necessary
condition on runs visiting only value 0 states for the strategy to be SCO. Next, observe that
Φ?1(q) states that if a history of value 1 is entered then Player q must win. This allows us to
understand the left part of the implication in ΦG?

p
: the implication can be read as ‘if all other

players play a ?-admissible strategy, then either p should win (Φ(p)) or a state of value 1 for
player p should eventually be visited (♦Val?p,1)’. Then a strategy σ̂ (in G) that wins against
admissible strategies can be extracted from a winning strategy σ (in G?p) in a straightforward
way, except when σ enforces to reach a state of value 1 (♦Val?p,1 in ΦG?

p
). In this case, σ

cannot follow σ, but must rather switch to a winning strategy, which:
(i) is guaranteed to exist since the state that has been reached has value 1; and
(ii) can be computed using classical techniques [11].
The strategy σ̂ is not necessarily admissible but by Theorem 8 (1), there is an admissible
strategy σ with σ̂ 4? σ. By weak domination, σ wins against more profiles than σ̂, in
particular, against the profiles of admissible strategies of the other players.

I Example 12. In our running example, observe that ¬ValA
2,0 = ValA

2,1 = {Win} since
there is no state of value −1 in G. Hence, Φ(2) = ♦Win = ♦ValA

2,1 = ♦¬ValA
2,0. Finally,

AfterHelpMoveA
2 =

{(
s0, (a, b′)

)
,
(
s1, (b, b′)

)}
, so, after simplification: ΦGA

1
=
[
♦Win ∨

�♦
(
(s0, (a, b′)) ∨ (s1, (b, b′))

)]
→ ♦Win. Thus, to win in GA

1 (under the sure semantics),
player 1 must ensure to reach Win as long as player 2 visits the set of bold states in Figure 3
infinitely often. A winning strategy σ in GA

1 consists in (eventually) always playing b from

N. Basset, G. Geeraerts, J.F. Raskin, and O. Sankur 123:13

s0 s0, (a, b′)

s0, (a, a′)

s0, (b, a′)

(a, b′)

(b, a′)

(a, a′)

(a, b′)

(a, a′)

(a, b′)

(b, a′)

(b, a′)

(a, a′)

(b, a′)

(a, a′)

(a, b′)

s1, (b, b′) Win
(b, b′) (d, d′)

All states s s.t. o(s) = s0

Figure 3 The game GA
1 obtained from the game in Figure 1. Bold states

(
s0, (a, b′)

)
and(

s1, (b, b′)
)
are the states of AfterHelpMoveA

2. There is a (b, b′)-labelled transition from all states in
the dashed rectangle to

(
s1, (b, b′)

)
.

all states in the dashed rectangle; and d from
(
s1, (b, b′)

)
. Observe that this strategy is

compatible with o. From σ, we can extract an admissible player 1 strategy in G: always play
b in s0; always play d in s1; and play a winning strategy from s2 (which is of value 1), for
instance: always play 0.5f + 0.5g from s2 like σ3 does.

We conclude by two remarks on simple safety games and on the choice of our semantics.
First, note that assume-admissible synthesis is simpler in simple safety games, since the
admissible strategies are exactly the ?-LA strategies in this case (see Theorem 8). So, one
can build Gp from G by pruning the actions which are not ?-LA (the labelling by actions is
not necessary anymore), and look for a player p winning strategy. Second, in the semantics of
concurrent games considered in this paper, players see, at each step, the transition taken but
not the actual moves of the other player even once they are played. An alternative semantics
could be that the players discover simultaneously the moves of other players after each step,
as in the Rock-Paper-Scissors game. The former semantics is more general than the latter
since moves played at the preceding round can always be encoded in the current state (as
we did in the construction of G?p). Our results remain meaningful in this simpler case (in
particular the characterisation of admissible strategies), but assume-admissible synthesis can
be performed by reducing to games with perfect information.

References
1 Brandenburger Adam, Friedenberg Amanda, H Jerome, et al. Admissibility in games.

Econometrica, 2008.
2 Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal logic.

J. ACM, 49(5):672–713, 2002. doi:10.1145/585265.585270.
3 Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Representation and

Mind Series). The MIT Press, 2008.
4 Nicolas Basset, Gilles Geeraerts, Jean-François Raskin, and Ocan Sankur. Admissibility

in concurrent games. CoRR, abs/1702.06439, 2017. URL: http://arxiv.org/abs/1702.
06439.

5 Dietmar Berwanger. Admissibility in infinite games. In STACS 2007, 24th Annual Sym-
posium on Theoretical Aspects of Computer Science, Aachen, Germany, February 22-24,
2007, Proceedings, number 4393 in Lecture Notes in Computer Science, pages 188–199.
Springer, 2007. doi:10.1007/978-3-540-70918-3_17.

6 Patricia Bouyer, Romain Brenguier, Nicolas Markey, and Michael Ummels. Nash equilibria
in concurrent games with Büchi objectives. In Proceedings of the 31st Conference on Found-

ICALP 2017

http://dx.doi.org/10.1145/585265.585270
http://arxiv.org/abs/1702.06439
http://arxiv.org/abs/1702.06439
http://dx.doi.org/10.1007/978-3-540-70918-3_17

123:14 Admissibility in Concurrent Games

ations of Software Technology and Theoretical Computer Science (FSTTCS’11), volume 13
of Leibniz International Proceedings in Informatics, pages 375–386, Mumbai, India, dec
2011. Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.FSTTCS.2011.375.

7 Romain Brenguier, Guillermo A. Pérez, Jean-François Raskin, and Ocan Sankur. Ad-
missibility in Quantitative Graph Games. In Akash Lal, S. Akshay, Saket Saurabh, and
Sandeep Sen, editors, 36th IARCS Annual Conference on Foundations of Software Techno-
logy and Theoretical Computer Science (FSTTCS 2016), volume 65 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 42:1–42:14, Dagstuhl, Germany, 2016. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.FSTTCS.2016.42.

8 Romain Brenguier, Jean-François Raskin, and Ocan Sankur. Assume-admissible synthesis.
In Luca Aceto and David de Frutos-Escrig, editors, CONCUR, volume 42 of LIPIcs, pages
100–113. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. doi:10.4230/LIPIcs.
CONCUR.2015.100.

9 Romain Brenguier, Jean-François Raskin, and Ocan Sankur. Assume-admissible synthesis.
Acta Inf., 54(1):41–83, 2017. doi:10.1007/s00236-016-0273-2.

10 Romain Brenguier, Jean-François Raskin, and Mathieu Sassolas. The complexity of ad-
missibility in omega-regular games. In CSL-LICS ’14, 2014. ACM, 2014. doi:10.1145/
2603088.2603143.

11 Krishnendu Chatterjee, Luca de Alfaro, and Thomas A. Henzinger. Qualitative concurrent
parity games. ACM Trans. Comput. Log., 12(4):28:1–28:51, 2011. doi:10.1145/1970398.
1970404.

12 Krishnendu Chatterjee and Thomas A. Henzinger. Assume-guarantee synthesis. In Tools
and Algorithms for the Construction and Analysis of Systems, 13th International Confer-
ence, TACAS 2007, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2007 Braga, Portugal, March 24 - April 1, 2007, Proceedings, volume
4424 of Lecture Notes in Computer Science, pages 261–275. Springer, 2007.

13 Werner Damm and Bernd Finkbeiner. Automatic compositional synthesis of distributed
systems. In FM 2014: Formal Methods - 19th International Symposium, Singapore, May 12-
16, 2014. Proceedings, volume 8442 of Lecture Notes in Computer Science, pages 179–193.
Springer, 2014.

14 Luca de Alfaro, Thomas A. Henzinger, and Orna Kupferman. Concurrent reachability
games. Theor. Comput. Sci., 386(3):188–217, 2007. doi:10.1016/j.tcs.2007.07.008.

15 Marco Faella. Admissible strategies in infinite games over graphs. In MFCS 2009, volume
5734 of Lecture Notes in Computer Science, pages 307–318. Springer, 2009.

16 Dana Fisman, Orna Kupferman, and Yoad Lustig. Rational synthesis. In Tools and Al-
gorithms for the Construction and Analysis of Systems, 16th International Conference,
TACAS 2010, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings, volume 6015 of
Lecture Notes in Computer Science, pages 190–204. Springer, 2010.

17 Orna Kupferman, Giuseppe Perelli, and Moshe Y. Vardi. Synthesis with rational environ-
ments. In Multi-Agent Systems - 12th European Conference, EUMAS 2014, Prague, Czech
Republic, December 18-19, 2014, Revised Selected Papers, pages 219–235. Springer, 2014.

18 Jean-François Raskin, Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger.
Algorithms for omega-regular games with imperfect information. Logical Methods in Com-
puter Science, 3(3), 2007. doi:10.2168/LMCS-3(3:4)2007.

19 Moshe Y Vardi. Automatic verification of probabilistic concurrent finite state programs.
In Foundations of Computer Science, 1985., 26th Annual Symposium on, pages 327–338.
IEEE, 1985.

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.375
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2016.42
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.100
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.100
http://dx.doi.org/10.1007/s00236-016-0273-2
http://dx.doi.org/10.1145/2603088.2603143
http://dx.doi.org/10.1145/2603088.2603143
http://dx.doi.org/10.1145/1970398.1970404
http://dx.doi.org/10.1145/1970398.1970404
http://dx.doi.org/10.1016/j.tcs.2007.07.008
http://dx.doi.org/10.2168/LMCS-3(3:4)2007

	Introduction
	Preliminaries
	Admissibility
	Assume admissible synthesis

