
28th Annual Symposium on
Combinatorial Pattern Matching

CPM 2017, July 4–6, 2017, Warsaw, Poland

Edited by

Juha Kärkkäinen
Jakub Radoszewski
Wojciech Rytter

LIPIcs – Vo l . 78 – CPM 2017 www.dagstuh l .de/ l ip i c s

Editors
Juha Kärkkäinen Jakub Radoszewski Wojciech Rytter
Department of Computer Science Faculty of Mathematics, Faculty of Mathematics,

Informatics and Mechanics Informatics and Mechanics
University of Helsinki, Finland University of Warsaw, Poland University of Warsaw, Poland
juha.karkkainen@cs.helsinki.fi jrad@mimuw.edu.pl rytter@mimuw.edu.pl

ACM Classification 1998
E.1 Data Structures, E.2 Data Storage Representations, E.4 Coding and Information Theory, F. Theory
of Computation, G.2 Discrete Mathematics, H. Information Systems, I.7 Document and Text Processing

ISBN 978-3-95977-039-2

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-039-2.

Publication date
July, 2017

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.CPM.2017.0

ISBN 978-3-95977-039-2 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-95977-039-2
http://www.dagstuhl.de/dagpub/978-3-95977-039-2
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.CPM.2017.0
http://www.dagstuhl.de/dagpub/978-3-95977-039-2
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Reykjavik University)
Susanne Albers (TU München)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Anca Muscholl (University Bordeaux)
Catuscia Palamidessi (INRIA)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)
Thomas Schwentick (TU Dortmund)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

http://www.dagstuhl.de/lipics

CPM 2017

http://www.dagstuhl.de/dagpub/1868-8969
http://www.dagstuhl.de/lipics

To all algorithmic stringologists in the world

Contents

Preface
Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter . 0:ix

Invited Talks

Wheeler Graphs: Variations on a Theme by Burrows and Wheeler
Giovanni Manzini . 1:1–1:1

Recompression of SLPs
Artur Jeż . 2:1–2:1

Shortest Superstring
Marcin Mucha . 3:1–3:1

Regular Papers

Document Listing on Repetitive Collections with Guaranteed Performance
Gonzalo Navarro . 4:1–4:13

Path Queries on Functions
Travis Gagie, Meng He, and Gonzalo Navarro . 5:1–5:15

Deterministic Indexing for Packed Strings
Philip Bille, Inge Li Gørtz, and Frederik Rye Skjoldjensen . 6:1–6:11

Representing the Suffix Tree with the CDAWG
Djamal Belazzougui and Fabio Cunial . 7:1–7:13

Position Heaps for Parameterized Strings
Diptarama, Takashi Katsura, Yuhei Otomo, Kazuyuki Narisawa, and
Ayumi Shinohara . 8:1–8:13

On-Line Pattern Matching on Similar Texts
Roberto Grossi, Costas S. Iliopoulos, Chang Liu, Nadia Pisanti, Solon P. Pissis,
Ahmad Retha, Giovanna Rosone, Fatima Vayani, and Luca Versari 9:1–9:14

A Family of Approximation Algorithms for the Maximum Duo-Preservation String
Mapping Problem

Bartłomiej Dudek, Paweł Gawrychowski, and Piotr Ostropolski-Nalewaja 10:1–10:14

Revisiting the Parameterized Complexity of Maximum-Duo Preservation String
Mapping

Christian Komusiewicz, Mateus de Oliveira Oliveira, and Meirav Zehavi 11:1–11:17

Clique-Based Lower Bounds for Parsing Tree-Adjoining Grammars
Karl Bringmann and Philip Wellnitz . 12:1–12:14

Communication and Streaming Complexity of Approximate Pattern Matching
Tatiana Starikovskaya . 13:1–13:11

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:viii Contents

The Longest Filled Common Subsequence Problem
Mauro Castelli, Riccardo Dondi, Giancarlo Mauri, and Italo Zoppis 14:1–14:13

Lempel-Ziv Compression in a Sliding Window
Philip Bille, Patrick Hagge Cording, Johannes Fischer, and Inge Li Gørtz 15:1–15:11

Time-Space Trade-Offs for Lempel-Ziv Compressed Indexing
Philip Bille, Mikko Berggren Ettienne, Inge Li Gørtz, and Hjalte Wedel Vildhøj . . 16:1–16:17

From LZ77 to the Run-Length Encoded Burrows-Wheeler Transform, and Back
Alberto Policriti and Nicola Prezza . 17:1–17:10

Longest Common Extensions with Recompression
Tomohiro I . 18:1–18:15

Fast and Simple Jumbled Indexing for Binary Run-Length Encoded Strings
Luís Cunha, Simone Dantas, Travis Gagie, Roland Wittler, Luis Kowada, and
Jens Stoye . 19:1–19:9

Faster STR-IC-LCS Computation via RLE
Keita Kuboi, Yuta Fujishige, Shunsuke Inenaga, Hideo Bannai, and
Masayuki Takeda . 20:1–20:12

Gapped Pattern Statistics
Philippe Duchon, Cyril Nicaud, and Carine Pivoteau . 21:1–21:12

Computing All Distinct Squares in Linear Time for Integer Alphabets
Hideo Bannai, Shunsuke Inenaga, and Dominik Köppl . 22:1–22:18

Palindromic Length in Linear Time
Kirill Borozdin, Dmitry Kosolobov, Mikhail Rubinchik, and Arseny M. Shur 23:1–23:12

Tight Bounds on the Maximum Number of Shortest Unique Substrings
Takuya Mieno, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda 24:1–24:11

Can We Recover the Cover?
Amihood Amir, Avivit Levy, Moshe Lewenstein, Ronit Lubin, and Benny Porat . . . 25:1–25:15

Approximate Cover of Strings
Amihood Amir, Avivit Levy, Ronit Lubin, and Ely Porat . 26:1–26:14

Beyond Adjacency Maximization: Scaffold Filling for New String Distances
Laurent Bulteau, Guillaume Fertin, and Christian Komusiewicz 27:1–27:17

On the Weighted Quartet Consensus Problem
Manuel Lafond and Celine Scornavacca . 28:1–28:18

Optimal Omnitig Listing for Safe and Complete Contig Assembly
Massimo Cairo, Paul Medvedev, Nidia Obscura Acosta, Romeo Rizzi, and
Alexandru I. Tomescu . 29:1–29:12

Dynamic Elias-Fano Representation
Giulio Ermanno Pibiri and Rossano Venturini . 30:1–30:14

Synergistic Solutions on MultiSets
Jérémy Barbay, Carlos Ochoa, and Srinivasa Rao Satti . 31:1–31:14

Preface

The Annual Symposium on Combinatorial Pattern Matching is an international forum
for research in combinatorial pattern matching and related applications. It addresses
issues of searching and matching strings and more complicated patterns such as trees,
regular expressions, graphs, point sets, and arrays. The goal is to derive combinatorial
properties of such structures and to exploit these properties in order to achieve more efficient
algorithms for the corresponding computational problems. The meeting deals with problems
in bioinformatics and computational biology, coding and data compression, combinatorics on
words, data mining, information retrieval, natural language processing, pattern discovery,
string algorithms, string processing in databases, symbolic computing, and text searching
and indexing.

This volume contains the papers presented at the 28th Annual Symposium on Combinat-
orial Pattern Matching (CPM 2017) held on July 4-6, 2017 in Warsaw, Poland.

The conference programme included 28 contributed papers and three invited talks by Artur
Jeż (University of Wrocław, Poland), Giovanni Manzini (University of Eastern Piedmont
and IIT-CNR, Italy), and Marcin Mucha (University of Warsaw, Poland). Contributions of
the invited lectures are also included in this volume.

The contributed papers were selected out of 49 submissions, corresponding to an ac-
ceptance ratio of about 57%. Each submission received at least three reviews. We thank
the members of the Programme Committee and all the additional external reviewers that
are listed below for their hard and invaluable work that resulted in an excellent scientific
programme.

The Annual Symposium on Combinatorial Pattern Matching started in 1990, and has
since then taken place every year. Previous CPM meetings were held in Paris, London (UK),
Tucson, Padova, Asilomar, Helsinki, Laguna Beach, Aarhus, Piscataway, Warwick, Montreal,
Jerusalem, Fukuoka, Morelia, Istanbul, Jeju Island, Barcelona, London (Ontario, Canada),
Pisa, Lille, New York, Palermo, Helsinki, Bad Herrenalb, Moscow, Ischia, and Tel Aviv. From
the 3rd to the 26th meeting, all proceedings were published in the LNCS (Lecture Notes in
Computer Science) series. The 27th meeting in 2016 was the first to have its proceedings
appear in the LIPIcs (Leibniz International Proceedings in Informatics) series, as volume 54.

The whole submission and review process was carried out with the help of the EasyChair
conference system. We thank the CPM Steering Committee for supporting Warsaw as the
site for CPM 2017 and for their advice and help in different issues. We thank Tomasz
Kociumaka and Tomasz Waleń from the University of Warsaw for their extensive involvement
in the organisation of the conference and Hanna Bargieł and Monika Goszczycka from
Global Congress, Poland for the local arrangements. We would like to thank the Warsaw
Center of Mathematics and Computer Science for providing generous financial support to
the conference.

Juha Kärkkäinen
Jakub Radoszewski

Wojciech Rytter

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

Programme Committee

Juha Kärkkäinen (Co-Chair) University of Helsinki, Finland
Jakub Radoszewski (Co-Chair) King’s College London, UK and University of Warsaw, Poland
Wojciech Rytter (Co-Chair) University of Warsaw, Poland
Hideo Bannai Kyushu University, Japan
Philip Bille Technical University of Denmark, Denmark
Maxime Crochemore King’s College London, UK and Université Paris-Est, France
Gabriele Fici University of Palermo, Italy
Johannes Fischer TU Dortmund, Germany
Jan Holub Czech Technical University in Prague, Czech Republic
Stepan Holub Charles University in Prague, Czech Republic
Moshe Lewenstein Bar Ilan University, Israel
Gonzalo Navarro University of Chile, Chile
Kunsoo Park Seoul National University, South Korea
Marcin Piątkowski Nicolaus Copernicus University in Toruń, Poland
Nadia Pisanti University of Pisa, Italy and Erable Team INRIA, France
Simon Puglisi University of Helsinki, Finland
Eric Rivals CNRS and Université de Montpellier, France
Cenk Sahinalp Indiana University, Bloomington, USA
Rahul Shah Louisiana State University, USA
Ayumi Shinohara Tohoku University, Japan
Arseny Shur Ural Federal University, Russia
Tatiana Starikovskaya Paris Diderot University, France
Gabriel Valiente Technical University of Catalonia, Spain

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

External Reviewers

Badkobeh, Golnaz

Belazzougui, Djamal

Brubach, Brian

Canovas, Rodrigo

Cardona, Gabriel

Chakraborty, Diptarka

Chateau, Annie

Christiansen, Anders Roy

Cording, Patrick Hagge

Didier, Gilles

Faro, Simone

Ferrada, Hector

Freydenberger, Dominik

Gagie, Travis

Ganguly, Arnab

Georgiadis, Loukas

Hon, Wing-Kai

I, Tomohiro

Inenaga, Shunsuke

Jansson, Jesper

Kaniecki, Mariusz

Kempa, Dominik

Kockan, Can

Konow, Roberto

Kosolobov, Dmitry

Kucherov, Gregory

Lecroq, Thierry

Lozano, Antoni

Malikic, Salem

Manea, Florin

Mantaci, Sabrina

Marcus, Shoshana

Messeguer, Xavier

Mikulski, Łukasz

Nekrich, Yakov

Patil, Manish

Pereira, Alberto Ordóñez

Pibiri, Giulio Ermanno

Ponty, Yann

Prezza, Nicola

Raffinot, Mathieu

Rosone, Giovanna

Russo, Luis M. S.

Serna, Maria

Smyczyński, Sebastian

Sugimoto, Shiho

Tabei, Yasuo

Tarhio, Jorma

Tomescu, Alexandru I.

Vojtěchovský, Petr

Weller, Mathias

Zhang, Qin

Zhu, Binhai

Zhu, Kaiyuan

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

Authors 0:xv

List of Authors

Amir, Amihood (25, 26)

Bannai, Hideo (20, 22, 24)

Barbay, Jérémy (31)

Belazzougui, Djamal (7)

Bille, Philip (6, 15, 16)

Borozdin, Kirill (23)

Bringmann, Karl (12)

Bulteau, Laurent (27)

Cairo, Massimo (29)

Castelli, Mauro (14)

Cording, Patrick Hagge (15)

Cunha, Luís (19)

Cunial, Fabio (7)

Dantas, Simone (19)

Diptarama (8)

Dondi, Riccardo (14)

Duchon, Philippe (21)

Dudek, Bartłomiej (10)

Ettienne, Mikko Berggren (16)

Fertin, Guillaume (27)

Fischer, Johannes (15)

Fujishige, Yuta (20)

Gagie, Travis (5, 19)

Gawrychowski, Paweł (10)

Grossi, Roberto (9)

Gørtz, Inge Li (6, 15, 16)

He, Meng (5)

I, Tomohiro (18)

Iliopoulos, Costas (9)

Inenaga, Shunsuke (20, 22, 24)

Jeż, Artur (2)

Katsura, Takashi (8)

Komusiewicz, Christian (11, 27)

Kosolobov, Dmitry (23)

Kowada, Luis (19)

Kuboi, Keita (20)

Köppl, Dominik (22)

Lafond, Manuel (28)

Levy, Avivit (25, 26)

Lewenstein, Moshe (25)

Liu, Chang (9)

Lubin, Ronit (25, 26)

Manzini, Giovanni (1)

Mauri, Giancarlo (14)

Medvedev, Paul (29)

Mieno, Takuya (24)

Mucha, Marcin (3)

Narisawa, Kazuyuki (8)

Navarro, Gonzalo (4, 5)

Nicaud, Cyril (21)

Obscura Acosta, Nidia (29)

Ochoa, Carlos (31)

Oliveira, Mateus de Oliveira (11)

Ostropolski-Nalewaja, Piotr (10)

Otomo, Yuhei (8)

Pibiri, Giulio Ermanno (30)

Pisanti, Nadia (9)

Pissis, Solon (9)

Pivoteau, Carine (21)

Policriti, Alberto (17)

Porat, Benny (25)

Porat, Ely (26)

CPM 2017

0:xvi Authors

Prezza, Nicola (17)

Retha, Ahmad (9)

Rizzi, Romeo (29)

Rosone, Giovanna (9)

Rubinchik, Mikhail (23)

Satti, Srinivasa Rao (31)

Scornavacca, Celine (28)

Shinohara, Ayumi (8)

Shur, Arseny (23)

Skjoldjensen, Frederik Rye (6)

Starikovskaya, Tatiana (13)

Stoye, Jens (19)

Takeda, Masayuki (20, 24)

Tomescu, Alexandru I. (29)

Vayani, Fatima (9)

Venturini, Rossano (30)

Versari, Luca (9)

Vildhøj, Hjalte Wedel (16)

Wellnitz, Philip (12)

Wittler, Roland (19)

Zehavi, Meirav (11)

Zoppis, Italo (14)

Wheeler Graphs: Variations on a Theme by
Burrows and Wheeler
Giovanni Manzini

Computer Science Institute, DiSIT, University of Eastern Piedmont, Alessandria,
Italy; and
IIT-CNR, Pisa, Italy
giovanni.manzini@uniupo.it

Abstract
The famous Burrows-Wheeler Transform was originally defined for single strings but variations
have been developed for sets of strings, labelled trees, de Bruijn graphs, alignments, etc. In this
talk we propose a unifying view that includes many of these variations and that we hope will
simplify the search for more.

Somewhat surprisingly we get our unifying view by considering the Nondeterministic Finite
Automata related to different pattern-matching problems. We show that the state graphs asso-
ciated with these automata have common properties that we summarize with the concept of a
Wheeler graph.1 Using the notion of a Wheeler graph, we show that it is possible to process
strings efficiently even if the automaton is nondeterministic. In addition, we show that Wheeler
graphs can be compactly represented and traversed using up to three arrays with additional data
structures supporting efficient rank and select operations. It turns out that these arrays coincide
with, or are substantially equivalent to, the output of many Burrows-Wheeler Transform variants
described in the literature.

This is joint work with Travis Gagie and Jouni Sirén.

1998 ACM Subject Classification E.1 Data Structures, F.2.2 Nonnumerical Algorithms and
Problems, H.3 Information Storage and Retrieval

Keywords and phrases compressed data structures, pattern matching

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.1

Category Invited Talk

1 On many occasions Mike Burrows stated that the original idea of the transformation is due to David
Wheeler. We therefore decided to name this graph class after this pioneer of computer science.

© Giovanni Manzini;
licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 1; pp. 1:1–1:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Recompression of SLPs
Artur Jeż

Institute of Computer Science, University of Wrocław, Wrocław, Poland

Abstract
In this talk I will survey the recompression technique in case of SLPs. The technique is based on
applying simple compression operations (replacement of pairs of two different letters by a new
letter and replacement of maximal repetition of a letter by a new symbol) to strings represented
by SLPs. To this end we modify the SLPs, so that performing such compression operations on
SLPs is possible. For instance, when we want to replace ab in the string and SLP has a production
X → aY and the string generated by Y is bw, then we alter the rule of Y so that it generates
w and replace Y with bY in all rules. In this way the rule becomes X → abY and so ab can be
replaced, similar operations are defined for the right sides of the nonterminals. As a result, we
are interested mostly in the SLP representation rather than the string itself and its combinatorial
properties. What we need to control, though, is the size of the SLP. With appropriate choices of
substrings to be compressed it can be shown that it stays linear.

The proposed method turned out to be surprisingly efficient and applicable in various scen-
arios: for instance it can be used to test the equality of SLPs in time O(n log N), where n is
the size of the SLP and N the length of the generated string; on the other hand it can be used
to approximate the smallest SLP for a given string, with the approximation ratio O(log(n/g)),
where n is the length of the string and g the size of the smallest SLP for this string, matching
the best known bounds.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Straight Line Programs, smallest grammar problem, compression, pro-
cessing compressed data, recompression

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.2

Category Invited Talk

© Artur Jeż;
licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 2; pp. 2:1–2:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Shortest Superstring
Marcin Mucha

University of Warsaw, Warsaw, Poland

Abstract
In the Shortest Superstring problem (SS) one has to find a shortest string s containing given
strings s1, . . . , sn as substrings. The problem is NP-hard, so a natural question is that of its
approximability.

One natural approach to approximately solving SS is the following GREEDY heuristic: re-
peatedly merge two strings with the largest overlap until only a single string is left. This heuristic
is conjectured to be a 2-approximation, but even after 30 years since the conjecture has been
posed, we are still very far from proving it. The situation is better for non-greedy approximation
algorithms, where several approaches yielding 2.5-approximation (and better) are known.

In this talk, we will survey the main results in the area, focusing on the fundamental ideas
and intuitions.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases shortest superstring, approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.3

Category Invited Talk

© Marcin Mucha;
licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 3; pp. 3:1–3:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Document Listing on Repetitive Collections with
Guaranteed Performance∗

Gonzalo Navarro

Center for Biotechnology and Bioengineering, Department of Computer Science,
University of Chile, Santiago, Chile
gnavarro@dcc.uchile.cl

Abstract
We consider document listing on string collections, that is, finding in which strings a given pattern
appears. In particular, we focus on repetitive collections: a collection of sizeN over alphabet [1, σ]
is composed of D copies of a string of size n, and s single-character edits are applied on the copies.
We introduce the first document listing index with size Õ(n+s), precisely O((n lg σ+s lg2 N) lgD)
bits, and with useful worst-case time guarantees: Given a pattern of length m, the index reports
the ndoc strings where it appears in time O(m2 +m lgN(lgD + lgεN) · ndoc), for any constant
ε > 0.

1998 ACM Subject Classification E.1 Data Structures, E.4 Coding and Information Theory,
H.3 Information Storage and Retrieval

Keywords and phrases repetitive string collections, document listing, grammar compression,
range minimum queries, succinct data structures

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.4

1 Introduction

Document retrieval on general string collections is an area that has recently attracted
attention [24]. On the one hand, it is a natural generalization of the basic Information
Retrieval tasks carried out on search engines [1, 4], many of which are also useful on Far East
languages, collections of genomes, code repositories, multimedia streams, etc. It also enables
phrase queries on natural language texts. On the other hand, it raises a number of algorithmic
challenges that are not easily addressed with classical pattern matching approaches.

In this paper we focus on one of the simplest document retrieval problems, document
listing [22]. Let D be a collection of D documents of total length N . We want to build an
index on D such that, later, given a search pattern P of length m, we report the identifiers
of all the ndoc documents where P appears. Given that P may occur occ� ndoc times in
D, resorting to pattern matching, that is, finding all the occ occurrences and then listing the
distinct documents where they appear, can be utterly inefficient. Optimal O(m+ ndoc) time
document listing solutions appeared only in 2002 [22], although they use too much space.
There are also more recent statistically compressed indices [29, 15] with a small time penalty.

In particular, we are interested in highly repetitive string collections [23], which are formed
by a few distinct documents and a number of near-copies of those. Such collections arise,
for example, when sequencing the genomes of thousands of individuals of a few species,
when managing versioned collections of documents like Wikipedia, and in versioned software
repositories. Although many of the fastest-growing datasets are indeed repetitive, this is

∗ Supported in part by Fondecyt grant 1-170048 and Basal Funds FB0001, Conicyt, Chile.

© Gonzalo Navarro;
licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 4; pp. 4:1–4:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2 Document Listing on Repetitive Collections

an underdeveloped area: most succinct indices for string collections are based on statistical
compression, and these fail to exploit repetitiveness [19].

1.1 Our contribution
There are few document listing indices that profit from repetitiveness. A simple model
to analyze them is as follows [21, 12, 23]: Assume there is a single document of size n
on alphabet [1, σ], and D − 1 copies of it, on which s single-character edits are arbitrarily
distributed, forming a collection of size N ≈ nD. This models, for example, collections of
genomes and their single-point mutations. The gold standard to measure space usage on
repetitive collections is the size of the Lempel-Ziv parsing [20]. If we parse the concatenation
of the strings in such a repetitive collection, we obtain at most z = n/ lgσ n + O(s) � N

phrases. Therefore, while a statistical compressor would require basically N lg σ bits if the
base document is incompressible [19], we can aim to reach as little as O(n lg σ + s lgN) bits
by exploiting repetitiveness via Lempel-Ziv compression.

This might be too optimistic for an index, however, as there is no known way to extract
substrings efficiently from Lempel-Ziv compressed text. Instead, grammar compression allows
extracting any text symbol in logarithmic time using O(r lgN) bits, where r is the size of the
grammar [3, 31]. It is possible to obtain a grammar of size r = O(z lg(N/z)) [5, 16], which
using standard methods [28] can be tweaked to r = n/ lgσ N +s lgN under our repetitiveness
model. Thus the space we might aim at for indexing is O(n lg σ + s lg2 N) bits.

Although they perform reasonably well in practice, none of the preceding structures
for document listing on repetitive collections [8, 12] offer good worst-case time guarantees
combined with space guarantees that are appropriate for repetitive collections, that is, growing
with n+s rather than with N . Those offering search times of the form O(poly(m, lgN) ·ndoc)
require space of the form O(N/poly(lgN)). In this paper we present the first index offering
good guarantees in space and time. Namely, our index

1. uses O((n lg σ + s lg2 N) lgD) bits of space, and
2. performs document listing in time O(m2 +m lgN(lgD + lgεN) · ndoc), for any constant

ε > 0.

That is, our index is an O(lgD) space factor away from what could be hoped from a
grammar-based index. We actually build on a grammar-based document listing index [8]
that stores lists of the documents where each nonterminal appears, and strengthen it by
rearranging the nonterminals in different orders, following a wavelet tree [13] deployment
that guarantees that only O(m lg r) ranges of lists have to be merged at query time. We
do not store the lists themselves in various orders, but just succinct range minimum query
(RMQ) data structures [11] that allow implementing document listing on ranges of lists
[29]. Those RMQ structures are further compressed because their underlying data has long
increasing runs, so the structures are reduced with techniques analogous to those developed
for the ILCP data structure [12]. The space reduction brings new issues, however, because
we cannot afford storing the underlying RMQ sequences. These problems are circumvented
with a new, tailored, technique to extract the distinct documents in a range.

2 Related work

The first optimal-time and linear-space solution to document listing is due to Muthukrishnan
[22], who solves the problem in O(m+ ndoc) time using an index of O(N lgN) bits of space.
Later solutions [29, 15] improved the space to essentially the statistical entropy of D, at the

G. Navarro 4:3

price of multiplying the times by low-order polylogs of N (e.g., O(m+ lgN · ndoc) time with
O(N) bits on top of the entropy). As said, however, statistical entropy does not capture
repetitiveness well [19], and thus these solutions are not satisfactory in repetitive collections.

There has been a good deal of work on pattern matching indices for repetitive string
collections, building on various principles (see [26, Sec 13.2]). However, there has been little
work on document retrieval structures for repetitive string collections.

One precedent is Claude and Munro’s index based on grammar compression [8]. It
builds on a grammar-based pattern-matching index [10] and adds an inverted index that
explicitly indicates the documents where each nonterminal appears; this inverted index is
also grammar-compressed. To obtain the answer, an unbounded number of those lists of
documents must be merged. No relevant worst-case time or space guarantees are offered.

Another precedent is ILCP [12], where it is shown that the longest common prefix array
(LCP) of repetitive collections has long increasing runs. Then an index of size bounded
by the runs in the suffix array [21] and in the LCP array performs document listing in
time O(search(m) + lookup(N) · ndoc), where search and lookup are the search and lookup
time, respectively, of a run-length compressed suffix array [21]. Yet, there are only average-
case bounds for the size of the structure in terms of s: O(n lgN + s lg2 N) bits. A more
serious problem is that, to obtain lookup(N) time per document, a suffix array sampling of
O(N lgN/lookup(N)) bits must be stored.

The last previous work is PDL [12], which stores inverted lists at sampled nodes in the
suffix tree of D, and then grammar-compresses the set of inverted lists. For a sampling step
b, it requires O((N/b) lgN) bits plus the (unbounded) space of the inverted lists. Searches
that lead to the sampled nodes have their answers precomputed, whereas the others cover a
suffix array range of size O(b) and are solved by brute force in time O(b · lookup(N)). Again,
the suffix array sampling of O(N lgN/lookup(N)) bits is necessary.

3 Basic Concepts

3.1 Listing the different elements in a range
Let A[1, t] be an array of integers in [1, D]. Muthukrishnan [22] gives a structure that, given
a range [i, j], lists all the ndoc distinct elements in A[i, j] in time O(ndoc). He defines an
array C[1, t] storing in C[k] the largest position l < k where A[l] = A[k], or C[k] = 0 if no
such position exists. Note that the leftmost positions of the distinct elements in A[i, j] are
exactly those k where C[k] < i. He then stores a data structure supporting range-minimum
queries (RMQs) on C, rmqC(i, j) = argmini≤k≤jC[k] [11]. Given a range [i, j], he computes
k = rmqC(i, j). If C[k] < i, then he reports A[k] and continues recursively on A[i, k− 1] and
A[k + 1, j]. Whenever it turns out that C[k] ≥ i for an interval [x, y], there are no leftmost
occurrences of A[i, j] within A[x, y], so this interval can be abandoned. It is easy to see that
the algorithm takes O(ndoc) time and uses O(t lg t) bits of space; the RMQ structure uses
just 2t+ o(t) bits and answers queries in constant time [11].

Furthermore, the RMQ structure does not even access C, so we can replace C by a
bitvector V [1, D] to mark which elements have been reported. We set V initially to all zeros
and replace the test C[k] < i by V [A[k]] = 0, that is, the value A[k] has not yet been reported
(these tests are equivalent only if we recurse left and then right in the interval [24]). If so,
we report A[k] and set V [A[k]] ← 1. Overall, we need only O(t + D) bits of space on top
of A, and still run in O(ndoc) time [29] (V can be reset to zeros by rerunning the query or
through lazy initialization). Hon et al. [15] further reduce the extra space to o(t) bits, yet
increasing the time, via sampling the array C.

CPM 2017

4:4 Document Listing on Repetitive Collections

3.2 Wavelet trees

A wavelet tree [13] is a sequence representation that supports, in particular, two-dimensional
orthogonal range queries [6, 25]. Let (1, y1), (2, y2), . . . , (r, yr) be a sequence of points with
yi ∈ [1, r], and let S = y1y2 . . . yr be the y coordinates in order. The wavelet tree is a
perfectly balanced binary tree where each node handles a range of y values. The root handles
[1, r]. If a node handles [a, b] then its left child handles [a, µ] and its right child handles
[µ + 1, b], with µ = b(a + b)/2c. The leaves handle individual y values. If a node handles
range [a, b], then it represents the subsequence Sa,b of y coordinates that belong to [a, b].
Thus at each level the strings Sa,b form a permutation of S. What is stored for each such
node is a bitvector Ba,b so that Ba,b[i] = 0 iff Sa,b ≤ µ, that is, if that value is handled in
the left child of the node. Those bitvectors are provided with support for rank and select
queries: rankv(B, i) is the number of occurrences of bit v in B[1, i], whereas selectv(B, j) is
the position of the jth occurrence of bit v in B. The wavelet tree has height lg r, and its
total space requirement for all the bitvectors Ba,b is r lg r bits. The extra structures for rank
and select add o(r lg r) further bits and support the queries in constant time [7]. With the
wavelet tree one can recover any yi value by tracking it down from the root to a leaf, but let
us describe a more general procedure.

Let [x1, x2] × [y1, y2] be a query range. The number of points that fall in the range
can be counted in O(lg r) time as follows. We start at the root with the range S[x1, x2] =
S1,r[x1, x2]. Then we project the range both left and right, towards S1,µ[rank0(B1,r, x1 −
1) + 1, rank0(B1,r, x2)] and Sµ+1,r[rank1(B1,r, x1 − 1) + 1, rank1(B1,r, x2)], respectively, with
µ = b(r + 1)/2c. If some of the ranges is empty, we stop the recursion on that node. If the
interval [a, b] handled by a node is disjoint with [y1, y2], we also stop. If the interval [a, b] is
included in [y1, y2], then all the points in the x range qualify, and we simply sum the length
of the range to the count. Otherwise, we keep splitting the ranges recursively. It is well
known that the range [y1, y2] is covered by O(lg r) wavelet tree nodes, and that we traverse
O(lg r) nodes to reach them. If we also want to report all the corresponding y values, then
instead of counting the points found, we track each one individually towards its leaf, in
O(lg r) time. At the leaves, the y values are sorted, so in particular if they are a permutation
of [1, r], we know that the ith left-to-right leaf is the value y = i. Thus, extracting the nocc
results takes time O((1 + nocc) lg r).

3.3 Range minimum queries on arrays with runs

Let A[1, t] be an array that can be cut into ρ runs of nondecreasing values. Then it is possible
to solve RMQs in O(lg lg t) time plus O(1) accesses to A using O(ρ lg(t/ρ)) bits. The idea
is that the possible minima (breaking ties in favor of the leftmost) in A[i, j] are either A[i]
or the positions where runs start in the range. Then, we can use a sparse bitvector M [1, t]
marking with M [k] = 1 the run heads. We also define an array A′[1, ρ], so that if M [k] = 1
then A′[rank1(M,k)] = A[k]. We do not store A′, but just an RMQ structure on it. Hence,
the minimum of the run heads in A[i, j] can be found by computing the range of run heads
involved, i′ = rank1(M, i − 1) + 1 and j′ = rank1(M, j), then finding the smallest value
among them in A′ with k′ = rmqA′(i′, j′), and mapping it back to A with k = select1(M,k′).
Finally, the RMQ answer is either A[i] or A[k], so we access A twice to compare them.

This idea was used by Gagie et al. [12, Sec 3.2] for runs of equal values, but it works
verbatim for runs of nondecreasing values. They show how to store M in ρ lg(t/ρ) +O(ρ)
bits so that it solves rank in O(lg lg t) time and select in O(1) time, by enriching a sparse
bitvector representation [27]. This dominates the space and time of the whole structure.

G. Navarro 4:5

The idea was used even before by Barbay et al. [2, Thm. 2], for runs of nondecreasing
values. They represented M using ρ lg(t/ρ) + O(ρ) + o(t) bits so that the O(lg lg t) time
becomes O(1), but we are not be able to afford the o(t) extra bits in this paper.

3.4 Grammar compression
Let T [1, N] be a sequence of symbols over alphabet [1, σ]. Grammar compressing T means
finding a context-free grammar that generates T and only T . The grammar can then be
used as a substitute for T , which provides good compression when T is repetitive. We are
interested, for simplicity, in grammars in Chomsky normal form, where the rules are of the
form A→ BC or A→ a, where A, B, and C are nonterminals and a ∈ [1, σ] is a terminal
symbol. For every grammar, there is a proportionally sized grammar in this form.

A Lempel-Ziv parse [20] of T cuts T into z phrases, so that each phrase T [i, j] appears
earlier in T [i′, j′], with i′ < i. It is known that the smallest grammar generating T must have
at least z rules [28, 5], and that it is possible to convert a Lempel-Ziv parse into a grammar
with r = O(z lg(N/z)) rules [28, 5, 30, 17, 18]. Furthermore, such grammars can be balanced,
that is, the parse tree is of height O(lgN). By storing the length of the string to which
every nonterminal expands, it is easy to access any substring T [i, j] from its compressed
representation in time O(j− i+ lgN) by tracking down the range in the parse tree. This can
be done even on an unbalanced grammar [3]. The total space used by this representation,
with a grammar of r rules, is O(r lgN) bits.

3.5 Grammar-based indexing
The pattern-matching index of Claude and Navarro [9] builds on a grammar in Chomsky
normal form that generates a text T [1, N], with r+ 1 rules. Let s(A) be the string generated
by nonterminal A. Then they collect the strings s(A) for all those nonterminals, except the
initial symbol S. Let C1, . . . , Cr be the nonterminals sorted lexicographically by s(A) and let
B1, . . . , Br be the nonterminals sorted lexicographically by the reverse strings, s(A)rev. They
create a set of points in [1, r]× [1, r] so that (i, j) is a point (corresponding to nonterminal
A) if the rule that defines A is A→ BiCj . Those points are stored in a wavelet tree.

To search for a pattern P [1,m], they first find the primary occurrences, that is, those
that appear when B is concatenated with C in a rule A→ BC. The secondary occurrences,
which appear when A is used elsewhere, are found in a way that does not matter for this
paper. To find the primary occurrences, they cut P into two nonempty parts P = P1P2,
in the m − 1 possible ways. For each cut, they binary search for P rev1 in the sorted
set s(B1)rev, . . . , s(Br)rev and for P2 in the sorted set s(C1), . . . , s(Cr). Let [x1, x2] be
the interval obtained for P1 and [y1, y2] the one obtained for P2. Then all the points in
[x1, x2]× [y1, y2], for all the m− 1 partitions of P , are the primary occurrences.

To search for P rev1 or for P2, the grammar is used to extract the required substrings of
T in time O(m+ lgN), so the overall search time to find the nocc primary occurrences is
O(m lg r(m+ lgN) + lg r · nocc). The space used by the structure is O(r lgN) bits. Within
this space one can store Patricia trees on the strings s(Brevi) and s(Ci), to speed up binary
searches and reduce the time to O(m(m+lgN)+lg r ·nocc). Also, one can use the structure of
Gasieniec et al. [14] that, within O(r lgN) further bits, allows extracting any prefix/suffix of
any nonterminal in constant time per symbol (see also [10]). Since in our search we only access
prefixes/suffixes of whole nonterminals, this further reduces the time to O(m2 + lg r · nocc).

Claude and Munro [8] extend this structure to support document listing on a collection
D of D string documents, which are concatenated into a text T [1, N]. To each nonterminal

CPM 2017

4:6 Document Listing on Repetitive Collections

A they associate the increasing list `(A) of the identifiers of the documents (integers in
[1, D]) where A appears. To perform document listing, they find all the primary occurrences
A→ BC of all the partitions of P , and merge their lists. There is no useful worst-case time
bound for this operation other than O(nocc · ndoc), where nocc can be much larger than
ndoc. To reduce space, they also grammar-compress the sequence of all the r lists `(A). They
also give no worst-case space bound for the compressed lists (other than O(rD lgD) bits).

4 Our Document Listing Index

We build on the basic structure of Claude and Munro [8]. Our main idea is to take advantage
of the fact that the nocc primary occurrences to detect in Section 3.5 are found as points in the
two-dimensional structure, along O(lg r) ranges within wavelet tree nodes (recall Section 3.2)
for each partition of P . Instead of retrieving the nocc individual lists, decompressing and
merging them [8], we will use the techniques to extract the distinct elements of a range seen
in Section 3.1. This will drastically reduce the amount of merging necessary, and will provide
useful upper bounds on the document listing time.

4.1 Structure
We store the grammar of T in a way that it allows direct access for pattern searches, as well as
the wavelet tree for the points (Bi, Cj), the Patricia trees, and extraction of prefixes/suffixes
of nonterminals, all in O(r lgN) bits.

Consider any sequence Sa,b[1, q] at a wavelet tree node handling the range [a, b] (recall
that those sequences are not explicitly stored). Each element Sa,b[k] = Ak corresponds to a
point (i, j) associated with a nonterminal Ak → BiCj . Then let La,b = `(A1) · `(A2) · · · `(Aq)
be the concatenation of the inverted lists associated with the nonterminals in Sa,b, and let
Ma,b = 10|`(A1)|−110|`(A2)|−1 . . . 10|`(Aq)|−1 mark where each list begins in La,b. Now let Ca,b
be the C-array corresponding to La,b, as described in Section 3.1. As in that section, we do
not store La,b nor Ca,b, but just the RMQ structure on Ca,b, which together with Ma,b will
be used to retrieve the unique documents in a range Sa,b[i, j].

Since Ma,b has only r 1s out of (at most) rD bits across all the wavelet tree nodes of
the same level, it can be stored with O(r lgD) bits per level [27], and O(r lg r lgD) bits
overall. On the other hand, as we will show, Ca,b is formed by a few increasing runs, say ρ
across the wavelet tree nodes of the same level, and therefore we represent its RMQ structure
using the technique of Section 3.3. The total space used by those RMQ structures is then
O(ρ lg r lg(rD/ρ)) bits.

Finally, we store the explicit lists `(Bi) aligned to the wavelet tree leaves, so that the list
of any element in any sequence Sa,b is reached in O(lg r) time by tracking down the element.
Those lists, of maximum total length rD, are grammar-compressed as well, just as in the
basic scheme [8]. If the grammar has r′ rules, then the total compressed size is O(r′ lg(rD))
bits to allow for direct access in O(lg(rD)) time, see Section 3.4.

In total, our structure uses O(r lgN + r lg r lgD + ρ lg r lg(rD/ρ) + r′ lg(rD)) bits.

4.2 Document listing
A document listing query proceeds as follows. We cut P in the m − 1 possible ways, and
for each way identify the O(lg r) wavelet tree nodes (and ranges) where the desired points
lie. Overall, we have O(m lg r) ranges and need to take the union of the inverted lists of all
the points inside those ranges. We extract the distinct documents in each range and then

G. Navarro 4:7

compute their union. If a range has only one element, then we can track it to the leaves,
where its list `(·) is stored, and recover it by decompressing the whole list.

Otherwise, we use in principle the document listing technique of Section 3.1. Let Sa,b[i, j]
be a range from where to obtain the distinct documents. We compute i′ = select1(Ma,b, i)
and j′ = select1(Ma,b, j + 1) − 1, and obtain the distinct elements in La,b[i′, j′], by using
RMQs on Ca,b[i′, j′]. Recall that, as in Section 3.3, we use a run-length compressed RMQ
structure on Ca,b. With this arrangement, every RMQ operation takes time O(lg lg(rD))
plus the time to accesses two cells in Ca,b. Those accesses are made to compare a run head
with the leftmost element of the query interval, Ca,b[i′]. The problem is that we have not
represented the cells of Ca,b, and cannot easily compute them on the fly.

Barbay et al. [2, Thm. 3] give a sophisticated representation that determines the position
of the minimum in Ca,b[i′, j′] without the need to perform the two accesses on Ca,b. They
need ρ lg(rD) + ρ lg(rD/ρ) +O(ρ) + o(rD) bits, which unfortunately is too high for us1.

Instead, we modify the way the distinct elements are obtained, so that comparing the
two cells of Ca,b is unnecessary. In the same spirit of Sadakane’s solution (see Section 3.1)
we use a bitvector V [1, D] where we mark the documents already reported. Given a range
Sa,b[i, j] = Ai . . . Aj , we first track Ai down the wavelet tree, recover and decompress its
list `(Ai), and mark all of its documents in V . Note that all the documents in the list
`(·) are different. Now we do the same with Ai+1, decompressing `(Ai+1) left to right and
marking the documents in V , and so on, until we decompress a document `(Ai+d)[k] that is
already marked in V . Only now we use the RMQ technique of Section 3.3 on the interval
Ca,b[i′, j′], where i′ = select1(Ma,b, i+ d)− 1 + k and j′ = select1(Ma,b, j + 1)− 1, to obtain
the next document to report. This technique, as explained, yields two candidates: one is
La,b[i′] = `(Ai+d)[k] itself, and the other is some run head La,b[k′] whose identity we can
obtain from the wavelet tree leaf. But we know that La,b[i′] was already reported, so we act
as if the RMQ was always La,b[k′]: If the RMQ answer was La,b[i′] then, since it is already
reported, we should stop. But in this case, La,b[k′] is also already reported and we do stop
anyway. Hence, if La,b[k′] is already reported we stop, and otherwise we report it and continue
recursively on the intervals Ca,b[i′, k′ − 1] and Ca,b[k′ + 1, j′]. On the first, we can continue
directly, as we still know that La,b[i′] is already reported. On the second interval, instead,
we must restore the invariant that the leftmost element was already reported. So we find out
withM the list and position `(At)[u] corresponding to Ca,b[k′+1] (i.e., t = rank1(Ma,b, k

′+1)
and u = k′+ 1− select1(M, t) + 1), track At down to its leaf in the wavelet tree, and traverse
`(At) from position u onwards, reporting documents until finding one that has been reported.
The correctness of this document listing algorithm is proved in Appendix A.

The m− 1 searches for partitions of P take time O(m2). In the worst case, extracting
each distinct document in the range requires an RMQ computation without access to Ca,b
(O(lg lg(rD)) time), tracking an element down the wavelet tree (O(lg r) time), and extracting
an element from its grammar-compressed list `(·) (O(lg(rD) time). This adds up to O(lg(rD))
time per document extracted in a range. In the worst case, however, the same documents
are extracted over and over in all the O(m lg r) ranges, and therefore the final search time is
O(m2 +m lg r lg(rD) · ndoc).

1 Even if we get rid of the o(rD) component, the ρ lg(rD) term becomes O(s lg3 N) in the final space,
which is larger than what we manage to obtain. Also, using it does not make our solution faster.

CPM 2017

4:8 Document Listing on Repetitive Collections

5 Analysis in a Repetitive Scenario

Our structure uses O(r lgN + r lg r lgD + ρ lg r lg(rD/ρ) + r′ lg(rD)) bits, and performs
document listing in time O(m2 + m lg r lg(rD) · ndoc). We now specialize those formulas
under our repetitiveness model. Note that our index works on any string collection; we use
the simplified model of the D − 1 copies of a single document of length n, plus the s edits,
to obtain analytical results that are easy to interpret in terms of repetitiveness. We also
assume a particular strategy to generate the grammars to show that it is possible to obtain
the complexities we give; the actual index may use more sophisticated ones.

5.1 Space
We assume s ≥ D − 1, since otherwise there will be identical documents, and this is easily
reduced to a smaller collection with multiple identifiers per document. The documents are
concatenated into T [1, N], where N ≤ nD + s. Let us make our grammar for T contain
the N1/3 nonterminals that generate all the strings of length 1

3 lgσ N . Then it replaces the
first document with O(n/ lgσ N) such nonterminals, and builds a balanced parse tree of
height h = O(lgn) on top of them, with nonterminal symbol S at the root. On the copies,
it first covers them with D − 1 copies of S. Now, for each edit that occurs on a copy, let
A1, . . . , Ah be the nonterminals from the leaf (where the edit is applied) to the root Ah = S.
We create new nonterminals A′1, . . . , A′h′ so that h′ ≤ h + 1 and A′h′ = S′ generates the
modified document. All the other nonterminals can be reused. Therefore, the maximum
height h′ of the final nonterminal S′ rooting a modified document is O(lg(n + s)), which
is reached when many of the edits apply to a single copy. The final grammar size is then
r = O(N1/3 + n/ lgσ N + s lg(n+ s)) = O(n/ lgσ N + s lgN), where we used that either n or
s is Ω(

√
N) because N ≤ nD + s ≤ n(s+ 1) + s. Once all the edits are applied, we add a

balanced tree on top of those r symbols, which asymptotically does not change r (we may
also avoid this final tree and access the documents individually, since our accesses never cross
document borders).

Let us now bound ρ. If there are no edits, then every nonterminal appears in all the
documents, so all the lists are of the form `(A) = 1, 2, . . . , D. Therefore, all the corresponding
C values are C[k] = k −D, and C has just one nondecreasing run (the first D values are 0,
and thus included in the run too). Let us consider the effect of an edit operation at some
document d. When we update the upward path A1, A2, . . . , Ah and create nonterminals
A′1, A

′
2, . . . , A

′
h′ to reflect the edit, document d may disappear from all the lists `(Ai). Each

of those (up to) h′ disappeared documents produces a change in C, where the cell that
pointed to the disappeared position now points earlier, and this may break one run. There
are other h′ updates due to the creation of the lists for the nonterminals A′i. Overall, array
C undergoes O(lgN) run breaks per edit, and therefore it has a total of ρ = O(s lgN) runs.

The analysis of r′ is analogous. When there are no edits and `(A) = 1, 2, . . . , D for all
nonterminals A, we can represent the lists with a grammar of O(D) symbols generating
one list from nonterminal U , and then r − 1 copies of U . Now, an edit in a document d
that removes d from the lists of nonterminals A1, . . . , Ah produces O(lgN) edits in the lists
`(A1), . . . , `(Ah) (and new lists `(A′i) as well). As done for the text, the grammar needs to
add O(lgD) nonterminals to modify the copy of U of each list `(Ai), from the point where
d disappears to the root U . The new lists `(A′i) also fit within the same space. Therefore,
the final grammar is of size r′ = O(D + s lgN lgD) = O(s lgN lgD). Instead of adding a
balanced grammar tree over the r resulting nonterminals U ′, we retain direct pointers to
those roots. As a result, the lists, of maximum length D, need O(r′ lgD) bits and can be

G. Navarro 4:9

accessed in time O(lgD). From the wavelet tree, however, we still have to pay also the
O(lg r) time needed to identify the list to access.

Therefore, the total size of the index can be expressed as follows. The O(r lg r lgD) bits
coming from the sparse bitvectors M , is O(r lgN lgD) (since lg r = Θ(lg(ns)) = Θ(lgN)),
and thus it is O(n lg σ lgD+ s lg2 N lgD). This subsumes the O(r lgN) bits of the grammar
and the wavelet tree. The O(ρ lg r lg(rD/ρ)) bits of the structures C are monotonically
increasing with ρ, so since ρ = s lgN ≤ r, we can upper bound it by replacing ρ with r,
obtaining O(r lg r lgD) as in the space for M . Finally, the O(r′ lgD) bits of the explicit
inverted lists are O(s lgN lg2 D). Overall, the structures add up to O((n lg σ + s lg2 N) lgD)
bits. Note that we can also analyze the space required by Claude and Munro’s structure [8],
which is O(r lgN) bits plus the inverted lists, O(n lg σ+ s lgN(lgN + lg2 D)) bits. Although
smaller than ours, their search time has no useful bounds.

5.2 Time
Our search time is O(m2 +m lg r lg(rD) · ndoc) = O(m2 +m lg2 N · ndoc). The O(lg(rD))
cost corresponds to accessing a list `(A) from the wavelet tree, and includes the O(lg r) time
to reach the leaf and the O(lgD) time to access a position in the grammar-compressed list.
It is possible to reduce the O(lg r) wavelet tree time by spending more space. The trick is
to track the positions upwards to the root, not downwards to the leaves, and associate the
lists `(A) aligned to the root order. It is possible to reach the root position of a symbol in
time O((1/ε) lgε r) by using O((1/ε)r lg r) bits [6, 25], for any ε > 0. By using a constant ε
we obtain our main result.

I Theorem 1. Let collection D, of total size N , be formed by an initial document of length
n plus D − 1 copies of it, with s single-character edit operations applied on the copies. Then
D can be represented within O((n lg σ+ s lg2 N) lgD) bits, so that the ndoc documents where
a pattern of length m appears can be listed in time O(m2 +m lgN(lgD + lgεN) · ndoc), for
any constant ε > 0.

We can also obtain other tradeoffs. For example, with ε = 1/ lg lg r we obtain O((n lg σ +
s lg2 N)(lgD + lg lgN)) bits of space and O(m2 +m lgN(lgD + lg lgN) · ndoc) search time.

6 Conclusions

We have presented the first document listing index with worst-case space and time guarantees
that are useful for repetitive collections. On a collection of size N formed by an initial
document of length n and D− 1 copies it, with s single-character edits applied on the copies,
our index uses O((n lg σ + s lg2 N) lgD) bits and lists the ndoc documents where a pattern
of length m appears in time O(m2 +m lgN(lgD+ lgεN) · ndoc), for any constant ε > 0. We
also prove a slightly lower space bound on a previous index that had not been analyzed [8],
but which has no useful worst-case time bounds for listing.

The space of our index is an O(lgD) factor away from what can be expected from a
grammar-based index. This is the price paid for storing the inverted lists of the nonterminals.
An important question is whether this space factor can be removed, that is, if the inverted
lists can be represented within the grammar-compressed size of the text itself.

Another interesting question is whether there exists an index (or a better analysis of this
index) whose space and time can be bounded on more general repetitiveness measures of the
collection, for example in terms of the number z of Lempel-Ziv phrases into which it can be
parsed. In our model it holds z ≤ n/ lgσ n + O(s), but other kinds of plausible repetitive

CPM 2017

4:10 Document Listing on Repetitive Collections

collections have s � z, for example if the edits apply to ranges of documents, or if they
involve blocks of text inserted, deleted, or moved around. Typical grammar-based pattern
matching indices [9, 10] require O(r lgN) = O(z lg2 N) bits in general; it would be good to
obtain the same in the document-listing grammar-based indices.

Finally, there is the question of how much of the theoretical improvements over previous
work [8] can be translated into practice. This is also a subject of future work. On one hand,
our upper bounds are utterly pessimistic when they assume that the same documents will
be reported O(m lg r) times; the average case should be much better. On the other hand,
practical improvements are possible over the basic theoretical ideas presented, which should
allow us effectively avoid the cases where the previous index deviates significantly from our
worst-case time guarantees, without ruining the cases where it performs well. For example,
we can list the documents by brute force when the wavelet tree ranges are short, and use the
document listing algorithm only on the long ones, where it is worth applying.

References

1 Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto. Modern Information Retrieval:
The Concepts and Technology behind Search. Addison-Wesley Professional, 2011. URL:
http://www.mir2ed.org/.

2 Jérémy Barbay, Johannes Fischer, and Gonzalo Navarro. LRM-trees: Compressed indices,
adaptive sorting, and compressed permutations. Theor. Comput. Sci., 459:26–41, 2012.
doi:10.1016/j.tcs.2012.08.010.

3 Philip Bille, Gad M. Landau, Rajeev Raman, Kunihiko Sadakane, Srinivasa Rao Satti,
and Oren Weimann. Random access to grammar-compressed strings and trees. SIAM J.
Comput., 44(3):513–539, 2015. doi:10.1137/130936889.

4 Stefan Büttcher, Charles L. A. Clarke, and Gordon V. Cormack. Information Retrieval:
Implementing and Evaluating Search Engines. MIT Press, 2010. URL: http://mitpress.
mit.edu/books/information-retrieval.

5 Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prabhakaran, Amit Sahai,
and Abhi Shelat. The smallest grammar problem. IEEE Trans. Inf. Theory, 51(7):2554–
2576, 2005. doi:10.1109/TIT.2005.850116.

6 Bernard Chazelle. A functional approach to data structures and its use in multidimensional
searching. SIAM J. Comput., 17(3):427–462, 1988. doi:10.1137/0217026.

7 David R. Clark. Compact PAT Trees. PhD thesis, University of Waterloo, Canada, 1996.
URL: http://hdl.handle.net/10012/64.

8 Francisco Claude and J. Ian Munro. Document listing on versioned documents. In Oren
Kurland, Moshe Lewenstein, and Ely Porat, editors, Proceedings of the 20th International
Symposium on String Processing and Information Retrieval (SPIRE 2013), volume 8214 of
LNCS, pages 72–83. Springer, 2013. doi:10.1007/978-3-319-02432-5_12.

9 Francisco Claude and Gonzalo Navarro. Self-indexed grammar-based compression. Fundam.
Inform., 111(3):313–337, 2010. doi:10.3233/FI-2011-565.

10 Francisco Claude and Gonzalo Navarro. Improved grammar-based compressed indexes. In
Liliana Calderón-Benavides, Cristina N. González-Caro, Edgar Chávez, and Nivio Ziviani,
editors, Proceedings of the 19th International Symposium on String Processing and In-
formation Retrieval (SPIRE 2012), volume 7608 of LNCS, pages 180–192. Springer, 2012.
doi:10.1007/978-3-642-34109-0_19.

11 Johannes Fischer and Volker Heun. Space-efficient preprocessing schemes for range min-
imum queries on static arrays. SIAM J. Comput., 40(2):465–492, 2011. doi:10.1137/
090779759.

http://www.mir2ed.org/
http://dx.doi.org/10.1016/j.tcs.2012.08.010
http://dx.doi.org/10.1137/130936889
http://mitpress.mit.edu/books/information-retrieval
http://mitpress.mit.edu/books/information-retrieval
http://dx.doi.org/10.1109/TIT.2005.850116
http://dx.doi.org/10.1137/0217026
http://hdl.handle.net/10012/64
http://dx.doi.org/10.1007/978-3-319-02432-5_12
http://dx.doi.org/10.3233/FI-2011-565
http://dx.doi.org/10.1007/978-3-642-34109-0_19
http://dx.doi.org/10.1137/090779759
http://dx.doi.org/10.1137/090779759

G. Navarro 4:11

12 Travis Gagie, Kalle Karhu, Gonzalo Navarro, Simon J. Puglisi, and Jouni Sirén. Document
listing on repetitive collections. In Johannes Fischer and Peter Sanders, editors, Proceedings
of the 24th Annual Symposium on Combinatorial Pattern Matching (CPM 2013), volume
7922 of LNCS, pages 107–119. Springer, 2013. doi:10.1007/978-3-642-38905-4_12.

13 Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-compressed
text indexes. In Martin Farach-Colton, editor, Proceedings of the 14th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2003), pages 841–850. ACM/SIAM, 2003. URL:
http://dl.acm.org/citation.cfm?id=644108.644250.

14 Leszek Gąsieniec, Roman M. Kolpakov, Igor Potapov, and Paul Sant. Real-time traversal in
grammar-based compressed files. In James A. Storer and Martin Cohn, editors, Proceedings
of the 2005 Data Compression Conference (DCC 2005), page 458. IEEE Computer Society,
2005. doi:10.1109/DCC.2005.78.

15 Wing-Kai Hon, Rahul Shah, and Jeffrey Scott Vitter. Space-efficient framework for top-k
string retrieval problems. In Daniel A. Spielman, editor, Proceedings of the 50th Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2009), pages 713–722. IEEE
Computer Society, 2009. doi:10.1109/FOCS.2009.19.

16 Danny Hucke, Markus Lohrey, and Carl Philipp Reh. The smallest grammar problem
revisited. In Shunsuke Inenaga, Kunihiko Sadakane, and Tetsuya Sakai, editors, Pro-
ceedings of the 23rd International Symposium on String Processing and Information Re-
trieval (SPIRE 2016), volume 9954 of LNCS, pages 35–49. Springer, 2016. doi:10.1007/
978-3-319-46049-9_4.

17 Artur Jeż. Approximation of grammar-based compression via recompression. Theor. Com-
put. Sci., 592:115–134, 2015. doi:10.1016/j.tcs.2015.05.027.

18 Artur Jeż. A really simple approximation of smallest grammar. Theor. Comput. Sci.,
616:141–150, 2016. doi:10.1016/j.tcs.2015.12.032.

19 Sebastian Kreft and Gonzalo Navarro. On compressing and indexing repetitive sequences.
Theor. Comput. Sci., 483:115–133, 2013. doi:10.1016/j.tcs.2012.02.006.

20 Abraham Lempel and Jacob Ziv. On the complexity of finite sequences. IEEE Trans. Inf.
Theory, 22(1):75–81, 1976. doi:10.1109/TIT.1976.1055501.

21 Veli Mäkinen, Gonzalo Navarro, Jouni Sirén, and Niko Välimäki. Storage and retrieval
of highly repetitive sequence collections. J. Comput. Biol., 17(3):281–308, 2010. doi:
10.1089/cmb.2009.0169.

22 S. Muthukrishnan. Efficient algorithms for document retrieval problems. In David Eppstein,
editor, Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2002), pages 657–666. ACM/SIAM, 2002. URL: http://dl.acm.org/citation.
cfm?id=545381.545469.

23 Gonzalo Navarro. Indexing highly repetitive collections. In S. Arumugam and W. F.
Smyth, editors, Proceedings of the 23rd International Workshop on Combinatorial Al-
gorithms (IWOCA 2012), volume 7643 of LNCS, pages 274–279. Springer, 2012. doi:
10.1007/978-3-642-35926-2_29.

24 Gonzalo Navarro. Spaces, trees, and colors: The algorithmic landscape of document re-
trieval on sequences. ACM Comput. Surv., 46(4):52:1–52:47, 2014. doi:10.1145/2535933.

25 Gonzalo Navarro. Wavelet trees for all. J. Discrete Algorithms, 25:2–20, 2014. doi:10.
1016/j.jda.2013.07.004.

26 Gonzalo Navarro. Compact Data Structures: A practical approach. Cambridge University
Press, 2016. doi:10.1017/CBO9781316588284.

27 Daisuke Okanohara and Kunihiko Sadakane. Practical entropy-compressed rank/select
dictionary. In David Applegate and Gerth Stølting Brodal, editors, Proceedings of the
9th Workshop on Algorithm Engineering and Experiments (ALENEX 2007). SIAM, 2007.
doi:10.1137/1.9781611972870.6.

CPM 2017

http://dx.doi.org/10.1007/978-3-642-38905-4_12
http://dl.acm.org/citation.cfm?id=644108.644250
http://dx.doi.org/10.1109/DCC.2005.78
http://dx.doi.org/10.1109/FOCS.2009.19
http://dx.doi.org/10.1007/978-3-319-46049-9_4
http://dx.doi.org/10.1007/978-3-319-46049-9_4
http://dx.doi.org/10.1016/j.tcs.2015.05.027
http://dx.doi.org/10.1016/j.tcs.2015.12.032
http://dx.doi.org/10.1016/j.tcs.2012.02.006
http://dx.doi.org/10.1109/TIT.1976.1055501
http://dx.doi.org/10.1089/cmb.2009.0169
http://dx.doi.org/10.1089/cmb.2009.0169
http://dl.acm.org/citation.cfm?id=545381.545469
http://dl.acm.org/citation.cfm?id=545381.545469
http://dx.doi.org/10.1007/978-3-642-35926-2_29
http://dx.doi.org/10.1007/978-3-642-35926-2_29
http://dx.doi.org/10.1145/2535933
http://dx.doi.org/10.1016/j.jda.2013.07.004
http://dx.doi.org/10.1016/j.jda.2013.07.004
http://dx.doi.org/10.1017/CBO9781316588284
http://dx.doi.org/10.1137/1.9781611972870.6

4:12 Document Listing on Repetitive Collections

28 Wojciech Rytter. Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theor. Comput. Sci., 302(1-3):211–222, 2003. doi:10.1016/
S0304-3975(02)00777-6.

29 Kunihiko Sadakane. Succinct data structures for flexible text retrieval systems. J. Discrete
Algorithms, 5(1):12–22, 2007. doi:10.1016/j.jda.2006.03.011.

30 Hiroshi Sakamoto. A fully linear-time approximation algorithm for grammar-based com-
pression. J. Discrete Algorithms, 3(2-4):416–430, 2005. doi:10.1016/j.jda.2004.08.016.

31 Elad Verbin and Wei Yu. Data structure lower bounds on random access to grammar-
compressed strings. In Johannes Fischer and Peter Sanders, editors, Proceedings of the
24th Annual Symposium on Combinatorial Pattern Matching (CPM 2013), volume 7922 of
LNCS, pages 247–258. Springer, 2013. doi:10.1007/978-3-642-38905-4_24.

A Proof of Correctness

We prove that our new document listing algorithm is correct. We remind that the algorithm
proceeds as follows, to find the distinct elements in A[sp, ep]. It starts recursively with
[i, j] = [sp, ep] and remembers the documents that have already been reported, globally. To
process interval [i, j], it considers A[i], A[i+ 1], . . . until finding an already reported element
at A[d]. Then it finds the minimum C[k] in C[d, j]. If A[k] has been reported already, it
stops; otherwise it reports A[k] and proceeds recursively in A[d, k− 1] and A[k+ 1, j], in this
order. (The algorithm does this without noticing the cases where k = d, but this is correct,
as explained in Section 4.2).

I Lemma 2. The described algorithm reports the ndoc distinct elements in A[sp, ep] in
O(ndoc) steps.

Proof. We prove that the algorithm reports the leftmost occurrence in A[sp, ep] of each
distinct element. In particular, we prove by induction on i (and, upon ties, on j − i) that,
when run on any subrange [i, j] of [sp, ep], (1) every leftmost occurrence in A[sp, i − 1]
is already reported before processing [i, j] and (2) every leftmost occurrence in A[sp, j] is
reported after processing [i, j]. Invariant (1) holds for [i, j] = [sp, ep], and the recursive
procedure always produces intervals with nondecreasing values of i. Then the base case i = j

is trivial: the algorithm checks A[i] and reports it if it was not reported before. On a larger
interval [i, j], the algorithm first reports d− i occurrences of distinct elements in A[i, d− 1].
Since these were not reported before, by invariant (1) they must be leftmost occurrences in
[sp, ep], and thus after doing this the invariant (1) holds for any range starting at d.

Now, we compute the position k with minimum C[k] in C[d, j]. Note that A[k] is
a leftmost occurrence iff C[k] < sp. In this case, it has not been reported before and
thus it must be reported by the algorithm. The algorithm then recurses on A[d, k − 1],
reports A[k], and finally recurses on A[k + 1, j].2 Since those subintervals are inside [i, j],
we can apply induction. In the call on A[d, k − 1], the invariant (1) holds and thus by
induction we have that after the call the invariant (2) holds, so all the leftmost occurrences
in A[sp, k − 1] = A[sp, d− 1] ·A[d, k − 1] have been reported. After we report A[k] too, the
invariant (1) also holds for the call on A[k+ 1, j], so by induction all the leftmost occurrences
in A[sp, j] have been reported when the call returns.

In case C[k] ≥ sp, A[k] is not a leftmost occurrence in A[sp, ep], and moreover there
are no leftmost occurrences in A[d, j], so we can stop since all the leftmost occurrences in

2 Since A[k] does not appear in A[d, k−1], the algorithm also works if A[k] is reported before the recursive
calls, which makes it real-time.

http://dx.doi.org/10.1016/S0304-3975(02)00777-6
http://dx.doi.org/10.1016/S0304-3975(02)00777-6
http://dx.doi.org/10.1016/j.jda.2006.03.011
http://dx.doi.org/10.1016/j.jda.2004.08.016
http://dx.doi.org/10.1007/978-3-642-38905-4_24

G. Navarro 4:13

A[sp, j] = A[sp, d− 1] ·A[d, j] are already reported. Indeed, if the leftmost occurrence of A[k]
is in A[sp, d− 1], then we had already reported it by invariant (1), so the algorithm stops.

Then the algorithm is correct. As for the time, clearly the algorithm never reports the
same element twice. The sequential part reports d− i documents in time O(d− i+ 1). The
extra O(1) can be charged to the caller, as well as the O(1) cost of the subranges that do
not produce any result. Each calling procedure reports at least one element A[k], so it can
absorb those O(1) costs, for a total cost of O(ndoc). J

CPM 2017

Path Queries on Functions∗

Travis Gagie1, Meng He2, and Gonzalo Navarro3

1 CeBiB – Center for Biotechnology and Bioengineering, University of Chile,
Santiago, Chile; and
School of Computer Science and Telecommunications, Diego Portales
University, Santiago, Chile
travis.gagie@gmail.com

2 Faculty of Computer Science, Dalhousie University, Halifax, Canada
mhe@cs.dal.ca

3 CeBiB – Center for Biotechnology and Bioengineering and Department of
Computer Science, University of Chile, Chile
gnavarro@dcc.uchile.cl

Abstract
Let f : [1..n] → [1..n] be a function, and ` : [1..n] → [1..σ] indicate a label assigned to each
element of the domain. We design several compact data structures that answer various queries
on the labels of paths in f . For example, we can find the minimum label in fk(i) for a given
i and any k ≥ 0 in a given range [k1..k2], using n lgn + O(n) bits, or the minimum label in
f−k(i) for a given i and k > 0, using 2n lgn+O(n) bits, both in time O(lgn/ lg lgn). By using
n lg σ + o(n lg σ) further bits, we can also count, within the same time, the number of labels
within a range, and report each element with such labels in O(1 + lg σ/ lg lgn) additional time.
Several other possible queries are considered, such as top-t queries and τ -majorities.

1998 ACM Subject Classification E.1 Data Structures, E.4 Coding and Information Theory

Keywords and phrases succinct data structures, integer functions, range queries, trees and per-
mutations

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.5

1 Introduction

We focus on the representation of integer functions where the domain coincides with the
image, f : [1..n] → [1..n]. This kind of functions were studied by Munro et al. [10], who
focused on how to compute efficiently powers of functions. A positive power is fk(i), for
a given i ∈ [1..n] and k ≥ 0, whereas a negative power returns all the elements in the set
f−k(i) = {j, fk(j) = i}, for a given i ∈ [1..n] and k > 0. They show that f can be represented
within n lgn + O(n) bits so that any positive power fk(i) is computed in time O(1), and
any negative power f−k(i) is listed in time O(|f−k(i)|). The main idea of Munro et al. is
summarized in their metaphor “functions are just hairy permutations”, in the sense that the
directed graph G(V,E) where V = [1..n] and E = {(i, f(i)), i ∈ [1..n]} has the form of a set
of cycles, where a tree may sprout from each node in each cycle (permutations, instead, are
decomposed into just a set of cycles).

In this article we go beyond the goal of simply listing the elements of powers of permuta-
tions. Instead, we seek to compute summaries on the elements belonging to paths in G. We
consider three kinds of paths P :

∗ Supported with Basal Funds FB0001, Conicyt, Chile, and by Fondecyt grant 1-140796, Chile.

© Travis Gagie, Meng He, and Gonzalo Navarro;
licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 5; pp. 5:1–5:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2 Path Queries on Functions

1. A positive path is formed by the distinct elements in fk1..k2(i) = {fk(i), k ∈ [k1..k2]} for
a given i ∈ [1..n] and 0 ≤ k1 ≤ k2.

2. A negative path is formed by the distinct elements in f−k1..−k2(i) = {j ∈ f−k(i), k ∈
[k1..k2]} for a given i ∈ [1..n] and 0 < k1 ≤ k2.

3. A negative path point is a particular case of a negative path, formed by the elements in
f−k(i), for a given i ∈ [1..n] and k > 0.

In turn, we consider various kinds of summarizations. For maximum generality, let us
assume that the elements are assigned a label ` : [1..n]→ [1..σ], and we perform summary
queries on the labels. We consider the following queries on paths P : (1) Minimum or
maximum queries: Return min{`(j), j ∈ P} or max{`(j), j ∈ P}. (2) Selection queries:
Return the element of P with the rth smallest or largest label, including queries where the
value of r is relative to |P | such as median queries. (3) Top-t queries: Return a set M ⊆ P
formed by t elements with smallest or largest labels in P . (4) τ -Majority queries: Return
a set of labels whose relative frequency in P is over τ , for a given 0 ≤ τ < 1. (5) Range
queries: Let R = {j ∈ P, `(j) ∈ [`1, `2]}, given 1 ≤ `1 ≤ `2 ≤ σ. A counting query asks for
|R|, whereas a reporting query requires listing all the elements in R.

As an application of summary queries on paths, suppose we are simulating a system to
prepare for situations in which we need to react quickly, e.g., natural disasters or conflicts or
critical-equipment failures. We run our simulation through some finite set of states and want
to store the traces such that later, given a start state in that set and a number of time-steps,
we can quickly return statistics about the states the simulation passes through from that
state in that many steps. Of course, we could precompute all the possible answers, but this
could take space quadratic in the number of states; we could iterate through all the relevant
states at query time, but this could take linear time. If our simulation is deterministic, our
problem reduces to storing a function (from states to states, with each state labelled by
satellite data) compactly such that we can efficiently answer path queries on it.

The case of positive paths is the easiest. We build on the recent results of He et al. [8]
and Chan et al. [3], who give succinct (and also larger) structures for various path queries
on trees. Then a relatively simple unfolding and doubling of the cycles in the graph G

allows us to directly apply their results to positive paths, with a small extra time penalty
to map from the domain of f to the nodes of G. For example, we can solve minimum
or maximum queries using n lgn + O(n) bits and O(lgn/ lg lgn) time, range queries in
n lgn + n lg σ + O(n) + o(n lg σ) bits and O(lgn/ lg lgn) time per returned element, and
selection queries in n lgn+ 2n lg σ +O(n) + o(n lg σ) bits and O(lgn/ lg lgn) time.

For negative path points, we unroll the cycles in a way that all the desired nodes in any
f−k(i) belong to a contiguous range within a single level of the tree. Then an appropriate
layout of the data associated with the node allows us to reduce queries on negative path
points to array range queries. Since array ranges are particular cases of tree paths, all the
complexities obtained for positive paths are inherited by negative path points, but in addition
we can perform other queries that have good solutions on array ranges. For example, we
can solve top-t queries [14] using n lgn+ O(n lg T) bits, where T is the maximum t value
permitted, in time O(t+ lgn/ lg lgn). As another example, we can solve τ -majority queries
using n lgn+ (1 + ε)n lg σ bits, for any constant ε > 0, in time O(lgn/ lg lgn+ 1/τ) [1].

The hardest case is the general negative paths. Our queries in this case are mapped into
a three-dimensional space, and thus the structures require O(n lgn) space in order to offer
polylogarithmic times. Still, there is no previous result in this case, and thus it is left open
whether those queries can be solved efficiently within linear space.

T. Gagie, M. He, and G. Navarro 5:3

7

4

8

24

6

21

6

1

3

2

5

1

5

3

23

17

10

4

11

9

22

16

14

15

20

2
19

18

12

7

13

Figure 1 On the left, the representation of a permutation as a directed graph. On the right, the
permutation is extended into a function.

2 Background

2.1 Rank and select on bitvectors

A bitvector B[1..n] can be represented in n + o(n) bits so as to perform operations rank
and select in constant time [5]. Operation rankb(B, i), for b ∈ {0, 1} and i ∈ [1..n], is
the number of occurrences of bit b in B[1..i]. Operation selectb(B, j), with b ∈ {0, 1} and
j ∈ [1..rankb(B,n)], is the position of the jth occurrence of bit b in B.

2.2 Permutations and functions

Munro et al. [10] regard a permutation π on [1..n] as a directed graph G = (V,E), where
V = [1..n] and E = {(i, π(i)), i ∈ [1..n]}. This graph turns out to be a set of simple
cycles, which correspond to the cycle decomposition of π. Figure 1 (left) shows the graphical
representation of permutation π = (3 6 2 7 5 1 4), which is decomposed into the cycles (1 3 2 6),
(5), and (4 7). A function f : [1..n]→ [1..n] is then regarded as an extension of permutations,
where a general tree may sprout from each node of the cycles. Figure 1 (right) illustrates
the case of f(1..24) = (5, 1, 23, 11, 3, 24, 18, 8, 1, 4, 23, 18, 18, 22, 9, 22, 4, 3, 2, 2, 6, 9, 1, 6), which
extends the cycles of our example π.

From the results that are interesting to us, Munro et al. obtain two representations for
permutations π. The first uses lgn! + o(n) bits and computes any π(i) in time O(1) and any
π−1(i) in time O(lgn/ lg lgn). The second uses lgn! + O((n/t) lgn) bits, for any t ≤ lgn,
and computes any π(i) in time O(1) and any π−1(i) in time O(t). For functions, they can
compute any positive power fk(i), with k ≥ 0, or negative power f−k(i) = {j, fk(j) = i},
with k > 0, in time O(t) and O(t+ |f−k(i)|), respectively, using n lgn(1 + 1/t) bits of space,
for any t ≤ lgn.

2.3 Path queries on trees

He et al. [8] and Chan et al. [3] showed how to represent a tree where the nodes have labels
(or weights) in succinct space so as to support various queries on the paths of the tree. Let
us regard the trees as acyclic connected graphs G(V,E); then a path is a sequence of nodes

CPM 2017

5:4 Path Queries on Functions

v1, v2, . . . , vp, such that every (vk, vk+1) ∈ E, and it can be specified by giving v1 and vp.1
Given a general ordinal tree of n nodes, where each node v has a label `(v) ∈ [1..σ], they
support the following queries on paths P of the tree, among others:
1. Minimum/maximum queries, that is, find a node with the smallest or largest label in P ,

are solved in time α(m,n) with a structure using O(m) bits of space on top of the raw
data, for any m ≥ n, where α is the inverse of the Ackermann function [3].

2. Selection, that is, find the node holding the rth smallest label in P , is solved in time
O(lg σ/ lg lg σ), with a structure using nH(`) + o(n lg σ) + O(n) bits of space. Here
H(`) ≤ lg σ is the entropy of the distribution of the values `(v) over all the nodes v [8].

3. Range queries include counting, that is, how many nodes in P have labels in [`1..`2], and
reporting, that is, reporting all those nodes, given `1 and `2. Both are solved within
nH(`) + o(n lg σ) + O(n) bits of space, supporting counting in time O(1 + lg σ/ lg lgn)
and reporting of r results in time O((r + 1)(1 + lg σ/ lg lgn)) [8]. By using more space, it
is possible to match the same results of two-dimensional range queries [3].

Those structures include an O(n)-bit representation of the tree topology. There are several
alternatives (see [11, Ch. 8]) using 2n+ o(n) bits and supporting a wide set of navigation
operations on trees. For positive paths, it turns out that the representations for the path
queries used in this section [8, 3] support in constant time a few queries that will be useful:

Mapping from each tree node v to a unique identifier id(v) ∈ [1..n], and from an identifier
i ∈ [1..n] to the tree node, node(i).
Level ancestor queries, that is, given a node v and a distance d, anc(v, d) is the ancestor
of v at distance d (e.g., anc(v, 0) is v and anc(v, 1) is the parent of v).
The depth of a node, depth(v), where the depth of the root is 0.
The leftmost leaf of the subtree of a node, leftmost(v).
The lowest common ancestor of two nodes, lca(u, v).

For negative paths, instead, we will use the Fully-Functional (FF) representation [15],
which represents the tree using 2n parentheses: the tree is traversed in depth-first order,
writing an opening parenthesis when we reach a node and a closing one when we leave it.
Within 2n+ o(n) bits it supports in constant time all of the above operations, plus fwd(x, d)
and bwd(x, d), defined as follows. Let excess(y) be the number of opening minus closing
parentheses up to position y in the parentheses sequence. Then fwd(x, d) (resp. bwd(x, d))
finds the closest position y to the right (resp. to the left) of x where excess(y) = excess(x)+d.
For example, if there is an opening (resp. closing) parenthesis at x, its corresponding closing
(resp. opening) parenthesis is at close(x) = fwd(x,−1) (resp. open(x) = bwd(x, 0) + 1).

2.4 Range queries on arrays
A much better studied particular case of path queries is that of range queries on an array
A[1..n] of labels in [1..σ]. The following is a brief selection from a number of results reported
in the literature:
1. Minimum queries, where it is possible to find the position of a minimum in any range

A[i..j] in O(1) time with a structure that uses 2n+ o(n) bits and does not access A [6].
An analogous result holds for maximum queries.

2. Selection queries, where we can set at construction time a maximum value R of r that
can be used in queries, and then a structure using O(n lgR) bits, without accessing A,

1 They actually handle undirected graphs, supporting paths between any two nodes u and v. Those can
be easily decomposed into two directed paths, from u to lca(u, v) and from v to lca(u, v), where lca is
the lowest common ancestor operation.

T. Gagie, M. He, and G. Navarro 5:5

can answer queries in optimal time O(1 + lg r/ lg lgn) [14]. Note that we can set R = n

for maximum generality.
3. Top-t queries, that is, finding t elements in A[i..j] with largest labels, can be answered in

optimal time O(t) with a structure that uses O(n lg T) bits and does not access A, where
T is an upper bound on the values of t that can be queried [14].

4. τ -majority queries, that is, finding the labels whose relative frequencies in A[i..j] are
above τ . This can be solved in optimal time O(1/τ) and O(1 + ε)nH(`) + o(n) bits, for
any constant ε > 0; this representation contains A in compressed form. The space can be
reduced to nH(`)(1 + o(1)) + o(n) bits, and still obtain any time in ω(1/τ) [1].

5. Range counting can be performed in O(1 + lg σ/ lg lgn) time, and reporting of the r
results can be done in time O((r + 1)(1 + lg σ/ lg lgn)), using n lg σ + o(n lg σ) bits [2].

2.5 Range queries in two dimensions
When the ranges are two-dimensional and the points have weights, most of the queries require
linear and even super-linear space. Some examples in the literature follow.
1. The top-t elements in a two-dimensional range of an n×n grid with points having weights

in [1..σ] can be computed in time O((t+ lgn) lgε n), for any constant ε > 0, with a data
structure that uses O(n lgn) bits [12, Lem. 7.1]. With t = 1, this gives a structure for
range minima or maxima.

2. The rth largest element in a two-dimensional range can be obtained in time O(` lgn lg` σ)
with a structure using n lgn lg` σ +O(n lg σ) bits, for any ` ∈ [2, σ] [13].

3. The same structure of the previous point can be used to find the τ -majorities in a range
in time O((1/τ)` lgn lg` σ) [13].

4. Range counting queries in three dimensions (or in two dimensions and labels) can be
carried out in time O((lgn/ lg lgn)2) with a structure that uses O(n lg2 / lg lgn) bits of
space [9]. Within that space, each point can be reported in time O((lgn/ lg lgn)2) [9].
By raising the space to O(n lg2+ε n) bits, for any constant ε > 0, the time to report r
points is reduced to O(r + lg lgn) [4].

3 Positive Paths

A positive path of the form fk1..k2(i) can be handled by converting the graph G that
represents f (recall Figure 1 (right)) into a single tree. The transformation is as follows:
1. We cut each cycle v1 → v2 → . . . → vc → v1 at an arbitrary position, say removing

the edge vc → v1. The result is a directed tree rooted at vc (with arrows pointing from
children to parents) where the cycle edges form the leftmost path.

2. We add a new leaf per cycle, which will be the leftmost child of v1.
3. We add an artificial root, which will be the parent of the roots vc of all the cycles.
4. We represent the resulting tree using the data structures of Section 2.3, for whichever

query we want to answer. The representation must support in constant time the operations
id, node, anc, depth, leftmost, and lca.

5. We store a bitvector B[1..n + l + 1], where l ≤ n is the number of leaves added, or
equivalently the number of cycles in f , so that B[i] = 1 iff the tree node with identifier i
is one of the original nodes of G. We give rank and select support to B, so as to map the
tree node identifiers in [1..n+ l + 1] of the nodes that are in G to the interval [1..n].

6. We store a permutation π that goes from the mapped node identifiers in [1..n] to the
corresponding domain elements, using the representation of Section 2.2.

CPM 2017

5:6 Path Queries on Functions

1

9

22

16

14

15

20

2
19

5 6

21

24

8

3

1818

12

7

13

23

17

10

4

11

Figure 2 Our transformation to solve positive queries on functions using path queries on trees.

Figure 2 exemplifies our construction on the function of Figure 1. The permutation π is
displayed in the form of numbers associated with the nodes. Note how we have broken the
cycle 3→ 23→ 1→ 5→ 3, for example.

Consider now a positive path query fk1..k2(i). In the simplest case, we proceed as follows:
1. We compute v = node(select1(B, π−1(i))), the node where the path query will start.
2. We compute the path extremes vs = anc(v, k1) and ve = anc(v, k2).
3. We carry out the desired query on the tree path from vs to ve.
4. Any node u returned by the query is mapped back to a domain value in constant time

using π(rank1(B, id(u))).

In our example, we can compute a query on f1..3(4) = (11, 23, 1) with this technique.
However, consider f1..4(15). Our technique maps the path to the domain elements (9, 1, 5, ?),
whereas the correct domain elements to include were (9, 1, 5, 3). This is because the path
goes through the node vc where we have cut the cycle. In general, both k1 and k2 may be
several times larger than the cycle length.

To handle this situation, we use the cycle as follows. First, if k1 ≥ depth(v), then we set
vs ← anc(v1, (k1 − depth(v)) mod c), where v1 is the lowest node of the cycle and c is the
cycle length. Similarly, if k2 ≥ depth(v), we set ve ← anc(v1, (k2 − depth(v)) mod c). For
this we compute vc = anc(v, depth(v)− 1), then v1 = anc(leftmost(vc), 1) and c = depth(v1).

However, ve might not be an ancestor of vs after this transformation, that is, depth(ve) >
depth(vs) or anc(vs, depth(vs)− depth(ve)) 6= ve. This means that the positive path is cut
into two tree paths: one from vs to vc, and the other from v1 to ve. In our example, f1..4(15)
is cut into the paths (9, 1, 5) and (3).

This can be handled if the query is decomposable, that is, we can obtain the answer
from the results on the two paths. For example, range counting and reporting are obviously
decomposable, whereas range minima (if we do not store the labels, as in the solution of
Section 2.3) and selection queries are not decomposable.

A final issue is that, if k2 − k1 ≥ c, we may visit the same domain values several times
along the positive path. Since we want to consider each distinct element only once, we
can solve this problem by splitting the query into up to three paths: one inside the tree
where v belongs that sprouts from the cycle, and two on the cycle. We first compute
v′ = lca(v, v1), to find the cycle node where the tree of v sprouts. Then a first path to
consider, if k1 < d = depth(v) − depth(v′), is the one corresponding to [k1,min(k2, d − 1)].

T. Gagie, M. He, and G. Navarro 5:7

If k2 ≥ d, we then consider paths on the cycle, starting at node v′ and with the range
[k′1, k′2] = [max(0, k1 − d), k2 − d]. If k′2 − k′1 ≥ c− 1, we simply include the whole cycle, with
the path from v1 to vc. Otherwise, we proceed as before.

Algorithm 1, in Appendix A, gives the complete procedure. We have then Theorem 1,
where the extra time is the one spent to compute π−1(i) and the extra space is that of storing
π and B.

I Theorem 1. Let f : [1..n]→ [1..n] be a function and ` : [1..n]→ [1..σ] an assignment of
labels to the domain elements. Let there be a tree representation that performs in constant
time the operations id, node, anc, depth, leftmost, and lca, and in addition it solves a certain
decomposable path query on n-node trees with labels in [1..σ] in T (n, σ) time, using in total
S(n, σ) bits of space. Then, there exists a data structure using n lgn+O(n) + S(n, σ) bits
that answers the same query on the positive paths of f in time O(lgn/ lg lgn) + T (n, σ).
There exists another data structure using n lgn(1 + 1/t) +S(n, σ) bits that answers the query
in time O(t) + T (n, σ), for any t ≤ lgn.

By considering the range queries of He et al. [8] (Section 2.3), we derive Corollary 2.

I Corollary 2. Let f : [1..n]→ [1..n] be a function and ` : [1..n]→ [1..σ] an assignment of
labels to the domain elements. Then, there exists a data structure using n lgn+nH(`)+O(n)+
o(n lg σ) bits that answers counting queries on the positive paths of f in time O(lgn/ lg lgn),
and also reports those r results in time O(lgn/ lg lgn+r(1+ lg σ/ lg lgn)), where H(`) ≤ lg σ
is the entropy of the distribution of the values in `.

Non-decomposable path queries

When the query is not decomposable, we cannot allow splitting paths. Instead, we unroll the
cycles twice, as illustrated in Figure 3. More formally:
1. We cut each cycle v1 → v2 → . . .→ vc → v1 as before, removing the edge vc → v1 and

leaving a tree rooted at vc.
2. We add a leaf as the leftmost child of v1, as before.
3. We add an upward path per cycle, starting at each tree root vc, which repeats the cycle

with copies of the nodes. That is, we add edges vc → v′1 → v′2 → . . .→ v′c−1. Each of the
new nodes v′i is assigned the same label of vi.

4. We add an artificial root, which will be the parent of all the nodes v′c−1 (or of the node
v1 = vc for cycles of length 1, since in those cases no v′i nodes are added).

5. We represent the resulting tree using the data structures of Section 2.3, as before.
6. We store a bitvector B[1..n+ g], where g ≤ n+ 1 is the number of nodes added, so that

B[i] = 1 iff the tree node with identifier i is one of the original nodes of G. As before, we
give rank and select support to B.

7. We store a permutation π that goes from the mapped node identifiers in [1..n] to the
corresponding domain elements, as before.

We can now compute v′c−1 = anc(v, depth(v) − 1), v1 = anc(leftmost(v′c−1), 1), c =
(depth(v1) + 1)/2, and vc = anc(v1, c − 1). We also compute v′ = lca(v1, v) as before.
There are two cases. The first is that the path starts inside the subtree of v′, that is, if
k1 < d = depth(v)− depth(v′). In this case, we set vs = anc(v, k1). Then, if k2 − d < c, we
set ve = anc(v, k2); otherwise we set ve = anc(v′, c− 1). Finally, we run the tree path query
from vs to ve.

The other case is that the path lies completely on the cycle, that is, k1 ≥ d. We can first
exclude the condition k2 − k1 ≥ c, as in this case we simply query the path from v1 to vc.

CPM 2017

5:8 Path Queries on Functions

1

9

22

16

14

15

20

2
19

5

3

23

1

6

21

24

8

24

3

1818

12

7

13

23

17

10

4

11

Figure 3 Our transformation to solve non-decomposable positive queries on functions using path
queries on trees.

If k2 − k1 < c, we find vs inside the path that goes from v1 to vc: If depth(v)− k1 ≥ c, we
set vs = anc(v, k1); otherwise we set vs = anc(v1, ((c − 1) − (depth(v) − k1)) mod c). We
then do the same to compute ve with k2. Finally, if ve is deeper than vs, we recompute
ve = anc(ve, c). Now we can safely run the tree path query from vs to ve.

A final issue is how to map back the nodes u = v′i that the algorithm may return. Note
that we know the cycle where the query was performed, so we know c and v1. Thus, if
depth(u) < c, we know that u is a created node, and replace it with anc(v1, (c−1)−depth(u))
before mapping it to the domain of f . Algorithm 2, in Appendix A, gives the pseudocode.

Since we have up to n newly created nodes for which we have to store labels, we have
Theorem 3.

I Theorem 3. Let f : [1..n]→ [1..n] be a function and ` : [1..n]→ [1..σ] an assignment of
labels to the domain elements. Let there be a tree representation that performs in constant
time the operations id, node, anc, depth, leftmost, and lca, and it addition it solves a certain
non-decomposable path query on n-node trees with labels in [1..σ] in T (n, σ) time, using in total
S(n, σ) bits of space. Then, there exists a data structure using n lgn+O(n)+S(2n+1, σ) bits
that answers the same query on the positive paths of f in time O(lgn/ lg lgn) + T (2n+ 1, σ).
There exists another data structure using n lgn(1 + 1/t) + S(2n+ 1, σ) bits that answers the
query in time O(t) + T (2n+ 1, σ), for any t ≤ lgn.

By considering the minimum/maximum and the selection queries of He et al. [8] (Sec-
tion 2.3), we derive Corollaries 4 and 5.

I Corollary 4. Let f : [1..n]→ [1..n] be a function and ` : [1..n]→ [1..σ] an assignment of
labels to the domain elements. Then, there exists a data structure using n lgn+O(n) bits
that answers minimum/maximum queries on the positive paths of f in time O(lgn/ lg lgn).
There exists another structure using (1 + ε)n lgn+O(m) bits, for any constant ε > 0 and
any m ≥ n, that answers the queries in time α(m,n).

I Corollary 5. Let f : [1..n]→ [1..n] be a function and ` : [1..n]→ [1..σ] an assignment of
labels to the domain elements. Then, there exists a data structure using n lgn+2nH(`)+O(n)+
o(n lg σ) bits that answers selection queries on the positive paths of f in time O(lgn/ lg lgn),
where H(`) ≤ lg σ is the entropy of the distribution of the values in `.

T. Gagie, M. He, and G. Navarro 5:9

1

23

3

418

12 137 10 17

16 14

22 15 20 19

2

6 8

2124

9

5

11

5 18 4 16 14 1 7 12 13 10 17 23 9 2 3 11 22 2015 19 6 24 21 8

11 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 1L =

Figure 4 The same tree for decomposable positive queries (without the extra root), showing how
the levels are deployed to aid in negative path points.

4 Negative Path Points

Figure 4 shows the same tree of Figure 2, now showing clearly the resulting levels of the
tree, and without the extra root. The result is a forest, which we will store with the
FF representation [15]. The figure illustrates an important point: all the nodes in f−k(i)
correspond to the descendants at distance k of the node corresponding to i. For example
f−2(1) = {3, 11, 22, 15, 20, 19}. These form a range if we deploy the nodes in levelwise order.

Just as for positive paths, we will store a bitvector B indicating which nodes are originally
in G (i.e., not the added leaves) and a permutation π on [1..n] mapping from the identifiers of
those nodes in G (after being mapped to [1..n] using B) to domain elements. The information
on the nodes (such as the labels) will be stored in levelwise order, with a permutation ρ

on [1..n] mapping from the levelwise deployment to the tree identifier of the node. Let
v = node(select1(B, π−1(i))) be the node corresponding to domain element i, and assume v is
not on the cycle of its component in G. Then the elements of f−k(i) are the descendants of v at
distance k. The leftmost such descendant is found with v1 = fwd(v, k), whereas the rightmost
one is v2 = open(bwd(close(v), k + 1) + 1). Then the range of values where the information
on the elements of f−k(i) is stored is [ρ−1(rank1(B, id(v1))), ρ−1(rank1(B, id(v2)))]. Note
that any element at position j in the levelwise deployment can be converted into a domain
element with π(ρ(j)). Figure 4 shows how f−2(9) is mapped to the range containing (16, 14),
which is within the level containing (18, 4, 16, 14) (disregard for now bitvector L and the way
levels are interlaced in the array).

When v is on a cycle (of length c), then we can go to its predecessor in the cycle (taking
the arrow backwards) and collect the descendants at distance k− 1 in its sprouting tree, then
to its predecessor and collect its descendants at distance k − 2, and so on. Given the way we
have converted G into a tree, all these nodes are indeed the descendants of v at distance k;
consider again f−2(1) in Figure 4. However, the situation can be more complicated because,
if the trees sprouting from the cycle are tall enough, then we could run over the whole cycle
in backward direction and return again to v, now looking for descendants at distance k − c.
Therefore, not only we have to include the descendants of v at distance k, but also all the
elements in the whole tree where v belongs at depths depth(v) + k − c, depth(v) + k − 2c,
and so on.

CPM 2017

5:10 Path Queries on Functions

To handle this case, we will store the levelwise information on the nodes of each tree of
the forest in an interlaced order of the levels: levels 1, c+ 1, 2c+ 1, and so on, then levels 2,
c+ 2, 2c+ 2, and so on, until levels c, 2c, 3c, and so on. A bitvector L[1..n] with rank and
select support will mark, in the levelwise ordered domain, the first node at a level of the form
l + tc in each tree, for all 1 ≤ l ≤ c. Figure 4 shows the levelwise deployment. The nodes
of the first tree are listed as 5, 18, 4, 16, 14 for l = 1, then 1, 7, 12, 13, 10, 17 for l = 2, then
23, 9, 2 for l = 3, and finally 3, 11, 22, 15, 20, 19 for l = 4. The following two trees are then
listed as 6, 24, 21 and 8. The bitvector L marks the beginnings of the change in tree or in l.

With this arrangement, we only have to find as before p2 = ρ−1(rank1(B, id(v2))), the
second endpoint of the range, and then p1 = select1(L, rank1(L, p2)), the beginning of the
nodes of the tree of v2 with its same l value. Figure 4 shows how v2 is found for f−2(23),
and then the range includes up to the beginning of l = 1 in its tree, to contain (5, 18, 4).

The final issue is how to determine if v is or not on the cycle. We can do this by computing,
similarly to the positive paths, vc = anc(v, depth(v)), v0 = leftmost(vc) as the leftmost leaf,2
and then v is in the cycle iff v0 descends from v, that is, v ≤ v0 ≤ close(v).

Finally, we can build on the levelwise deployment of the node data any array range query
data structure we desire. Algorithm 3, in Appendix A, shows the pseudocode.

The time per query is that of the array range query, plus the time needed to compute
π−1 and ρ−1 a constant number of times; answers are converted back to domain values by
computing ρ and π in constant time. Apart from the array range query structures, we are
storing two permutations and some bitvectors. We then have Theorem 6.

I Theorem 6. Let f : [1..n]→ [1..n] be a function and ` : [1..n]→ [1..σ] an assignment of
labels to the domain elements. Let there be an array range query data structure that, on
an array A[1..n] of values in [1..σ], answers queries in time T (n, σ) using S(n, σ) bits of
space. Then, there exists a data structure using 2n lgn+O(n) +S(n, σ) bits that answers the
same query on the negative path points of f in time O(lgn/ lg lgn) + T (n, σ). There exists
another data structure using 2n lgn(1 + 1/t) + S(n, σ) bits that answers the query in time
O(t) + T (n, σ), for any t ≤ lgn.

By considering the various array range queries of Section 2.4, we can derive Corollaries 7
to 10, among others.

I Corollary 7. Let f : [1..n] → [1..n] be a function and ` : [1..n] → [1..σ] an assignment
of labels to the domain elements. Then, there exists a data structure using 2n lgn + O(n)
bits that finds the elements of f−k(i) with the minimum and the maximum labels, for any
i ∈ [1..n] and k > 0, in time O(lgn/ lg lgn). There exists another data structure using
2n lgn(1 + 1/t) +O(n) bits that answers the query in time O(t), for any t ≤ lgn.

I Corollary 8. Let f : [1..n]→ [1..n] be a function and ` : [1..n]→ [1..σ] an assignment of
labels to the domain elements. Then, there exists a data structure using 2n lgn+O(n lgR)
bits that finds the element with the rth largest label in f−k(i), for any i ∈ [1..n], k > 0, and
1 ≤ r ≤ R, in time O(lgn/ lg lgn). It can also list the r elements with the largest or smallest
values in f−k(i) in time O(r + lgn/ lg lgn).

I Corollary 9. Let f : [1..n] → [1..n] be a function and ` : [1..n] → [1..σ] an assignment
of labels to the domain elements. Then, there exists a data structure using 2n lgn + (1 +

2 This operation can be computed in this representation with select)(rank)(vc) + 1) − 1 on the sequence
of parentheses, which has rank and select support.

T. Gagie, M. He, and G. Navarro 5:11

ε)nH(`) + O(n) bits, where ε > 0 is any constant and H(`) is the entropy distribution of
the labels, that finds the τ -majorities in the labels of f−k(i), for any i ∈ [1..n], k > 0, and
0 < τ < 1, in time O(1/τ + lgn/ lg lgn).

I Corollary 10. Let f : [1..n]→ [1..n] be a function and ` : [1..n]→ [1..σ] an assignment of
labels to the domain elements. Then, there exists a data structure using 2n lgn+ nH(`) +
o(n lg σ) + O(n) bits, where H(`) is the entropy distribution of the labels, that counts the
number of labels of f−k(i) within a range, for any i ∈ [1..n], k > 0, and range of labels, in time
O(lgn/ lg lgn). It can then list those r elements in time O(lgn/ lg lgn+ r(1 + lg σ/ lg lgn)).

5 Negative Paths

For ranges of negative values of k, f−[k1..k2](i), our solution maps the queries into two-
dimensional ranges, which require more space and/or time than previous ones. We preserve
the same tree as in Section 4, but this time the mapping from nodes v is done to pairs
(preorder(v), depth(v)). Here preorder(v) = id(v) is the preorder of the node in the FF
representation. Therefore, once we have mapped the domain element i to a tree node v, and
determined that v is not on the cycle, we have that the query encompasses the two dimensional
range [preorder(v) .. preorder(v) + subtreesize(v) − 1] × [depth(v) + k1 .. depth(v) + k2]. All
these operations are supported in constant time with the FF representation [15]. We now
perform the desired query on a structure that handles two-dimensional points (possibly with
labels). The returned points (p, d) are then mapped to the nodes with preorder p, node(p),
which is also supported in constant time.

For the case where v is on the cycle, we will use another arrangement. Note that we
want to consider, in addition to the previous range, all the nodes in the tree of v with
a depth that is between d1 = depth(v) + k1 and d2 = depth(v) + k2, modulo c, but not
reaching the range [d1..d2], as that one is already handled. To this end, we will map the
nodes v to pairs (depth(v) div c, depth(v) mod c), and will query for the points in the range
[0..d2 div c − 1] × [d1 mod c .. d2 mod c]. If, however, d1 mod c > d2 mod c, then we split
the second range into [d1 mod c .. c− 1] and [0 .. d2 mod c].

An exception occurs if k2−k1 ≥ c, since then the two types of ranges overlap and we could
count points twice. In this case we take, in this second arrangement, the range [0..d2 div c−
1] × [0..c − 1], and reduce the range within the subtree of v to [preorder(v)..preorder(v) +
subtreesize(v)− 1]× [(d2 div c) · c .. d2].

Note that in this case we have to complete the query from the results of up to 3 two-
dimensional ranges, so the query must be decomposable. We then obtain Theorem 11.

I Theorem 11. Let f : [1..n]→ [1..n] be a function and ` : [1..n]→ [1..σ] an assignment of
labels to the domain elements. Let there be a two-dimensional range query data structure that,
on an n× n grid with values in [1..σ], answers decomposable queries in T (n, σ) time using
in S(n, σ) bits of space. Then, there exists a data structure using 2n lgn+O(n) + S(n, σ)
bits that answers the same query on the negative paths of f in time O(lgn/ lg lgn) + T (n, σ).
There exists another data structure using 2n lgn(1 + 1/t) + S(n, σ) bits that answers the
query in time O(t) + T (n, σ), for any t ≤ lgn.

We can combine the theorem with various results on querying two-dimensional grids of
points with labels (or weights); recall Section 2.5. We obtain Corollaries 12 and 13.

I Corollary 12. Let f : [1..n] → [1..n] be a function and ` : [1..n] → [1..σ] an assignment
of labels to the domain elements. Then, there exists a data structure using O(n lgn) bits

CPM 2017

5:12 Path Queries on Functions

that answers minima and maxima queries on the negative paths of f in time O(lg1+ε n), and
top-t queries in time O((t+ lgn) lgε n), for any constant ε > 0.

I Corollary 13. Let f : [1..n]→ [1..n] be a function and ` : [1..n]→ [1..σ] an assignment of
labels to the domain elements. Then, there exists a data structure using O(n lg2 n/ lg lgn)
bits that answers range counting queries on the negative paths of f in time O((lgn/ lg lgn)2),
and reports the r values in time O((r + 1)(lgn/ lg lgn)2). By using slightly more space,
O(n lg2+ε n) bits for any constant ε > 0, the time to report is reduced to O(r + lg lgn).

6 Conclusions

Munro et al. [10] studied how to represent an integer function f : [1..n] → [1..n] so as to
efficiently find all the elements of positive and negative powers of f . We have now considered,
for the first time, queries on ranges of positive or negative powers of f . For positive powers,
we essentially retain optimal storage space and almost match the best results of path queries
on trees [8, 3]. Negative powers lead to a set of domain values. For a single negative power,
we basically double the space while almost retaining the performance of the corresponding
array range query. For a range of negative powers, we resort to three-dimensional range
queries, where time and space are essentially multiplied by O(lgn).

Our results consider queries on arbitrary labels on [1, σ] attached to the domain elements.
Appendix B gives a few improved results for the simpler case where the queries are run over
the domain elements themselves.

This is the first study on this problem, and it is not clear whether the results can be
improved, in particular it is not clear if queries on ranges of negative powers of f must resort
to three-dimensional range queries.

References

1 Djamal Belazzougui, Travis Gagie, J. Ian Munro, Gonzalo Navarro, and Yakov Nekrich.
Range majorities and minorities in arrays, 2016. arXiv:1606.04495.

2 Prosenjit Bose, Meng He, Anil Maheshwari, and Pat Morin. Succinct orthogonal range
search structures on a grid with applications to text indexing. In Frank K. H. A. Dehne,
Marina L. Gavrilova, Jörg-Rüdiger Sack, and Csaba D. Tóth, editors, Proceedings of the
11th International Symposium on Algorithms and Data Structures (WADS 2009), volume
5664 of LNCS, pages 98–109. Springer, 2009. doi:10.1007/978-3-642-03367-4_9.

3 Timothy M. Chan, Meng He, J. Ian Munro, and Gelin Zhou. Succinct indices for path
minimum, with applications to path reporting. In Andreas S. Schulz and Dorothea Wagner,
editors, Proceedings of the 22nd Annual European Symposium on Algorithms (ESA 2014),
volume 8737 of LNCS, pages 247–259. Springer, 2014. doi:10.1007/978-3-662-44777-2_
21.

4 Timothy M. Chan, Kasper Green Larsen, and Mihai Pǎtraşcu. Orthogonal range searching
on the RAM, revisited. In Ferran Hurtado and Marc J. van Kreveld, editors, Proceedings
of the 27th ACM Symposium on Computational Geometry (SoCG 2011), pages 1–10. ACM,
2011. doi:10.1145/1998196.1998198.

5 David R. Clark. Compact PAT Trees. PhD thesis, University of Waterloo, Canada, 1996.
URL: http://hdl.handle.net/10012/64.

6 Johannes Fischer and Volker Heun. Space-efficient preprocessing schemes for range min-
imum queries on static arrays. SIAM J. Comput., 40(2):465–492, 2011. doi:10.1137/
090779759.

http://arxiv.org/abs/1606.04495
http://dx.doi.org/10.1007/978-3-642-03367-4_9
http://dx.doi.org/10.1007/978-3-662-44777-2_21
http://dx.doi.org/10.1007/978-3-662-44777-2_21
http://dx.doi.org/10.1145/1998196.1998198
http://hdl.handle.net/10012/64
http://dx.doi.org/10.1137/090779759
http://dx.doi.org/10.1137/090779759

T. Gagie, M. He, and G. Navarro 5:13

7 Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-compressed
text indexes. In Martin Farach-Colton, editor, Proceedings of the 14th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2003), pages 841–850. ACM/SIAM, 2003. URL:
http://dl.acm.org/citation.cfm?id=644108.644250.

8 Meng He, J. Ian Munro, and Gelin Zhou. Succinct data structures for path queries. In Leah
Epstein and Paolo Ferragina, editors, Proceedings of the 20th Annual European Symposium
on Algorithms (ESA 2012), volume 7501 of LNCS, pages 575–586. Springer, 2012. doi:
10.1007/978-3-642-33090-2_50.

9 Joseph JáJá, Christian Worm Mortensen, and Qingmin Shi. Space-efficient and fast al-
gorithms for multidimensional dominance reporting and counting. In Rudolf Fleischer and
Gerhard Trippen, editors, Proceedings of the 15th International Symposium on Algorithms
and Computation (ISAAC 2004), volume 3341 of LNCS, pages 558–568. Springer, 2004.
doi:10.1007/978-3-540-30551-4_49.

10 J. Ian Munro, Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct
representations of permutations and functions. Theor. Comput. Sci., 438:74–88, 2012.
doi:10.1016/j.tcs.2012.03.005.

11 Gonzalo Navarro. Compact Data Structures: A practical approach. Cambridge University
Press, 2016. doi:10.1017/CBO9781316588284.

12 Gonzalo Navarro and Yakov Nekrich. Top-k document retrieval in optimal time and linear
space. In Yuval Rabani, editor, Proceedings of the 23rd Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2012), pages 1066–1077. SIAM, 2012. doi:10.1137/1.
9781611973099.84.

13 Gonzalo Navarro, Yakov Nekrich, and Luís M. S. Russo. Space-efficient data-analysis queries
on grids. Theor. Comput. Sci., 482:60–72, 2013. doi:10.1016/j.tcs.2012.11.031.

14 Gonzalo Navarro, Rajeev Raman, and Srinivasa Rao Satti. Asymptotically optimal encod-
ings for range selection. In Venkatesh Raman and S. P. Suresh, editors, Proceedings of
the 34th International Conference on Foundation of Software Technology and Theoretical
Computer Science (FSTTCS 2014), volume 29 of LIPIcs, pages 291–301. Schloss Dagstuhl
– Leibniz-Zentrum fuer Informatik, 2014. doi:10.4230/LIPIcs.FSTTCS.2014.291.

15 Gonzalo Navarro and Kunihiko Sadakane. Fully functional static and dynamic succinct
trees. ACM Trans. Algorithms, 10(3):16:1–16:39, 2014. doi:10.1145/2601073.

A Pseudocodes

We give detailed pseudocodes for the main procedures described in the paper. In Algorithm 1,
it is possible to reduce the case of three paths to two, since those of lines 9 and 23 can be
concatenated into one, but we opt for simplicity.

B Functions Without Labels

In the simple case where the function has no assigned labels, or said another way, we may
assume `(i) = i for the queries, we can do better than Corollaries 2 and 5. Both path query
structures [8] store the sequence of labels (now domain elements) in node identifier order, and
represent it with a wavelet tree [7]. This structure allows us, with a query similar to select,
to find the occurrence of element i, thus effectively computing π−1(i), in time O(lgn/ lg lgn).
Instead of returning the node identifier, they may return the label, that is, the domain
element, by accessing the wavelet tree in the same time. Therefore, they do not require
the permutation to map from elements to nodes. In the case of Corollary 5, where we have
duplicated nodes v′i, we may use the select-like operation to find the two places where an
element is mentioned in the labels, and choose the one with largest depth to avoid starting

CPM 2017

http://dl.acm.org/citation.cfm?id=644108.644250
http://dx.doi.org/10.1007/978-3-642-33090-2_50
http://dx.doi.org/10.1007/978-3-642-33090-2_50
http://dx.doi.org/10.1007/978-3-540-30551-4_49
http://dx.doi.org/10.1016/j.tcs.2012.03.005
http://dx.doi.org/10.1017/CBO9781316588284
http://dx.doi.org/10.1137/1.9781611973099.84
http://dx.doi.org/10.1137/1.9781611973099.84
http://dx.doi.org/10.1016/j.tcs.2012.11.031
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.291
http://dx.doi.org/10.1145/2601073

5:14 Path Queries on Functions

Algorithm 1: Computing decomposable queries on positive paths.
1 Proc Positive(i, k1, k2)
2 v ← node(select1(B, π−1(i)))
3 vc ← anc(v, depth(v)− 1)
4 v1 ← anc(leftmost(vc), 1)
5 c← depth(v1)
6 v′ ← lca(v1, v)
7 d← depth(v)− depth(v′)
8 if k1 < d then
9 Compute path query from anc(v, k1) to anc(v,min(k2, d− 1))

10 if k2 ≥ d then
11 k′1 ← max(0, k1 − d)
12 k′2 ← k2 − d
13 if k′2 − k′1 ≥ c− 1 then
14 Compute path query from v1 to vc
15 else
16 if k′1 < depth(v′) then vs ← anc(v′, k′1)
17 else vs ← anc(v1, (k′1 − depth(v′)) mod c)
18 if k′2 < depth(v′) then ve ← anc(v′, k′2)
19 else ve ← anc(v1, (k′2 − depth(v′)) mod c)
20 if depth(vs) ≥ depth(ve) and anc(vs, depth(vs)− depth(ve)) = ve then
21 Compute path query from vs to ve
22 else
23 Compute path query from vs to vc
24 Compute path query from v1 to ve

25 Return the composition of all the path queries performed; resulting nodes u are
converted into domain values π(rank1(B, id(u)))

the query from a node v′i. Since the wavelet tree has each distinct element mentioned once
or twice, its entropy is essentially maximal, and we have the following results for this case.

I Corollary 14. Let f : [1..n] → [1..n] be a function. Then there exists a data structure
using n lgn+ o(n lgn) bits that answers counting queries on the positive paths of f in time
O(lgn/ lg lgn), and also reports those r results in time O((r + 1) lgn/ lg lgn).

I Corollary 15. Let f : [1..n] → [1..n] be a function. Then, there exists a data structure
using 2n lgn+ o(n lgn) bits that answers selection queries on the positive paths of f in time
O(lgn/ lg lgn).

We can also simplify Corollary 10, where the structures used perform the equivalent to
select queries on the sequence of labels. Here, we can find where the domain value i appears
in the sequence, and then map it to the tree using ρ and B. Then there is no need for
permutation π, and we can subtract n lgn bits to the space in this corollary.3

3 The same happens in Corollary 9, but the query makes no sense if the labels are all unique.

T. Gagie, M. He, and G. Navarro 5:15

Algorithm 2: Computing non-decomposable queries on positive paths.
1 Proc Positive(i, k1, k2)
2 v ← node(select1(B, π−1(i)))
3 v′c−1 ← anc(v, depth(v)− 1)
4 v1 ← anc(leftmost(v′c−1), 1)
5 c← (depth(v1) + 1)/2
6 v′ ← lca(v1, v)
7 d← depth(v)− depth(v′)
8 if k1 < d then
9 vs ← anc(v, k1)

10 if k2 − d < c then ve ← anc(v, k2)
11 else ve ← anc(v′, c− 1)
12 else if k2 − k1 ≥ c then
13 vs ← v1
14 ve ← vc

15 else
16 if depth(v)− k1 ≥ c then vs ← anc(v, k1)
17 else vs ← anc(v1, ((c− 1)− (depth(v)− k1)) mod c)
18 if depth(v)− k2 ≥ c then ve ← anc(v, k2)
19 else ve ← anc(v1, ((c− 1)− (depth(v)− k2)) mod c)
20 if depth(vs) < depth(ve) then
21 ve ← anc(ve, c)

22 Compute path query from vs to ve
23 Return the answers; resulting nodes u are converted into domain values

π(rank1(B, id(u))), but if depth(u) < c we first set u← anc(v1, (c− 1)− depth(u))

Algorithm 3: Computing queries on negative path points.
1 Proc Negative(i, k)
2 v ← node(select1(B, π−1(i)))
3 vc ← anc(v, depth(v))
4 v0 ← leftmost(vc)
5 v2 = open(bwd(close(v), k + 1) + 1)
6 p2 = ρ−1(rank1(B, id(v2)))
7 if v ≤ v0 ≤ close(v) then
8 p1 ← select1(L, rank1(L, p2))
9 else

10 v1 ← fwd(v, k)
11 p1 ← ρ−1(rank1(B, id(v1)))
12 Compute array range query on [p1, p2]
13 Return the answers; resulting positions j are converted into domain values π(ρ(j)).

I Corollary 16. Let f : [1..n] → [1..n] be a function. Then, there exists a data structure
using 2n lgn+ o(n lgn) bits, that counts the number of elements of f−k(i) within a range, for
any i ∈ [1..n], k > 0, and range of elements, in time O(lgn/ lg lgn). It can then list those r
elements in time O((r + 1) lgn/ lg lgn).

CPM 2017

Deterministic Indexing for Packed Strings
Philip Bille∗1, Inge Li Gørtz†2, and Frederik Rye Skjoldjensen‡3

1 Technical University of Denmark, DTU Compute, Lyngby, Denmark
phbi@dtu.dk

2 Technical University of Denmark, DTU Compute, Lyngby, Denmark
inge@dtu.dk

3 Technical University of Denmark, DTU Compute, Lyngby, Denmark
fskj@dtu.dk

Abstract
Given a string S of length n, the classic string indexing problem is to preprocess S into a compact
data structure that supports efficient subsequent pattern queries. In the deterministic variant the
goal is to solve the string indexing problem without any randomization (at preprocessing time or
query time). In the packed variant the strings are stored with several character in a single word,
giving us the opportunity to read multiple characters simultaneously. Our main result is a new
string index in the deterministic and packed setting. Given a packed string S of length n over
an alphabet σ, we show how to preprocess S in O(n) (deterministic) time and space O(n) such
that given a packed pattern string of length m we can support queries in (deterministic) time
O (m/α+ logm+ log log σ) , where α = w/ log σ is the number of characters packed in a word of
size w = Θ(logn). Our query time is always at least as good as the previous best known bounds
and whenever several characters are packed in a word, i.e., log σ � w, the query times are faster.

1998 ACM Subject Classification E.1 Data Structures, F.2.2 Nonnumerical Algorithms and
Problems, H.3.1 Content Analysis and Indexing

Keywords and phrases suffix tree, suffix array, deterministic algorithm, word packing

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.6

1 Introduction

Let S be a string of length n over an alphabet of size σ. The string indexing problem is to
preprocess S into a compact data structure that supports efficient subsequent pattern queries.
Typical queries include existential queries (decide if the pattern occurs in S), reporting
queries (return all positions where the pattern occurs), and counting queries (returning the
number of occurrences of the pattern).

The string indexing problem is a classic well-studied problem in combinatorial pattern
matching and the standard textbook solutions are the suffix tree and the suffix array (see
e.g., [9, 10, 11, 14]). A straightforward implementation of suffix trees leads to an O(n)
preprocessing time and space solution that given a pattern of length m supports existential
and counting queries in time O(m log σ) and reporting queries in time O(m log σ + occ),
where occ is the number of occurrences of the pattern. The suffix array implemented with
additional arrays storing longest common prefixes leads to a solution that also uses O(n)
preprocessing time and space while supporting existential and counting queries in time

∗ Supported by the Danish Research Council (DFF – 4005-00267, DFF – 1323-00178).
† Supported by the Danish Research Council (DFF – 4005-00267, DFF – 1323-00178).
‡ Supported by the Danish Research Council (DFF – 1323-00178).

© Philip Bille, Inge Li Gørtz, and Frederik Rye Skjoldjensen;
licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 6; pp. 6:1–6:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2 Deterministic Indexing for Packed Strings

O(m+ logn) and reporting queries in time O(m+ logn+ occ). If we instead combine suffix
trees with perfect hashing [7] we obtain O(n) expected preprocessing time and O(n) space,
while supporting existential and counting queries in time O(m) and reporting queries in time
O(m+ occ). The above bounds hold assuming that the alphabet size σ is polynomial in n.
If this is not the case, additional time for sorting the alphabet is required [5]. For simplicity,
we adopt this convention in all of the bounds throughout the paper.

In the deterministic variant the goal is to solve the string indexing problem without any
randomization. In particular, we cannot combine suffix trees with perfect hashing to obtain
O(m) or O(m + occ) query times. In this setting Cole et al. [4] showed how to combine
the suffix tree and suffix array into the suffix tray that uses O(n) preprocessing time and
space and supports existential and counting queries in O(m + log σ) time and reporting
queries in O(m+ log σ + occ) time. Recently, the query times were improved by Fischer and
Gawrychowski [6] to O(m+ log log σ) and O(m+ log log σ + occ), respectively.

In the packed variant the strings are given in a packed representation, with several
characters in a single word [3, 2, 1, 13]. For instance, DNA-sequences have an alphabet
of size 4 and are therefore typically stored using 2 bits per character with 32 characters
in a 64-bit word. On packed strings we can read multiple characters in constant time
and hence potentially do better than the immediate Ω(m) or Ω(m+ occ) lower bound for
existential/counting queries and reporting queries, respectively. In this setting Takagi et
al. [13] recently introduced the packed compact trie that stores packed strings succinctly and
also supports dynamic insertion and deletions of strings. In a static and deterministic setting
their data structure implies a linear space and superlinear time preprocessing solution that
uses O(mα log logn) and O(mα log logn+ occ) query time, respectively.

In this paper, we consider the string indexing problem in the deterministic and packed
setting simultaneously, and present a solution that improves all of the above bounds.

1.1 Setup and result
We assume a standard unit-cost word RAM with word length w = Θ(logn), and a standard
instruction set including arithmetic operations, bitwise boolean operations, and shifts. All
strings in this paper are over an alphabet Σ of size σ. The packed representation of a string A
is obtained by storing α = w/ log σ characters per word thus representing A in O(|A| log σ/w)
words. If A is given in the packed representation we simply say that A is a packed string.

Throughout the paper let S be a string of length n. Our goal is to preprocess S into a
compact data structure that given a packed pattern string P supports the following queries.

Count(P): Return the number of occurrence of P in S.
Locate(P): Report all occurrences of P in S.
Predecessor(P): Returns the predecessor of P in S, i.e., the lexicographically largest suffix
in S that is smaller than P .

We show the following main result.

I Theorem 1. Let S be a string of length n over an alphabet of size σ and let α =
w/ log σ be the number of characters packed in a word. Given S we can build an index
in O(n) deterministic time and space such that given a packed pattern string of length m
we can support Count and Predecessor in time O(mα + logm+ log log σ) and Locate in time
O(mα + logm+ log log σ + occ) time.

Compared to the result of Fischer and Gawrychowski [6], Thm 1 is always at least as good
and whenever several characters are packed in a word, i.e., log σ � w, the query times are
faster. Compared to the result of Takagi et al. [13], our query time is a factor log logn faster.

P. Bille, I. L. Gørtz, and F. R. Skjoldjensen 6:3

Technically, our results are obtained by a novel combination of previous techniques. Our
general tree decomposition closely follows Fischer and Gawrychowski [6], but different ideas
are needed to handle packed strings efficiently. We also show how to extend the classic suffix
array search algorithm to handle packed strings efficiently.

2 Preliminaries

2.1 Deterministic hashing and predecessor
We use the following results on deterministic hashing and predecessor data structures.

I Lemma 2 (Ružić [12, Theorem 3]). A static linear space dictionary on a set of k keys can
be deterministically constructed in time O(k(log log k)2), so that lookups to the dictionary
take time O(1).

Fischer and Gawrychowski [6] use the same result for hashing characters. In our context we
will apply it for hashing words of packed characters.

I Lemma 3 (Fischer and Gawrychowski [6, Proposition 7]). A static linear space predecessor
data structure on a set of k keys from a universe of size u can be constructed deterministically
in O(k) time and O(k) space such that predecessor queries can be answered deterministically
in time O(log log u).

2.2 Suffix tree
The suffix tree TS of S is the compacted trie over the n suffixes from the string S. We assume
that the special character $ 6∈ Σ is appended to every suffix of S such that each string is
ending in a leaf of the tree. The edges are sorted lexicographically from left to right. We say
that a leaf represents the suffix that is spelled out by concatenating the labels of the edges on
the path from the root to the leaf. For a node v in TS , we say that the subtree of v is the tree
induced by v and all proper descendants of v. We distinguish between implicit and explicit
nodes: implicit nodes are conceptual and refer to the original non branching nodes from
the trie without compacted paths. Explicit nodes are the branching nodes in the original
trie. When we refer to nodes that are not specified as either explicit or implicit, then we
are always referring to explicit nodes. The lexicographic ordering of the suffixes represented
by the leaves corresponds to the ordering of the leaves from left to right in the compacted
trie. For navigating from node to child, each node has a predecessor data structure over the
first characters of every edge going to a child. With the predecessor data structure from
Lemma 3 navigation from node to child takes O(log log σ) time and both the space and the
construction time of the predecessor data structure is linear in the number of children.

2.3 Suffix array
Let S1, S2, . . . , Sn be the n suffixes of S from left to right. The suffix array SAS of S gives the
lexicographic ordering of the suffixes such that SSAS [i] refers to the ith lexicographically largest
suffix of S. This means that for every 1 < i ≤ n we have that SSAS [i−1] is lexicographically
smaller than SSAS [i]. For simplicity we let SAS [i] refer to the suffix SSAS [i] and we say that
SAS [i] represents the suffix SSAS [i]. Every suffix from S with pattern P as a prefix will be
located in a consecutive range of SAS . This range corresponds to the range of consecutive
leaves in the subtree spanned by the explicit or implicit node that represents P in TS . We
can find the range of SAS where P prefixes every suffix by performing binary search twice

CPM 2017

6:4 Deterministic Indexing for Packed Strings

over SAS . A naïve binary search takes O(m logn) time: We maintain the boundaries, L and
R, of the current search interval and in each iteration we compare the median string from
the range L to R in SAS , with P , and update L and R accordingly. This can be improved
to O(m+ logn) time if we have access to additional arrays storing the value of the longest
common prefixes between a selection of strings from SAS . We construct the suffix array from
the suffix tree in O(n) time.

3 Deterministic index for packed strings

In this section we describe how to construct and query our deterministic index for packed
strings. This structure is the basis for our result in Thm 1. For short patterns where
m < logσ n− 1 we store tabulated data that enables us to answer queries fast. We construct
the tables in O(n) time and space and answer queries in O(log log σ + occ) time. For long
patterns where m ≥ logσ n − 1 we use a combination of a suffix tree and a suffix array
that we construct in O(n) time and space such that queries take O(m/α+ log logn+ occ)
time. For m ≥ logσ n− 1 we have that log logn = log(logn

logσ log σ) = log logσ n+ log log σ ≤
log(logσ n − 1) + 1 + log log σ ≤ logm + 1 + log log σ. This gives us a query time of
O(m/α+ logm+ log log σ + occ) for the deterministic packed index. We need the following
connections between TS and SAS : For each explicit node t in TS we store a reference to the
range of SAS that corresponds to the leaves spanned by the subtree of t and for each index
in SAS we store a reference to the corresponding leaf in TS that represents the same string.

We first describe our word accelerated algorithm for matching patterns in SAS that we
need for answering queries on long patterns. Then we describe how to build and use the data
structures for answering queries on short and long patterns.

3.1 Packed matching in SAS

We now show how to word accelerate the suffix array matching algorithm by Manber and
Myers [10]. They spend O(m) time reading P but by reading α characters in constant time
we can reduce this to O(m/α). We let LCP(i, j) denote the length of the longest common
prefix between the suffixes SAS [i] and SAS [j] and obtain the result in Lemma 4.

I Lemma 4. Given the suffix array SAS over the packed string S and a data structure for
answering the relevant LCP queries, we can find the lexicographic predecessor of a packed
pattern P of length m in SAS in O(m/α+ logn) time where α is the number of characters
we can pack in a word.

In the algorithm by Manber and Myers we maintain the left and right boundaries of the
current search interval of SAS denoted by L and R and the length of the longest common
prefix between SAS [L] and P , and between SAS [R] and P , that we denote by l and r,
respectively. Initially the search interval is the whole range of SAS such that L = 1 and
R = n. In an iteration we do as follows: If l = r we start comparing SAS [M] with P from
index l + 1 until we find a mismatch and update either L and l, or R and r, depending on
whether SAS [M] is lexicographically larger or smaller than P . Otherwise, when l 6= r, we
perform an LCP query that enable us to either halve the range of SAS without reading from
P or start comparing SAS [M] with P from index l+ 1 as in the l = r case. When l > r there
are three cases: If LCP(L,M) > l then P is lexicographically larger than SAS [M] and we set
L to M and continue with the next iteration. If LCP (L,M) < l then P is lexicographically
smaller than SAS [M] and we set R to M and set r to LCP(L,M) and continue with the
next iteration. If LCP (L,M) = l then we compare SAS [M] and P from index l + 1 until

P. Bille, I. L. Gørtz, and F. R. Skjoldjensen 6:5

i + c′ . . . i − 1 i . . . i + c 000 i + c + 1 . . . i+α− 1 i + α . . . i+ c+α 000

i . . . i + c 000..000 . . . 000..000 000 000..000 . . . 000..000 i + c + 1 . . . i+α− 1 101

w1 w2

s1 s2 g

Figure 1 Alignment of α characters that extends over a word boundary where c′ = c + 1 − α.
The relevant part of the lower word w1 and upper word w2 is combined with bitwise shifts, a bitwise
or and the g bits on the right is set to 0.

we find a mismatch. Let that mismatch be at index l + i. If the mismatch means that P
is lexicographically smaller than SAS [M] then we set R to M and set r to l + i − 1 and
continue with the next iteration. If the mismatch means that P is lexicographically larger
than SAS [M] then we set L to M and set l to l + i− 1 and continue with the next iteration.
Three symmetrical cases exists when r > l.

We generalize their algorithm to work on word packed strings such that we can compare
α characters in constant time. In each iteration where we need to read from P we align the
next α characters from P and SAS [M] such that we can compare them in constant time:
Assume that we need to read the range from i to i+ α− 1 in P . If this range of characters
is contained in one word we do not need to align. Otherwise, we extract the relevant parts
of the words that contain the range with bitwise shifts and combine them in walign with a
bitwise or. See Figure 1. We align the α characters from SAS [M] in the same way and store
them in w′align.

We use a bitwise exclusive or operation between walign and w′align to construct a word
where the most significant set bit is at a bit position that belong to the mismatching character
with the lowest index. We obtain the position of the most significant set bit in constant time
with the technique of Fredman and Willard [8]. From this we know exactly how many of
the next α characters that match and we can increase i accordingly. Since every mismatch
encountered result in a halving of the search range of SAS we can never read more than
O(logn) incomplete chunks. The number of complete chunks we read is bounded by O(m/α).
Overall we obtain a O(m/α + logn) time algorithm for matching in SAS . This result is
summarized in Lemma 4.

3.2 Handling short patterns

Now we show how to answer count, locate and lexicographic predecessor queries on short
patterns. We store an array containing an index for every possible pattern P where m <

logσ n− 1 and at the index we store a pointer to the deepest node in TS that prefixes P . We
call this node dP . We use dP as the basis for answering every query on short patterns. We
assume that the range in SAS spanned by dP goes from l to r. We answer predecessor queries
as follows: If P is lexicographically smaller than SAS [0] then P has no predecessor in SAS .
Otherwise, we find the predecessor as follows: If dP represents P then the predecessor of P is
located at index l− 1 of SAS . Otherwise, we assume that dP prefixes P with i characters and
need to decide whether P continues on an edge out of dP or P deviates from TS in dP . We
do this by querying the predecessor data structure over the children of dP with the character
at position i+ 1 of P . If this query does not return an edge, then P [i+ 1] is lexicographically

CPM 2017

6:6 Deterministic Indexing for Packed Strings

smaller than the first character of every edge out of dP , and the predecessor of P is the string
located at index l − 1 of SAS . If this query returns an edge epred then there are two cases.
Case 1: The first character of epred is not identical to P [i+ 1]. Then the predecessor of P is

the lexicographically largest string in the subtree under epred.
Case 2: The first character on epred is identical to P [i+1]. In this case, if there exists an edge

e′pred out of dP on the left side of epred, then the predecessor of P is the lexicographically
largest string in the subtree under e′pred and otherwise the predecessor is the string at
index l − 1 of SAS .

We report the node in TS that represents the predecessor of P .
We let epred be defined as above and answer count queries as follows: If dP represents P

we return the number of leaves spanned by dP in TS . If P instead continues and ends on
epred we report the number of leaves spanned by the subtree below epred. We answer locate
queries in the same way but instead of reporting the range we report the strings in the range.

We find dP in O(1) time and epred in O(log log σ) time. In total we answer predecessor
and count queries in O(log log σ) time and locate queries in O(log log σ + occ) time

Since m < logσ n − 1 there exists σ + σ2 + . . . + σblogσ n−1c ≤ σblogσ nc ≤ σlogσ n = n

short patterns and we compute them in O(n) time by performing a preorder traversal of TS
bounded to depth logσ n− 1. Let dP be the node we are currently visiting and let dnext be
the node we visit next. When we visit dP we fill the tabulation array for every string that is
lexicographically larger than or equal to the string represented by dP and lexicographically
smaller than the string represented by dnext. Every short string can be stored in a word of
memory and therefore we can index the tabulation array with the numerical value of the
word that represent the string. We fill each of these indices with a pointer to dP since dP is
the deepest node in TS that represents a string that prefixes these strings. We can store the
tabulation array in O(n) space.

3.3 Handling long patterns

Now we show how to answer count, locate and lexicographic predecessor queries on long
patterns. We first give an overview of our solution followed by a detailed description of the
individual parts. In TS we distinguish between light and heavy nodes. If a subtree under
a node spans at least log2 logn leaves, we call the node heavy, otherwise we call it light.
A node is a heavy branching node if it has at least two heavy children and all the heavy
nodes constitute a subtree that we call the heavy tree. We decompose the heavy tree into
micro trees of height α and we augment every micro tree with a data structure that enables
navigation from root to leaf in constant time. For micro trees containing a heavy branching
node we do this with deterministic hashing and for micro trees without a heavy branching
node we just compare the relevant part of P with the one unique path of the heavy tree
that goes through the micro tree. To avoid navigating the light nodes we in each light node
store a pointer to the range of SAS that the node spans. We construct two predecessor data
structures for each micro tree: The light predecessor structure over the strings represented
by the light nodes that are connected to the heavy nodes in the micro tree and the heavy
predecessor structure over the heavy nodes in the micro tree. We answer queries on P as
follows: We traverse the heavy tree in chunks of α characters until we are unable to traverse
a complete micro tree. This means that P either continues in a light node, ends in the micro
tree or deviates from TS in the micro tree. We can decide if P continues in a light node with
the light predecessor structure and if this is the case we answer the query with the packed
matching algorithm on the range of SAS spanned by the light node. Otherwise, we use the
heavy predecessor structure for finding dP in the micro tree and use dP for answering the

P. Bille, I. L. Gørtz, and F. R. Skjoldjensen 6:7

α

α

...

α

α

Figure 2 The decomposition of HTS in micro trees of height α. One micro tree is shown with
the root at string depth α and the boundary nodes at string depth 2α.

query as in section 3.2. The following sections describes in more detail how we build our
data structure and answer queries.

3.3.1 Data structure

This section describes our data structure in details. If a subtree under a node in TS spans at
least log2 logn leaves, we call the node heavy. The heavy tree HTS is the induced subgraph
of all the the heavy nodes in TS . We decompose HTS into micro trees of string depth α.
This decomposition into micro trees of height α was also employed by Takagi et al. [13]. A
node, explicit or implicit, is a boundary node if its string depth is a multiple of α. Except for
the original root and leaves of HTS , each boundary node belongs to two micro trees i.e., a
boundary node at depth dα is the root in a micro tree that starts at string depth dα and is
a leaf in a micro tree that starts at string depth (d− 1)α. Figure 2 shows the decomposition
of HTS into micro trees of string depth α.

We augment every micro tree with information that enables us to navigate from root to
leaf in constant time. To avoid using too much space we promote only some of the implicit
boundary nodes to explicit nodes. We distinguish between three kinds of micro trees:

Type 1. At least one heavy branching node exists in the micro tree: We promote the
root and leaves to explicit nodes and use deterministic hashing to navigate the micro tree
from root to leaf. Because the micro tree is of height α, each of the strings represented
by the leaves in the micro tree fits in a word and can be used as a key for hashing. We
say that the root is a hashing node and the leaves are hashed nodes. We will postpone
the analysis of time and space used by the micro trees that use hashing for navigation.
Type 2. No heavy branching node exists in the micro tree: When the micro tree does
not contain a heavy branching node, the micro tree is simply a path from root to leaf.
Here we distinguish between two cases:

Type 2a. The micro tree contains an explicit non branching heavy node: We promote
the root and leaf to explicit nodes. Navigating from root to leaf takes constant time
by comparing the string represented by the leaf with the appropriate part of P . We
charge the space increase from the promotion of the root and leaf to the explicit non
branching heavy node. Since there are at most n explicit non branching heavy nodes
we never promote more than 2n implicit nodes from type 2a micro trees.

CPM 2017

6:8 Deterministic Indexing for Packed Strings

Type 2b. The micro tree does not contain an explicit heavy node: Let t be a micro
tree with no explicit heavy nodes. If the root of t is a leaf in a micro tree that contains
an explicit heavy node, we promote the root of t to an explicit node and store a
pointer to the root of the nearest micro tree below t that contains an explicit heavy
node. The path from root to root corresponds to a substring in S that we navigate
by comparing this string to the appropriate part of P . We charge the space increase
from the promotion of the root to the heavy node descendant. Since we have at most
n explicit heavy nodes we promote no more than n implicit nodes from type 2b micro
trees. If the root of t is a leaf in a micro tree without an explicit heavy node we do
not promote the root of t.

We say that a node in TS is a heavy leaf if it is a heavy node with no heavy children. We
want to bound the number of heavy branching nodes and heavy leaves. Every heavy leaf
spans at least log2 logn leaves of TS . This means we can have at most n/ log2 logn heavy
leaves in TS . Since we have at most one branching heavy node per heavy leaf the number of
heavy branching nodes is at most n/ log2 logn.

We want to bound the number of implicit nodes that are promoted to explicit hashed
nodes. This number is critical for constructing all hash functions in O(n) time. We bound
the number of promoted hashed nodes by associating each with the nearest descendant that
is either a heavy branching node or a heavy leaf: Let l be a promoted hashed node in a
micro tree that contain a heavy branching node h. Then every promoted hashed node above
l is associated with h or a node above h in the tree. Hence, no other promoted node can
be associated with the first encountered heavy branching or leaf node below l. Since we
have at most O(n/ log2 logn) heavy branching and heavy leaf nodes we also have at most
O(n/ log2 logn) implicit nodes that are promoted to explicit hashed nodes.

With deterministic hashing from Lemma 2 the total time for constructing the explicit
hashing nodes are given as follows. Here H is the set of all the hash functions and we bound
the elements in every hash function h to n/ log2 logn.

O

(∑
h∈H

|h| log2 log |h|
)

= O

(∑
h∈H

|h| log2 log(n/ log2 logn)
)

= O

(
log2 log(n/ log2 logn) ·

∑
h∈H

|h|

)
= O

(
log2 log(n/ log2 logn) n

log2 logn

)
= O(n)

Summing the elements of every hash function is bounded by the maximum number of
promoted nodes, i.e. O(n/ log2 logn). To conclude, we spend linear time constructing the
hash functions in the micro trees that contain a heavy branching node.

We associate two predecessor data structures with each micro tree that contains a heavy
node: The first predecessor structure contains every light node that is a child of a heavy
node in the micro tree. We call this predecessor data structure for the light predecessor
structure of the micro tree. The key for each light node is the string on the path from the
root of the micro tree to the node itself padded with character $ such that every string has
length α. These keys are ordered lexicographically in the predecessor data structure and a
successful query yields a pointer to the node. The second predecessor structure is similar to
the first but contains every heavy node in the micro tree. We call this predecessor structure
for the heavy predecessor structure. We use Lemma 3 for the predecessor structures. The
total size of every light and heavy predecessor structures is O(n) and a query in both takes
O(log logn) because the universe is of size (σ + 1)α.

P. Bille, I. L. Gørtz, and F. R. Skjoldjensen 6:9

For each light node that are a child of a heavy node we additionally store pointers to the
range of SAS that corresponds to the leaves in TS that the light node spans.

3.3.2 Answering queries
We answer queries on long patterns as follows. First we search for the deepest micro tree
in HTS where the root prefixes P . We do this by navigating the heavy tree in chunks of α
characters starting from the root. Assuming that we have already matched a prefix of P
consisting of i chunks of α characters we need to show how to match the (i+ 1)th chunk: If
the micro tree is of type 1 and P has length at least (i+ 1)α, we try to hash the substring
P [iα, (i+ 1)α]. If we obtain a node v from the hash function we continue matching chunk
P [(i+ 1)α, (i+ 2)α] from v. If the micro tree is of type 2 we compare α sized chunks of P
with the string on the unique path from root to the first micro tree with an explicit root
and continue matching from here. We have found the deepest micro tree where the root
prefixes P when we are unable to match a complete chunk of α characters or are unable to
reach a micro tree with an explicit root. From this micro tree we need to decide whether the
query is answered by searching SAS from a light node or answered by finding dP in the micro
tree, where dP is defined as in Section 3.2, i.e. the deepest node in TS that prefixes P . We
check if P continues in a light node by querying the light predecessor structure of the micro
tree with the next unmatched α characters from P and pad with character $ if less than α
characters remain unmatched in P . If the light node returned by the query represents a
string that prefixes P we answer the query by searching the range of SAS spanned by the
light node with the packed matching algorithm.

When P does not continue in a light node we instead find and use dP for answering the
query: If the micro tree is of type 2b or the root of the micro tree represents P then dP is the
root of the micro tree. Otherwise, we find dP with a technique, very similar to a technique
used by Fredman and Willard [8], that queries the heavy predecessor structure three times
as follows: We call the remaining part of P , padded to length α with character $, for p0. We
first query the predecessor structure with p0 which yields a node that represents a string
n0. We then construct a string, p1, that consists of the longest common prefix of p0 and
n0, and as above, padded to length α. We query the predecessor structure with p1 which
yields a new node that represents a string n1. We then construct a string, p2, that consists
of the longest common prefix of p0 and n1, again padded to length α. At last, we query
the predecessor structure with p2 which returns dP . Given dP , we answer count, locate and
lexicographic predecessor queries exactly as we did in Section 3.2.

Now we prove the correctness of our queries. First we prove that if P continues in a
light node then the query in the light predecessor structure returns that light node: Assume
that P goes through the light node lP that has a heavy parent in the micro tree Tp and
that we query the light predecessor structure with the string Qα. Let Lpred be the string
that represents lP in the light predecessor structure. Since P goes through lP then Lpred is
identical or lexicographically smaller than Qα. Let L′pred be the successor of Lpred in the light
predecessor structure. Since Lpred is lexicographically smaller than L′pred and has a longer
common prefix with Qα than L′pred has with Qα, then L′pred must be lexicographically larger
than Qα. Since Qα is identical or lexicographically larger than Lpred and lexicographically
smaller than L′pred, a query on Qα in the light predecessor structure will return lP .

We now prove that the queries in the heavy predecessor structure always returns dP :
Because P is not prefixed by a leaf of the micro tree or a light node from the light predecessor
structure we know that dP is a heavy node in the micro trie. In Figure 3, dP is depicted
and P either ends on or deviates from the edge e that leads to the tree T2. The trees T1,

CPM 2017

6:10 Deterministic Indexing for Packed Strings

dP

T2T1 T3

Figure 3 Searching for a prefix of P in HTS .

T2 and T3 combined with dP and the edge e constitute the subtree of dP . If P deviates to
the left or ends on e then P is lexicographically smaller than every string represented in T2.
If P deviates to the right then P is lexicographically larger than every string represented
in T2. Assume that P deviates to the right on e. Then the query to the heavy predecessor
structure with pattern p0 will yield n0 that represents the lexicographically largest string
in T2. The pattern p1 will then be represented by the implicit node from where P deviates
from e. The pattern p1 is lexicographically smaller than every string represented in T2 and a
query will yield n2 as the lexicographically largest node in T1 or, if T1 is empty, the node dP .
Either way, the query on p2 will yield the node dP . We can make similar arguments for the
other cases where P ends on e, deviates left from e, ends at dP or goes through dP without
following e.

The following gives an analysis of the running time of our queries. We spend at most
O(m/α) time traversing the heavy tree. Both predecessor structures contains strings over
a universe of size n such that a query takes O(log logn) time using Lemma 3. Each light
node spans at most log2 logn leaves which corresponds to an interval of length log2 logn
in SAS that we search in O(m/α+ log log logn) time with the word accelerated algorithm
for matching in SAS . Overall, we spend O(m/α+ log logn) time for answering count and
lexicographic predecessor queries and O(m/α + log logn + occ) time for answering locate
queries. Since we only query this data structure for patterns where m ≥ logσ n− 1 we have
that log logn = log(logn

logσ log σ) = log logσ n+ log log(σ) ≤ log(logσ n− 1) + 1 + log log(σ) ≤
log(m) + 1 + log log(σ), such that we answer count and lexicographic predecessor queries in
O(m/α+ logm+ log log σ) time and locate queries in O(m/α+ logm+ log log σ+ occ) time.
Combined with our solution for patterns where m < logσ n − 1, that answer the queries
in O(log log σ) and O(log log σ + occ) time, respectively, we can for patterns of any length
answer count and lexicographic predecessor queries in O(m/α+ logm+ log log σ) time and
locate queries in O(m/α + logm + log log σ + occ) time. This is our main result which is
summarized in Thm 1.

References
1 Djamal Belazzougui. Worst-case efficient single and multiple string matching on packed

texts in the word-RAM model. J. Discrete Algorithms, 14:91–106, 2012. doi:10.1016/j.
jda.2011.12.011.

2 Oren Ben-Kiki, Philip Bille, Dany Breslauer, Leszek Gasieniec, Roberto Grossi, and Oren
Weimann. Towards optimal packed string matching. Theor. Comput. Sci., 525:111–129,
2014. doi:10.1016/j.tcs.2013.06.013.

http://dx.doi.org/10.1016/j.jda.2011.12.011
http://dx.doi.org/10.1016/j.jda.2011.12.011
http://dx.doi.org/10.1016/j.tcs.2013.06.013

P. Bille, I. L. Gørtz, and F. R. Skjoldjensen 6:11

3 Philip Bille. Fast searching in packed strings. J. Discrete Algorithms, 9(1):49–56, 2011.
doi:10.1016/j.jda.2010.09.003.

4 Richard Cole, Tsvi Kopelowitz, and Moshe Lewenstein. Suffix trays and suffix trists: struc-
tures for faster text indexing. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and
Ingo Wegener, editors, Proceedings of the 33rd International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2006), volume 4051 of LNCS, pages 358–369. Springer,
2006. doi:10.1007/11786986_32.

5 Martin Farach-Colton, Paolo Ferragina, and Shanmugavelayutham Muthukrishnan. On
the sorting-complexity of suffix tree construction. J. ACM, 47(6):987–1011, 2000. doi:
10.1145/355541.355547.

6 Johannes Fischer and Paweł Gawrychowski. Alphabet-dependent string searching with wex-
ponential search trees. In Ferdinando Cicalese, Ely Porat, and Ugo Vaccaro, editors, Pro-
ceedings of the 26th Annual Symposium on Combinatorial Pattern Matching (CPM 2015),
volume 9133 of LNCS, pages 160–171. Springer, 2015. doi:10.1007/978-3-319-19929-0_
14.

7 Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with O(1)
worst case access time. J. ACM, 31(3):538–544, 1984. doi:10.1145/828.1884.

8 Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic bound with
fusion trees. J. Comput. Syst. Sci., 47(3):424–436, 1993. doi:10.1016/0022-0000(93)
90040-4.

9 Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Com-
putational Biology. Cambridge University Press, 1997. doi:10.1017/CBO9780511574931.

10 Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string searches.
SIAM J. Comput., 22(5):935–948, 1993. doi:10.1137/0222058.

11 Edward M. McCreight. A space-economical suffix tree construction algorithm. J. ACM,
23(2):262–272, 1976. doi:10.1145/321941.321946.

12 Milan Ružić. Constructing efficient dictionaries in close to sorting time. In Luca Aceto,
Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and
Igor Walukiewicz, editors, Proceedings of the 35th International Colloquium on Automata,
Languages, and Programming (ICALP 2008), volume 5125 of LNCS, pages 84–95. Springer,
2008. doi:10.1007/978-3-540-70575-8_8.

13 Takuya Takagi, Shunsuke Inenaga, Kunihiko Sadakane, and Hiroki Arimura. Packed com-
pact tries: A fast and efficient data structure for online string processing. In Veli Mäkinen,
Simon J. Puglisi, and Leena Salmela, editors, Proceedings of the 27th International Work-
shop on Combinatorial Algorithms (IWOCA 2016), volume 9843 of LNCS, pages 213–225.
Springer, Springer, 2016. doi:10.1007/978-3-319-44543-4_17.

14 Peter Weiner. Linear pattern matching algorithms. In H. Raymond Strong, editor, Pro-
ceedings of the 14th Annual Symposium on Switching and Automata Theory (SWAT 1973),
pages 1–11. IEEE Computer Society, 1973. doi:10.1109/SWAT.1973.13.

CPM 2017

http://dx.doi.org/10.1016/j.jda.2010.09.003
http://dx.doi.org/10.1007/11786986_32
http://dx.doi.org/10.1145/355541.355547
http://dx.doi.org/10.1145/355541.355547
http://dx.doi.org/10.1007/978-3-319-19929-0_14
http://dx.doi.org/10.1007/978-3-319-19929-0_14
http://dx.doi.org/10.1145/828.1884
http://dx.doi.org/10.1016/0022-0000(93)90040-4
http://dx.doi.org/10.1016/0022-0000(93)90040-4
http://dx.doi.org/10.1017/CBO9780511574931
http://dx.doi.org/10.1137/0222058
http://dx.doi.org/10.1145/321941.321946
http://dx.doi.org/10.1007/978-3-540-70575-8_8
http://dx.doi.org/10.1007/978-3-319-44543-4_17
http://dx.doi.org/10.1109/SWAT.1973.13

Representing the Suffix Tree with the CDAWG
Djamal Belazzougui1 and Fabio Cunial2

1 CERIST (Research Centre for Scientific and Technical Information), Algiers,
Algeria
dbelazzougui@cerist.dz

2 Max Planck Institute of Molecular Cell Biology and Genetics, Dresden,
Germany
cunial@mpi-cbg.de

Abstract
Given a string T , it is known that its suffix tree can be represented using the compact directed
acyclic word graph (CDAWG) with eT arcs, taking overall O(eT + eT) words of space, where T
is the reverse of T , and supporting some key operations in time between O(1) and O(log logn)
in the worst case. This representation is especially appealing for highly repetitive strings, like
collections of similar genomes or of version-controlled documents, in which eT grows sublinearly
in the length of T in practice. In this paper we augment such representation, supporting a number
of additional queries in worst-case time between O(1) and O(logn) in the RAM model, without
increasing space complexity asymptotically. Our technique, based on a heavy path decomposition
of the suffix tree, enables also a representation of the suffix array, of the inverse suffix array, and
of T itself, that takes O(eT) words of space, and that supports random access in O(logn) time.
Furthermore, we establish a connection between the reversed CDAWG of T and a context-free
grammar that produces T and only T , which might have independent interest.

1998 ACM Subject Classification E.1 Data Structures, E.4 Coding and Information Theory,
F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases CDAWG, suffix tree, heavy path decomposition, maximal repeat, context-
free grammar

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.7

1 Introduction

Given a string T of length n, the compressed suffix tree [21, 18] and the compressed suffix
array can take an amount of space that is bounded by the k-th order empirical entropy of T ,
but such measure of redundancy is known not to be meaningful when T is very repetitive
[11], e.g. a collection of similar genomes. The space taken by such compressed data structures
also includes a o(n) term, typically O(n/polylog(n)), which can become an obstacle when
T is very compressible. Rather than compressing the suffix array, we could compress a
differentially encoded suffix array [12], which stores at every position the difference between
two consecutive positions of the suffix array. Previous approaches have compressed such
differential array using grammar or Lempel-Ziv compression [12], and the same methods
can be used to compress the suffix tree topology and the LCP array [1, 17]. Such heuristics,
however, have either no theoretical guarantee on their performance [1, 17], or weak ones [12].

In previous research [4] we described a representation of the suffix tree of T that takes
space proportional to the size of the compact directed acyclic word graph (CDAWG) of T ,
and that supports a number of operations in time between O(1) and O(log logn) in the worst
case (see Table 2). If T is highly repetitive, the size of the CDAWG of T is known to grow

© Djamal Belazzougui and Fabio Cunial;
licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 7; pp. 7:1–7:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2 Representing the Suffix Tree with the CDAWG

Table 1 Time complexity of the operations on the suffix tree of a string T described in this paper
(n = |T |).

leftmostLeaf selectLeaf, lca SA[i..j] T [i..j] depth
rightmostLeaf SA[i], ISA[i], LCP[i] ISA[i..j] ancestor

PLCP[i], T [i] LCP[i..j] strAncestor
1 O(1) O(logn) O(logn+ j − i) O(logn+ j−i

logσ n
) O(logn)

2 O(1) O(logn) O(logn+ j − i) O(logn+ j−i
logσ n

)

Table 2 Complexity of the operations on the suffix tree of a string T described in [4] (n = |T |).

Space stringDepth isAncestor parent suffixLink weinerLink
(words) nLeaves, height leafRank nextSibling

locateLeaf
firstChild, child

1 O(eT + e
T

) O(1) O(1) O(log logn) O(log logn) O(log logn)
2 O(eT) O(1) O(log logn) O(1)

sublinearly in the length of T in practice (see e.g. [4]). Being related to maximal repeats,
the size of the CDAWG is also a natural measure of redundancy for very repetitive strings.
Moreover, since the difference between consecutive suffix array positions is the same inside
isomorphic subtrees of the suffix tree, and since such isomorphic subtrees are compressed by
the CDAWG, the CDAWG itself can be seen as a grammar that produces the differential
suffix array, and the suffix tree can be seen as the parse tree of such grammar: this provides
a formal substrate to heuristics that grammar-compress the differential suffix array.

In this paper we further exploit the compression of isomorphic subtrees of a suffix tree
induced by the CDAWG, augmenting the representation of the suffix tree described in [4] with
a number of additional operations that take between O(1) and O(logn) time in the worst
case (see Table 1), without increasing space complexity asymptotically. We also describe
CDAWG-based representations of the suffix array, of the inverse suffix array, of the LCP
array, and of T itself, with O(logn) random access time.

Our approach is related to the work of Bille et al [7], in which a straight-line program
(effectively a DAG) that produces the balanced parentheses representation of a tree with n
nodes, is used to support operations on the topology of the tree in O(logn) time. Applying
such compression to the suffix tree achieves the space bounds of this paper, but it only
supports operations on the topology of the tree, and it supports each operation in O(logn)
time, whereas we achieve either constant or O(log logn) time for some key primitives.

2 Preliminaries

We work in the RAM model with word length at least logn bits, where n is the length of a
string that is implicit from the context, and we index strings and arrays starting from one.

2.1 Graphs
We assume the reader to be familiar with the notions of tree and of directed acyclic graph
(DAG). By lca(u, v) we denote the lowest common ancestor of nodes u and v in a tree. By
weighted tree we mean a tree with nonnegative weights on the edges, and we use ω(u, v) to
denote the weight of edge (u, v). Weighted DAGs are defined similarly. In this paper we only

D. Belazzougui and F. Cunial 7:3

deal with ordered trees and DAGs, in which there is a total order among the out-neighbors
of every node. The i-th leaf of a tree is its i-th leaf in depth-first order, and to every node v
of a tree we assign the compact interval [sp(v)..ep(v)], in depth-first order, of all leaves that
belong to the subtree rooted at v. In this paper we use the expression DAG also for directed
acyclic multigraphs, allowing distinct arcs to have the same source and destination nodes. In
what follows we consider just DAGs with exactly one source and one sink.

We denote by T (G) the tree generated by DAG G with the following recursive procedure:
the tree generated by the sink of G consists of a single node; the tree generated by a node
v of G that is not the sink, consists of a node whose children are the roots of the subtrees
generated by the out-neighbors of v in G, taken in order, and connected to their parent by
edges whose weight, if any, is identical to the weight of the corresponding arc of G. Note that:
(1) every node of T (G) is generated by exactly one node of G; (2) a node of G different from
the sink generates one or more internal nodes of T (G), and the subtrees of T (G) rooted at
all such nodes are isomorphic; (3) the sink of G can generate one or more leaves of T (G); (4)
there is a bijection, between the set of root-to-leaf paths in T (G) and the set of source-to-sink
paths in G, such that every path v1, . . . , vk in T (G) is mapped to a path v′1, . . . , v′k in G, and
such that ω(vi, vi+1) = ω(v′i, v′i+1) for all i ∈ [1..k − 1] if T (G) is weighted. Symmetrically,
given any tree T , merging all subtrees with identical topology and edge weights produces a
DAG G such that T (G) = T : we denote such DAG by G(T). Clearly G(T (G)) = G.

Given nodes v and w of T (G) such that v is an ancestor of w, let nLeaves(v) be the
number of leaves in the subtree rooted at v, and let left(v, w) (respectively, right(v, w))
be the number of leaves in the subtree rooted at v that precede (respectively, follow) in
depth-first order the leaves in the subtree rooted at w. A heavy path decomposition of T (G)
[14] is the following marking: for every node u, we mark exactly one edge (u, v) as heavy if
nLeaves(v) is the largest among all children of u, with ties broken arbitrarily (Figure 1a).
We call light an edge that is not heavy, and we call heavy path a maximal sequence of nodes
v1, . . . , vk such that (vi, vi+1) is heavy for all i ∈ [1..k − 1]. Note that vk is a leaf, every
node of T (G) belongs to exactly one heavy path, distinct heavy paths are connected by light
edges, and every path from the root to a leaf contains O(logN) light edges, or equivalently
intersects O(logN) heavy paths, where N is the number of leaves of T (G). Heavy paths are
disjoint in T (G), but their corresponding paths in G form a spanning tree τ(G), with O(n)
nodes and edges, rooted at the sink of G, where n is the number of nodes of G (Figure 1b).

2.2 Strings
Let Σ = [1..σ] be an integer alphabet, let # = 0 /∈ Σ be a separator, and let T ∈ [1..σ]n−1#
be a string. Given a string W ∈ [1..σ]k, we call the reverse of W the string W obtained
by reading W from right to left. For a string W ∈ [1..σ]k# we abuse notation, and we
denote by W the string W [1..k]#. Given a substring W of T , let PT (W) be the set of all
starting positions of W in the circular version of T . A repeat W is a string that satisfies
|PT (W)| > 1. We denote by Σ`

T (W) the set of characters {a ∈ [0..σ] : |PT (aW)| > 0} and
by Σr

T (W) the set of characters {b ∈ [0..σ] : |PT (Wb)| > 0}. A repeat W is right-maximal
(respectively, left-maximal) iff |ΣrT (W)| > 1 (respectively, iff |Σ`T (W)| > 1). It is well known
that T can have at most n− 1 right-maximal repeats and at most n− 1 left-maximal repeats.
A maximal repeat of T is a repeat that is both left- and right-maximal. It is also well known
that a maximal repeat W ∈ [1..σ]m of T is the equivalence class of all the right-maximal
strings {W [1..m], . . . ,W [k..m]} such that W [k + 1..m] is left-maximal, and W [i..m] is not
left-maximal for all i ∈ [2..k].

For reasons of space we assume the reader to be familiar with the notion of suffix tree
STT of T (see e.g. [13] for an introduction), which we do not define here. We denote by `(γ),

CPM 2017

7:4 Representing the Suffix Tree with the CDAWG

or equivalently by `(u, v), the string label of edge γ = (u, v) ∈ E, and we denote by `(v) the
string label of node v ∈ V . It is well known that a substring W of T is right-maximal iff
W = `(v) for some internal node v of the suffix tree. We assume the reader to be familiar
with the notion of suffix link connecting a node v with `(v) = aW for some a ∈ [0..σ] to a
node w with `(w) = W . Here we just recall that inverting the direction of all suffix links
yields the so-called explicit Weiner links.

Finally, we assume the reader to be familiar with the notion and uses of the Burrows-
Wheeler transform of T (see e.g. [10]). In this paper we use BWTT to denote the BWT of
T , and we use range(W) = [sp(W)..ep(W)] to denote the lexicographic interval of a string
W in a BWT that is implicit from the context. As customary, we denote by C[0..σ] the
array such that C[a] equals the number of occurrences of characters lexicographically smaller
than a in T . For a node v of STT , we use the shortcut range(v) = [sp(v)..ep(v)] to denote
range(`(v)). We say that BWTT [i..j] is a run iff BWTT [k] = c ∈ [0..σ] for all k ∈ [i..j], and
moreover if any substring BWTT [i′..j′] such that i′ ≤ i, j′ ≥ j, and either i′ 6= i or j′ 6= j,
contains at least two distinct characters. We denote by RT the set of all triplets (c, i, j) such
that BWTT [i..j] is a run of character c. Given a string T ∈ [1..σ]n−1#, we call run-length
encoded BWT (RLBWTT) any representation of BWTT that takes O(|RT |) words of space,
and that supports the well known rank and select operations: see for example [15, 16, 23].
It is easy to implement a version of RLBWTT that supports rank in O(log logn) time and
select in O(log logn) time [4].

2.3 CDAWG
The compact directed acyclic word graph of a string T (denoted by CDAWGT in what follows)
is the minimal compact automaton that recognizes the suffixes of T [8, 9]. We denote by
eT the number of arcs in CDAWGT . The CDAWG of T can be seen as the minimization of
STT , in which all leaves are merged to the same node (the sink) that represents T itself,
and in which all nodes except the sink are in one-to-one correspondence with the maximal
repeats of T [20]. Every arc of CDAWGT is labeled by a substring of T , and the out-neighbors
w1, . . . , wk of every node v of CDAWGT are sorted according to the lexicographic order of
the distinct labels of arcs (v, w1), . . . , (v, wk). Since there is a bijection between the nodes
of CDAWGT and the maximal repeats of T , the node v′ of CDAWGT with `(v′) = W is
the equivalence class of the nodes {v1, . . . , vk} of STT such that `(vi) = W [i..|W |] for all
i ∈ [1..k], and such that vk, vk−1, . . . , v1 is a maximal unary path of explicit Weiner links.
The subtrees of STT rooted at all such nodes are isomorphic, and T (CDAWGT) = STT
(Figure 1b). It follows that the set of right-maximal strings that belong to the equivalence
class of a maximal repeat can be represented by a single integer k, and a right-maximal
string can be identified by the maximal repeat W it belongs to, and by the length of the
corresponding suffix of W . Similarly, a suffix of T can be identified by a length relative to
the sink of CDAWGT .

In BWTT , the right-maximal strings in the same equivalence class of a maximal repeat
enjoy the following properties:

I Property 1 ([4]). Let {W [1..m], . . . ,W [k..m]} be the right-maximal strings that belong to
the equivalence class of maximal repeat W ∈ [1..σ]m of a string T , and let range(W [i..m]) =
[pi..qi] for i ∈ [1..k]. Then: (1) |qi − pi + 1| = |qj − pj + 1| for all i and j in [1..k]; (2)
BWTT [pi..qi] = W [i − 1]qi−pi+1 for i ∈ [2..k]. Conversely, BWTT [p1..q1] contains at least
two distinct characters. (3) pi−1 = C[c] + rankc(BWTT , pi) and qi−1 = pi−1 + qi − pi for
i ∈ [2..k], where c = W [i − 1] = BWTT [pi]. (4) pi+1 = selectc(BWTT , pi − C[c]) and

D. Belazzougui and F. Cunial 7:5

Figure 1 The data structures used in this paper for string T = AGAGCGAGAGCGCGC#. (a) The
suffix tree of T . Edges to leaves are labelled by just the first character of their string. The weight
of edge (u, v) is sp(v)− sp(u). Heavy edges according to the number of leaves are bold. (b) The
CDAWG of T . Just the first character of each arc label is shown. Arc weights are from (a). Arcs in
the spanning tree τ are bold. (c) The reverse CDAWG. Arc (u, v) is labelled by pair (x, y), where
x is the order of v among the out-neighbors of u, and y is the weight in (b). (d) The compacted
version of (c). (e) The weighted tree generated from (d), and the corresponding grammar.

qi+1 = pi+1 + qi − pi for i ∈ [1..k − 1], where c = W [i] is the character that satisfies
C[c] < pi ≤ C[c + 1]. (5) Let c ∈ [0..σ], and let range(W [i..m]c) = [xi..yi] for i ∈ [1..k].
Then, xi = pi + x1 − p1 and yi = pi + y1 − p1.

Character c in Property 1.4 can be computed in O(log logn) time using a predecessor
data structure that uses O(σ) words of space [26]. Moreover, the equivalence class of a
maximal repeat is related to the equivalence classes of its in-neighbors in the CDAWG in the
following way:

I Property 2 ([4]). Let w be a node in CDAWGT with `(w) = W ∈ [1..σ]m, and let
Sw = {W [1..m], . . . , W [k..m]} be the right-maximal strings that belong to the equivalence
class of node w. Let {v1, . . . , vt} be the in-neighbors of w in CDAWGT , and let {V 1, . . . , V t}
be their labels. Then, Sw is partitioned into t disjoint sets S1

w, . . . ,Stw such that Siw =
{W [xi + 1..m],W [xi + 2..m], . . . ,W [xi + |Svi |..m]}, and the right-maximal string V i[p..|V i|]
labels the parent of the locus of the right-maximal string W [xi + p− 1..m] in STT .

Property 2 applied to the sink v of CDAWGT partitions T into x left-maximal factors,
where x is the number of in-neighbors of v (Figure 1e). Moreover, by Property 2, it is natural
to say that in-neighbor vi of node w is smaller than in-neighbor vj of node w iff xi < xj ,
or equivalently if the strings in Siw are longer than the strings in Sjw. We call CDAWGT the
ordered DAG obtained by applying this order to the reverse of CDAWGT , i.e. to the DAG

CPM 2017

7:6 Representing the Suffix Tree with the CDAWG

obtained by inverting the direction of all arcs of CDAWGT (Figure 1c). Note that CDAWGT
is not the same as CDAWGT , although there is a bijection between their sets of nodes. Note
also that some nodes of CDAWGT can have just one out-neighbor: for brevity we denote
by CDAWGT the graph obtained by collapsing every such node v, i.e. by adding the weight
(if any) of the only outgoing arc from v to the weights of all incoming arcs to v, and by
redirecting such incoming arcs to the out-neighbor of v (Figure 1d). This can be done in
linear time by an inverse topological sort of CDAWGT that starts from its sink.

The source of CDAWGT is the sink of CDAWGT , which is the equivalence class of all
suffixes of T in string order, and there is a bijection between the distinct paths of CDAWGT
and the suffixes of T . It follows that:

I Property 3. The i-th leaf of T (CDAWGT) in depth-first order corresponds to the i-th suffix
of T in string order.

Thus, T (CDAWGT) can be seen as the parse tree of a context-free grammar that generates
T and only T , and CDAWGT can be seen as such grammar (Figure 1e). This implies a lower
bound on the size of the CDAWG:

I Lemma 1. Let f be the function that maps the length of a string to the size of its CDAWG,
and let g be the function that maps the length of a string T to the size of the smallest grammar
that produces T and only T . Then, f ∈ Ω(g).

In some classes of strings the size of the CDAWG is asymptotically the same as the size
of the smallest grammar that produces the string, but in other classes the ratio between the
two sizes reaches its maximum, O(n/ logn): see Section 2.1 in [4].

Let G be an ordered DAG, let γ = (v, w) be an edge of T (G), and assume that we assign
to γ a weight equal to the offset sp(w)− sp(v) between the first leaf in the leaf interval of w
and the first leaf in the leaf interval of v (Figure 1a). Thus, we can compute the depth-first
order of a leaf of T (G) by summing the weights of all edges in its root-to-leaf path. Note
that edges (v, w) and (v′, w′) in T such that v and v′ correspond to the same node v′′ in G,
and such that w and w′ correspond to the same node w′′ in G, have the same weight: in the
case of CDAWGT and STT , this is equivalent to Property 1.5, and weights are offsets between
the starting positions of nested BWT intervals (Figure 1b). Assume that every such weight
is stored inside arc (v′′, w′′) of CDAWGT , and that weights are preserved when building
CDAWGT . Then, one plus the sum of all weights in the source-to-sink path of CDAWGT that
corresponds to suffix T [i..|T |] is the lexicographic rank of suffix T [i..|T |] (see e.g. Figures 1d
and 1e). Equivalently:

I Property 4. Let arc (u, v) of CDAWGT be weighted by sp(v′)−sp(u′), where v′ (respectively,
u′) is a node of STT that belongs to the equivalence class of v (respectively, u), and v′ is
a child of u′ in STT . Then, the lexicographic rank of suffix T [i..|T |] is one plus the sum
of all weights in the path from the root of T (CDAWGT) to the i-th leaf of T (CDAWGT) in
depth-first order.

2.4 Representing the suffix tree with the CDAWG
It is known that Properties 1 and 2 enable two encodings of STT that take O(eT + eT) words
of space each, and that support the operations in Table 2 with the specified time complexities
[4]. Since the rest of this paper builds on the representation described in [4], we summarize
it here for completeness.

It is known that |RT | is at most the number of arcs in CDAWGT [4], thus augmenting
CDAWGT with RLBWTT does not increase space asymptotically. For every node v of

D. Belazzougui and F. Cunial 7:7

CDAWGT , we store: |`(v)| in a variable v.length; the number v.size of right-maximal
strings that belong to its equivalence class; the interval [v.first..v.last] of `(v) in BWTT ;
a linear-space predecessor data structure [26] on the boundaries induced on the equivalence
class of v by its in-neighbors (Property 2); and pointers to the in-neighbor that corresponds
to the interval associated with each boundary. For every arc γ = (v, w) of CDAWGT , we
store the first character of `(γ) in a variable γ.char, and the number of characters of the
right-extension implied by γ in a variable γ.right. We also add to the CDAWG all arcs
(v, w, c) such that w is the equivalence class of the destination of a Weiner link from v

labeled by character c in STT , and the reverse of all explicit Weiner link arcs. We represent
a node v of STT as a tuple id(v) = (v′, |`(v)|, i, j), where v′ is the node in CDAWGT
that corresponds to the equivalence class of v, and [i..j] is the interval of `(v) in BWTT .
Implementing operations stringDepth(id(v)), nLeaves(id(v)) (which returns the number
of leaves of the subtree of STT rooted at a given node), isAncestor(id(v), id(w)) (which
returns true iff a node v of STT is an ancestor of another node w of STT), suffixLink(id(v)),
weinerLink(id(v)), locateLeaf(id(v)) (which returns the position in T of a leaf v of STT)
and leafRank(id(v)) (which returns the position of a leaf v of STT in lexicographic order) is
straightforward using Properties 1.3 and 1.4, and implementing parent(id(v)), child(id(v))
and nextSibling(id(v)) is easy using Properties 2 and 1.5.

Removing all implicit Weiner link arcs from our data structure achieves O(eT) words of
space, and still supports all queries except following implicit Weiner links. We can further
drop RLBWTT and remove from id(v) the interval of `(v) in BWTT , still supporting most of
the original queries in the same amount of time, and suffixLink in constant time. The data
structure after such removals corresponds to the second row of Table 2. Conversely, storing
also the RLBWT of T , and the interval in such RLBWT of the reverse of the maximal repeat
that corresponds to every node of the CDAWG, allows one to also read the label of an edge
γ of STT in O(log logn) time per character, for the same asymptotic space complexity.

3 Additional suffix tree operations

In this paper we augment the representation of the suffix tree described in Section 2.4,
enabling it to support a number of additional suffix tree operations in O(logn) time without
increasing space complexity asymptotically. At the core of our methods lies a heavy path
decomposition of CDAWGT along the lines of [7], which we summarize in what follows to
keep the paper self-contained.

I Definition 2 (Smooth function). Let T be a tree, let v1, v2, . . . , vN be its N leaves in
depth-first order, let f be a function that assigns a real number to every leaf, and let F [1..N]
be the array that stores at position i the value of f(vi). We say that f is smooth with respect
to T iff F [sp(v)..ep(v)] = F [sp(w)..ep(w)] for every pair of internal nodes v, w of T that are
generated by the same node of G(T).

For example, let T be the parse tree of a string S generated by a context-free grammar:
the function that assigns character T [i] to every position i of T is smooth.

I Lemma 3 ([7]). Let G be a DAG with n arcs such that every node has exactly two out-
neighbors, let f be a smooth function with respect to T (G), and let N be the number of
leaves of T (G). There is a data structure that, given a number i ∈ [1..N], returns f(ui) in
O(logN) time, where ui is the i-th leaf of T (G) in depth-first order. Moreover, given two
integers 1 ≤ i ≤ j ≤ N , the data structure returns in O(logN) time the node of G that
corresponds to lca(ui, uj), and it returns in O(logN + j − i) time the sequence of values

CPM 2017

7:8 Representing the Suffix Tree with the CDAWG

f(ui), f(ui+1), . . . , f(uj), where uh is the h-th leaf of T (G) in depth-first order. Such data
structure takes O(n) words of space.

Proof Sketch. For each heavy path v1, . . . , vk of T (G), we store at v1 values nLeaves(v1),
left(v1, vk), f(vk), a predecessor data structure on the set of values {left(v1, vi) : i ∈ [2..k]},
and a predecessor data structure on the set of values {right(v1, vi) : i ∈ [2..k]}. If we query
v1 with the position i1 of a leaf in the subtree rooted at v1, such data structures allow us to
detect the largest j ∈ [1..k] such that vj is an ancestor of the query leaf. If j = k we return
f(vk), otherwise we take the light edge (vj , w) and we recur on w, which is itself the first
node of a heavy path. This solution takes O(logN) queries to prefix-sum data structures,
but the total size of all prefix-sum data structures can be O(N2).

Note that a predecessor query on the left and right predecessor data structures stored at
the first node v1 of a heavy path of T (G) can be implemented with a weighted ancestor query1
on τ(G), if we assign to each arc (v, w) of G that also belongs to τ(G) a left weight equal to
zero if w is the left successor of v, and equal to the number of leaves in the left successor of v
otherwise (the right weight is defined similarly). Using a suitable data structure for weighted
ancestor queries allows one to achieve O(n) words of space and overall O(logN · log logN)
query time after O(n) preprocessing of G. More advanced data structures that implement
weighted ancestor queries on τ(G) allow one to achieve the claimed bounds [7].

Given T (G), we proceed as follows to extract the values of all leaves in a depth-first
interval [i..j]. Inside every node v of a heavy path, we store an auxiliary right pointer to the
closest descendant of v in the heavy path whose right child is light. We symmetrically store
an auxiliary left pointer. Then, we traverse T (G) top-down as described above, but searching
for both the i-th leaf ui and the j-th leaf uj at the same time: when the nodes w and w′ of
G that result from such searches are different, we know that one is a descendant of the other
in τ(G), and the node of G that corresponds to lca(ui, uj) in T (G) is the one whose number
of leaves equals max{nLeaves(w), nLeaves(w′)}. Then we continue the search for the two
leaves separately: during the search for ui (respectively, uj) we follow all right (respectively,
left) auxiliary pointers in all heavy paths, and we concatenate the corresponding nodes in a
left (respectively, right) linked list. The size of such lists is O(j− i), and computing sequence
f(ui), . . . , f(uj) from the lists takes O(j − i) time. The same approach can be applied to G,
at the cost of O(n) preprocessing time and space. J

Since a node v of T (G) can be uniquely identified by an interval of leaves in depth-first
order, Lemma 3 effectively implements a map from the identifier of a node in T (G) to the
identifier of its corresponding node in G.

I Lemma 4. Lemma 3 holds also for a DAG in which all nodes have out-degree at least two.

Proof. We expand every node v with out-degree d > 2 into a binary directed tree, with d− 1
artificial internal nodes, whose d leaves are the out-neighbors of v in G. We also store in
each artificial internal node w a pointer w.real = v. The size of such expanded DAG G′ is
still O(n), where n is the number of arcs of G, T (G′) is a binary tree with the same number
of leaves as T (G), there is a bijection between the leaves of T (G) and the leaves of T (G′)
such that the i-th leaf in depth-first order in T (G) corresponds to the i-th leaf in depth-first
order in T (G′), and the extension of f to the leaves of T (G′) induced by such bijection is

1 A weighted ancestor query (v, k) on a tree with weights on the edges asks for the lowest ancestor u of a
node v such that the sum of weights in the path from u to v is at least k [2].

D. Belazzougui and F. Cunial 7:9

smooth with respect to T (G′). Note that, if Lemma 3 returns an artificial node w as the
result of a lowest common ancestor query, it suffices to return w.real instead. J

Lemma 3 can be adapted to support queries on another class of functions:

I Definition 5 (Telescoping function). Let f be a function that assigns a real number to any
path of any weighted graph. We say that f is telescoping iff:
1. Given a path P = v1, v2, . . . , vk, f(P) = g(ω(v1, v2)) ◦ · · · ◦ g(ω(vk−1, vk)), where ω(vi, vj)

is the weight of edge or arc (vi, vj), g is a function that can be computed in constant time,
and x ◦ y is a binary associative operator with identity element I that can be computed
in constant time.

2. f(v1, . . . , vk) ≥ f(v1, . . . , vi) for all i < k, and f(v1, . . . , vk) ≥ f(vi, . . . , vk) for all i > 1.
3. For every path v1, . . . , vi, . . . , vj , . . . , vk, f(vi, . . . , vj) can be computed in constant time

given f(v1, . . . , vi) and f(v1, . . . , vj), or given f(vi, . . . , vk) and f(vj , . . . , vk).

We call y the inverse of x with respect to ◦ iff x ◦ y = y ◦ x = I. For example, the sum
of edge weights in a path is telescoping, I = 0, and the inverse of x is −x. Note that a
telescoping function is not necessarily smooth.

I Lemma 6. Let G be a weighted DAG with n arcs in which every node has at least two
out-neighbors, let f be a telescoping function, and let N be the number of leaves of T (G).
There is a data structure that, given a number i ∈ [1..N], evaluates f in O(logN) time on
the path from the root of T (G) to the i-th leaf in depth-first order. Moreover, given two
numbers 1 ≤ i ≤ j ≤ N , the data structure:
1. Evaluates f in O(logN) time on the path from the root of T (G) to lca(ui, uj), where ui

and uj are the i-th and j-th leaf of T (G) in depth-first order.
2. Returns in O(logN + j − i) time the sequence of values f(ui), f(ui+1), . . . , f(uj), where

f(uh) is the value of function f evaluated on the path from the root of T (G) to the h-th
leaf in depth-first order.

3. If [i..j] is the identifier of node v in T (G), given a nonnegative number k, returns in
O(logN) time the node of G that corresponds to the highest ancestor w of v in T (G)
such that f , evaluated on the path from the root of T (G) to w, is at least k (weighted
ancestor query).

Such data structure takes O(n) words of space.

Proof. If a node v in the DAG has out-degree greater than two, we expand it as described
in Lemma 4, assigning weight I to all arcs that end in an artificial internal node of the
expanded DAG, and assigning the weight of arc (v, w) to the arc that connects an artificial
internal node to out-neighbor w of v in G. We also store a pointer to v inside each artificial
internal node. Let G′ be the expanded version of G. At every node v of G′ we store variable
v.count = f(P (v)), where P (v) is the path from v to the sink of G′ that uses only arcs in
the spanning tree τ(G′). We traverse G′ as described in Lemma 3: at the current node u,
we compute its highest ancestor v in τ(G′) that lies in the path, from the source of G′ to
the sink of G′, that corresponds to the i-th leaf of T (G′). We use u.count and v.count to
evaluate f in constant time on the path from u to v along τ(G′), and we cumulate such value
to the output. For each arc (v, w) that does not belong to τ(G′), we compute g(ω(v, w)) and
we cumulate it to the output.

To evaluate f on the path from the root of T (G) to lca(vi, vj), we follow the extraction
strategy described in Lemma 3, using in the last step u.count and v.count, where u is the
current node and v is the (possibly artificial) node of G′ that corresponds to lca(vi, vj) in
T (G′). We use the extraction strategy of Lemma 3 also to evaluate f on all leaves of T (G)

CPM 2017

7:10 Representing the Suffix Tree with the CDAWG

in the depth-first interval [i..j]: every time we take a right pointer or a left pointer (u, v), we
cumulate weight u.count ◦ y to the current value of f , where y is the inverse of v.count, and
we start from such value of f when visiting the subgraph of G′ that starts at v.

To support weighted ancestor queries on f and T (G), we build a data structure that
supports level ancestor queries on τ(G′): given a node v and a path length d, such data
structure returns the ancestor u of v in τ(G′) such that the path from the root of τ(G′) to u
contains exactly d nodes. The level ancestor data structure described in [5, 6] takes O(n)
words of space and it answers queries in constant time. We search again for the i-th and
j-th leaf in parallel, cumulating f using the weights of light arcs and of heavy paths as done
before. Let u be the current node in this search, and let x be the current value of f : if x < k,
but the value of f is at least k at the next node v such that the path from u to v in G′

belongs to τ(G′), we binary search the nodes w on the path from u to v, using level ancestor
queries from u and comparing x ◦ u.count ◦ y to k, where y is the inverse of w.count. The
result of the binary search is not an artificial node. J

Let [i..j] be the identifier of a node of T (G), and let [i′..j′] be the identifier of its weighted
ancestor. Since it is easy to transform the node of G that corresponds to [i′..j′] into interval
[i′..j′] itself, Lemma 6 effectively implements a map from [i..j] to [i′..j′] in O(logN) time.

Applying Lemma 6 to CDAWGT is all we need to support the additional operations in
Table 1 efficiently:

I Theorem 7. Let T ∈ [1..σ]n−1# be a string. There are two representations of STT that
support the operations in Table 1 and in Table 2 with the specified time and space complexities.

Proof. Operation selectLeaf(i) returns an identifier of the i-th leaf of STT in lexicographic
order. Recall from Section 2.4 that we store in a variable γ.right the number of characters
of the right extension implied by arc γ of CDAWGT . Thus, the length of the suffix associated
with a leaf of STT (or equivalently, the position of that leaf in right-to-left string order) is the
sum of all weights in the source-to-sink path of CDAWGT that corresponds to the leaf. Since
the sum of such weights is a telescoping function, we use the data structures in Lemma 6,
built on these weights, to compute the value s of the sum in O(logn) time, and we return
tuple (v, s, i, i), where v is the sink of CDAWGT . Returning |T | − s+ 1 instead is enough to
implement SAT [i]. Since Lemma 6 supports also the extraction of all values of a telescoping
function inside a depth-first range of leaves [i..j], implementing SAT [i..j] is straightforward.

Operation lca(i, j) returns the identifier of the lowest common ancestor, in STT , of
the i-th and the j-th leaf in lexicographic order. We use Lemma 6 to compute both the
node v of CDAWGT that corresponds to such common ancestor, and its string depth s,
returning tuple (v, s, x, y), where the range [x..y] ⊇ [i..j] of the lowest common ancestor
is computed during the top-down traversal of CDAWGT using the weighted ancestor data
structure on τ(CDAWGT). A similar approach allows one to return LCP[i], and a slight
variation of the approach used to compute SAT [i..j] supports also LCP[i..j]. Operation
depth(id(v)) returns the depth of the node v of STT whose identifier is id(v). Since
id(v) contains the range [i..j] of v in BWTT , we can proceed as in operation lca(i, j), and
return the length of the path that the search traversed from the source of CDAWGT to
the node of CDAWGT that corresponds to v. Operation leftmostLeaf(id(v)) returns the
identifier of the smallest leaf in lexicographic order in the subtree of STT rooted at node
v. Let id(v) = (v′, `, i, j), and let W be the longest maximal repeat in the equivalence
class of node v′. Then, leftmostLeaf(id(v)) = (w′, ` + v′.left, i, i), where w′ is the sink
of CDAWGT , and v′.left is the string length of the path, in STT , that goes from the
node of STT with string label W to its leftmost leaf. We store v′.left at every node

D. Belazzougui and F. Cunial 7:11

v′ of the CDAWG. Operation rightmostLeaf can be handled symmetrically. Operation
stringAncestor(id(v), d) (respectively, ancestor(id(v), d)) returns the identifier of the
highest ancestor of v in STT whose string depth (respectively, depth) is at least d. This can
be implemented with the weighted ancestor query provided by Lemma 6, where the weight
of arc γ of CDAWGT is γ.right (respectively, one).

Finally, by Property 4, we support access to the value of the inverse suffix array at string
position i by building the data structures of Lemma 6 on the compacted CDAWGT , with arc
weights corresponding to offsets between nested BWT intervals, and with a weighted ancestor
data structure on τ(CDAWGT) based on offsets between string positions. Note that all arcs
that end at the same node of the compacted CDAWGT have distinct weights. Then, we
evaluate the sum of edge weights from the root of T (CDAWGT) to its i-th leaf in depth-first
order. Implementing ISAT [i..j] is also straightforward, and PLCP[i] can be supported using
ISAT [i]. Assume that, while building CDAWGT , we keep the first character of the label of
every arc of CDAWGT that starts from the root, we propagate it during compaction, and
we store it at the nodes as described in Lemma 3. Then, since T (CDAWGT) is a parse tree
of T , we can also return T [i] in O(logn) time and T [i..j] in O(logn + j − i) time. Since
the compacted reversed CDAWG is a grammar for T , the time for extracting T [i..j] can be
reduced to O(logn+ (j − i)/ logσ n) by using the access query described in [3]. J

I Corollary 8. Given a string T ∈ [1..σ]n−1#, there is a representation of the suffix array
of T , of the inverse suffix array of T , of the LCP array of T , of the permuted LCP array of
T , and of T itself, that takes O(eT) words of space, and that supports random access to any
position in O(logn) time.

Note that Corollary 8 yields immediately a representation of the compressed suffix array
of T [22] that takes O(eT) words of space.

4 Extensions and conclusion

Our data structures provide immediate support for a number of queries of common use
in pattern matching, in addition to those listed in Tables 1 and 2. For example, recall
that an internal pattern matching query (i, j) asks for all the occ starting positions of
T [i..j] inside a string T of length n. We can support such query in O(logn + occ) time,
by combining an inverse suffix array query, a string ancestor query, and the extraction
strategy of Lemma 6. Similarly, combining an inverse suffix array query with a lowest
common ancestor query and a string depth query, allows one to compute the longest
common prefix between two given suffixes of T in O(logn) time. Along the same lines,
operation letter(id(v), i), which returns the i-th character of the label of node v of the
suffix tree, can be supported in O(logn) time. We can also implement in constant time
operation deepestNode(id(v)), which returns the identifier of the first node with largest
depth (or string depth) in the subtree of the suffix tree rooted at v [19]. If we choose
not to store the BWT intervals of the nodes of the CDAWG as in the second row of
Tables 1 and 2, we can implement in O(logn) time operation suffixLink(id(v), i), which
returns the identifier of the node of the suffix tree that is reachable from v after taking i
suffix links. This can be done by computing lca(id(u), id(w)), where id(v) = (v′, k, a, b),
id(u) = (z, e, x, x), id(w) = (z, f, y, y), z is the sink of the CDAWG, e = |T |− (SA[a]+ i)+1,
f = |T |−(SA[b]+i)+1, x = ISA[SA[a]+i] and y = ISA[SA[b]+i]. By using the representation
described in [7], we can also support in O(logn) time operations like preorderSelect(i),
postorderSelect(i), preorderRank(v), postorderRank(v), treeLevelSuccessor(v) and

CPM 2017

7:12 Representing the Suffix Tree with the CDAWG

treeLevelPredecessor(v). However, some operations on the topology of the suffix tree are
not yet implemented by our data structures (see e.g. [19]): it would be interesting to know
whether they can be supported efficiently within the same space budget.

Recall from Section 2.4 that our current representation of the suffix tree supports reading
the label of an arc in O(log logn) time per character, using the RLBWT of T . It would be
interesting to know whether this bound can be improved, and whether the RLBWT of T can
be dropped. Another question for further research is whether the ubiquitous O(logn) term
in Table 1 can be reduced while keeping the same asymptotic space budget, or whether a
lower bound makes it impossible, along the lines of [25].

On the applied side, it is not yet clear whether there is a subset of our algorithms that is
practically applicable, and whether it could achieve competitive tradeoffs with respect to
state-of-the-art suffix tree representations for highly repetitive collections. It would also be
interesting to try and use our data structures for tuning specific applications to repetitive
strings in practice, like matching statistics and substring kernels. For example, it turns
out that some weighting functions used in substring kernels are telescoping [24]. Since our
data structures support matching statistics [4], and since the computation of some substring
kernels can be mapped onto matching statistics [24], we can compute some substring kernels
between a fixed T and a query string of length m in O(m logn) time, using a data structure
that takes just O(eT) words of space.

References
1 Andrés Abeliuk, Rodrigo Cánovas, and Gonzalo Navarro. Practical compressed suffix trees.

Algorithms, 6(2):319–351, 2013. doi:10.3390/a6020319.
2 Amihood Amir, Gad M. Landau, Moshe Lewenstein, and Dina Sokol. Dynamic text and

static pattern matching. ACM Trans. Algorithms, 3(2):19, May 2007. doi:10.1145/
1240233.1240242.

3 Djamal Belazzougui, Patrick Hagge Cording, Simon J. Puglisi, and Yasuo Tabei. Access,
rank, and select in grammar-compressed strings. In Nikhil Bansal and Irene Finocchi,
editors, Proceedings of the 23rd Annual European Symposium on Algorithms (ESA 2015),
volume 9294 of LNCS, pages 142–154. Springer, 2015. doi:10.1007/978-3-662-48350-3_
13.

4 Djamal Belazzougui, Fabio Cunial, Travis Gagie, Nicola Prezza, and Mathieu Raffinot.
Composite repetition-aware data structures. In Ferdinando Cicalese, Ely Porat, and Ugo
Vaccaro, editors, Proceedings of the 26th Annual Symposium on Combinatorial Pattern
Matching (CPM 2015), volume 9133 of LNCS, pages 26–39. Springer, Springer, 2015. doi:
10.1007/978-3-319-19929-0_3.

5 Michael A. Bender and Martin Farach-Colton. The level ancestor problem simplified. Theor.
Comput. Sci., 321(1):5–12, 2004. doi:10.1016/j.tcs.2003.05.002.

6 Omer Berkman and Uzi Vishkin. Finding level-ancestors in trees. J. Comput. Syst. Sci.,
48(2):214–230, 1994. doi:10.1016/S0022-0000(05)80002-9.

7 Philip Bille, Gad M. Landau, Rajeev Raman, Kunihiko Sadakane, Srinivasa Rao Satti,
and Oren Weimann. Random access to grammar-compressed strings and trees. SIAM J.
Comput., 44(3):513–539, 2015. doi:10.1137/130936889.

8 Anselm Blumer, Janet Blumer, David Haussler, Ross McConnell, and Andrzej Ehrenfeucht.
Complete inverted files for efficient text retrieval and analysis. J. ACM, 34(3):578–595, 1987.
doi:10.1145/28869.28873.

9 Maxime Crochemore and Renaud Vérin. Direct construction of compact directed acyclic
word graphs. In Alberto Apostolico and Jotun Hein, editors, Proceedings of the 8th Annual
Symposium on Combinatorial Pattern Matching (CPM 1997), volume 1264 of LNCS, pages
116–129. Springer, 1997. doi:10.1007/3-540-63220-4_55.

http://dx.doi.org/10.3390/a6020319
http://dx.doi.org/10.1145/1240233.1240242
http://dx.doi.org/10.1145/1240233.1240242
http://dx.doi.org/10.1007/978-3-662-48350-3_13
http://dx.doi.org/10.1007/978-3-662-48350-3_13
http://dx.doi.org/10.1007/978-3-319-19929-0_3
http://dx.doi.org/10.1007/978-3-319-19929-0_3
http://dx.doi.org/10.1016/j.tcs.2003.05.002
http://dx.doi.org/10.1016/S0022-0000(05)80002-9
http://dx.doi.org/10.1137/130936889
http://dx.doi.org/10.1145/28869.28873
http://dx.doi.org/10.1007/3-540-63220-4_55

D. Belazzougui and F. Cunial 7:13

10 Paolo Ferragina and Giovanni Manzini. Indexing compressed text. J. ACM, 52(4):552–581,
2005. doi:10.1145/1082036.1082039.

11 Travis Gagie. Large alphabets and incompressibility. Inf. Process. Lett., 99(6):246–251,
2006. doi:10.1016/j.ipl.2006.04.008.

12 Rodrigo González, Gonzalo Navarro, and Héctor Ferrada. Locally compressed suffix arrays.
ACM J. Exp. Algorithmics, 19:1–1, 2015. doi:10.1145/2594408.

13 Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Com-
putational Biology. Cambridge University Press, 1997. doi:10.1017/CBO9780511574931.

14 Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. Comput., 13(2):338–355, 1984. doi:10.1137/0213024.

15 Veli Mäkinen and Gonzalo Navarro. Succinct suffix arrays based on run-length encoding.
In Alberto Apostolico, Maxime Crochemore, and Kunsoo Park, editors, Proceedings of the
16th Annual Symposium on Combinatorial Pattern Matching (CPM 2005), volume 3537 of
LNCS, pages 45–56. Springer, Springer, 2005. doi:10.1007/11496656_5.

16 Veli Mäkinen, Gonzalo Navarro, Jouni Sirén, and Niko Välimäki. Storage and retrieval
of highly repetitive sequence collections. J. Comput. Biol., 17(3):281–308, 2010. doi:
10.1089/cmb.2009.0169.

17 Gonzalo Navarro and Alberto Ordóñez Pereira. Faster compressed suffix trees for repetitive
text collections. In Joachim Gudmundsson and Jyrki Katajainen, editors, Proceedings of
the 13th International Symposium on Experimental Algorithms (SEA 2014), volume 8504
of LNCS, pages 424–435. Springer, 2014. doi:10.1007/978-3-319-07959-2_36.

18 Gonzalo Navarro and Luís M. S. Russo. Fast fully-compressed suffix trees. In Ali Bilgin,
Michael W. Marcellin, Joan Serra-Sagristà, and James A. Storer, editors, Proceedings of
the 2014 Data Compression Conference (DCC 2014), pages 283–291. IEEE, IEEE, 2014.
doi:10.1109/DCC.2014.40.

19 Gonzalo Navarro and Kunihiko Sadakane. Fully functional static and dynamic succinct
trees. ACM Trans. Algorithms, 10(3):16, 2014. doi:10.1145/2601073.

20 Mathieu Raffinot. On maximal repeats in strings. Inf. Process. Lett., 80(3):165–169, 2001.
doi:10.1016/S0020-0190(01)00152-1.

21 Luís M. S. Russo, Gonzalo Navarro, and Arlindo L. Oliveira. Fully compressed suffix trees.
ACM Trans. Algorithms, 7(4):53:1–53:34, 2011. doi:10.1145/2000807.2000821.

22 Kunihiko Sadakane. Compressed suffix trees with full functionality. Theory Comput. Syst.,
41(4):589–607, 2007. doi:10.1007/S00224-006-1198-X.

23 Jouni Sirén, Niko Välimäki, Veli Mäkinen, and Gonzalo Navarro. Run-length compressed
indexes are superior for highly repetitive sequence collections. In Amihood Amir, Andrew
Turpin, and Alistair Moffat, editors, Proceedings of the 15th International Symposium on
String Processing and Information Retrieval (SPIRE 2008), volume 5280 of LNCS, pages
164–175. Springer, 2008. doi:10.1007/978-3-540-89097-3_17.

24 Alexander J. Smola and S.V.N. Vishwanathan. Fast kernels for string and tree
matching. In Suzanna Becker, Sebastan Thrun, and Klaus Obermayer, edit-
ors, Advances in Neural Information Processing Systems (NIPS 2002), volume 15,
pages 585–592. MIT Press, 2002. URL: http://papers.nips.cc/paper/
2272-fast-kernels-for-string-and-tree-matching.pdf.

25 Elad Verbin and Wei Yu. Data structure lower bounds on random access to grammar-
compressed strings. In Johannes Fischer and Peter Sanders, editors, Proceedings of the
24th Annual Symposium on Combinatorial Pattern Matching (CPM 2013), volume 7922 of
LNCS, pages 247–258. Springer, Springer, 2013. doi:10.1007/978-3-642-38905-4_24.

26 Dan E. Willard. Log-logarithmic worst-case range queries are possible in space Θ(N). Inf.
Process. Lett., 17(2):81–84, 1983. doi:10.1016/0020-0190(83)90075-3.

CPM 2017

http://dx.doi.org/10.1145/1082036.1082039
http://dx.doi.org/10.1016/j.ipl.2006.04.008
http://dx.doi.org/10.1145/2594408
http://dx.doi.org/10.1017/CBO9780511574931
http://dx.doi.org/10.1137/0213024
http://dx.doi.org/10.1007/11496656_5
http://dx.doi.org/10.1089/cmb.2009.0169
http://dx.doi.org/10.1089/cmb.2009.0169
http://dx.doi.org/10.1007/978-3-319-07959-2_36
http://dx.doi.org/10.1109/DCC.2014.40
http://dx.doi.org/10.1145/2601073
http://dx.doi.org/10.1016/S0020-0190(01)00152-1
http://dx.doi.org/10.1145/2000807.2000821
http://dx.doi.org/10.1007/S00224-006-1198-X
http://dx.doi.org/10.1007/978-3-540-89097-3_17
http://papers.nips.cc/paper/2272-fast-kernels-for-string-and-tree-matching.pdf
http://papers.nips.cc/paper/2272-fast-kernels-for-string-and-tree-matching.pdf
http://dx.doi.org/10.1007/978-3-642-38905-4_24
http://dx.doi.org/10.1016/0020-0190(83)90075-3

Position Heaps for Parameterized Strings∗

Diptarama1, Takashi Katsura2, Yuhei Otomo3,
Kazuyuki Narisawa4, and Ayumi Shinohara5

1 Graduate School of Information Sciences, Tohoku University, Sendai, Japan
diptarama@shino.ecei.tohoku.ac.jp

2 Graduate School of Information Sciences, Tohoku University, Sendai, Japan
katsura@shino.ecei.tohoku.ac.jp

3 Graduate School of Information Sciences, Tohoku University, Sendai, Japan
otomo@shino.ecei.tohoku.ac.jp

4 Graduate School of Information Sciences, Tohoku University, Sendai, Japan
narisawa@ecei.tohoku.ac.jp

5 Graduate School of Information Sciences, Tohoku University, Sendai, Japan
ayumi@ecei.tohoku.ac.jp

Abstract
We propose a new indexing structure for parameterized strings, called parameterized position
heap. Parameterized position heap is applicable for parameterized pattern matching problem,
where the pattern matches a substring of the text if there exists a bijective mapping from the
symbols of the pattern to the symbols of the substring. We propose an online construction
algorithm of parameterized position heap of a text and show that our algorithm runs in linear
time with respect to the text size. We also show that by using parameterized position heap, we
can find all occurrences of a pattern in the text in linear time with respect to the product of the
pattern size and the alphabet size.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases string matching, indexing structure, parameterized pattern matching,
position heap

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.8

1 Introduction

String matching problem is to find occurrences of a pattern string in a text string. Formally,
given a text string t and a pattern string p over an alphabet Σ, output all positions at which
p occurs in t. Suffix tree and suffix array are most widely used data structures and provide
many applications for various string matchings (see e.g. [11, 6]).

Ehrenfeucht et al. [8] proposed an indexing structure for string matching, called a position
heap. Position heap uses less memory than suffix tree does, and provides efficient search
of patterns by preprocessing the text string, similarly to suffix tree and suffix array. A
position heap for a string t is a sequence hash tree [4] for the ordered set of all suffixes
of t. In [8], the suffixes are ordered in the ascending order of length, and the proposed
construction algorithm processes the text from right to left. Later, Kucherov [13] considered
the ordered set of suffixes in the descending order of length and proposed a linear-time

∗ This work is supported by Tohoku University Division for Interdisciplinary Advance Research and
Education, ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office,
Government of Japan), and JSPS KAKENHI Grant Number JP15H05706.

© Diptarama, Takashi Katsura, Yuhei Otomo, Kazuyuki Narisawa, and Ayumi Shinohara;
licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 8; pp. 8:1–8:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 Position Heaps for Parameterized Strings

online construction algorithm based on the Ukkonen’s algorithm [16]. Nakashima et al. [14]
proposed an algorithm to construct a position heap for a set of strings, where the input is
given as a trie of the set. Gagie et al. [10] proposed a position heap with limited height and
showed some relations between position heap and suffix array.

The parameterized pattern matching that focuses on a structure of strings is introduced
by Baker [2]. Let Σ and Π be two disjoint sets of symbols. A string over Σ ∪Π is called a
parameterized string (p-string for short). In the parameterized pattern matching problem,
given p-strings t and p, find positions of substrings of t that can be transformed into p by
applying one-to-one function that renames symbols in Π. The parameterized pattern matching
is motivated by applying to the software maintenance [1, 2, 3], the plagiarism detection [9],
the analysis of gene structure [15], and so on. Similar to the basic string matching problem,
some indexing structures that support the parameterized pattern matching are proposed,
such as parameterized suffix tree [2], structural suffix tree [15], and parameterized suffix
array [7, 12].

In this paper, we propose a new indexing structure called parameterized position heap for
the parameterized pattern matching. The parameterized position heap is a sequence hash tree
for the ordered set of prev-encoded [2] suffixes of a parameterized string. We give an online
construction algorithm of a parameterized position heap based on Kucherov’s algorithm [13]
that runs in O(n log (|Σ|+ |Π|)) time and an algorithm that runs in O(m log (|Σ|+ |Π|) +
m|Π|+ occ) time to find the occurrences of a pattern in the text, where n is the length of the
text, m is the length of the pattern, |Σ| is the number of constant symbols, |Σ| is the number
of parameter symbols, and occ is the number of occurrences of the pattern in the text.

2 Notation

Let Σ and Π be two disjoint sets of symbols. Σ is a set of constant symbols and Π is a set of
parameter symbols. An element of Σ∗ is called a string, and an element of (Σ ∪Π)∗ is called
a parameterized string, or p-string for short. For a p-string w = xyz, x, y, and z are called
prefix, substring, and suffix of w, respectively. |w| denotes the length of w, and w[i] denotes
the i-th symbol of w for 1 ≤ i ≤ |w|. The substring of w that begins at position i and ends
at position j is denoted by w[i : j] for 1 ≤ i ≤ j ≤ |w|. Moreover, let w[: i] = w[1 : i] and
w[i :] = w[i : |w|] for 1 ≤ i ≤ |w|. The empty p-string is denoted by ε, that is |ε| = 0. For
convenience, let w[i : j] = ε if i > j. Let N denote the set of all non-negative integers.

Given two p-strings w1 and w2, w1 and w2 are a parameterized match or p-match, denoted
by w1 ≈ w2, if there exists a bijection f from the symbols of w1 to the symbols of w2, such
that f is identity on the constant symbols [2]. We can determine whether w1 ≈ w2 or not by
using an encoding called prev-encoding defined as follows.

I Definition 1 (Prev-encoding [2]). For a p-string w over Σ ∪ Π, the prev-encoding for w,
denoted by prev(w), is a string x of length |w| over Σ ∪N defined by

x[i] =

w[i] if w[i] ∈ Σ,

0 if w[i] ∈ Π and w[i] 6= w[j] for 1 ≤ j < i,

i−max{j | w[j] = w[i] and 1 ≤ j < i} otherwise.

For any p-strings w1 and w2, w1 ≈ w2 if and only if prev(w1) = prev(w2). For example,
given Σ = {a, b} and Π = {u, v, x, y}, s1 = uvuvauuvb and s2 = xyxyaxxyb are p-matches
where prev(w1) = prev(w2) = 0022a314b.

The parameterized pattern matching is a problem to find occurrences of a p-string pattern
in a p-string text defined as follows.

Diptarama, T. Katsura, Y. Otomo, K. Narisawa, and A. Shinohara 8:3

1. abb

2. ab

3. bba

4. baa

5. aaba

6. baaba

a b

a b a

a

���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������1

���������������������
���������������������
���������������������
���������������������3

����������������������
����������������������
����������������������
����������������������
����������������������4

����������������������
����������������������
����������������������
����������������������6

����������������������
����������������������
����������������������
����������������������
����������������������2

����������������������
����������������������
����������������������
����������������������
����������������������5

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

a b b a a b a a b a a b a b

������������������
������������������
������������������
������������������

����������������������
����������������������
����������������������
����������������������
����������������������

1

����������������������
����������������������
����������������������
����������������������
����������������������

8

���������������������
���������������������
���������������������
���������������������4

���������������������
���������������������
���������������������
���������������������
���������������������
7

���������������������
���������������������
���������������������
���������������������10

5, 13

2, 14

���������������������
���������������������
���������������������
���������������������11

����������������������
����������������������
����������������������
����������������������3

����������������������
����������������������
����������������������
����������������������
����������������������

6

����������������������
����������������������
����������������������
����������������������
����������������������
12

����������������������
����������������������
����������������������
����������������������9

a

a

a

a

a

a

b

b

b

b

b

b

(b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

a b b a a b a a b a a b a b

������������������
������������������
������������������
������������������

���������������������
���������������������
���������������������
���������������������
���������������������

1

����������������������
����������������������
����������������������
����������������������
����������������������

8

����������������������
����������������������
����������������������
����������������������4

����������������������
����������������������
����������������������
����������������������
����������������������

7

����������������������
����������������������
����������������������
����������������������10

5, 13

2, 14

���������������������
���������������������
���������������������
���������������������11

����������������������
����������������������
����������������������
����������������������3

���������������������
���������������������
���������������������
���������������������
���������������������

6

����������������������
����������������������
����������������������
����������������������
����������������������
12

���������������������
���������������������
���������������������
���������������������9

a

a

a

a

a

a

b

b

b

b

b

b

(c)

Figure 1 (a) A sequence hash tree for (aab, ab, bba, baa, aaba, baaba). (b) A position heap for
a string abbaabaabaabab, (c) An augmented position heap for a string abbaabaabaabab. Maximal-
reach pointers for mrp(i) 6= i are illustrated by doublet arrows.

I Definition 2 (Parameterized pattern matching [2]). Given two p-strings, text t and pattern
p, find all positions i in t such that t[i : i + |p| − 1] ≈ p.

For example, let us consider a text t = uvaubuavbv and a pattern p = xayby over Σ = {a, b}
and Π = {u, v, x, y}. Because p ≈ t[2 : 6] and p ≈ t[6 : 10], we should output 2 and 6.

Throughout this paper, let t be a text of length n and p be a pattern of length m.

3 Position Heap

In this section, we briefly review the position heap for strings. First we introduce the sequence
hash tree that is a trie for hashing proposed by Coffman and Eve [4]. Each edge of the
trie is labeled by a symbol and each node can be identified with the string obtained by
concatenating all labels found on the path from root to the node.

I Definition 3 (Sequence Hash Tree). Let W = (w1, . . . , wn) be an ordered set of strings
over Σ and Wi = (w1, . . . , wi) for 1 ≤ i ≤ n. A sequence hash tree SHT (W) = (Vn, En) for
W is a trie over Σ defined recursively as follows. Let SHT (Wi) = (Vi, Ei). Then,

SHT (Wi) =
{

({ε}, ∅) (if i = 0) ,

(Vi−1 ∪ {pi}, Ei−1 ∪ {(qi, c, pi)}) (if 1 ≤ i ≤ n) .

where pi is the shortest prefix of wi such that pi 6∈ Vi−1, and qi = wi[1 : |pi|−1], c = wi[|pi|].
If no such pi exists, then Vi = Vi−1 and Ei = Ei−1.

Each node in a sequence hash tree stores one or several indices of strings in the input set.
An example of a sequence hash tree is shown in Figure 1 (a).

The position heap proposed by Ehrenfeucht et al. [8] is a sequence hash tree for the
ordered set of all suffixes of a string. Two types of position heap are known. The first
one is proposed by Ehrenfeucht et al. [8], that constructed by the ordered set of suffixes in
ascending order of length and the second one is proposed by Kucherov [13], which constructed
in descending order. We adopt the Kucherov [13] type and his online construction algorithm
for constructing position heaps for parameterized strings in Section 4. Here we recall the
definition of the position heap by Kucherov.

I Definition 4 (Position Heap [13]). Given a string t ∈ Σn, let St = (t[1 :], t[2 :], . . . , t[n :])
be the ordered set of all suffixes of t except ε in descending order of length. The position
heap PH (t) for t is SHT (St).

CPM 2017

8:4 Position Heaps for Parameterized Strings

1 2 3 4 5 6 7 8 9 10 11 12 13 14

x a x y x y x y y a x y x y

1 0 a 2 0 2 2 2 2 1 a 4 3 2 2

2 a 0 0 2 2 2 2 1 a 4 3 2 2

3 0 0 2 2 2 2 1 a 4 3 2 2

4 0 0 2 2 2 1 a 4 3 2 2

5 0 0 2 2 1 a 4 3 2 2

6 0 0 2 1 a 4 3 2 2

7 0 0 1 a 4 3 2 2

8 0 1 a 0 3 2 2

9 0 a 0 3 2 2

10 a 0 0 2 2

11 0 0 2 2

12 0 0 2

13 0 0

14 0

������������������
������������������
������������������

3, 13

����������������������
����������������������
����������������������
����������������������6

����������������������
����������������������
����������������������
����������������������2

���������������������
���������������������
���������������������
���������������������
���������������������10

0 a

1, 14

���������������������
���������������������
���������������������
���������������������
���������������������8

���������������������
���������������������
���������������������
���������������������7

����������������������
����������������������
����������������������
����������������������
����������������������9

4, 12

5, 11

0 01

1

1

2

2

a

������������������
������������������
������������������
�������������������

(a)

������������������
������������������
������������������

3, 13

����������������������
����������������������
����������������������
����������������������6

����������������������
����������������������
����������������������
����������������������2

���������������������
���������������������
���������������������
���������������������
���������������������10

0 a

1, 14

���������������������
���������������������
���������������������
���������������������
���������������������8

���������������������
���������������������
���������������������
���������������������7

����������������������
����������������������
����������������������
����������������������
����������������������9

4, 12

5, 11

0 01

1

1

2

2

a

������������������
������������������
������������������
�������������������

(b)

Figure 2 Let Σ = {a}, Π = {x, y} and t = xaxyxyxyyaxyx. (a) A parameterized position heap
PPH (t). Broken arrows denote suffix pointers. (b) An augmented parameterized position heap
APPH (t). Parameterized maximal-reach pointers for pmrp(i) 6= i are illustrated by doublet arrows.

Each node except the root in a position heap stores either one or two integers those
are beginning positions of corresponding suffixes. We call them regular node and double
node respectively. Assume that i and j are positions stored by a double node v in PH (t)
where i < j, i and j are called the primary position and the secondary position respectively.
Figure 1 (b) shows an example of a position heap.

In order to find occurrences of the pattern in O(m + occ) time, Ehrenfeucht et al. [8]
and Kucherov [13] added additional pointer called maximal-reach pointer to the position
heap and called this extended data structure as augmented position heap. An example of an
augmented position heap is showed in Figure 1 (c).

4 Parameterized Position Heap

In this section, we propose a new indexing structure called parameterized position heap. It is
based on the position heap proposed by Kucherov [13].

4.1 Definition and Property of Parameterized Position Heap
The parameterized position heap is a sequence hash tree [4] for the ordered set of prev-encoded
suffixes in the descending order of length.

I Definition 5 (Parameterized Position Heap). Given a p-string t ∈ (Σ ∪ Π)n, let St =
(prev(t[1 :]), prev(t[2 :]), . . . , prev(t[n :])) be the ordered set of all prev-encoded suffixes of the
p-string t except ε in descending order of length. The parameterized position heap PPH (t)
for t is SHT (St).

Figure 2 (a) shows an example of a parameterized position heap. A parameterized position
heap PPH (t) for a p-string t of length n consists of the root and nodes that corresponds to
prev(t[1 :]), prev(t[2 :]), . . . , prev(t[n :]), so PPH (t) has at most n + 1 nodes. Each node in
PPH (t) holds either one or two of beginning positions of corresponding p-suffixes similar to
the standard position heaps. We can specify each node in PPH (t) by its primary position,
its secondary position, or the string obtained by concatenating labels found on the path from
the root to the node.

Different from standard position heap, prev(t[i :]) = prev(t)[i :] does not necessarily hold
for some cases. For example, for t = xaxyxyxyyaxyxy, prev(t[3 :]) = 0022221a4322 while
prev(t)[3 :] = 0222221a4322. Therefore, the construction and matching algorithms for the

Diptarama, T. Katsura, Y. Otomo, K. Narisawa, and A. Shinohara 8:5

standard position heaps cannot be directly applied for the parameterized position heaps.
However, we can similar properties to construct parameterized position heaps efficiently.

I Lemma 6. For i and j, where 1 ≤ i ≤ j ≤ n, if prev(t[i : j]) is represented in PPH (t),
then a prev-encoded string for any substring of t[i : j] is also represented in PPH (t).

Proof. First we will show that prev-encoding of any prefix of t[i : j] is represented in PPH (t).
From the definition of prev-encoding, prev(t[i : j])[1 : i − j] = prev(t[i : j − 1]). In other
words, prev(t[i : j − 1]) is a prefix of prev(t[i : j]). From the definition of PPH (t), prefixes of
prev(t[i : j]) are represented in PPH (t). Therefore, prev(t[i : j − 1]) is represented in PPH (t).
Similarly, prev(t[i : j − 2]), · · · , prev(t[i : i]) are represented in PPH (t).

Next, we will show that prev-encoding of any suffix of t[i : j] is represented in PPH (t).
From the above discussion, there are positions b0 < b1 < · · · < bj−i = i in t such that
prev(t[bk : bk + k]) = prev(t[i : i + k]). From the definition of parameterized position heap,
prev(t[b1 + 1 : b1 + 1]) is represented in PPH (t). Since prev(t[bk + 1 : bk + k]) is a prefix of
prev(t[bk+1 + 1 : bk+1 + k + 1]) for 0 < k < j − i, if prev(t[bk + 1 : bk + k]) is represented in
PPH (t) then prev(t[bk+1 + 1 : bk+1 + k + 1]) is also represented in PPH (t) recursively. There-
fore, prev(t[bj−i + 1 : bj−i + j − i]) = prev(t[i + 1 : j]) is represented in PPH (t). Similarly,
prev(t[i + 2 : j]), · · · , prev(t[j : j]) are represented in PPH (t).

Since any prefix and suffix of prev(t[i : j]) is represented in PPH (t), we can say that any
substring of prev(t[i : j]) is represented in PPH (t) by induction. J

4.2 Online Construction Algorithm of Parameterized Position Heap
In this section, we propose an online algorithm that constructs parameterized position heaps.
Our algorithm is based on Kucherov’s algorithm, although it cannot be applied easily. The
algorithm updates PH (t[1 : k]) to PH (t[1 : k + 1]) when t[k + 1] is read, where 1 ≤ k ≤ n− 1.
Updating of the position heap begins from a special node, called the active node. A position
specified by the active node is called the active position. At first, we show that there exists a
position similar to the active position in the parameterized position heap.

I Lemma 7. If j is a secondary position of a double node in a parameterized position heap,
then j + 1 is also a secondary position.

Proof. Let i be the primary position and j be the secondary position of node v, where i < j.
This means there is a position h such that prev(t[i : h]) = prev(t[j :]). By Lemma 6, there is
a node that represents prev(t[i + 1 : h]). Since prev(t[j + 1 :]) = prev(t[i + 1 : h]), then j + 1
will be the secondary positions of node prev(t[i + 1 : h]). J

Lemma 7 means that there exists a position s which splits all positions in t[1 : n] into two
intervals, similar to the active position in [13]. Positions in [1 : s− 1] and [s : n] are called
primary and secondary positions, respectively. We also call the position s as active position.

Assume we have constructed PPH (t[1 : k]) and we want to construct PPH (t[1 : k + 1])
from PPH (t[1 : k]). The primary positions 1, . . . , s − 1 in PPH (t[1 : k]) become primary
positions also in PPH (t[1 : k + 1]), because prev(t[i : k]) = prev(t[i : k + 1])[1 : k − 1 + 1]
holds for 1 ≤ i ≤ s− 1. Therefore, we do not need to update the primary positions.

On the other hand, the secondary positions s, . . . , k require some modifications. When
inserting a new symbol, two cases can occur. The first case is that prev(t[i : k + 1]) is not
represented in PPH (t[1 : k]). In this case, a new node prev(t[i : k + 1]) is created as a child
node of prev(t[i : k]) and position i becomes the primary position of the new node. The
second case is that prev(t[i : k + 1]) was already represented in PPH (t[1 : k]). In this case,

CPM 2017

8:6 Position Heaps for Parameterized Strings

������������������
������������������
������������������

3,7

���������������������
���������������������
���������������������
���������������������2

0 a

1,8

����������������������
����������������������
����������������������
����������������������
����������������������4

5,6

0
1

2

������������������
������������������
������������������
�������������������

(a)

������������������
������������������
������������������
������������������

3

����������������������
����������������������
����������������������
����������������������
����������������������

6

����������������������
����������������������
����������������������
����������������������2

0 a

1,9

���
���
���
���
���4,8

���������������������
���������������������
���������������������
���������������������7 5

0 1

1 2

������������������
������������������
������������������
�������������������

1

(b)

Figure 3 An example of updating a parameterized position heap, from (a) PPH (xaxyyxyx) to
(b) PPH (xaxyyxyxx). The updated positions are colored red. The secondary positions 6 and 7 in
PPH (xaxyyxyx) are become primary positions in PPH (xaxyyxyxx), while the secondary position
8 in PPH (xaxyyxyx) is become a secondary position of another node in PPH (xaxyyxyxx). The
active position is updated from 6 to 8.

the secondary position i that is stored in prev(t[i : k]) currently should be moved to the child
node prev(t[i : k + 1]), and position i becomes the secondary position of this node.

From Lemma 6, if the node prev(t[i : k]) has an edge to the node prev(t[i : k + 1]),
prev(t[i + 1 : k]) also has an edge to prev(t[i + 1 : k + 1]). Therefore, there exists r, with
1 ≤ s ≤ r ≤ k, that splits the interval [s : k] into two subintervals [s : r − 1] and [r : k], such
that the node prev(t[i : k]) does not have an edge to prev(t[i : k + 1]) for s ≤ i ≤ r − 1, and
does have such an edge for r ≤ i ≤ k.

The above analysis leads to the following lemma that specifies the modifications from
PPH (t[1 : k]) to PPH (t[1 : k + 1]).

I Lemma 8. Given t ∈ (Σ ∪ Π)n, consider PPH (t[1 : k]) for k < n. Let s be the active
position, stored in the node prev(t[s : k]). Let r ≥ s be the smallest position such that node
prev(t[r : k]) has an outgoing edge labeled with prev(t[r : k + 1])[k− r + 2]. PPH (t[1 : k + 1])
can be obtained by modifying PPH (t[1 : k]) in the following way:
1. For each node prev(t[i : k]), s ≤ i < r, create a new child prev(t[i : k + 1]) linked by an

edge labeled prev(t[i : k + 1])[k − i + 2]. Delete the secondary position i from the node
prev(t[i : k]) and assign it as the primary position of the new node prev(t[i : k + 1]),

2. For each node prev(t[i : k]), r ≤ i ≤ k, move the secondary position i from the node
prev(t[i : k]) to the node prev(t[i : k + 1]).

Moreover, r will be the active position in PPH (t[1 : k + 1]).

Proof. Consider the first case that i be a secondary position in PPH (t[1 : k]) and s ≤ i < r.
From the definition of r, there is no node prev(t[i : k + 1]) in PPH (t[i : k]). Therefore, i will
be a primary position of the node prev(t[i : k + 1]) in PPH (t[1 : k + 1]). We can update the
position heap from PPH (t[1 : k]) to PPH (t[1 : k + 1]) by delete i from secondary position
of the node prev(t[i : k]) and create a new node prev(t[i : k + 1]) and assign i to its primary
position for the case s ≤ i < r.

Next case, i be a secondary position in PPH (t[1 : k]) and r ≤ i ≤ k. In this case, there is
a node prev(t[i : k + 1]) in PPH (t[i : k]) and the node prev(t[i : k + 1]) is also represented in
PPH (t[i : k + 1]). Therefore, i will be a secondary position of the node prev(t[i : k + 1]) in

Diptarama, T. Katsura, Y. Otomo, K. Narisawa, and A. Shinohara 8:7

PPH (t[1 : k + 1]). We can update the position heap from PPH (t[1 : k]) to PPH (t[1 : k + 1])
by delete i from secondary position of the node prev(t[i : k]) and assign i as secondary
position of the node prev(t[i : k + 1]) for the case r ≤ i ≤ k.

Since position i for 1 ≤ i < r be a primary position in PPH (t[1 : k + 1]) and position i

for r ≤ i ≤ k + 1 be a secondary position in PPH (t[1 : k + 1]), r will be the active position
in PPH (t[1 : k + 1]). J

Figure 3 show an example of updating a parameterized position heap. The modifications
specified by Lemma 8 need to be applied to all secondary positions. In order to perform
these modifications efficiently, we use parameterized suffix pointers.

I Definition 9 (Parameterized Suffix Pointer). For each node prev(t[i : j]) of PPH (t), the
parameterized suffix pointer of prev(t[i : j]) is defined by psp(prev(t[i : j])) = prev(t[i + 1 : j]).

By Lemma 6, whenever the node prev(t[i : j]) exists, the node prev(t[i + 1 : j]) exists too.
This means that psp(prev(t[i : j])) always exists. During the construction of the parameterized
position heap, let ⊥ be the auxiliary node that works as the parent of root and is connected
to root with an edge labeled with any symbol c ∈ Σ ∪ 0. We define psp(root) = ⊥.

When s is the active position in PPH (t[1 : k]), we call prev(t[s : k]) the active node. If no
node holds a secondary position, root becomes the active node and the active position is set
to k + 1. The nodes for the secondary positions s, s + 1, . . . , k can be visited by traversing
with the suffix pointers from the active node. Thus, the algorithm only has to memorize the
active position and the active node in order to visit any other secondary positions.

Updating PPH (t[1 : k]) to PPH (t[1 : k + 1]) specified by Lemma 8 is processed as the
following procedures. The algorithm traverses with the suffix pointers from the active node
till the node that has the outgoing edge labeled with prev(t[i : k + 1])[k − i + 2] is found,
which is i = r. For each traversed node, a new node is created and linked by an edge
labeled with prev(t[i : k + 1])[k − i + 2] to each node. A suffix pointer to this new node is
set from the previously created node. When the node that has the outgoing edge labeled
with prev(t[i : k + 1])[k − i + 2] is traversed, the algorithm moves to the node that is led to
by this edge, and a suffix pointer to this node is set from the last created node, then the
algorithm assigns this node to be the active node.

A pseudocode of our proposed construction algorithm is given as Algorithm 1. prim(v) and
sec(v) denotes primary and secondary positions of v, respectively. From the property of prev-
encoding, prev(t[i + 1 : k + 1])[k− i + 1] = prev(t[i : k + 1])[k− i + 2] if prev(t[i : k + 1])[k−
i + 2] ∈ Σ or prev(t[i : k + 1])[k− i + 2] ≤ k− i and prev(t[i + 1 : k])[k− i + 1] = 0 otherwise.
Therefore, we use a function normalize(c, j) that returns c if c ∈ Σ or c ≤ j and returns 0
otherwise.

The construction algorithm consists of n iterations. In the i-th iteration, the algorithm
read t[i] and make PPH (t[1 : i]). In the i-th iteration, the traversal of the suffix pointers as
explained above is done. Since the depth of the current node decreases by traversing a suffix
pointer, the number of the nodes that can be visited by traversal is O(n). For each traversed
node, all the operations such as creating a node, an edge and updating position can be done
in O(log (|Σ|+ |Π|)). Therefore, the total time for the traversals is O(n log (|Σ|+ |Π|)).

From the above discussion, the following theorem is obtained.

I Theorem 10. Given t ∈ (Σ ∪Π)n, Algorithm 1 constructs PPH (t) in O(n log (|Σ|+ |Π|))
time and space.

CPM 2017

8:8 Position Heaps for Parameterized Strings

Algorithm 1: Parameterized position heap online construction algorithm
Input: A p-string t ∈ (Σ ∪Π)n

Output: A parameterized position heap PPH (t)
1 create root and ⊥ nodes;
2 psp(root) = ⊥;
3 child(⊥, c) = root for c ∈ Σ ∪ {0};
4 currentNode = root;
5 s = 1;
6 for i = 1 to n do
7 c = normalize(prev(t)[i], depth(currentNode));
8 lastCreateNode = undefined;
9 while child(currentNode, c) = null do

10 create newnode;
11 prim(newnode) = s;
12 child(currentNode, c) = newnode;
13 if lastCreateNode 6= undefined then psp(lastCreateNode) = newnode;
14 lastCreateNode = newnode;
15 currentNode = psp(currentNode);
16 c = normalize(prev(t)[i], depth(currentNode));
17 s = s + 1;
18 currentNode = child(currentNode, c);
19 if lastCreateNode 6= undefined then psp(lastCreateNode) = currentNode;
20 while s ≤ n do
21 sec(currentNode) = s;
22 currentNode = psp(currentNode);
23 s = s + 1;

4.3 Augmented Parameterized Position Heaps
We will describe augmented parameterized position heaps, the parameterized position heaps
with an additional data structure called the parameterized maximal-reach pointers similar to
the maximal-reach pointers for the position heap [8]. The augmented parameterized position
heap gives an efficient algorithm for parameterized pattern matching.

I Definition 11 (Parameterized Maximal-Reach Pointer). For a position i on t, a parameterized
maximal-reach pointer of pmrp(i) is a pointer from node i to the deepest node whose path
label is a prefix of prev(t[i :]).

Obviously, if i is a secondary position, then pmrp(i) is node i itself. We assume that the
parameterized maximal-reach pointer for a double node applies to the primary position of
this node. Figure 2 (b) shows an example of an augmented parameterized position heap.
Given a prev-encoded p-string prev(w) represented in an augmented parameterized position
heap APPH (t) and a position 1 ≤ i ≤ n, we can determine whether prev(w) is a prefix of
prev(t[i :]) or not in O(1) time by checking whether pmrp(i) is a descendant of prev(w) or
not. It can be done in O(1) time by appropriately preprocessing APPH (t) [5].

Parameterized maximal-reach pointers can be computed by using parameterized suffix
pointers, similar to [13]. Algorithm 2 shows an algorithm to compute parameterized maximal-
reach pointers. pmrp(i) is computed iteratively for i = 1, 2, · · · , n. Assume that we have
computed pmrp(i) for some i. Let pmrp(i) = prev(t[i : l]). Obviously, prev(t[i + 1 : l]) is a

Diptarama, T. Katsura, Y. Otomo, K. Narisawa, and A. Shinohara 8:9

Algorithm 2: Augmented parameterized position heap construction algorithm
Input: A p-string t ∈ (Σ ∪Π)n and PPH (t)
Output: An augmented parameterized position heap APPH (t)

1 let t[n + 1] = $ where $ is a symbol that does not appear in t elsewhere;
2 currentNode = root;
3 l = 1;
4 for i = 1 to n do
5 c = normalize(prev(t)[l], l − i);
6 while child(currentNode, c) 6= null do
7 currentNode = child(currentNode, c);
8 l = l + 1;
9 c = normalize(prev(t)[l], l − i);

10 pmrp(i) = currentNode;
11 currentNode = psp(currentNode);

prefix of the string represented by pmrp(i + 1). Thus, in order to compute pmrp(i + 1), we
should extend the prefix prev(t[i + 1 : l]) = psp(prev(t[i : l])) in PPH (t) until we found l′ such
that node prev(t[i + 1 : l′]) does not have outgoing edge labeled with prev(t[i + 1 :])[l′− i + 1]
and set pmrp(i + 1) = prev(t[i + 1 : l′]). In this time, we need re-compute prev(t[i + 1 :]) by
replacing prev(t[i + 1 :])[j] with 0 if we found that prev(t[i + 1 :])[j] ≥ j. The total number
of extending prev(t[i + 1 : l]) in the algorithm is at most n because both i and l always
increase in each iteration. In each iteration, operations such as traversing a child node can
be done in O(log (|Σ|+ |Π|)). Therefore, we can get the following theorem.

I Theorem 12. Parameterized maximal-reach pointers for PPH (t) can be computed in
O(n log (|Σ|+ |Π|)) time.

4.4 Parameterized Pattern Matching with Augmented Parameterized
Position Heaps

Ehrenfeucht et al. [8] and Kucherov [13] split a pattern p into segments q1, q2, · · · , qk, then
compute occurrences of q1q2 · · · qj iteratively for j = 1, · · · , k. The correctness depends
on a simple fact that for strings x = t[i : i + |x| − 1] and y = t[i + |x| : i + |x| + |y| − 1]
implies xy = t[i : i + |xy| − 1]. However, when x, y, and t are p-strings, prev(x) =
prev(t[i : i + |x| − 1]) and prev(y) = prev(t[i + |x| : i + |x|+ |y| − 1]) does not necessarily
implies prev(xy) = prev(t[i : i + |xy| − 1]). Therefore, we need to modify the matching
algorithm for parameterized strings.

Let x, y and w be p-strings such that |w| = |xy|, prev(x) = prev(w[: |x|]) and prev(y) =
prev(w[|x|+ 1 :]). Let us consider the case that prev(xy) 6= prev(w). From prev(x) =
prev(w[: |x|]) and prev(y) = prev(w[|x|+ 1 :]), x and y have the same structure of w[: |x|]
and w[|x|+ 1 :], respectively. However, the parameter symbols those are prev-encoded into
0 in prev(y) and prev(w[|x|+ 1 :]), might be encoded differently in prev(xy) and prev(w),
respectively. Therefore, we need to check whether prev(xy)[|x| + i] = prev(w)[|x| + i] if
prev(y)[i] = 0. Given prev(xy) and the set of positions of 0 in prev(y), Z = {i | 1 ≤ i ≤
|y| such that prev(y)[i] = 0}. We need to verify whether prev(xy)[|x|+ i] = prev(w)[|x|+ i]
or not for i ∈ Z. Since the size of Z is at most |Π|, this computation can be done in O(|Π|)
time.

CPM 2017

8:10 Position Heaps for Parameterized Strings

Algorithm 3: Parameterized pattern matching algorithm with APPH
Input: t ∈ (Σ ∪Π)n , p ∈ (Σ ∪Π)m, and APPH (t)
Output: The list ans of position i such that prev(p) = prev(t[i : i + m− 1])

1 let w be the longest prefix of prev(p) represented in APPH (t) and u be the node
represents w;

2 if |w| = m then
3 v = root;
4 for i = 1 to m do
5 v = child(v, prev(p)[i]);
6 if pmrp(v) ∈ DesAPPH(t)(u) then add prim(v) to ans;
7 add all primary and secondary position of descendants of u to ans;
8 else
9 v = root;

10 i = 1, j = 1;
11 while i ≤ |w| do
12 v = child(v, prev(p)[i]);
13 i = i + 1;
14 if pmrp(v) = u then add prim(v) to ans;
15 while i 6= m do
16 j = i, v = root;
17 Z = empty list;
18 while i 6= m do
19 c = normalize(prev(p)[i], i− j);
20 if child(v, c) = null then break;
21 if c = 0 then add i to Z;
22 v = child(v, c);
23 i = i + 1;
24 if v = root then return empty list;
25 foreach i′ ∈ ans do
26 if i = m then
27 if pmrp(i′ + j − 1) /∈ DesAPPH(t)(v) then remove i′ from ans;
28 else
29 if pmrp(i′ + j − 1) 6= v then remove i′ from ans;
30 for k = 1 to |Z| do
31 if normalize(prev(t)[i′ + Z[k]− 1], Z[k]− 1) 6= prev(p)[Z[k]] then
32 remove i′ from ans;
33 return ans;

A pseudocode of proposed matching algorithm for the parameterized pattern matching
problem is shown in Algorithm 3. DesAPPH(t)(u) denotes the set of all descendants of node
u in APPH (t) including node u itself. The occurrences of p in t have the following properties
on APPH (t).

I Lemma 13. If prev(p) is represented in APPH (t) as a node u then p occurs at position i

iff pmrp(i) is u or its descendant.

Proof. Let u be a node represents prev(p). Assume p occurs at position i in t and represented
in APPH (t) as prev(t[i : k]). Since either prev(t[i : k]) is a prefix of prev(p) or prev(p) is a
prefix of prev(t[i : k]), then i is either an ancestor or descendant of u. For both cases pmrp(i)
is a descendant of u, because p occurs at position i.

Diptarama, T. Katsura, Y. Otomo, K. Narisawa, and A. Shinohara 8:11

������������������
������������������
������������������
������������������

3, 13

���������������������
���������������������
���������������������
���������������������
���������������������6

����������������������
����������������������
����������������������
����������������������2

����������������������
����������������������
����������������������
����������������������
����������������������10

0 a

1, 14

���������������������
���������������������
���������������������
���������������������
���������������������8

���������������������
���������������������
���������������������
���������������������7

����������������������
����������������������
����������������������
����������������������
����������������������9

4, 12

5, 11

0 01

1

1

2

2

a

������������������
������������������
������������������
�������������������

(a)

������������������
������������������
������������������
������������������

3, 13

����������������������
����������������������
����������������������
����������������������
����������������������6

���������������������
���������������������
���������������������
���������������������2

���������������������
���������������������
���������������������
���������������������
���������������������10

0 a

1, 14

���������������������
���������������������
���������������������
���������������������
���������������������8

����������������������
����������������������
����������������������
����������������������7

���������������������
���������������������
���������������������
���������������������
���������������������9

4, 12

5, 11

0 01

1

1

2

2

a

������������������
������������������
������������������
�������������������

������������������
������������������
������������������
������������������

3, 13

���������������������
���������������������
���������������������
���������������������
���������������������6

����������������������
����������������������
����������������������
����������������������2

���������������������
���������������������
���������������������
���������������������
���������������������10

0 a

1, 14

���������������������
���������������������
���������������������
���������������������
���������������������8

���������������������
���������������������
���������������������
���������������������7

����������������������
����������������������
����������������������
����������������������
����������������������9

4, 12

5, 11

0 01

1

1

2

2

a

������������������
������������������
������������������
�������������������

(b)

Figure 4 Examples of finding occurrence positions of a pattern using an augmented parameterized
position heap PPH (xaxyxyxyyaxyxy). (a) Finding xyxy (prev(xyxy) = 0022). (b) Finding axyx

(prev(axyx) = a002).

Next let i be a node such that pmrp(i) is a descendant of u and represents prev(t[i : k]).
In this case, prev(p) is a prefix of prev(t[i : k]). Therefore p occurs at i. J

I Lemma 14. Assume prev(p) is not represented in APPH (t). We can split p into
q1, q2, · · · , qk such that qj is the longest prefix of prev(p[|q1 · · · qj−1|+ 1 :]) that is represented
in APPH (t). If p occurs at position i in t, then pmrp(i + |q1 · · · qj−1|) is the node prev(qj)
for 1 ≤ j < k and pmrp(i + |q1 · · · qk−1|) is the node prev(qk) or its descendant.

Proof. Let p = q1q2 · · · qk occurs at position i in t. Since prev(q1) is a prefix of prev(p), then
pmrp(i) is the node that represents prev(q1) or its descendant. However, if pmrp(i) is a
descendant of node prev(q1), then we can extend q1 which contradicts with the definition of
q1. Therefore, pmrp(i) is the node represents prev(q1).

Similarly for 1 < j < k, prev(qj) is a prefix of prev(p[|q1 · · · qj−1|+ 1 :]) and occurs at
position i + |q1 · · · qj−1| in t. Therefore, pmrp(i + |q1 · · · qj−1|) is the node represents prev(qj).
Last, since qk is a suffix of p, then pmrp(i + |q1 · · · qj−1|) can be the node prev(qk) or its
descendant. J

Algorithm 3 utilizes Lemmas 13 and 14 to find occurrences of p in t by using APPH (t).
First, if prev(p) is represented in APPH (t) then the algorithm will output all position i such
that pmrp(i) is a node prev(p) or its descendant. Otherwise, it will split p into q1q2 · · · qk

and find their occurrences as described in Lemma 14. The algorithm also checks whether
prev(q1 · · · qj) occurs in t or not in each iteration as described the above.

Examples of parameterized pattern matching by using an augmented position heap are
given in Figure 4. Let t = xaxyxyxyyaxyxy be the text. In Figure 4 (a) we want to find
the occurrence positions of a pattern p1 = xyxy in t. In this case, since prev(p1) = 0022 is
represented in PPH (t), The algorithm outputs all positions i such that pmrp(i) is the node
0022 or its descendants, those are 3, 4, 5, and 11. On the other hand, Figure 4 (b) shows how to
find the occurrence positions of a pattern p2 = axyx in t. In this case, prev(p2) = a002 is not
represented in PPH (t). Therefore, The algorithm finds the longest prefix of prev(p2) that is
represented in PPH (i), which is prev(p2)[1 : 2] = a0. We can see that prmp(2) = pmrp(10) =
a0, then we save positions 2 and 10 as candidates to ans. Next, The algorithm finds the
node that represents the longest prefix of prev(p2[3 :]) = 00 which is prev(p2[3 :]) = 00 itself.
Since both of pmrp(2 + |p2[1 : 2]|) = pmrp(4) and pmrp(10 + |p2[1 : 2])| = pmrp(12) is
descendants of the node 00, prev(t[2 : 5][3]) = prev(t[10 : 13][3]) = prev(p2)[[3]] = 0, and
prev(t[2 : 5][4]) = prev(t[10 : 13][4]) = prev(p2)[4] = 2, then the algorithm outputs 2 and 10.

CPM 2017

8:12 Position Heaps for Parameterized Strings

The time complexity of the matching algorithm is as follow.

I Theorem 15. Algorithm 3 runs in O(m log (|Σ|+ |Π|) + m|Π|+ occ) time.

Proof. It is easily seen that we can compute line 4 to 7 in O(m log (|Σ|+ |Π|) + occ) time.
Assume that p can be decomposed into q1, q2, · · · , qk such that q1 is the longest prefix of p

and qi is the longest prefix of prev(p[|q1 · · · qj−1|+ 1 :]) represented in APPH (t). The loop
for line 15 consists of k − 1 iterations. In the loop line 18 in j-th iteration, qj+1 is extended
up to reach |qj+1| length. This can be computed in O(|qj+1| log (|Σ|+ |Π|)) time. After k− 1
iterations, the total number of extending of qj+1 does not exceed m, because Σk

j=2|qj | < m.
In the loop for line 25, the algorithm verifies elements of ans. In j-th iteration, the size of
ans is at most |qj |. Thus, after k − 1 iterations, the total number of elements verified in
line 25 does not exceed m by the same reason for that of line 18. In each verification in
line 25, the number of checks for line 27 and 29 is at most |qj |. Therefore, it can be computed
from line 25 to 32 in O(m|Π|) time. J

5 Conclusion and Future Work

For the parameterized pattern matching problem, we proposed an indexing structure called
a parameterized position heap. Given a p-string t of length n over a constant size alphabet,
the parameterized position heap for t can be constructed in O(n log (|Σ|+ |Π|)) time by
our construction algorithm. We also proposed an algorithm for the parameterized pattern
matching problem. It can be computed in O(m log (|Σ|+ |Π|) + m|Π| + occ) time using
parameterized position heaps with parameterized maximal-reach pointers. Gagie et al. [10]
showed an interesting relationship between position heap and suffix array of a string. We will
examine this relation for parameterized position heap and parameterized suffix array [7, 12]
as a future work.

References
1 Brenda S. Baker. A program for identifying duplicated code. In H. Joseph Newton, editor,

Proceedings of the 24th Symposium on the Interface of Computing Science and Statistics:
Graphics and Visualization, volume 24, pages 49–57. Interface Foundation of North America,
1992. URL: http://www.dtic.mil/dtic/tr/fulltext/u2/a266571.pdf.

2 Brenda S. Baker. A theory of parameterized pattern matching: algorithms and applications.
In S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal, editors, Proceedings of the 25th
Annual ACM Symposium on Theory of Computing (STOC 1993), pages 71–80. ACM, 1993.
doi:10.1145/167088.167115.

3 Brenda S. Baker. Parameterized pattern matching: Algorithms and applications. J. Com-
put. Syst. Sci., 52(1):28–42, 1996. doi:10.1006/jcss.1996.0003.

4 Edward G. Coffman Jr. and James Eve. File structures using hashing functions. Commun.
ACM, 13(7):427–432, 1970. doi:10.1145/362686.362693.

5 Thomas H. Cormen, Charies E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-
troduction to Algorithms. MIT press, 2009. URL: https://mitpress.mit.edu/books/
introduction-algorithms.

6 Maxime Crochemore and Wojciech Rytter. Jewels of Stringology: Text Algorithms. World
Scientific, 2002. doi:10.1142/9789812778222.

7 Satoshi Deguchi, Fumihito Higashijima, Hideo Bannai, Shunsuke Inenaga, and Masayuki
Takeda. Parameterized suffix arrays for binary strings. In Jan Holub and Jan Zdárek, edit-
ors, Proceedings of the Prague Stringology Conference 2008, pages 84–94, Czech Technical

http://www.dtic.mil/dtic/tr/fulltext/u2/a266571.pdf
http://dx.doi.org/10.1145/167088.167115
http://dx.doi.org/10.1006/jcss.1996.0003
http://dx.doi.org/10.1145/362686.362693
https://mitpress.mit.edu/books/introduction-algorithms
https://mitpress.mit.edu/books/introduction-algorithms
http://dx.doi.org/10.1142/9789812778222

Diptarama, T. Katsura, Y. Otomo, K. Narisawa, and A. Shinohara 8:13

University in Prague, Czech Republic, 2008. URL: http://www.stringology.org/event/
2008/p08.html.

8 Andrzej Ehrenfeucht, Ross M. McConnell, Nissa Osheim, and Sung-Whan Woo. Posi-
tion heaps: A simple and dynamic text indexing data structure. J. Discrete Algorithms,
9(1):100–121, 2011. doi:10.1016/j.jda.2010.12.001.

9 Kimmo Fredriksson and Maxim Mozgovoy. Efficient parameterized string matching. Inf.
Process. Lett., 100(3):91–96, 2006. doi:10.1016/j.ipl.2006.06.009.

10 Travis Gagie, Wing-Kai Hon, and Tsung-Han Ku. New algorithms for position heaps. In
Johannes Fischer and Peter Sanders, editors, Proceedings of the 24th Annual Symposium on
Combinatorial Pattern Matching (CPM 2013), volume 7922 of LNCS, pages 95–106, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg. doi:10.1007/978-3-642-38905-4_11.

11 Dan Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and Com-
putational Biology. Cambridge University Press, 1997. doi:10.1017/CBO9780511574931.

12 Tomohiro I, Satoshi Deguchi, Hideo Bannai, Shunsuke Inenaga, and Masayuki Takeda.
Lightweight parameterized suffix array construction. In Jirí Fiala, Jan Kratochvíl, and
Mirka Miller, editors, Proceedings of the 20th International Workshop on Combinatorial
Algorithms (IWOCA 2009), volume 5874 of LNCS, pages 312–323, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg. doi:10.1007/978-3-642-10217-2_31.

13 Gregory Kucherov. On-line construction of position heaps. J. Discrete Algorithms, 20:3–11,
2013. StringMasters 2011 Special Issue. doi:10.1016/j.jda.2012.08.002.

14 Yuto Nakashima, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
The position heap of a trie. In Liliana Calderón-Benavides, Cristina N. González-Caro,
Edgar Chávez, and Nivio Ziviani, editors, Proceedings of the 19th International Sym-
posium on String Processing and Information Retrieval (SPIRE 2012), volume 7608 of
LNCS, pages 360–371, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. doi:10.1007/
978-3-642-34109-0_38.

15 Tetsuo Shibuya. Generalization of a suffix tree for RNA structural pattern matching. Al-
gorithmica, 39(1):1–19, 2004. doi:10.1007/s00453-003-1067-9.

16 Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.
doi:10.1007/BF01206331.

CPM 2017

http://www.stringology.org/event/2008/p08.html
http://www.stringology.org/event/2008/p08.html
http://dx.doi.org/10.1016/j.jda.2010.12.001
http://dx.doi.org/10.1016/j.ipl.2006.06.009
http://dx.doi.org/10.1007/978-3-642-38905-4_11
http://dx.doi.org/10.1017/CBO9780511574931
http://dx.doi.org/10.1007/978-3-642-10217-2_31
http://dx.doi.org/10.1016/j.jda.2012.08.002
http://dx.doi.org/10.1007/978-3-642-34109-0_38
http://dx.doi.org/10.1007/978-3-642-34109-0_38
http://dx.doi.org/10.1007/s00453-003-1067-9
http://dx.doi.org/10.1007/BF01206331

On-Line Pattern Matching on Similar Texts∗

Roberto Grossi1, Costas S. Iliopoulos2, Chang Liu3, Nadia Pisanti4,
Solon P. Pissis5, Ahmad Retha6, Giovanna Rosone7,
Fatima Vayani8, and Luca Versari9

1 Department of Computer Science, University of Pisa, Italy; and
ERABLE Team, INRIA, France
grossi@di.unipi.it

2 Department of Informatics, King’s College London, London, UK
c.iliopoulos@kcl.ac.uk

3 Department of Informatics, King’s College London, London, UK
chang.2.liu@kcl.ac.uk

4 Department of Computer Science, University of Pisa, Italy; and
ERABLE Team, INRIA, France
pisanti@di.unipi.it

5 Department of Informatics, King’s College London, London, UK
solon.pissis@kcl.ac.uk

6 Department of Informatics, King’s College London, London, UK
ahmad.retha@kcl.ac.uk

7 Department of Computer Science, University of Pisa, Pisa, Italy; and
Department of Mathematical and Computer Science, University of Palermo,
Palermo, Italy
giovanna.rosone@unipi.it

8 Department of Informatics, King’s College London, London, UK
fatima.vayani@kcl.ac.uk

9 Scuola Normale Superiore, Pisa, Italy
luca.versari@sns.it

Abstract
Pattern matching on a set of similar texts has received much attention, especially recently, mainly
due to its application in cataloguing human genetic variation. In particular, many different
algorithms have been proposed for the off-line version of this problem; that is, constructing a
compressed index for a set of similar texts in order to answer pattern matching queries efficiently.
However, the on-line, more fundamental, version of this problem is a rather undeveloped topic.
Solutions to the on-line version can be beneficial for a number of reasons; for instance, efficient
on-line solutions can be used in combination with partial indexes as practical trade-offs. We
make here an attempt to close this gap via proposing two efficient algorithms for this problem.
Notably, one of the algorithms requires time linear in the size of the texts’ representation, for
short patterns. Furthermore, experimental results confirm our theoretical findings in practical
terms.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

∗ Roberto Grossi, Nadia Pisanti, and Giovanna Rosone are partially supported by the project UniPi
PRA_2017_44 (“Advanced computational methodologies for the analysis of biomedical data”). Costas
S. Iliopoulos is partially supported by the Onassis Foundation. Ahmad Retha is supported by the
Graduate Teaching Scholarship scheme of the Department of Informatics at King’s College London.
Giovanna Rosone is partially supported by the project MIUR-SIR CMACBioSeq (“Combinatorial
methods for analysis and compression of biological sequences”) grant n. RBSI146R5L. Fatima Vayani is
supported by an EPSRC Grant (Doctoral Training Grant #EP/M506357/1).

© Roberto Grossi, Costas S. Iliopoulos, Chang Liu, Nadia Pisanti, Solon P. Pissis, Ahmad Retha,
Giovanna Rosone, Fatima Vayani, and Luca Versari;
licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 9; pp. 9:1–9:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2 On-Line Pattern Matching on Similar Texts

Keywords and phrases string algorithms, pattern matching, degenerate strings, elastic-degenerate
strings, on-line algorithms

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.9

1 Introduction

It is possible to represent closely related sequences that have been aligned using a multiple
sequence alignment (MSA) algorithm into one compacted form, that is able to represent the
non-polymorphic sites (columns) of the MSA, as well as the polymorphic ones [10]. This
representation compresses maximal sequences of non-polymorphic sites, while the polymorphic
ones, containing substitutions, insertions, and deletions of letters, are represented as a set
containing all possible variants observed at that location. Consider, for instance, the following:

ATGCAACGGGTA--TTTTA
ATGCAACGGGTATATTTTA
ATGCACCTGG----TTTTA

These sequences can be compacted into a single string T̃ containing some deterministic and
some non-deterministic segments. Note that a non-deterministic segment is a finite set of
deterministic strings and may contain an empty string ε corresponding to a deletion. The
total number of segments is the length of T̃ and the total number of letters is the size of T̃ .

T̃ =
{

ATGCA
}
·
{

A
C

}
·
{

C
}
·
{

G
T

}
·
{

GG
}
·

TA

TATA
ε

 · { TTTTA
}

This representation has been defined in [11] as an elastic-degenerate text. The natural
problem that arises is finding all matches of a deterministic pattern P in text T̃ . We call
this the Elastic-Degenerate String Matching (EDSM) problem. The simplest version
of this problem assumes that a degenerate segment can contain only single letters [9].

An elastic-degenerate text can represent, for example, a set of closely-related DNA
sequences. For instance, a pan-genome [18, 24, 12, 21] is a reference sequence which is not
just a single genome, but the result of an MSA of several of them that share large consensus
regions and also exhibit differences at some positions. Recently, various data structures
to store pan-genomes have been suggested [8, 4]. In particular, due to the application of
cataloguing human genetic variation [23], there has been ample work in the literature on the
off-line (indexing) version of the pattern matching problem [10, 14, 22, 15, 16]. In literature,
there are also algorithms and applications for the problem of inferring motifs from degenerate
input texts [20, 19]. However, to the best of our knowledge, the on-line, more fundamental,
version of the EDSM problem has not been studied as much as indexing approaches. Solutions
to the on-line version can be beneficial for a number of reasons: (a) efficient on-line solutions
can be used in combination with partial indexes as practical trade-offs; (b) efficient on-line
solutions for exact pattern matching can be applied for fast average-case approximate pattern
matching, similar to standard strings [3]; (c) on-line solutions can be useful when one wants
to search for a set of patterns in elastic-degenerate texts, similar to standard strings [1, 2].

Our Contributions. Let us denote by m the length of pattern P , by n the length of T̃ , and
by N > m the size of T̃ (see Section 2 for definitions). In [11], an algorithm for solving the
EDSM problem in time O(αγmn+N) and space O(N) was presented; where α and γ are
parameters, respectively representing the maximum number of strings in any degenerate

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.9

R. Grossi et al. 9:3

segment of the text and the maximum number of degenerate segments spanned by any
occurrence of the pattern in the text. In this paper, we improve the state-of-the-art; we
present two new algorithms to solve the same problem in an on-line manner. The first
one requires time O(nm2 +N) after a preprocessing stage with time and space O(m); the
second algorithm requires time O(N · dm

w e) after a preprocessing stage with time and space
O(m · dm

w e), where w is the size of the computer word in the RAM model. Thus, the second
algorithm requires time linear in the size of the texts’ representation, for short patterns.
Finally, we present experiments confirming our theoretical findings in practical terms.

2 Definitions

We begin with a few definitions, generally following [5]. An alphabet Σ is a non-empty
finite set of letters of size |Σ|. A (deterministic) string on a given alphabet Σ is a finite
sequence of letters of Σ. For this work, we assume that the alphabet is fixed, i.e. |Σ| = O(1).
The length of a string x is denoted by |x|. For two positions i and j on x, we denote by
x[i . . j] = x[i] . . x[j] the factor (sometimes called substring) of x that starts at position i and
ends at position j (it is empty if j < i), and by ε we denote the empty string. The set of all
strings on an alphabet Σ (including the empty string ε) is denoted by Σ∗. For any string
y = uxv, where u and v are strings, if u = ε then x is a prefix of y. Similarly, if v = ε then
x is a suffix of y. We say that x is a proper factor (resp. prefix/suffix) of y if x is a factor
(resp. prefix/suffix) of y distinct from y. By Bu,v we denote the set containing all indices i,
such that the prefix u[0 . . i] of string u is also a suffix of string v.

I Example 1. Suppose we have two strings u = ATATG and v = CATAT. Then Bu,v = {1, 3}
because of prefix/suffix AT and prefix/suffix ATAT, respectively.

An elastic-degenerate string (ED string) X̃ = X̃[0]X̃[1] . . . X̃[n− 1], of length n, on an
alphabet Σ, is a finite sequence of n degenerate letters. Every degenerate letter X̃[i], for all
0 ≤ i < n, is a non-empty set of strings X̃[i][j], with 0 ≤ j < |X̃[i]|, where each X̃[i][j] is a
deterministic string on Σ. The total size of X̃ is defined as

N =
n−1∑
i=0

|X̃[i]|−1∑
j=0

|X̃[i][j]|.

Only for the purpose of computing N , |ε| = 1. We remark that, for an ED string X̃, the size
and the length are two distinct concepts (see Example 2).

We say that a string Y matches an ED string X̃ = X̃[0] . . . X̃[m′ − 1] of length m′ > 1,
denoted by Y ≈ X̃, if and only if string Y can be decomposed into y0 . . . ym′−1, yi ∈ Σ∗,
such that:
1. there exists a string s ∈ X̃[0] such that a suffix of s is y0 6= ε;
2. if m′ > 2, there exists s ∈ X̃[i], for all 1 ≤ i ≤ m′ − 2, such that s = yi;
3. there exists a string s ∈ X̃[m′ − 1] such that a prefix of s is ym′−1 6= ε.

Note that, in the above definition, we require that both y0 and ym′−1 are non-empty
to avoid spurious matches at the beginning or end of an occurrence. A string Y is said to
have an occurrence ending at position j in an ED string T̃ if there exist i < j such that
T̃ [i] . . . T̃ [j] ≈ Y , or, if there exists s ∈ T̃ [j] such that Y occurs in s.

I Example 2 (Running example). Suppose we have a pattern P = ACACA, of length m = 5,
and an ED string T̃ , of length n = 6 and size N = 18; the first occurrence of P starts at

CPM 2017

9:4 On-Line Pattern Matching on Similar Texts

position 1 and ends at position 2 of T̃ ; and the second one starts at position 2 and ends at
position 4.

T̃ =
{

C
}
·
{

A
C

}
·

AC
ACC
CACA

 ·
{

C
ε

}
·
{

A
AC

}
·
{

C
}

We are now in a position to formally define the main problem of this paper.

Elastic-Degenerate String Matching (EDSM)
Input: a string P , of length m, and an ED string T̃ , of length n and size N ≥ m
Output: all positions j in T̃ where at least one occurrence of P ends

3 Algorithmic Tools

The suffix tree ST y of a string y, of length n > 0, is a compact trie representing all suffixes
of y. The nodes of the trie which become nodes of the suffix tree are called explicit nodes,
while the other nodes are called implicit. Each edge of the suffix tree can be viewed as an
upward maximal path of implicit nodes starting with an explicit node. Moreover, each node
belongs to a unique path of that kind. Thus, each node of the trie can be represented in the
suffix tree by the edge it belongs to and an index within the corresponding path. We let
P(v) denote the path-label of a node v, that is, the concatenation of the edge labels along
the path from the root to v. We say that v is path-labelled P(v). Node v is marked as a
terminal node if its path-label is a suffix of y, that is, P(v) = y[i . . n− 1] for some 0 ≤ i < n.
Note that v is also labelled with index i. Thus, each factor of y is uniquely represented by
an explicit or an implicit node of ST y. More details on suffix trees can be found in [7, 5].

I Fact 3 ([6, 5]). Given a string y of length n, ST y can be constructed in time and space
O(n). Finding all Occx occurrences of a string x, of length m, in y can be performed in time
O(m+ Occx) using ST y.

A border of a non-empty string x is a proper factor of x that is both a prefix and a
suffix of x. We introduce the function border(x) defined for every non-empty string x as
the longest border of x. Let x be a string of length m ≥ 1. We define the border table B:
{0, 1, . . . ,m− 1} → {0, 1, . . . ,m− 1} by B[k] = |border(x[0 . . k])|, for k = 0, 1, . . . ,m− 1.

I Fact 4 ([13, 5]). Given a string x of length m, the border table of x can be computed
on-line in time O(m). All borders of x can be specified within the same time complexity using
the border table.

We remark that the border table and the notion of border refer to a proper prefix and a
proper suffix of the same string, whereas the indexes in set Bx,y refer to a string which is a
prefix of a string (x) and a suffix of another (y), and that is not necessarily proper.

I Lemma 5. Given a string x, of length m, and the suffix tree ST y of a string y, of length
n, Bx,y can be computed in time O(m).

Proof. By applying Fact 3, we traverse ST y to find the terminal node v corresponding to
the longest prefix of x, which is path-labelled P(v). While traversing ST y with x, we add
index n− i− 1 to Bx,y if we encounter a terminal node u, such that P(u) = y[i . . n− 1]. The
longest such prefix of x is of length at most m. No longer prefix of x can be a suffix of y as
it does not occur in y. J

R. Grossi et al. 9:5

4 Algorithm

An ED string can always represent an exponential number of strings (per ending position),
where the exact number is the product of the number of deterministic strings at previous
positions. Searching a pattern in all these strings separately is thus not acceptable.

Main idea. Our algorithm has a preprocessing phase where we build the suffix tree of the
pattern P (Line 2 in pseudocode below). Then, in an on-line manner, we scan T̃ from left to
right and, for each T̃ [i], we:
1. memorise the prefixes of the pattern that occur as suffixes of some s ∈ T̃ [i] (Lines 5 & 12

in pseudocode);
2. check whether at T̃ [i] it is possible to extend a partial occurrence of the pattern which

has started earlier in the ED text (Lines 13− 16 in pseudocode);
3. in both previous cases we finally check whether a full occurrence of P actually also ends

in T̃ [i] (Lines 6− 8 & 17− 22 in pseudocode).
We perform these steps by computing and storing, for each 0 ≤ i < n, the list Li of the
rightmost positions of prefixes of P that occur at the end of T̃ [i]. Below, we formally present
Algorithm EDSM that solves the EDSM in an on-line manner. Note that by Insert(A,L),
we denote the operation that inserts the elements of a set A into a linked-list L.

1 Algorithm EDSM(P, m, T̃ , n)
2 Construct ST P ;
3 L0 ← EmptyList();
4 foreach S ∈ T̃ [0] do
5 Compute BP,S using the border table; Insert(BP,S ,L0);
6 if |S| ≥ m then
7 Search P in S using KMP and
8 report 0 if P occurs in S and CheckDuplicate(0);
9 foreach i ∈ [1, n− 1] do

10 Li ← EmptyList();
11 foreach S ∈ T̃ [i] do
12 Compute BP,S using the border table; Insert(BP,S ,Li);
13 if |S| < m then
14 Search S in P using ST P ; denote starting positions by A;
15 foreach (p ∈ Li−1, j ∈ A) such that p + 1 = j do
16 Insert({p + |S|},Li);
17 if |S| ≥ m then
18 Search P in S using KMP and
19 report i if P occurs in S and CheckDuplicate(i);
20 Compute BS,P using ST P ;
21 if there exists (p ∈ Li−1, j ∈ BS,P) such that p + j + 2 = m

then
22 Report i if CheckDuplicate(i);

Example 6 shows Steps (1) and (2) on the running example. The border table shown in
Example 6 has to be computed for all text positions, leading to the overall complexity stated
in Lemma 7.

CPM 2017

9:6 On-Line Pattern Matching on Similar Texts

I Example 6 (Running example). Let us consider again P = ACACA and T̃ of Example 2.
Assume we have already computed L0 and L1, and we move to position i = 2, where at T̃ [i]
we have three strings {S0, S1, S2}, with S0 = AC, S1 = ACC, and S2 = CACA. We generate the
string Xi = X2 = P$0S0$1S1$2S2 = ACACA$0AC$1ACC$2CACA and build its border table B
(Line 12 in pseudocode).

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
X2[k] A C A C A $0 A C $1 A C C $2 C A C A
B[k] 0 0 1 2 3 0 1 2 0 1 2 0 0 0 1 2 3

In order to compute BP,S (Line 12), we read B[7] = 2, which gives the length of the longest
string that is a prefix of P and a suffix of S0. To check if there exist borders of length shorter
than 2, we read B[2− 1] = 0, indicating that no shorter border exists. Therefore, we have
BP,S0 = {1}. We then read B[11] = 0, telling us that no prefix of P is a suffix of S1, and
hence BP,S1 = ∅. We read B[16] = 3, which gives the length of the longest string that is a
prefix of P and a suffix of S2. To check if there exist shorter borders, we read B[3− 1] = 1,
indicating that a shorter border of length 1 exists. Since B[1 − 1] = 0, no shorter border
exists. Therefore, we have BP,S2 = {0, 2}. This gives us a partial Li = {0, 1, 2} for position
i = 2 that concludes Step 1 for position i = 2 (Insert(BP,S ,Li), Line 12). Further on, at
Step 2, we will add position 4 to L2 by extending the occurrence of P that had started
at T̃ [1]. Putting everything together, we get L2 = {0, 1, 2, 4} (Insert({p+ |S|},Li), Lines
15− 16).

I Lemma 7. Given P , of length m, and T̃ , of length n and size N , the sets BP,S with
S ∈ T̃ [i], for all i ∈ [0, n− 1], can be computed in time O(N).

Proof. For each position i, we generate a string Xi = P$0S0$1S1$2S2 . . . $k−1Sk−1, where
Sj ∈ T̃ [i], 0 ≤ j < k, and $j ’s are distinct letters not in Σ. We build the border table B
of string Xi. By traversing B from left to right we can compute sets BP,Sj . Specifically,
for any string Sj , all borders that are suffixes of Sj and prefixes of P can be computed in
time O(|Sj |), since there exist at most |Sj | such borders. By Fact 4, we can build all border
tables, and hence compute all BP,Sj

, for all Sj ∈ T̃ [i], in time O(|P |+
∑k−1

j=0 |Sj |). Since the
length and the total size of T̃ are n and N , respectively, sets BP,Sj

can be computed in time
O(nm+N). By noting that the border table for P can be computed only once and that the
border table computation can be done on-line (Fact 4), the whole computation is bounded
by O(N). J

I Lemma 8. Given P , ST P , and T̃ of length n and size N , the sets BS,P , S ∈ T̃ [i], for all
i ∈ [1, n− 1], can be computed in time O(N).

Proof. By Lemma 5, for any S ∈ T̃ [i], |S| ≤ |P |, BS,P can be computed in time O(|S|) using
ST P . Since the total size of T̃ is N , sets BS,P can be computed in time O(N). J

I Lemma 9. Lists Li, for all i ∈ [0, n− 1], in Algorithm EDSM can be computed in time
O(nm2 +N).

Proof. List L0 consists of the elements of BP,S for position 0, which by Lemma 7 can be
done within time O(N). For pattern P of length m, there exist at most m(m+1)

2 factors. For
the strings Sj ∈ T̃ [i], |Sj | ≤ m, 0 ≤ j < k, we can find at most m(m+1)

2 = O(m2) occurrences
in pattern P . By Fact 3, finding all occurrences can be done in time

∑k−1
j=0 (|Sj |+ OccSj

),
and this is bounded by O(nm2 +N) for all positions i. This is because, by definition, no
Sj , Sj′ ∈ T̃ [i] exist such that Sj = Sj′ . Each occurrence can cause only one extension from

R. Grossi et al. 9:7

Li−1 to Li. To avoid duplicates in Li, we need to check if there exist more than one prefix
extensions ending at the same position. Each check can be done in constant time using a
bit vector of size m, which we set on only once per position i. Therefore, we can extend the
prefixes in time O(m2) for each position i, and in time O(nm2) for the whole text T̃ of length
n. By Lemma 7, sets BP,S corresponding to new prefixes of pattern P which are suffixes
of {S0, S1, . . . , Sk−1} at position T̃ [i] can be found in time O(N). Merging new prefixes
with the prefixes extended from Li−1 can be done in time O(m), since both are at most m.
Therefore, lists Li, for all i ∈ [0, n− 1], in EDSM can be computed in time O(nm2 +N). J

Example 10 shows Step (3) on our running example.

I Example 10 (Running example). Let us consider again P = ACACA and T̃ of Example 2.
For position i = 4, we have L3 = {1, 3} and we have to compute L4. For S0 = A, we have
BA,ACACA = {0} (Line 20), so for 3 ∈ L3, we have that 3 + 0 + 2 = 5 = m (Line 21). Hence,
one occurrence of P has been found. Moreover, for S1 = AC, we have BAC,ACACA = {0, 1} (Line
20), so for 3 ∈ L3, we have that 3 + 0 + 2 = 5 = m (Line 21). Therefore, another occurrence
of P has been found at the same position.

Since Algorithm EDSM reports all positions i in T̃ where at least one occurrence of P ends,
and since more than one occurrence may end at the same position (as in Example 10), we
need to avoid duplications. To this end, we can use a simple operation to check whether the
current position i has already been reported (CheckDuplicate(i), Lines 8, 19, & 22).

I Theorem 11. Algorithm EDSM solves the EDSM problem in an on-line manner in time
O(nm2 +N). Algorithm EDSM requires preprocessing time and space O(m).

Proof. The correctness of the algorithm follows from the correctness of the KMP al-
gorithm [13] if |S| > m, S ∈ T̃ [i], and from the combination of Lemmas 8 and 9, if
|S| ≤ m. By definition, we cannot have any other type of (ending) occurrence.

By Fact 3, the suffix tree ST P can be computed in time and space O(m). By Lemma 9,
lists Li, for all i ∈ [0, n− 1], can be computed in time O(nm2 +N). By Lemma 8, sets BS,P

can be computed in time O(N). In case |S| < m, we use Li−1 and set BS,P to find and
report occurrence i in time O(m) using a bit vector of size m, which we initialise only once
per position i. Finally, searching P in S ∈ T̃ [i], in case |S| ≥ m, can be done in time O(|S|)
using the KMP algorithm [13], which is bounded by O(N) for T̃ of total size N .

The algorithm reads a position i and reports whether i is an ending position of some
occurrence of P , before reading position i+ 1. Therefore, Algorithm EDSM solves the EDSM
problem in an on-line manner in time O(nm2 + N), with preprocessing time and space
O(m). J

5 Bit-Vector Algorithm

We introduce here Algorithm EDSM-BV, a non-trivial bit-vector version of Algorithm EDSM.

Main idea. The main idea of this algorithm is to simulate the previous algorithm using
bit-level operations to maintain linked-lists L and do the matching. To this end, we also add
a further preprocessing step to the suffix tree of the pattern. This augmented suffix tree
allows us to retrieve a bit-vector representation of all occurrences of an S ∈ T̃ [i] in P in time
linear in |S|. With this structure, we can use bit-level operations to compute Li from Li−1.

We maintain a bit vector B of size m initialised with 0’s, such that, for each position
0 ≤ k < m, B[k] = 1 if and only if P [0 . . k] has an occurrence ending at the current position

CPM 2017

9:8 On-Line Pattern Matching on Similar Texts

of T̃ . For each letter c ∈ Σ, we construct a bit vector Ic of size m initialised with 0’s, such
that for each position 0 < k < m− 1, Ic[k − 1] = 1, if and only if P [k] = c. We construct
the suffix tree of P , denoted by ST P , and augment it with bit vectors of size m initialised
with 0’s for each explicit node as follows: for node u, we create bit vector Mu such that
Mu[k − 1] = 1, if and only if the factor P(u) represented by node u occurs at position k in
P , 0 < k < m− 1. The occurrences of P(u) can be found at terminal nodes in the subtree
rooted at node u. We denote this augmented suffix tree of P by Occ-VectorP . We wish to
answer the following type of on-line queries: given a string α, if α is a factor of P , then
Occ-VectorP (α) finds the node w in ST P which represents α, and returns a pointer to the
bit vector Mu, where u is the first explicit node in the subtree rooted at w. Otherwise (if
α is not a factor of P), Occ-VectorP (α) returns a pointer to a bit vector consisting of m
0’s. This operation can be trivially realised in time O(|α|). Note that both Ic and Mu are
shifted one bit to the left with respect to the pattern position they refer to; this is just an
optimisation that will save us a shift in the algorithm.

Below, we formally present Algorithm EDSM-BV that solves the EDSM problem in an
on-line manner.

1 Algorithm EDSM-BV(P, m, T̃ , n, Σ)
2 Construct Ic, for all c ∈ Σ, and Occ-VectorP ;
3 B[0 . . m− 1]← 0;
4 foreach S ∈ T̃ [0] do
5 Compute BP,S using the border table;
6 foreach b ∈ BP,S do
7 B[b]← 1;
8 if |S| ≥ m then
9 Search P in S using KMP and

10 report 0 if P occurs in S and CheckDuplicate(0);
11 foreach i ∈ [1, n− 1] do
12 B1[0 . . m− 1]← 0;
13 foreach S ∈ T̃ [i] do
14 Compute BP,S using the border table;
15 foreach b ∈ BP,S do
16 B1[b]← 1;
17 if |S| < m then
18 B2 ← B & Occ-VectorP (S);
19 B1 ← B1 | (B2 � |S|);
20 if |S| ≥ m then
21 Search P in S using KMP and
22 report i if P occurs in S and CheckDuplicate(i);
23 B3 ← B;
24 foreach j ∈ [0, min{|S|, m− 1} − 1] do
25 B3 ← B3 & IS[j];
26 B3 ← B3 � 1;
27 if B3[m− 1] = 1 then
28 Report i if CheckDuplicate(i);
29 B ← B1;

In Algorithm EDSM-BV, at each iteration i, T̃ [i] is processed (Lines 11− 29) and, at the end,
vector B stores indexes k such that P [0 . . k] ends at position i.

R. Grossi et al. 9:9

I Lemma 12. Bit vectors Ic, for all c ∈ Σ, σ = |Σ|, can be constructed in time O(m+σ ·dm
w e)

and space O(σ · dm
w e). Occ-VectorP can be constructed in time and space O(m · dm

w e).

Proof. For the bit vectors Ic, we first read the alphabet and construct σ bit vectors of size
m initialised with 0’s. Then we only need to read the pattern once, and for each position
0 < k < m− 1 in the pattern such that P [k] = c, we set Ic[k − 1] = 1. Reading the pattern
once and setting Ic costs time O(m), so in total we need time O(m+ σ · dm

w e) for the bit
vectors Ic. The space for each bit vector of size m is O(dm

w e), so in total O(σ · dm
w e) space is

required.
By Fact 3, ST P can be constructed in time and space O(m). We traverse ST P and

allocate a bit vector Mu of size m initialised with 0’s for every explicit node u we visit. If u is
a terminal node representing suffix P [k . .m−1], we set Mu[k−1] = 1. If u is a non-terminal
node, we set Mu[k − 1] = 1 for all terminal nodes representing suffixes P [k . .m− 1] in the
subtree rooted at u, 0 < k < m− 1. This can be realised by using an Or bitwise operation
between the bit vectors of the children of node u. By applying this for all explicit nodes
of ST P , we build Occ-VectorP . We have exactly m terminal nodes, and no more than m
non-terminal nodes in ST P , thus, the bit vectors Mu for ST P can be constructed in time
O(m · dm

w e). The space required for Occ-VectorP is O(m · dm
w e) since we have O(m) bit

vectors and each bit vector requires space O(dm
w e). J

I Theorem 13. Algorithm EDSM-BV solves the EDSM problem in an on-line manner in
time O(N · dm

w e). Algorithm EDSM-BV requires preprocessing time and space O(m · dm
w e).

Proof. The correctness of the algorithm follows from the correctness of the KMP al-
gorithm [13] if |S| ≥ m,S ∈ T̃ [i]. By the definition of bit vectors Ic, we read each S ∈ T̃ [i],
letter by letter, and try to extend the prefixes of P , position by position, using Shift-And
bitwise operations [17]. When we reach the end of the bit vector B3, we may find an
occurrence. No other occurrences can be found since we extend position by position, which
means if we cannot reach the end of B3, we must have had at least one mismatch which
prevents the extension.

By Lemma 12, the time and space for the preprocessing of Algorithm EDSM-BV is
bounded by O(m · dm

w e). For each S ∈ T̃ [i], |S| ≥ m, searching P in S can be done in time
O(|S|) using the KMP algorithm [13], which is bounded by O(N) for all S. The Shift-And
bitwise operation can be done in time O(dm

w e) [17], and it is repeated |S| or m− 1 times for
each S to find an occurrence. Since we choose the minimum of |S| and m− 1, this time is
bounded by O(|S| · dm

w e), which is bounded by O(N · dm
w e) for T̃ . By Lemma 7, sets BP,S

can be computed in time O(N). Updating B for position i = 0 and updating B1 for each
position i > 0 using sets BP,S can be done in time O(N) for T̃ . For each S ∈ T̃ [i], |S| < m,
Occ-VectorP (S) requires time O(|S|) to return the corresponding bit vector, and updating
B1 requires time O(dm

w e) using bit-level operations. Note that B1 needs only to be updated
if B 6= 0. So for all T̃ [i], the total time of this step can be bounded by O(N + N ′ · dm

w e),
where N ′ is the number of strings S such that |S| < |P | and B 6= 0. Since N ′ ≤ N , this
time is bounded by O(N · dm

w e).
The algorithm reads a position i, and reports whether i is an ending position of some

occurrence of P , before reading position i+ 1. Therefore, Algorithm EDSM-BV solves the
EDSM problem in an on-line manner in time O(N · dm

w e), with preprocessing time and space
O(m · dm

w e). J

CPM 2017

9:10 On-Line Pattern Matching on Similar Texts

6 Experimental Results

We have implemented Algorithms EDSM and EDSM-BV in the C++ programming language.
The implementation of the algorithm presented in [11], which we denote here by IKP, was
taken from https://github.com/Ritu-Kundu/ElDeS. Recall that Algorithm IKP solves the
EDSM problem in time O(αγmn + N) and space O(N); where α and γ are parameters,
respectively representing the maximum number of strings in any degenerate position of
the text and the maximum number of degenerate positions spanned by any occurrence of
the pattern in the text. Note that Algorithm IKP outputs both the starting and ending
positions of pattern occurrences, while the output of Algorithms EDSM and EDSM-BV is
only the ending positions. All three programs were compiled with g++ version 4.7.3 at
optimisation level 3 (-O3). The following experiments were conducted on a desktop computer
using one core of Intel® CoreTM i7-2600S CPU at 2.8GHz and 8GB of RAM under 64-bit
GNU/Linux. We compared the performance of EDSM, EDSM-BV, and IKP using synthetic
data; as well as the performance of EDSM-BV—shown to be the fastest—using real data.
The implementation of EDSM-BV is available at https://github.com/webmasterar/edsm
under the terms of the GNU General Public License. The synthetic datasets referred to in
this section are maintained at the same web-site.

Synthetic data. Synthetic ED texts were created randomly (uniform distribution over the
DNA alphabet) with n ranging from 100, 000 to 1, 600, 000; and the percentage of degenerate
positions was set to 10%. For each degenerate position within the synthetic ED texts, the
number of strings was chosen randomly, with an upper bound set to 10. The length of each
string of a degenerate position was chosen randomly, with an upper bound again set to 10.
Every non-degenerate position within the synthetic ED texts contained a single letter. Four
different patterns of length m = 8, 16, 32, or 64 were given as input to all three programs,
along with the aforementioned synthetic ED texts, resulting in four sets of output.

Our theoretical findings showing that Algorithms EDSM and EDSM-BV are asymptotically
faster than Algorithm IKP are validated in practice by the results illustrated in Figure 1. Note
that the axes are in log2 scale. In particular, the results confirm that Algorithm EDSM-BV,
which is asymptotically the fastest for short patterns, is also the fastest in practice by up to
two orders of magnitude. As for Algorithm EDSM, not surprisingly, we observe that, as m
grows, the m2 factor in its time complexity becomes more and more significant overall. Note
that searching for much longer patterns exactly is not relevant in applications of interest,
where errors (substitutions, insertions, and deletions) must be accommodated as m grows.

Real data. EDSM-BV was tested further using real-world datasets. Human genomic data
was obtained from the 1, 000 Genomes Project [23]. Specifically, data was obtained from Phase
3 of the project, in which the genomes of 2, 504 individuals from 26 different populations were
sequenced and aligned, producing a dataset which summarises the variation in the sample
population. Files in Variant Call Format (VCF) include information about variations at each
position in the reference genome, which makes the format ideal for our purposes. EDSM-BV
was given a reference sequence (in FASTA format) and variation data (in VCF) for each of the
ten smallest chromosomes as input, as well as synthetic patterns of length m = 8, 16, 32, or 64.
The average percentage of degenerate positions across these chromosomes was approximately
3%; the average number of strings at degenerate positions was 2; and the average length of
strings at degenerate positions was 1. The processing time of EDSM-BV was recorded; with
processing we refer only to the actual CPU time used in executing the process—excluding the

https://github.com/Ritu-Kundu/ElDeS
https://github.com/webmasterar/edsm

R. Grossi et al. 9:11

16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5
Log n

4

2

0

2

4

6

Lo
g

tim
e

(s
)

IKP
EDSM
EDSM-BV

(a) Pattern of length m = 8

16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5
Log n

4

2

0

2

4

6

Lo
g

tim
e

(s
)

IKP
EDSM
EDSM-BV

(b) Pattern of length m = 16

16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5
Log n

4

2

0

2

4

6

Lo
g

tim
e

(s
)

IKP
EDSM
EDSM-BV

(c) Pattern of length m = 32

16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5
Log n

4

2

0

2

4

6
Lo

g
tim

e
(s

)

IKP
EDSM
EDSM-BV

(d) Pattern of length m = 64

Figure 1 Elapsed time of EDSM, EDSM-BV, and IKP for synthetic ED texts of length n.

time to read the data in memory on-line. Chromosome 21, which is the smallest in length,
has a VCF file of size 11.2GB. The results of this experiment are displayed in Figure 2.

The graphs in Figure 2 show, for the ten smallest chromosomes, a very clear linear
relationship between the time taken for EDSM-BV to run and N ′, the total number of strings
S ∈ T̃ [i] such that |S| < |P | and B 6= 0, per chromosome. Recall that the total time required
by EDSM-BV for updating bit vector B1 from B is O(N + N ′ · dm

w e). This is the most
time-consuming operation in practice as it searches for S in the suffix tree of P and then
updates B1 using bit-level operations. Note that, the total time to process strings S ∈ T̃ [i],
with |S| > |P |, using KMP is O(N), which becomes insignificant overall in practice.

7 Final Remarks

We have presented two efficient algorithms for on-line pattern matching on a set of similar texts.
Notably, one of the algorithms requires time linear in the size of the texts’ representation,
for short patterns, that is O(N · dm

w e). The presented experimental results confirm our
theoretical findings in practical terms.

Our immediate target is to apply these on-line solutions for fast average-case approximate
pattern matching or for multiple pattern matching on a set of similar texts. An open problem
is to either improve on the O(nm2 +N)-time algorithm or show conditional lower bounds.

CPM 2017

9:12 On-Line Pattern Matching on Similar Texts

Y 22 21 19 20 17 18 15 14 16
Chromosomes sorted by N'

0

2

4

6

8

10

12

14
Pr

oc
es

sin
g

Ti
m

e
(s

)

0

500000

1000000

1500000

2000000

N'

Processing Time
N'

(a) Pattern of length m = 8

Y 22 21 19 20 17 18 15 14 16
Chromosomes sorted by N'

0

5

10

15

20

Pr
oc

es
sin

g
Ti

m
e

(s
)

0

500000

1000000

1500000

2000000

2500000

N'

Processing Time
N'

(b) Pattern of length m = 16

Y 21 22 20 19 18 15 17 14 16
Chromosomes sorted by N'

0

5

10

15

20

25

30

Pr
oc

es
sin

g
Ti

m
e

(s
)

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

N'

Processing Time
N'

(c) Pattern of length m = 32

Y 21 22 20 19 18 17 15 14 16
Chromosomes sorted by N'

0

5

10

15

20

25

30

35

40

Pr
oc

es
sin

g
Ti

m
e

(s
)

0

500000

1000000

1500000

2000000

2500000

N'

Processing Time
N'

(d) Pattern of length m = 64

Figure 2 Processing time of EDSM-BV for real ED texts (Human chromosomes and variants).

Acknowledgements. We would like to thank Ritu Kundu (Department of Informatics,
King’s College London) for providing us with the implementation of Algorithm IKP [11].

References
1 Alfred V. Aho and Margaret J. Corasick. Efficient string matching: An aid to bibliographic

search. Commun. ACM, 18(6):333–340, 1975. doi:10.1145/360825.360855.
2 Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and David J. Lipman.

Basic local alignment search tool. J. Mol. Biol., 215(3):403–410, 1990. doi:10.1016/
S0022-2836(05)80360-2.

3 Ricardo A. Baeza-Yates and Chris H. Perleberg. Fast and practical approximate string
matching. Inf. Process. Lett., 59(1):21–27, 1996. doi:10.1016/0020-0190(96)00083-X.

4 Uwe Baier, Timo Beller, and Enno Ohlebusch. Graphical pan-genome analysis with com-
pressed suffix trees and the Burrows-Wheeler transform. Bioinformatics, 32(4):497–504,
2016. doi:10.1093/bioinformatics/btv603.

5 Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algorithms on Strings.
Cambridge University Press, 2007. doi:10.1017/cbo9780511546853.

6 Martin Farach. Optimal suffix tree construction with large alphabets. In Anna Karlin,
editor, Proceedings of the 38th Annual Symposium on Foundations of Computer Science
(FOCS 1997), pages 137–143. IEEE Computer Society, 1997. doi:10.1109/SFCS.1997.
646102.

7 Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Com-
putational Biology. Cambridge University Press, 1997. doi:10.1017/CBO9780511574931.

http://dx.doi.org/10.1145/360825.360855
http://dx.doi.org/10.1016/S0022-2836(05)80360-2
http://dx.doi.org/10.1016/S0022-2836(05)80360-2
http://dx.doi.org/10.1016/0020-0190(96)00083-X
http://dx.doi.org/10.1093/bioinformatics/btv603
http://dx.doi.org/10.1017/cbo9780511546853
http://dx.doi.org/10.1109/SFCS.1997.646102
http://dx.doi.org/10.1109/SFCS.1997.646102
http://dx.doi.org/10.1017/CBO9780511574931

R. Grossi et al. 9:13

8 Guillaume Holley, Roland Wittler, and Jens Stoye. Bloom Filter Trie: an alignment-free
and reference-free data structure for pan-genome storage. Algorithms Mol. Biol., 11:3, 2016.
doi:10.1186/s13015-016-0066-8.

9 Jan Holub, William F. Smyth, and Shu Wang. Fast pattern-matching on indeterminate
strings. J. Discrete Algorithms, 6(1):37–50, 2008. doi:10.1016/j.jda.2006.10.003.

10 Lin Huang, Victoria Popic, and Serafim Batzoglou. Short read alignment with popula-
tions of genomes. Bioinformatics, 29(13):361–370, 2013. doi:10.1093/bioinformatics/
btt215.

11 Costas S. Iliopoulos, Ritu Kundu, and Solon P. Pissis. Efficient pattern matching in elastic-
degenerate texts. In Frank Drewes, Carlos Martín-Vide, and Bianca Truthe, editors, Pro-
ceedings of the 11th International Conference on Language and Automata Theory and Ap-
plications (LATA 2017), volume 10168 of LNCS, pages 131–142. Springer International
Publishing, 2017. doi:10.1007/978-3-319-53733-7_9.

12 Paul Julian Kersey, James E. Allen, Irina Armean, Sanjay Boddu, Bruce J. Bolt, Den-
ise Carvalho-Silva, Mikkel Christensen, Paul Davis, Lee J. Falin, Christoph Grabmueller,
Jay C. Humphrey, Arnaud Kerhornou, Julia Khobova, Naveen K. Aranganathan, Nich-
olas Langridge, Ernesto Lowy, Mark D. McDowall, Uma Maheswari, Michael Nuhn,
Chuang Kee Ong, Bert Overduin, Michael Paulini, Helder Pedro, Emily Perry, Giuli-
etta Spudich, Electra Tapanari, Brandon Walts, Gareth Williams, Marcela K. Tello-Ruiz,
Joshua C. Stein, Sharon Wei, Doreen Ware, Daniel M. Bolser, Kevin L. Howe, Eugene
Kulesha, Daniel Lawson, Gareth Maslen, and Daniel M. Staines. Ensembl genomes 2016:
more genomes, more complexity. Nucleic Acids Res., 44(Database-Issue):574–580, 2016.
doi:10.1093/nar/gkv1209.

13 Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern matching in
strings. SIAM J. Comput., 6(2):323–350, 1977. doi:10.1137/0206024.

14 Sorina Maciuca, Carlos del Ojo Elias, Gil McVean, and Zamin Iqbal. A natural encoding of
genetic variation in a Burrows-Wheeler transform to enable mapping and genome inference.
In Martin C. Frith and Christian Nørgaard Storm Pedersen, editors, Proceedings of the
16th International Workshop on Algorithms in Bioinformatics (WABI 2016), volume 9838
of LNCS, pages 222–233. Springer, 2016. doi:10.1007/978-3-319-43681-4_18.

15 Joong Chae Na, Hyunjoon Kim, Heejin Park, Thierry Lecroq, Martine Léonard, Laurent
Mouchard, and Kunsoo Park. FM-index of alignment: A compressed index for similar
strings. Theor. Comput. Sci., 638:159–170, 2016. doi:10.1016/j.tcs.2015.08.008.

16 Gonzalo Navarro and Alberto Ordóñez Pereira. Faster compressed suffix trees for repetitive
collections. ACM J. Exp. Algorithmics, 21(1):1.8:1–1.8:38, 2016. doi:10.1145/2851495.

17 Gonzalo Navarro and Mathieu Raffinot. Flexible Pattern Matching in Strings: Practical
On-line Search Algorithms for Texts and Biological Sequences. Cambridge University Press,
2002. doi:10.1017/cbo9781316135228.

18 Ngan Nguyen, Glenn Hickey, Daniel R. Zerbino, Brian J. Raney, Dent Earl, Joel Armstrong,
W. James Kent, David Haussler, and Benedict Paten. Building a pan-genome reference for
a population. J. Comput. Biol., 22(5):387–401, 2015. doi:10.1089/cmb.2014.0146.

19 Nadia Pisanti, Henry Soldano, Mathilde Carpentier, and Joël Pothier. A relational exten-
sion of the notion of motifs: Application to the common 3D protein substructures searching
problem. J. Comput. Biol., 16(12):1635–1660, 2009. doi:10.1089/cmb.2008.0019.

20 Marie-France Sagot, Alain Viari, Joël Pothier, and Henry Soldano. Finding flexible patterns
in a text: an application to three-dimensional molecular matching. Comput. Appl. Biosci.,
11(1):59–70, 1995. doi:10.1093/bioinformatics/11.1.59.

21 Siavash Sheikhizadeh, M. Eric Schranz, Mehmet Akdel, Dick de Ridder, and Sandra Smit.
Pantools: representation, storage and exploration of pan-genomic data. Bioinformatics,
32(17):487–493, 2016. doi:10.1093/bioinformatics/btw455.

CPM 2017

http://dx.doi.org/10.1186/s13015-016-0066-8
http://dx.doi.org/10.1016/j.jda.2006.10.003
http://dx.doi.org/10.1093/bioinformatics/btt215
http://dx.doi.org/10.1093/bioinformatics/btt215
http://dx.doi.org/10.1007/978-3-319-53733-7_9
http://dx.doi.org/10.1093/nar/gkv1209
http://dx.doi.org/10.1137/0206024
http://dx.doi.org/10.1007/978-3-319-43681-4_18
http://dx.doi.org/10.1016/j.tcs.2015.08.008
http://dx.doi.org/10.1145/2851495
http://dx.doi.org/10.1017/cbo9781316135228
http://dx.doi.org/10.1089/cmb.2014.0146
http://dx.doi.org/10.1089/cmb.2008.0019
http://dx.doi.org/10.1093/bioinformatics/11.1.59
http://dx.doi.org/10.1093/bioinformatics/btw455

9:14 On-Line Pattern Matching on Similar Texts

22 Jouni Sirén. Indexing variation graphs. In Sándor Fekete and Vijaya Ramachandran, edit-
ors, Proceedings of the 19th Workshop on Algorithm Engineering and Experiments (ALE-
NEX 2017), pages 13–27. SIAM, 2017. doi:10.1137/1.9781611974768.2.

23 The 1000 Genomes Project Consortium. A global reference for human genetic variation.
Nature, 526(7571):68–74, 2015. doi:10.1038/nature15393.

24 The Computational Pan-Genomics Consortium. Computational pan-genomics: status,
promises and challenges. Brief. Bioinformatics, pages 1–18, 2016. doi:10.1093/bib/
bbw089.

http://dx.doi.org/10.1137/1.9781611974768.2
http://dx.doi.org/10.1038/nature15393
http://dx.doi.org/10.1093/bib/bbw089
http://dx.doi.org/10.1093/bib/bbw089

A Family of Approximation Algorithms for the
Maximum Duo-Preservation String Mapping
Problem
Bartłomiej Dudek1, Paweł Gawrychowski2, and
Piotr Ostropolski-Nalewaja3

1 Institute of Computer Science, University of Wrocław, Wrocław, Poland
2 Institute of Computer Science, University of Wrocław, Wrocław, Poland; and

University of Haifa, Haifa, Israel
3 Institute of Computer Science, University of Wrocław, Wrocław, Poland

Abstract
In the Maximum Duo-Preservation String Mapping problem we are given two strings and wish to
map the letters of the former to the letters of the latter as to maximise the number of duos. A duo
is a pair of consecutive letters that is mapped to a pair of consecutive letters in the same order.
This is complementary to the well-studied Minimum Common String Partition problem, where
the goal is to partition the former string into blocks that can be permuted and concatenated to
obtain the latter string.

Maximum Duo-Preservation String Mapping is APX-hard. After a series of improvements,
Brubach [WABI 2016] showed a polynomial-time 3.25-approximation algorithm. Our main con-
tribution is that, for any ε > 0, there exists a polynomial-time (2 + ε)-approximation algorithm.
Similarly to a previous solution by Boria et al. [CPM 2016], our algorithm uses the local search
technique. However, this is used only after a certain preliminary greedy procedure, which gives
us more structure and makes a more general local search possible. We complement this with a
specialised version of the algorithm that achieves 2.67-approximation in quadratic time.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases approximation scheme, minimum common string partition, local search

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.10

1 Introduction

A fundamental question in computational biology and, consequently, stringology, is comparing
similarity of two strings. A textbook approach is to compute the edit distance, that is,
the smallest number of operations necessary to transform one string into another, where
every operation is inserting, removing, or replacing a character. While this can be efficiently
computed in quadratic time, a major drawback from the point of view of biological applications
is that every operation changes only a single character. Therefore, it makes sense to also allow
moving arbitrary substrings as a single operation to obtain edit distance with moves. Such
relaxation makes computing the smallest number of operations NP-hard [17], but Cormode
and Muthukrishnan [9] showed an almost linear-time O(logn·log∗ n)-approximation algorithm.
The problem is already interesting if the only allowed operation is moving a substring. This
is usually called the Minimum Common String Partition (MCSP). Formally, we are given
two strings X and Y , where Y is a permutation of X. The goal is to cut X into the least
number of pieces that can be rearranged (without reversing) and concatenated to obtain Y .

© Bartłomiej Dudek, Paweł Gawrychowski, and Piotr Ostropolski-Nalewaja;
licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 10; pp. 10:1–10:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2 A Family of Approximation Algorithms for the MPSM Problem

MCSP is known to be APX-hard [12]. Chrobak et al. [8] analysed performance of the
simple greedy approximation algorithm, that in every step extracts the longest common
substring from the input strings, and Kaplan and Shafrir [16] further improved their bounds.
This simple greedy algorithm can be implemented in linear time [13], and further tweaked
to obtain better practical results [14]. Also, an exact exponential time algorithm [11] and
different parameterizations were considered [15, 5, 6, 10].

There was also some interest in the complementary problem called the Maximum Duo-
Preservation String Mapping (MPSM), introduced by Chen et al. [7]. The goal there is to
map the letters of X to the letters of Y as to maximise the number of preserved duos. A duo
is a pair of consecutive letters, and a duo of X is said to be preserved if its pair of consecutive
letters is mapped to a pair of consecutive letters of Y (in the same order). MCSP and MPSM
are indeed complementary, as one can think of preserving a duo as not splitting its two
letters apart to see that the number of preserved duos and the number of pieces add up to
|X|. Of course, this does not say anything about the relationship between the approximation
guarantees for both problems. Chen et al. [7] designed a k2-approximation algorithm based
on linear programming for the restricted version of the problem, called k-MPSM, where
each letter occurs at most k times. This was soon followed by an APX-hardness proof
of 2-MPSM and a general 4-approximation algorithm provided by Boria et al. [3]. The
approximation ratio was then improved to 3.5 [2] using a particularly clean argument based
on local search. Finally, Brubach [4] obtained a 3.25-approximation, and Beretta et al. [1]
considered parameterized tractability.

Our main contribution is a family of polynomial-time approximation algorithms for
MPSM: for any ε > 0, we show a polynomial-time (2 + ε)-approximation algorithm. We
complement this with a specialised (and simplified) version of the algorithm that achieves 2.67-
approximation in quadratic time, which already improves on the approximation guarantee
and the running time of the previous solutions, as the running time of the 3.5-approximation
was O(n4). At a high level, we also apply local search, that is, we iteratively try to slightly
change the current solution as long as such a change leads to an improvement. The intuition
is that not being able to find such local improvement should imply a (2 + ε)-approximation
guarantee. This requires considering larger and larger neighbourhoods of the current solution
for smaller and smaller ε and seems problematic already for ε = 1. To overcome this, we
apply local search only after a certain preliminary greedy procedure, which gives us more
structure and makes a more general local search possible.

2 Preliminaries

In the Maximum Duo-Preservation String Mapping (MPSM) we are given two strings X
and Y , where Y is a permutation of X. The goal is to map the letters of X to the letters
of Y as to maximise the number of preserved duos. A duo is a pair of consecutive letters,
and a duo of X is said to be preserved if its pair of consecutive letters is mapped to a
pair of consecutive letters of Y (in the same order). This can be restated by creating a
bipartite graph G = (A∪̇B,E), where n = |X| − 1 = |A| = |B| and A = {a1, a2, . . . , an} and
B = {b1, b2, . . . , bn}. Node ai corresponds to duo (X[i], X[i+1]) and similarly bi corresponds
to (Y [i], Y [i+ 1]). Two nodes are connected with an edge if their corresponding duos are the
same, that is, E = {(ai, bj) : X[i] = Y [j] and X[i+ 1] = Y [j + 1]}. See Figure 1.

Now, we want to find a maximum matching in G that corresponds to a proper mapping of
letters between the strings, that is, such that every two consecutive mapped duos (consisting
of three consecutive letters) are mapped to two consecutive duos (in the same order). It is

B. Dudek, P. Gawrychowski, and P. Ostropolski-Nalewaja 10:3

x y z a b c b

a b b c x y z

xy yz za ab bc cb

ab bb bc cx xy yz

Figure 1 An optimal solution of MCSP for strings xyzabcb and abbcxyz (left). It corresponds
to a solution of MPSM, where the mapping preserves duos (x, y), (y, z), and (a, b) (right).

Figure 2 Two pairs of overlapping edges (left) and decomposition of a consecutive matching into
streaks (right).

not necessary that all duos are mapped. Formally, a matching M is called consecutive if
every two neighbouring nodes are either matched to two neighbouring nodes (preserving the
order) or at least one of them is unmatched:

∀i,j,j′∈{1..n}
(
〈ai, bj〉 ∈M ∧ 〈ai+1, bj′〉 ∈M

)
⇒
(
j′ = j + 1

)
and a symmetric condition for the other side of the graph. Even though the graph G obtained
as described above from an instance of MPSM has some additional structure, we focus only
on the more general problem where the given bipartite graph G = (A∪̇B,E) is arbitrary
and we are looking for a consecutive matching of maximum cardinality. This was called the
Maximum Consecutive Bipartite Matching (MCBM) by Boria et al. [3].

Definitions. We say that two edges 〈ai, bj〉 and 〈ai′ , bj′〉 are overlapping if |i − i′| ≤ 1
or |j − j′| ≤ 1. Given a consecutive matching M , we define a streak to be a maximal
(under inclusion) set of consecutive edges e1, e2, . . . , ek, such that for some p, q we have that
ei = 〈ap+i, bq+i〉 for all i = 1, 2, . . . , k. See Figure 2. Note that from the definition, ei

overlaps with itself, ei−1 and ei+1 (assuming that these edges exist). This notion is extended
to sets of edges: S1 overlaps with S2 if there exist e1 ∈ S1, e2 ∈ S2 such that e1 overlaps
with e2. Similarly, we define overlaps between an edge and a set of edges. Note that every
consecutive matching M can be uniquely decomposed into a set of streaks such that no two
of them are overlapping with each other.

3 Greedy Algorithm

Consider a simple greedy procedure, that in every step takes the longest possible streak from
G and, if the streak consists of at least k edges, adds it to the solution. See Algorithm 1.

To analyse quality of the returned solution, we fix an optimal solution OPT and would
like to compare |ALG| with |OPT |. Let si be the streak that was removed in the i-th step
of the algorithm and oi be the set of edges from OPT that are overlapping with si, but were
not overlapping with s1, s2, . . . , si−1. In other words, oi consists of those edges from OPT

that after i− 1 steps of the algorithm still could have been added to the solution, but are no
longer available after the i-th step. Note that oi contains all the edges of OPT ∩ si, because
every edge overlaps with itself. Observe that |oi| ≤ 2|si|+ 4 as there can be at most |si|+ 2
edges from oi overlapping with si at each side of G. Moreover, even a stronger property
holds:

CPM 2017

10:4 A Family of Approximation Algorithms for the MPSM Problem

Algorithm 1 Choosing the largest possible streak greedily.
1: function Greedy(k)
2: ALG := ∅
3: while true do
4: s := the largest streak in G
5: if |s| < k then
6: break
7: remove s and all edges overlapping with s from G

8: ALG := ALG ∪ s
9: return ALG

I Lemma 1. |oi| ≤ 2|si|+ 2.

Proof. Suppose that the endpoints of si at one side of the graph (say A) form a sequence
of nodes aj , aj+1, . . . , aj+|si|−1. Define E = {aj−1, aj , . . . , aj+|si|−1, aj+|si|} (assuming that
aj−1 and aj+|si| exist). We will show that at most |si| + 1 edges from oi can end in E .
Then, applying the same reasoning to the other side of the graph will finish the proof. If
|E| < |si| + 2 then the claim holds. Otherwise, if |E| = |si| + 2 there are three cases to
consider:
1. There are two or more streaks from oi ending in E . Then they cannot end in all nodes

from E , because at least two of them would be overlapping with each other. Thus there
is at least one node from E that is not an endpoint of edge from oi, so there are at most
|si|+ 1 of them.

2. There is one streak from oi ending in E . Then the streak cannot be larger than |si|,
because then the greedy algorithm would have taken the larger streak (recall that oi

consists of edges that could have been added to the solution in the i-th step). Thus there
are at most |si| edges of oi ending in E .

3. There is no streak from oi ending in E . Then the statement holds trivially. J

We still need to specify the algorithm for smaller streaks (consisting of less than k edges),
but before doing so in the next section we bound the quality of the solution found by the
greedy algorithm.

Let m be the number of steps performed by the greedy algorithm. The algorithm returns
ALG =

⋃m
i=1 si which should be compared with the set of edges of OPT that can no longer

be taken due to the decisions made by the greedy algorithm, that is,
⋃m

i=1 oi ⊆ OPT . Using
Lemma 1 we can compute the desired ratio as follows:

|
⋃m

i=1 oi|
|
⋃m

i=1 si|
=
∑m

i=1 |oi|∑m
i=1 |si|

≤
∑m

i=1 (2|si|+ 2)∑m
i=1 |si|

= 2 + m · 2∑m
i=1 |si|

≤ 2 + m · 2
m · k

= 2 + 2
k

where the last inequality holds because all taken streaks consist of at least k edges.
To conclude, the solution ALG found by the greedy algorithm is at most 2 + 2

k times
smaller than the set of edges from OPT that is overlapping with ALG. Informally, on average
we discard only a few edges of OPT for every edge from ALG. After running the algorithm
for k = 1, there will be no edges left and thus we have a simple 4-approximation algorithm.
To obtain a better approximation ratio, we will increase k and focus on the subgraph G′
of G consisting of all edges that are not overlapping with any streak si already taken by
the algorithm (and hence still available). The crucial insight is that we can analyse the
performance of the greedy algorithm on G \ G′ and the performance of the algorithm for
small k on G′ separately. We know that the approximation ratio of the greedy algorithm on

B. Dudek, P. Gawrychowski, and P. Ostropolski-Nalewaja 10:5

G \ G′ is 2 + 2
k and size of the optimal solution for G′ is at least |OPT −

⋃m
i=1 oi|. Then,

due to the definition of G′, any solution found for G′ can be combined with ALG to obtain
a solution for the original instance, so the final approximation ratio is the maximum of 2 + 2

k

and the ratio of the algorithm used for G′.

4 Algorithm for Small k

As stated above, applying the greedy algorithm with k = 1 immediately implies a 4-
approximation algorithm. For larger values of k we need another phase to find a solution
for the remaining part of the graph. For k = 2, we present a simple algorithm based on
maximum bipartite matching (not consecutive) that can be used to obtain a 3-approximation.
For larger values of k, we first consider k = 3 and design a quadratic-time algorithm based
on the local search technique. Then, we move to a general k and develop a more involved
polynomial-time algorithm that achieves (2 + ε)-approximation.

4.1 3-approximation Based on Maximum Matching for k = 2
After running Greedy(2) there are no streaks of size 2. Recall that G′ = (A∪̇B,E′) is the
subgraph of the original graph G consisting of all edges that are not overlapping with the
already taken edges. Consider the following algorithm:

1. Create a bipartite graph H = (A′∪̇B′, F) where:
A′ = {a(1,2), a(3,4), . . . , a(n−1,n)} and similarly for B′. In other words, nodes of A′
correspond to merged pairs of neighbouring nodes of A (if n is odd, the last node of
A′ corresponds to a single node of A).
F =

{
{a(2i−1,2i), b(2j−1,2j)} : {a2i−1, a2i} × {b2j−1, b2j} ∩ E′ 6= ∅

}
. In other words,

there is an edge between two merged pairs of nodes if there was an edge between a
node from the first pair and a node from the second pair.

2. Find the maximum matching M ′ in H.
3. For every edge of M ′, choose an edge of G′ connecting nodes from the corresponding

pairs (if there are multiple possibilities, choose any of them). Let M be the set of chosen
edges.

4. Let ALG← ∅. Process all edges of M in arbitrary order. For an edge (ai, bj) ∈M :
remove from M all edges ending in nodes ai−1, ai+1, bj−1 and bj+1,
add (ai, bj) to ALG.

5. Return ALG.

Consider the optimal solution OPT . As G′ contains no streaks consisting of 2 or more
edges, the endpoints of any two of its edges cannot be neighbouring. Therefore, OPT can be
translated into a matching in H with the same cardinality, so |OPT | ≤ |M ′|.

We claim that after including an edge (ai, bj) ∈ M in ALG at most 2 other edges are
removed from M . Assume otherwise, that is, there are 3 such edges. Without loss of
generality, one of them ends in ai−1 and one in ai+1. Depending on the parity of i, edge
(ai, bj) and the edge ending in either ai−1 or ai+1 correspond in H to edges ending in the
same node of A′. This is a contradiction, because all edges in M ′ have distinct endpoints.
Because initially |M ′| = |M |, we conclude that |ALG| ≥ |M ′|/3.

Combining the inequalities gives us 3 · |ALG| ≥ |M ′| ≥ |OPT |, so the above algorithm is a
3-approximation for graphs with no streaks of size at least 2. Combining it with Greedy(2),
that guarantees approximation ratio of 2 + 2

k = 2 + 2
2 = 3, gives us a 3-approximation

algorithm for the whole problem.

CPM 2017

10:6 A Family of Approximation Algorithms for the MPSM Problem

Algorithm 2 Local improvements in O(m2n2) time.
1: function LocalImprovements
2: ALG := ∅
3: while true do
4: if ∃e /∈ ALG s.t. ALG ∪ {e} is a valid solution then
5: ALG := ALG ∪ {e}
6: if ∃e1, e2 /∈ ALG, e′ ∈ ALG s.t. ALG \ {e′} ∪ {e1, e2} is a valid solution then
7: ALG := ALG \ {e′} ∪ {e1, e2}
8: if |ALG| was not increased then
9: break

10: return ALG

4.2 2.67-approximation for k = 3
For k = 3 we use procedure LocalImprovements based on the local search technique. See
Algorithm 2. Essentially the same method was used to obtain the 3.5-approximation [2].
The algorithm consists of a number of steps in which it tries to either add a single edge or
remove one edge so that two other edges can be added. However, the crucial difference is
that in our case there are no streaks of size greater than 2 in G′. This allows for a better
bound on the approximation ratio.

Fix an optimal solution OPT . We want to bound the total number C of overlaps between
the edges from ALG and OPT . First, observe that an edge from ALG can overlap with at
most 4 edges from OPT , because there are no streaks of size 3 in the graph. Thus:

4 · |ALG| ≥ C. (1)

Second, let k1 be the number of edges from OPT that overlap with exactly one edge from
ALG. Then all other edges from OPT overlap with at least two edges from ALG (because
otherwise the algorithm would have taken an edge not overlapping with any already taken
edge), so:

C ≥ k1 + 2 · (|OPT | − k1) = 2 · |OPT | − k1. (2)

I Lemma 2. k1 ≤ |ALG|.

Proof. Suppose that k1 > |ALG|. Then there are two edges e1, e2 ∈ OPT that overlap with
only one and the very same edge edel ∈ ALG. But then the algorithm would have increased
size of the solution by removing edel and adding e1 and e2, so we obtain a contradiction. J

Applying Lemma 2 to (2) and combining with (1) we get 4·|ALG| ≥ C ≥ 2·|OPT |−|ALG|
and thus 2.5 · |ALG| ≥ |OPT |. Recall that the approximation ratio of the first greedy part
of the algorithm is 2 + 2

3 < 2.67, so the overall ratio of the combined algorithm is also 2.67.
The algorithm clearly runs in polynomial time as in every iteration of the main loop the size
of ALG increases by one and is bounded by n. In [2] the running time was further optimised
to O(n4), but in the remaining part of this section we will describe how to decrease the time
to O(n2). We will also show how to implement the greedy algorithm in the same O(n2)
complexity, thus obtaining an 2.67-approximation algorithm in O(n2) time.

Greedy part in O(n2) time. We show how to implement Greedy(k) in O(n2) time. Recall
that in every iteration the algorithm chooses the longest streak in the remaining part of the

B. Dudek, P. Gawrychowski, and P. Ostropolski-Nalewaja 10:7

graph, includes it in the solution, and removes all edges that overlap with it from the graph.
The procedure terminates if the streak contains less than k edges.

We start with creating a list L of edges 〈x, y〉 sorted lexicographically first by x and then
by y. This can be done in O(n2) time using bucket sort and while sorting we can also retrieve
for every edge the edge that would be its predecessor in a streak. Then we iterate over the
edges in L and split them into streaks. The edges of every streak are stored in a doubly
linked list and every edge stores a pointer to its streak. We also keep streaks grouped by
size, that is, Ds contains all streaks of size s. To allow insertions and deletions in O(1) time,
Ds is internally also implemented as a doubly linked list, but in order not to confuse it with
the lists storing edges inside a streak, later on we will refer to lists Ds as groups.

Having split all edges into streaks and grouped streaks by their sizes, we iterate over
the groups Dn, Dn−1, . . . , Dk and retrieve a streak s from the non-empty group with the
largest index. We add s to the solution and remove all edges overlapping with s from the
graph. Every removed edge either decreases the size of its streak by one or splits it into
two smaller streaks. In both cases, the smaller streak(s) is moved between the appropriate
groups. Removing an edge takes constant time and every edge is removed at most once from
the graph. Similarly, moving or splitting of a streak due to a removed edge takes constant
time as the size of the smaller streak can be computed in constant time by looking at its
first and last edge. Thus, the overall time of the procedure is O(n2).

I Remark. Recall that we have generalised the MPSM problem and now are working with an
arbitrary bipartite graph G. However, if G was constructed from an instance of MPSM, then
finding the longest available streak corresponds to finding the longest string that occurs in
both X and Y without overlapping with any of the previously chosen substrings. Goldstein
and Lewenstein [13] showed how to implement such a procedure in O(n) total time.

Local improvements in O(n2) time. Recall that to analyse the approximation ratio (in
Lemma 2), we only need that after termination of the algorithm there are no three edges
e1, e2 /∈ ALG, edel ∈ ALG such that ALG \ {edel} ∪ {e1, e2} is a valid solution. At a high
level, FastLocalImprovements keeps track of edges that can potentially increase size of
the solution in a queue Q. As long as Q is not empty, we retrieve a candidate edge e from
Q. First, we verify that e /∈ ALG and e overlaps with at most one edge from ALG. If e can
be added to ALG, we do so and continue after adding to Q all edges overlapping with e.
Otherwise, we check if some other edge e′ can be added while removing another edge edel at
the same time using procedure TryAddingPairWith(e), and if so, we add to Q all edges
overlapping with one of the modified edges (e, e′ and edel). See Algorithm 3 and Algorithm 4.

The algorithm uses the following data structures and functions:
For every node v ∈ G′, we keep a list of all edges from E ending in v and separately
edges of ALG ending in v.
Close(e) is the set of nodes of G′ at distance at most 1 from the endpoints of edge e. In
other words, Close(e) is the set of up to 6 nodes where edges overlapping with e can end.
Overlap(e) is the set of edges overlapping with edge e. It is computed on the fly, by
iterating through edges ending in v ∈ Close(e).
Queue Q of candidate edges. For every edge in E we remember if it is currently in Q in
order not to store any duplicates and keep the space usage O(m).
For every node v ∈ G′ we keep a list Lv of edges from E \ALG that overlap with exactly
one edge from ALG and end in v. To keep these lists updated, every time an edge
e = 〈x, y〉 is enqueued or added or removed from ALG, we count the edges from ALG it

CPM 2017

10:8 A Family of Approximation Algorithms for the MPSM Problem

Algorithm 3 Local improvements in O(n2) time.
1: function FastLocalImprovements
2: Q.enqueue(E)
3: while Q is not empty do
4: e := Q.dequeue()
5: if e ∈ ALG or e overlaps with more than one edge from ALG then
6: continue
7: if ALG ∪ {e} is a valid solution then
8: ALG := ALG ∪ {e}
9: Q.enqueue

(
Overlap(e)

)
10: continue
11: TryAddingPairWith(e)

Algorithm 4 Adding a pair with edge e.
1: function TryAddingPairWith(e)
2: edel := the only edge from ALG overlapping with e
3: for each e′ that can be a neighbour of e in a streak do . O(1)
4: if ALG \ {edel} ∪ {e, e′} is a valid solution then
5: ALG := ALG \ {edel} ∪ {e, e′}
6: Q.enqueue

(
Overlap(e) ∪ Overlap(e′) ∪ Overlap(edel)

)
7: return
8: for each node v ∈ Close(edel) \ Close(e) do . O(1)
9: for each edge e′ ∈ Lv do . see Lemma 3

10: if ALG \ {edel} ∪ {e, e′} is a valid solution then
11: ALG := ALG \ {edel} ∪ {e, e′}
12: Q.enqueue

(
Overlap(e) ∪ Overlap(e′) ∪ Overlap(edel)

)
13: return

overlaps with. If there is only one of them, we make sure that e is in Lx and Ly, otherwise
we remove e from Lx and Ly.

Clearly, after termination of the algorithm there is no triple of edges e1, e2 and edel that
can be used to increase the solution, because every time an edge is added to or removed from
the solution, all of its overlapping edges are enqueued. It remains to prove that Algorithm 3
indeed runs in O(n2) time. First, observe that |Close(e)| ≤ 6, so from the definition of
overlapping edges |Overlap(e)| ≤ |Close(e)| · n ∈ O(n), as there are at most n edges ending
in a node. So, every time the algorithm enqueues a set of edges, there are at most O(n) of
them. As this happens only after increasing the size of ALG, which can happen at most n
times, in total there are O(n2) enqueued edges. So it suffices to prove that every time an
edge e is dequeued, it takes O(1) time to check if it can be used to increase the solution.
Here we disregard the time for enqueuing edges due to increasing the size of ALG, as it adds
up to O(n2) as mentioned before. Note that both counting the edges overlapping with e and
finding the unique edge from ALG overlapping with e takes O(1) time, as we just need to
check edges from ALG ending in Close(e). Similarly, as ALG is always a valid solution, each
validity check takes O(1) time, as we always try to modify a constant number of edges. By
the same argument, loops in lines 3 and 8 take constant number of iterations, and also:

I Lemma 3. There are O(1) iterations of the loop in line 9 of TryAddingPairWith(e).

B. Dudek, P. Gawrychowski, and P. Ostropolski-Nalewaja 10:9

v

v

edel
e

edel

e

Figure 3 Dotted lines show the only 3 possible edges e′ ∈ Lv that overlap with e. Among any 4
edges in Lv, at least one can be used to increase |ALG| and break the loop.

Algorithm 5 Improvements of bounded size.
1: function BoundedSizeImprovements(t)
2: ALG := ∅
3: while true do
4: for each Eremove, Eadd ⊆ E such that |Eremove| < |Eadd| ≤ t do
5: ALG′ := ALG \ Eremove ∪ Eadd
6: if ALG′ is a valid solution then
7: ALG := ALG′

8: break
9: if ALG was not improved then

10: break
11: return ALG

Proof. Consider an edge e′ ∈ Lv such that ALG′ := ALG \ {edel} ∪ {e, e′} is not a valid
solution. From the definition of Lv, e′ overlaps only with edel ∈ ALG, so both ALG\{edel}∪
{e} and ALG \ {edel} ∪ {e′} are valid solutions. Thus, the only reason for ALG′ not being
valid is that e′ overlaps with e. But v is at distance 2 or more from the endpoint of e, so e
and e′ can be overlapping only at the other side of the graph. There are at most 3 possible
endpoints of such e′ at the other side, see Figure 3. Consequently, after checking 4 edges
from Lv we will surely find one that can be used to increase |ALG|. J

To conclude, Greedy(3) with FastLocalImprovements yield 2.67-approximation in
O(n2) time.

5 (2 + ε)-approximation

Given ε > 0 we would like to create a polynomial time (2 + ε)-approximation algorithm. We
set k = d 2

εe and run Greedy(k) to remove all streaks of size at least k from the graph G.
From now we focus on the subgraph G′ remaining after the first greedy phase and let OPT
denote the optimal solution in G′.

Let t = d 4
εe + 1 and ALG be the solution found by BoundedSizeImprovements(t),

see Algorithm 5. Similarly to the case k = 3, the algorithm tries to improve the current
solution using local optimisations, however now the number of edges that we try to add
or remove in every step is bounded by t (that depends on ε). We want to prove that
(2 + ε) · |ALG| ≥ |OPT |. To this end, we assign (2 + ε) units of credit to every edge of ALG.
Then the goal is to distribute the credits from the edges of ALG to the edges of OPT , so that
every edge of OPT receives at least one credit. Alternatively, we can think of transferring
credits to the streaks from OPT , in such a way that a streak consisting of s edges receives
at least s credits. This will clearly demonstrate the required inequality.

CPM 2017

10:10 A Family of Approximation Algorithms for the MPSM Problem

s s′

e1 e2 e3

Figure 4 Dotted lines denote edges from ALG. According to the scheme, e1 and e2 transfer a
credit to an edge from s, but e3 does not because its endpoint is between s and s′.

Credit distribution scheme. Every edge from ALG distributes (1 + ε
2) credits from each

of its two endpoints independently. Consider an endpoint vi of an edge from ALG. Let
. . . , vi−1, vi, vi+1, . . . be all nodes at the corresponding side of the graph G. If there is an
edge e ∈ OPT ending in vi, then e receives 1 credit. Now consider the case when no edge
of OPT ends in vi. If exactly one edge from OPT ends in vi+1 or vi−1 then the credit is
transferred to that edge. If there are no edges ending there then the credit is not transferred
at all. Finally, if there is an edge e ∈ OPT ending at vi−1 and another edge e′ ∈ OPT ending
at vi+1, then for the time being neither e nor e′ receives the credit. In such a situation we
say that the node vi is between the streak containing e and the streak containing e′, call
the credit uncertain and defer deciding whether it should be transferred to e or e′. Observe
that the only case when an edge e ∈ ALG overlapping with a streak s does not transfer the
credit to s is when the endpoint of e is between two streaks s and s′, see Figure 4. Note that
two credits can be transferred from e to s if both endpoints of e transfer its credits to s.
The remaining ε

2 credits are not transferred to any specific edge yet. We will aggregate and
redistribute them using a more global argument, but first need some definitions.

Gaps and balance. Define the balance of a streak s from OPT as the number of credits
obtained in the described scheme (ignoring the uncertain credits) minus the number of edges
in s. A gap is an edge of OPT that has not received any credits yet and gaps(s) is the number
of gaps in s. Observe that the balance of a streak s is at least −gaps(s). After running the
greedy algorithm and BoundedSizeImprovements(t), even a stronger property holds:

I Lemma 4. The balance of every streak is at least −2.

Proof. Consider a streak s. If there are less than 2 gaps in s then the claim holds. Otherwise,
let g1 and g2 be the first and the last gap in s, so that we can write s = Ag1Mg2B, see
Figure 5. Note that the balance of both A and B is non-negative, as from the definition
there are no gaps inside, so every edge there receives at least one credit. However, there
might be multiple gaps in M . Suppose that the balance of M is negative. But the size of
M is smaller than k < t, so BoundedSizeImprovements(t) would have replaced a subset
of edges from ALG with M to increase size of the solution. Therefore, the balance of M is
nonnegative. Finally, observe that the balance of s is equal to the sum of balances of A,M
and B minus 2 (for the gaps g1 and g2), so it is at least −2 in total. J

The following corollary that follows from the above proof will be useful later:

I Corollary 5. Every streak s with balance −2 can be represented as s = Ag1Mg2B where g1
and g2 are the first and last gap of s, respectively. The balance of Ag1 and g2B is −1 while
the balance of M is 0.

Analysis of the scheme. We construct an auxiliary multi-graph H, where the vertices are
streaks of OPT with balance at least −1. Streaks with balance −2 are split into two smaller

B. Dudek, P. Gawrychowski, and P. Ostropolski-Nalewaja 10:11

s

g1 ︸ ︷︷ ︸
M

g2︸ ︷︷ ︸
A

︸︷︷︸
B

Figure 5 Black dots denote endpoints of edges from ALG, g1 and g2 is the first and the last gap,
respectively.

s1 s2e

x

Figure 6 If there is an endpoint x of edge e ∈ ALG that is between two streaks s1, s2 of OP T

then we add an edge between s1 and s2 in H.

streaks (called substreaks) with balance −1 as explained in Corollary 5. We create an edge
between two streaks in H when they both overlap with an endpoint of an edge from ALG.
In other words, when edge e from ALG has an endpoint x overlapping with two streaks of
OPT , then there is an edge in H between the vertices corresponding to these streaks, see
Figure 6. Observe that then there is no edge of OPT ending in x and there can be at most
two edges between any pair of streaks.

Now we will show that for every connected component of H there are enough credits
to distribute at least one credit to every edge from OPT in the component. The intuition
behind considering the connected components of H is that we have deferred distribution of
the uncertain credits, and now a connected component is a set of streaks that needs to decide
together how to spend those uncertain credits. At a high level, for every connected component
C of H there will be two cases two consider. First, if the balance of C is non-negative, then
we are done. Otherwise, we will show that the balance of C is equal to −1. We also know
that the component is so big that BoundedSizeImprovements was not able to increase
the solution. From this we will conclude that, by gathering the remaining ε

2 credits together,
it is possible to cover the deficit.

Consider one connected component C on w vertices. We want to prove that there are at
least w credits transferred to all edges of C in total. From the construction we have that
every vertex of C has balance at least −1. Moreover, as the component is connected, there
are at least w − 1 edges, each adding one uncertain credit. Thus, the total balance of the
whole component (including the uncertain credits) is at least −1. Observe that the only case
when the total balance of the component is −1 is a tree (with exactly w − 1 edges) where
every node has balance −1. In all other cases the balance is non-negative already.

We denote byKC the set of edges of OPT from all vertices of C (recall that they correspond
to original streaks with balance -1 and substreaks). We also define an auxiliary set MC that
consists of the middle parts M of the original streaks. More precisely, for every streak s of
balance −2, if it was a part of C (due to the substreak Ag1 or g2B, where s = Ag1Mg2B),
we add to MC all edges from M . From Corollary 5, the balance of every such M is 0. Now
consider the following set of edges XC = KC ∪MC . There are two cases to consider depending
on how many credits have been transferred to XC :
1. If there are at least c ≥ 4

ε credits transferred to the edges of XC (each credit from an
endpoint of an edge from ALG), then we can use half of the remaining ε

2 credit of each

CPM 2017

10:12 A Family of Approximation Algorithms for the MPSM Problem

s

A
g1

M
g2

B

x y

M
Ag1 g2Bx y

C C′

Figure 7 As there is an uncertain credit between streaks x and Ag1, there will be an edge between
them in H, so they will be in a connected component C of H. Similarly for g2B and y in C′. Observe
that the middle part M of the split streak s is accounted for in both MC and MC′ .

endpoint and transfer it to the component. Note that for each credit from those c already
assigned to XC there is one endpoint still having additional ε

4 credit that can be spent on
XC . We can use only half of the remaining ε

2 credit because some edges (from the middle
parts of original streaks) can belong to both XC and XC′ for two different components C
and C′, see Figure 7, and they might need to transfer additional credit to both of them.
Thus, for each of the c credits we transfer additional ε

4 credit, so in total we transfer at
least one full credit, which is enough to cover the deficit of the component.

2. In the second case, the edges from XC received less than 4
ε credits, so there are less than

4
ε + 1 edges from OPT (recall that the overall balance of the component is −1). Note
that if we add all edges from XC and remove all edges from ALG that have transferred
credits to the edges from XC , the size of the solution will increase as earlier the overall
balance was negative. The solution will still be valid, because we have removed all edges
from ALG overlapping with the edges of XC . Also for the split streaks, we took edges up
to (but not including) a gap which from the definition does not share an endpoint with
an edge from ALG. Furthermore, as the size of XC is at most 4

ε + 1 ≤ t, it would have
been considered as the set Eadd of edges to be checked by our algorithm. Thus, this case
is impossible, as we would have been able to improve the current solution.

To conclude, every connected component containing w edges receives at least w credits,
so (2 + ε) · |ALG| ≥ |OPT |. As the approximation ratio of the first greedy part is also (2 + ε),
as explained before the overall algorithm is an (2 + ε)-approximation for MPSM. It remains
to analyse its time complexity. Let m denote the number of edges of G′. There are at most
n steps of the algorithm, as in each of them size of the solution increases by at least one and
is bounded by n. There are

(
m
t

)
∈ O(mt) candidates for Eadd and Eremove and we can check

in O(m) time if a given solution is valid. In total, substituting t = d 4
εe+ 1 the total time

complexity is O(m2t+1) = O(n4t+2) = O(n 16
ε +6) = nO(1/ε).

I Theorem 6. Combining the greedy algorithm with local improvements yields a (2 + ε)-
approximation for MCBM in nO(1/ε) time, for any ε > 0.

I Corollary 7. There exists a (2 + ε)-approximation algorithm for MPSM running in nO(1/ε)

time, for any ε > 0.

References
1 Stefano Beretta, Mauro Castelli, and Riccardo Dondi. Parameterized tractability of the

maximum-duo preservation string mapping problem. Theor. Comput. Sci., 646:16–25, 2016.
doi:10.1016/j.tcs.2016.07.011.

2 Nicolas Boria, Gianpiero Cabodi, Paolo Camurati, Marco Palena, Paolo Pasini, and Stefano
Quer. A 7/2-approximation algorithm for the maximum duo-preservation string mapping
problem. In Roberto Grossi and Moshe Lewenstein, editors, Proceedings of the 27th Annual

http://dx.doi.org/10.1016/j.tcs.2016.07.011

B. Dudek, P. Gawrychowski, and P. Ostropolski-Nalewaja 10:13

Symposium on Combinatorial Pattern Matching (CPM 2016), volume 54 of LIPIcs, pages
11:1–11:8. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.
CPM.2016.11.

3 Nicolas Boria, Adam Kurpisz, Samuli Leppänen, and Monaldo Mastrolilli. Improved ap-
proximation for the maximum duo-preservation string mapping problem. In Daniel G.
Brown and Burkhard Morgenstern, editors, Proceedings of the 14th International Work-
shop on Algorithms in Bioinformatics (WABI 2014), volume 8701 of LNCS, pages 14–25.
Springer, 2014. doi:10.1007/978-3-662-44753-6_2.

4 Brian Brubach. Further improvement in approximating the maximum duo-preservation
string mapping problem. In Martin C. Frith and Christian Nørgaard Storm Pedersen,
editors, Proceedings of the 16th International Workshop on Algorithms in Bioinformat-
ics (WABI 2016), volume 9838 of LNCS, pages 52–64. Springer, 2016. doi:10.1007/
978-3-319-43681-4_5.

5 Laurent Bulteau, Guillaume Fertin, Christian Komusiewicz, and Irena Rusu. A fixed-
parameter algorithm for minimum common string partition with few duplications. In
Aaron E. Darling and Jens Stoye, editors, Proceedings of the 13th International Work-
shop on Algorithms in Bioinformatics (WABI 2013), volume 8126 of LNCS, pages 244–258.
Springer, 2013. doi:10.1007/978-3-642-40453-5_19.

6 Laurent Bulteau and Christian Komusiewicz. Minimum common string partition parameter-
ized by partition size is fixed-parameter tractable. In Chandra Chekuri, editor, Proceedings
of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2014), pages
102–121. SIAM, 2014. doi:10.1137/1.9781611973402.8.

7 Wenbin Chen, Zhengzhang Chen, Nagiza F. Samatova, Lingxi Peng, Jianxiong Wang, and
Maobin Tang. Solving the maximum duo-preservation string mapping problem with linear
programming. Theor. Comput. Sci., 530(Complete):1–11, 2014. doi:10.1016/j.tcs.2014.
02.017.

8 Marek Chrobak, Petr Kolman, and Jiří Sgall. The greedy algorithm for the minimum
common string partition problem. ACM Trans. Algorithms, 1(2):350–366, October 2005.
doi:10.1145/1103963.1103971.

9 Graham Cormode and S. Muthukrishnan. The string edit distance matching problem with
moves. ACM Trans. Algorithms, 3(1):2:1–2:19, 2007. doi:10.1145/1219944.1219947.

10 Peter Damaschke. Minimum common string partition parameterized. In Keith A. Crandall
and Jens Lagergren, editors, Proceedings of the 8th International Workshop on Algorithms
in Bioinformatics (WABI 2008), volume 5251 of LNCS, pages 87–98. Springer, 2008. doi:
10.1007/978-3-540-87361-7_8.

11 Bin Fu, Haitao Jiang, Boting Yang, and Binhai Zhu. Exponential and polynomial time
algorithms for the minimum common string partition problem. In Weifan Wang, Xuding
Zhu, and Ding-Zhu Du, editors, Proceedings of the 5th International Conference on Com-
binatorial Optimization and Applications (COCOA 2011), volume 6831 of LNCS, pages
299–310. Springer, 2011. doi:10.1007/978-3-642-22616-8_24.

12 Avraham Goldstein, Petr Kolman, and Jie Zheng. Minimum common string partition
problem: Hardness and approximations. Electron. J. Comb., 12, 2005. URL: http://www.
combinatorics.org/Volume_12/Abstracts/v12i1r50.html.

13 Isaac Goldstein and Moshe Lewenstein. Quick greedy computation for minimum common
string partition. Theor. Comput. Sci., 542:98–107, July 2014. doi:10.1016/j.tcs.2014.
05.006.

14 Dan He. A novel greedy algorithm for the minimum common string partition problem.
In Ion I. Mandoiu and Alexander Zelikovsky, editors, Proceedings of the 3rd International
Symposium on Bioinformatics Research and Applications (ISBRA 2007), volume 4463 of
LNCS, pages 441–452. Springer, 2007. doi:10.1007/978-3-540-72031-7_40.

CPM 2017

http://dx.doi.org/10.4230/LIPIcs.CPM.2016.11
http://dx.doi.org/10.4230/LIPIcs.CPM.2016.11
http://dx.doi.org/10.1007/978-3-662-44753-6_2
http://dx.doi.org/10.1007/978-3-319-43681-4_5
http://dx.doi.org/10.1007/978-3-319-43681-4_5
http://dx.doi.org/10.1007/978-3-642-40453-5_19
http://dx.doi.org/10.1137/1.9781611973402.8
http://dx.doi.org/10.1016/j.tcs.2014.02.017
http://dx.doi.org/10.1016/j.tcs.2014.02.017
http://dx.doi.org/10.1145/1103963.1103971
http://dx.doi.org/10.1145/1219944.1219947
http://dx.doi.org/10.1007/978-3-540-87361-7_8
http://dx.doi.org/10.1007/978-3-540-87361-7_8
http://dx.doi.org/10.1007/978-3-642-22616-8_24
http://www.combinatorics.org/Volume_12/Abstracts/v12i1r50.html
http://www.combinatorics.org/Volume_12/Abstracts/v12i1r50.html
http://dx.doi.org/10.1016/j.tcs.2014.05.006
http://dx.doi.org/10.1016/j.tcs.2014.05.006
http://dx.doi.org/10.1007/978-3-540-72031-7_40

10:14 A Family of Approximation Algorithms for the MPSM Problem

15 Haitao Jiang, Binhai Zhu, Daming Zhu, and Hong Zhu. Minimum common string partition
revisited. J. Comb. Optim., 23(4):519–527, 2012. doi:10.1007/s10878-010-9370-2.

16 Haim Kaplan and Nira Shafrir. The greedy algorithm for edit distance with moves. Inf.
Process. Lett., 97(1):23–27, 2006. doi:10.1016/j.ipl.2005.08.010.

17 Dana Shapira and James A. Storer. Edit distance with move operations. J. Discrete
Algorithms, 5(2):380–392, 2007. doi:10.1016/j.jda.2005.01.010.

http://dx.doi.org/10.1007/s10878-010-9370-2
http://dx.doi.org/10.1016/j.ipl.2005.08.010
http://dx.doi.org/10.1016/j.jda.2005.01.010

Revisiting the Parameterized Complexity of
Maximum-Duo Preservation String Mapping∗

Christian Komusiewicz1, Mateus de Oliveira Oliveira2, and
Meirav Zehavi3

1 Friedrich-Schiller-Universität Jena, Jena, Germany
christian.komusiewicz@uni-jena.de

2 University of Bergen, Bergen, Norway
mateus.oliveira@ii.uib.no

3 University of Bergen, Bergen, Norway
meirav.zehavi@ii.uib.no

Abstract
In the Maximum-Duo Preservation String Mapping (Max-Duo PSM) problem, the input
consists of two related strings A and B of length n and a nonnegative integer k. The objective
is to determine whether there exists a mapping m from the set of positions of A to the set of
positions of B that maps only to positions with the same character and preserves at least k duos,
which are pairs of adjacent positions. We develop a randomized algorithm that solves Max-
Duo PSM in time 4k · nO(1), and a deterministic algorithm that solves this problem in time
6.855k · nO(1). The previous best known (deterministic) algorithm for this problem has running
time (8e)2k+o(k) ·nO(1) [Beretta et al., Theor. Comput. Sci. 2016]. We also show that Max-Duo
PSM admits a problem kernel of size O(k3), improving upon the previous best known problem
kernel of size O(k6).

1998 ACM Subject Classification G.2.1 Combinatorics, F.2 Analysis of Algorithms and Problem
Complexity

Keywords and phrases comparative genomics, parameterized complexity, kernelization

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.11

1 Introduction

Computing distances between strings is a fundamental task in computer science. For many
distance measures, the distance between two strings A and B is defined as the minimum
number of local operations that are needed to transform A into B, for example the deletion or
insertion of a character. For these measures, the distance between two strings A and B can be
usually computed in polynomial time [13, 22]. In some applications, however, it is necessary
to consider nonlocal operations that transform one string into the other. In comparative
genomics, for example, genomes are modeled as strings with one character corresponding to
a complete gene and one is interested in determining the evolutionary distance between two
genomes. During biological evolution, genomes may be altered by large-scale mutations such
as the reversal or the transposition of larger parts of the genome [19].

One approach to approximate the distance between two strings A and B with respect
to many of these operations is to compute a smallest common string partition [11, 26].

∗ Christian Komusiewicz gratefully acknowledges support from the DFG, project MAGZ (KO 3669/4-1).
Mateus de Oliveira Oliveira gratefully acknowledges support from the Bergen Research Foundation.

© Christian Komusiewicz, Mateus de Oliveira Oliveira, and Meirav Zehavi;
licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 11; pp. 11:1–11:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2 Parameterized Complexity of Maximum-Duo Preservation String Mapping

Informally, a size-` common string partition of two strings A and B is a partition of A and B,
each into ` nonoverlapping substrings, such that the resulting two multisets of substrings
of A and B are the same. The problem to compute a smallest common string partition,
known as Minimum Common String Partition, is NP-hard [11, 21].

An alternative way of defining such a partition is to ask for a partition of A into `

nonoverlapping substrings such that permuting the order of these substrings and concatenating
them subsequently gives the string B. This second view implies a mapping m that (bijectively)
maps each position i of A to a position m(i) of B such that A[i] = B[m(i)]. The size of
the common string partition is then exactly the number of pairs of consecutive positions i

and i+1 such that m(i)+1 6= m(i+1); these positions are called duos. Therefore, computing
a mapping m that maps only positions with the same characters to each other and maximizes
the number k of consecutive positions for which m(i)+1 = m(i+1) directly yields a minimum
common string partition of A and B. The problem of computing such a mapping is known
as Maximum-Duo Preservation String Mapping (Max-Duo PSM). Since Max-Duo
PSM is simply a dual of the Minimum Common String Partition problem, it is NP-hard
as well. Motivated by this hardness, we study Max-Duo PSM from the viewpoint of
parameterized algorithmics. More precisely, our aim is to obtain efficient algorithms when
the parameter is k, the number of preserved duos. Before describing previous and our results,
we give a formal problem definition.

Formal Problem Definition. Let A and B be two strings over a finite set of symbols Σ.
Throughout this work, we assume that |A| = |B| = n and that A and B are related, that
is, B is a permutation of A. A mapping of A into B is a (bijective) function m : [n]→ [n]
where for each i ∈ [n],1 A[i] = B[m(i)]. A duo in A is a pair of consecutive positions (i, i + 1)
of A. We say that a mapping m preserves a duo (i, i + 1) if m(i) + 1 = m(i + 1). Accordingly,
the Max-Duo PSM problem is defined as follows.

Maximum-Duo Preservation String Mapping (Max-Duo PSM)
Input: Two related strings, A and B, and a nonnegative integer k.
Question: Does there exist a (bijective) mapping m of A into B such that the number
of preserved duos is at least k?

Previous Work. Initially, Max-Duo PSM has been proposed as an alternative possib-
ility of achieving approximation algorithms for Minimum Common String Partition
(MCSP) [10], because the best known polynomial-time approximation algorithm has an
approximation factor of O(log n log∗ n) [12]. Consequently, most work on Max-Duo PSM
focuses on approximation algorithms with the first constant-factor approximation algorithm
achieving an approximation factor of 4 [6]. This was subsequently improved to a factor of
3.5 [5] and then to a factor of 3.25 [7]. Recently further progress concerning the approximation
factor has been reported [18, 27].

Bretta et al. [2, 1] initiated the study of Max-Duo PSM from the viewpoint of para-
meterized algorithmics. They studied both the fixed-parameter tractability and the ker-
nelization complexity of Max-Duo PSM, showing that this problem can be solved in
time (8e)2k+o(k) · nO(1), and that it admits a kernel of size O(k6). Thus, Bretta et al. [2, 1]
were the first to show that Max-Duo PSM is FPT and that it admits a polynomial kernel.

1 We use [n] as shorthand for {1, 2, . . . , n}.

C. Komusiewicz, M. Oliveira, and M. Zehavi 11:3

The fixed-parameter algorithm of Bretta et al. [2, 1] is based on a combination of color coding
and dynamic programming.

In comparison with Max-Duo PSM, MCSP has been investigated more thoroughly
from the viewpoint of parameterized algorithms. Damaschke [15] presented the first fixed-
parameter algorithms for MCSP, for combined parameters such as “partition size ` plus
repetition number of the input strings”.2 Subsequently, MCSP was shown to be fixed-
parameter tractable with the single parameter partition size ` [9]. Jiang et al. [23] considered
the combined parameter “partition size ` plus maximum occurrence d of any character” and
showed that MCSP can be solved in time (d!)k · nO(1). Subsequently, this running time was
improved to O(d2k · kn) [8].

Our Contribution. We make two main contributions. First, we develop two algorithms
for the Max-Duo PSM problem that are substantially faster than the (deterministic)
algorithm by Bretta et al. [2, 1], which runs in time (8e)2k+o(k) · nO(1). Specifically, we
develop a randomized algorithm that solves Max-Duo PSM in time 4k · nO(1), as well as a
deterministic algorithm that solves this problem in time 6.855k · nO(1). Here, in the context
of our randomized algorithm, we mean that if we determine that the input is a yes-instance,
then this answer is necessarily correct, and if we determine that the input is a no-instance,
then this answer is correct with probability at least 9/10.3 For the purpose of developing our
algorithms, we present a reduction from Max-Duo PSM to a problem of finding paths in
an edge-colored graph, which might be of independent interest. This reduction lies at the
heart of our algorithms, since by employing advanced tools from the field of parameterized
algorithmics, namely, the methods of narrow sieves [4, 3] and representative sets [20], it is
possible to quickly solve the resulting graph problem.

Second, we prove that Max-Duo PSM admits a kernel of size O(k3), improving upon
the kernel of size O(k6) by Bretta et al. [2].

Preliminaries. We use [i, j] to denote the set {i, i + 1, . . . , j} of natural numbers between i

and j. Moreover, given a string A, we denote the substring starting at position i and ending
at position j by A[i, j]. For a (directed) graph G, let V (G) denote the vertex set of G

and E(G) the edge set of G.
The field of parameterized algorithmics studies parameterized problems, where each

problem instance is associated with a parameter k, usually a nonnegative integer. Given a
parameterized problem, the first question is whether the problem is fixed-parameter tractable
(FPT), that is, whether it can be solved in time f(k) · |X|O(1), where f is an arbitrary
function that depends only on k and |X| is the size of the input instance. In other words, the
notion of FPT signifies that the combinatorial explosion can be confined to the parameter k.
A second question is whether the problem also admits a polynomial kernelization. Here,
a problem Π is said to admit a polynomial kernelization if there exists a polynomial-time
algorithm that, given an instance (X, k) of Π, outputs an equivalent instance (X̂, k̂) of Π,
called a kernel, where |X̂| = k̂O(1) and k̂ ≤ k; kernelization is a mathematical concept that
aims to analyze preprocessing procedures in a formal, rigorous manner. For further details,
refer to [17, 14].

Due to lack of space, several proofs are deferred to an appendix.

2 The repetition number of a nonempty string x is defined as the largest i such that x = uviw where v is
nonempty.

3 Clearly, the probability of success can be improved by running the algorithm multiple times and
determining that the input is a yes-instance if and only if at least one of the calls determined so.

CPM 2017

11:4 Parameterized Complexity of Maximum-Duo Preservation String Mapping

2 Reduction to a Path Finding Problem

In this section, we present a reduction from Max-Duo PSM to the following graph problem.

Long Blue Path
Input: A directed acyclic graph (DAG) G, an edge-coloring c : E(G) → {R, B}, a
vertex-labeling ` : V (G)→ N, and nonnegative integers k and r.
Question: Does G contain a directed path P such that
|V (P)| ≤ r,
for all u, v ∈ V (P), `(u) 6= `(v), and
|{e ∈ E(P) : c(e) = B}| ≥ k.

Construction. Let (A, B, k) be an instance of Max-Duo PSM. We construct an instance
(G, c, `, k, r) of Long Blue Path as follows (here, the parameter k is the same). First, we
initialize G to be an empty graph. Now, for every pair of substrings A[i, j] of A and B[p, q]
of B such that j − i ≤ k and A[i, j] = B[p, q], we insert a directed path Pi,j,p,q on j − i + 1
new vertices into G whose edges are colored blue and such that the label of the dth vertex on
this path is (p + d− 1). The purpose of this path is to represent the possibility to preserve
all duos in A[i, j] by mapping this substring to B[p, q]. The labels of the vertices are meant
to ensure that every position in B is mapped only once. Now, a complete mapping of A to
B can be seen as a combination of mappings of substrings that are represented by the paths.
Thus, we next turn to connect the paths we have just constructed by adding new edges.

For every two paths Pi,j,p,q and Pi′,j′,p′,q′ such that j < i′, we add a red edge from the
last vertex of the path Pi,j,q,p to the first vertex of the path Pi′,j′,q′,p′ . Informally, the manner
in which we direct these edges is meant to ensure that every position in A is mapped only
once. Clearly, the resulting graph G is a DAG. Finally, we set r = 2k.

Correctness. We first note that the construction can be done in time O(|V (G)|+ |E(G)|).
Now, observe that the number of paths Pi,j,p,q that G contains is bounded by n2(k + 1) (as
the index q equals p + (j − i)), and that each path Pi,j,p,q consists of at most (k + 1) vertices.
Hence, it holds that |V (G)| ≤ n2(k + 1)2 which directly implies |E(G)| < n4(k + 1)2. Thus,
we have the following observation.

I Observation 1. The instance (G, c, `, k, r) can be constructed in time O(n4k2).

We prove the correctness by proving two lemmata that together imply that the instances
(A, B, k) and (G, c, `, k, r) are equivalent.

I Lemma 1. If (A, B, k) is a yes-instance of Max-Duo PSM, then (G, c, `, k, r) is a
yes-instance of Long Blue Path.

Proof. Let m be a mapping from A into B preserving at least k duos. Consider the
set {A1, . . . , Ar} of substrings of A containing exactly the first k preserved duos, where we
assume that Ai precedes Ai+1 in A. Consider any Az and let [iz, jz] be the set of positions
of Az in A. Since the mapping preserves the duos in Az, there is a substring B[qz, pz] such
that m(iz + s) = qz + s, 0 ≤ s ≤ j − i. This implies that A[iz, jz] = B[qz, pz]. Thus, G

contains the path Pz := Piz,jz,qz,pz
.

By the above, for each Az, G contains a path Pz containing |Az|−1 blue edges. Moreover,
for Ai and Aj , the vertices in Pi and Pj have different labels since the mapping m is injective.
Finally, there is a red edge from the last vertex of Pi to the first vertex of Pi+1 since the
last position of Ai is strictly smaller than the first position of Ai+1. Thus, the concatenation

C. Komusiewicz, M. Oliveira, and M. Zehavi 11:5

of P1, P2 until Pr gives a path in G. The number of blue edges in this path is exactly k, and
the number of vertices in this path is at most 2k, since every Pi contains at least one blue
edge. J

I Lemma 2. If (G, c, `, k) is a yes-instance of Long Blue Path, then (A, B, k) is a
yes-instance of Max-Duo PSM.

Proof. Let P be a solution of the Long Blue Pathinstance. That is, P is a path in G on at
most 2k vertices, all with different labels, containing at least k blue edges. Let {P1, . . . , Pr}
be the set of disjoint paths obtained from P by removing all red edges where we assume that
there is a red edge from Pi to Pi+1 for all i ∈ [r− 1]. Consider some Pz. By the construction
of G, Pz = Pi,j,q,p for some i < j and q < p. Hence, there is a substring A[i, j] of A and a
substring B[q, p] of B such that A[i, j] = B[q, p]. Call these two substrings the substrings
of A and B, respectively, that correspond to Pz. Observe that for Pi and Pj , i < j, the
substrings corresponding to Pi and Pj are disjoint: For the substrings in A this is due to
the fact that the indices of the corresponding substring for Pi are lower than those of the
substring of A corresponding to Pj . For the substrings in B this is due to the fact that the
vertices in Pi and Pj have different labels. Thus, there is a mapping from A into B that
maps the corresponding strings for each path Pi and maps all other positions arbitrarily.
The number of duos preserved by this mapping is at least k. J

Altogether, we arrive at the following.

I Lemma 3. Given an instance (A, B, k) of Max-Duo PSM, an equivalent instance
(G, c, `, k, r) of Long Blue Path where r = 2k can be constructed in time O(n4k2).

3 A Randomized Algorithm based on Narrow Sieves

In this section, we adapt the method of narrow sieves that was applied to solve the k-
Path problem [4] to solve Long Blue Path. More precisely, our objective is to provide a
constructive proof for the following result.

I Lemma 4. There exists a randomized algorithm that solves Long Blue Path in time
2r · rO(1) · |E(G)| and polynomial space.

In light of Lemma 3, once we have Lemma 4 at hand, we immediately obtain the following
theorem.

I Theorem 5. There exists a randomized algorithm that solves Max-Duo PSM in time
4k · kO(1) · n4 and polynomial space.

In the following, we focus on the proof of Lemma 4. To this end, let (G, c, `, k, r) be an
instance of Long Blue Path. Clearly, we can assume that |V (G)| ≤ |E(G)|. To be able to
rely on dynamic programming later, we need to define a notion of a partial solution:

I Definition 6. Let P be a directed path in G. Given a vertex v ∈ V (G), s ∈ [r] and
b ∈ [r] ∪ {0}, we say that P is a (v, s, b)-path if the last vertex of P is v, |V (P)| = s and
|{e ∈ E(P) : c(e) = B}| = b. If for all u, w ∈ V (P), it holds that `(u) 6= `(v), then we say
that P is a good path.

To employ the method of narrow sieves, we need to associate labels with entities whose
uniqueness should be preserved. For this purpose, we have the following definition:

CPM 2017

11:6 Parameterized Complexity of Maximum-Duo Preservation String Mapping

I Definition 7. Let P be a (v, s, b)-path. Given f : V (P) → [r], we say that (P, f) is a
(v, s, b)-pair. If P is good, then we say that (P, f) is a good pair, and if f is an injective
function, then we say that (P, f) is an injective pair. Given L ⊆ [r] such that the image of f

is a subset of L, we say that (P, f) is an L-labeled pair.

Now, we define two central sets of labeled partial solutions. The first one, P, consists
of every pair (P, f) that is an injective (v, s, b)-pair for some v ∈ V (G) and s, b ∈ [r] such
that b ≥ k. The second one, Q, consists of every good pair (P, f) in P. Note that for every
pair (P, f) ∈ Q, it holds that P is a solution for Long Blue Path, and for every solution P

for Long Blue Path, by letting f be a function that assigns i to the ith vertex on P , we
obtain a pair (P, f) ∈ Q. Thus, we have the following observation.

I Observation 2. The instance (G, c, `, k, r) is a yes-instance if and only if Q 6= ∅.

With these definitions at hand, we may describe the rough idea of the approach. We represent
all labeled partial solutions of P by a polynomial in such a way that each labeled partial
solution corresponds to one monomial. We will ensure that the partial solutions of P \ Q
cancel each other out which will imply that the polynomial is not identically 0 if and only if
Q 6= ∅. To this end, we now describe how we represent labeled partial solutions by monomials.
For every label i ∈ image(`) and integer j ∈ [r], we introduce the variable xi,j , and for every
edge e ∈ E(G), we introduce the variable ye. This gives the following representation:

I Definition 8. Let (P, f) be a (v, s, b)-pair. Then, the monomial associated with (P, f) is
defined as follows.

mon(P, f) =
∏

v∈V (P)

x`(v),f(v) ·
∏

e∈E(P)

ye.

Accordingly, we define the following polynomial (which would be evaluated over a field of
characteristic 2).

I Definition 9. POL =
∑

(P,f)∈P

mon(P, f).

To analyze this polynomial, we first observe that given a monomial associated with a pair
(P, f) ∈ Q, we can uniquely recover the pair (P, f). To see this, consider some monomial
M that is associated with a pair (P, f) ∈ Q. Then, the variables ye of M specify exactly
which edges are used by P , and therefore the path P is recovered. Now, since the pair (P, f)
belongs to Q, we have that P is a good path. Hence, the variables xi,j of M specify exactly
how f labels the vertices of P . In other words, we have the following observation.

I Observation 3. For all (P, f) ∈ Q, there does not exist (P ′, f ′) ∈ P \ {(P, f)} such that
mon(P, f) = mon(P ′, f ′).

The following lemma will be used to show that the partial solutions of P \ Q cancel each
other out.

I Lemma 10. There exists a function g : P \Q → P \Q such that for all (P, f) ∈ P \Q, it
holds that mon(P, f) = mon(g(P, f)), g(P, f) 6= (P, f), and g(g(P, f)) = (P, f).

Proof. Let < be some order on {{u, v} : u, v ∈ V (P)}. Given (P, f) ∈ P \ Q, define
rep(P, f) = {{u, v} : u, v ∈ V (P), u 6= v, `(u) = `(v)}. Since P is not a good path, it holds
that rep(P, f) 6= ∅. Hence, it is well defined to let {u, v} be the smallest set in rep(P, f)
according to <. We let h be defined as f except that h(u) = f(v) and h(v) = f(u). Now, we

C. Komusiewicz, M. Oliveira, and M. Zehavi 11:7

set g(P, f) = (P, hP,f). Clearly, g(P, f) ∈ P. Note that rep(P, f) = rep(P, hP,f), and hence
g(P, f) /∈ Q and g(g(P, f)) = (P, f). Since (P, f) ∈ P , it holds that f is an injective function;
therefore f(v) 6= f(u), which implies that g(P, f) 6= (P, f). Finally, since `(u) = `(v), it holds
that mon(P, f) = mon(g(P, f)). J

Let F be a field of characteristic 2 (to be determined). From now on, we suppose that
POL is evaluated over F. Notice that

POL =
∑

(P,f)∈Q

mon(P, f) +
∑

(P,f)∈P\Q

mon(P, f).

Suppose that POL is evaluated over F. By Lemma 10, we have that POL =
∑

(P,f)∈Qmon(P, f).
Then, by Observation 3, we have that POL is not identically 0 if and only if Q is not empty.
Hence, by Observation 2, we have the following lemma.

I Lemma 11. The instance (G, c, `, k, r) is a yes-instance if and only if POL is not identic-
ally 0.

In light of Lemma 11, our task is to determine whether POL is identically 0. For this
purpose, we need the following notation. Given v ∈ V (G), s ∈ [r], b ∈ [r] ∪ {0} and
L ⊆ [r], let Pv,s,b,L denote the set of every L-labeled (v, s, b)-pair (P, f), and POLv,s,b,L =∑
(P,f)∈Pv,s,b,L

mon(P, f). Moreover, denote

PL =
⋃

v ∈ V (G), s, b ∈ [r], b ≥ k

Pv,s,b,L,

and POLL =
∑

(P,f)∈PL

mon(P, f). By the principle of inclusion-exclusion, we have that

POL =
∑

L⊆[r]

(−1)r−|L|POLL. Then, since F is a field of characteristic 2 (refer to [4] for further

details) we obtain the following.

I Observation 4. POL =
∑

L⊆[r]

POLL.

Hence, to determine whether POL is identically 0, it is sufficient to determine whether∑
L⊆[r] POLL is identically 0. To proceed, we need to recall the following well-known lemma.

I Lemma 12 ([24, 28, 16]). Let p(x1, x2, . . . , xn) be a nonzero polynomial of total degree
at most d over a finite field K. Then, for a1, a2, . . . , an ∈ K selected independently and
uniformly at random, Pr(p(a1, a2, . . . , an) 6= 0) ≥ 1− d/|K|.

Notice that POL is a polynomial of total degree at most 2r. Therefore, by setting
|F| = 2dlog(20r)e, from Lemma 11, Observation 4, and Lemma 12, we have that

I Lemma 13. For a random assignment to all variables xi,j and ye, if (G, c, `, k, r) is a
no-instance, then

∑
L⊆[r]

POLL evaluates to 0, and otherwise it does not evaluate to a 0 with

probability at least 9/10.

In light of Lemma 13, to conclude that Lemma 4 is correct, it is sufficient to prove the
following result.

CPM 2017

11:8 Parameterized Complexity of Maximum-Duo Preservation String Mapping

I Lemma 14. Given L ⊆ [r] and an assignment to all variables xi,j and ye, the polynomial
POLL can be evaluated in time rO(1) · |E(G)|.

Finally, we would like to remark that if one is interested in finding a mapping that is
a solution rather than just determining whether such a mapping exists, this goal can be
achieved by standard means of self-reduction. Briefly, if k is not positive, then we are done.
Else, if the algorithm determines that there exists a solution, then we may “guess” (i.e.,
perform exhaustive search) a longest substring A′ of A that is mapped by some solution
while preserving all duos in A′ as well as the substring B′ of B to which it is mapped. If our
guess is correct, then the symbol preceding A′ in A is not equal to the symbol preceding
B′ in B and the symbol after A′ in A is also not equal to the symbol after B′ in B (if such
symbols exist). Then, we may replace A′ and B′ in A and B, respectively, by some new
symbol, decrease k by |A′| − 1, and call the algorithm recursively. Notice that the length of
A′ should be at least 2, and hence the size of the input has decreased.

4 Deterministic Algorithm: Representative Sets

In this section, we adapt the approach in which the method of representative sets is applied
to solve the k-Path problem [20]. More precisely, our objective is to provide a constructive
proof for the following result.

I Lemma 15. There exists a deterministic algorithm that solves Long Blue Path in time
O((1+

√
5

2)r+o(r) · |E(G)| · log |E(G)|).

Combining Lemma 3 and 15 gives us the following.

I Theorem 16. There exists a deterministic algorithm that solves Max-Duo PSM in time
O((1+

√
5

2)2k+o(k) · n4 log n) = O(6.855k · n4 log n).

5 A Cubic Problem Kernel

In this section we will show that Max-Duo PSM admits a kernel of size O(k3). Let (A, B, k)
be an instance of Max-Duo PSM, and let S ∈ {A, B}. If S = A, then we let S = B.
Analogously, if S = B, then we let S = A.

Let m be a map of S into S, and let D be a set of duos. We denote by m(D) =
{(m(i), m(i + 1)) | (i, i + 1) ∈ D} the image of D under m. We say that m preserves D if m

preserves each duo in D. Let CA and CB be sets of duos. We say that the pair (CA, CB)
is complete for (A, B, k) if whenever there is a map m of A into B that preserves k duos,
then there is a subset D ⊆ CA with |D| = k and a map m′ such that m′ preserves D and
m′(D) ⊆ CB . The size of (CA, CB) is defined as |CA|+ |CB |. Let f : N→ N be a function. A
complete pair (CA, CB) of size f(k) for (A, B, k) can be used to construct a kernel (A′, B′, k)
of size O(f(k)) for (A, B, k).

I Theorem 17 ([2, Section 4.2]). Let (CA, CB) be a complete pair of size f(k) for (A, B, k).
Then one can construct in time O(f(k)) related strings A′ and B′, each of size O(f(k)) such
that (A, B, k) is a yes-instance of Max-Duo PSM if and only if (A′, B′, k) is a yes-instance
of Max-Duo PSM.

Using Theorem 17, it is sufficient to show that one can obtain in polynomial time a
complete pair (CA, CB) for (A, B, k) of size O(k3).

C. Komusiewicz, M. Oliveira, and M. Zehavi 11:9

A block of size s is a set X = {(i, i + 1), (i + 1, i + 2), ..., (i + s− 1, i + s)} consisting of
s consecutive duos. We say that (i, i + 1) is the root of X. If S is a string of length at least
i + s, then we let str(S, X) = S[i, i + s] be the substring of S corresponding to the positions
that occur in X. The following observation is immediate.

I Observation 5. Let (A, B, k) be an instance of Max-Duo PSM and let m be a map of
A into B that preserves a block X of size k. Then (A, B, k) is a yes-instance of Max-Duo
PSM. Additionally, the instance (A′, B′, k) where A′ = str(A, X) and B′ = str(B, m(X)) is
also yes-instance of Max-Duo PSM.

In the remainder of this section we assume that no map m of A into B preserves a block
of size k. Our algorithm is based on the notion of rare duo, which we define next. For each
two symbols a, b ∈ Σ, and each string S ∈ {A, B}, we let

n(S, a, b) := |{i : 1 ≤ i ≤ |S| − 1, S[i, i + 1] = ab}|

be the number of occurrences of the length-two string ab as a substring of S. We say
that a length-two string ab is rare for S if ab occurs as a sub-string of both S and S and
n(S, a, b) ≤ n(S, a, b). Observe that if ab occurs as many times in S as it occurs in S, then
ab is rare for both S and S. We say that a duo (i, i + 1) is rare for S if S[i, i + 1] is rare for
S. We let rare(S) be the set of duos that are rare for S.

I Lemma 18. If either |rare(A)| ≥ 4k or |rare(B)| ≥ 4k, then (A, B, k) is a yes-instance.

Proof. The duo graph associated with A and B is the bipartite graph G(A, B) = (VA∪̇VB , E)
defined as follows:

VA = {(i, i + 1) | 1 ≤ i ≤ n− 1} ,

VB = {(j, j + 1) | 1 ≤ j ≤ n− 1} ,

E = {[(i, i + 1), (j, j + 1)] | A[i] = B[j], A[i + 1] = B[j + 1]}.

Intuitively, each of the sets VA and VB contains all pairs of consecutive positions from
[n]. A duo (i, i + 1) in VA is connected to a duo (j, j + 1) in VB if and only if the length-two
string A[i]A[i + 1] is equal to B[j]B[j + 1].

If e = [(i, i + 1), (j, j + 1)] is an edge of G(A, B), then we say that (i, i + 1) is the left
endpoint of e and (j, j + 1) is the right endpoint of e. If M is a matching in G(A, B), then
we let MA be the set of duos in VA that are left endpoints of edges in M , and MB be the set
of duos in VB that are right endpoints of edges in M .

Assume that either |rare(A)| ≥ 4k or |rare(B)| ≥ 4k. Then G contains a matching of size
at least 4k. Let M be a maximum matching in G(A, B).

It has been shown in [6] that given a matching M of size at least 4k for the graph G(A, B),
one can construct a sub-matching M of M of size at least k such that M directly gives a
map preserving at least k duos. Therefore, the instance is a yes-instance in this case. J

In the remainder of this section we thus assume that there are less than 4k duos that are
rare for A, and less than 4k duos that are rare for B. This implies that we may add all rare
duos to the sets CA and CB without surpassing the desired size bound of O(k3).

Let S be a string in {A, B}. We say that a duo (j, j +1) is a match for a duo (i, i+1) in S

if there exists a map m of S into S that preserves (i, i + 1), and (m(i), m(i + 1)) = (j, j + 1).
If X and Y are blocks, then we say that Y is a match for X in S if there exists a map m of
S into S such that m preserves X, and m(X) = Y .

CPM 2017

11:10 Parameterized Complexity of Maximum-Duo Preservation String Mapping

Algorithm 1
1: procedure Roots(S, i, i + 1)
2: R = ∅
3: k′ ← size of the maximal block which is rooted at (i, i + 1), rare for S, and has a
4: match in S. Note that k′ ≤ k − 1.
5: for ` = k′ to 1 do
6: X ← unique block of size ` rooted at (i, i + 1)
7: for j = 1 to n− 1 do
8: if |R| < 2k − 1 and |j′ − j| > k ∀j′ ∈ R and
9: (j, j + 1) is a root for a match of X in S then
10: R← R ∪ {(j, j + 1)}
11: output R

I Observation 6. Let S ∈ {A, B} and let (j, j + 1) be a match for (i, i + 1) in S. Then if
(i, i + 1) is not rare for S, (j, j + 1) is rare for S.

Proof. Since (j, j + 1) is a match for (i, i + 1) in S, there is some length-two string ab such
that S[i]S[i + 1] = S[j]S[j + 1] = ab. Since (i, i + 1) is not rare for S, the string ab occurs
strictly more often in S than it occurs in S. In other words, n(S, a, b) > n(S, a, b). This
implies that (j, j + 1) is rare for S. J

This observation is useful because it tells us that for each match in a map, one of the two
duos is rare, so by adding all the rare duos to CA and CB , we essentially pick up one half of
each match. We now consider two types of matched blocks that may occur in the solution.
First, there may be pairs of matched blocks X and Y that both contain nonrare duos. We
can add all duos of these blocks by considering a sufficiently large neighborhood of all rare
duos. To this end, for each i ∈ {1, ..., n− 1}, let

Bk(i) = {(i′, i′ + 1) | i′ ∈ {1, ..., n− 1}, i− k ≤ i′ ≤ i + k}

denote the ball of radius k around the duo (i, i + 1)
The following lemma essentially implies that by adding the ball of radius k around each

rare duo, we add all pairs of matched blocks that both contain at least one nonrare duo.

I Lemma 19. Let S ∈ {A, B}, X be a block of size at most k − 1 containing a duo (i, i + 1)
that is not rare for S, and let m be a map of S into S such that X is preserved by m. Then
(m(i), m(i + 1)) is rare for S and m(X) ⊆ Bk(m(i)).

Proof. Since (i, i + 1) is preserved by m, (m(i), m(i + 1)) is a match for (i, i + 1) in S. Since
(i, i + 1) is not rare for S, by Observation 6, (m(i), m(i + 1)) is rare for S. Since m preserves
X and since |X| ≤ k − 1, m(X) is a block of size at most k − 1. Therefore, all duos in m(X)
must be in the ball of radius k around (m(i), m(i + 1)), that is, m(X) ⊆ Bk(m(i)). J

We now turn to the second type of matched pairs of blocks, those where one block X of S

has only rare duos for S; we call such a block X rare. Since X is rare, it is rooted at some
rare duo (i, i + 1). To obtain the complete set, we need to add duos in S. This is done by
the procedure Roots which receives as input a string S and a duo in S and returns a set of
duos Roots(S, i, i + 1).

Intuitively, for each block X that is rare for S and rooted at (i, i+1), the set Roots(S, i, i+
1) contains a selection of roots of matches for X in the string S. This selection is made

C. Komusiewicz, M. Oliveira, and M. Zehavi 11:11

according to two criteria. First, roots of matches for larger blocks are added first. Second,
the roots in Roots(S, i, i + 1) are sufficiently far apart from each other. Now consider the set

F (S, i, i + 1) =
⋃

(j,j+1)∈Roots(S,i,i+1)

Bk(j).

Intuitively, F (S, i, i+1) consists of all duos that are sufficiently close to duos in Roots(S, i, i+
1). The next lemma states that if some map m of S into S preserves some block X that is
rooted at (i, i + 1) and rare for S, then this map can be transformed into a map m′ that
preserves X, that sends X to F (S, i, i + 1), and that is equal to m on every duo outside X.

I Lemma 20. Let m be a map of S into S, D be a set of duos such that |D| = k, and X ⊆ D

be a block that is rooted at (i, i + 1), that is rare for S and that is preserved by m. Then there
is a map m′ of S into S such that X is preserved by m′, such that m′(X) ⊆ F (S, i, i + 1)
and such that (m′(i′), m′(i′ + 1)) = (m(i′), m(i′ + 1)) for each (i′, i′ + 1) ∈ D\X.

Proof. Let (j, j + 1) be the root of m(X) in S. Let n(S, X) be the number of duos in
Roots(S, i, i + 1) that are roots of matches for X in S. Suppose that n(S, X) < 2k − 1.
Then either (j, j + 1) ∈ Roots(S, i, i + 1) or (j, j + 1) does not belong to Roots(S, i, i + 1)
and there exists some duo (j′, j′ + 1) ∈ Roots(S, i, i + 1) with |j′ − j| < k. Note that if this
were not the case, the duo (j, j + 1) would have been added to Roots(S, i, i + 1), since all
three conditions of the ’If’ instruction of Algorithm 1 would have been satisfied. In any case,
m(X) ⊆ Bk(j′) ⊆ F (S, i, i + 1). Therefore, if n(S, X) < 2k − 1, we may simply set m′ = m.

Now assume that n(S, X) = 2k − 1. Note that for each duo (j, j + 1) there are no three
distinct j1, j2 and j3 such that (jl, jl + 1) ∈ Roots(S, i, i + 1) and (j, j + 1) ∈ B(jl) for
l ∈ {1, 2, 3}. In other words (j, j + 1) can intersect at most two balls of radius k rooted at
duos in Roots(S, i, i + 1). Therefore, since |D\X| ≤ k − 1, the set D\X intersects at most
2k − 2 balls of radius r rooted at duos in Roots(S, i, i + 1). In other words, there is at least
one (j′, j′ + 1) ∈ Roots(S, i, i + 1) that is the root of a match for X in S and such that
Bk(j′)∩ (D\X) = ∅. Therefore, we may set m′ as the map of S into S that preserves X, that
sends the root of X to (j′, j′+ 1), and that is equal to m on every duo (i′, i′+ 1) ∈ D\X. J

Now, for each S ∈ {A, B}, consider the following set CS of duos.

CS =

 ⋃
(i,i+1)∈rare(S)

Bk(i)

 ∪
 ⋃

(i,i+1)∈rare(S)

F (S, i, i + 1)

 . (1)

In other words, for each duo (i, i + 1) that is rare for S, CS contains all duos in the ball
of radius k around (i, i + 1). Moreover, for each duo (i, i + 1) that is rare for S, CS contains
all duos in the set F (S, i, i + 1). The following lemma states that if a map m of S into S

preserves a set D containing k duos, then there exists a map m′ that also preserves D in
such a way that m′(D) ⊆ CS .

I Lemma 21. Let D be a set of duos such that |D| = k. Let m be a map of S into S that
preserves all duos in D. Then there is a map m′ of S into S that preserves all duos in D,
and such that m′(D) ⊆ CS.

Proof. Let X1, ..., Xr be the set of rare blocks that are contained in D and that are maximal
with respect to set inclusion. In other words, for each j ∈ {1, ..., r} and each Y such that
Xj ⊆ Y ⊆ D, we have that Y is not a rare block. Note that since these blocks are rare and

CPM 2017

11:12 Parameterized Complexity of Maximum-Duo Preservation String Mapping

maximal, they are pairwise disjoint, i.e., Xj ∩Xj′ = ∅ for j 6= j′. For each j ∈ {1, ..., r} let
(ij , ij + 1) be the root of Xj and Dj = D\Xj . Additionally, let D′ = D\

⋃r
j=1 Xj . Note that

D′ ⊆ Dj for each j ∈ {1, ..., r}.
Let m0, m1, ..., mr be maps of S into S defined inductively as follows. First, we set

m0 = m. Now, for each j ∈ {1, ..., r}, we let mj be a map of S into S constructed
according to Lemma 20. More precisely, mj preserves Xj , mj(Xj) ⊆ F (S, ij , ij + 1), and
(mj(i), mj(i + 1)) = (mj−1(i), mj−1(i + 1)) for each duo (i, i + 1) ∈ Dj = D\Xj .

Using the maps m0, m1, ..., mr defined above, it follows by induction on j that for each
l ∈ {1, ..., j}, mj(Xl) ⊆ F (S, il, il + 1) ⊆ CS and (mj(i), mj(i + 1)) = (m(i), m(i + 1)) for
each (i, i + 1) ∈ D′. In particular, for each l ∈ {1, ..., r}, mr(Xl) ⊆ F (S, il, il + 1) ⊆ CS

and (mr(i), mr(i + 1)) = (m(i), m(i + 1)) for each (i, i + 1) ∈ D′ ⊆ Dj . This shows, that
mr preserves D, and sends

⋃r
j=1 Xj to a subset of CS and agrees with m in every duo in

D′ = D\
⋃r

j=1 Xj .
Let m′ = mr. It remains to show that m′ also sends blocks that are not rare for S to

subsets of CS . Let X ′1, ..., X ′s be the maximal blocks that are contained in D and that are
not rare for S. Note that these blocks are indeed contained in D′ and form a partition of
D′. Since for each j ∈ {1, ..., s}, X ′j has at least one duo (i, i + 1) that is not rare for S,
Lemma 19 implies that (m′(i), m′(i)) is rare for S and that m′(Xj) ⊆ Bk(m′(i)) ⊆ CS . Since
X ′1, ..., X ′s forms a partition of D′, m′(D′) ⊆ CS . Since by the discussion above, m′(

⋃r
j=1 Xj)

is also a subset of CS , we have that m′(D) ⊆ CS . J

Let CA and CB be sets of duos constructed according to Equation 1. We can show that
(CA, CB) is complete for (A, B, k) by applying Lemma 21 twice. More precisely, once with
respect to maps of A into B, and once with respect to maps of B into A.

I Lemma 22. The pair (CA, CB) is complete for (A, B, k).

Proof. Let D1 be a set of duos of size k. Let m1 be a map of A into B which preserves all
duos in D1. Then by Lemma 21 there is a map m2 of A into B which also preserves all duos
in D1, but with the property that m2(D1) ⊆ CB. Now let D2 = m2(D1), and m3 = m−1

2
be the inverse of m2. In other words, m3 is a map of B into A such that for each i ∈ [n],
m2(i) = j if and only if m3(j) = i. Then m3 preserves all duos in D2. By Lemma 21 there
is a map m4 of B into A that also preserves all duos in D2 but with the additional property
that m4(D2) ⊆ CA.

Let D3 = m4(D2), and let m5 = m−1
4 be the inverse of m4. Then m5 is a map of A into

B that preserves D3 ⊆ CA and such that m5(D3) = D2 ⊆ CB. Since |D3| = |D2| = k, the
pair (CA, CB) is complete for (A, B, k). J

Now, we can upper-bound the size of CS and the time needed to construct CS , thus
arriving at our main theorem.

I Theorem 23. Given an instance I = (A, B, k) of Max-Duo PSM, one can construct in
time O(|Σ|2 · n + k3 · n) an instance I ′ = (A′, B′, k) of Max-Duo PSM with |A′| and |B′|
bounded by O(k3) such that I is a yes-instance if and only if I ′ is a yes-instance.

References
1 Stefano Beretta, Mauro Castelli, and Riccardo Dondi. Corrigendum to “Parameterized

tractability of the maximum-duo preservation string mapping problem” [Theoret. Comput.
Sci. 646 (2016) 16–25]. Theor. Comput. Sci., 653:108–110, 2016. doi:10.1016/j.tcs.2016.
09.015.

http://dx.doi.org/10.1016/j.tcs.2016.09.015
http://dx.doi.org/10.1016/j.tcs.2016.09.015

C. Komusiewicz, M. Oliveira, and M. Zehavi 11:13

2 Stefano Beretta, Mauro Castelli, and Riccardo Dondi. Parameterized tractability of the
maximum-duo preservation string mapping problem. Theor. Comput. Sci., 646:16–25, 2016.
doi:10.1016/j.tcs.2016.07.011.

3 Andreas Björklund. Determinant sums for undirected Hamiltonicity. SIAM J. Comput.,
43(1):280–299, 2014. doi:10.1137/110839229.

4 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Narrow sieves
for parameterized paths and packings. J. Comput. Syst. Sci., 87:119–139, 2017. arXiv:
1007.1161, doi:10.1016/J.JCSS.2017.03.003.

5 Nicolas Boria, Gianpiero Cabodi, Paolo Camurati, Marco Palena, Paolo Pasini, and Stefano
Quer. A 7/2-approximation algorithm for the maximum duo-preservation string mapping
problem. In Roberto Grossi and Moshe Lewenstein, editors, Proceedings of the 27th Annual
Symposium on Combinatorial Pattern Matching (CPM 2016), volume 54 of LIPIcs, pages
11:1–11:8. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.
CPM.2016.11.

6 Nicolas Boria, Adam Kurpisz, Samuli Leppänen, and Monaldo Mastrolilli. Improved ap-
proximation for the maximum duo-preservation string mapping problem. In Daniel G.
Brown and Burkhard Morgenstern, editors, Proceedings of the 14th International Work-
shop on Algorithms in Bioinformatics (WABI 2014), volume 8701 of LNCS, pages 14–25.
Springer, 2014. doi:10.1007/978-3-662-44753-6_2.

7 Brian Brubach. Further improvement in approximating the maximum duo-preservation
string mapping problem. In Martin C. Frith and Christian Nørgaard Storm Pedersen,
editors, Proceedings of the 16th International Workshop on Algorithms in Bioinformat-
ics (WABI 2016), volume 9838 of LNCS, pages 52–64. Springer, 2016. doi:10.1007/
978-3-319-43681-4_5.

8 Laurent Bulteau, Guillaume Fertin, Christian Komusiewicz, and Irena Rusu. A fixed-
parameter algorithm for minimum common string partition with few duplications. In
Aaron E. Darling and Jens Stoye, editors, Proceedings of the 13th International Work-
shop on Algorithms in Bioinformatics (WABI 2013), volume 8126 of LNCS, pages 244–258.
Springer, 2013. doi:10.1007/978-3-642-40453-5_19.

9 Laurent Bulteau and Christian Komusiewicz. Minimum common string partition parameter-
ized by partition size is fixed-parameter tractable. In Chandra Chekuri, editor, Proceedings
of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2014), pages
102–121. SIAM, 2014. doi:10.1137/1.9781611973402.8.

10 Wenbin Chen, Zhengzhang Chen, Nagiza F. Samatova, Lingxi Peng, Jianxiong Wang, and
Maobin Tang. Solving the maximum duo-preservation string mapping problem with linear
programming. Theor. Comput. Sci., 530:1–11, 2014. doi:10.1016/j.tcs.2014.02.017.

11 Xin Chen, Jie Zheng, Zheng Fu, Peng Nan, Yang Zhong, Stefano Lonardi, and Tao Jiang.
Assignment of orthologous genes via genome rearrangement. IEEE/ACM Trans. Comput.
Biol. Bioinform., 2(4):302–315, 2005. doi:10.1109/TCBB.2005.48.

12 Graham Cormode and S. Muthukrishnan. The string edit distance matching problem with
moves. ACM Trans. Algorithms, 3(1):2:1–2:19, 2007. doi:10.1145/1219944.1219947.

13 Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algorithms on strings.
Cambridge University Press, 2007. doi:10.1017/CBO9780511546853.

14 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

15 Peter Damaschke. Minimum common string partition parameterized. In Keith A. Crandall
and Jens Lagergren, editors, Proceedings of the 8th International Workshop on Algorithms
in Bioinformatics (WABI 2008), volume 5251 of LNCS, pages 87–98. Springer, 2008. doi:
10.1007/978-3-540-87361-7_8.

CPM 2017

http://dx.doi.org/10.1016/j.tcs.2016.07.011
http://dx.doi.org/10.1137/110839229
http://arxiv.org/abs/1007.1161
http://arxiv.org/abs/1007.1161
http://dx.doi.org/10.1016/J.JCSS.2017.03.003
http://dx.doi.org/10.4230/LIPIcs.CPM.2016.11
http://dx.doi.org/10.4230/LIPIcs.CPM.2016.11
http://dx.doi.org/10.1007/978-3-662-44753-6_2
http://dx.doi.org/10.1007/978-3-319-43681-4_5
http://dx.doi.org/10.1007/978-3-319-43681-4_5
http://dx.doi.org/10.1007/978-3-642-40453-5_19
http://dx.doi.org/10.1137/1.9781611973402.8
http://dx.doi.org/10.1016/j.tcs.2014.02.017
http://dx.doi.org/10.1109/TCBB.2005.48
http://dx.doi.org/10.1145/1219944.1219947
http://dx.doi.org/10.1017/CBO9780511546853
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1007/978-3-540-87361-7_8
http://dx.doi.org/10.1007/978-3-540-87361-7_8

11:14 Parameterized Complexity of Maximum-Duo Preservation String Mapping

16 Richard A. DeMillo and Richard J. Lipton. A probabilistic remark on algebraic program
testing. Inf. Process. Lett., 7(4):193–195, 1978. doi:10.1016/0020-0190(78)90067-4.

17 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

18 Bartłomiej Dudek, Paweł Gawrychowski, and Piotr Ostropolski-Nalewaja. A family of
approximation algorithms for the maximum duo-preservation string mapping problem. In
Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter, editors, Proceedings of the
28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017), volume 78 of
LIPIcs, pages 10:1–10:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. arXiv:
1702.02405, doi:10.4230/LIPIcs.CPM.2017.10.

19 Guillaume Fertin, Anthony Labarre, Irena Rusu, Eric Tannier, and Stéphane Vialette.
Combinatorics of Genome Rearrangements. Computational molecular biology. MIT Press,
2009. doi:10.7551/mitpress/9780262062824.001.0001.

20 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient compu-
tation of representative families with applications in parameterized and exact algorithms.
J. ACM, 63(4):29:1–29:60, 2016. doi:10.1145/2886094.

21 Avraham Goldstein, Petr Kolman, and Jie Zheng. Minimum common string partition
problem: Hardness and approximations. Electron. J. Comb., 12, 2005. URL: http://www.
combinatorics.org/Volume_12/Abstracts/v12i1r50.html.

22 Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Com-
putational Biology. Cambridge University Press, 1997. doi:10.1017/CBO9780511574931.

23 Haitao Jiang, Binhai Zhu, Daming Zhu, and Hong Zhu. Minimum common string partition
revisited. J. Comb. Optim., 23(4):519–527, 2012. doi:10.1007/s10878-010-9370-2.

24 Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
J. ACM, 27(4):701–717, 1980. doi:10.1145/322217.322225.

25 Hadas Shachnai and Meirav Zehavi. Representative families: A unified tradeoff-based
approach. J. Comput. Syst. Sci., 82(3):488–502, 2016. doi:10.1016/j.jcss.2015.11.008.

26 Krister M. Swenson, Mark Marron, Joel V. Earnest-DeYoung, and Bernard M. E. Moret.
Approximating the true evolutionary distance between two genomes. ACM J. Exp. Al-
gorithmics, 12, 2008. doi:10.1145/1227161.1402297.

27 Yao Xu, Yong Chen, Taibo Luo, and Guohui Lin. A local search 2.917-approximation
algorithm for duo-preservation string mapping, 2017. arXiv:1702.01877.

28 Richard Zippel. Probabilistic algorithms for sparse polynomials. In Edward W. Ng,
editor, Proceedings of an International Symposiumon on Symbolic and Algebraic Manip-
ulation (EUROSAM 1979), volume 72 of LNCS, pages 216–226. Springer, 1979. doi:
10.1007/3-540-09519-5_73.

A Proofs of Section 3

I Lemma 14. Given L ⊆ [r] and an assignment to all variables xi,j and ye, the polynomial
POLL can be evaluated in time O(rO(1) · |E(G)|).

Proof Sketch. The evaluation can be performed by a simple procedure based on dynamic
programming. For the sake of completeness, we present the base cases and recursive formula
below. For simplicity, we abuse notation by using the symbols xi,j and ye to refer to the
values assigned to the variables xi,j and ye, respectively.

The procedure uses a table M , which has an entry M [v, s, b] for all v ∈ V (G), s ∈ [r] and
b ∈ [r] ∪ {0}. The purpose of this entry is to store the evaluation of POLv,s,b,L. Then, the

http://dx.doi.org/10.1016/0020-0190(78)90067-4
http://dx.doi.org/10.1007/978-1-4471-5559-1
http://arxiv.org/abs/1702.02405
http://arxiv.org/abs/1702.02405
http://dx.doi.org/10.4230/LIPIcs.CPM.2017.10
http://dx.doi.org/10.7551/mitpress/9780262062824.001.0001
http://dx.doi.org/10.1145/2886094
http://www.combinatorics.org/Volume_12/Abstracts/v12i1r50.html
http://www.combinatorics.org/Volume_12/Abstracts/v12i1r50.html
http://dx.doi.org/10.1017/CBO9780511574931
http://dx.doi.org/10.1007/s10878-010-9370-2
http://dx.doi.org/10.1145/322217.322225
http://dx.doi.org/10.1016/j.jcss.2015.11.008
http://dx.doi.org/10.1145/1227161.1402297
http://arxiv.org/abs/1702.01877
http://dx.doi.org/10.1007/3-540-09519-5_73
http://dx.doi.org/10.1007/3-540-09519-5_73

C. Komusiewicz, M. Oliveira, and M. Zehavi 11:15

evaluation of POLL is given by
∑

v ∈ V (G),
s, b ∈ [r], b ≥ k

M [v, s, b].

The basis consists of the following cases:
If b ≥ s, then M [v, s, b] = 0.
Else if s = 1, then M [v, s, b] =

∑
i∈L

x`(v),i.

Now, consider an entry M [v, s, b] not computed in the basis. We assume that a reference
to an undefined entry returns 0. Then,

M [v, s, b] =
∑

(u, v) ∈ E(G),
c(u, v) = R

(
(
∑
i∈L

x`(v),i) · y(u,v) ·M [u, s− 1, b]
)

+
∑

(u, v) ∈ E(G),
c(u, v) = B

(
(
∑
i∈L

x`(v),i) · y(u,v) ·M [u, s− 1, b− 1]
)

. J

B Proofs of Section 4

In this section, we adapt the approach in which the method of representative sets is applied
to solve the k-Path problem [20]. More precisely, our objective is to provide a constructive
proof for the following result.

I Lemma 15. There exists a deterministic algorithm that solves Long Blue Path in time
O((1+

√
5

2)r+o(r) · |E(G)| log |E(G)|).

In light of Lemma 3, once we have Lemma 15 at hand, we directly obtain the following
theorem.

I Theorem 16. There exists a deterministic algorithm that solves Max-Duo PSM in time
O((1+

√
5

2)2k+o(k) · n4 log n) = O(6.855k · n4 log n).

Next, we focus on the proof of Lemma 15. To this end, let (G, c, `, k, r) be an instance
of Long Blue Path. Without loss of generality, we can assume that the image of ` is a
subset of [|V (G)|] and that |V (G)| ≤ |E(G)|. Here, a p-set is a set of size p. To describe our
algorithm, we need to present the definition of a representative family.

I Definition 27 ([20]). Given a universe U and a family S of p-subsets of U , we say that a
subfamily Ŝ ⊆ S t-represents S if for every pair of sets X ∈ S, and Y ⊆ U \X of size t− p,
there exists a set X̂ ∈ Ŝ such that X̂ ∩ Y = ∅.

The papers [20] and [25] present an algorithm, to which we refer as RepAlg, that given a
universe U and a family S of p-subsets of U , computes a subfamily Ŝ ⊆ S of size S(|U |, t, p)
that t-represents S in time |S| · T (|U |, t, p), such that the following condition is satisfied:

t∑
p=1
|U | · S(|U |, t, p− 1) · T (|U |, t, p) = (1 +

√
5

2)t+o(t) · |U | log |U |.

We proceed by presenting a procedure that is based on a combination of dynamic
programming and calls to RepAlg. For this purpose, we use a table M that has an entry

CPM 2017

11:16 Parameterized Complexity of Maximum-Duo Preservation String Mapping

M [v, s, b] for all v ∈ V (G), s ∈ [r] and b ∈ [r] ∪ {0}. Let Pv,s,b denote the set of all good
(v, s, b)-paths (see Definition 6). Give a (v, s, b)-path, define `(P) = {`(v) : v ∈ V (P)}.
Moreover, define Sv,s,b = {`(P) : P ∈ Pv,s,b}. The purpose of the entry M [v, s, b] would be
to store a subfamily of Sv,s,b that r-represents it. Next, we show how to compute the entries
of M . Here, the calls to RepAlg correspond to the universe [|E(G)|] and with t = r.

The basis consists of the following cases:
If s = 1 but b 6= 0, then M [v, s, b] = ∅.
Else if s = 1, then M [v, s, b] = {{`(v)}}.

Now, consider an entry M [v, s, b] not computed in the basis. We assume that a reference
to an undefined entry returns an empty set. Then, we first compute the two following
families.
Av,s,b = {X ∪ {`(v)} : (u, v) ∈ E(G), c(u, v) = R, X ∈M [u, s− 1, b], `(v) /∈ X}.
Bv,s,b = {X ∪ {`(v)} : (u, v) ∈ E(G), c(u, v) = B, X ∈M [u, s− 1, b− 1], `(v) /∈ X}.

Accordingly, we compute M [v, s, b] as follows.

M [v, s, b] = RepAlg(Av,s,b ∪ Bv,s,b).

First, note that the entire computation can be performed in time

O(
∑

v∈V (G)

r∑
s=1

r∑
b=0

∑
(u,v)∈E(G)

S(|E(G)|, r, s) · T (|E(G)|, r, s))

= O(
r∑

s=1
r|E(G)| · S(|E(G)|, r, s) · T (|E(G)|, r, s)).

Thus, we have the following observation.

I Observation 7. The table M is computed in time O((1+
√

5
2)r+o(r) · |E(G)| log |E(G)|).

Next, we prove that the computation of M is correct.

I Lemma 28. The computation of M ensures that for all v ∈ V (G), s ∈ [r] and b ∈ [r]∪{0},
M [v, s, b] r-represents Sv,s,b.

Proof. We prove the statement by induction on s. In the basis, where s = 1, it is clear that
M [v, s, b] is simply assigned Sv,s,b, and therefore it also 1-represents Sv,s,b. Now, fix some
s ≥ 2, and suppose that the statement is correct for s− 1. To prove that the statement is
correct for s, choose some v ∈ V (G), b ∈ [r]∪{0}, X ∈ Sv,s,b and Y ⊆ [|E(G)|] \X such that
|Y | = r − s. We need to show that there exists X̂ ∈ M [v, s, b] such that X̂ ∩ Y = ∅. Note
that M [v, s, b] r-represents Av,s,b ∪ Bv,s,b, and therefore is Av,s,b ∪ Bv,s,b contains a set that
is disjoint from Y , so does M [v, s, b]. Thus, it is sufficient that we show that there exists
X̂ ∈ Av,s,b ∪ Bv,s,b such that X̂ ∩ Y = ∅.

Since X ∈ Sv,s,b, there exists a good (v, s, b)-path P such that `(P) = X. Let u be
the vertex on P that precedes v, and let Q be the path obtained by removing v from P .
Note that `(Q) = X \ {`(v)}. Thus, if c(u, v) = R, then Q is a good (u, s− 1, b)-path and
therefore X \ {`(v)} ∈ Su,s−1,b, and otherwise Q is a good (u, s− 1, b− 1)-path and therefore
X \ {`(v)} ∈ Su,s−1,b−1. First, let us assume that X \ {`(v)} ∈ Su,s−1,b. By the inductive
hypothesis, M [u, s − 1, b] r-represents Su,s−1,b, and therefore M [u, s − 1, b] contains a set
Z such that Z ∩ (Y ∪ {`(v)}) = ∅. Thus, Z ∪ {`(v)} ∈ Av,s,b, and we conclude that the
statement is correct. Now, let us assume that X \ {`(v)} ∈ Su,s−1,b−1. By the inductive
hypothesis, M [u, s− 1, b− 1] r-represents Su,s−1,b−1, and therefore M [u, s− 1, b− 1] contains
a set Z such that Z ∩ (Y ∪ {`(v)}) = ∅. Thus, Z ∪ {`(v)} ∈ Bv,s,b, and again we conclude
that the statement is correct. J

C. Komusiewicz, M. Oliveira, and M. Zehavi 11:17

With these lemmas at hand, we are ready to prove Lemma 15.

Proof. By Observation 7 and Lemma 28, we first compute M , ensuring that the condition in
Lemma 28 is satisfied, in time O((1+

√
5

2)r+o(r) · |E(G)| log |E(G)|). Then, we determine that
the input instance is a yes-instance if and only if there exist v ∈ V (G), s ∈ [r] and b ∈ [r] such
that b ≥ k and M [v, s, b] 6= ∅. On the one hand, since for all v ∈ V (G), s ∈ [r] and b ∈ [r],
M [v, s, b] ⊆ Sv,s,b, it is clear that if we accept, the input instance is indeed a yes-instance.
On the other hand, if the input instance is a yes-instance, then there exist v ∈ V (G), s ∈ [r]
and b ∈ [r] such that b ≥ k and Sv,s,b 6= ∅. Then, since M [v, s, b] 0-represents Sv,s,b, it holds
that M [v, s, b] 6= ∅, and therefore we accept. J

C Proofs of Section 5

Proof of Theorem 23. We first show the running time to construct the kernel.

I Proposition 29. For each S ∈ {A, B}, |CS | = O(k3) and CS can be constructed in time
O(|Σ|2 · n) + O(k3n).

Proof. By assumption |rare(S)| ≤ 4k. Additionally, for each i, the ball Bk(i) has size at
most 2k + 1. Finally, for each duo (i, i + 1) that is rare for S, the set F (S, i, i + 1) has at
most (2k − 1)(2k + 1) duos. Therefore, |CS | ≤ 4k(2k + 1) + 4k(2k − 1)(2k + 1) = O(k3).

Now let us analyze the time to construct CS . First, the construction of the sets rare(S)
and rare(S) takes time O(|Σ|2 · n), since we just need to count for each length-two string
ab ∈ Σ × Σ, the number of times n(S, a, b) that ab occurs in S and the number of times
n(S, a, b) that ab occurs in S. Now, for each position i ∈ {1, ..., n − 1}, we add (i, i + 1)
to rare(S) if S[i]S[i + 1] = ab and n(S, a, b) ≤ n(S, a, b). Analogously, we add (i, i + 1) to
rare(S) if S[i]S[i + 1] = ab and n(S, a, b) ≤ n(S, a, b).

Now, the construction of the set Roots(S, i, i + 1) according to Algorithm 1 takes
time O(k2 · n). Since Roots(S, i, i + 1) ≤ 2k − 1, and by assumption |rare(S)| ≤ 4k, the
construction of F (S, i, i + 1) also takes time O(k2 · n). Analogously, the construction of
F (S, i, i + 1) takes time O(k2 · n). Therefore, the construction of CS takes time at most
O(|Σ|2 · n) + O(k3 · n). J

I Theorem 23. Given an instance I = (A, B, k) of Max-Duo PSM, one can construct
in time O(|Σ|2 · n + k3 · n) an instance I ′(A′, B′, k) of Max-Duo PSM with |A′| and |B′|
bounded by O(k3) such that I is a yes-instance if and only if I ′ is a yes-instance.

Proof. First, if some map m of A into B preserves a block X of size k, then (A, B, k) is a
yes-instance for Max-Duo PSM and we can output in O(1) time an equivalent instance of
constant size. Note that this condition can be verified in time O(n) by solving the Longest
Common Substring problem for A and B.

Second, if rare(A) ≥ 4k or rare(B) ≥ 4k, then (A, B, k) is a yes-instance for Max-Duo
PSM, and we can output in O(1) time an equivalent instance of constant size.

Now since no map preserves a block of size k, and if both rare(A) < 4k and rare(B) < 4k,
then by Lemma 22, the pair (CA, CB) constructed according to Equation 1 is complete for
(A, B, k). Additionally, by Proposition 29, |CA| = |CB | = O(k3), and both CA and CB can
be constructed in time O(|Σ| · n + k3 · n).

Since the complete pair (CA, CB) constructed has size at most O(k3), we can apply
Theorem 17 to construct in time O(k3) an instance (A′, B′, k) for Max-Duo PSM of size
O(k3) such that (A′, B′, k) is a yes-instance if and only if (A, B, k) is a yes-instance. Therefore,
the overall time to construct (A′, B′, k) is upper-bounded by O(|Σ|2 · n + k3 · n). J

CPM 2017

Clique-Based Lower Bounds for Parsing
Tree-Adjoining Grammars
Karl Bringmann1 and Philip Wellnitz2

1 Max Planck Institute for Informatics, Saarland Informatics Campus,
Saarbrücken, Germany
kbringma@mpi-inf.mpg.de

2 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
s8phwell@stud.uni-saarland.de

Abstract
Tree-adjoining grammars are a generalization of context-free grammars that are well suited to
model human languages and are thus popular in computational linguistics. In the tree-adjoining
grammar recognition problem, given a grammar Γ and a string s of length n, the task is to
decide whether s can be obtained from Γ. Rajasekaran and Yooseph’s parser (JCSS’98) solves
this problem in time O(n2ω), where ω < 2.373 is the matrix multiplication exponent. The best
algorithms avoiding fast matrix multiplication take time O(n6).

The first evidence for hardness was given by Satta (J. Comp. Linguist.’94): For a more general
parsing problem, any algorithm that avoids fast matrix multiplication and is significantly faster
than O(|Γ|n6) in the case of |Γ| = Θ(n12) would imply a breakthrough for Boolean matrix
multiplication.

Following an approach by Abboud et al. (FOCS’15) for context-free grammar recognition, in
this paper we resolve many of the disadvantages of the previous lower bound. We show that, even
on constant-size grammars, any improvement on Rajasekaran and Yooseph’s parser would imply
a breakthrough for the k-Clique problem. This establishes tree-adjoining grammar parsing as a
practically relevant problem with the unusual running time of n2ω, up to lower order factors.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems, F.2 Analysis
of Algorithms and Problem Complexity

Keywords and phrases conditional lower bounds, k-Clique, parsing, tree-adjoining grammars

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.12

1 Introduction

Introduced in [14, 15], tree-adjoining grammars (TAGs) are a system to manipulate certain
trees to arrive at strings, see Section 2 for a definition. TAGs are more powerful than context-
free grammars, capturing various phenomena of human languages which require more formal
power; in particular TAGs have an “extended domain of locality” as they allow “long-distance
dependencies” [16]. These properties, and the fact that TAGs are efficiently parsable [29],
make them highly desirable in the field of computer linguistics. This is illustrated by the large
literature on variants of TAGs (see, e.g., [30, 21, 24, 9]), their formal language properties
(see, e.g., [29, 16]), as well as practical applications (see, e.g., [25, 13, 26, 2]), including the
XTAG project which developed a tree-adjoining grammar for the English language [10]. In
fact, TAGs are so fundamental to computer linguistics that there is a biannual meeting called
“International Workshop on Tree-Adjoining Grammars and Related Formalisms” [7], and
they are part of the undergraduate curriculum (at least at Saarland University).

© Karl Bringmann and Philip Wellnitz;
licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 12; pp. 12:1–12:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2 Clique-Based Lower Bounds for Parsing Tree-Adjoining Grammars

The prime algorithmic problem on TAGs is parsing (sometimes called recognition): Given
a TAG Γ and a string s of length n, decide whether Γ can generate s. The first TAG parsers
ran in time1 O(n6) [29, 23], which was improved by Rajasekaran and Yooseph [20] to O(n2ω),
where ω < 2.373 is the exponent of (Boolean) matrix multiplication.

A limited explanation for the complexity of TAG parsing was given by Satta [22], who
designed a reduction from Boolean matrix multiplication to TAG parsing, showing that
any TAG parser running faster than O(|Γ|n6) on grammars of size |Γ| = Θ(n12) yields a
Boolean matrix multiplication algorithm running faster than O(n3). This result has several
shortcomings: (1) It holds only for a more general parsing problem, where we need to
determine for each substring of the given string s whether it can be generated from Γ. (2) It
gives a matching lower bound only in the unusual case of |Γ| = Θ(n12), so that it cannot
exclude time, e.g., O(|Γ|2n4). (3) It gives matching bounds only restricted to combinatorial
algorithms, i.e., algorithms that avoid fast matrix multiplication2. Thus, so far there is no
satisfying explanation of the complexity of TAG parsing.

1.1 Context-free grammars
The classic problem of parsing context-free grammars, with important applications in
programming languages, was in a very similar situation as tree-adjoining grammar parsing
until very recently. Parsers in time O(n3) were known since the 60s [8, 31, 17, 11]. In a
breakthrough, Valiant [27] improved this to O(nω). Finally, a reduction from Boolean matrix
multiplication due to Lee [18] showed a matching lower bound for combinatorial algorithms
for a more general parsing problem in the case that the grammar size is Θ(n6).

Abboud et al. [1] gave the first satisfying explanation for the complexity of context-free
parsing, by designing a reduction from the classic k-Clique problem, which asks whether
there are k pairwise adjacent vertices in a given graph G. For this problem, for any fixed k
the trivial running time of O(nk) can be improved to O(nωk/3) for any k divisible by 3 [19]
(see [12] for the case of k not divisible by 3). The fastest combinatorial algorithm runs in time
O(nk/ logk n) [28]. The k-Clique hypothesis states that both running times are essentially
optimal, specifically that k-Clique has no O(n(ω/3−ε)k) algorithm and no combinatorial
O(n(1−ε)k) algorithm for any k ≥ 3, ε > 0. The main result of Abboud et al. [1] is a reduction
from the k-Clique problem to context-free grammar recognition on a specific, constant-size
grammar Γ, showing that any O(nω−ε) algorithm or any combinatorial O(n3−ε) algorithm
for context-free grammar recognition would break the k-Clique hypothesis, and thus improve
decades-old algorithms. This matching conditional lower bound removes all disadvantages of
Lee’s lower bound at the cost of introducing a hypothesis, see [1] for further discussions.

1.2 Our contribution
We extend the approach by Abboud et al. to the more complex setting of TAGs. Specifically,
we design a reduction from the 6k-Clique problem to TAG recognition:

I Theorem. There is a tree-adjoining grammar Γ of constant size such that if we can decide
in time T (n) whether a given string of length n can be generated from Γ, then 6k-Clique can
be solved in time O

(
T (nk+1 logn)

)
, for any fixed k ≥ 1. This reduction is combinatorial.

1 In most running time bounds we ignore the dependence on the grammar size, as we are mostly interested
in constant-size grammars in this paper.

2 There is no agreed upon formal definition of combinatorial algorithms.

K. Bringmann and P. Wellnitz 12:3

Via this reduction, any O(n2ω−ε) algorithm for TAG recognition would prove that
6k-Clique is in time Õ(n(2ω−ε)(k+1)) = O(n(ω/3−ε/9)6k), for sufficiently large3 k. Furthermore,
any combinatorial O(n6−ε) algorithm for TAG recognition would yield a combinatorial
algorithm for 6k-Clique in time Õ(n(6−ε)(k+1)) = O(n(1−ε/9)6k), for sufficiently large k. As
both implications would violate the 6k-Clique conjecture, we obtain tight conditional lower
bounds for TAG recognition. As our result (1) works directly for TAG recognition instead of
a more general parsing problem, (2) holds for constant size grammars, and (3) does not need
the restriction to combinatorial algorithms, it overcomes all shortcomings of the previous
lower bound based on Boolean matrix multiplication, at the cost of using the well-established
k-Clique hypothesis, which has also been used in [1, 5, 6, 3, 4].

We thus establish TAG parsing as a practically relevant problem with the quite unusual
running time of n2ω, up to lower order factors. This is surprising, as the authors are aware of
only one other problem with a (conjectured or conditional) optimal running time of n2ω±o(1),
namely 6-Clique.

1.3 Techniques
The essential difference of tree-adjoining and context-free grammars is that the former can
grow strings at four positions, see Figure 3a. Writing a vertex v1 in one position of the string,
and writing the neighborhoods of vertices v2, v3, v4 at other positions in the string, a simple
tree-adjoining grammar can test whether v1 is adjacent to v2, v3, and v4. Extending this
construction, for k-cliques C1, C2, C3, C4 we can test whether C1 ∪C2, C1 ∪C3, and C1 ∪C4
form 2k-cliques. Using two permutations of this test, we ensure that C1 ∪C2 ∪C3 ∪C4 forms
an almost-4k-clique, i.e., only the edges C3 × C4 might be missing (in Figure 2b below this
situation is depicted for cliques C2, C5, C1, C6 instead of C1, C2, C3, C4). Finally, we use that
a 6k-clique can be decomposed into 3 almost-4k-cliques, see Figure 2a.

In the constructed string we essentially just enumerate 6 times all k-cliques of the given
graph G, as well as their neighborhoods, with appropriate padding symbols (see Section 3).
We try to make the constructed tree-adjoining grammar as easily accessible as possible by
defining a certain programming language realized by these grammars, and phrasing our
grammar in this language, which yields subroutines with an intuitive meaning (see Section 4).

2 Preliminaries on tree-adjoining grammars

In this section we define tree-adjoining grammars and give examples. Fix a set T of terminals
and a set N of non-terminals. In the following, conceptually we partition the nodes of any
tree into its leaves, the root, and the remaining inner nodes. An initial tree is a rooted tree
where

the root and each inner node is labeled with a non-terminal,
each leaf is labeled with a terminal, and
each inner node can be marked for adjunction.

See Figure 1a for an example; nodes marked for adjunction are annotated by a rectangle.
An auxiliary tree is a rooted tree where

the root and each inner node is labeled with a non-terminal,
exactly one leaf, called the foot node, is labeled with the same non-terminal as the root,
each remaining leaf is labeled with a terminal, and
each inner node can be marked for adjunction.

3 For this and the next statement it suffices to set k > 18/ε.

CPM 2017

12:4 Clique-Based Lower Bounds for Parsing Tree-Adjoining Grammars

A

cB

b

a

B

A

c

A

bB

B

a

(a) An initial tree (left) and an auxiliary tree
(right); the internal nodes labeled A and B are
marked for adjunction.

A

cB

A

c

A

bB

b

B

a

a

(b) Resulting tree after adjoining the auxiliary
tree into the initial tree.

Figure 1 The basic building blocks and operation of tree-adjoining grammars.

Initial trees are the starting points for derivations of the tree-adjoining grammar. These
trees are then extended by repeatedly replacing nodes marked for adjunction by auxiliary
trees. Formally, given an initial or auxiliary tree t that contains at least one inner node v
marked for adjunction and given an auxiliary tree a whose root r has the same label as v,
we can combine these trees with the following operation called adjunction, see Figure 1 for
an example.
1. Replace a’s foot node by the subtree rooted at v.
2. Replace the node v with the tree obtained from the last step, which is rooted at r.
Note that these steps make sense, since r and v have the same label. Note that adjunction
does not change the number leaves labeled with a non-terminal symbol, i.e., an initial tree
will stay an initial tree and an auxiliary tree will stay an auxiliary tree.

A tree-adjoining grammar is now defined as a tuple Γ = (I, A, T,N) where
I is a finite set of initial trees and
A is a finite set of auxiliary trees,

using the same terminals T and non-terminals N as labels. The set D of derived trees of Γ
consists of all trees that can be generated by starting with an initial tree in I and repeatedly
adjoining auxiliary trees in A. (Note that each derived tree is also an initial tree, but not
necessarily in I.) Finally, a string s over alphabet T can be generated by Γ, if there is a
derived tree t in D such that

t contains no nodes marked for adjunction and
s is obtained by concatenating the labels of the leaves of t from left to right.

The language L(Γ) is then the set of all strings that can be generated by Γ.

3 Encoding graphs

Given a graph G = (V,E), we construct a string GGk(G) that encodes its k-cliques, over the
terminal alphabet T = {0, 1, $,#, |, §, e, l1, . . . , l6, r1, . . . , r6} of size 19. In the next section
we then design a tree-adjoining grammar Γ that generates GGk(G) if and only if G contains
a 6k-clique. We assume that V = [|V |], and we denote the binary representation of any
v ∈ V by v and the neighborhood of v by N(v). For two strings a and b, we use a ◦ b to
denote their concatenation and aR to denote the reverse of a.

We start with node and list gadgets, encoding a vertex and its neighborhood, respectively:

NG(v) := $ v $ and LG(v) := ©
u∈N(v)

NG(u) = ©
u∈N(v)

$u $

K. Bringmann and P. Wellnitz 12:5

C1

C6

C2

C5

C3

C4

(a) Each Ci is a k-clique and there is an edge
between two k-cliques of some highlighting style
if the clique gadgets of that style ensure that these
two cliques together form a 2k-clique.

C1

C6

C2

C5

(b) We will generate an almost-4k-clique as in (a)
by generating two claws. (This tests the edges
(C1, C6), (C2, C5), and (C3, C4) in (a) twice.)

Figure 2 Structure of our test for 6k-cliques.

Note that u and v are adjacent iff NG(u) is a substring of LG(v).
Next, we build clique versions of these gadgets, that encode a k-clique C and its neigh-

borhood, respectively:

CNG(C) := ©
v∈C

(# NG(v) #)k and CLG(C) :=
(
©

v∈C
LG(v)

)k

Note that two k-cliques C and C ′ form a 2k-clique if and only if CNG(C) is a subsequence
of CLG(C ′), since every pair of a vertex in C and a vertex in C ′ is tested for adjacency.
We will later show how to implement this test for forming a 2k-clique with a tree-adjoining
grammar.

Conceptually, we split any 6k-clique into six k-cliques. Thus, let Ck be the set of all
k-cliques in G. Our final encoding of the graph is:

GGk(G) := ©
C∈Ck

| CNG(C) § CLG(C)R l1 r1 CLG(C) § CLG(C)R |

◦ ©
C∈Ck

| CNG(C) § CLG(C)R l2 r2 CLG(C) § CLG(C)R |

◦ ©
C∈Ck

| CNG(C) § CLG(C)R l3 r3 CLG(C) § CLG(C)R |

◦ e
◦ ©

C∈Ck

| CLG(C) § CLG(C)R l4 r4 CNG(C) § CLG(C)R |

◦ ©
C∈Ck

| CLG(C) § CLG(C)R l5 r5 CNG(C) § CLG(C)R |

◦ ©
C∈Ck

| CLG(C) § CLG(C)R l6 r6 CNG(C) § CLG(C)R |

As we will show, there is a tree-adjoining grammar of constant size that generates the string
GGk(G) iff G contains a 6k-clique. The structure of this test is depicted in Figure 2. The
clique-gadgets of the same highlighting style together allow us to test for an almost-4k-clique,
as it is depicted in Figure 2a. The two gadgets of the same highlighting style then test for
two claws of cliques, as depicted in Figure 2b.

As the graph has n nodes, for any node u the node and list gadgets NG(u),LG(u) have a
length of O(n logn), and for a k-clique C the clique neighborhood gadgets CNG(C),CLG(C)
thus have a length of O(k2n logn). As our encoding of the graph consists of O(nk) clique
neighborhood gadgets, the resulting string length is O(k2nk+1 logn) = O(nk+1 logn). It is

CPM 2017

12:6 Clique-Based Lower Bounds for Parsing Tree-Adjoining Grammars

NIn

NOut

NIn

n2n1 n3 n4

(a) A normal tree N .

NIn

NOut

MOut

NOut

NIn

n2m2m1n1 n3 m3 m4 n4

(b) The tree resulting after adjoining M into N .

Figure 3 Adjoining normal trees.

easy to see that it is also possible to construct all gadgets and in particular the encoding of
a graph in linear time with respect to their length.

4 Programming with trees

It remains to design a clique-detecting tree-adjoining grammar. To make our reduction more
accessible, we will think of tree-adjoining grammars as a certain programming language. In
the end, we will then present a “program” that generates (a suitable superset of) the set all
strings that represent a graph containing a 6k-clique. We start by defining programs.

A normal tree N with input NIn and output NOut is an auxiliary tree where:
the root is labeled with NIn,
exactly one node is marked for adjunction, and
this node lies on the path from the root to the foot node and is labeled NOut.

See Figure 3a for an illustration. The special structure of a normal tree N allows us to split
its nodes into four categories (excluding the path from N ’s root to its foot node): subtrees
of left children of the path from N ’s root to NOut, subtrees of left children of the path from
NOut to N ’s foot node, subtrees of right children of the path from NOut to N ’s foot node,
and the remaining nodes (i.e., subtrees of right children of the path from N ’s root to NOut).
The concatenation of all terminal symbols in N ’s leaves from left to right can then be split
into four parts n1, n2, n3, n4 where each part contains symbols from exactly one category.
We say that the normal tree N generates the tuple (n1, n2, n3, n4).

I Lemma 4.1. Given normal trees N with input NIn, output NOut and M with input
MIn = NOut, outputMOut, the derived tree N ·M obtained by adjoiningM into N is a normal
tree with input NIn and output MOut. Further, if N and M generate the tuples (n1, n2, n3, n4)
and (m1,m2,m3,m4), then N ·M generates the tuple (n1 ◦m1,m2 ◦ n2, n3 ◦m3,m4 ◦ n4).

Proof. See Figure 3. J

We now define a program P with input PIn and output POut as a set of normal trees that
contains a tree with input PIn and a tree with output POut. Note that all trees derived by
starting with a tree in P and repeatedly adjoining trees from P are normal, by Lemma 4.1. An
execution of the program P is a derived tree of P with input PIn and output POut. Further,
the set computed by P, denoted by L(P), is the set of all tuples generated by P’s executions.

We will later use programs as subroutines of tree-adjoining grammars. Let N(P) be the
set of non-terminals of P. Formally, we say that P is a subroutine of a grammar Γ if

K. Bringmann and P. Wellnitz 12:7

the set of trees P is a subset of the auxiliary trees of Γ, and
no remaining auxiliary tree of Γ has a root label in N(P) \ {POut}.

These restrictions ensure that any “call” to the program P terminates at POut. Indeed,
consider any sequence of adjunctions in Γ ending in a tree without nodes marked for
adjunction. If this sequence contains an adjunction of a node labeled PIn, meaning that
program P is called, then this adjunction must be followed by an execution of P, i.e., it must
generate a derived tree of P with output POut. Indeed, any derived tree of P is normal and
thus contains exactly one node marked for adjunction. To get rid of this node, we have to
adjoin some auxiliary tree, but the remaining auxiliary trees can only adjoin to POut. We
will frequently make use of this observation that ensures coherence of programs.

We now show how to perform two programs sequentially one after another. To avoid
interference, we ensure that the two programs have disjoint non-terminals, except for their
input and output. In particular, we will model two sequential calls to the same program by
creating two copies of the program.

I Lemma 4.2 (Combining programs). For programs P and Q, let Q′ denote the program
obtained from Q by replacing each non-terminal by a fresh copy, ensuring that P and Q′ have
disjoint non-terminals. Further, let Q′′ denote the program obtained from Q′ by replacing
Q′In by POut. Then P · Q := P ∪ Q′′ is a program computing the set

L(P · Q) := {(a ◦ a′, b′ ◦ b, c ◦ c′, d′ ◦ d) | (a, b, c, d) ∈ L(P), (a′, b′, c′, d′) ∈ L(Q)}.

Proof. As every execution of P and Q” is a normal tree, the claim follows from Lemma 4.1. J

We can think of · as an operator on programs; the above lemma shows that it is associative.

4.1 Basic programs

We now present some easy programs that will later be used as subroutines.

4.1.1 Writing characters

We start by demonstrating a program that writes exactly one character to each of the four
positions. Formally, given a 4-tuple of characters (a, b, c, d), let the program W(a, b, c, d) be
defined by the following auxiliary tree:

W(a, b, c, d)In

dW(a, b, c, d)Out

cW(a, b, c, d)Inb

a

Clearly, this tree is normal with input W(a, b, c, d)In and output W(a, b, c, d)Out, so that
W(a, b, c, d) is a program. The tree itself is an execution of the program, and it is the only
execution. Thus, this program computes the set L(W(a, b, c, d)) = {(a, b, c, d)}. We write
W(a) to denote the program W(a, a, a, a).

CPM 2017

12:8 Clique-Based Lower Bounds for Parsing Tree-Adjoining Grammars

4.1.2 Testing equality
We give a program that tests equality of four strings, by writing the same arbitrary string to
all four positions. Formally, for any terminal alphabet Σ, let the program Eq(Σ) be defined
by the following set of |Σ|+ 1 auxiliary trees:

Eq(Σ)In

Eq(Σ)Out

Eq(Σ)In

Eq(Σ)In

σEq(Σ)In

σEq(Σ)Inσ

σ ∀σ ∈ Σ

A simple induction shows that L(Eq(Σ)) = {(v, vR, v, vR) | v ∈ Σ∗}.

4.1.3 Writing anything
We will need to write appropriate strings surrounding some carefully constructed substrings.
As it turns out, being able to write anything will be sufficient; this is achieved by the following
program. Given an alphabet Σ, let the program A(Σ) be defined by the following set of
4|Σ|+ 1 trees:

A(Σ)In

A(Σ)Out

A(Σ)In

A(Σ)In

σA(Σ)In

A(Σ)In

A(Σ)In

A(Σ)In

A(Σ)In

σ

A(Σ)In

A(Σ)In

A(Σ)Inσ

A(Σ)In

A(Σ)In

σA(Σ)In

∀σ ∈ Σ

As this program allows writing anything, it is easy to see that A(Σ) computes the set (Σ∗)4.

4.2 Detecting Cliques
With the help of the above programs, we now design programs that detect a 6k-clique.

4.2.1 Detecting claws
Our next program can detect whether four nodes form a claw graph.

NC := W(#) · A({0, 1, $}) ·W($) · Eq({0, 1}) ·W($) · A({0, 1, $}) ·W(#)

I Lemma 4.3. For any nodes v1, v2, v3, v4, the program NC generates the tuple

(a, b, c, d) := (# NG(v1) #, # LG(v2)R #, # LG(v3) #, # LG(v4)R #)

and any of its cyclic rotations (i.e., (b, c, d, a), (c, d, a, b), and (d, a, b, c)) if and only if v1 is
adjacent to each one of v2, v3, and v4.

Proof. By Lemma 4.2 and the properties of basic programs, we see that NC computes all
tuples of the form

(# α1 $ v $ α2 #,# α3 $ vR $ α4 #,# α5 $ v $ α6 #,# α7 $ vR $ α8 #)

K. Bringmann and P. Wellnitz 12:9

where v ∈ {0, 1}∗ and α1, . . . , α8 ∈ {0, 1, $}∗. From the construction of node and list gadgets
we see that all tuples (#NG(v1)#,#LG(v2)R#,#LG(v3)#,#LG(v4)R#) are of this form.

For the other direction, for any generated tuple (a, b, c, d), where a is # $ v $ #, it holds
that $ v $ or its reverse is a substring of b, c, and d. Hence, NG(v1) is a substring of
LG(v2),LG(v3), and LG(v4). This implies that v1 is adjacent to v2, v3, and v4. J

4.2.2 Detecting claws of cliques
We now extend NC to a program that can detect claws of k-cliques, see Figure 2b. We define
the program CC by the following set of 3 trees (additional to the trees of NC):

CCIn

NCOut

CCIn

NCOut

NCIn

NCOut

NCOut

CCOut

NCOut

Each execution of CC starts with the first tree, then repeatedly adjoins the second tree
followed by some execution of NC, and finally adjoins the last tree. As the number of
repetitions is arbitrary, the program CC can perform any number of sequential calls to NC.4

I Lemma 4.4. For any k-cliques C1, C2, C3, C4 in G, the program CC generates the tuple
(a, b, c, d) := (CNG(C1),CLG(C2)R,CLG(C3),CLG(C4)R) and all of its cyclic rotations
(i.e., (b, c, d, a), (c, d, a, b), and (d, a, b, c)) if and only if C1 ∪C2, C1 ∪C3, and C1 ∪C4 each
form a 2k-clique in G.

Proof. For any nodes vj
i , with i ∈ [4], j ∈ [m],m ≥ 1, set

ni := ©
j∈[m]

#NG(vj
i) # and `i := ©

j∈[m]
#LG(vj

i) #.

As program CC can perform any number of calls to NC, and by Lemma 4.3, program CC
generates the tuple (n1, `2, `3, `4) if and only if vj

1 is adjacent to vj
2, v

j
3, and v

j
4 for all j.

Observe that for any k-cliques C1 = {v1, . . . , vk}, C2 = {u1, . . . , uk}, both CNG(C) and
CLG(C) can be split into k2 blocks by splitting between two consecutive #-characters:

CNG(C1) = # NG(v1) ## NG(v1) # · · ·# NG(v1) ## NG(v2) # · · ·
CLG(C2) = # LG(u1) ## LG(u2) # · · ·# LG(uk) ## LG(u1) # · · ·

This layout is chosen so that each node vi in C1 is paired up with each node uj in C2 exactly
once. The claim follows from these two insights. J

4.2.3 Detecting almost-4k-cliques
We now use CC twice to test for two claws, thus detecting “almost-4k-cliques”, as depicted
in Figure 2b:

C := CC ·W(§) · CC.

Lemmas 4.4 and 4.2 directly imply the following, see Figure 2b.

4 Actually, we already know how many calls to NC we want to perform, namely k2. However, encoding
this number into the grammar would result in a grammar size depending on k, which we want to avoid.

CPM 2017

12:10 Clique-Based Lower Bounds for Parsing Tree-Adjoining Grammars

I Lemma 4.5. For any k-cliques Ca, Cb, Cc, Cd the program C generates the tuple

(CNG(Ca) § CLG(Ca)R, CLG(Cb) § CLG(Cb)R, CLG(Cc) § CLG(Cc)R, CNG(Cd) § CLG(Cd)R)

if and only if Ca ∪ Cb ∪ Cd and Ca ∪ Cc ∪ Cd both form a 3k-clique. A similar statement
holds if we pick any two other positions in the tuple for the CNG(·) gadgets.

4.2.4 Detecting 6k-cliques
As in Figure 2a, we now want to test for three almost-4k-cliques to detect a 6k-clique. Recall
that T = {0, 1, $,#, |, §, e, l1, . . . , l6, r1, . . . , r6} is the terminal alphabet that we constructed
our strings over. The following programs will generate the highlighted groups in Figure 2a:

P(1, 3, 4, 6) := A(T) · W(|) · C · W(l1, r3, l4, r6)
P(1, 2, 5, 6) := W(r1, l2, r5, l6) · C · W(|) · A(T),
P(2, 3, 4, 5) := W(r2, l3, r4, l5) · C · W(|) · A(T),

We now deviate from our notion of normal trees by explicitly not marking P(1, 2, 5, 6)Out and
P(2, 3, 4, 5)Out for adjunction. Our final tree-adjoining grammar Γ consists of the following
initial and auxiliary trees (as well as all auxiliary trees used by its subroutines):

S

P(1, 3, 4, 6)In

e

P(1, 3, 4, 6)Out

P(1, 2, 5, 6)In

P(2, 3, 4, 5)In

P(1, 3, 4, 6)Out

Note that the latter tree is the only one in Γ that has more than one node marked for
adjunction, so it needs special treatment.

I Lemma 4.6. For any graph G, the grammar Γ generates the encoding GGk(G) if and only
if G contains a 6k-clique. Moreover, Γ has constant size (independent of k).

Proof. First, assume that Γ can generate GGk(G). Then there is a derived tree whose leaves,
if read from left to right, yield GGk(G). All derivations of Γ start with the single initial
tree, and then adjoin an execution of the program P(1,3,4,6) into it. (As P(1,3,4,6) is a
subroutine, only a full execution can be adjoined.) This execution generates some tuple
of strings (x1 , x2 , x3 , x4) and leaves exactly the node labeled P(1, 3, 4, 6)Out as the sole
node marked for adjunction. Therefore, in the next step the auxiliary tree rooted with that
node will be adjoined, which in turn leaves exactly the nodes P(1, 2, 5, 6)In and P(2, 3, 4, 5)In

as nodes marked for adjunction. Again, these are input nodes of subroutines, therefore
at both nodes one (complete) execution of the corresponding programs must be adjoined.
The program execution of program P(1, 2, 5, 6) generates a tuple of strings (y1 , y2 , y3 , y4),
and the execution of P(2, 3, 4, 5) generates (z1 , z2 , z3 , z4). The grammar Γ ensures that
these tuples will be placed in the order (x1 , y1 , y2 , z1 , z2 , x2 , x3 , z3 , z4 , y3 , y4 , x4), see
Figure 4 for a visualization. At this point, no more adjunctions are possible, since we
explicitly forced P(1, 2, 5, 6)Out and P(2, 3, 4, 5)Out not to be marked for adjunction. (Also

K. Bringmann and P. Wellnitz 12:11

S

P(1, 3, 4, 6)In

P(1, 3, 4, 6)Out

P(1, 2, 5, 6)In

P(1, 2, 5, 6)Out

P(1, 2, 5, 6)In

P(2, 3, 4, 5)In

P(2, 3, 4, 5)Out

P(2, 3, 4, 5)In

P(1, 3, 4, 6)Out

P(1, 3, 4, 6)In

er3 (C3) | | (C3) l3r2 (C2) | | (C2) l2r1 (C1) | | (C1) l1 . . . | (C4) l4 r4 (C4) | | (C5) l5 r5 (C5) | | (C6) l5 r6 (C6) | . . .

Figure 4 Global structure of a parsing of GGk(G) by Γ. (Clique gadgets are abbreviated.)

note that this structure is the only possibility to obtain a tree containing no more nodes
marked for adjunction.) Hence, GGk(G) can be partitioned as:

GGk(G) = x1 ◦ y1 ◦ y2 ◦ z1 ◦ z2 ◦ x2 ◦ x3 ◦ z3 ◦ z4 ◦ y3 ◦ y4 ◦ x4 .

Consider the strings x1 and y1 . By the definitions of P(1,3,4,6) and P(1,2,5,6), and
Lemma 4.2, we know that x1 must end with the terminal symbol l1 and that y1 must start
with the symbol r1. Whenever l1 r1 occurs in GGk(G), it does so in the string

| CNG(C1) § CLG(C1)R l1 r1 CLG(C1) § CLG(C1)R |,

for some k-clique C1. Since x1 ◦ y1 is a substring of GGk(G), and the program C cannot pro-
duce a |-terminal, but the W(|) part of P(·, ·, ·, ·) will always write such a |-character, x1 must
have | CNG(C1) § CLG(C1)R l1 as a suffix and y1 must have r1 CLG(C1) § CLG(C1)R |
as a prefix. This also means that the program C must generate the string between | and l1
in x1 and between | and r1 in y1 .

Similar statements hold for the other ten strings. In total we obtain that the program C
generates the following tuples for some k-cliques C1, . . . , C6:

t1 := (CNG(C1) § CLG(C1)R , CLG(C3) § CLG(C3)R ,

CLG(C4) § CLG(C4)R , CNG(C6) § CLG(C6)R) in P(1,3,4,6),
t2 := (CLG(C1) § CLG(C1)R , CNG(C2) § CLG(C2)R ,

CNG(C5) § CLG(C5)R , CLG(C6) § CLG(C6)R) in P(1,2,5,6), and
t3 := (CLG(C2) § CLG(C2)R , CNG(C3) § CLG(C3)R ,

CNG(C4) § CLG(C4)R , CLG(C5) § CLG(C5)R) in P(2,3,4,5).

By Lemma 4.5, this implies that all Ci ∪Cj form a 2k-clique and thus C1 ∪ . . .∪C6 forms
a 6k-clique (see Figure 2a to check that all pairs are covered).

For the other direction, consider a graph G that contains a 6k-clique C∗. Then we can
split C∗ into 6 vertex-disjoint k-cliques C1, . . . , C6. Further we know that every three of these
six k-cliques together form a 3k-clique. Thus, the program C generates the tuples t1, t2, t3 as
above. We can then use the three programs P(·, ·, ·, ·) to generate such tuples surrounded
with symbols |, li, and ri at appropriate positions. Adding the surrounding strings by A(T)
and following the global structure of Γ generates the encoding GGk(G).

CPM 2017

12:12 Clique-Based Lower Bounds for Parsing Tree-Adjoining Grammars

To see that Γ is of constant size, note that we only use constantly many programs. Thus
using a new set of terminal symbols for every instance of a program will still yield a constant
total number of non-terminal symbols. Further, we only use 19 terminal symbols. J

The above lemma and the bound |GGk(G)| = O(nk+1 logn) imply the main theorem.

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. If the current clique

algorithms are optimal, so is Valiant’s parser. In Venkatesan Guruswami, editor, Proc.
of the 56th IEEE Annual Symposium on Foundations of Computer Science (FOCS 2015),
pages 98–117. IEEE Computer Society, 2015. doi:10.1109/FOCS.2015.16.

2 Anne Abeillé. Parsing French with tree adjoining grammar: some linguistic accounts. In
D. Vargha, editor, Proc. of the 12th Conf. on Computational Linguistics (COLING 1988),
pages 7–12. Assoc. for Computational Linguistics, 1988. doi:10.3115/991635.991637.

3 Arturs Backurs, Nishanth Dikkala, and Christos Tzamos. Tight hardness results for maxi-
mum weight rectangles. In I. Chatzigiannakis, M. Mitzenmacher, Y. Rabani, and D. San-
giorgi, editors, Proc. of the 43rd Int’l Colloquium on Automata, Languages, and Program-
ming (ICALP 2016), volume 55 of LIPIcs, pages 81:1–81:13. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.ICALP.2016.81.

4 Arturs Backurs and Christos Tzamos. Improving Viterbi is hard: Better runtimes imply
faster clique algorithms, 2016. arXiv:1607.04229.

5 Karl Bringmann, Allan Grønlund, and Kasper Green Larsen. A dichotomy for regular
expression membership testing, 2016. arXiv:1611.00918.

6 Yi-Jun Chang. Hardness of RNA folding problem with four symbols. In Roberto Grossi
and Moshe Lewenstein, editors, Proc. of the 27th Annual Symposium on Combinatorial
Pattern Matching (CPM 2016), volume 54 of LIPIcs, pages 13:1–13:12. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.CPM.2016.13.

7 David Chiang and Alexander Koller, editors. Proc. of the 12th International Workshop on
Tree Adjoining Grammars and Related Formalisms (TAG+12). ACL, 2016. URL: http:
//www.aclweb.org/anthology/W16-33.

8 John Cocke and Jacob T. Schwartz. Programming languages and their compilers: Prelim-
inary notes. Technical report, Courant Institute of Mathematical Sciences, New York
University, 1970. URL: http://www.softwarepreservation.org/projects/FORTRAN/
CockeSchwartz_ProgLangCompilers.pdf.

9 Vera Demberg, Frank Keller, and Alexander Koller. Incremental, predictive parsing with
psycholinguistically motivated tree-adjoining grammar. Comput. Ling., 39(4):1025–1066,
2013. doi:10.1162/COLI_a_00160.

10 Christy Doran, Dania Egedi, Beth Ann Hockey, Bangalore Srinivas, and Martin Zaidel.
XTAG system: a wide coverage grammar for English. In Yorick Wilks, editor, Proc. of
the 15th Conf. on Computational Linguistics (COLING 1994), pages 922–928. ACL, 1994.
doi:10.3115/991250.991297.

11 Jay Earley. An efficient context-free parsing algorithm. Commun. ACM, 13(2):94–102,
1970. doi:10.1145/362007.362035.

12 Friedrich Eisenbrand and Fabrizio Grandoni. On the complexity of fixed parameter clique
and dominating set. Theor. Comput. Sci., 326(1-3):57–67, 2004. doi:10.1016/j.tcs.2004.
05.009.

13 Katherine Forbes, Eleni Miltsakaki, Rashmi Prasad, Anoop Sarkar, Aravind Joshi, and Bon-
nie Webber. D-LTAG system: Discourse parsing with a lexicalized tree-adjoining grammar.
J. Log. Lang. Inf., 12(3):261–279, 2003. doi:10.1023/A:1024137719751.

14 Aravind K. Joshi. Tree adjoining grammars: How much context-sensitivity is required
to provide reasonable structural descriptions? In D.R. Dowty, L. Karttunen, and A.M.

http://dx.doi.org/10.1109/FOCS.2015.16
http://dx.doi.org/10.3115/991635.991637
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.81
http://arxiv.org/abs/1607.04229
http://arxiv.org/abs/1611.00918
http://dx.doi.org/10.4230/LIPIcs.CPM.2016.13
http://www.aclweb.org/anthology/W16-33
http://www.aclweb.org/anthology/W16-33
http://www.softwarepreservation.org/projects/FORTRAN/CockeSchwartz_ProgLangCompilers.pdf
http://www.softwarepreservation.org/projects/FORTRAN/CockeSchwartz_ProgLangCompilers.pdf
http://dx.doi.org/10.1162/COLI_a_00160
http://dx.doi.org/10.3115/991250.991297
http://dx.doi.org/10.1145/362007.362035
http://dx.doi.org/10.1016/j.tcs.2004.05.009
http://dx.doi.org/10.1016/j.tcs.2004.05.009
http://dx.doi.org/10.1023/A:1024137719751

K. Bringmann and P. Wellnitz 12:13

Zwicky, editors, Natural Language Processing: Psychological, Computational, and Theoret-
ical Perspectives. CUP, 1985. doi:10.1017/cbo9780511597855.007.

15 Aravind K. Joshi, Leon S. Levy, and Masako Takahashi. Tree adjunct grammars. J.
Comput. Syst. Sci., 10(1):136–163, 1975. doi:10.1016/S0022-0000(75)80019-5.

16 Aravind K. Joshi and Yves Schabes. Tree-adjoining grammars. In Grzegorz Rozenberg and
Arto Salomaa, editors, Beyond Words, volume 3 of Handbook of Formal Languages, pages
69–123. Springer, 1997. doi:10.1007/978-3-642-59126-6_2.

17 Tadao Kasami. An efficient recognition and syntax algorithm for context-free languages.
Technical Report R-257, Coordinated Science Laboratory, University of Illinois, 1966. URL:
http://hdl.handle.net/2142/74304.

18 Lillian Lee. Fast context-free grammar parsing requires fast boolean matrix multiplication.
J. ACM, 49(1):1–15, 2002. doi:10.1145/505241.505242.

19 Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph problem. Com-
ment. Math. Univ. Carolin., 26(2):415–419, 1985. URL: http://dml.cz/dmlcz/106381.

20 Sanguthevar Rajasekaran and Shibu Yooseph. TAL recognition in O(M(N2)) time. J.
Comput. Syst. Sci., 56(1):83–89, 1998. doi:10.1006/jcss.1997.1537.

21 Philip Resnik. Probabilistic tree-adjoining grammar as a framework for statistical natural
language processing. In Antonio Zampolli, editor, Proc, of the 14th Conf. on Computational
Linguistics (COLING 1992), pages 418–424. ACL, 1992. doi:10.3115/992133.992135.

22 Giorgio Satta. Tree-adjoining grammar parsing and boolean matrix multiplication. Comput.
Ling., 20(2):173–191, June 1994. URL: http://dl.acm.org/citation.cfm?id=972525.
972527.

23 Yves Schabes and Aravind K. Joshi. An Earley-type parsing algorithm for tree adjoining
grammars. In J. Hobbs, editor, Proc. of the 26th Annual Meeting of the Association for
Computational Linguistics (ACL 1988), pages 258–269. ACL, 1988. doi:10.3115/982023.
982055.

24 Stuart M. Shieber and Yves Schabes. Synchronous tree-adjoining grammars. In H. Karlgren,
editor, Proc. of the 13th Conf. on Computational Linguistics (COLING 1990), pages 253–
258. ACL, 1990. doi:10.3115/991146.991191.

25 Matthew Stone and Christine Doran. Sentence planning as description using tree adjoining
grammar. In Philip R. Cohen and Wolfgang Wahlster, editors, Proc. of the 35th Annual
Meeting of the Association for Computational Linguistics (ACL 1997), pages 198–205. ACL,
1997. doi:10.3115/976909.979643.

26 Yasuo Uemura, Aki Hasegawa, Satoshi Kobayashi, and Takashi Yokomori. Tree adjoining
grammars for RNA structure prediction. Theor. Comput. Sci., 210(2):277–303, 1999. doi:
10.1016/S0304-3975(98)00090-5.

27 Leslie G. Valiant. General context-free recognition in less than cubic time. J. Comput. Syst.
Sci., 10(2):308–315, 1975. doi:10.1016/s0022-0000(75)80046-8.

28 Virginia Vassilevska. Efficient algorithms for clique problems. Inf. Process. Lett.,
109(4):254–257, 2009. doi:10.1016/j.ipl.2008.10.014.

29 K. Vijay-Shankar and Aravind K. Joshi. Some computational properties of tree adjoining
grammars. In W.C. Mann, editor, Proc. of the 23rd Annual Meeting of the Association for
Computational Linguistics (ACL 1985), pages 82–93. ACL, 1985. doi:10.3115/981210.
981221.

30 K. Vijay-Shanker and Aravind K. Joshi. Feature structures based tree adjoining grammars.
In Dénes Vargha, editor, Proc. of the 12th Conf. on Computational Linguistics (COLING
1988), pages 714–719. ACL, 1988. doi:10.3115/991719.991783.

31 Daniel H. Younger. Recognition and parsing of context-free languages in time n3. Inf.
Control, 10(2):189–208, 1967. doi:10.1016/S0019-9958(67)80007-X.

CPM 2017

http://dx.doi.org/10.1017/cbo9780511597855.007
http://dx.doi.org/10.1016/S0022-0000(75)80019-5
http://dx.doi.org/10.1007/978-3-642-59126-6_2
http://hdl.handle.net/2142/74304
http://dx.doi.org/10.1145/505241.505242
http://dml.cz/dmlcz/106381
http://dx.doi.org/10.1006/jcss.1997.1537
http://dx.doi.org/10.3115/992133.992135
http://dl.acm.org/citation.cfm?id=972525.972527
http://dl.acm.org/citation.cfm?id=972525.972527
http://dx.doi.org/10.3115/982023.982055
http://dx.doi.org/10.3115/982023.982055
http://dx.doi.org/10.3115/991146.991191
http://dx.doi.org/10.3115/976909.979643
http://dx.doi.org/10.1016/S0304-3975(98)00090-5
http://dx.doi.org/10.1016/S0304-3975(98)00090-5
http://dx.doi.org/10.1016/s0022-0000(75)80046-8
http://dx.doi.org/10.1016/j.ipl.2008.10.014
http://dx.doi.org/10.3115/981210.981221
http://dx.doi.org/10.3115/981210.981221
http://dx.doi.org/10.3115/991719.991783
http://dx.doi.org/10.1016/S0019-9958(67)80007-X

12:14 Clique-Based Lower Bounds for Parsing Tree-Adjoining Grammars

S

P(
1,

3,
4,

6)
I

n

P(
1,

3,
4,

6)
O

u
t

P(
1,

2,
5,

6)
I

n

P(
1,

2,
5,

6)
O

u
t

P(
1,

2,
5,

6)
I

n

P(
2,

3,
4,

5)
I

n

P(
2,

3,
4,

5)
O

u
t

P(
2,

3,
4,

5)
I

n

P(
1,

3,
4,

6)
O

u
t

P(
1,

3,
4,

6)
I

n

e
r 3

(C
3)
|.
..

..
.|

(C
3)
l 3

r 2
(C

2)
|.
..

..
.|

(C
2)
l 2

r 1
(C

1)
|.
..

..
.|

(C
1)
l 1

..
.|

(C
4)
l 4

r 4
(C

4)
|.
..
..
.|

(C
5)
l 5

r 5
(C

5)
|.
..

..
.|

(C
6)
l 5

r 6
(C

6)
|.
..

Fi
gu

re
5

E
nl

ar
ge

d
ve

rs
io

n
of

Fi
gu

re
4.

G
lo
ba

ls
tr
uc
tu
re

of
a
pa

rs
in
g
of

G
G

k
(G

)
by

Γ.
(C

liq
ue

ga
dg

et
s
ar
e
ab

br
ev
ia
te
d.
)

Communication and Streaming Complexity of
Approximate Pattern Matching
Tatiana Starikovskaya

Université Paris-Diderot – Paris 7, Paris, France
tat.starikovskaya@gmail.com

Abstract
We consider the approximate pattern matching problem. Given a text T of length 2n and a
pattern P of length n, the task is to decide for each prefix T [1, j] of T if it ends with a string that
is at the edit distance at most k from P . If this is the case, we must output the edit distance
and the corresponding edit operations. We first look at the communication complexity of the
problem. We show the following:

If Alice and Bob both share the pattern and Alice holds the first half of the text and Bob
the second half, then the deterministic one-way communication complexity of the problem is
Θ(k logn).
If Alice holds the first half of the text, Bob the second half of the text, and Charlie the pattern,
then there is a deterministic one-way communication protocol that uses O(k

√
n logn) bits.

We then develop the first sublinear-space streaming algorithm for the problem.
There exists a streaming algorithm that solves the problem in O(k8√n log6 n) space. The
worst-case time complexity of the algorithmO((k2√n+k13)·log4 n) per arrival. The algorithm
is randomised with error probability at most 1/poly(n).

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases approximate pattern matching, edit distance, randomised algorithms,
streaming algorithms, communication complexity

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.13

1 Introduction

In this work we study the famous approximate pattern matching problem. Recall that the
edit distance between two strings S1, S2 is the minimum number of insertions, deletions,
and substitutions required to transform S1 to S2. Assume we are given a pattern P and a
text T . We say that a substring S of T is a k-mismatch occurrence of P if the edit distance
between S and P is at most k. In the approximate pattern matching problem we must
find all prefixes T [1, j] of T that end with a k-mismatch occurrence of P . The problem has
numerous applications in bioinformatics, signal processing, text retrieval, and has received a
lot of attention in the literature.

1.1 Our results
We first study the communication complexity of the problem, namely, we consider the
following setting. Let T be a text of length 2n and P be a pattern of length n. Let Alice
hold the information about the first half of the text, and let Bob hold the information about
the second half of the text. Alice sends Bob a message, and Bob’s task is to find all prefixes
T [1, j] that end with a k-mismatch occurrence of P and the edit operations that transform
the occurrence into P using only Alice’s message and his half of the text. The minimal size of

© Tatiana Starikovskaya;
licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 13; pp. 13:1–13:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2 Communication and Streaming Complexity of Approximate Pattern Matching

Alice’s message that allows Bob to complete the task is called the communication complexity
of the problem.

It is not hard to see that if both Bob and Alice have access to the pattern, the commu-
nication complexity is Θ(k logn). Indeed, from the information theoretic lower bound it
follows that Alice has to send at least k logn bits. On the other hand we can consider the
following (deterministic) protocol. Alice first finds the smallest i such that the edit distance
between T [i, n] and some prefix P [1, j] of the pattern is at most k, and then sends the edit
operations and j to Bob. Bob uses the message from Alice to restore T [i, n]. He then knows
both T [i, 2n] and P and therefore can compute all outputs. (Note that the edit distance
between P and any substring of T that starts in [1, i] and ends in [n+ 1, 2n] is at least k,
and therefore Bob does not need any information about T [1, i]). However, the situation is
different when only the third party, Charlie, knows the pattern, as in this case Alice can no
longer use the pattern to encode her half of the text. We show the following theorem.

I Theorem 1. When both P and T are binary, the one-way deterministic communication
complexity of the approximate pattern matching problem for three parties is O(k

√
n logn).

The main idea of the proof is that if k-mismatch occurrences of the pattern in the text
are rare, Alice can send them all to Bob. If on the other hand there are many k-mismatch
occurrences of the pattern, two of them will be located close to each other and therefore the
underlying text will be weakly periodic, which will allow to encode it in small space.

Our motivation to study the communication complexity of the problem is twofold. First,
it can be viewed as a generalisation of the document exchange problem, where we have
two parties Alice and Bob, Alice holds one string and Bob holds the other string, and
Bob’s task is to decide the edit distance between their strings using the message Alice
sends to him and his half of the text. If the distance is at most k, Bob must output the
edit operations that transform his string into Alice’s string. Otherwise, he may simply say
that the distance is too large. In the paper we will refer to Alice’s message as document
exchange sketch. The problem has been studied both in deterministic and randomised
settings [1, 4, 3, 8, 11, 15]. The protocol shown by Orlitsky in 1991 [15] has optimal
complexity Θ(k logn) and is deterministic. However, Bob needs nO(k) time to compute the
distance. Recently, Belazzougui showed a new deterministic protocol [1]. It has complexity
O(k2 + k log2 n) and much lower computation time of n · poly(logn). The best randomised
protocol is due to [2] and has O(k ·(log2 k+logn)) complexity and n ·poly(logn) computation
time.

The second reason to study the communication complexity of the problem is its relation
to streaming algorithms. Let us first remind the setting. Consider a pattern P of length n
and a text T of length 2n arriving as a stream, one symbol at a time. When a new symbol
arrives we must decide if the current text ends with a k-mismatch occurrence of P and if so
output the edit operations that transform the occurrence into P . We assume the standard
RAM model of computation. The time complexity is defined in the usual way, and the
space complexity is defined as all the space used by the algorithm. In particular, if we
store a copy of the pattern or of the text we must account for it. It is well-known that a
communication complexity lower bound implies a similar space lower bound for a streaming
algorithm. However, upper bounds provide some insight as well. Imagine that the algorithm
processes the stream in non-overlapping blocks, then it needs an efficient way to encode the
edit distances in each of the blocks, and one possible approach is to use the message that
Alice sends to Bob in the communication complexity protocol. We will use this idea to show
the first sublinear-space streaming algorithm for the problem.

T. Starikovskaya 13:3

I Theorem 2. Assume that both P and T are binary and that k < n1/c for a sufficiently
large constant c > 0. There is a streaming algorithm that solves the approximate pattern
matching problem in O(k8√n log6 n) space and O((k2√n+ k13) · log4 n) worst-case time per
symbol. The algorithm is correct with probability 1− 1/poly(n).

The main advance has become possible due to the result of Belazzougui and Zhang [2],
who showed a sketch that can be used to compute the exact value of the edit distance
between two strings if it is at most k. Our algorithm maintains such sketches for O(

√
n)

suffixes of the text. To compute the edit distance between the pattern and the text the
algorithm divides the pattern into two parts, a short prefix and a suffix aligned with one of
the sketched suffixes of the text. The edit distance between the short prefix and the text
is computed beforehand using dynamic programming and stored very compactly using the
communication complexity approach. The edit distance between the suffix and the text is
computed with the help of the sketches. We note that the requirement on the text length
is not restrictive. Indeed, if the text’s length is larger than 2n, then one can split it into
blocks of length 2(n+ k) which overlap by n+ k symbols (the last block can be shorter) and
run the algorithm of Theorem 2 independently for each of the blocks. For each k-mismatch
occurrence of P there is a block containing it and therefore the algorithm is correct. The
complexity of the algorithm and the error probability do not change.

As we have already mentioned the problem has been extensively studied in the literature.
For a survey of previous solutions see [14]. The solutions can be roughly classified into
four main types: dynamic programming algorithms, automata-based algorithms, filtering
algorithms, and bit-parallelism. To the best of author’s knowledge, all previously known
solutions require at least Ω(n/ logn) space, and thus our result exhibits a remarkable
improvement in space complexity. On the other hand, the running time of our algorithm
is rather large. This is because the nature of the sketches is very complex and we have to
maintain them independently. We give further details in Sections 3 and 4.

1.2 Related work
Lower bounds. In this work we focus on computing small edit distances between a pattern
and a stream. If however we were interested in computing all edit distances, we would have
to spend at least n1−ε amortised time per output for any constant ε > 0 unless the strong
Exponential Time Hypothesis is false. (The original bound was given for computing the
edit distance between two strings, and our problem is harder.) The best unconditional time
lower bound was shown by Clifford et al. [6] who considered the problem in the cell-probe
model, where the time complexity of algorithm is measured as the number of cells that
must be accessed to compute the output. This model is particularly strong and any lower
bounds that hold in it hold in the RAM model as well. Clifford et al. showed that the
expected amortised time of any randomised algorithm that solves the edit distance problem
is Ω(

√
logn/(log logn)3/2) per output.

Approximate pattern matching in a stream. Another formalisation of approximate pattern
matching is the k-mismatch problem, where one must find all substrings of the text such
that the Hamming distance between them and the pattern is at most k. The first streaming
algorithm for this problem was given in [16]. It used O(k3 log7 n/ log logn) space and
O(k2 log5 n/ log logn) time per arriving symbol. In [5] this result was improved in terms
of the dependency on k to O(k2 log11 n/ log logn) space and O(

√
k log k + log5 n) time per

arriving symbol. Finally, in [7] the authors studied communication and streaming complexities
of computing approximate values of all Hamming distances between the pattern and the text.

CPM 2017

13:4 Communication and Streaming Complexity of Approximate Pattern Matching

2 Communication complexity

In this section we show Theorem 1. Recall that Alice holds the first half of the text, Bob
the second half of the text, and only Charlie holds the pattern. Bob must find all prefixes
T [1, j] of T that end with a k-mismatch occurrence of P and output the edit operations that
convert the occurrence into P .

2.1 Periodicity under edit distance
We start by introducing a notion of approximate period for the edit distance. The idea is
that two close k-mismatch occurrences of the pattern imply weak periodicity of the text. We
will use this property of the text to encode it in small space.

I Definition 3. The α-period of a string S is a minimal integer ` > α such that the edit
distance between some prefix of S and S[`+ 1, n] is at most α.

I Example 4. The 1-period of a string S = bbaabb is 3. This is because S[3, 6] = aabb

cannot be transformed into a prefix of S using just one edit operation, while the edit distance
between S[4, 6] = abb and S[1, 2] is exactly one.

The condition ` > α is essential as any suffix S[`+ 1, n] can be transformed into S by `
insertions. We now show that the α-period can be used to encode the pattern in an efficient
way similar to the way the period of a string can be used to encode it.

I Lemma 5. If the 4k-period of a string S of length n is ρ > 4k, then S can be encoded in
O(ρ+ k logn) bits.

Proof. The encoding will occupy O(ρ+ k logn) bits and contain the prefix and the suffix
of S of length ρ (both taking O(ρ) bits to store), and the at most 4k edit operations that
transform a prefix S′ of S into S[ρ+ 1, n]. The information about the edit operations will
include the type of the operation (insertion, deletion, substitution), the position, and the
symbol itself.

We now show that the encoding is lossless. Consider the first ρ symbols of S′. Let
i1 ≤ 4k be the number of these symbols that must be deleted. It follows that the remaining
ρ− i1 symbols of S′ must be aligned against the symbols of S[ρ+ 1, n]. Therefore, using the
encoding, we can restore (at least) the first ρ− i1 symbols of S[ρ+ 1, n] and consequently
S′[1, 2ρ− i1]. (Recall that insertions and replacements are stored in the encoding explicitly.)
We then consider S′[ρ, 2ρ− i1]. Let i2, i1 + i2 ≤ 4k, be the number of symbols in S′[ρ, 2ρ− i1]
that must be deleted. We can then use the remaining symbols to restore the first 2ρ− i1− i2
symbols of S[ρ+ 1, n] and consequently S′[1, 3ρ− i1− i2]. We continue in a similar way until
we reach the end of S′. At this point, we will restore all symbols of S except for maybe the
last ρ symbols which we already know from the encoding. J

2.2 Communication complexity protocol
We first explain what Charlie sends to Alice, and what Alice sends to Bob. Let B = k

√
n logn

and nB = dn/Be. Charlie sends to Alice document exchange sketches for each prefix
P [1, (nB − i) ·B] and for each suffix P [(nB − i) ·B + 1, n]. We use deterministic document
exchange sketches of size O(k2 + k log2 n) bits [1]. (We note that using O(k logn)-space
sketches [15] would not improve the complexity but would drastically increase the computation
time for Alice and Bob. For this reason, even though time is not the focus of this work, we

T. Starikovskaya 13:5

Alice BobB B B B B B B B

` = (nB − j) ·B

Figure 1 Let i be the first block containing two k-mismatch occurrences of P [1, (nB − i) · B] that
start at least 2k positions apart. To compute the edit distances in a block j < i Bob divides the
pattern into two parts, a prefix P [1, `] and the suffix P [` + 1, n], and computes the distance for each
of the two parts separately.

prefer the sketches [1].) Alice starts by dividing her half of the text into non-overlapping
blocks of length B except for the last one which may be shorter, that is in total there are nB

blocks.

I Definition 6. A position p of a block i is k-good if it is the left endpoint of a k-mismatch
occurrence of P [1, (nB − i) ·B].

Alice considers each block i in turn and finds all k-good positions in the block using the
pattern sketches. Suppose first that all k-good positions in the block are at distance < 4k.
In this case all k-mismatch occurrences of P [1, (nB − i) · B] that start in these positions
end in an interval of length at most 6k. For each position in this interval Alice finds the
substring that ends in it and has the smallest edit distance from P [1, (nB − i) · B] (using
the pattern sketches again) and sends the distance and the corresponding edit operations to
Bob. In total this information occupies O(k2 logn) bits per block. Suppose now that block i
contains two k-good positions p1, p2, where p2 − p1 > 4k, and let i be the first such block.
Let ` = (nB − i) ·B and let ED be the edit distance between two strings.

I Lemma 7. The 4k-period of T [p1, p2 + `− 1] is at most B.

Proof. By the definition both p1 and p2 are starting positions of k-mismatch occurrences of
P [1, `]. Therefore, ED(T [p1, p1 + `− 1], P [1, `]) ≤ 2k and ED(T [p2, p2 + `− 1], P [1, `]) ≤ 2k.
From the triangle inequality it follows that ED(T [p1, p1 + `], T [p2, p2 + `− 1]) ≤ 4k and from
the definition of approximate periods it follows that the 4k-period of T [p1, p2 + `− 1] is at
most B. J

By Lemma 5 the substring T [p1, p2 + `− 1] and therefore T [p1, n−B] can be encoded in
O(B + k logn) bits. Alice sends the encoding to Bob (note that she only does it for the first
block containing distant k-good positions). Finally, she sends Bob the last (B + k) symbols
of her half of the text and also forwards the sketches received from Charlie. The total size of
Alice’s message is O((n/B) · k2 log2 n+B) = O(k

√
n logn) bits.

We now explain how Bob computes the distances. Suppose that he wants to compute the
edit distance between the pattern a substring starting to the left of position p1. Using the
encoding of T [p1, n−B], the last B symbols of Alice’s half of the text, and his half of the
text he can restore all symbols of T [p1, 2n]. He can then use the pattern sketch to compute
the edit distance and operations. Consider now the case when the substring starts in a block
j < i (see Fig. 1). Let S be the substring for which Bob wants to compute the edit distance
and ` = (nB − j) ·B. Bob starts by dividing the pattern into two parts, a prefix P [1, `] and
the suffix P [`+ 1, n]. The following observation is a corollary of the definition of the edit
distance.

CPM 2017

13:6 Communication and Streaming Complexity of Approximate Pattern Matching

P [1, B + k − r] P [B + k − r + 1, n]

B B B B B

sketch

Figure 2 The algorithm processes the text in blocks of size B. To decide whether the current
stream ends with a k-mismatch occurrence of P , the algorithm divides the pattern into two parts, a
prefix of length at most B + k and the remaining suffix and computes the edit distance for each of
the parts separately.

I Observation 8. Let ∆ = min`′∈[`−k,`+k]{ED(P [1, `], S[1, `′])+ED(P [`+1, n], S[`′+1, n])}.
If ∆ > k, then the edit distance between S and P is larger than k, and otherwise it is equal
to ∆.

Since j < i, Bob knows all positions `′ of S for which there exists a k-mismatch occurrence
of P [1, `] ending at this position (and also the edit operations that convert the occurrence
into P [1, `]). On the other hand, since Bob knows the last B+k symbols of Alice’s half of the
text, he knows S[`′ + 1, n] and can use the sketch of P [`+ 1, n] to compute the edit distance
and the edit operations between the two. He can therefore decide if S is a k-mismatch
occurrence of P and the edit operations that transform S into P .

3 Streaming

We now show a streaming algorithm for approximate pattern matching. As soon as a new
symbol arrives we must decide if the current stream ends with a k-mismatch occurrence of P
and output the edit operations between P and the occurrence. The algorithm processes the
text by blocks of size B =

√
n (see Fig. 2). Suppose that the text ends with a k-mismatch

occurrence of the pattern P . This occurrence can be divided into two parts, a prefix of length
at most B, and a suffix that starts at a block border. From Observation 8 it follows that
there exists a position i ∈ [1, B + k] such that the prefix of the occurrence must be aligned
with P [1, i], and the suffix of the occurrence must be aligned with P [i+ 1, n]. The algorithm
will therefore need to be able to compute the edit distances between each block and prefixes
P [1, i], and the edit distances between suffixes of the text starting at block borders and
suffixes P [i+ 1, n].

3.1 Prefixes
Consider a block of the text T . For each i such that the block ends with a k-mismatch
occurrence of P [1, i] we define Si to be the suffix of the block with the smallest edit distance
from P [1, i]. Below we will show a hybrid dynamic programming algorithm that computes
all suffixes Si, the corresponding edit distances and edit operations in O((B + k) · k) space
and in O(k) time per symbol of the block. But first, let us explain how we apply it. Note
that the suffixes Si, the distances and the operations will be used only n/B blocks later. A
naive approach would be to compute all this information and to store it explicitly until that
time. However, the total space requirement of this approach is too large. Instead, we develop
a different approach which runs the algorithm twice. Upon having received a new text block,
we run the algorithm for the first time and compute suffixes Si for all i ∈ [1, B + k]. Let

T. Starikovskaya 13:7

Block
1 1 0 0 0 0 1 1 0

P
at
te
rn

0

1

0

1

1

1

1

Figure 3 The graph shows a 3-path that encodes the edit operations between P [1, 5] = 01011
and a suffix 00110 of the block. The three red arrows show the edit operations: a replacement, an
insertion, and a deletion.

S? = Sj be the longest of the retrieved suffixes. We encode the block as a tuple consisting
of the position j, and the at most k edit operations that transform P [1, j] into S? (see also
Introduction). After having read n/B−2 more blocks we use the encoding and P [1, B+k] to
restore S? and then run the algorithm on S? to compute the suffixes Si and the corresponding
edit operations.

We now describe our algorithm. The algorithm uses the same approach as the hybrid
dynamic programming algorithms for the approximate pattern matching problem [12, 13]
(see also [10, Chapter 12.2.4]). We assume that P [1, B+k] is stored explicitly. The algorithm
receives as an input a text block of length ≤ B. The algorithm starts by preprocessing the
P [1, B + k] and the block for longest common extension queries. For a pair of positions
(p1, p2), a longest common extension query finds the longest substring starting at position p1
of the block that matches a substring starting at position p2 of P [1, B+k]. The preprocessing
phase takes O(B + k) time and space [9]. The algorithm then considers a table of size
(B + k + 1)× (B + 1) and builds a set of paths from the first row to the last column of the
table. Each such path will correspond to a suffix of the block that is a k-mismatch occurrence
of P [1, i] and encode the edit operations that transform the suffix into P [1, i].

The algorithm runs in k rounds. In round m, 1 ≤ m ≤ k, it processes each of the
diagonals of the table in turn and finds a path that corresponds to at most m edit operations
(m-path) and ends in the lowest cell in the current diagonal. Each of the paths starts in one
of the cells in the first row of the table. From a cell (p1, p2) a path can go either to a cell
(p1 + 1, p2), or to (p1, p2 + 1), or to (p1 + 1, p2 + 1). Let a be the (p1 + 1)-th symbol of the
block and b be the (p2 + 1)-th symbol of the pattern. A move to (p1 + 1, p2) corresponds
to deletion of a, a move to (p1, p2 + 1) to insertion of b, and a move to (p1 + 1, p2 + 1) to a
replacement of a by b if a 6= b. If symbols a, b are not edited, the path makes a diagonal step
as well. Suppose that in round m, m ≤ k, a path reaches a cell (B, i) of the last column of
the table for the first time. From construction it follows that this path corresponds to the
suffix Si.

It remains to explain how the algorithm finds the m-paths. Consider a diagonal i. To
find the m-path that ends in the lowest cell in the diagonal, the algorithm tries to extend
the (m − 1)-paths for diagonals i − 1, i, and i + 1. Consider first the (m − 1)-path for

CPM 2017

13:8 Communication and Streaming Complexity of Approximate Pattern Matching

diagonal i. Suppose that it ends in a cell (j, j+ i). The algorithm makes a step from (j, j+ i)
to (j+1, j+ i+1) that corresponds to a replacement of a symbol and then tries to extend the
path further down along the diagonal until it meets the next pair of mismatching symbols.
Note that this step can be performed in O(1) time using a longest common extension query.
The (m− 1)-paths in diagonals i− 1 and i+ 1 are extended in a similar fashion, except that
from the end of the (m− 1)-path in diagonal i+ 1 the algorithm makes a horizontal step
(corresponds to a deletion of a symbol of the block) and from the end of the (m− 1)-path in
diagonal i+ 1 the algorithms makes a vertical step (corresponds to an insertion of a symbol).
It is not hard to see that in this way the algorithm finds the end of the m-path for a fixed
diagonal in O(1) time, meaning that overall the algorithm uses O((B + k) · k) time and
O((B + k) · k) space per block.

I Remark. Note that the running time of the algorithm can be de-amortised to spend O(k)
time per arrival in the worst case: When we apply the algorithm to a block i for the first time,
we de-amortise its running timer over block i + 1 by running Ω(k) steps of the algorithm
each time a new block symbol arrives, and when we run the algorithm for the second time
we de-amortise its running time over block i+ n/B − 2.

3.2 Suffixes

To compute the distances from suffixes of the pattern to the text the algorithm uses sketches
by Belazzougui and Zhang [2, Theorem 13].

I Theorem 9 ([2]). Assume k < n1/c for some sufficiently large constant c > 0. There is a
sketch of size O(k8 log5 n) that can be used to compute the edit distance between two binary
strings of length at most n in O(k12 log3 n) time correctly with probability 0.9. Given a string
arriving as a stream its sketch can be constructed in O(k2 log4 n) amortised time per symbol.

The space and time bounds are not given in [2, Theorem 13] but can be derived from its
proof. We will show the following corollary.

I Corollary 10. Assume k < n1/c for some sufficiently large constant c > 0. There is a
sketch of size O(k8 log6 n) that can be used to compute the edit distance between two binary
strings of length at most n in O(k12 log4 n) time correctly with probability 1− poly(n). Given
a string arriving as a stream its sketch can be constructed in O(k2 log4 n) worst-case time
per symbol.

We boost the probability of Theorem 13 [2] from 0.9 to 1− poly(n) in a standard way,
by repeating the computation independently O(logn) times and taking the smallest edit
distance as an answer, which yields the extra logn factors in the complexities.

For completeness and to explain how to de-amortise the time bound, we give the definition
of the sketches. The sketches are constructed using a random walk embedding from edit to
Hamming distance [4]. The embedding maps strings of length n onto strings of length 3n.
Consider a string S and set a pointer to S[1]. At each step, the embedding copies the symbol
at which the pointer is currently at to the resulting string E(S) and either moves the pointer
to the right or stays in place. After having reached the end of S it stops, and if the length
of E(S) is ` < 3n, it appends 3n − ` zeros to it. The moves of the pointer are defined by
a random string R ∈ {0, 1}6n. If i is the current position of the pointer in S, and j is the
length of E(S), then the pointer moves to the right if R[S[i] + 2j] = 1 and otherwise it stays
in place.

T. Starikovskaya 13:9

I Theorem 11 ([4]). For every constant c > 0 and every pair of binary strings S1, S2 of
length at most n, the Hamming distance between E(S1), E(S2) is at most c ·

(
ED(S1, S2)

)2

with probability at least 1− 12/
√
c.

The intuition behind the proof is that the difference between the pointers’ positions as
they move along two strings S1, S2 behaves as a one-dimensional random walk. In more
details, since R is a random binary string, at each time moment when the difference is not
zero and there is a mismatch between E(S1) and E(S2) the difference does not change with
probability 1/2, increases by one with probability 1/4, and decreases by one with probability
1/4.

The mismatched symbols of E(S1) and E(S2) and their respective positions in S1 and
S2 can be used to construct a set of edit operations that transform S1 to S2. The set
might be not optimal, but it gives some evidence of which positions in S1 and S2 must be
edited. Belazzougui and Zhang first developed sketches of the embeddings E(S1), E(S2)
that allow to retrieve both the mismatched symbols and their positions in S1 and S2. Their
sketches are based on the Hamming distance sketches of Porat and Lipsky [17] and can
be constructed in O(log2 n) worst-case time per symbol of an embedding. They further
suggested to consider O(k2 log2 n) independent random walk embeddings and showed that
they give enough information to derive the optimal set of edit operations.

To de-amortise the time bound of Theorem 13 [2] we notice that in the random walk
embedding a pointer advances by at least one position of the initial string each 3 logn steps
with probability at least 1− 1/n3. Therefore if the sketch construction algorithm gets stuck
at some position for more than 3 logn steps, we can simply abandon it. This incomplete
sketch might result in erroneous outputs, but the probability of this event is small.

3.3 Algorithm
We are now ready to give a full description of the algorithm. We assume that the algorithm
first receives the pattern and preprocesses it in a streaming fashion. Namely, it remembers
the first B + k symbols of the pattern and also computes sketches of each suffix P [i, n],
i ∈ [1, B + k]. The sketches occupy O((B + k) · k8 log6 n) space in total.

After a new block of the text has arrived, the algorithm computes its encoding defined in
Section 3.1. In total all block encodings occupy O((n/B) · k logn) space. Also, while reading
block i, the algorithm decodes block i+ 2− n/B and runs the algorithm of Section 3.1 to
compute the edit distances for the prefixes of P . Recall that this step can be de-amortised to
take O(k) worst-case time per arrival. Finally, the algorithm considers each of the suffixes of
the current text that starts at a block border as a separate stream and computes its sketch
in a streaming manner. That is, when a new symbol T [j] arrives the algorithm updates each
of the O(n/B) suffix streams and each of its sketches in O((n/B) · k2 log4 n) time. The suffix
sketches occupy O((n/B) · k8 log6 n) space in total.

We finally explain how the algorithm computes an output for a new arrival T [j] in a
block i. Recall that the task is to decide if T [1, j] ends with a k-mismatch occurrence of P
and if so to output the edit operations between the pattern and the occurrence. The length
of the occurrence must be in [n− k, n+ k]. It therefore starts either in block i− n/B or in
block i + 1 − n/B. The two cases are analogous and we consider only the case when the
occurrence starts in block i− n/B. Let S be the suffix of T [1, j] starting at the right border
of block i− n/B (in Fig. 2 the suffix is shown in green). S must be aligned with one of the
2k suffixes of the pattern of length in [|S| − k, |S|+ k]. Using the sketches, we compute the
edit distances (and the edit operations) from each of these suffixes to S. Consider a suffix

CPM 2017

13:10 Communication and Streaming Complexity of Approximate Pattern Matching

P [i+ 1, n]. If it is aligned with S, the prefix P [1, i] must be aligned with some suffix of block
i − n/B and we have computed the minimal edit distance from P [1, i] to the block or we
know that it is larger than k. For each i, we sum the edit distances for the prefix and for
the suffix and take the minimum. If the minimum is smaller than k, then by Observation 8
T [1, j] ends with a k-mismatch occurrence of the pattern P and we can output the edit
distance and the edit operations. In total, this step takes O(k13 log4 n) time.

We choose B =
√
n. The space complexity of the algorithm is then O(k8√n log6 n). The

time for updating the sketches is O(k2√n log4 n) per arrival, and the time for computing the
edit distance isO(k13 log4 n), meaning that the total time complexity isO((k2√n+k13)·log4 n)
per arrival.

4 Conclusion

In this work we studied the approximate pattern matching problem. In particular we showed
the first sublinear-space streaming algorithm for the problem. The space complexity of our
algorithm is O(k8√n log6 n), which is significantly better than that of the previously known
solutions. We note that on the other hand the time complexity of our algorithm is quite
large as we have to update sketches of

√
n text suffixes each time a new symbol arrives.

One possibility to improve the time complexity is to maintain sketches of the blocks of the
text rather than sketches of the suffixes (this way, the algorithm will need to update only
one sketch per arrival). However, it is not clear whether the block sketches can be used
to compute suffix sketches and therefore the edit distance. This is because the moves of a
pointer in a suffix’ blocks are not independent, in other words the image of a block under the
random walk embedding depends on all preceding blocks. We leave this challenging question
for further research.

References
1 Djamal Belazzougui. Efficient deterministic single round document exchange for edit dis-

tance, 2015. arXiv:1511.09229.
2 Djamal Belazzougui and Qin Zhang. Edit distance: Sketching, streaming, and document

exchange. In Irit Dinur, editor, Proceedings of the 57th IEEE Annual Symposium on Found-
ations of Computer Science (FOCS 2016), pages 51–60. IEEE Computer Society, 2016.
doi:10.1109/FOCS.2016.15.

3 Joshua Brakensiek, Venkatesan Guruswami, and Samuel Zbarsky. Efficient low-redundancy
codes for correcting multiple deletions. In Robert Krauthgamer, editor, Proceedings of the
27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2016), pages 1884–
1892. SIAM, 2016. doi:10.1137/1.9781611974331.ch132.

4 Diptarka Chakraborty, Elazar Goldenberg, and Michal Koucký. Streaming algorithms for
embedding and computing edit distance in the low distance regime. In Daniel Wichs and
Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium on
Theory of Computing (STOC 2016), pages 712–725. ACM, 2016. doi:10.1145/2897518.
2897577.

5 Raphaël Clifford, Allyx Fontaine, Ely Porat, Benjamin Sach, and Tatiana Starikovskaya.
The k-mismatch problem revisited. In Robert Krauthgamer, editor, Proceedings of the
27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2016), pages 2039–
2052. SIAM, 2016. doi:10.1137/1.9781611974331.ch142.

6 Raphaël Clifford, Markus Jalsenius, and Benjamin Sach. Cell-probe bounds for online edit
distance and other pattern matching problems. In Piotr Indyk, editor, Proceedings of the

http://arxiv.org/abs/1511.09229
http://dx.doi.org/10.1109/FOCS.2016.15
http://dx.doi.org/10.1137/1.9781611974331.ch132
http://dx.doi.org/10.1145/2897518.2897577
http://dx.doi.org/10.1145/2897518.2897577
http://dx.doi.org/10.1137/1.9781611974331.ch142

T. Starikovskaya 13:11

26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2015), pages 552–561.
SIAM, 2015. doi:10.1137/1.9781611973730.37.

7 Raphaël Clifford and Tatiana Starikovskaya. Approximate Hamming distance in a stream.
In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi,
editors, Proceedings of the 43rd International Colloquium on Automata, Languages, and
Programming (ICALP 2016), volume 55 of LIPIcs, pages 20:1–20:14. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.ICALP.2016.20.

8 Graham Cormode, Mike Paterson, Süleyman Cenk Sahinalp, and Uzi Vishkin. Communic-
ation complexity of document exchange. In David B. Shmoys, editor, Proceedings of the
11th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2000), pages 197–206.
ACM/SIAM, 2000. URL: http://dl.acm.org/citation.cfm?id=338219.338252.

9 Johannes Fischer and Volker Heun. Theoretical and practical improvements on the RMQ-
problem, with applications to LCA and LCE. In Moshe Lewenstein and Gabriel Valiente,
editors, Proceedings of the 17th Annual Symposium on Combinatorial Pattern Matching
(CPM 2006), volume 4009 of LNCS, pages 36–48. Springer, 2006. doi:10.1007/11780441_
5.

10 Dan Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and Com-
putational Biology. Cambridge University Press, 1997. doi:10.1017/CBO9780511574931.

11 Hossein Jowhari. Efficient communication protocols for deciding edit distance. In Leah
Epstein and Paolo Ferragina, editors, Proceedings of the 20th Annual European Symposium
on Algorithms (ESA 2012), volume 7501 of LNCS, pages 648–658. Springer, 2012. doi:
10.1007/978-3-642-33090-2_56.

12 Gad M. Landau and Uzi Vishkin. Introducing efficient parallelism into approximate string
matching and a new serial algorithm. In Juris Hartmanis, editor, Proceedings of the 18th
Annual ACM Symposium on Theory of Computing (STOC 1986), pages 220–230. ACM,
1986. doi:10.1145/12130.12152.

13 Eugene W. Myers. An O(nd) difference algorithm and its variations. Algorithmica, 1(2):251–
266, 1986. doi:10.1007/BF01840446.

14 Gonzalo Navarro. A guided tour to approximate string matching. ACM Comput. Surv.,
33(1):31–88, March 2001. doi:10.1145/375360.375365.

15 Alon Orlitsky. Interactive communication: Balanced distributions, correlated files, and
average-case complexity. In Michael Sipser, editor, Proceedings of the 32nd Annual Sym-
posium on Foundations of Computer Science (FOCS 1991), pages 228–238. IEEE Computer
Society, 1991. doi:10.1109/SFCS.1991.185373.

16 Benny Porat and Ely Porat. Exact and approximate pattern matching in the streaming
model. In Daniel A. Spielman, editor, Proceedings of the 50th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2009), pages 315–323. IEEE Computer Society,
2009. doi:10.1109/FOCS.2009.11.

17 Ely Porat and Ohad Lipsky. Improved sketching of Hamming distance with error correct-
ing. In Bin Ma and Kaizhong Zhang, editors, Proceedings of the 18th Annual Symposium
on Combinatorial Pattern Matching (CPM 2007), volume 4580 of LNCS, pages 173–182.
Springer, 2007. doi:10.1007/978-3-540-73437-6_19.

CPM 2017

http://dx.doi.org/10.1137/1.9781611973730.37
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.20
http://dl.acm.org/citation.cfm?id=338219.338252
http://dx.doi.org/10.1007/11780441_5
http://dx.doi.org/10.1007/11780441_5
http://dx.doi.org/10.1017/CBO9780511574931
http://dx.doi.org/10.1007/978-3-642-33090-2_56
http://dx.doi.org/10.1007/978-3-642-33090-2_56
http://dx.doi.org/10.1145/12130.12152
http://dx.doi.org/10.1007/BF01840446
http://dx.doi.org/10.1145/375360.375365
http://dx.doi.org/10.1109/SFCS.1991.185373
http://dx.doi.org/10.1109/FOCS.2009.11
http://dx.doi.org/10.1007/978-3-540-73437-6_19

The Longest Filled Common Subsequence
Problem
Mauro Castelli1, Riccardo Dondi2, Giancarlo Mauri3, and
Italo Zoppis4

1 NOVA IMS, Universidade Nova de Lisboa, Lisbon, Portugal
mcastelli@isegi.unl.pt

2 Dipartimento di Lettere, Filosofia, Comunicazione, Università degli Studi di
Bergamo, Bergamo, Italy
riccardo.dondi@unibg.it

3 Dipartimento di Informatica, Sistemistica e Comunicazione, Università degli
Studi di Milano-Bicocca, Milano, Italy
mauri@disco.unimib.it

4 Dipartimento di Informatica, Sistemistica e Comunicazione, Università degli
Studi di Milano-Bicocca, Milano, Italy
zoppis@disco.unimib.it

Abstract
Inspired by a recent approach for genome reconstruction from incomplete data, we consider a
variant of the longest common subsequence problem for the comparison of two sequences, one of
which is incomplete, i.e. it has some missing elements. The new combinatorial problem, called
Longest Filled Common Subsequence, given two sequences A and B, and a multisetM of symbols
missing in B, asks for a sequence B∗ obtained by inserting the symbols ofM into B so that B∗
induces a common subsequence with A of maximum length.

First, we investigate the computational and approximation complexity of the problem and
we show that it is NP-hard and APX-hard when A contains at most two occurrences of each
symbol. Then, we give a 3

5−approximation algorithm for the problem. Finally, we present a
fixed-parameter algorithm, when the problem is parameterized by the number of symbols inserted
in B that “match” symbols of A.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Com-
binatorics

Keywords and phrases longest common subsequence, approximation algorithms, computational
complexity, fixed-parameter algorithms

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.14

1 Introduction

The comparison of sequences via Longest Common Subsequence (LCS) has been applied in
several contexts where we want to retrieve the maximum number of elements that appear in
the same order in two or more sequences. There are well-known fields of application of LCS
like scheduling and data compression, a notable example is the diff utility to compute the
differences between two files.

The extraction of common subsequences has been widely applied to compare molecular
sequences in bioinformatics [17, 14]. For example, the comparison of biological sequences
provides a measure of their similarities and differences, aiming at understanding whether
they encode similar/different functionalities. Different approaches for the comparison of two

© Mauro Castelli, Riccardo Dondi, Giancarlo Mauri, and Italo Zoppis;
licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 14; pp. 14:1–14:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 The Longest Filled Common Subsequence Problem

genomes based on LCS have been considered in the last years, leading to variants of the longest
common subsequence problem, like the constrained longest common subsequence [13, 8, 18,
11, 4] or the repetition-free longest common subsequence and variants thereof [7, 1, 6, 12].

The approaches based on LCS for genome comparison assume that the input sequences
are complete, that is there are no missing data. However, while Next Generation Sequencing
technologies are able to produce a huge amount of DNA/RNA fragments, the cost of
reconstructing a complete genome is still high [10]. Hence, released genomes often contain
errors or are incomplete. These incomplete genomes are called scaffolds. One approach to the
reconstruction of genome is to fill scaffolds with missing genes, based on the comparison of an
incomplete genome with a reference genome [16, 15, 9, 19]. Given an incomplete genome B, a
set of missing genes (symbols)M and a reference genome A, the goal is to insert the missing
symbols in B so that the number of common adjacencies between the resulting genome B∗
and A is maximized. We have a common adjacency when two genes a, b are consecutive
both in A and B∗, independently from the order. We mention briefly that there is also a
variant of the scaffold filling approach that compares two incomplete genomes [15, 9].

Inspired by methods for genome comparison based on LCS and by the scaffold filling
approach, we introduce a new variant of the LCS problem, called the Longest Filled Common
Subsequence problem, for the comparison of a complete genome A and an incomplete genome
B. The goal of the problem is to find the maximum number of genes that appear in the
same order in both genomes. However, since some of the genes in B are missing (a multiset
M of symbols), we have to compute a longest common subsequence of A and of a filling
B∗ of B, that is of a sequence obtained from B by inserting the symbols of M into B.
Notice that while the scaffold filling problem aims to reconstruct a complete genome from an
incomplete one by maximizing the number of common adjacencies, here we aim to infer only
those elements (genes) that appear in the same order in the complete genome A and in the
completed genome B∗.

In this paper, we investigate different algorithmic and complexity aspects of the Longest
Filled Common Subsequence problem. First, in Section 3 we prove that it is NP-hard and
APX-hard, even when genome A contains at most two occurrences of each symbol. Notice
that bounding the maximum number of occurrences of symbols in a sequence is relevant in
this case, as usually the number of copies of a gene inside a genome is bounded. Then, in
Section 4 we present a polynomial-time approximation algorithm of factor 3

5 . In Section 5,
we give a fixed-parameter algorithm, where the parameter is the number of inserted symbols
that lead to a “match” with symbols of sequence A. Such a parameter can be of interest
when the number of missing elements, and in particular those that lead to a “match” with
symbols of A, is moderate, as the complexity of the algorithm depends exponentially only on
this parameter.

Some of the proofs are omitted due to page limit.

2 Preliminaries

In this section we introduce some basic definitions that will be useful in the rest of the paper
and we give the formal definition of the Longest Filled Common Subsequence problem. Let
S be a sequence over an alphabet Σ, we denote by |S| the length of S. Given a position i,
with 1 ≤ i ≤ |S|, we denote by S[i] the symbol in position i of S. Given two positions i, j
in S, with 1 ≤ i ≤ j ≤ |S|, we denote by S[i, j] the substring of S that starts at position i
and ends at position j. Given two sequences S and T , we denote by S · T the sequence that
results by concatenating S and T .

M. Castelli, R. Dondi, G. Mauri, and I. Zoppis 14:3

d b c a c b d a

d a b c c d b d

AA

B

Figure 1 The threading schema of two sequences A and B: lines connect matched positions of A

and B.

A subsequence of S is a sequence S′ that is obtained from S by deleting some symbols
(possibly none). A common subsequence S of two sequences A and B is a subsequence of
both A and B. A longest common subsequence of A and B is a common subsequence of A
and B having maximum length.

Given two sequences A and B, a common subsequence can be defined by aligning A and
B and by connecting two positions of A and B containing an identical symbol with a line,
such that there is no pair of crossing lines. This is called a threading schema (see Fig. 1).
Given a threading schema for sequences A, B, a connection between two symbols in A and B,
respectively, is called a match and the two positions incident in a line are said to be matched.

Given a sequence S and a multiset of symbolsM, we define a filling of S withM as a
sequence S′ obtained by inserting a subsetM′ of symbols ofM into S. Notice that in a
filling of S withM not all the symbols ofM have to be inserted in S. Informally, we may
not insert those symbols that do not induce matches, to simplify the algorithms we describe
in Section 4 and in Section 5. Now, we are ready to present the formal definition of Longest
Filled Common Subsequence.

I Problem 1. Longest Filled Common Subsequence (LFCS)
Instance: two sequences A and B over an alphabet Σ, and a multisetM over Σ.
Solution: a filling B∗ of B withM.
Measure: the length of a longest common subsequence of A and B∗ (to be maximized).

Given two sequences A, B and a multiset M over Σ, let B∗ be a filling of B with M.
Consider a common subsequence of A and B∗, and their corresponding threading schema. A
position of A can have two possible kinds of matches (see Fig. 2): a match with a position
of B∗ that contains a symbol of M inserted in B, called match by insertion, or a match
with a position of B∗ not involved in an insertion, called match by alignment. We can easily
compute in polynomial-time two upper bounds on the number of positions of A that can
be matched by alignment and by insertion, that will be useful in Section 4. The first upper
bound is related to a longest common subsequence L of A and B, which can be computed in
polynomial time. In fact, the maximum number of positions of A (and of a filling B∗ of B
withM) that are matched by alignment is at most the length of L.

Next we show how to compute in polynomial-time an upper bound on the number of
positions of a sequence A that can be matched by insertion. First, given a multisetM of
symbols, we define an ordering of M as a sequence obtained by defining an order among
each element ofM, that is each occurrence of a symbol ofM.

Consider the positions of A and of a filling B∗ of B withM that are matched by insertion;
the positions of A induce a subsequence A′ of A, while the positions of B∗ induce an ordering
M of a subsetM′ ⊆M. An upper bound on the length ofM can be computed in polynomial
time with the following greedy algorithm.

CPM 2017

14:4 The Longest Filled Common Subsequence Problem

d b c a c b d a

d b c a b c c d b d

AA

B*

Figure 2 A filling B∗ of sequence B in Fig. 1, computed by inserting a symbol in position 2
(symbol b) and a symbol in position 3 (symbol c), both in grey. A subsequence of A and B∗ is
induced by the threading schema of A and B∗, where straight lines represent matches by alignment,
dashed lines represent matches by insertion.

Algorithm 1:
Data: A,M
Result: a subsequence A′ of A that matches the maximum number of symbols of a

sequence M obtained by orderingM
1 i := 1;
2 A′ is an empty sequence;
3 while i ≤ |A| do
4 if α ∈M with A[i] = α then
5 A′ := A′ · α;
6 M :=M\ {α};
7 i := i+ +;

Next, we prove the correctness of Algorithm 1.

I Lemma 1. Given a sequence A, a multisetM on Σ, and a substring A[1, i] of A, Algorithm 1
computes a subsequence of A[1, i] that matches the maximum number of symbols of an ordering
M ofM.

3 Complexity of LFCS

In this section, we investigate the computational (and approximation) complexity of the
LFCS problem, and we prove that it is APX-hard when A contains at most two occurrences
of each symbol in Σ (we denote this restriction of LFCS by 2-LFCS). We prove the result
by an L-reduction from the Maximum Independent Set problem on Cubic Graphs (Max-ISC),
which is known to be APX-hard [2](see [5] for details on L-reduction). Max-ISC, given a
cubic graph G = (V,E)1, asks for a maximum cardinality subset V ′ ⊆ V such that given
vi, vj ∈ V ′ it holds {vi, vj} /∈ E.

Given a cubic graph G = (V,E), with V = {v1, v2, . . . , vn} and |E| = m, in the following
we show how to construct an instance (A,B,M) of 2-LFCS. Define an order on the edges
incident on a vertex vi ∈ V assuming {vi, vj} < {vi, vh} if j < h. Given a vertex vi, and the
edges {vi, vj}, {vi, vh}, {vi, vz} ∈ E, with j < h < z, we say that {vi, vj} ({vi, vh}, {vi, vz},
respectively) is the first (second, third, respectively) edge incident on vi.

First, we define the alphabet Σ:

Σ = {xi,j : vi ∈ V, 1 ≤ j ≤ 3}∪{yi,j : vi ∈ V, 1 ≤ j ≤ 2}∪{zi,j : 1 ≤ i ≤ n+m−1, 1 ≤ j ≤ 4} .

1 We recall that a cubic graph is an undirected graph where each vertex has degree exactly three.

M. Castelli, R. Dondi, G. Mauri, and I. Zoppis 14:5

The input sequences A and B are built by concatenating several substrings.
For each vi ∈ V , we define the following substrings of the input sequences A, B:

A(vi) = yi,1yi,2xi,1xi,2xi,3 B(vi) = xi,1xi,2xi,3yi,1yi,2 .

For each {vi, vj} ∈ E, with i < j (which is the p-th edge, 1 ≤ p ≤ 3, incident on vi and the
q-th edge, 1 ≤ q ≤ 3, incident on vj), define the following substrings of A, B:

A({vi, vj}) = xi,pxj,q B({vi, vj}) = xj,qxi,p .

Finally, define 2(n+m− 1) additional substrings SA,1, SA,2, . . . , SA,m+n−1, SB,1, SB,2, . . . ,

SB,m+n−1 where SA,i, SB,i, with 1 ≤ i ≤ m+ n− 1, are defined as follows:

SA,i = SB,i = zi,1zi,2zi,3zi,4.

Now, we are able to define the input sequences A and B, by concatenating the substrings
previously defined, where substrings associated with edges of G are concatenated assuming
some edge ordering (we assume that {v1, vw} is the first edge, while {vr, vt} is the last edge
according to the ordering):

A = A(v1) ·SA,1 ·A(v2) · · · · ·SA,n−1 ·A(vn) ·SA,n ·A({v1, vw}) · · · · ·SA,n+m−1 ·A({vr, vt}) ,

B = B(v1) ·SB,1 ·B(v2) · · · · ·SB,n−1 ·B(vn) ·SB,nB({v1, vw}) · · · · ·SB,n+m−1 ·B({vr, vt}) .

Notice that each substring associated with an edge {vi, vj} appears exactly once in both
A and B.
M (in this case is a set) is defined as follows: M = {xi,t : vi ∈ V, 1 ≤ t ≤ 3}.
First, we prove that (A,B,M) is an instance of 2-LFCS, that is we prove that each

symbol has at most two occurrences in A.

I Lemma 2. Each symbol of Σ occurs at most twice in A.

Proof. Notice that each symbol appearing in a substring SA,i, 1 ≤ i ≤ m + n − 1, does
not appear in any other subsequence of A. Now, consider a symbol yi,t, 1 ≤ i ≤ n and
1 ≤ t ≤ 2, appearing in substring A(vi); yi,t does not appear in any other substring of A.
Finally, consider a symbol xi,t, 1 ≤ i ≤ n and 1 ≤ t ≤ 3; xi,t has one occurrence in exactly
two subsequences of A: subsequence A(vi) and subsequence A({vi, vj}) (where {vi, vj} is the
t-th edges incident on vi). J

Let B∗ be a solution of 2-LFCS over instance (A,B,M). We denote by SB∗,i (B∗(vi),
B∗({vi, vj}), respectively), the substring of a solution B∗ corresponding (after some insertion)
to the substring SB,i (B(vi),B({vi, vj}), respectively), of B.

Next, we show that we can assume that in a solution B∗ of 2-LFCS over instance
(A,B,M), a longest common subsequence of A and B∗ matches by alignment a position of
a subsequence SA,i, 1 ≤ i ≤ m+ n− 1, only with a position of SB∗,i, 1 ≤ i ≤ m+ n− 1.

I Lemma 3. Given a cubic graph G, let (A,B,M) be the corresponding instance of 2-LFCS,
and B∗ a solution of 2-LFCS over (A,B,M). Then a longest common subsequence of A
and B∗ contains each symbol zt,q, with 1 ≤ t ≤ m+ n− 1 and 1 ≤ q ≤ 4.

Proof. Consider a solution B∗ of 2-LFCS over instance (A,B,M) and assume that it does
not contain a symbol zt,q, with 1 ≤ t ≤ m+ n− 1 and 1 ≤ q ≤ 4. By construction a longest
common subsequence of B∗ and A matches by alignment a position of A(vi) either with a
position of B(vi) or with a position of B({vi, vj}).

CPM 2017

14:6 The Longest Filled Common Subsequence Problem

First, we prove that a longest common subsequence between A and B∗ matches by
alignment a position of A(vi) only with a position of B(vi). Assume that i is the minimum
value such that a longest common subsequence S of A and B∗ matches by alignment a
position of A(vi) and a position of B∗({vi, vj}). Notice that, by construction of (A,B,M),
no position of SA,i can be matched. Now, starting from S we can compute a common
subsequence S′ of A and B∗, with |S′| > |S|, by modifying the alignment of S as follows: (i)
match by alignment the positions of A(vi) and the positions of B∗(vi) containing symbols
yi,1, yi,2; (ii) match by alignment the positions of subsequences SA,i containing symbol
zi,q with position of subsequences SB,i containing symbol zi,q; (iii) any other match is not
modified. It follows that the number of positions in A(vi) matched by S′ with respect to S is
decreased by at most three, since eventually positions of A(Vi) containing symbols xi,1, xi,2,
xi,3 will not be matched. The number of positions in SA,i matched by S′ with respect to S
is increased by at least 4, since each position of SA,i is not matched by S and it is matched
by S′. By iterating this procedure, we eventually find a longest common subsequence S′ of
A and B∗ where if each position of A(Vi) is matched by alignment, then it is matched with
a position of B(vi). By the maximality of S′, this implies that each position of A containing
a symbol zt,q, with 1 ≤ t ≤ m+ n− 1 and 1 ≤ q ≤ 4, matches a position of B∗ containing
symbol zt,q. J

Consider a vertex vi ∈ V and the corresponding substrings A(vi), B(vi) of A and B.
Moreover, let {vi, vj}, {vi, vh}, {vi, vz} ∈ E be the three edges of G incident on vi and consider
the corresponding substrings A({vi, vj}), A({vi, vh}), A({vi, vz}) (B({vi, vj}), B({vi, vh}),
B({vi, vz}), respectively), of A (of B, respectively). Informally, the reduction shows that
there are essentially two possible configurations (called I-configuration and C-configuration)
of the substring B∗(vi) (and possibly B∗({vi, vj}), B∗({vi, vh}) and B∗({vi, vz})) of a filling
B∗ of B. A substring B∗(vi) having an I-configuration is related to the vertex vi in an
independent set of G, while a substring B∗(vi) having a C-configuration is related to the
vertex vi in a vertex cover of G.

We define now the two possible configurations, called I-configuration and C-configuration,
for B∗(vi) and, possibly, for the substrings B∗({vi, vj}), B∗({vi, vh}) and B∗({vi, vz}) of a
filling B∗ of B. An I-configuration for the substrings B∗(vi), B∗({vi, vj}), B∗({vi, vh}) and
B∗({vi, vz}) is defined as follows:

B∗(vi) = B(vi) (hence there is no insertion in B(vi)).
For each {vi, vt}, with t ∈ {j, h, z}, where {vi, vt} is the p-th edge incident on vi, 1 ≤ p ≤ 3,
and the q-th edge incident on vt, 1 ≤ q ≤ 3, B∗({vi, vt}) = xi,pxj,qxi,p (hence xi,p is
inserted in B({vi, vt})).

If B∗(vi), B∗({vi, vj}), B∗({vi, vh}), B∗({vi, vz}) have an I-configuration, a longest
common subsequence of B∗(vi) and A(vi) has length three (it matches the positions containing
xi,1, xi,2, xi,3), and a longest common subsequence of A({vi, vt}) and B∗({vi, vt}), with
t ∈ {j, h, z}, has length two (it matches the positions containing xi,p, xj,q).

A C-configuration for the substring B∗(vi) is defined as follows:
B∗(vi) = xi,1xi,2xi,3yi,1yi,2xi,1xi,2xi,3 (hence B∗(vi) = B(vi) · xi,1xi,2xi,3).

If B∗(vi) has a C-configuration, a longest common subsequence of B∗(vi) and A(vi) has
length five, it matches the positions containing yi,1, yi,2, xi,1, xi,2, xi,3.

Next, we present the main lemmata of this section.

I Lemma 4. Let G be a cubic graph, instance of Max-ISC, and let (A,B,M) be the
corresponding instance of 2-LFCS. Then, given an independent set I of G, we can compute

M. Castelli, R. Dondi, G. Mauri, and I. Zoppis 14:7

in polynomial time a solution B∗ of 2-LFCS over instance (A,B,M) inducing a longest
common subsequence with A of length 4(m+ n− 1) + 6|I|+ 5(n− |I|) +m.

Proof. Consider an independent set I and define a solution B∗ of 2-LFCS over instance
(A,B,M) as follows. For each vi ∈ I, with {vi, vj}, {vi, vh}, {vi, vz} ∈ E the three edges of G
incident on vi, define an I-configuration for B∗(vi), B∗({vi, vj}), B∗({vi, vh}), B∗({vi, vz}).
For each vi ∈ V \ I, define a C-configuration for B∗(vi). For each edge {vi, vj} ∈ E if
vi, vj ∈ V \ I, then B∗({vi, vj}) = B({vi, vj}); notice that in this case a longest common
subsequence of A({vi, vj}) and B∗({vi, vj}) has length one, as it matches exactly one
position containing either xi,p or xj,q. Finally, each position of A in the substring SA,i, with
1 ≤ i ≤ m+ n− 1, is matched by alignment with the corresponding position of SB∗,i.

Notice that the solution B∗ is well-defined, as each B∗({vi, vj}), with {vi, vj} ∈ E, can
belong to an I-configuration of at most one of B∗(vi) and B∗(vj), since at most one of vi, vj

belongs to I.
Now, consider a longest common subsequence S of A and B∗. S matches 4(m+ n− 1)

positions in substrings SA,1, . . . , SA,m+n−1, since all the positions of these substrings are
matched and, by construction, the overall length of SA,1, . . . , SA,m+n−1 is 4(m + n − 1).
Moreover, by definition of I-configuration and C-configuration, for each vi ∈ I, S matches 3
positions of A(vi) and 2 positions of each A({vi, vj}), with {vi, vj} ∈ E; for each vi ∈ V \ I,
S matches 5 positions of A(vi); for each {vi, vj} ∈ E, with vi, vj ∈ V \ I, S matches one
position of A({vi, vt}). Hence, S matches 4(m+ n− 1) + 6|I|+ 5(n− |I|) +m positions of A
and B∗. J

Based on Lemma 3, we can prove the following result.

I Lemma 5. Let G be a cubic graph, instance of Max-ISC, and let (A,B,M) be the
corresponding instance of 2-LFCS. Then, given a solution B∗ of 2-LFCS over instance
(A,B,M) of length 4(m+ n− 1) + 6p+ 5(n− p) +m, we can compute in polynomial time
an independent set of G of size at least p.

By Lemmata 4 and 5, and by the APX-hardness of Max-ISC [2] we can conclude that
the 2-LFCS problem is APX-hard.

I Theorem 6. 2-LFCS is APX-hard.

4 Approximating LFCS

In this section we give a polynomial-time approximation algorithm for LFCS of factor 3
5 .

The approximation algorithm picks the largest number of matched positions returned by two
polynomial-time algorithms, Approx-Algorithm-1 and Approx-Algorithm-2. Notice that each
algorithm does not return a filling of B withM, but two disjoint subsets of positions of A
that have to be matched by alignment and by insertion, respectively, by a subsequence of A
and of a filling of B withM. We can easily compute in polynomial time a filling B∗ of B
withM so that there exists a common subsequence of A and B∗ that matches these two
subsets of positions.

Both algorithms consist of two phases.

Approx-Algorithm-1. In the first phase, Approx-Algorithm-1 computes in polynomial time
a longest common subsequence of A and B. Denote by R1,a the positions of A matched
by alignment in the first phase and by A′ the subsequence of A obtained by removing the
positions of R1,a. The second phase greedily computes in polynomial time a set R1,i of

CPM 2017

14:8 The Longest Filled Common Subsequence Problem

A

R
1,a

R
2,i

R
1,i

R
2,a

OPT
a,o

OPT
i,o

OPT
a,e
OPT

i,e

OPT'
a,o

OPT'
i,o

Figure 3 The input sequence A and the positions matched by solution R1 (dashed) and by
solution R2 (in grey). In the upper part, brackets represent the subsets R1,a and R1,i of R1, and
R2,a and R2,i of R2. In the lower part, the brackets represent the positions matched by OP T .

positions of A′ of maximum size that matchesM by insertion, applying Algorithm 1 on
(A′,M). Denote by R1 = R1,a∪R1,i the set of positions returned by Approx-Algorithm-1.

Approx-Algorithm-2. In the first phase, Approx-Algorithm-2 computes a subset R2,i of
positions of A of maximum size that matchesM by insertion applying Algorithm 1 on
(A,M). Denote by A′′ the subsequence of A obtained by removing the positions of R2,i.
The second phase computes a longest common subsequence of B and A′′; denote by R2,a

the set of positions of A′′ (and A) matched by this phase. Denote by R2 = R2,a ∪R2,i

the set of positions returned by Approx-Algorithm-2.

Next, we show that the maximum number of positions matched by one of Approx-
Algorithm-1 and Approx-Algorithm-2 gives a 3

5 -approximated solution. First, we introduce
some notations (see Fig. 3). Let Bopt be an optimal solution of LFCS on instance (A,B,M),
and let OPT be a longest common subsequence of A and Bopt. We consider the following
sets of positions of OPT . Denote by OPTa the set of positions of A matched by alignment
in OPT and by OPTi the set of positions of A matched by insertion in OPT . Notice that
by construction it holds OPTa ∩OPTi = ∅.

Define OPTa,o = OPTa ∩ (R1,a ∪ R2,i) and OPTi,o = OPTi ∩ (R1,a ∪ R2,i). Moreover,
define OPTa,e = OPTa \OPTa,o and OPTi,e = OPTi \OPTi,o. Informally, OPTa,e (OPTi,e,
respectively) is the set of positions of A matched by alignment (by insertion, respectively)
in OPT that is not matched in the first phase by Approx-Algorithm-1 (in the second
phase by Approx-Algorithm-2, respectively). Finally, define OPT ′i,o = OPTi,o \ R1,a and
OPT ′a,o = OPTa,o \R2,i.

By definition of OPT , OPTa,o, OPTi,o, OPTa,e and OPTi,e, it holds |OPT | = |OPTa,o|+
|OPTa,e|+ |OPTi,o|+ |OPTi,e|.

We will show that the largest set between R1 and R2 gives a 3
5 -approximate solution,

that is max(|R1|, |R2|) ≥ 3
5 |OPT |. We start by showing two bounds on OPTi and OPTa.

I Lemma 7. |R1,a| ≥ |OPTa| and |R2,i| ≥ |OPTi|.

Proof. First, we prove that |R1,a| ≥ |OPTa|. Consider the set of positions in OPTa. Since
each position in OPTa is a position of A matched by alignment, it follows that the set OPTa

induces a common subsequence of A and B. Since the set R1,a of positions of A induces a
longest common subsequence of A and B, it follows that |R1,a| ≥ |OPTa|.

Now, we prove that |R2,i| ≥ |OPTi|. Consider the set of positions in OPTi. Each position
in OPTi is matched by insertion, hence it is matched with an inserted symbol of M. By

M. Castelli, R. Dondi, G. Mauri, and I. Zoppis 14:9

Lemma 1, R2,i is a set of positions of A of maximum cardinality that can be matched by
insertion with symbols ofM, hence |R2,i| ≥ |OPTi|. J

As a consequence of Lemma 7, it follows that |R1,a|+ |R2,i| ≥ |OPTi|+ |OPTa| ≥ |OPT |.
Hence the maximum of R1, R2 is (at least) 1

2 |OPT |. In the following, we show with a more
refined analysis that the maximum of |R1|, |R2| is at least 3

5 |OPT |.
We prove some bounds on R1,i and R2,a, then we consider three cases depending on the

values of OPTa,o, OPTi,o, OPTa,e, OPTi,e, OPT ′i,o and OPT ′a,o. First, the following result
holds.

I Lemma 8. |R1,i| ≥ |OPT ′i,o|+ |OPTi,e| and |R2,a| ≥ |OPT ′a,o|+ |OPTa,e|.

Now, in the analysis of the approximation factor of Approx-Algorithm-1 and Approx-
Algorithm-2, we consider three cases, depending on the values of OPTi,e, OPTi,o, OPT ′i,o.

Case 1
Assume that |OPTi,e|+ |OPT ′i,o| ≥ 1

2 |OPTi,o|, we show the following result.

I Lemma 9. Assume that |OPTi,e|+ |OPT ′i,o| ≥ 1
2 |OPTi,o|, then |R1| ≥ 3

5 |OPT |.

Proof. Since |R1,i| ≥ |OPT ′i,o|+ |OPTi,e| by Lemma 8, it follows that

|R1,a|+ |R1,i| ≥ |R1,a|+ |OPT ′i,o|+ |OPTi,e| ≥

3
5(|R1,a|+ |OPTi,e|) + 2

5(|R1,a|+ |OPTi,e|) + |OPT ′i,o|.

By Lemma 7 it follows that |R1,a| ≥ |OPTa| and, since |OPTa| = |OPTa,o| + |OPTa,e|, it
follows that |R1,a| ≥ |OPTa,o|+ |OPTa,e|, hence

3
5(|R1,a|+ |OPTi,e|) + 2

5(|R1,a|+ |OPTi,e|) + |OPT ′i,o| ≥

3
5(|OPTa,o|+ |OPTa,e|+ |OPTi,e|) + 2

5(|R1,a|+ |OPTi,e|) + |OPT ′i,o|.

Hence, it holds

|R1,a|+ |R1,i| ≥
3
5(|OPTa,o|+ |OPTa,e|+ |OPTi,e|) + 2

5(|R1,a|+ |OPTi,e|) + |OPT ′i,o|. (1)

Notice that |R1,a|+ |OPT ′i,o| ≥ |OPTi,o|, since, by construction, each position in OPTi,o is
either in OPT ′i,o or in R1,a. Then,

2
5(|R1,a|+ |OPT ′i,o|) ≥

2
5 |OPTi,o|. (2)

Since we are assuming that |OPTi,e|+ |OPT ′i,o| ≥ 1
2 |OPTi,o|, it holds

2
5(|OPTi,e|+ |OPT ′i,o|) ≥

1
5 |OPTi,o|. (3)

Combining Inequalities 2 and 3 with Inequality 1, we can conclude that, under the hypothesis
|OPTi,e|+ |OPT ′i,o| ≥ 1

2 |OPTi,o|, it holds

|R1,a|+ |R1,i| ≥
3
5(|OPTa,o|+ |OPTa,e|+ |OPTi,e|) + 2

5(|R1,a|+ |OPTi,e|) + |OPT ′i,o| ≥

CPM 2017

14:10 The Longest Filled Common Subsequence Problem

3
5(|OPTa,o|+ |OPTa,e|+ |OPTi,e|) + 2

5(|R1,a|+ |OPT ′i,o|) + 2
5(|OPTi,e|+ |OPT ′i,o|) ≥

3
5(|OPTa,o|+ |OPTa,e|+ |OPTi,o|+ |OPTi,e|).

It follows that, under the hypothesis |OPTi,e| + |OPT ′i,o| ≥ 1
2 |OPTi,o|, it holds |R1| ≥

3
5 |OPT |. J

Case 2

Assume that |OPTa,e| + |OPT ′a,o| ≥ 1
2 |OPTa,o|. Similarly to Case 1, we can prove the

following result.

I Lemma 10. Assume that |OPTa,e|+ |OPT ′a,o| ≥ 1
2 |OPTa,o|, then |R2| ≥ 3

5 |OPT |.

Case 3

Assume that both Case 1 and Case 2 do not hold. Then,

|OPTi,e|+ |OPT ′i,o| <
1
2 |OPTi,o| and |OPTa,e|+ |OPT ′a,o| <

1
2 |OPTa,o|.

Since |OPTi,e| + |OPT ′i,o| < 1
2 |OPTi,o|, it follows that |OPTi,e| < 1

2 |OPTi,o| and, since
|OPTa,e| + |OPT ′a,o| < 1

2 |OPTa,o|, it follows that |OPTa,e| < 1
2 |OPTa,o|. But then, since

|OPT | = |OPTa,o|+ |OPTi,o|+ |OPTa,e|+ |OPTi,e|, it follows that

|OPT | ≤ 3
2(|OPTa,o|+ |OPTi,o|)

We show that |R1| ≥ |OPTa,o|+ |OPTi,o|, thus implying that |R1| ≥ 3
5 |OPT |.

I Lemma 11. |R1,a ∪R1,i| ≥ |OPTa,o|+ |OPTi,o|.

By Lemma 11, |R1,a ∪R1,i| ≥ |OPTa,o|+ |OPTi,o|. Since in this case we have shown that
|OPT | ≤ 3

2 (|OPTa,o|+ |OPTi,o|), it follows that |R1| = |R1,a ∪ R1,i| ≥ 2
3 |OPT | ≥

3
5 |OPT |.

From Lemma 9, Lemma 10 and Lemma 11, it follows the main result of this section.

I Theorem 12. Given an instance (A,B,M) of LFCS, the largest solution returned by
Approx-Algorithm-1 and Approx-Algorithm-2 is an approximate solution of factor 3

5 .

Proof. From Lemma 9, Lemma 10 and Lemma 11, it follows that max(|R1|, R2|) ≥ 3
5 |OPT |.

We can compute a filling B1 of B withM that matches at least |R1| positions with A as
follows: we consider the positions in R1,a as matched by alignment, we insert symbols ofM
in B in order to match by insertion the positions in R1,i. It follows that a longest common
subsequence of A and B1 matches at least |R1| positions.

Similarly, we can compute a filling B2 of B withM that matches at least |R2| positions
of A. We insert symbols ofM in B so that the positions in R1,i are matched by insertion.
Consider the subsequence A′′ obtained after the removal of positions in R1,i; a longest
common subsequence of A′′ and B matches at least |R2,a| positions. It follows that a longest
common subsequence of A and B2 matches at least |R2| positions. J

M. Castelli, R. Dondi, G. Mauri, and I. Zoppis 14:11

5 An FPT Algorithm

In this section, we present an FPT algorithm for LFCS parameterized by the number k of
positions of A matched by insertions. Notice that k < |M|. Here we assume that the input
sequences A and B have been extended by adding two symbols $A, $B /∈ Σ, respectively, in
position 0 of A and B, respectively. Hence we assume that position 0 of A and of a filling
B∗ of B withM is not matched by alignment or by insertion by any solution of LFCS of
length greater than zero.

The algorithm we present is based on the color-coding technique [3]. Next, we present
the definition of perfect families of hash functions for a multiset of symbols, on which our
color-coding approach is based.

I Definition 13. LetM be a multiset of positions and let F be a family of hash functions
fromM to a set {c1, . . . , ck} of colors. F is called perfect if for any subset W ⊆ M, such
that |W | = k, there exists a function f ∈ F which is injective on W .

A perfect family F of hash functions fromM to {c1, . . . , ck}, having size O(log |M|2O(k)),
can be constructed in time O(2O(k)|M| log |M|) (see [3]).

Consider a perfect family of hash functions F : M → {c1, . . . , ck}. Let f ∈ F be
an injective function, and define L[i, j, C, l], with C ⊆ {c1, . . . , ck}, 0 ≤ i, l ≤ |A| and
0 ≤ j ≤ |B|, as follows:

L[i, j, C, l] = 1 if and only if there exists a common subsequence of A[0, i] and of a filling
B∗ of B[0, j] withM having length l, such that there exist |C| symbols ofM inserted in
B[0, j], each one associated with a distinct color of C and matched by insertion with a
position of A
else L[i, j, C, l] = 0.

Next, we define the recurrence to compute L[i, j, C, l], where i ≥ 1 and j ≥ 0.

L[i, j, C, l] = max

L[i− 1, j, C, l]
L[i, j − 1, C, l] if j ≥ 1
L[i− 1, j − 1, C, l − 1] if A[i] = B[j] and j ≥ 1
L[i− 1, j, C \ {c}, l − 1] if A[i] = α and there exists

α ∈M with f(α) = c ∈ C

(4)

For the base case, since we have extended A and B so that position 0 in A and in the
filling of B cannot be matched by insertions or by alignment, it holds L[0, 0, C, l] = 1, if
C = ∅ and l = 0, else L[0, 0, C, l] = 0. Next, we prove the correctness of the recurrence.

I Lemma 14. Let F : M → {c1, . . . , ck} be a perfect family of hash functions, let f ∈ F
be an injective function and let C be a subset of {c1, . . . , ck}. Then there exists a common
subsequence of length l, l ≥ 0, of A[0, i], 0 ≤ i ≤ |A|, and of a filling of B[0, j], 0 ≤ j ≤ |B|,
withM′ ⊆M such that each symbol ofM′ matched by insertion is associated with a distinct
color in C if and only if L[i, j, C, l] = 1.

Now, we are able to prove the main result of this section.

I Theorem 15. Let A, B be two sequences andM a mutliset of symbols. Then it is possible
to compute in time 2O(k)poly(|A|+ |B|+ |M|) if there exists a solution B∗ of LFCS over
instance (A,B,M) such that a longest common subsequence S of A and B∗ has length l and
it matches by insertion k positions of A.

CPM 2017

14:12 The Longest Filled Common Subsequence Problem

Proof. The correctness of the algorithm follows from Lemma 14 and from the fact that entry
L[|A|, |B|, C, l] = 1 if and only if there exists a solution of LFCS over instance (A,B,M)
having length l that matches by insertion k positions of A.

Next, we consider the time complexity of the algorithm. A perfect family of hash functions
that color-codes the symbols of M can be computed in time 2O(k)poly(|M|). Then, the
algorithm iterates through 2O(k)poly(|M|) color-codings. For each color-coding, the table
L[i, j, C, l] is computed in time O(2k|A|2|B|k) (where l ≤ |A|), since for each of the at most
O(2k|A|2|B|) entries we need to look for at most k possible entries. The overall complexity
is then 2O(k)poly(|A|+ |B|+ |M|). J

6 Conclusion

We have introduced a variant of the LCS problem, called Longest Filled Common Subsequence
(LFCS), to compare a sequence A with an incomplete sequence B to be filled with a multiset
M of symbols. We have shown that the problem is APX-hard (hence NP-hard), even
when each symbol occurs at most twice in the input sequence A. Then, we have given an
approximation algorithm of factor 3

5 and a fixed-parameter algorithm, where the parameter
is the number of symbols inM matched by insertion.

There are some interesting open problems related to LFCS. It would be interesting to
extend LFCS to the comparison of two incomplete sequences, similar to what has been
done for Scaffold Filling [15]. Moreover, it would be interesting to design more efficient
parameterized algorithms for LFCS, for example by considering the algebraic technique used
for the repetition-free longest common subsequence [6]. Another open problem is whether
LFCS is NP-hard on a constant size alphabet.

References

1 Said Sadique Adi, Marília D.V. Braga, Cristina G. Fernandes, Carlos Eduardo Ferreira, Fá-
bio Viduani Martinez, Marie-France Sagot, Marco A. Stefanes, Christian Tjandraatmadja,
and Yoshiko Wakabayashi. Repetition-free longest common subsequence. Discrete Appl.
Math., 158(12):1315–1324, 2010. doi:10.1016/j.dam.2009.04.023.

2 Paola Alimonti and Viggo Kann. Some apx-completeness results for cubic graphs. Theor.
Comput. Sci., 237(1-2):123–134, 2000. doi:10.1016/S0304-3975(98)00158-3.

3 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.
doi:10.1145/210332.210337.

4 Abdullah N. Arslan and Ömer Egecioglu. Algorithms for the constrained longest common
subsequence problems. Int. J. Found. Comput. Sci., 16(6):1099–1109, 2005. doi:10.1142/
S0129054105003674.

5 Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, Alberto Marchetti-
Spaccamela, and Marco Protasi. Complexity and Approximation: Combinatorial Optimiz-
ation Problems and Their Approximability Properties. Springer-Verlag, Heidelberg, 1999.
doi:10.1007/978-3-642-58412-1.

6 Guillaume Blin, Paola Bonizzoni, Riccardo Dondi, and Florian Sikora. On the parameter-
ized complexity of the repetition free longest common subsequence problem. Inf. Process.
Lett., 112(7):272–276, 2012. doi:10.1016/j.ipl.2011.12.009.

7 Paola Bonizzoni, Gianluca Della Vedova, Riccardo Dondi, Guillaume Fertin, Raffaella Rizzi,
and Stéphane Vialette. Exemplar longest common subsequence. IEEE/ACM Trans. Com-
put. Biol. Bioinform., 4(4):535–543, 2007. doi:10.1145/1322075.1322078.

http://dx.doi.org/10.1016/j.dam.2009.04.023
http://dx.doi.org/10.1016/S0304-3975(98)00158-3
http://dx.doi.org/10.1145/210332.210337
http://dx.doi.org/10.1142/S0129054105003674
http://dx.doi.org/10.1142/S0129054105003674
http://dx.doi.org/10.1007/978-3-642-58412-1
http://dx.doi.org/10.1016/j.ipl.2011.12.009
http://dx.doi.org/10.1145/1322075.1322078

M. Castelli, R. Dondi, G. Mauri, and I. Zoppis 14:13

8 Paola Bonizzoni, Gianluca Della Vedova, Riccardo Dondi, and Yuri Pirola. Variants of
constrained longest common subsequence. Inf. Process. Lett., 110(20):877–881, 2010. doi:
10.1016/j.ipl.2010.07.015.

9 Laurent Bulteau, Anna Paola Carrieri, and Riccardo Dondi. Fixed-parameter algorithms for
scaffold filling. Theor. Comput. Sci., 568:72–83, 2015. doi:10.1016/j.tcs.2014.12.005.

10 P.G. S. Chain and et al. Genomics. Genome project standards in a new era of sequencing.
Science, 326:236–237, 2009. doi:10.1126/SCIENCE.1180614.

11 Francis Y. L. Chin, Alfredo De Santis, Anna Lisa Ferrara, N. L. Ho, and S.K. Kim. A
simple algorithm for the constrained sequence problems. Inf. Process. Lett., 90(4):175–179,
2004. doi:10.1016/j.ipl.2004.02.008.

12 Carlos Eduardo Ferreira and Christian Tjandraatmadja. A branch-and-cut approach to
the repetition-free longest common subsequence problem. Electron. Notes Discrete Math.,
36:527–534, 2010. doi:10.1016/j.endm.2010.05.067.

13 Zvi Gotthilf, Danny Hermelin, and Moshe Lewenstein. Constrained LCS: hardness and ap-
proximation. In Paolo Ferragina and Gad M. Landau, editors, Proceedings of the 19th An-
nual Symposium on Combinatorial Pattern Matching (CPM 2008), volume 5029 of LNCS,
pages 255–262. Springer, 2008. doi:10.1007/978-3-540-69068-9_24.

14 Tao Jiang and Ming Li. On the approximation of shortest common supersequences and
longest common subsequences. SIAM J. Comput., 24(5):1122–1139, 1995. doi:10.1137/
S009753979223842X.

15 Nan Liu, Haitao Jiang, Daming Zhu, and Binhai Zhu. An improved approximation al-
gorithm for scaffold filling to maximize the common adjacencies. IEEE/ACM Trans. Com-
put. Biol. Bioinform., 10(4):905–913, 2013. doi:10.1109/TCBB.2013.100.

16 Adriana Muñoz, Chunfang Zheng, Qian Zhu, Victor A. Albert, Steve Rounsley, and David
Sankoff. Scaffold filling, contig fusion and comparative gene order inference. BMC Bioin-
formatics, 11:304, 2010. doi:10.1186/1471-2105-11-304.

17 Temple F. Smith and Michael S. Waterman. Identification of common molecular sub-
sequences. J. Mol. Biol., 147(1):195–197, 1981. doi:10.1016/0022-2836(81)90087-5.

18 Yin-Te Tsai. The constrained longest common subsequence problem. Inf. Process. Lett.,
88(4):173–176, 2003. doi:10.1016/j.ipl.2003.07.001.

19 Binhai Zhu. Genomic scaffold filling: A progress report. In Daming Zhu and Sergey
Bereg, editors, Proceedings of the 10th International Workshop on Frontiers in Al-
gorithmics (FAW 2016), volume 9711 of LNCS, pages 8–16. Springer, 2016. doi:10.1007/
978-3-319-39817-4_2.

CPM 2017

http://dx.doi.org/10.1016/j.ipl.2010.07.015
http://dx.doi.org/10.1016/j.ipl.2010.07.015
http://dx.doi.org/10.1016/j.tcs.2014.12.005
http://dx.doi.org/10.1126/SCIENCE.1180614
http://dx.doi.org/10.1016/j.ipl.2004.02.008
http://dx.doi.org/10.1016/j.endm.2010.05.067
http://dx.doi.org/10.1007/978-3-540-69068-9_24
http://dx.doi.org/10.1137/S009753979223842X
http://dx.doi.org/10.1137/S009753979223842X
http://dx.doi.org/10.1109/TCBB.2013.100
http://dx.doi.org/10.1186/1471-2105-11-304
http://dx.doi.org/10.1016/0022-2836(81)90087-5
http://dx.doi.org/10.1016/j.ipl.2003.07.001
http://dx.doi.org/10.1007/978-3-319-39817-4_2
http://dx.doi.org/10.1007/978-3-319-39817-4_2

Lempel-Ziv Compression in a Sliding Window
Philip Bille∗1, Patrick Hagge Cording†2, Johannes Fischer3, and
Inge Li Gørtz‡4

1 Technical University of Denmark, DTU Compute, Lyngby, Denmark
phbi@dtu.dk

2 Technical University of Denmark, DTU Compute, Lyngby, Denmark
phaco@dtu.dk

3 Technische Universität Dortmund, Department of Computer Science,
Dortmund, Germany
johannes.fischer@cs.tu-dortmund.de

4 Technical University of Denmark, DTU Compute, Lyngby, Denmark
inge@dtu.dk

Abstract
We present new algorithms for the sliding window Lempel-Ziv (LZ77) problem and the approx-
imate rightmost LZ77 parsing problem.

Our main result is a new and surprisingly simple algorithm that computes the sliding window
LZ77 parse in O(w) space and either O(n) expected time or O(n log logw + z log log σ) determ-
inistic time. Here, w is the window size, n is the size of the input string, z is the number of
phrases in the parse, and σ is the size of the alphabet. This matches the space and time bounds
of previous results while removing constant size restrictions on the alphabet size.

To achieve our result, we combine a simple modification and augmentation of the suffix tree
with periodicity properties of sliding windows. We also apply this new technique to obtain an
algorithm for the approximate rightmost LZ77 problem that uses O(n(log z+log logn)) time and
O(n) space and produces a (1 + ε)-approximation of the rightmost parsing (any constant ε > 0).
While this does not improve the best known time-space trade-offs for exact rightmost parsing,
our algorithm is significantly simpler and exposes a direct connection between sliding window
parsing and the approximate rightmost matching problem.

1998 ACM Subject Classification E.4 Coding and Information Theory, E.1 Data Structures,
F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Lempel-Ziv parsing, sliding window, rightmost matching

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.15

1 Introduction

The Lempel-Ziv parsing (LZ77) [36] of a string is a key component in data compression,
detecting regularities in strings, pattern matching, and string indexing. LZ77 is the basis
for several popular compression tools such as gzip and 7zip, and is shown to compress well
under certain measures of compressibility [21].

In general terms, given an input string S of length n, the LZ77 parsing divides S into
z substrings f1f2 . . . fz, called phrases, in a greedy left-to-right order. The ith phrase fi

∗ Supported by the Danish Research Council (DFF – 4005-00267, DFF – 1323-00178).
† Supported by the Danish Research Council (DFF – 4005-00267).
‡ Supported by the Danish Research Council (DFF – 4005-00267, DFF – 1323-00178).

© Philip Bille, Patrick Hagge Cording, Johannes Fischer, and Inge Li Gørtz;
licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 15; pp. 15:1–15:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2 Lempel-Ziv Compression in a Sliding Window

starting at position pi is either (a) the first occurrence of a character in S or (b) the longest
substring that has at least one occurrence starting to the left of pi. To compress S, we can
then replace each phrase fi of type (b) with a pair (ri, li) such that ri is the distance from
pi to the start of the previous occurrence, and li is the length of the previous occurrence.
(This is actually the LZ77-variant of Storer and Szymanski [33]; the original one [36] adds a
character to each phrase so that it outputs triples instead of tuples.)

Computing the LZ77 parse is a very well-studied problem. The simplest way to compute
the parse is to build an index for the input string, and scan the string left-to-right looking
for the longest prefix of the current suffix occurring to the left of the current position. Using
a suffix tree to index the string this yields O(n) time and space algorithm. Research on LZ77
parsing algorithms has since branched into practical and space-efficient computation [4, 12,
14, 16, 17, 19, 20, 22, 27, 30], parallel [31] and external computation [18], online parsing [28,
29, 32, 35], approximation of the parse [10], and algorithms that find the rightmost occurrence
of a phrase [1, 8].

Almost all of the existing algorithms maintain an index of the entire input string, whereas
almost all practical solutions only maintain a short window of length w, for some parameter
w, of the input string near the current position in the string. This produces a sliding window
LZ77 parse [2, 33] that has the property that a previous occurrence of a phrase starts no
longer than w characters away from the current position. This limits the number of potential
longest matches of a phrase to at most w and also reduces the number of bits needed to
encode the reference to fi. Our main result is a new technique for indexing a sliding window.
Using the technique we obtain an algorithm for LZ77 sliding window parsing that improves
the previous best known time and space bounds for integer alphabets (and matches the
known bounds for constant alphabets). The algorithm is surprisingly simple.

We then turn our heads to rightmost LZ77 parsing. The greedy LZ77 parse is optimal
in terms of the number of phrases [6]. However, if we use variable length encoding of the
phrases we may reduce the number of bits needed to encode each phrase. By choosing to
reference the rightmost occurrence for each phrase we minimize the number of bits needed
to encode the greedy LZ77 parse. Though several efficient algorithms for computing the
rightmost parse are known, most require highly non-trivial algorithmic techniques. As
an interesting application of our technique for sliding window LZ77 parsing, we obtain a
very simple efficient approximate rightmost parsing algorithm. Interestingly, this algorithm
exposes a direct connection between sliding window parsing and the approximate rightmost
matching problem.

In the remainder of this section we will formally state the problems, our results, and
discuss previous work.

1.1 Sliding Window Parsing
Given a parameter w, the sliding window LZ77 parse (SWLZ77) of a string S is the LZ77
parse with the added requirement that the previous occurrence of a phrase fi starts within
distance at most w from the start of fi. To limit memory consumption, the SWLZ77 parse
is used in most compression tools based on LZ77 in practice.

Fiala and Greene [9] and Larsson [24] show how to efficiently maintain the suffix tree of a
sliding window of size w. This immediately leads to an algorithm for computing the SWLZ77
parse in O(n) time and O(w) space. However, the algorithms are based on McCreight’s [25]
and Ukkonen’s [34] suffix algorithms, respectively, and thus assume that the size of the
alphabet is constant. (The same restriction on the alphabet size holds for the w-truncated
suffix tree by Na et al.[26].) Furthermore, the algorithms require non-trivial modifications of

P. Bille, P. H. Cording, J. Fischer, and I. L. Gørtz 15:3

the classic suffix tree algorithms and are thus quite complicated. In practice, a hash table is
used for strings in the dictionary, often sacrificing optimality for speed (see e.g. [23] for a
survey on this).

In this paper we show the following result.

I Theorem 1. Let S be a string of length n over an alphabet of size σ. Given a parameter
w, we can compute the sliding window Lempel-Ziv parse in
(i) O(w) space and O(n) expected time, or
(ii) O(w) space and O(nw sort(w, σ) + z log log σ) deterministic worst-case time.
Here, z is number of phrases in the parsing, and sort(w, σ) is the time for sorting w characters
from an alphabet of size σ.

Hence, compared to the previous bounds, Theorem 1(i) matches the previous space
bounds while achieving linear expected time and with no restrictions on the alphabet size. If
we require a deterministic bound, Theorem 1(ii) incurs a small overhead. Plugging in the
currently fastest deterministic sorting algorithm [15], which uses O(w log logw) time to sort
w characters from an arbitrary alphabet, the bound becomes O(n log logw+ z log log σ). We
note that the additive overhead of O(z loglog σ) is O(n) for most combinations of σ, n, and
z.

The main technical challenges in the result are restricting the search for a previous
occurrence to a dynamic window and supporting searches for self-referential phrases of length
> w in O(w) space. To achieve this, we present a simple modification and augmentation of
suffix trees, which we call w-sliding window trees, that supports linear time searching within
a window and show how to exploit periodicity properties of windows to compactly search
for long phrases in O(w) space. However, any text indexing data structure that supports
basic suffix tree navigation operation can replace the w-sliding window tree in our solution if
different time-space trade-offs are required.

1.2 Approximate Rightmost Parsing
Let r̂i denote the smallest possible choice of reference ri, i.e., r̂i is the distance to rightmost
substring matching pi that begins before pi in S. If ri = r̂i, i = 1, . . . , z the parsing is
rightmost and if r̂i ≤ ri ≤ c · r̂i for some c > 1 the parsing is c-rightmost. The rightmost
parsing problem is to compute the rightmost parsing, and the approximate rightmost parsing
problem is to compute a c-rightmost parsing for some c > 1.

Ferragina et al. [8] present an algorithm for the rightmost parsing problem with running
time O(n(1 + logσ

log logn)) and using O(n) space. Recently, this was improved to O(n(1 + logσ√
logn

)
time and O(n log σ) bits of space by Belazzougui and Puglisi [1]. Prior to these results,
Crochemore et al. [5] presented, to the best of our knowledge, the only approximate rightmost
parsing algorithm. Their algorithm runs in O(n logn) time and O(n) space and it finds the
rightmost equal-cost position (REP) for each phrase in the greedy LZ77 parse. The REP for
a phrase fi is some occurrence for which ri requires the same number of bits to encode as
r̂i. If r̂i is a power of 2 the algorithm finds an occurrence where ri ≤ 2r̂i − 1, i.e., roughly
speaking their algorithm is producing a 2-rightmost parsing.

All of the above solutions require several highly non-trivial components to achieve their
bounds. We show how our solution to the Lempel-Ziv sliding window problem immediately
leads to an efficient approximate rightmost parsing algorithm summarized in the following
theorem.

CPM 2017

15:4 Lempel-Ziv Compression in a Sliding Window

c

b
c

a
a

a

c
c

b
b

b

3,6

4,7 5,8 12

a

a
c

c

b

b

c

a

a

b

b

c
a

a
c
b

b

c

a
b

a

a
c

b

b

c
a

iw

T T 0

b b0

(a) (b)

…cbabcabcabcabca…

Figure 1 (a) The w-sliding window tree for window size w = 8. Text positions at the leaves are
relative to the end e of the previous sliding window, implying they must be incremented by e to get
absolute positions. (b) Parsing with w-sliding window trees T and T ′ for blocks b and b′.

I Theorem 2. Let S be a string of length n. For any ε > 0 we can compute a (1 + ε)-
rightmost Lempel-Ziv parsing in O(n log z + n log logn) time and O(n) space, where z is the
number of phrases in the parse.

While our result does not improve the best known trade-offs for rightmost parsing, the
algorithm is significantly simpler. It applies our new technique of combining w-sliding window
trees and periodicity properties and thereby exposes a direct connection between sliding
windows and approximate rightmost matching problems.

2 Lempel-Ziv in a Sliding Window

We now show Theorem 1. Throughout the paper, let S be a string of length n over an
alphabet of size σ. We partition S into blocks of size w and parse S from left to right. For
these blocks we store a special suffix tree, which we call a w-sliding window tree.

I Definition 3 (The w-sliding window tree). The w-sliding window tree of a block is the
compact trie of all length w strings starting in the block. Each leaf stores all starting positions
of the substring it represents. For each edge e in the w-sliding window trees we store the
minimum starting position, min(e), and the maximum starting position, max(e), stored in
all leaves below it. The w-sliding window tree at position i is the w-sliding window tree for
the block starting at position i.

See Figure 1(a) for an example of a w-sliding window tree. We have that the w-sliding
window uses O(w) space. Also, given the suffix tree of the string of length 2w starting at
position i, we can easily build w-sliding window tree starting at position i in O(w) time by
truncating all suffixes to length w.

While showing Theorem 1 in the following sections, we will also show the following Lemma
that we will need for our approximate rightmost matching algorithm. Given two indices i
and j in S, let lcp(i, j) denote the length of the longest common prefix of S[i, n] and S[j, n].

I Lemma 4. Given two w-sliding window trees at position x and x + w, respectively, we
can find ` = maxi−w≤j<i lcp(i, j) for any i ∈ [x + w, x + 2w) in O(`) time (assuming the
suffix-trees support constant-time top-down-traversals).

P. Bille, P. H. Cording, J. Fischer, and I. L. Gørtz 15:5

For simplicity, we first consider the case where the length of each phrase is at most w,
and then extend the result to handle arbitrary length phrases.

2.1 Bounded Phrase Length

We first show how to find longest matches if the length of each phrase is at most w. We
partition S into blocks of size w and parse S from left-to-right. We only maintain the last
two blocks in memory.

2.1.1 Parsing

We implement the sliding window parsing using the w-sliding window trees as follows. See
also Figure 1(b). Suppose we have parsed the first i− 1 characters of S and currently have
the w-sliding window trees T and T ′ for the last two blocks b and b′ stored. To compute
the phrase starting at position i, we traverse T and T ′ top-down according to the substring
starting at position i. In T , we compare i to max(e) each time we follow edge e. If max(e) is
within the window (if max(e) ≥ i − w) we continue the search and otherwise we stop the
search. If we reach a leaf we also stop. When the search stops, we output max(e) of the
previous edge e as the starting position of the longest match in T . In T ′ we compare with
min(e) in the same fashion. That is, we only continue the search if min(e) is smaller than
i. We output min(e) of the previous edge e as the starting position of the longest match in
T ′. We return the maximum of the longest matching path found in T and T ′ as the longest
matching substring within the window.

2.1.2 Correctness

We argue that the algorithm correctly finds a longest match. A longest match within the
window must start in one of the two blocks b or b′. Since we only continue the search in T as
long as max(e) is in the window, the match that we found starts at a position in the window.
Similarly for T ′.

2.2 Unbounded Phrase Length

We now consider the general case of unbounded phrase length and show how to extend the
solution from the previous section to handle this case by exploiting a periodicity property of
the sliding window [3].

Given a w-sliding window tree we now might reach a leaf, from where we need to continue
the matching further. If there is only one substring stored at the leaf we can simply continue
matching the corresponding substrings in S until the phrase ends. Unfortunately, we may
have multiple strings stored at a leaf and thus we cannot afford naively matching against
these.

We modify searching for longest match starting at position i as follows. We match in the
w-sliding window trees T and T ′ just as before. If we reach a leaf in T we pick the maximum
starting position x stored in the leaf (x = max(e) if e is the incoming edge) and continue
matching from position i+w and x+w until we get a mismatch. If we reach a leaf in T ′ we
pick the minimum starting position stored in the leaf (using min(e)) and continue matching
in the same fashion.

CPM 2017

15:6 Lempel-Ziv Compression in a Sliding Window

2.2.1 Correctness and Analysis
To show that the modification works correctly we will show the following. Let fi be a phrase
of length > w starting at position pi. If there are multiple strings in the w-sliding window
tree that start in the window S[pi − w, pi − 1] and match the first w characters of fi, then
all of these strings can be extended to longest matches with fi. In particular, since the
algorithm chooses one of these string to compare against (the maximum or minimum such
string) this implies that the algorithm is correct.

We need the following lemma.

I Lemma 5 (Breslauer and Galil [3], Lemma 3.1). Let P and S be strings such that S contains
at least three occurrences of P . Let t1 < t2 < · · · < th be the locations of all occurrences of P
in S and assume that ti+2 − ti ≤ |P |, for i = 1, . . . , h − 2 and h ≥ 3. Then, this sequence
forms an arithmetic progression with difference d = ti+1 − ti, for i = 1, . . . , h − 1, that is
equal to the period length of P .

Using Lemma 5 we show the following result.

I Lemma 6. Assume we reach a leaf in the w-sliding window tree T (or T ′) when matching
the phrase starting at pi, and that there are k ≥ 2 strings that are associated with the leaf
and start in the window S[pi − w, pi − 1]. Let t1 < · · · < tk be the starting positions of the
strings. Then lcp(pi, tj) = li for all j = 1, . . . , k.

Proof. The starting positions t1, . . . , tk correspond to starting positions of occurrences of
the w-length substring S[pi, pi + w − 1]. Since they all start in the window S[pi − w, pi − 1]
we have pi − w ≤ tj < pi for all j = 1, . . . , k. Therefore tj+2 − tj ≤ w for all 1 ≤ j ≤ k − 2
and also pi − tk−1 ≤ w, and it follows from Lemma 5 that the sequence t1, t2, . . . , tk, pi
forms an arithmetic progression, i.e., the substring S[pi, pi + w − 1] is periodic with period
length d = pi − tk. The suffix S[pi, n] starts with r ≥ 1 whole repetitions of the period
followed by possibly a prefix of the period of length r′ < d. Let li = rd+ r′. All the suffixes
S[t1, n], . . . S[tk, n] start with strictly more than r repetitions of the period. Therefore, they
all match with S[pi, n] up to position pi + li − 1. Thus, continuing matching from any of
these when we reach the leaf in T will give us the correct answer. The proof for the case
where we reach a leaf in T ′ is similar. J

In summary, this proves that the algorithm finds the longest match and thus correctly
computes the SWLZ77 parse.

2.3 Implementation and Analysis
The total space for the two w-sliding window trees stored at any time is O(w). Building
the w-sliding window trees requires building a suffix tree of size 2w. If the alphabet size is
polynomial (σ = nO(1)) we can build all dn/we suffix trees in total O(n) worst-case time [7].
If the alphabet size is larger we first hash to a polynomial sized alphabet and then build the
suffix trees. This takes O(n) expected time. Given the suffix tree for a 2w length substring we
construct the w-sliding window tree in O(w) time and use perfect hashing at each node [13]
to index the first characters of outgoing edges and thus enable linear time matching (building
the perfect hash tables takes expected O(w) time). This concludes the proof of Lemma 4.

In total we get O(n) expected time for constructing all w-sliding window trees, and O(n)
time for searching for all phrases. This sums to O(n) expected time as desired. This proves
Theorem 1(i).

P. Bille, P. H. Cording, J. Fischer, and I. L. Gørtz 15:7

To get deterministic bounds of Theorem 1(ii), we can instead build the suffix trees using
Fischer and Gawrychowski [11]. These build suffix trees in sorting time complexity and
support searches for a pattern of length m in O(m+ log log σ) time. We search for z phrases
of total length n, and hence in total we use O(nw sort(w, σ) + z log log σ) time. In summary,
this proves Theorem 1.

3 Approximate Rightmost Matching

We now show Theorem 2.

3.1 Algorithm
We assume that we have the leftmost LZ77 parse (defined analogously to the rightmost parse,
see beginning of Section 1.2) of the input string. If not we can easily compute it within the
bounds of Theorem 2. Our algorithm updates the references of the phrases in a left-to-right
order.

For levels i = 1, . . . , log(1+ε) n we build the w-sliding window trees for S[j(1 + ε)i, (j +
1)(1+ ε)i] for j = 0, . . . , n

(1+ε)i −1. That is, for a fixed i, we compute all the w-sliding window
trees of size (1 + ε)i spaced by (1 + ε)i characters (remember ε > 0 is an arbitrary constant).

I Definition 7 (Covering w-sliding window tree). Given a position k in S such that j(1+ ε)i ≤
k ≤ (j + 1)(1 + ε)i for some i and j, we say that the w-sliding window tree of the substring
S[j(1 + ε)i, (j + 1)(1 + ε)i] is covering k on level i. We denote this tree by Ti,k.

We maintain references to the w-sliding window trees such that given k and i we can find
the w-sliding window tree on level i covering k in constant time.

To update a reference of a phrase fl beginning at position pl to be the (1 + ε)-rightmost,
we search the w-sliding window trees Ti,pl−(1+ε)i and Ti,pl , i = 1, . . . , log(1+ε) n, for the
occurrence of fl closest to (but not after) pl. We then update the phrase fl. The search is
done as described in Lemma 4.

The order in which the w-sliding window trees are searched is a binary search over the
levels. If an occurrence is found at level i we continue the search on the smaller levels. If
not, we continue the search on the bigger levels.

We assumed that all w-sliding window trees were built as the first step of the algorithm,
but we can restrict the algorithm to only build the w-sliding window trees that are in fact
needed and then discard them again when the algorithm progresses to a position not covered
by it. In the proof of Theorem 2 we show that this improves the total time used to construct
the w-sliding window trees from O(n logn) to O(n log z) and the space usage to O(n).

3.2 Analysis
In this section we prove Theorem 2. We start by showing the approximation guarantees of
our algorithm and then we analyze its space and time complexity.

3.2.1 Approximation
Here we prove that our algorithm produces a (1 + ε)-rightmost parsing.

I Lemma 8. Let f1, . . . , fz = (r1, l1), . . . , (rz, lz) be the parsing produced by our algorithm.
For k = 1, . . . , z we have that rk ≤ (1 + ε)r̂k, i.e., our algorithm produces a (1 + ε)-rightmost
parsing.

CPM 2017

15:8 Lempel-Ziv Compression in a Sliding Window

Level log1+✏ nLevel log1+✏ n

Level log1+✏ n � log1+✏ zLevel log1+✏ n � log1+✏ z

Level 1Level 1

Figure 2 Suppose the hierarchy of w-sliding window trees is represented by a (1 + ε)-ary tree
as shown in this figure. Consider the case where all phrases are exactly of size n

z
. In this case

all w-sliding window trees of size (1 + ε)log1+ε n−log1+ε z = n
z
(represented by the nodes on level

log1+ε n− log1+ε z) have to be built. Furthermore, all trees represented by ancestor nodes (in the
shaded part of the tree) are also built. The total time to do this is O(n log z). Now suppose that all
w-sliding window trees built on the levels from 1 to log1+ε n− log1+ε z − 1 form disjoint paths in
the tree as shown in the figure. We then have to build each tree represented by each node, but the
sizes of these are exponentially decreasing as the levels decrease, and the total work therefore sums
to O(n).

Proof. Consider a phrase fk starting at position pk. Suppose the search for an occurrence of
fk terminates on level i. This means that there is an occurrence in Ti,pk , but not in Ti−1,pk .
Since the algorithm disregards matches starting before pk − (1 + ε)i we therefore have that
(1 + ε)i−1 < r̂k ≤ rk ≤ (1 + ε)i from which it follows that rk ≤ (1 + ε)r̂k. J

3.2.2 Space
The space used by our algorithm is dominated by the w-sliding window trees we construct.
Once we are done using a w-sliding window tree we can discard it. When processing fl we
only need the w-sliding window trees covering pl and pl − (1 + ε)i for every level i. So at
any point in time the total size of the maintained w-sliding window trees is bounded by∑log1+ε n

i=1 O((1 + ε)i) = O(n), hence the space usage by our algorithm is O(n).

3.2.3 Time
First we analyze the time required for constructing the w-sliding window trees. Recall that a
suffix tree is only constructed if we actually need to access it. For each phrase beginning we
may have to access log log1+ε n w-sliding window trees, however some of these may be reused.
Our algorithm parses the string left to right, so if a w-sliding window tree is covering both
pl and pl+1 we only need to construct it once since we process fl+1 immediately after fl.

In the worst case, we may be required to build all w-sliding window trees on level
log1+ε n− log1+ε z, meaning that all possible w-sliding window trees on level 1 + log1+ε n−
log1+ε z to log1+ε n will also have to be built. This requires O(n log z) time since the total
size of the w-sliding window trees on any level is O(n) and the number of levels is log1+ε z.
In the worst case the w-sliding window trees on the remaining levels are not subject to reuse.
On level log1+ε n − log1+ε z the total size of the w-sliding window trees is O(n). On the
previous level we also need to build at most z w-sliding window trees but the total size of
these will be O(n/(1 + ε)). Therefore the total size of the w-sliding window trees on the

P. Bille, P. H. Cording, J. Fischer, and I. L. Gørtz 15:9

lower levels is at most
∑log1+ε n−log1+ε z

i=1 n/(1 + ε)i = O(n). The total time for building the
the w-sliding window trees is thus O(n log z + n) = O(n log z) time. See also Figure 2.

We now look at the time it takes to search the w-sliding window trees. Consider phrase
fl and assume that we have all the w-sliding window trees covering pl. We binary search for
the w-sliding window tree having an occurrence of fl as close to pl as possible. Since there
are log1+ε n levels this takes O(|fl| log logn) time, resulting in a total of

∑z
i=1 |fi| log logn =

O(n log logn) time for this step. In total our algorithm uses O(n(log z + log logn)) time.
This concludes the proof of Theorem 2.

References
1 Djamal Belazzougui and Simon J. Puglisi. Range predecessor and Lempel-Ziv parsing.

In Robert Krauthgamer, editor, Proceedings of the 27th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2016), pages 2053–2071. SIAM, 2016. doi:10.1137/1.
9781611974331.ch143.

2 Timothy C. Bell. Better OPM/L text compression. IEEE Trans. Commun., 34(12):1176–
1182, 1986. doi:10.1109/TCOM.1986.1096485.

3 Dany Breslauer and Zvi Galil. Real-time streaming string-matching. ACM Trans. Al-
gorithms, 10(4):22:1–22:12, 2014. doi:10.1145/2635814.

4 Maxime Crochemore, Lucian Ilie, and William F. Smyth. A simple algorithm for comput-
ing the Lempel Ziv factorization. In James A. Storer and Michael W. Marcellin, editors,
Proceedings of the 2008 Data Compression Conference (DCC 2008), pages 482–488. IEEE
Computer Society, 2008. doi:10.1109/DCC.2008.36.

5 Maxime Crochemore, Alessio Langiu, and Filippo Mignosi. The rightmost equal-cost po-
sition problem. In Ali Bilgin, Michael W. Marcellin, Joan Serra-Sagristà, and James A.
Storer, editors, Proceedings of the 2013 Data Compression Conference (DCC 2013), pages
421–430. IEEE, 2013. doi:10.1109/DCC.2013.50.

6 Maxime Crochemore, Alessio Langiu, and Filippo Mignosi. Note on the greedy parsing
optimality for dictionary-based text compression. Theor. Comput. Sci., 525:55–59, 2014.
doi:10.1016/j.tcs.2014.01.013.

7 Martin Farach-Colton, Paolo Ferragina, and S. Muthukrishnan. On the sorting-complexity
of suffix tree construction. J. ACM, 47(6):987–1011, 2000. doi:10.1145/355541.355547.

8 Paolo Ferragina, Igor Nitto, and Rossano Venturini. On the bit-complexity of Lempel-Ziv
compression. SIAM J. Comput., 42(4):1521–1541, 2013. doi:10.1137/120869511.

9 Edward R. Fiala and Daniel H. Greene. Data compression with finite windows. Commun.
ACM, 32(4):490–505, 1989. doi:10.1145/63334.63341.

10 Johannes Fischer, Travis Gagie, Paweł Gawrychowski, and Tomasz Kociumaka. Approxim-
ating LZ77 via small-space multiple-pattern matching. In Nikhil Bansal and Irene Finocchi,
editors, Proc. of the 23rd Annual European Symposium on Algorithms (ESA 2015), volume
9294 of LNCS, pages 533–544. Springer, 2015. doi:10.1007/978-3-662-48350-3_45.

11 Johannes Fischer and Paweł Gawrychowski. Alphabet-dependent string searching with
wexponential search trees. In Ferdinando Cicalese, Ely Porat, and Ugo Vaccaro, editors,
Proc. of the 26th Annual Symp. on Combinatorial Pattern Matching (CPM 2015), volume
9133 of LNCS, pages 160–171. Springer, 2015. doi:10.1007/978-3-319-19929-0_14.

12 Johannes Fischer, Tomohiro I, and Dominik Köppl. Lempel-Ziv computation in small
space (LZ-CISS). In Ferdinando Cicalese, Ely Porat, and Ugo Vaccaro, editors, Proc. of
the 26th Annual Symposium on Combinatorial Pattern Matching (CPM 2015), volume 9133
of LNCS, pages 172–184. Springer, 2015. doi:10.1007/978-3-319-19929-0_15.

13 Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with O(1)
worst case access time. J. ACM, 31(3):538–544, 1984. doi:10.1145/828.1884.

CPM 2017

http://dx.doi.org/10.1137/1.9781611974331.ch143
http://dx.doi.org/10.1137/1.9781611974331.ch143
http://dx.doi.org/10.1109/TCOM.1986.1096485
http://dx.doi.org/10.1145/2635814
http://dx.doi.org/10.1109/DCC.2008.36
http://dx.doi.org/10.1109/DCC.2013.50
http://dx.doi.org/10.1016/j.tcs.2014.01.013
http://dx.doi.org/10.1145/355541.355547
http://dx.doi.org/10.1137/120869511
http://dx.doi.org/10.1145/63334.63341
http://dx.doi.org/10.1007/978-3-662-48350-3_45
http://dx.doi.org/10.1007/978-3-319-19929-0_14
http://dx.doi.org/10.1007/978-3-319-19929-0_15
http://dx.doi.org/10.1145/828.1884

15:10 Lempel-Ziv Compression in a Sliding Window

14 Keisuke Goto and Hideo Bannai. Space efficient linear time Lempel-Ziv factorization for
small alphabets. In Ali Bilgin, Michael W. Marcellin, Joan Serra-Sagristà, and James A.
Storer, editors, Proceedings of the 2014 Data Compression Conference (DCC 2014), pages
163–172. IEEE, 2014. doi:10.1109/DCC.2014.62.

15 Yijie Han. Deterministic sorting in O(n log logn) time and linear space. In John H. Reif,
editor, Proceedings of the 34th Annual ACM Symposium on Theory of Computing (STOC
2002), pages 602–608. ACM, 2002. doi:10.1145/509907.509993.

16 Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. Lightweight Lempel-Ziv parsing.
In Vincenzo Bonifaci, Camil Demetrescu, and Alberto Marchetti-Spaccamela, editors, Proc.
of the 12th International Symposium on Experimental Algorithms (SEA 2013), volume 7933
of LNCS, pages 139–150. Springer, 2013. doi:10.1007/978-3-642-38527-8_14.

17 Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. Linear time Lempel-Ziv factor-
ization: Simple, fast, small. In Johannes Fischer and Peter Sanders, editors, Proceedings
of the 24th Annual Symposium on Combinatorial Pattern Matching (CPM 2013), volume
7922 of LNCS, pages 189–200. Springer, 2013. doi:10.1007/978-3-642-38905-4_19.

18 Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. Lempel-Ziv parsing in external
memory. In Ali Bilgin, Michael W. Marcellin, Joan Serra-Sagristà, and James A. Storer,
editors, Proceedings of the 2014 Data Compression Conference (DCC 2014), pages 153–162.
IEEE, 2014. doi:10.1109/DCC.2014.78.

19 Dominik Kempa and Simon J. Puglisi. Lempel-Ziv factorization: Simple, fast, practical.
In Peter Sanders and Norbert Zeh, editors, Proceedings of the 15th Meeting on Algorithm
Engineering and Experiments (ALENEX 2013), pages 103–112. SIAM, 2013. doi:10.1137/
1.9781611972931.9.

20 Dominik Köppl and Kunihiko Sadakane. Lempel-Ziv computation in compressed space
(LZ-CICS). In Ali Bilgin, Michael W. Marcellin, Joan Serra-Sagristà, and James A. Storer,
editors, Proceedings of the 2016 Data Compression Conference (DCC 2016), pages 3–12.
IEEE, 2016. doi:10.1109/DCC.2016.38.

21 S. Rao Kosaraju and Giovanni Manzini. Compression of low entropy strings with
Lempel-Ziv algorithms. SIAM J. Comput., 29(3):893–911, 1999. doi:10.1137/
S0097539797331105.

22 Dmitry Kosolobov. Faster lightweight Lempel-Ziv parsing. In Giuseppe F. Italiano, Gio-
vanni Pighizzini, and Donald Sannella, editors, Proceedings of the 40th International Sym-
posium on Mathematical Foundations of Computer Science (MFCS 2015), volume 9235 of
LNCS, pages 432–444. Springer, 2015. doi:10.1007/978-3-662-48054-0_36.

23 Alessio Langiu. On parsing optimality for dictionary-based text compression – the Zip case.
J. Discrete Algorithms, 20:65–70, 2013. doi:10.1016/j.jda.2013.04.001.

24 N. Jesper Larsson. Extended application of suffix trees to data compression. In James A.
Storer and Martin Cohn, editors, Proceedings of the 1996 Data Compression Conference
(DCC 1996), pages 190–199. IEEE Computer Society, 1996. doi:10.1109/DCC.1996.
488324.

25 Edward M. McCreight. A space-economical suffix tree construction algorithm. J. ACM,
23(2):262–272, 1976. doi:10.1145/321941.321946.

26 Joong Chae Na, Alberto Apostolico, Costas S. Iliopoulos, and Kunsoo Park. Truncated
suffix trees and their application to data compression. Theor. Comput. Sci., 1-3(304):87–
101, 2003. doi:10.1016/S0304-3975(03)00053-7.

27 Enno Ohlebusch and Simon Gog. Lempel-Ziv factorization revisited. In Raffaele Giancarlo
and Giovanni Manzini, editors, Proceedings of the 22nd Annual Symposium on Combinat-
orial Pattern Matching (CPM 2011), volume 6661 of LNCS, pages 15–26. Springer, 2011.
doi:10.1007/978-3-642-21458-5_4.

http://dx.doi.org/10.1109/DCC.2014.62
http://dx.doi.org/10.1145/509907.509993
http://dx.doi.org/10.1007/978-3-642-38527-8_14
http://dx.doi.org/10.1007/978-3-642-38905-4_19
http://dx.doi.org/10.1109/DCC.2014.78
http://dx.doi.org/10.1137/1.9781611972931.9
http://dx.doi.org/10.1137/1.9781611972931.9
http://dx.doi.org/10.1109/DCC.2016.38
http://dx.doi.org/10.1137/S0097539797331105
http://dx.doi.org/10.1137/S0097539797331105
http://dx.doi.org/10.1007/978-3-662-48054-0_36
http://dx.doi.org/10.1016/j.jda.2013.04.001
http://dx.doi.org/10.1109/DCC.1996.488324
http://dx.doi.org/10.1109/DCC.1996.488324
http://dx.doi.org/10.1145/321941.321946
http://dx.doi.org/10.1016/S0304-3975(03)00053-7
http://dx.doi.org/10.1007/978-3-642-21458-5_4

P. Bille, P. H. Cording, J. Fischer, and I. L. Gørtz 15:11

28 Daisuke Okanohara and Kunihiko Sadakane. An online algorithm for finding the longest
previous factors. In Dan Halperin and Kurt Mehlhorn, editors, Proceedings of the 16th
Annual European Symposium on Algorithms (ESA 2008), volume 5193 of LNCS, pages
696–707. Springer, 2008. doi:10.1007/978-3-540-87744-8_58.

29 Alberto Policriti and Nicola Prezza. Fast online Lempel-Ziv factorization in compressed
space. In Costas S. Iliopoulos, Simon J. Puglisi, and Emine Yilmaz, editors, Proceed-
ings of the 22nd International Symposium on String Processing and Information Re-
trieval (SPIRE 2015), volume 9309 of LNCS, pages 13–20. Springer, 2015. doi:10.1007/
978-3-319-23826-5_2.

30 Alberto Policriti and Nicola Prezza. Computing LZ77 in run-compressed space. In Ali
Bilgin, Michael W. Marcellin, Joan Serra-Sagristà, and James A. Storer, editors, Proceed-
ings of the 2016 Data Compression Conference (DCC 2016), pages 23–32. IEEE, 2016.
doi:10.1109/DCC.2016.30.

31 Julian Shun and Fuyao Zhao. Practical parallel Lempel-Ziv factorization. In Ali Bilgin,
Michael W. Marcellin, Joan Serra-Sagristà, and James A. Storer, editors, Proceedings of
the 2013 Data Compression Conference (DCC 2013), pages 123–132. IEEE, 2013. doi:
10.1109/DCC.2013.20.

32 Tatiana Starikovskaya. Computing Lempel-Ziv factorization online. In Branislav Rovan,
Vladimiro Sassone, and Peter Widmayer, editors, Proceedings of the 37th International
Symposium on Mathematical Foundations of Computer Science (MFCS 2012), volume 7464
of LNCS, pages 789–799. Springer, 2012. doi:10.1007/978-3-642-32589-2_68.

33 James A. Storer and Thomas G. Szymanski. Data compression via textural substitution.
J. ACM, 29(4):928–951, 1982. doi:10.1145/322344.322346.

34 Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.
doi:10.1007/BF01206331.

35 Jun-ichi Yamamoto, Tomohiro I, Hideo Bannai, Shunsuke Inenaga, and Masayuki Takeda.
Faster compact on-line Lempel-Ziv factorization. In Ernst W. Mayr and Natacha Por-
tier, editors, Proceedings of the 31st International Symposium on Theoretical Aspects of
Computer Science (STACS 2014), volume 25 of LIPIcs, pages 675–686. Schloss Dagstuhl –
Leibniz-Zentrum fuer Informatik, 2014. doi:10.4230/LIPIcs.STACS.2014.675.

36 Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression.
IEEE Trans. Inf. Theory, 23(3):337–343, 1977. doi:10.1109/TIT.1977.1055714.

CPM 2017

http://dx.doi.org/10.1007/978-3-540-87744-8_58
http://dx.doi.org/10.1007/978-3-319-23826-5_2
http://dx.doi.org/10.1007/978-3-319-23826-5_2
http://dx.doi.org/10.1109/DCC.2016.30
http://dx.doi.org/10.1109/DCC.2013.20
http://dx.doi.org/10.1109/DCC.2013.20
http://dx.doi.org/10.1007/978-3-642-32589-2_68
http://dx.doi.org/10.1145/322344.322346
http://dx.doi.org/10.1007/BF01206331
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.675
http://dx.doi.org/10.1109/TIT.1977.1055714

Time-Space Trade-Offs for Lempel-Ziv
Compressed Indexing
Philip Bille∗1, Mikko Berggren Ettienne†2, Inge Li Gørtz‡3, and
Hjalte Wedel Vildhøj4

1 Technical University of Denmark, DTU Compute, Lyngby, Denmark
phbi@dtu.dk

2 Technical University of Denmark, DTU Compute, Lyngby, Denmark
miet@dtu.dk

3 Technical University of Denmark, DTU Compute, Lyngby, Denmark
inge@dtu.dk

4 Technical University of Denmark, DTU Compute, Lyngby, Denmark
hwvi@dtu.dk

Abstract
Given a string S, the compressed indexing problem is to preprocess S into a compressed rep-
resentation that supports fast substring queries. The goal is to use little space relative to the
compressed size of S while supporting fast queries. We present a compressed index based on the
Lempel-Ziv 1977 compression scheme. Let n, and z denote the size of the input string, and the
compressed LZ77 string, respectively. We obtain the following time-space trade-offs. Given a
pattern string P of length m, we can solve the problem in
(i) O(m+ occ lg lgn) time using O(z lg(n/z) lg lg z) space, or
(ii) O(m(1 + lgε z

lg(n/z)) + occ(lg lgn+ lgε z)) time using O(z lg(n/z)) space, for any 0 < ε < 1
In particular, (i) improves the leading term in the query time of the previous best solution from
O(m lgm) to O(m) at the cost of increasing the space by a factor lg lg z. Alternatively, (ii)
matches the previous best space bound, but has a leading term in the query time of O(m(1 +

lgε z
lg(n/z))). However, for any polynomial compression ratio, i.e., z = O(n1−δ), for constant δ > 0,
this becomes O(m). Our index also supports extraction of any substring of length ` in O(` +
lg(n/z)) time. Technically, our results are obtained by novel extensions and combinations of
existing data structures of independent interest, including a new batched variant of weak prefix
search.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, E.4 Coding
and Information Theory, E.1 Data Structures

Keywords and phrases compressed indexing, pattern matching, LZ77, prefix search

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.16

1 Introduction

Given a string S, the compressed indexing problem is to preprocess S into a compressed
representation that supports fast substring queries, that is, given a string P , report all
occurrences of substrings in S that match P . Here the compressed representation can be any

∗ Supported by the Danish Research Council (DFF – 4005-00267, DFF – 1323-00178).
† Supported by the Danish Research Council (DFF – 4005-00267).
‡ Supported by the Danish Research Council (DFF – 4005-00267, DFF – 1323-00178).

© Philip Bille, Mikko Berggren Ettienne, Inge Li Gørtz, and Hjalte Wedel Vildhøj;
licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 16; pp. 16:1–16:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.16
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

16:2 Time-Space Trade-Offs for Lempel-Ziv Compressed Indexing

compression scheme or measure (kth order entropy, smallest grammar, Lempel-Ziv, etc.). The
goal is to use little space relative to the compressed size of S while supporting fast queries.
Compressed indexing is a key computational primitive for querying massive data sets and
the area has received significant attention over the last decades with numerous theoretical
and practical solutions, see e.g. [25, 12, 29, 23, 13, 14, 21, 22, 15, 34, 30, 9, 27, 18, 24, 4] and
the surveys [34, 32, 33, 19].

The Lempel-Ziv 1977 compression scheme (LZ77) [37] is a classic compression scheme
based on replacing repetitions by references in a greedy left-to-right order. Numerous variants
of LZ77 have been developed and several widely used implementations are available (such as
gzip [20]). Recently, LZ77 has been shown to be particularly effective at handling highly-
repetitive data sets [30, 32, 27, 8, 3] and LZ77 compression is always at least as powerful as
any grammar representation [36, 7].

In this paper, we consider compressed indexing based on LZ77 compression. Relatively
few results are known for this version of the problem. Let n, z, and m denote the size of the
input string, the compressed LZ77 string, and the pattern string, respectively. Kärkkäinen
and Ukkonen introduced the problem in 1996 [25] and gave an initial solution that required
read-only access to the uncompressed text. Interestingly, this work is among the first results
in compressed indexing [34]. More recently, Gagie et al. [17, 18] revisited the problem and
gave a solution using space O(z lg(n/z)) and query time O(m lgm+ occ lg lgn), where occ
is the number of occurrences of P in S. Note that these bounds assume a constant sized
alphabet.

1.1 Our Results
We show the following main result.

I Theorem 1. Given a string S of length n from a constant sized alphabet compressed using
LZ77 into a string of length z we can build a compressed-index supporting substring queries
in:
(i) O(m+ occ lg lgn) time using O(z lg(n/z) lg lg z) space, or
(ii) O(m(1 + lgε z

lg(n/z)) + occ(lg lgn+ lgε z)) time using O(z lg(n/z)) space, for any 0 < ε < 1

Compared to the previous bounds Theorem 1 obtains new interesting trade-offs. In
particular, Theorem 1 (i) improves the leading term in the query time of the previous best
solution from O(m lgm) to O(m) at the cost of increasing the space by only a factor lg lg z.
Alternatively, Theorem 1 (ii) matches the previous best space bound, but has a leading term
in the query time of O(m(1 + lgε z

lg(n/z))). However, for any polynomial compression ratio, i.e.,
z = O(n1−δ), for constant δ > 0, this becomes O(m).

Gagie et al. [18] also showed how to extract an arbitrary substring of S of length ` in time
O(`+ lgn). We show how to support the same extraction operation and slightly improve the
time to O(`+ lg(n/z)).

Technically, our results are obtained by new variants and extensions of existing data
structures in novel combinations. In particular, we consider a batched variant of the weak
prefix search problem and give the first non-trivial solution to it. We also generalize the
well-known bidirectional compact trie search technique [28] to reduce the number of queries
at the cost of increasing space. Finally, we show how to combine this efficiently with range
reporting and fast random-access in a balanced grammar leading to the result.

As mentioned all of the above bounds hold for a constant size alphabet. However,
Theorem 1 is an instance of full time-space trade-off that also supports general alphabets.
We discuss the details in Section 8 and Appendix 8.1.

P. Bille, M. B. Ettienne, I. L. Gørtz, and H.W. Vildhøj 16:3

2 Preliminaries

We assume a standard unit-cost RAM model with word size w = Θ(lgn) and that the input
is from an integer alphabet Σ = {1, 2, . . . , nO(1)} and measure space complexity in words
unless otherwise specified.

A string S of length n = |S| is a sequence S[1] . . . S[n] of n characters drawn from Σ.
The string S[i] . . . S[j] denoted S[i, j] is called a substring of S. ε is the empty string
and S[i, i] = S[i] while S[i, j] = ε when i > j. The substrings S[1, i] and S[j, n] are the
ith prefix and the jth suffix of S respectively. The reverse of the string S is denoted
rev(S) = S[n]S[n− 1] . . . S[1].

Let D be a set of k strings and let TD be the compact trie storing all the strings of D.
str(v) denotes the prefix corresponding to the vertex v. The depth of vertex v is the number
of edges on the path from v to the root. We assume each string in D is terminated by a
special character $ /∈ Σ such that each string in D corresponds to a leaf. The children of
each vertex are sorted from left to right in increasing lexicographical order, and therefore the
left to right order of the leaves corresponds to the lexicographical order of the strings in D.
Let rank(s) denote the rank of the string s ∈ D in this order. The skip interval of a vertex
v ∈ TD with parent u is (|str(u)|, |str(v)|] denoted skip(v) and skip(v) = ∅ if v is the root.
The locus of a string s in TD, denoted locus(s), is the minimum depth vertex v such that s
is a prefix of str(v). If there is no such vertex, then locus(s) = ⊥. In order to reduce the
space used by TD we only store the first character of every edge and in every vertex v we
store |str(v)| (This variation is also known as a PATRICIA tree [31]). We navigate TD by
storing a dictionary in every internal vertex mapping the first character of the label of an
edge to the respective child. The size of TD is O(k).

A Karp-Rabin fingerprinting function [26] is a randomized hash function for strings. We
use a variation of the original definition appearing in Porat and Porat [35]. The fingerprint
for a string S of length n is defined as: φ(S) =

∑n
i=1 S[i] ·ri−1 mod p, where p is a prime and

r is a random integer in Zp (the field of integers modulo p). Storing the values n, rn mod p
and r−n mod p along with a fingerprint allows for efficient composition an subtraction of
fingerprints. Using this we can compute and store the fingerprints of each of the prefixes
of a string S of length n in O(n) time and space such that we afterwards can compute
the fingerprint of any substring S[i, j] in constant time. We say that the fingerprints of
the strings x and y collide when φ(x) = φ(y) and x 6= y. A fingerprinting function φ is
collision-free for a set of strings if there are no fingerprint collisions between any of the
strings. Porat and Porat [35] show that if x and y are different strings of length at most n
and p = Θ(n2+α) for some α > 0, then the probability that φ(x) = φ(y) is less than 1/n1+α.

The LZ77 parse of a string S of length n is a sequence Z of z subsequent substrings of S
called phrases such that S = Z[1]Z[2], . . . , Z[z]. Z is constructed in a left to right pass of
S: Assume that we have found the sequence Z[1, i] producing the string S[1, j − 1] and let
S[j, j′ − 1] be the longest prefix of S[j, n− 1] that is also a substring of S[1, j′ − 2]. Then
Z[i + 1] = S[j, j′]. The occurrence of S[j, j′ − 1] in S[1, j′ − 2] is called the source of the
phrase Z[i]. Thus a phrase is composed by the contents of its possibly empty source and
a trailing character which we call the phrase border and is typically represented as a triple
Z[i] = (start, len, c) where start is the starting position of the source, len is the length of
the source and c ∈ Σ is the border. For a phrase Z[i] = S[j, j′] we denote the position of
its border by border(Z[i]) = j′ and its source by source(Z[i]) = S[j, j′ − 1]. For example,
the string abcabcabc . . . abc of length n has the LZ77 parse |a|b|c|abcabcabc . . . abc| of length
4 which is represented as Z = (0, 0, a)(0, 0, b)(0, 0, c)(0, n− 4, c).

CPM 2017

16:4 Time-Space Trade-Offs for Lempel-Ziv Compressed Indexing

3 Prefix Search

The prefix search problem is to preprocess a set of strings such that later, we can find all
the strings in the set that are prefixed by some query string. Belazzougui et al. [2] consider
the weak prefix search problem, a relaxation of the prefix search problem where we are only
requested to output the ranks (in lexicographic order) of the strings that are prefixed by the
query pattern and we only require no false negatives. Thus we may answer arbitrarily when
no strings are prefixed by the query pattern.

I Lemma 2 (Belazzougui et al. [2], appendix H.3). Given a set D of k strings with average
length l, from an alphabet of size σ, we can build a data structure using O(k(lg l + lg lg σ))
bits of space supporting weak prefix search for a pattern P of length m in O(m lg σ/w+ lgm)
time where w is the word size.

The term m lg σ/w stems from preprocessing P with an incremental hash function such that
the hash of any substring P [i, j] can be obtained in constant time afterwards. Therefore
we can do weak prefix search for h substrings of P in O(m lg σ/w + h lgm) time. We now
describe a data structure that builds on the ideas from Lemma 2 but obtains the following:

I Lemma 3. Given a set D of k strings, we can build a data structure taking O(k) space
supporting weak prefix search for h substrings of a pattern P of length m in time O(m +
h(m/x+ lg x)) where x is a positive integer.

If we know h when building our data structure, we set x to h and obtain a query time of
O(m+ h lg h) with Lemma 3.

Before describing our data structure we need the following definition: The 2-fattest
number in a nonempty interval of strictly positive integers is the number in the interval
whose binary representation has the highest number of trailing zeroes.

3.1 Data Structure
Let TD be the compact trie representing the set D of k strings and let x be a positive integer.
Denote by fat(v) the 2-fattest number in the skip interval of a vertex v ∈ TD. The fat prefix
of v is the length fat(v) prefix of str(v). Denote by Dfat the set of fat prefixes induced by the
vertices of TD. The x-prefix of v is the shortest prefix of str(v) whose length is a multiple
of x and is in the interval skip(v). If v’s skip interval does not span a multiple of x, then v
has no x-prefix. Let Dx be the set of x-prefixes induced by the vertices of TD. The data
structure is the compact trie TD augmented with:

A fingerprinting function φ.
A dictionary G mapping the fingerprints of the strings in Dfat to their associated vertex.
A dictionary H mapping the fingerprints of the strings in Dx to their associated vertex.
For every vertex v ∈ TD we store the rank in D of the string represented by the leftmost
and rightmost leaf in the subtree of v, denoted lv and rv respectively.

The data structure is similar to the one by Belazzougui et al. [2] except for the dictionary H,
which we use in the first step of our search. There are at most k strings in each of Dfat and
Dx thus the total space of the data structure is O(k).

Let i be the start of the skip interval of some vertex v ∈ TD and define the pseudo-fat
numbers of v to be the set of 2-fattest numbers in the intervals [i, p] where i ≤ p < fat(v).
We require that the fingerprinting function φ is collision-free for the strings in Dfat, the
strings in Dx and all the length l-prefixes of the strings in D where l is a pseudo-fat number
in the skip interval of some vertex v ∈ TD.

P. Bille, M. B. Ettienne, I. L. Gørtz, and H.W. Vildhøj 16:5

Observe that the range of strings in D that are prefixed by some pattern P of length m is
exactly [lv, rv] where v = locus(P). Answering a weak prefix search query for P is comprised
by two independent steps. First step is to find a vertex v ∈ TD such that str(v) is a prefix of
P and m− |str(v)| ≤ x. We say that v is in x-range of P . Next step is to apply a slightly
modified version of the search technique from Belazzougui et al. [2] to find the exit vertex for
P , that is, the deepest vertex v′ ∈ TD such that str(v′) is a prefix of P . Having found the
exit vertex we can find the locus in constant time as it is either the exit vertex itself or one
of its children.

Finding an x-range Vertex. We now describe how to find a vertex in x-range of P . If
m < x we simply report that the root of TD is in x-range of P . Otherwise, let v be the root
of TD and for i = 1, 2, . . . bm/xc we check if ix > |str(v)| and φ(P [1, ix]) is in H in which
case we update v to be the corresponding vertex. Finally, if |str(v)| ≥ m we report that v is
locus(P) and otherwise we report that v is in x-range of P . In the former case, we report
[lv, rv] as the range of strings in D prefixed by P . In the latter case we pass on v to the next
step of the algorithm.

We now show that the algorithm is correct when P prefixes a string in D. It is easy to
verify that the x-prefix of v prefixes P at all time during the execution of the algorithm.
Assume that |str(v)| ≥ m by the end of the algorithm. We will show that in that case
v = locus(P), i.e., that v is the highest node prefixed by P . Since P prefixes a string in
D, the x-prefix of v prefixes P , and |str(v)| ≥ m, then P prefixes v. Since the x-prefix of v
prefixes P , P does not prefix the parent of v and thus v is the highest node prefixed by P .

Assume now that |str(v)| < m. We will show that v is in x-range of P . Since P prefixes a
string in D and the x-prefix of v prefixes P , then str(v) prefixes P . Let P [1, ix] be the x-prefix
of v. Since v is returned, either φ(P [1, jx]) 6∈ H or jx ≤ |str(v)| for all i < j ≤ bm/xc. If
φ(P [1, jx]) 6∈ H then P [1, jx] is not a x-prefix of any node in TD. Since P prefixes a string
in D this implies that jx is in the skip interval of v, i.e., jx ≤ |str(v)|. This means that
jx ≤ |str(v)| for all i < j ≤ bm/xc. Therefore bm/xcx ≤ |str(v)| < m and it follows that
m− |str(v)| < x. We already proved that str(v) prefixes P and therefore v is in x-range of P .

In case P does not prefix any string in D we either report that v = locus(P) even though
locus(P) = ⊥ or report that v is in x-range of P because m− |str(v)| ≤ x even though str(v)
is not a prefix of P due to fingerprint collisions. This may lead to a false positive. However,
false positives are allowed in the weak prefix search problem.

Given that we can compute the fingerprint of substrings of P in constant time the
algorithm uses O(m/x) time.

From x-range to Exit Vertex. We now consider how to find the exit vertex of P hereafter
denoted ve. The algorithm is similar to the one presented in Belazzougui et al. [2] except
that we support starting the search from not only the root, but from any ancestor of ve.

Let v be any ancestor of ve, let y be the smallest power of two greater than m− |str(v)|
and let z be the largest multiple of y no greater than |str(v)|. The search progresses by
iteratively halving the search interval while using G to maintain a candidate for the exit
vertex and to decide in which of the two halves to continue the search.

Let vc be the candidate for the exit vertex and let l and r be the left and right boundary
for our search interval. Initially vc = v, l = z and r = z + 2y. When r − l = 1, the search
terminates and reports vc. In each iteration, we consider the mid b = (l+ r)/2 of the interval
[l, r] and update the interval to either [b, r] or [l, b]. There are three cases:

CPM 2017

16:6 Time-Space Trade-Offs for Lempel-Ziv Compressed Indexing

1. b is out of bounds
a. If b > m set r to b.
b. If b ≤ |str(vc)| set l to b.

2. P [1, b] ∈ Dfat, let u be the corresponding vertex, i.e. G(φ(P [1, b])) = u.
a. If |str(u)| < m, set vc to u and l to b.
b. If |str(u)| ≥ m, report u = locus(P) and terminate.

3. P [1, b] /∈ Dfat and thus φ(P [1, b]) is not in G, set r to b.

Observe that we are guaranteed that all fingerprint comparisons are collision-free in case
P prefixes a string in D. This is because the length of the prefix fingerprints we consider are
all either 2-fattest or pseudo-fat in the skip interval of locus(P) or one of its ancestors and
we use a fingerprinting function that is collision-free for these strings.

Correctness. We now show that the invariant l ≤ |str(vc)| ≤ |str(ve)| < r is satisfied and
that str(vc) is a prefix of P before and after each iteration. After O(lg x) iterations r − l = 1
and thus l = |str(ve)| = |str(vc)| and therefore vc = ve. Initially vc is an ancestor of ve and
thus str(vc) is a prefix of P , l = z ≤ |str(vc)| and r = z + 2y > m > |str(ve)| so the invariant
is true. Now assume that the invariant is true at the beginning of some iteration and consider
the possible cases:
1. b is out of bounds

a. b > m then because |str(ve)| ≤ m, setting r to b preserves the invariant.
b. b ≤ |str(vc)| then setting l to b preserves the invariant.

2. P [1, b] ∈ Dfat, let u = G(φ(P [1, b])).
a. |str(u)| ≤ m then str(u) is a prefix of P and thus b = fat(u) ≤ |str(u)| ≤ |str(ve)| so

setting l to b and vc to u preserves the invariant.
b. |str(u)| ≥ m yet u = G(φ(P [1, b])). Then u is the locus of P .

3. P [1, b] /∈ Dfat, and thus φ(P [1, b]) is not in G. As we are not in any of the out of bounds
cases we have |str(vc)| < b < m. Thus, either b > |str(ve)| and setting r to b preserves
the invariant. Otherwise b ≤ |str(ve)| and thus b must be in the skip interval of some
vertex u on the path from vc to ve excluding vc. But skip(u) is entirely included in (l, r)
and because b is 2-fattest in (l, r)1 it is also 2-fattest in skip(u). It follows that fat(u) = b

which contradicts P [1, b] /∈ Dfat and thus the invariant is preserved.

Thus if P prefixes a string in D we find either the exit vertex ve or the locus of P . In the
former case the locus of P is the child of ve identified by the character P [|str(v′)|+1]. Having
found the vertex u = locus(P) we report [lu, ru] as the range of strings in D prefixed by P .
In case P does not prefix any strings in D, the fact that the fingerprint of a prefix of P match
the fingerprint of some fat prefix in Dx does not guarantee equality of the strings. There are
two possible consequences of this. Either the search successfully finds what it believes to be
the locus of P even though locus(P) = ⊥ in which case we report a false positive. Otherwise,
there is no child identified by P [|str(v′)|+ 1] in which case we can correctly report that no
strings in D are prefixed by S, a true negative. Recall that false positives are allowed as we
are considering the weak prefix search problem.

1 If b − a = 2i, i > 0 and a is a multiple of 2i−1 then the mid of the interval (a + b)/2 is 2-fattest in (a, b).

P. Bille, M. B. Ettienne, I. L. Gørtz, and H.W. Vildhøj 16:7

Complexity. The size of the interval [l, r] is halved in each iteration, thus we do at most
O(lg(m− |str(v)|)) iterations, where v is the vertex from which we start the search. If we
use the technique from the previous section to find a starting vertex in x-range of P , we do
O(lg x) iterations. Each iteration takes constant time. Note that if P does not prefix a string
in D we may have fingerprint collisions and we may be given a starting vertex v such that
str(v) does not prefix P . This can lead to a false positive, but we still have m− |str(v)| ≤ x
and therefore the time complexity remains O(lg x).

Multiple Substrings. In order to answer weak prefix search queries for h substrings of a
pattern P of length m, we first preprocess P in O(m) time such that we can compute the
fingerprint of any substring of P in constant time. We can then answer a weak prefix search
query for any substring of P in total time O(m/x+ lg x) using the techniques described in
the previous sections. The total time is therefore O(m+ h(m/x+ lg x)).

4 Distinguishing Occurrences

The following sections describe our compressed-index consisting of three independent data
structures. One that finds long primary occurrences, one that finds short primary occurrences
and one that finds secondary occurrences.

Let Z be the LZ77 parse of length z representing the string S of length n. If S[i, j] is a
phrase of Z then any substring of S[i, j − 1] is a secondary substring of S. These are the
substrings of S that do not contain any phrase borders. On the other hand, a substring
S[i, j] is a primary substring of S when there is some phrase S[i′, j′] where i′ ≤ i ≤ j′ ≤ j,
these are the substrings that contain one or more phrase borders. Any substring of S is
either primary or secondary. A primary substring that match a query pattern P is a primary
occurrence of P while a secondary substring that match P is a secondary occurrence [25].

5 Long Primary Occurrences

For simplicity, we assume that the data structure given in Lemma 3 not only solves the
weak prefix problem, but also answers correctly when the query pattern does not prefix any
of the indexed strings. Later in Section 5.3 we will see how to lift this assumption. The
following data structure and search algorithm is a variation of the classical bidirectional
search technique for finding primary occurrences [25].

5.1 Data Structure
For every phrase S[i, j] the strings S[i, j + k], 0 ≤ k < τ are relevant substrings unless there
is some longer relevant substring ending at position j + k. If S[i′, j′] is a relevant substring
then the string S[j′ + 1, n] is the associated suffix. There are at most zτ relevant substrings
of S and equally many associated suffixes. The primary index is comprised by the following:

A prefix search data structure TD on the set of reversed relevant substrings.
A prefix search data structure TD′ on the set of associated suffixes.
An orthogonal range reporting data structure R on the zτ × zτ grid. Consider a relevant
substring S[i, j]. Let x denote the rank of rev(S[i, j]) in the lexicographical order of the
reversed relevant substrings, let y denote the rank of its associated suffix S[j + 1, n] in
the lexicographical order of the associated suffixes. Then (x, y) is a point in R and along
with it we store the pair (j, b), where b is the position of the rightmost phrase border
contained in S[i, j].

CPM 2017

16:8 Time-Space Trade-Offs for Lempel-Ziv Compressed Indexing

Note that every point (x, y) in R is induced by some relevant substring S[i, j] and its
associated suffix S[j+1, n]. If some prefix P [1, k] is a suffix of S[i, j] and the suffix P [k+1,m]
is a prefix of S[j+ 1, n] then S[j−k+ 1, j−k+m] is an occurrence of P and we can compute
its exact location from k and j.

5.2 Searching
The data structure can be used to find the primary occurrences of a pattern P of lengthm when
m > τ . Consider the O(m/τ) prefix-suffix pairs (P [1, iτ], P [iτ + 1,m]) for i = 1, . . . , bm/τc
and the pair (P [1,m], ε) in case m is not a multiple of τ . For each such pair, we do a prefix
search for rev(P [1, iτ]) and P [iτ + 1,m] in TD and TD′ , respectively. If either of these two
searches report no matches, we move on to the next pair. Otherwise, let [l, r], [l′, r′] be the
ranges reported from the search in TD and TD′ respectively. Now we do a range reporting
query on R for the rectangle [l, r] × [l′, r′]. For each point reported, let (j, b) be the pair
stored with the point. We report j − iτ + 1 as the starting position of a primary occurrence
of P in S.

Finally, in case m is not a multiple of τ , we need to also check the pair (P [1,m], ε). We
search for rev(P [1,m]) in in TD and ε in TD′ . If the search for rev(P [1,m]) reports no match
we stop. Otherwise, we do a range reporting query as before. For each point reported, let
(j, b) be the pair stored with the point. To check that the occurrence has not been reported
before we do as follows. Let k be the smallest positive integer such that j −m+ kτ > b. If
kτ > m we report j −m+ 1 as the starting position of a primary occurrence.

Correctness. We claim that the reported occurrences are exactly the primary occurrences
of P . We first prove that all primary occurrences are reported correctly. Let P = S[i′, j′] be
a primary occurrence. As it is a primary occurrence, there must be some phrase S[i∗, j∗]
such that i∗ ≤ i′ ≤ j∗ ≤ j′. Let k be the smallest positive integer such that i′ + kτ − 1 ≥ j∗.
There are two cases: kτ ≤ m and kτ > m. If kτ ≤ m then P [1, kτ] is a suffix of the relevant
substring ending at i′ + kτ − 1. Such a relevant substring exists since i′ + kτ − 1 < j∗ + τ .
Thus its reverse rev(P [1, kτ]) prefixes a string s in D, while P [kτ + 1,m] is a prefix of the
associated suffix S[i′ + kτ, n] ∈ D′. Therefore, the respective ranks of s and S[i′ + kτ, n] in
D and D′ are plotted as a point in R which stores the pair (i′ + kτ − 1, b). We will find this
point when considering the prefix-suffix pair (P [1, kτ], P [kτ + 1,m]), and correctly report
(i′ + kτ − 1)− kτ + 1 = i′ as the starting position of a primary occurrence. If kτ > m then
P [1,m] is a suffix of the relevant substring ending in i′ +m− 1. Such a relevant substring
exists since i′ +m− 1 < i′ + kτ − 1 < j∗ + τ . Thus its reverse prefixes a string in D and
trivially ε is a prefix of the associated suffix. It follows as before that the ranks are plotted
as a point in R storing the pair (i′ +m− 1, b) and that we find this point when considering
the pair (P [1,m], ε). When considering (P [1,m], ε) we report (i′ +m− 1)−m+ 1 = i′ as
the starting position of a primary occurrence if kτ > m, and thus i′ is correctly reported.

We now prove that all reported occurrences are in fact primary occurrences. Assume
that we report j − iτ + 1 for some i and j as the starting position of a primary occurrence
in the first part of the procedure. Then there exist strings rev(S[i′, j]) and S[j + 1, n] in
D and D′ respectively such that S[i′, j] is suffixed by P [1, iτ] and S[j + 1, n] is prefixed by
P [iτ + 1,m]. Therefore j − iτ + 1 is the starting position of an occurrence of P . The string
S[i′, j] is a relevant suffix and therefore there exists a border b in the interval [j − τ + 1, j].
Since i ≥ 1 the occurrence contains the border b and it is therefore a primary occurrence.
If we report j −m + 1 for some j as the starting position of a primary occurrence in the
second part of the procedure, then rev(P [1,m]) is a prefix of a string rev(S[i′, j]) in D. It

P. Bille, M. B. Ettienne, I. L. Gørtz, and H.W. Vildhøj 16:9

follows immediately that j −m+ 1 is the starting point of an occurrence. Since m > τ we
have j −m+ 1 < j − τ + 1, and by the definition of relevant substring there is a border in
the interval [j − τ + 1, j]. Therefore the occurrence contains the border and is primary.

Complexity. We now consider the time complexity of the algorithm described. First we
will argue that any primary occurrence is reported at most once and that the search finds at
most two points in R identifying it. Let S[i′, j′] be a primary occurrence reported when we
considered the prefix-suffix pair (P [1, kτ], P [kτ + 1,m]) as in the proof of correctness. None
of the pairs (P [1, iτ], P [iτ + 1,m]), where i < k will identify this occurrence as i′+ iτ − 1 < j.
None of the pairs (P [1, hτ], P [hτ + 1,m]), where h > k, will identify this occurrence. This is
the case since i′ + hτ − 1 > j + τ − 1, and from the definition of relevant substrings it follows
that if S[i, j] is a phrase, S[a, b] is a relevant substring and a < i, then b < i+ τ − 1. Thus
there are no relevant substrings that end after j + τ − 1 and start before i′ < j. Therefore,
only one of the pairs (P [1, iτ], P [iτ + 1,m]) for i = 1, . . . , bm/xc identifies the occurrence. If
(k + 1)τ > m then we might also find the occurrence when considering the pair (P [1,m], ε),
but we do not report i′ as kτ ≤ m.

After preprocessing P in O(m) time, we can do the O(m/τ) prefix searches in total time
O(m+m/τ(m/x+lg x)) where x is a positive integer by Lemma 3. Using the range reporting
data structure by Chan et al. [6] each range reporting query takes (1 + k) · O(B lg lg(zτ))
time where 2 ≤ B ≤ lgε(zτ) and k is the number of points reported. As each such point in
one range reporting query corresponds to the identification of a unique primary occurrence of
P , which happens at most twice for every occurrence we charge O(kB lg lg(zτ)) to reporting
the occurrences. The total time to find all primary occurrences is thus O(m+ m

τ (mx + lg x+
B lg lg(zτ)) + occ B lg lg(zτ)) where occ is the number of primary and secondary occurrences
of P .

5.3 Prefix Search Verification
The prefix data structure from Lemma 3 gives no guarantees of correct answers when the
query pattern does not prefix any of the indexed strings. If the prefix search gives false-
positives, we may end up reporting occurrences of P that are not actually there. We show
how to solve this problem after introducing a series of tools that we will need.

Straight line programs. A straight line program (SLP) for a string S is a context-free
grammar generating the single string S.

I Lemma 4 (Rytter [36], Charikar et al. [7]). Given an LZ77 parse Z of length z producing a
string S of length n we can construct a SLP for S of size O(z lg(n/z)) in time O(z lg(n/z)).

The construction from Rytter [36] produces a balanced grammar for every consecutive
substring of length n/z of S after a preprocessing step transforms Z such that no compression
element is longer than n/z. The height of this balanced grammar is O(lgn) and this
immediately yields extracting of any substring S[i, j] in time O(lg(n) + j − i). We give a
simple solution to reduce this to O(lg(n/z) + j − i), that also supports computation of the
fingerprint of a substring in O(lg(n/z)) time.

I Lemma 5. Given an LZ77 parse Z of length z producing a string S of length n we can
build a data structure that for any substring S[i, j] can extract S[i, j] in O(lg(n/z) + j − i)
time and compute the fingerprint φ(S[i, j]) in O(lg(n/z)) time. The data structure uses
O(z lg(n/z)) space and O(n) construction time.

CPM 2017

16:10 Time-Space Trade-Offs for Lempel-Ziv Compressed Indexing

Proof. Assume for simplicity that n is a multiple of z. We construct the SLP producing S
from Z. Along with every non-terminal of the SLP we store the size and fingerprint of its
expansion. Let s1, s2, . . . sz be consecutive length n/z substrings of S. We store the balanced
grammar producing si along with the fingerprint φ(S[1, (i− 1)n/z]) at index i in a table A.

Now we can extract si in O(n/z) time and any substring si[j, k] in time O(lg(n/z)+k−j).
Also, we can compute the fingerprint φ(si[j, k]) in O(lg(n/z)) time. We can easily do a
constant time mapping from a position in S to the grammar in A producing the substring
covering that position and the corresponding position inside the substring. But then any
fingerprint φ(S[1, j]) can be computed in time O(lg(n/z)). Now consider a substring S[i, j]
that starts in sk and ends in sl, k < l. We extract S[i, j] in O(lg(n/z) + j − i) time by
extracting the appropriate suffix of sk, all of sm for k < m < l and the appropriate prefix of
sl. Each of the fingerprints stored by the data structure can be computed in O(1) time after
preprocessing S in O(n) time. Thus table A is filled in O(z) time and by Lemma 4 the SLPs
stored in A uses a total of O(z lg(n/z)) space and construction time. J

Verification of fingerprints. We need the following lemma for the verification.

I Lemma 6 (Bille et al. [5]). Given a string S of length n, we can find a fingerprinting
function φ that is collision-free for all length l substrings of S where l is a power of two in
O(n lgn) expected time.

5.3.1 Verification Technique
Our verification technique is identical to the one given by Gagie et al. [18] and involves a
simple modification of the search for long primary occurrences. By using Lemma 5 instead of
bookmarking [18] for extraction and fingerprinting and because we only need to verify O(m/τ)
strings, the verification procedure takes O(m + m/τ lg(n/z)) time and uses O(z lg(n/z))
space. See Appendix A.1 for details.

6 Short Primary Occurrences

We now describe a simple data structure that can find primary occurrences of P in time
O(m+ occ) using space O(zτ) whenever m ≤ τ where τ is a positive integer.

Let Z be the LZ77 parse of the string S of length n. Let Z[i] = S[si, ei] and define F
to be the union of the strings S[k,min{ei + τ, n}] where max{1, si, ei − τ} ≤ k ≤ ei for
i = 1, 2, . . . z. There are at most zτ such strings, each of length O(τ) and they are all suffixes
of the z length 2τ substrings of S starting τ positions before each border position. We store
these substrings along with the compact trie TF over the strings in F . The edge labels of
TF are compactly represented by storing references into one of the substrings. Every leaf
stores the starting position in S of the string it represents and the position of the leftmost
border it contains.

The combined size of TF and the substrings we store is O(zτ) and we simply search for
P by navigating vertices using perfect hashing [16] and matching edge labels character by
character. Now either locus(P) = ⊥ in which case there are no primary occurrences of P
in S; otherwise, locus(P) = v for some vertex v ∈ TF and thus every leaf in the subtree of
v represents a substring of S that is prefixed by P . By using the indices stored with the
leaves, we can determine the starting position for each occurrence and if it is primary or
secondary. Because each of the strings in F start at different positions in S, we will only find
an occurrence once. Also, it is easy to see that we will find all primary occurrences because

P. Bille, M. B. Ettienne, I. L. Gørtz, and H.W. Vildhøj 16:11

of how the strings in F are chosen. It follows that the time complexity is O(m+ occ) where
occ is the number of primary and secondary occurrences.

7 The Secondary Index

Let Z be the LZ77 parse of length z representing the string S of length n. We find
the secondary occurrences by applying the most recent range reporting data structure by
Chan et al. [6] to the technique described by Kärkkäinen and Ukkonen [25]. This gives us a
secondary index using O(z lg lg z) space and O(occ lg lgn) time for reporting all secondary
occurrences. For details see Appendix A.2.

8 The Compressed Index

We obtain our final index by combining the primary index, the verification data structure
and the secondary index. We use the transformed LZ77 parse generated by Lemma 4 when
building our primary index. Therefore no phrase will be longer than n/z and therefore any
primary occurrence of P will have a prefix P [1, k] where k ≤ n/z that is a suffix of some
phrase. It then follows that we need only consider the multiples (P [1, iτ], P [iτ + 1,m]) for
i < bn/zτ c when searching for long primary occurrences. This yields the following complexities:

O(m + min{m,n/z}
τ (mx + lg x + B lg lg(zτ)) + occ B lg lg(zτ)) time and O(zτ lgB lg(zτ))

space for the index finding long primary occurrences where x and τ are positive integers
and 2 ≤ B ≤ lgε(zτ).
O(m+ occ) time and O(z lg(n/z)) space for the index finding short primary occurrences.
O(m+m/τ lg(n/z)) time and O(z lg(n/z)) space for the verification data structure.
O(occ lg lgn) time and O(z lg lg z) space for the secondary index.

If we fix x at n/z we have min{m,n/z}
τ

m
x ≤ m in which case we obtain the following trade-off

simply by combining the above complexities.

I Theorem 7. Given a string S of length n from an alphabet of size σ compressed using
LZ77 to a string of length z we can build a compressed-index supporting substring queries
in O(m + m

τ (lg(n/z) + B lg lg(zτ)) + occ(B lg lg(zτ) + lg lgn)) time using O(z(lg(n/z) +
τ lgB lg(zτ) + lg lg z)) space for any query pattern P of length m where 2 ≤ B ≤ lgε(zτ),
0 < ε < 1 and τ is a positive integer.

We note that none of our data structures assume constant sized alphabet and thus
Theorem 7 holds for any alphabet size.

Due to lack of space the description and analysis of the preprocessing have been moved
to Appendix 8.2.

8.1 Trade-offs
Theorem 7 gives rise to a series of interesting time-space trade-offs.

I Corollary 8. Given a string S of length n from an alphabet of size σ compressed using
LZ77 into a string of length z we can build a compressed-index supporting substring queries
in
(i) O(m(1 + lg lg z

lg(n/z)) + occ lg lgn) time using O(z lg(n/z) lg lg z) space, or
(ii) O(m(1 + lgε z

lg(n/z)) + occ(lg lgn+ lgε z)) time using O(z lg(n/z)) space, or
(iii) O(m lgε(n/z) + occ lg lgn) time using O(z lg(n/z)) space, or
(iv) O(m+ occ lg lgn) time using O(z(lg(n/z) lg lg z + lg lg2 z)) space, or

CPM 2017

16:12 Time-Space Trade-Offs for Lempel-Ziv Compressed Indexing

(v) O(m+ occ(lg lgn+ lgε z)) time using O(z(lg(n/z) + lgε
′
z)) space.

for any 0 < ε < 1 and 0 < ε′ < 1.

Proof. For (i) set B = 2 and τ = lg(n/z), for (ii) set B = lgε z and τ = lg(n/z), for (iii) set
B = 2 and τ = lgε

′
n/z for some 0 < ε′ < 1, for (iv) set B = 2 and τ = lg(n/z) + lg lg z, for

(v) set B = lgε
′
(z) and τ = lg(n/z) + lgε z. J

The leading term in the time complexity of Corollary 8 (i) is O(m) whenever lg lg(z) =
O(lg(n/z)) which is true when z = O(n/ lgn), i.e. for all strings that are compressible by at
least a logarithmic fraction. For σ = O(1) we have z = O(n/ lgn) all strings [34] and thus
Theorem 1 (i) follows immediately. Corollary 8 (ii) matches previous best space bounds
but obtains a leading term of O(m) for any polynomial compression rate. Theorem 1 (ii) is
a weaker version of this because it assumes constant sized alphabet and therefore follows
immediately. Corollary 8 (iii) matches the space and time for reporting occurrences of
previous best bounds by Gagie et al. [18] but with a leading term of O(m lgε(n/z)) compared
to a leading term of O(m lgm). Corollary 8 (iv) and (v) show how to guarantee the fast
query times with leading term O(m) without the assumptions on compression ratio that (i)
and (ii) require to match this, but at the cost of increased space.

8.2 Preprocessing

We now consider the preprocessing time of the data structure. Let Z be the LZ77 parse
of the string S of length n let TD and TD′ be the compact tries used in the index for long
primary occurrences. The compact trie TD index O(zτ) substrings of S with overall length
O(nτ). Thus we can construct the trie in O(nτ) time by sorting the strings and successively
inserting them in their sorted order [1]. The compact tries TD′ index zτ < n suffixes of S
and can be built in O(n) time using O(n) space [10]. The index for short primary occurrences
is a generalized suffix tree over z strings of length O(τ) with total length zτ < n and is
therefore also built in O(n) time. The dictionaries used by the prefix search data structures
and for trie navigation contain O(zτ) keys and are built in expected linear time using perfect
hashing [16]. The range reporting data structures used by the primary and secondary index
over O(zτ) points are built in O(zτ lg(zτ)) expected time using Lemma 9.

Building the SLP for our verification data structure takes O(z lg(n/z)) time using
Lemma 4 and finding an appropriate fingerprinting function φ takes O(n lgn) expected
time using Lemma 6. The prefix search data structures TD and TD′ also require that φ is
collision-free for the x-prefixes, fat prefixes and the prefixes with pseudo fat lengths. There
are at most O(zτ lgn) such prefixes [2]. If we compute these fingerprints incrementally while
doing a traversal of the tries, we expect all the fingerprints to be unique. We simply check
this by sorting the fingerprints in linear time and checking for duplicates by doing a linear
scan. If we choose a prime p = Θ(n5) for the fingerprinting function then the probability of a
collision between any two strings is O(1/n4) [35] and by a union bound over the O((n lgn)2)
possible collisions the probability that φ is collision-free is at least 1−1/n. Thus the expected
time to find our required fingerprinting function is O(n+ n lgn).

All in all, the preprocessing time for our combined index is therefore expected O(n lgn+
nτ).

P. Bille, M. B. Ettienne, I. L. Gørtz, and H.W. Vildhøj 16:13

References
1 Arne Andersson and Stefan Nilsson. A new efficient radix sort. In Shafi Goldwasser, editor,

Proceedings of the 35th Annual Symposium on Foundations of Computer Science (FOCS
1994), pages 714–721. IEEE Computer Society, 1994. doi:10.1109/SFCS.1994.365721.

2 Djamal Belazzougui, Paolo Boldi, Rasmus Pagh, and Sebastiano Vigna. Fast prefix search
in little space, with applications. In Mark de Berg and Ulrich Meyer, editors, Proceedings
of the 18th Annual European Symposium on Algorithms (ESA 2010), volume 6346 of LNCS,
pages 427–438. Springer, 2010. doi:10.1007/978-3-642-15775-2_37.

3 Djamal Belazzougui, Fabio Cunial, Travis Gagie, Nicola Prezza, and Mathieu Raffinot.
Composite repetition-aware data structures. In Ferdinando Cicalese, Ely Porat, and Ugo
Vaccaro, editors, Proceedings of the 26th Annual Symposium on Combinatorial Pattern
Matching (CPM 2015), volume 9133 of LNCS, pages 26–39. Springer, 2015. doi:10.1007/
978-3-319-19929-0_3.

4 Djamal Belazzougui, Travis Gagie, Paweł Gawrychowski, Juha Kärkkäinen, Alberto Or-
dóñez Pereira, Simon J. Puglisi, and Yasuo Tabei. Queries on LZ-bounded encodings. In
Ali Bilgin, Michael W. Marcellin, Joan Serra-Sagristà, and James A. Storer, editors, Pro-
ceedings of the 2015 Data Compression Conference (DCC 2015), pages 83–92. IEEE, 2015.
doi:10.1109/DCC.2015.69.

5 Philip Bille, Inge Li Gørtz, Benjamin Sach, and Hjalte Wedel Vildhøj. Time-space trade-offs
for longest common extensions. In Juha Kärkkäinen and Jens Stoye, editors, Proceedings
of the 23rd Annual Symposium on Combinatorial Pattern Matching (CPM 2012), volume
7354 of LNCS. Springer, 2012. doi:10.1007/978-3-642-31265-6_24.

6 Timothy M. Chan, Kasper Green Larsen, and Mihai Pǎtraşcu. Orthogonal range searching
on the RAM, revisited. In Ferran Hurtado and Marc J. van Kreveld, editors, Proceedings
of the 27th ACM Symposium on Computational Geometry (SocG 2011), pages 1–10. ACM,
2011. doi:10.1145/1998196.1998198.

7 Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prabhakaran, Amit Sahai,
and Abhi Shelat. The smallest grammar problem. IEEE Trans. Inf. Theory, 51(7):2554–
2576, 2005. doi:10.1109/TIT.2005.850116.

8 Francisco Claude, Antonio Fariña, Miguel A. Martínez-Prieto, and Gonzalo Navarro.
Universal indexes for highly repetitive document collections. Inf. Syst., 61:1–23, 2016.
doi:10.1016/j.is.2016.04.002.

9 Francisco Claude and Gonzalo Navarro. Improved grammar-based compressed indexes. In
Liliana Calderón-Benavides, Cristina N. González-Caro, Edgar Chávez, and Nivio Ziviani,
editors, Proceedings of the 19th International Symposium on String Processing and In-
formation Retrieval (SPIRE 2012), volume 7608 of LNCS, pages 180–192. Springer, 2012.
doi:10.1007/978-3-642-34109-0_19.

10 Martin Farach. Optimal suffix tree construction with large alphabets. In Anna Karlin,
editor, Proceedings of the 38th Annual Symposium on Foundations of Computer Science
(FOCS 1997), pages 137–143, Washington, DC, USA, 1997. IEEE Computer Society. doi:
10.1109/SFCS.1997.646102.

11 Martin Farach and Mikkel Thorup. String matching in Lempel-Ziv compressed strings.
Algorithmica, 20(4):388–404, 1998. doi:10.1007/PL00009202.

12 Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications.
In Avrim Blum, editor, Proceedings of the 41st Annual Symposium on Foundations of
Computer Science (FOCS 2000), pages 390–398. IEEE Computer Society, 2000. doi:10.
1109/SFCS.2000.892127.

13 Paolo Ferragina and Giovanni Manzini. An experimental study of an opportunistic index.
In S. Rao Kosaraju, editor, Proceedings of the 12th Annual ACM-SIAM Symposium on

CPM 2017

http://dx.doi.org/10.1109/SFCS.1994.365721
http://dx.doi.org/10.1007/978-3-642-15775-2_37
http://dx.doi.org/10.1007/978-3-319-19929-0_3
http://dx.doi.org/10.1007/978-3-319-19929-0_3
http://dx.doi.org/10.1109/DCC.2015.69
http://dx.doi.org/10.1007/978-3-642-31265-6_24
http://dx.doi.org/10.1145/1998196.1998198
http://dx.doi.org/10.1109/TIT.2005.850116
http://dx.doi.org/10.1016/j.is.2016.04.002
http://dx.doi.org/10.1007/978-3-642-34109-0_19
http://dx.doi.org/10.1109/SFCS.1997.646102
http://dx.doi.org/10.1109/SFCS.1997.646102
http://dx.doi.org/10.1007/PL00009202
http://dx.doi.org/10.1109/SFCS.2000.892127
http://dx.doi.org/10.1109/SFCS.2000.892127

16:14 Time-Space Trade-Offs for Lempel-Ziv Compressed Indexing

Discrete Algorithms (SODA 2001), pages 269–278. ACM/SIAM, 2001. URL: http://dl.
acm.org/citation.cfm?id=365411.365458.

14 Paolo Ferragina and Giovanni Manzini. Indexing compressed text. J. ACM, 52(4):552–581,
2005. doi:10.1145/1082036.1082039.

15 Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, and Gonzalo Navarro. Compressed
representations of sequences and full-text indexes. ACM Trans. Algorithms, 3(2), 2007.
doi:10.1145/1240233.1240243.

16 Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with O(1)
worst case access time. J. ACM, 31(3):538–544, 1984. doi:10.1145/828.1884.

17 Travis Gagie, Paweł Gawrychowski, Juha Kärkkäinen, Yakov Nekrich, and Simon J. Puglisi.
A faster grammar-based self-index. In Adrian-Horia Dediu and Carlos Martín-Vide, editors,
Proceedings of the 6th International Conference on Language and Automata Theory and
Applications (LATA 2012), volume 7183 of LNCS, pages 240–251. Springer, 2012. doi:
10.1007/978-3-642-28332-1_21.

18 Travis Gagie, Paweł Gawrychowski, Juha Kärkkäinen, Yakov Nekrich, and Simon J. Pug-
lisi. LZ77-based self-indexing with faster pattern matching. In Alberto Pardo and Al-
fredo Viola, editors, Proceedings of the 11th Latin American Symposium on Theoret-
ical Informatics (LATIN 2014), volume 8392 of LNCS, pages 731–742. Springer, 2014.
doi:10.1007/978-3-642-54423-1_63.

19 Travis Gagie and Simon J. Puglisi. Searching and indexing genomic databases via kernel-
ization. Front. Bioeng. Biotechnol., 3:12, 2015. doi:10.3389/FBIOE.2015.00012.

20 Jean-Loup Gailly and Mark Adler. GNU zip, 1992. URL: http://www.gzip.org/.
21 Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-compressed

text indexes. In Martin Farach-Colton, editor, Proceedings of the 14th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2003), pages 841–850. ACM/SIAM, 2003. URL:
http://dl.acm.org/citation.cfm?id=644108.644250.

22 Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. When indexing equals compression:
Experiments with compressing suffix arrays and applications. In J. Ian Munro, editor,
Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2004), pages 636–645. SIAM, 2004. URL: http://dl.acm.org/citation.cfm?id=982792.
982888.

23 Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching. In F. Frances Yao and Eugene M. Luks,
editors, Proceedings of the 32nd Annual ACM Symposium on Theory of Computing (STOC
2000), pages 397–406. ACM, 2000. doi:10.1145/335305.335351.

24 Juha Kärkkäinen and Erkki Sutinen. Lempel-Ziv index for q-grams. Algorithmica,
21(1):137–154, 1998. doi:10.1007/PL00009205.

25 Juha Kärkkäinen and Esko Ukkonen. Lempel-Ziv parsing and sublinear-size index struc-
tures for string matching. In Nivio Ziviani, Ricardo Baeza-Yates, and Katia Guimarães,
editors, Proceedings of the 3rd South American Workshop on String Processing (WSP 1996),
pages 141–155. Carleton University Press, 1996.

26 Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching algorithms.
IBM J. Res. Dev., 31(2):249–260, 1987. doi:10.1147/rd.312.0249.

27 Sebastian Kreft and Gonzalo Navarro. On compressing and indexing repetitive sequences.
Theor. Comput. Sci., 483:115–133, 2013. doi:10.1016/j.tcs.2012.02.006.

28 Moshe Lewenstein. Orthogonal range searching for text indexing. In Andrej Brodnik,
Alejandro López-Ortiz, Venkatesh Raman, and Alfredo Viola, editors, Space-Efficient Data
Structures, Streams, and Algorithms: Papers in Honor of J. Ian Munro on the Occasion
of His 66th Birthday, volume 8066 of LNCS, pages 267–302. Springer, 2013. doi:10.1007/
978-3-642-40273-9_18.

http://dl.acm.org/citation.cfm?id=365411.365458
http://dl.acm.org/citation.cfm?id=365411.365458
http://dx.doi.org/10.1145/1082036.1082039
http://dx.doi.org/10.1145/1240233.1240243
http://dx.doi.org/10.1145/828.1884
http://dx.doi.org/10.1007/978-3-642-28332-1_21
http://dx.doi.org/10.1007/978-3-642-28332-1_21
http://dx.doi.org/10.1007/978-3-642-54423-1_63
http://dx.doi.org/10.3389/FBIOE.2015.00012
http://www.gzip.org/
http://dl.acm.org/citation.cfm?id=644108.644250
http://dl.acm.org/citation.cfm?id=982792.982888
http://dl.acm.org/citation.cfm?id=982792.982888
http://dx.doi.org/10.1145/335305.335351
http://dx.doi.org/10.1007/PL00009205
http://dx.doi.org/10.1147/rd.312.0249
http://dx.doi.org/10.1016/j.tcs.2012.02.006
http://dx.doi.org/10.1007/978-3-642-40273-9_18
http://dx.doi.org/10.1007/978-3-642-40273-9_18

P. Bille, M. B. Ettienne, I. L. Gørtz, and H.W. Vildhøj 16:15

29 Veli Mäkinen. Compact suffix array. In Raffaele Giancarlo and David Sankoff, editors, Pro-
ceedings of the 11th Annual Symposium on Combinatorial Pattern Matching (CPM 2000),
volume 1848 of LNCS, pages 305–319. Springer, 2000. doi:10.1007/3-540-45123-4_26.

30 Veli Mäkinen, Gonzalo Navarro, Jouni Sirén, and Niko Välimäki. Storage and retrieval
of highly repetitive sequence collections. J. Comput. Biol., 17(3):281–308, 2010. doi:
10.1089/cmb.2009.0169.

31 Donald R. Morrison. Patricia – practical algorithm to retrieve information coded in alpha-
numeric. J. ACM, 15(4):514–534, October 1968. doi:10.1145/321479.321481.

32 Gonzalo Navarro. Indexing highly repetitive collections. In S. Arumugam and W. F.
Smyth, editors, Proceedings of the 23rd International Workshop on Combinatorial Al-
gorithms (IWOCA 2012), volume 7643 of LNCS, pages 274–279. Springer, 2012. doi:
10.1007/978-3-642-35926-2_29.

33 Gonzalo Navarro. Compact Data Structures: A practical approach. Cambridge University
Press, 2016. doi:10.1017/CBO9781316588284.

34 Gonzalo Navarro and Veli Mäkinen. Compressed full-text indexes. ACM Comput. Surv.,
39(1), April 2007. doi:10.1145/1216370.1216372.

35 Benny Porat and Ely Porat. Exact and approximate pattern matching in the streaming
model. In Daniel A. Spielman, editor, Proceedings of the 50th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2009), pages 315–323. IEEE Computer Society,
2009. doi:10.1109/FOCS.2009.11.

36 Wojciech Rytter. Application of Lempel–Ziv factorization to the approximation of
grammar-based compression. Theor. Comput. Sci., 302(1-3):211–222, 2003. doi:10.1016/
S0304-3975(02)00777-6.

37 Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression.
IEEE Trans. Inf. Theory, 23(3):337–343, 1977. doi:10.1109/TIT.1977.1055714.

A Appendix

A.1 Verification Technique

Consider the string S of length n that we wish to index and let Z be the LZ77 parse of
S. The verification data structure is given by Lemma 5. Consider the prefix search data
structure TD′ as given in Section 5.1 and let φ be the fingerprinting function used by the
prefix search, the case for TD is symmetric. We alter the search for primary occurrences
such that it first does the O(m/τ) prefix searches, then verifies the results and discards
false-positives before moving on to do the O(m/τ) range reporting queries on the verified
results. We also modify φ using Lemma 6 to be collision-free for all substrings of the indexed
strings which length is a power of two.

Let Q1, Q2, . . . Qj be the all the suffixes of P for which the prefix search found a locus
candidate, let the candidates be v1, v2, . . . vj ∈ TD′ and let pi be str(vi)[1, |Qi|]. Assume that
|Qi| < |Qi+1|, and let 2-suf(Q) and 2-pre(Q) denote the fingerprints using φ of the suffix
and prefix respectively of length 2blg |Q|c of some string Q. The verification progresses in
iterations. Initially, let a = 1, b = 2 and for each iteration do as follows:
1. 2-suf(Qa) 6= 2-suf(pa) or 2-pre(Qa) 6= 2-pre(pa): Discard va and set a = a + 1 and

b = b+ 1.
2. 2-suf(Qa) = 2-suf(pa) and 2-pre(Qa) = 2-pre(pa), let R = pb[|pa| − |pb|+ 1, |pa|].

a. 2-suf(R) = 2-suf(Qa) and 2-pre(R) = 2-pre(Qa): set a = a+ 1 and b = b+ 1.
b. 2-suf(R) 6= 2-suf(Qa) or 2-pre(R) 6= 2-pre(Qa): discard vb and set b = b+ 1.

CPM 2017

http://dx.doi.org/10.1007/3-540-45123-4_26
http://dx.doi.org/10.1089/cmb.2009.0169
http://dx.doi.org/10.1089/cmb.2009.0169
http://dx.doi.org/10.1145/321479.321481
http://dx.doi.org/10.1007/978-3-642-35926-2_29
http://dx.doi.org/10.1007/978-3-642-35926-2_29
http://dx.doi.org/10.1017/CBO9781316588284
http://dx.doi.org/10.1145/1216370.1216372
http://dx.doi.org/10.1109/FOCS.2009.11
http://dx.doi.org/10.1016/S0304-3975(02)00777-6
http://dx.doi.org/10.1016/S0304-3975(02)00777-6
http://dx.doi.org/10.1109/TIT.1977.1055714

16:16 Time-Space Trade-Offs for Lempel-Ziv Compressed Indexing

3. b = j + 1: If all vertices have been discarded, report no matches. Otherwise, let vf be the
last vertex considered, that was not discarded. Compare pf to Qf and if equal, report all
non-discarded vertices as verified. Otherwise discard all vertices and report no matches.

Consider the correctness and complexity of the algorithm. In case 1, clearly, pa does not
match Qa and thus va must be a false-positive. Now observe that because Qi is a suffix of
P , it is also a suffix of Qi′ for any i < i′. Thus in case 2 (b), if R does not match Qa then vb
must be a false-positive. In case 2 (a), both va and vb may still be false-positives, yet by
Lemma 6, pa is a suffix of pb because 2-suf(pa) = 2-suf(R) and 2-pre(pa) = 2-pre(R). Finally,
in case 3, vf is a true positive if and only if pf = Qf . But any other non-discarded vertex
vi 6= vf is also only a true positive if pf = Qf because pi is a suffix of pf and Qi is a suffix
of Qp.

The algorithm does j iterations and fingerprints of substrings of P can be computed
in constant time after O(m) preprocessing. Every vertex v ∈ TD′ represents one or more
substrings of S. If we store the starting index in S of one of these substrings in v when
constructing TD′ we can compute the fingerprint of any substring str(v)[i, j] by computing
the fingerprint of S[i′ + i− 1, i′ + j − 1] where i′ is the starting index of one of the substring
of S that v represents. By Lemma 5, the fingerprint computations take O(lg(n/z)) time and
because j ≤ m/τ the total time complexity of the algorithm is O(m+m/τ lg(n/z)).

A.2 Secondary Index
Let Z be the LZ77 parse of length z representing the string S of length n. We find
the secondary occurrences by applying the most recent range reporting data structure by
Chan et al. [6] to the technique described by Kärkkäinen and Ukkonen [25] which is inspired
by the ideas of Farach and Thorup [11].

Let X ⊆ {0, . . . , u}d be a set of points in a d-dimensional grid. The orthogonal range
reporting problem in d-dimensions is to compactly represent X while supporting range
reporting queries, that is, given a rectangle R = [a1, b2]× · · · × [ad, bd] report all points in
the set R ∩X. We use the following results for 2-dimensional range reporting:

I Lemma 9 (Chan et al. [6]). For any set of n points in [0, u]× [0, u] and 2 ≤ B ≤ lgε n, 0 <
ε < 1 we can solve 2-d orthogonal range reporting with O(n lgn) expected preprocessing time,
O(n lgB lgn) space and (1 + k) ·O(B lg lg u) query time where k is the number of occurrences
inside the rectangle.

Let o1, . . . oocc be the starting positions of the occurrences of P in S ordered increasingly.
Assume that oh is a secondary occurrence such that P = S[oh, oh+m−1]. Then by definition,
S[oh, oh +m− 1] is a substring the prefix S[i, j − 1] of some phrase S[i, j] and there must be
an occurrence of P in the source of that phrase. More precise, let S[k, l] = S[i, j − 1] be the
source of the phrase S[i, j] then oh′ = k + oh − i is an occurrence of P for some h′ < h. We
say that oh′ , which may be primary or secondary, is the source occurrence of the secondary
occurrence oh given the LZ77 parse of S. Thus every secondary occurrence has a source
occurrence. Note that it follows from the definition that no primary occurrence has a source
occurrence.

We find the secondary occurrences as follows: Build a range reporting data structure Q
on the n × n grid and if S[i, j] is a phrase with source S[i′, j′] we plot a point (i′, j′) and
along with it we store the phrase start i.

Now for each primary occurrence o found by the primary index, we query Q for the
rectangle [0, o] × [o + m − 1, n]. The points returned are exactly the occurrences having

P. Bille, M. B. Ettienne, I. L. Gørtz, and H.W. Vildhøj 16:17

o as source. For each point (x, y) and phrase start i reported, we report an occurrence
o′ = i+ o− x and recurse on o′ to find all the occurrences having o′ as source.

Because no primary occurrence have a source, while all secondary occurrences have a
source, we will find exactly the secondary occurrences.

The range reporting structure Q is built using Lemma 9 with B = 2 and uses space
O(z lg lg z). Exactly one range reporting query is done for each primary and secondary
occurrence each taking O((1 + k) lg lgn) where k is the number of points reported. Each
reported point identifies a secondary occurrence, so the total time is O(occ lg lgn).

CPM 2017

From LZ77 to the Run-Length Encoded
Burrows-Wheeler Transform, and Back
Alberto Policriti1 and Nicola Prezza∗2

1 University of Udine, Department of Informatics, Mathematics, and Physics,
Udine, Italy; and
Institute of Applied Genomics, Udine, Italy
alberto.policriti@uniud.it

2 Technical University of Denmark, DTU Compute, Lyngby, Denmark
npre@dtu.dk

Abstract
The Lempel-Ziv factorization (LZ77) and the Run-Length encoded Burrows-Wheeler Transform
(RLBWT) are two important tools in text compression and indexing, being their sizes z and r
closely related to the amount of text self-repetitiveness. In this paper we consider the problem
of converting the two representations into each other within a working space proportional to the
input and the output. Let n be the text length. We show that RLBWT can be converted to
LZ77 in O(n log r) time and O(r) words of working space. Conversely, we provide an algorithm
to convert LZ77 to RLBWT in O

(
n(log r + log z)

)
time and O(r + z) words of working space.

Note that r and z can be constant if the text is highly repetitive, and our algorithms can operate
with (up to) exponentially less space than naive solutions based on full decompression.

1998 ACM Subject Classification E.1 Data Structures

Keywords and phrases Lempel-Ziv, Burrows-Wheeler transform, compressed computation, re-
petitive text collections

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.17

1 Introduction

The field of compressed computation – i.e. computation on compressed representations of
the data without first fully decompressing it – is lately receiving much attention due to the
ever-growing rate at which data is accumulating in archives such as the web or genomic
databases. Being able to operate directly on the compressed data can make an enormous
difference, considering that repetitive collections, such as sets of same-species genomes or
software repositories, can be compressed at rates that often exceed 1000x. In such cases, this
set of techniques makes it possible to perform most of the computation directly in primary
memory and enables the possibility of manipulating huge datasets even on resource-limited
machines.

Central in the field of compressed computation are compressed data structures such
as compressed full-text indexes, geometry (e.g. 2D range search), trees, graphs. The
compression of these structures (in particular those designed for unstructured data) is based
on a set of techniques which include entropy compression, Lempel-Ziv parsings [16, 17]
(LZ77/LZ78), grammar compression [6], and the Burrows-Wheeler transform [4] (BWT).

∗ Part of this work was done while the author was a PhD student at the University of Udine, Italy. Work
supported by the Danish Research Council (DFF-4005-00267).

© Alberto Policriti and Nicola Prezza;
licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 17; pp. 17:1–17:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

17:2 From LZ77 to the Run-Length Encoded Burrows-Wheeler Transform, and Back

Grammar compression, Run-Length encoding of the BWT [14, 13] (RLBWT), and LZ77 have
been shown superior in the task of compressing highly-repetitive data and, as a consequence,
much research is lately focusing on these three techniques.

In this paper we address a central point in compressed computation: can we convert
between different compressed representations of a text while using an amount of working
space proportional to the input/output (i.e. sizes of the compressed files)? Being able to
perform such task would, for instance, open the possibility of converting between compressed
data structures (e.g. self-indexes) based on different compressors, all within compressed
working space.

It is not the fist time that this problem has been addressed. In [12] the author shows
how to convert the LZ77 encoding of a text into a grammar-based encoding, while in [2, 1]
the opposite direction (though pointing to LZ78 instead of LZ77) is considered. In [15] the
authors consider the conversions between LZ78 and run-length encoding of the text. Note
that LZ77 and run-length encoding of the BWT are much more powerful than LZ78 and
run-length encoding of the text, respectively, so methods addressing conversion between
LZ77 and RLBWT would be of much higher interest. In this work we show how to efficiently
solve this problem in space proportional to the sizes of these two compressed representations.
See Basics section for a formal definition of RLBWT (T) and LZ77(T) as a list of r pairs
and z triples, respectively. Let RLBWT (T)→ LZ77(T) denote the computation of the list
LZ77(T) using as input the list RLBWT (T) (analogously for the opposite direction). The
following results are illustrated below:
(1) We can compute RLBWT (T)→ LZ77(T) in O(n log r) time and O(r) words of working

space
(2) We can compute LZ77(T) → RLBWT (T) in O

(
n(log r + log z)

)
time and O(r + z)

words of working space

Result (1) is based on our own recent work [10] and requires space proportional to the
input only as output is streamed to disk. Result (2) requires space proportional to the input
plus the output, since data structures based on both compressors are used in main memory.
In order to achieve result (2), we show how we can (locally) decompress LZ77(T) while
incrementally building a run-length BWT data structure of the reversed text. Extracting
text from LZ77 is a computationally expensive task as it requires a time proportional to the
parse height h per extracted character [8] (with h as large as n, in the worst case). The key
ingredient of our solution is to use the run-length BWT data structure itself to efficiently
extract text from LZ77(T).

2 Basics

We assume that our text T is of the form T = T ′# ∈ Σn, with T ′ ∈ (Σ \ {#})n−1. Character
is lexicographically smaller than all elements in Σ and plays the role of both BWT and
LZ77 terminators.

The Burrows-Wheeler Transform [4] BWT (T) is a permutation of T defined as follows.
Sort all cyclic permutations of T in a conceptual matrix M ∈ Σn×n. BWT (T) is the last
column of M . With F and L we will denote the first and last column of M , respectively,
and we will say F-positions and L-positions to refer to positions on these two columns. On
compressible texts, BWT (T) exhibits some remarkable properties that permit to boost
compression. In particular, it can be shown [13] that repetitions in T generate equal-letter
runs in BWT (T). We can efficiently represent this transform as the list of pairs

RLBWT (T) = 〈λi, ci〉i=1,...,rT

A. Policriti and N. Prezza 17:3

where λi > 0 is the length of the maximal i-th ci-run, ci ∈ Σ. Equivalently, RLBWT (T) is
the shortest list of pairs 〈λi, ci〉i=1,...,rT

satisfying BWT (T) = cλ1
1 cλ2

2 . . . c
λrT
rT . Let ←−T be the

reverse of T . To simplify notation we define r = max{rT , r←−T } (in practical cases rT ≈ r←−T
holds [3], and this definition simplifies notation).

I Example 1. Let T = abcabbcaabcabcabbc#. Then, BWT(T) = ccccc#aaabbaaabbbbb
and RLBWT(T) = 〈5,c〉〈1,#〉〈3,a〉〈2,b〉〈3,a〉〈5,b〉. The Burrows-Wheeler transform has
r = 6 equal-letter runs.

With RLBWT+(T) we denote a run-length encoded BWT data structure on the text T ,
taking O(r) words of space and supporting insert, rank, select, and access operation on
the string B = BWT (T). These operations are defined as follows:

insert(c,i), where c ∈ Σ and i < n, turns B into B[0, . . . , i− 1]cB[i, . . . , n− 1]
rank(c,i) returns the number of characters equal to c in B[0, . . . , i− 1]
select(c,i) returns the position j such that B[c] = c and rank(c,j) = i

access(i) returns B[i]

Using these operations, functions RLBWT.LF (i) and RLBWT.LF (j) (mapping L-
positions to F-positions and vice versa) and function extend (turning RLBWT+(T) into
RLBWT+(aT) for some a ∈ Σ) can be supported in O(log r) time. We leave to the next
sections details concerning the particular implementation of this data structure. With
RLBWT.LF k(i) we denote the application of function LF k times starting from L-position
i.

We recall that BWT (←−T) can be built online with an algorithm that reads T -characters
left-to-right and inserts them in a dynamic string data structure [7, 5]. Briefly, letting a ∈ Σ,
the algorithm is based on the idea of backward-searching the extended reversed text←−Ta in the
BWT index for ←−T . This operation leads to the F-position l where ←−Ta should appear among
all sorted ←−T ’s suffixes. At this point, it is sufficient to insert # at position l in BWT (←−T)
and replace the old # with a to obtain BWT (←−Ta).

The LZ77 parsing [16] (or factorization) of a text T is the sequence of phrases (or factors)

LZ77(T) = 〈πi, λi, ci〉i=1,...,z

where πi ∈ {0, . . . , n− 1} ∪ {⊥} and ⊥ stands for “undefined”, λi ∈ {0, . . . , n− 2}, ci ∈ Σ,
and:
1. T = ω1c1 . . . ωzcz, with ωi = ε if λi = 0 and ωi = T [πi, . . . , πi + λi − 1] otherwise.
2. For any i = 1, . . . , z, the string ωi is the longest occurring at least twice in ω1c1 . . . ωi.

I Example 2. Let T = abcabbcaabcabcabbc#. The LZ77 factorization of the text is
a|b|c|abb|caa|bcabc|abbc#|. This factorization can be compactly represented as the list
of triples LZ77(T) = 〈⊥,0,a〉〈⊥,0,b〉〈⊥,0,c〉〈0,2,b〉〈2,2,a〉〈1,4,c〉〈3,4,#〉. The number
of phrases is z = 7.

3 From RLBWT to LZ77

Our algorithm to compute RLBWT (T)→ LZ77(T) is based on the result [10]: an algorithm
to compute – in O(r) words of working space and O(n log r) time – LZ77(T) using T as
input. The data structure at the core of this result is a dynamic run-length compressed
string; we recall the bounds of such structure as we will use it several times in the rest of the
paper:

CPM 2017

17:4 From LZ77 to the Run-Length Encoded Burrows-Wheeler Transform, and Back

I Theorem 3 ([9, 10]). Let T ∈ Σn and let r̄ be the number of equal-letter runs in T . There
exists a data structure taking O(r̄) words of space and supporting rank, select, access,
and insert operations on T in O(log r̄) time.

The algorithm described in [10] works in two steps, during the first of which builds
RLBWT+(←−T) by inserting left-to-right T -characters in a dynamic RLBWT represented
with the data structure of Theorem 3 – using the BWT construction procedure sketched in
the previous section. In the second step, the procedure scans T once more left-to-right while
searching (reversed) LZ77 phrases in RLBWT+(←−T). At the same time we store, for each
BWT equal-letter run, the two most external (i.e. leftmost and rightmost in the run) text
positions seen up to the current position; the key property proved in [10] is that this sampling
is sufficient to locate LZ77 phrase boundaries and sources. LZ77 phrases are outputted in text
order, therefore they can be directly streamed to output. The total size of the sampling of
text positions never exceeds 2r. From Theorem 3, all operations on RLBWT+(←−T) (insert,
LF-mapping, access) are supported in O(log r) time and the structure takes O(r) words of
space. The claimed space/time bounds of the algorithm easily follow.

Note that, using the algorithm described in [10], we can only perform the conversion
RLBWT+(←−T) → LZ77(T). Our full procedure to achieve conversion RLBWT (T) →
LZ77(T) consists of the following three steps:
1. convert RLBWT (T) to RLBWT+(T), i.e. add support for rank/select/access queries

on RLBWT (T);
2. compute RLBWT+(←−T) using RLBWT+(T);
3. run the algorithm described in [10] and compute LZ77(T) using RLBWT+(←−T).

Let RLBWT (T) = 〈λi, ci〉i=1,...,r (see the previous section). Step 1 can be performed by
just inserting characters cλ1

1 cλ2
2 . . . cλr

r (in this order) in a dynamic run-length encoded string.
Step 2 is performed by extracting characters T [0], T [1], . . . , T [n − 1] from RLBWT+(T)
and inserting them (in this order) in a dynamic RLBWT data structure with the BWT
construction algorithm sketched in the Section (2). Since this algorithm builds the RLBWT

of the reversed text, the final result is RLBWT+(←−T). We can state our first result:

I Theorem 4. Conversion RLBWT (T) → LZ77(T) can be performed in O(n log r) time
and O(r) words of working space.

Proof. We use the dynamic RLBWT structure of Theorem 3 to implement components
RLBWT+(T) and RLBWT+(←−T). Step 1 requires n insert operations in RLBWT+(T),
and terminates therefore in O(n log r) time. Since the string we are building contains rT
runs, this step uses O(r) words of working space. Step 2 calls n extend and FL queries on
dynamic RLBWTs. extend requires a constant number of rank and insert operations [5].
FL function requires just an access and a rank on the F column and a select on the L
column. From Theorem 3, all these operations are supported in O(log r) time, so also step
2 terminates in O(n log r) time. Recall that r is defined to be the maximum between the
number of runs in BWT (T) and BWT (←−T). Since in this step we are building RLBWT+(←−T)
using RLBWT+(T), the overall space is bounded by O(r) words. Finally, step 3 terminates
in O(n log r) time while using O(r) words of space [10]. The claimed bounds for our algorithm
to compute RLBWT (T)→ LZ77(T) follow. J

4 From LZ77 to RLBWT

Our strategy to convert LZ77(T) to RLBWT (T) consists of the following steps:

A. Policriti and N. Prezza 17:5

1. extract T [0], T [1], . . . , T [n−1] from LZ77(T) and add them (one by one) in RLBWT+(←−T)
(note: decompression is local. We discard T [i] after inserting it in RLBWT+(←−T));

2. convert RLBWT+(←−T) to RLBWT+(T);
3. extract equal-letter runs from RLBWT+(T) and stream RLBWT (T) to the output.

Step 2 is analogous to step 2 discussed in the previous section. Step 3 requires reading
characters RLBWT+(T)[0], ..., RLBWT+(T)[n−1] (access queries on RLBWT+(T)) and
keeping in memory a character storing last run’s head and a counter keeping track of last
run’s length. Whenever we open a new run, we stream last run’s head and length to the
output.

The problematic step is the first. As mentioned in the introduction, extracting a character
from LZ77(T) requires to follow a chain of character copies. In the worst case, the length h
of this chain – also called the parse height (see [8] for a formal definition) – can be as large
as n (even though in the average case h is small, see [8] for an experimental evaluation).
Our observation is that, since we are building RLBWT+(←−T), we can use this component
to extract text from LZ77(T) without following the chain of LZ77-character copies: while
decoding factor 〈πv, λv, cv〉, we convert text position πv to its corresponding RLBWT position
j = RLBWT.LFπv (0) and extract λv characters by performing λv further LF queries from
position j. Conceptually, this task could be achieved by directly performing πv LF queries
on the RLBWT starting from L-position 0. This is clearly not efficient as it would result in
a quadratic-time strategy. In the next section we show how to compute RLBWT.LFπv (0)
in just O(log z) time.

4.1 Dynamic functions
Considering that RLBWT+(←−T) is built incrementally, we need a data structure to encode a
function Z : {π1, ..., πz} → {0, ..., n− 1} mapping those text positions that are the source of
some LZ77 phrase to their corresponding RLBWT positions. Moreover, the data structure
must be dynamic, that is it must support the following three operations (see below the list
for a description of how these operations will be used):

map: Z(i). Compute the image of i
expand: Z.expand(j). Set Z(i) to Z(i) + 1 for every i such that Z(i) ≥ j
assign: Z(i)← j. Call Z.expand(j) and set Z(i) to j

To keep the notation simple and light, we use the same symbol Z for the function as
well as for the data structure representing it. We say that Z(i) is defined if, for some j, we
executed an assign operation Z(i) ← j at some previous stage of the computation. For
technical reasons that will be clear later, we restrict our attention to the case where we execute
assign operations Z(i)← j for increasing values of i, i.e. if Z(i1)← j1, . . . ,Z(iq)← jq is
the sequence (in temporal order) of the calls to assign on Z, then i1 < · · · < iq. This will
be the case in our algorithm and, in particular, i1, . . . , iq will be the sorted non-null phrases
sources π1, . . . , πz. Finally, we assume that Z(i) is always called when Z(i) has already been
defined – again, this will be the case in our algorithm.

Intuitively, Z.expand(j) will be used when we insert T [i] at position j in the partial
RLBWT+(←−T) and j is not associated with any phrase source (i.e. i 6= πv for all v = 1, . . . , z).
When we insert T [i] at position j in the partial RLBWT+(←−T) and i = πv for some
v = 1, . . . , z (possibly more than one), Z(i)← j will be used.

The existence and associated query-costs of the data structure Z are proved in the
following lemma.

CPM 2017

17:6 From LZ77 to the Run-Length Encoded Burrows-Wheeler Transform, and Back

I Lemma 5. Letting z be the number of phrases in the LZ77 parsing of T , there exists a data
structure taking O(z) words of space and supporting map, expand, and assign operations on
Z : {π1, ..., πz} → {0, ..., n− 1} in O(log z) time.

Proof. First of all notice that, since LZ77(T) is our input, we know beforehand the domain
D = {π | 〈π, λ, c〉 ∈ LZ77(T) ∧π 6= ⊥} of Z. We can therefore map the domain to rank space
and restrict our attention to functions Z ′ : {0, ..., d− 1} → {0, ..., n− 1}, with d = |D| ≤ z.
To compute Z(i) we map text position 0 ≤ i < n to a rank 0 ≤ i′ < d by binary-searching a
precomputed array containing the sorted values of D and return Z ′(i′). Similarly, Z(i)← j

is implemented by executing Z ′(i′)← j (with i′ defined as above), and Z.expand(j) simply
as Z ′.expand(j).

We use a dynamic gap-encoded bitvector C marking (by setting a bit) those positions
j such that j = Z(i) for some i. A dynamic gap-encoded bitvector with b bits set can
easily be implemented using a red-black tree such that it takes O(b) words of space and
supports insert, rank, select, and access operations in O(log b) time; see [10] for such
a reduction. Upon initialization of Z, C is empty. Let k be the number of bits set in C

at some step of the computation. We can furthermore restrict our attention to surjective
functions Z ′′ : {0, ..., d−1} → {0, ..., k−1} as follows. Z ′(i′) (map) returns C.select1(Z ′′(i′)).
The assign operation Z ′(i′) ← j requires the insert operation C.insert(1, j) followed
by the execution of Z ′′(i′) ← C.rank1(j). Operation Z ′.expand(j) is implemented with
C.insert(0, j).

To conclude, since we restrict our attention to the case where – when calling Z(i)← j –
argument i is greater than all i′ such that Z(i′) is defined, we will execute assign operations
Z ′′(i′)← j′′ for increasing values of i′ = 0, 1, . . . , d−1. In particular, at each assign Z ′′(i′)←
j′′, i′ = k will be the current domain size. We therefore focus on a new operation, append,
denoted as Z ′′.append(j′′) and whose effect is Z ′′(k)← j′′. We are left with the problem of
finding a data structure for a dynamic permutation Z ′′ : {0, ..., k − 1} → {0, ..., k − 1} with
support for map and append operations. Note that both domain and codomain size (k) are
incremented by one after every append operation.

I Example 6. Let k = 5 and Z ′′ be the permutation 〈3, 1, 0, 4, 2〉. After Z ′′.append(2), k
increases to 6 and Z ′′ turns into the permutation 〈4, 1, 0, 5, 3, 2〉. Note that Z ′′.append(j′′)
has the following effect on the permutation: all numbers larger than or equal to j′′ are
incremented by one, and j′′ is appended at the end of the permutation.

To implement the dynamic permutation Z ′′, we use a red-black tree T . We associate to
each internal tree node x a counter storing the number of leaves contained in the subtree
rooted in x. Let m be the size of the tree. The tree supports two operations:
T .insert(j). Insert a new leaf at position j, i.e. the new leaf will be the j-th leaf to be
visited in the in-order traversal of the tree. This operation can be implemented using
subtree-size counters to guide the insertion. After the leaf has been inserted, we need
to re-balance the tree (if necessary) and update at most O(logm) subtree-size counters.
The procedure returns (a pointer to) the tree leaf x just inserted. Overall, T .insert(j)
takes O(logm) time
T .locate(x). Take as input a leaf in the red-black tree and return the (0-based) rank
of the leaf among all leaves in the in-order traversal of the tree. T .locate(x) requires
climbing the tree from x to the root and use subtree-size counters to retrieve the desired
value, and therefore runs in O(logm) time.

At this point, the dynamic permutation Z ′′ is implemented using the tree described above
and a vector N of red-black tree leaves supporting append operations (i.e. insert at the end

A. Policriti and N. Prezza 17:7

of the vector). N can be implemented with a simple vector of words with initial capacity 1.
Every time we need to add an element beyond the capacity of N , we re-allocate 2|N | words
for the array. N supports therefore constant-time access and amortized constant-time append
operations. Starting with empty T and N , we implement operations on Z ′′ as follows:
Z ′′.map(i) returns T .locate(N [i])
Z ′′.append(j) is implemented by calling N.append(T .insert(j))

Taking into account all components used to implement our original dynamic function Z, we
get the bounds of our lemma. J

4.2 The algorithm
The steps of our algorithm to compute RLBWT+(←−T) from LZ77(T) are the following:
1. sort D = {π | 〈π, λ, c〉 ∈ LZ77(T) ∧ π 6= ⊥};
2. process 〈πv, λv, cv〉v=1,...,z from the first to last triple as follows. When processing
〈πv, λv, cv〉:
a. use our dynamic function Z to convert text position πv to RLBWT position j′ = Z(πv)
b. extract λv characters from RLBWT starting from position j′ by using the LF function;

at the same time, extend RLBWT with the extracted characters.
c. when inserting a character at position j of the RLBWT, if j corresponds to some text

position i ∈ D, then update Z accordingly by setting Z(i)← j. If, instead, j does not
correspond to any text position in D, execute Z.expand(j).

Our algorithm is outlined below as Algorithm 1. Note that the pseudocode describes all 3
steps reported at the beginning of Section 4 (steps 2 and 3 are implicit in Line 26). Follows
a detailed description of the pseudocode and a result stating its complexity.

In Lines 1–5 we initialize all structures and variables. In order: we compute and sort set
D of phrase sources, we initialize current text position i (i is the position of the character
to be read), we initialize an empty RLBWT data structure (we will build RLBWT+(←−T)
online), and we create an empty dynamic function data structure Z. In Line 6 we enter the
main loop iterating over LZ77 factors. If the current phrase’s source is not empty (i.e. if
the phrase copies a previous portion of the text), we need to extract λv characters from the
RLBWT. First, in Line 8 we retrieve the RLBWT position j′ corresponding to text position
πv with a map query on Z. Note that, if πv 6= ⊥, then i > πv and therefore Z(πv) is defined
(see next). We are ready to extract characters from RLBWT. For λv times, we repeat the
following procedure (Lines 10–19). We read the l-th character from the source of the v-th
phrase (Line 10) and insert it in the RLBWT (Line 11). Importantly, the extend operation
at Line 11 returns the RLBWT position j at which the new character is inserted; RLBWT
position j correspond to text position i. We now have to check if i is the source of some
LZ77 phrase. If this is the case (Line 12), then we link text position i to RLBWT position
j by calling a assign query on Z (Line 13). If, on the other hand, i is not the source of
any phrase, then we call a expand query on Z on the codomain element j. Note that, after
the extend query at Line 11, RLBWT positions after the j-th are shifted by one. If j′ is
one of such positions, then we increment it (Line 17). Finally, we increment text position i
(Line 19). At this point, we finished copying characters from the v-th phrase’s source (or
we did not do anything if the v-th phrase consists of only one character). We therefore
extend the RLBWT with the v-th trailing character (Line 20), and (as done before) associate
text position i to RLBWT position j if i is the source of some phrase (Lines 21–24). We
conclude the main loop by incrementing the current position i on the text (Line 25). Once
all characters have been extracted from LZ77, RLBWT is a run-length BWT structure on

CPM 2017

17:8 From LZ77 to the Run-Length Encoded Burrows-Wheeler Transform, and Back

Algorithm 1: lz77_to_rlbwt(〈πv, λv, cv〉v=1,...,z)
input :LZ77 factorization LZ77(T) = 〈πv, λv, cv〉v=1,...,z of a text T
output :RLBWT representation 〈λv, cv〉v=1,...,r of T

1 D ← {π | 〈π, λ, c〉 ∈ LZ77(T) ∧ π 6= ⊥}; /* Phrase sources */
2 sort(D); /* Sort phrase sources */
3 i← 0; /* Current position on T */
4 RLBWT ← ε; /* Init empty RLBWT of reversed text */
5 Z ← ∅; /* Init empty dynamic function structure */

6 for v = 1, . . . , z do
7 if πv 6= ⊥ then
8 j′ ← Z(πv); /* Map text position to RLBWT position */

9 for l = 1, . . . , λv do
10 c← RLBWT [j′]; /* read char from source */
11 j ← RLBWT.extend(c); /* left-extend reverse text’s RLBWT */

12 if i ∈ D then
13 Z(i)← j; /* j is the image of i */
14 else
15 Z.expand(j); /* j does not have counter-image */

16 if j ≤ j′ then
17 j′ ← j′ + 1; /* new char falls before j′ */

18 j′ ← RLBWT.LF (j′);
19 i← i+ 1; /* Advance text position */

20 j ← RLBWT.extend(cv); /* Extend with trailing character */

21 if i ∈ D then
22 Z(i)← j;
23 else
24 Z.expand(j);

25 i← i+ 1; /* Advance text position */

26 return reverse(RLBWT); /* Build and return RLBWT (T) */

←−
T . At Line 26 we convert it to RLBWT+(T) (see previous section) and return it as a series
of pairs 〈λv, cv〉v=1,...,r.

I Theorem 7. Algorithm 1 converts LZ77(T)→ RLBWT (T) in O(n(log r + log z)) time
and O(r + z) words of working space.

Proof. Sorting set D takes O(z log z) ⊆ O(n log z) time. Overall, we perform O(z)
map/assign and n expand queries on Z. All these operations take globally O(n log z) time.
We use the structure of Theorem 3 to implement RLBWT+(T) and RLBWT+(←−T). We per-
form n access, extend, and LF queries on RLBWT+(←−T). This takes overall O(n log r) time.
Finally, inverting RLBWT+(←−T) at Line 26 takes O(n log r) time and O(r) words of space
(see previous section). We keep in memory the following structures: D, Z, RLBWT+(←−T),
and RLBWT+(T). The bounds of our theorem easily follow. J

A. Policriti and N. Prezza 17:9

5 Conclusions

In this paper we presented space-efficient algorithms converting between two compressed file
representations – the run-length Burrows-Wheeler transform (RLBWT) and the Lempel-Ziv
77 parsing (LZ77) – using a working space proportional to the input and the output. Both
representations can be significantly (up to exponentially) smaller than the text; our solutions
are therefore particularly useful in those cases in which the text does not fit in main memory
but its compressed representation does. Another application of the results discussed in this
paper is the optimal-space construction of compressed self-indexes based on these compression
techniques (e.g. [3]) taking as input the RLBWT/LZ77 compressed file.

We point out two possible developments of our ideas. First of all, our algorithms rely
heavily on dynamic data structures. On the experimental side, it has been shown (see,
e.g., [11]) that algorithms based on compressed dynamic strings can be hundreds of times
slower than others not making use of dynamism (despite offering very similar theoretical
guarantees). This is due to factors ranging from cache misses to memory fragmentation;
dynamic structures inherently incur into these problems as they need to perform a large
number of memory allocations and de-allocations. A possible strategy for overcoming these
difficulties could be to build the RLBWT by merging two static RLBWTs while using a
working space proportional to the output size. A second improvement over our results
concerns theoretical running times. We note that our algorithms perform a number of
steps proportional to the size n of the text. Considering that the compressed file could be
exponentially smaller than the text, it is natural to ask whether it is possible to perform the
same tasks in a time proportional to r + z. This seems to be a much more difficult goal due
to the intrinsic differences among the two compressors – one is based on suffix sorting, while
the other on replacement of repetitions with pointers.

References

1 Hideo Bannai, Paweł Gawrychowski, Shunsuke Inenaga, and Masayuki Takeda. Converting
SLP to LZ78 in almost linear time. In Johannes Fischer and Peter Sanders, editors, Pro-
ceedings of the 24th Annual Symposium on Combinatorial Pattern Matching (CPM 2013),
volume 7922 of LNCS, pages 38–49. Springer, 2013. doi:10.1007/978-3-642-38905-4_6.

2 Hideo Bannai, Shunsuke Inenaga, and Masayuki Takeda. Efficient LZ78 factorization of
grammar compressed text. In Liliana Calderón-Benavides, Cristina N. González-Caro,
Edgar Chávez, and Nivio Ziviani, editors, Proceedings of the 19th International Symposium
on String Processing and Information Retrieval (SPIRE 2012), volume 7608 of LNCS, pages
86–98. Springer, 2012. doi:10.1007/978-3-642-34109-0_10.

3 Djamal Belazzougui, Fabio Cunial, Travis Gagie, Nicola Prezza, and Mathieu Raffinot.
Composite repetition-aware data structures. In Ferdinando Cicalese, Ely Porat, and Ugo
Vaccaro, editors, Proceedings of the 26th Annual Symposium on Combinatorial Pattern
Matching (CPM 2015), volume 9133 of LNCS, pages 26–39. Springer, 2015. doi:10.1007/
978-3-319-19929-0_3.

4 Michael Burrows and David J. Wheeler. A block-sorting lossless data compression al-
gorithm. Technical report, Systems Research Center, 1994. URL: http://www.hpl.hp.
com/techreports/Compaq-DEC/SRC-RR-124.pdf.

5 Ho-Leung Chan, Wing-Kai Hon, Tak-Wah Lam, and Kunihiko Sadakane. Compressed
indexes for dynamic text collections. ACM Trans. Algorithms, 3(2):21, 2007. doi:10.
1145/1240233.1240244.

CPM 2017

http://dx.doi.org/10.1007/978-3-642-38905-4_6
http://dx.doi.org/10.1007/978-3-642-34109-0_10
http://dx.doi.org/10.1007/978-3-319-19929-0_3
http://dx.doi.org/10.1007/978-3-319-19929-0_3
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf
http://dx.doi.org/10.1145/1240233.1240244
http://dx.doi.org/10.1145/1240233.1240244

17:10 From LZ77 to the Run-Length Encoded Burrows-Wheeler Transform, and Back

6 Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prabhakaran, Amit Sahai,
and Abhi Shelat. The smallest grammar problem. IEEE Trans. Inf. Theory, 51(7):2554–
2576, 2005. doi:10.1109/TIT.2005.850116.

7 Wing-Kai Hon, Tak-Wah Lam, Kunihiko Sadakane, Wing-Kin Sung, and Siu-Ming Yiu. A
space and time efficient algorithm for constructing compressed suffix arrays. Algorithmica,
48(1):23–36, 2007. doi:10.1007/s00453-006-1228-8.

8 Sebastian Kreft and Gonzalo Navarro. On compressing and indexing repetitive sequences.
Theor. Comput. Sci., 483:115–133, 2013. doi:10.1016/j.tcs.2012.02.006.

9 Veli Mäkinen, Gonzalo Navarro, Jouni Sirén, and Niko Välimäki. Storage and retrieval
of highly repetitive sequence collections. J. Comput. Biol., 17(3):281–308, 2010. doi:
10.1089/cmb.2009.0169.

10 Alberto Policriti and Nicola Prezza. Computing LZ77 in run-compressed space. In
Ali Bilgin, Michael W. Marcellin, Joan Serra-Sagristà, and James A. Storer, editors,
Proceedings of the 2016 Data Compression Conference (DCC 2016). IEEE, 2016. doi:
10.1109/DCC.2016.30.

11 Nicola Prezza. A framework of dynamic data structures for string processing, 2017. arXiv:
1701.07238.

12 Wojciech Rytter. Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theor. Comput. Sci., 302(1-3):211–222, 2003. doi:10.1016/
S0304-3975(02)00777-6.

13 Jouni Sirén. Compressed full-text indexes for highly repetitive collections. PhD thesis,
University of Helsinki, June 2012. URL: http://urn.fi/URN:ISBN:978-952-10-8052-4.

14 Jouni Sirén, Niko Välimäki, Veli Mäkinen, and Gonzalo Navarro. Run-length compressed
indexes are superior for highly repetitive sequence collections. In Amihood Amir, Andrew
Turpin, and Alistair Moffat, editors, Proceedings of the 15th International Symposium on
String Processing and Information Retrieval (SPIRE 2008), volume 5280 of LNCS, pages
164–175. Springer, 2009. doi:10.1007/978-3-540-89097-3_17.

15 Yuya Tamakoshi, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masanori Takeda.
From run length encoding to LZ78 and back again. In Ali Bilgin, Michael W. Marcellin, Joan
Serra-Sagristà, and James A. Storer, editors, Proceedings of the 2013 Data Compression
Conference (DCC 2013), pages 143–152. IEEE, 2013. doi:10.1109/DCC.2013.22.

16 Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression.
IEEE Trans. Inf. Theory, 23(3):337–343, 1977. doi:10.1109/TIT.1977.1055714.

17 Jacob Ziv and Abraham Lempel. Compression of individual sequences via variable-rate
coding. IEEE Trans. Inf. Theory, 24(5):530–536, 1978. doi:10.1109/TIT.1978.1055934.

http://dx.doi.org/10.1109/TIT.2005.850116
http://dx.doi.org/10.1007/s00453-006-1228-8
http://dx.doi.org/10.1016/j.tcs.2012.02.006
http://dx.doi.org/10.1089/cmb.2009.0169
http://dx.doi.org/10.1089/cmb.2009.0169
http://dx.doi.org/10.1109/DCC.2016.30
http://dx.doi.org/10.1109/DCC.2016.30
http://arxiv.org/abs/1701.07238
http://arxiv.org/abs/1701.07238
http://dx.doi.org/10.1016/S0304-3975(02)00777-6
http://dx.doi.org/10.1016/S0304-3975(02)00777-6
http://urn.fi/URN:ISBN:978-952-10-8052-4
http://dx.doi.org/10.1007/978-3-540-89097-3_17
http://dx.doi.org/10.1109/DCC.2013.22
http://dx.doi.org/10.1109/TIT.1977.1055714
http://dx.doi.org/10.1109/TIT.1978.1055934

Longest Common Extensions with Recompression∗

Tomohiro I

Kyushu Institute of Technology, Fukuoka, Japan
tomohiro@ai.kyutech.ac.jp

Abstract
Given two positions i and j in a string T of length N , a longest common extension (LCE)
query asks for the length of the longest common prefix between suffixes beginning at i and j. A
compressed LCE data structure stores T in a compressed form while supporting fast LCE queries.
In this article we show that the recompression technique is a powerful tool for compressed LCE
data structures. We present a new compressed LCE data structure of size O(z lg(N/z)) that
supports LCE queries in O(lg N) time, where z is the size of Lempel-Ziv 77 factorization without
self-reference of T. Given T as an uncompressed form, we show how to build our data structure
in O(N) time and space. Given T as a grammar compressed form, i.e., a straight-line program
of size n generating T, we show how to build our data structure in O(n lg(N/n)) time and
O(n + z lg(N/z)) space. Our algorithms are deterministic and always return correct answers.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Longest Common Extension (LCE) queries, compressed data structure,
grammar compressed strings, Straight-Line Program (SLP)

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.18

1 Introduction

Given two positions i and j in a text T of length N , a longest common extension (LCE)
query LCE(i, j) asks for the length of the longest common prefix between suffixes beginning at
i and j. Since LCE queries play a central role in many string processing algorithms (see text
book [6] for example), efficient LCE data structures have been extensively studied. If we are
allowed to use O(N) space, optimal O(1) query time can be achieved by, e.g., lowest common
ancestor queries [1] on the suffix tree of T. However, O(N) space can be too expensive
nowadays as the size of strings to be processed becomes quite large. Thus, recent studies
focus on more space efficient solutions.

Roughly there are three scenarios: Several authors have studied tradeoffs among query
time, construction time and data structure size [19, 5, 4, 21]; In [18], Prezza presented
in-place LCE data structures showing that the memory space for storing T can be replaced
with an LCE data structure while retaining optimal substring extraction time; LCE data
structures working on grammar compressed representation of T were studied in [7, 3, 2, 17].

In this article we pursue the third scenario, which is advantageous when T is highly
compressible. In grammar compression, T is represented by a Context Free Grammar (CFG)
that generates T and only T. In particular CFGs in Chomsky normal form, called Straight
Line Programs (SLPs), are often considered as any CFG can be easily transformed into
an SLP without changing the order of grammar size. Let S be an arbitrary SLP of size n

generating T. Bille et al. [2] showed a Monte Carlo randomized data structure of O(n) space
that supports LCE queries in O(lg N + lg2 `) time, where ` is the answer to the LCE query.

∗ I was supported by JSPS KAKENHI Grant Number 16K16009.

© Tomohiro I;
licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 18; pp. 18:1–18:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.18
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

18:2 Longest Common Extensions with Recompression

Because their algorithm is based on Karp-Rabin fingerprints, the answer is correct w.h.p
(with high probability). If we always expect correct answers, we have to verify fingerprints in
preprocessing phase, spending either O(N lg N) time (w.h.p.) and O(N) space or O(N2

n lg N)
time (w.h.p.) and O(n) space.

For a deterministic solution, I et al. [7] proposed an O(n2)-space data structure, which
can be built in O(n2h) time and O(n2) space from S, and supports LCE queries in O(h lg N)
time, where h is the height of S. As will be stated in Theorem 2, we outstrip this result.

Our work is most similar to that presented in [17]. They showed that the signature
encoding [15] of T, a special kind of CFGs that can be stored in O(z lg N lg∗N) space, can
support LCE queries in O(lg N + lg ` lg∗N) time, where z is the size of LZ77 factorization1 of
T and lg∗ is the iterated logarithm. The signature encoding is based on the localy consistent
parsing technique, which determines the parsing of a string by local surrounding. A key
property of the signature encoding is that any occurrence of the same substring of length
` in T is guaranteed to be compressed in almost the same way leaving only O(lg ` lg∗N)
discrepancies in its surrounding. As a result, an LCE query can be answered by tracing the
O(lg ` lg∗N) surroundings created over two occurrences of the longest common extension.
Since the cost O(lg N) is needed anyway to traverse the derivation tree of height O(lg N)
from the root, an LCE query is supported in O(lg N + lg ` lg∗N) time.

In this article we show that CFGs created by the recompression technique exhibit a
similar property that can be used to answer LCE queries in O(lg N) time. In recent years
recompression has been proved to be a powerful tool in problems related to grammar
compression [8, 9, 10, 13] and word equations [11, 12]. The main component of recompression
is to replace some pairs in a string with variables of the CFG. Although we use global
information (like the frequencies of pairs in the string) to determine which pairs to be
replaced, the pairing itself is done very locally, i.e., “all” occurrences of the pairs are replaced
regardless of contexts. Then we can show that recompression compresses any occurrence of
the same substring in T in almost the same way leaving only O(lg N) discrepancies in its
surrounding. This leads to an O(lg N)-time algorithm to answer LCE queries, improving
the O(lg N + lg ` lg∗N)-time algorithm of [17]. We also improve the data structure size from
O(z lg N lg∗N) of [17]2 to O(z lg(N/z)).

In [17], the authors proposed efficient algorithms to build their LCE data structure from
various kinds of input as summarized in Table 1. We achieve a better and cleaner complexity
to build our LCE data structure from SLPs. This has a great impact on compressed string
processing, in which we are to solve problems on SLPs without decompressing the string
explicitly. For instance, we can apply our result to the problems discussed in Section 7 of [17]
and immediately improve the results (other than Theorem 17). It should be noted that the
data structures in [17] also support efficient text edit operations. We are not sure if our data
structures can be efficiently dynamized.

Theorems 1 and 2 show our main results. Note that our data structure is a simple CFG
of height O(lg N) on which we can simulate the traversal of the derivation tree in constant
time per move. Thus, it naturally supports Extract(i, `) queries, which asks for retrieving the
substring T[i..i + `− 1], in O(lg N + `) time.

1 Note that there are several variants of LZ77 factorization. In this article we refer to the one that is
known as the f-factorization without self-reference as LZ77 factorization unless otherwise noted.

2 We believe that the space complexities of [17] can be improved to O(z lg(N/z) lg∗N) by using the same
trick we use in Lemma 13.

T. I 18:3

Table 1 Comparison of construction time and space between ours and [17], where N is the length
of T, S is an SLP of size n generating T, z is the size of LZ77 factorization of T, and fA is the time
needed for predecessor queries on a set of z lg N lg∗N integers from an N -element universe.

Input Construction time Construction space Reference
T O(NfA) O(z lg N lg∗N) Theorem 3 (1a) of [17]
T O(N) O(N) Theorem 3 (1b) of [17]
S O(nfA lg N lg∗N) O(n + z lg N lg∗N) Theorem 3 (3a) of [17]
S O(n lg lg n lg N lg∗N) O(n lg∗N + z lg N lg∗N) Theorem 3 (3b) of [17]

LZ77 O(zfA lg N lg∗N) O(z lg N lg∗N) Theorem 3 (2) of [17]
T O(N) O(N) this work, Theorem 1
S O(n lg(N/n)) O(n + z lg(N/z)) this work, Theorem 2

LZ77 O(z lg2(N/z)) O(z lg(N/z)) this work, Corollary 3

I Theorem 1. Given a string T of length N , we can compute in O(N) time and space a
compressed representation of T of size O(z lg(N/z)) that supports Extract(i, `) in O(lg N + `)
time and LCE queries in O(lg N) time.

I Theorem 2. Given an SLP of size n generating a string T of length N , we can compute
in O(n lg(N/n)) time and O(n + z lg(N/z)) space a compressed representation of T of size
O(z lg(N/z)) that supports Extract(i, `) in O(lg N + `) time and LCE queries in O(lg N) time.

Suppose that we are given the LZ77-compression of size z of T as an input. Since we can
convert the input into an SLP of size O(z lg(N/z)) [20], we can apply Theorem 2 to the SLP
and get the next corollary.

I Corollary 3. Given the LZ77-compression of size z of a string T of length N , we can
compute in O(z lg2(N/z)) time and O(z lg(N/z)) space a compressed representation of T of
size O(z lg(N/z)) that supports Extract(i, `) in O(lg N + `) time and LCE queries in O(lg N)
time.

Technically, this work owes very much to two papers [10, 9]. For instance, our construction
algorithm of Theorem 1 is essentially the same as the grammar compression algorithm [10],
which produces an SLP of size O(g∗ lg(N/g∗)), where g∗ is the smallest grammar size to
generate T. Our contribution is in discovering the above mentioned property that can be
used for fast LCE queries. Also, we use the property to upper bound the size of our data
structure in terms of z rather than g∗. Since it is known that z ≤ g∗ holds [20], an upper
bound in terms of z is preferable. The technical issues in our construction algorithm of
Theorem 2 have been tackled in [9], in which the recompression technique is used to solve
the fully-compressed pattern matching problems. However, we make some contributions on
top of it: We give a new observation that simplifies the implementation and analysis of a
component of recompression called BComp (see Section 4.1.2). Also, we achieve a better
construction time O(n lg(N/n)) than what we obtain by straightforwardly applying the
analysis in [9]—O(n lg N).

2 Preliminaries

An alphabet Σ is a set of characters. A string over Σ is an element in Σ∗. For any string
w ∈ Σ∗, |w| denotes the length of w. Let ε be the empty string, i.e., |ε| = 0. Let Σ+ = Σ∗\{ε}.
For any 1 ≤ i ≤ |w|, w[i] denotes the i-th character of w. For any 1 ≤ i ≤ j ≤ |w|, w[i..j]

CPM 2017

18:4 Longest Common Extensions with Recompression

denotes the substring of w beginning at i and ending at j. For convenience, let w[i..j] = ε if
i > j. For any 0 ≤ i ≤ |w|, w[1..i] (resp. w[|w| − i + 1..|w|]) is called the prefix (resp. suffix)
of w of length i. We say that a string x occurs at position i in w iff w[i..i + |x| − 1] = x. A
substring w[i..j] = cd (c ∈ Σ, d ≥ 1) of w is called a block iff it is a maximal run of a single
character, i.e., (i = 1 ∨ w[i− 1] 6= c) ∧ (j = |w| ∨ w[j + 1] 6= c).

The text on which LCE queries are performed is denoted by T ∈ Σ∗ with N = |T|
throughout this paper. We assume that Σ is an integer alphabet [1..NO(1)] and the standard
word RAM model with word size Ω(lg N).

The size of our compressed LCE data structure is bounded by O(z lg(N/z)), where z is
the size of the LZ77 factorization of T defined as follows:

IDefinition 4 (LZ77 factorization). The factorization T = f1f2 · · · fz is the LZ77 factorization
of T iff the following condition holds: For any 1 ≤ i ≤ z, let pi = |f1f2 · · · fi−1| + 1, then
fi = T[pi] if T[pi] does not appear in T[1..pi−1], otherwise fi is the longest prefix of T[pi..N]
that occurs in T[1..pi − 1].

In this article, we deal with grammar compressed strings, in which a string is represented
by a Context Free Grammar (CFG) generating the string only. In particular, we consider
Straight-Line Programs (SLPs) that are CFGs in Chomsky normal form. Formally, an SLP
that generates a string T is a triple S = (Σ,V,D), where Σ is the set of characters (terminals),
V is the set of variables (non-terminals), D is the set of deterministic production rules whose
righthand sides are in V2 ∪ Σ, and the last variable derives T.3 Let n = |V|. We treat
variables as integers in [1..n] (which should be distinguishable from Σ by having extra one
bit), and D as an injective function that maps a variable to its righthand side. We assume
that given any variable X we can access in O(1) time the information on X, e.g., D(X). We
refer to n as the size of S since S can be encoded in O(n) space. Note that N can be as
large as 2n−1, and so, SLPs have a potential to achieve exponential compression.

We extend SLPs by allowing run-length encoded rules whose righthand sides are of the
form Xd with X ∈ V and d ≥ 2, and call such CFGs run-length SLPs (RLSLPs). Since a
run-length encoded rule can be stored in O(1) space, we still define the size of an RLSLP by
the number of variables.

Let us consider the derivation tree T of an RLSLP S that generates a string T, where we
delete all the nodes labeled with terminals for simplicity. That is, every node in T is labeled
with a variable. The height of S is the height of T . We say that a sequence C = v1 · · · vm of
nodes is a chain iff the nodes are all adjacent in this order, i.e., the beginning position of
vi+1 is the ending position of vi plus one for any 1 ≤ i < m. C is labeled with the sequence
of labels of v1 · · · vm. For any sequence p ∈ V∗ of variables, let valS(p) denote the string
obtained by concatenating the strings derived from all variables in the sequence. We omit S
when it is clear from context. We say that p generates val (p). Also, we say that p occurs at
position i iff there is a chain that is labeled with p and begins at i.

The next lemma, which is somewhat standard for SLPs, also holds for RLSLPs.

I Lemma 5. For any RLSLP S of height h generating T, by storing |val (X)| for every
variable X, we can support Extract(i, `) in O(h + `) time.

3 We treat the last variable as the starting variable.

T. I 18:5

3 LCE data structure built from uncompressed texts

In this section, we prove Theorem 1 by showing that the RLSLP obtained by grammar
compression algorithm [9] based on recompression can be used for fast LCE queries. In
Subsection 3.1 we review recompression and introduce notation we use. In Subsection 3.2 we
present a new characterization of recompression, which is a key to our contributions.

3.1 TtoG: Grammar compression based on recompression
In [9] Jeż proposed an algorithm TtoG to compute an RLSLP of T in O(N) time.4 Let
TtoG(T) denote the RLSLP of T produced by TtoG. We use the term letters for variables
introduced by TtoG. In particular, we often refer to an occurrence of a sequence of letters,
for which the readers should recall the definition of an occurrence of a sequence of variables.
Also, we use c (rather than X) to represent a letter.

TtoG consists of two different types of compression, BComp and PComp, which stand for
Block Compression and Pair Compression, respectively.

BComp: Given a string w over Σ = [1..|w|], BComp compresses w by replacing all blocks
of length ≥ 2 with fresh letters. Note that BComp eliminates all blocks of length ≥ 2 in
w. We can conduct BComp in O(|w|) time and space (Lemma 6).
PComp: Given a string w over Σ = [1..|w|] that contains no block of length ≥ 2, PComp
compresses w by replacing all pairs from Σ́Σ̀ with fresh letters, where (Σ́ , Σ̀) is a partition
of Σ, i.e., Σ = Σ́ ∪ Σ̀ and Σ́ ∩ Σ̀ = ∅. We can deterministically compute in O(|w|) time
and space a partition of Σ by which at least (|w| − 1)/4 pairs are replaced (Lemma 7),
and conduct PComp in O(|w|) time and space (Lemma 8).

Let T0 be a sequence of letters obtained by replacing every character c of T with a letter
generating c. TtoG compresses T0 by applying BComp and PComp by turns until the string
gets shrunk into a single letter. Since PComp compresses a given string by a constant factor
3/4, the height of TtoG(T) is O(lg N), and the total running time is bounded by O(N).

In order to give a formal description we introduce some notation below. TtoG transforms
level by level T0 into strings, T1, T2, . . . , Tĥ, where |Tĥ| = 1. For any 0 ≤ h ≤ ĥ, we say that
h is the level of Th. If h is even, the transformation from Th to Th+1 is performed by BComp,
and production rules of the form c→ c̈d are introduced. If h is odd, the transformation from
Th to Th+1 is performed by PComp, and production rules of the form c→ ćc̀ are introduced.
Let Σh be the set of letters appearing in Th. For any even h (0 ≤ h < ĥ), let Σ̈h denote the
set of letters with which there is a block of length ≥ 2 in Th. For any odd h (0 ≤ h < ĥ), let
(Σ́h, Σ̀h) denote the partition of Σh used in PComp of level h.

Figure 1 shows an example of how TtoG compresses T0.
The following four lemmas show how to conduct BComp, PComp, and thus, TtoG,

efficiently, which are essentially the same as respectively Lemma 2, Lemma 5, Lemma 6, and
Theorem 1, stated in [9]. We give the proofs in Appendix for the sake of completeness.

I Lemma 6. Given a string w over Σ = [1..|w|], we can conduct BComp in O(|w|) time and
space.

For any string w ∈ Σ∗ that contains no block of length ≥ 2, let Freqw(c, c̃, 0) (resp.
Freqw(c, c̃, 1)) with c > c̃ ∈ Σ denote the number of occurrences of cc̃ (resp. c̃c) in w. We

4 Indeed, the paper shows how to compute an “SLP” of size O(g∗ lg(N/g∗)), where g∗ is the smallest SLP
size to generate T. In order to estimate the number of SLP’s variables needed to represent run-length
encoded rules, its analysis becomes much involved.

CPM 2017

18:6 Longest Common Extensions with Recompression

T0 3
T1
T2
T3
T4

1 1 1 2 3 4 2 2 2 2 21 1 1 13 4 3 42 2 2 2 2 21 1 3 4 4
3 6 2 3 4 7 2 21 1 53 4 3 42 7 2 21 1 3 8
3 13 10 7 9 9 10 1012 7 9 9 11
3 13 10 7 14 10 1012 7 14 11
3 17 15 10 16 15 11
3 17 15 10 16 15 11
3 19 10 18 11
3 19 10 18 11

20 21 11
20 21 11

22 11
22 11
23

T5
T6
T7
T8
T9
T10
T11
T12

Figure 1 An example of how TtoG compresses T0. Below we enumerate non-empty Σ̈h, Σ́h, Σ̀h

and production rules introduced in each level. From T0 to T1: Σ̈0 = {1, 2, 4}, {5 → 12, 6 →
13, 7 → 23, 8 → 42}. From T1 to T2: Σ́1 = {1, 3, 5, 6, 7}, Σ̀1 = {2, 4, 8}, {9 → (1, 2), 10 →
(3, 4), 11 → (3, 8), 12 → (5, 2), 13 → (6, 2)}. From T2 to T3: Σ̈2 = {9}, {14 → 92}. From T3

to T4: Σ́3 = {3, 7, 12, 13}, Σ̀3 = {10, 14}, {15 → (7, 14), 16 → (12, 10), 17 → (13, 10)}. From
T5 to T6: Σ́5 = {3, 10, 11, 16, 17}, Σ̀5 = {15}, {18 → (16, 15), 19 → (17, 15)}. From T7 to T8:
Σ́7 = {3, 10, 11}, Σ̀7 = {18, 19}, {20 → (3, 19), 21 → (10, 18)}. From T9 to T10: Σ́9 = {11, 20},
Σ̀9 = {21}, {22 → (20, 21)}. From T11 to T12: Σ́11 = {22}, Σ̀11 = {11}, {23 → (22, 11)}.

refer to the list of non-zero Freqw(c, c̃, ·) sorted in increasing order of c as the adjacency
list of w. Note that it is a representation of the weighted directed graph in which there
are exactly Freqw(c, c̃, 0) (resp. Freqw(c, c̃, 1)) edges from c to c̃ (resp. from c̃ to c). Each
occurrence of a pair in w is counted exactly once in the adjacency list. Then the problem of
computing a good partition (Σ́ , Σ̀) of Σ reduces to maximum directed cut problem on the
graph. Algorithm 1 is based on a simple greedy 1/4-approximation algorithm of maximum
directed cut problem.

I Lemma 7. Given the adjacency list of size m of a string w ∈ Σ∗, Algorithm 1 computes
in O(m) time a partition (Σ́ , Σ̀) of Σ such that the number of occurrences of pairs from Σ́Σ̀
in w is at least (|w| − 1)/4.

I Lemma 8. Given a string w over Σ = [1..|w|] that contains no block of length ≥ 2, we
can conduct PComp in O(|w|) time and space.

I Lemma 9. Given a string T over Σ = [1..NO(1)], we can compute TtoG(T) in O(N) time
and space.

3.2 Popped sequences
We give a new characterization of recompression, which is a key to fast LCE queries as well as
obtaining the upper bound O(z lg(N/z)) for the size of TtoG(T). For any substring w of T,
we define the Popped Sequence (PSeq), denoted by PSeq(w), of w (formal definition is in the
next paragraph). PSeq(w) is a sequence of letters such that val (PSeq(w)) = w and consists
of O(lg N) blocks of letters. It is not surprising that any substring can be represented by
O(lg N) blocks of letters because the height of TtoG(T) is O(lg N). The significant property
of PSeq(w) is that it occurs at “every” occurrence of w. A similar property has been observed
in CFGs produced by locally consistent parsing and utilized for compressed indexes [14, 16]

T. I 18:7

Algorithm 1: How to compute a partition of Σ for PComp to compress w by 3/4.
Input: Adjacency list of w ∈ Σ∗.
Output: (Σ́ , Σ̀) s.t. # occurrences of pairs from Σ́Σ̀ in w is at least (|w| − 1)/4.
/* The information whether c ∈ Σ is in Σ́ or Σ̀ is written in the data

space for c, which can be accessed in O(1) time. */
1 Σ́ ← Σ̀ ← ∅;
2 foreach c ∈ Σ in increasing order do
3 if

∑
c̃∈Σ̀ Freqw(c, c̃, ·) ≥

∑
c̃∈Σ́ Freqw(c, c̃, ·) then

4 add c to Σ́ ;
5 else
6 add c to Σ̀ ;

7 if # occurrences of pairs from Σ́Σ̀ < # occurrences of pairs from Σ̀Σ́ then
8 switch Σ́ and Σ̀ ;
9 return (Σ́ , Σ̀);

w0
w1
w2
w3

1 1 4 2 2 2 2 21 1
4 7 2 21 1

32
32

3 4
3

9 910
10

7
7

Figure 2 PSeq for w0 = [1, 1, 2, 3, 4, 2, 2, 2, 1, 2, 1, 2, 3, 4] under Σ̈h, Σ́h, Σ̀h of Figure 1. At level 0,
a block of 1 (resp. 4) is popped out from the leftend (resp. rightend) of w0 because 1, 4 ∈ Σ̈0. At
level 1, a letter 2 (resp. 3) is popped out from the leftend (resp. rightend) of w1 because 2 ∈ Σ̀1 and
3 ∈ Σ́1. At level 2, a block of 9 is popped out from the rightend of w2 because 9 ∈ Σ̈2. At level
3, a letter 10 (resp. 7) is popped out from the leftend (resp. rightend) of w3 because 10 ∈ Σ̀1 and
7 ∈ Σ́1. Then, PSeq(w0) = [1, 1, 2, 10, 7, 9, 9, 3, 4]. Observe that w0 occurs twice in T0 of Figure 1.
and w0, w1, w2 and w3 are created over both occurrences. As a result, PSeq(w0) occurs everywhere
w0 occurs.

and a dynamic compressed LCE data structure [17]. For example, in [16, 17] the sequence
having such a property is called the common sequence of w but its representation size is
O(lg |w| lg∗N) rather than O(lg N).

PSeq(w) is the sequence of letters characterized by the following procedure. Let w0 be
the substring of T0 that generates w. We consider applying BComp and PComp to w0 exactly
as we did to T but in each level we pop some letters out from both ends if the letters can be
coupled with letters outside the scope. Formally, in increasing order of h ≥ 0, we get wh+1
from wh as follows:

If h is even. We first pop out the leftmost and rightmost blocks of wh if they are blocks
of letter c ∈ Σ̈h. Then we get wh+1 by applying BComp to the remaining string.
If h is odd. We first pop out the leftmost letter and rightmost letter of wh if they
are letters in Σ̀h and Σ́h, respectively. Then we get wh+1 by applying PComp to the
remaining string.

We iterate this until the string disappears. PSeq(w) is the sequence obtained by concatenating
the popped-out letters/blocks in an appropriate order, i.e., the order of the positions they
occur. Note that for any occurrence of w the letters are compressed in the same way at least
until they are popped out. Hence wh is created for every occurrence of w and the occurrence
of PSeq(w) is guaranteed (see also Figure 2).

CPM 2017

18:8 Longest Common Extensions with Recompression

The next lemma formalizes the above discussion.

I Lemma 10. For any substring w of T, PSeq(w) consists of O(lg N) blocks of letters. In
addition, w occurs at position i iff PSeq(w) occurs at i.

The next lemma and corollary are used to prove Lemmas 13 and 14.

I Lemma 11. For any chain C whose label consists of m blocks of letters, the number of
ancestor nodes of C is O(m).

I Corollary 12. For any chain C corresponding to PSeq(T[b..e]) for some interval [b..e], the
number of ancestor nodes of C is O(lg N).

I Lemma 13. The size of TtoG(T) is O(z lg(N/z)).

Proof. We first show the bound O(z lg N) and later improve the analysis to O(z lg(N/z)).
Let f1 . . . fz be the LZ77 factorization of T. For any 1 ≤ i ≤ z, let Li be the set of

letters used in the ancestor nodes of leaves corresponding to the prefix f1f2 . . . fi. Clearly
|L1| = O(lg N). For any 1 < i ≤ z, we estimate |Li \ Li−1|. Since fi occurs in f1 . . . fi−1, we
can see that the letters of PSeq(fi) are in Li−1 thanks to Lemma 10. Let Ci be the chain
corresponding to the occurrence |f1 . . . fi−1 + 1| of PSeq(fi). Then, the letters in Li \ Li−1
are only in the labels of ancestor nodes of Ci. Since PSeq(fi) consists of O(lg N) blocks of
letters, |Li \ Li−1| is bounded by O(lg N) due to Lemma 11. Therefore the size of TtoG(T)
is

∑z
i=1 |Li \ Li−1| = O(z lg N).

In order to improve the bound to O(z lg(N/z)), we employ the same trick that was used
in [20, 9]. Let h = 2 lg4/3(N/z) = 2 lg3/4(z/N). Recall that PComp compresses a given
string by a constant factor 3/4. Since PComp has been applied h/2 times until the level h,
|Th| ≤ N(3/4)h/2 = z, and hence, the number of letters introduced in level ≥ h is bounded
by O(z). Then, we can ignore all the letters introduced in level ≥ h in the analysis of
the previous paragraph, and by doing so, the bound O(lg N) of |Li \ Li−1| is improved to
O(h) = O(lg(N/z)). This yields the bound O(z lg(N/z)) for the size of TtoG(T). J

I Lemma 14. Given TtoG(T), we can answer LCE(i, j) in O(lg N) time.

Proof. We compute LCE(i, j) by matching the common sequence of letters occurring at i

and j from left to right. First we traverse the derivation tree of TtoG(T) from the root down
to the i-th and j-th leaves simultaneously while seeking the common block occurring at i

and j. If there is no such block, LCE(i, j) = 0, and we are done. Otherwise we stop at some
internal nodes that contain the common block in their children. Let `1 be the length of the
string generated by the block. Because LCE(i, j) ≥ `1, we move on matching the next block
by (possibly traversing up first and) traversing down to the (i + `1)-th and (j + `1)-th leaves.
We iterate this procedure until we find no further common block. Then LCE(i, j) =

∑m
k=1 `k,

where `1, `2, . . . , `m is the sequence of lengths of the common blocks we found.
Now we show that the above described algorithm runs in O(lg N) time. Note that

it is bounded by the number of nodes we visit during the computation. In the light of
Lemma 10, PSeq(w) occurs at both i and j, where w is the longest common prefix of two
suffixes beginning at i and j. Let Ci (resp. Cj) be the chain that is labeled with PSeq(w)
and begins at i (resp. j). Since the algorithm matches PSeq(w) or a succincter common
sequence existing above Ci and Cj , we never go down below the parents of Ci or Cj during
the computation. Hence, the number of visited nodes is bounded by the number of nodes
that are ancestors of Ci or Cj , which is O(lg N) by Corollary 12. J

Theorem 1 is immediately from Lemmas 9, 5 and 14.

T. I 18:9

4 LCE data structure built from SLPs

In this section, we prove Theorem 2. Input is now an arbitrary SLP S = (Σ,V,D) of size n

generating T. Basically what we consider is to simulate TtoG on S, namely, compute TtoG(T)
without decompressing S explicitly. In Section 4.1, we present an algorithm SimTtoG that
simulates TtoG in O(n lg2(N/n)) time and O(n+z lg(N/z)) space. In Section 4.2, we present
how to modify SimTtoG to get Theorem 2.

4.1 SimTtoG: Simulating TtoG on CFGs
We present an algorithm SimTtoG to simulate TtoG on S. To begin with, we compute the
CFG S0 = (Σ0,V,D0) obtained by replacing, for all variables X ∈ V with D(X) ∈ Σ, every
occurrence of X in the righthand sides of D with the letter generating D(X). Note that Σ0
is the set of terminals of S0, and S0 generates T0. SimTtoG transforms level by level S0 into
CFGs, S1 = (Σ1,V,D1),S2 = (Σ2,V,D2), . . . ,Sĥ = (Σĥ,V,Dĥ), where each Sh generates Th.
Namely, compression from Th to Th+1 is simulated on Sh. We can correctly compute the
letters introduced in each level h + 1 while modifying Sh into Sh+1, and hence, we get all
the letters of TtoG(T) in the end. We note that new “variables” are never introduced and
the modification is done by rewriting righthand sides of the original variables.

Here we introduce the special formation of the CFGs Sh (it is a generalization of SLPs in
a different sense from RLSLPs): For any X ∈ V, Dh(X) consists of an “arbitrary number”
of letters and at most “two” variables. More precisely, the following condition holds:

For any variable X ∈ V with D(X) = X́X̀, Dh(X) is either w1X́w2X̀w3, w1X́w2, w2X̀w3
or w2 with w1, w2, w3 ∈ Σ∗h, where w1 = w3 = ε if X is not the starting variable.

As opposed to SLPs and RLSLPs, we define the size of Sh by the total lengths of righthand
sides and denote it by |Sh|.

4.1.1 PComp on CFGs
We firstly demonstrate that the adjacency list of Th can be computed efficiently.

I Lemma 15 (Lemma 6.1 of [10]). For any odd h (0 ≤ h < ĥ), the adjacency list of Th,
whose size is O(|Sh|), can be computed in O(|Sh|+ n) time and space.

Proof. For any variable X ∈ V , let VOcc(X) denote the number of occurrences of the nodes
labeled with X in the derivation tree of S. It is well known that VOcc(X) for all variables
can be computed in O(n) time and space on the DAG representation of the tree.5 Also, for
any variable X ∈ V, let LML(X) and RML(X) denote the leftmost letter and respectively
rightmost letter of valSh

(X). We can compute LML(X) for all variables in O(|Sh|) time by
a bottom up computation, i.e., LML(X) = LML(Y) if Dh(X) starts with a variable Y , and
LML(X) = w[1] if Dh(X) starts with a non-empty string w. In a completely symmetric way
RML(X) can be computed in O(|Sh|) time.

Now observe that any occurrence i of a pair ćc̀ in Th can be uniquely associated with a
variable X that is the label of the lowest node covering the interval [i..i + 1] in the derivation
tree of Sh (recall that Sh generates Th). We intend to count all the occurrences of pairs
associated with X in Dh(X). For example, let Dh(X) = X́w2X̀ with w2 ∈ Σ∗h. Then ćc̀

5 It is sufficient to compute VOcc(X) once at the very beginning of SimTtoG.

CPM 2017

18:10 Longest Common Extensions with Recompression

appears explicitly in w2 or crosses the boundaries of X́ and/or X̀. If ćc̀ crosses the boundary
of X́, RML(X́) is ć and c̀ follows, i.e., (w2[1] = c̀) ∨ (w2 = ε ∧ LML(X̀) = c̀). Using RML(X́)
and LML(X̀), we can compute in O(|Dh(X)|) time and space a (|Dh(X)| − 1)-size multiset
that lists all the explicit and crossing pairs in Dh(X). Each pair ćc̀ with ć > c̀ (resp. ć < c̀)
is listed by a quadruple (ć, c̀, 0, VOcc(X)) (resp. (c̀, ć, 1, VOcc(X)). VOcc(X) means that
the pair has a weight VOcc(X) because the pair appears every time a node labeled with X

appears in the derivation tree.
We compute such a multiset for every variable, which takes O(|Sh|) time and space

in total. Next we sort the obtained list in increasing order of the first three integers in a
quadruple. Note that the maximum value of letters is O(z lg(N/z)) due to Lemma 13, and
O(z lg(N/z)) = O(n2) since z ≤ n and lg N ≤ n hold. Thus the sorting can be done in O(n)
time and space by radix sort. Finally we can get the adjacency list of Th by summing up
weights of the same pair. The size of the list is clearly O(|Sh|). J

The next lemma shows how to implement PComp on CFGs:

I Lemma 16. For any odd h (0 ≤ h < ĥ), we can compute Sh+1 from Sh in O(|Sh| + n)
time and space. In addition, |Sh+1| ≤ |Sh|+ 2n.

Proof. We first compute the partition (Σ́h, Σ̀h) of Σh, which can be done in O(|Sh| + n)
time and space by Lemmas 15 and 7.

Given (Σ́h, Σ̀h), we can detect all the positions of the pairs from Σ́hΣ̀h in the righthands
of Dh, which are to be compressed. Some of the appearances of the pairs are explicit and
the others are crossing. While explicit pairs can be compressed easily, crossing pairs need
additional treatment. To deal with crossing pairs, we first uncross them by popping out every
LML(Y) ∈ Σ̀h and RML(Y) ∈ Σ́h from valSh

(Y) and popping them into the appropriate
positions in the other rules. More precisely, we do the followings (for technical reason, do
PopInLet first):
PopInLet. For any variable X, if Dh(X)[i] = Y ∈ V with i > 1 (i ≥ 1 if X is the

starting variable) and LML(Y) ∈ Σ̀h, replace the occurrence of Y with LML(Y)Y ; if
Dh(X)[i] = Y ∈ V with i < |Dh(X)| (i ≤ |Dh(X)| if X is the starting variable) and
RML(Y) ∈ Σ́h, replace the occurrence of Y with Y RML(Y).

PopOutLet. For any variable X other than the starting variable, if Dh(X)[1] ∈ Σ̀h, remove
the first letter of Dh(X); and if Dh(X)[|Dh(X)|] ∈ Σ́h, remove the last letter of Dh(X).
In addition, if X becomes empty, we remove all the appearances of X in Dh.

PopOutLet removes LML(Y) ∈ Σ̀h and RML(Y) ∈ Σ́h from valSh
(Y) (which can be a part

of a crossing pair), and PopInLet introduces the removed letters into appropriate positions
in Dh so that the modified Sh keeps to generate Th. Notice that for each variable X the
positions where letters popped in is at most two (four if X is the starting variable) and there
is at least one variable that has no variables below, and hence, no letters popped in. Thus,
the size of Sh increases at most 2n. The uncrossing can be conducted in O(|Sh|+ n) time.

Since all the pairs to be compressed become explicit, we can conduct BComp in O(|Sh|+n)
time as follows. We scan righthand sides in O(|Sh|) time and list all the occurrences of pairs
to be compressed. Each occurrence of pair ćc̀ ∈ Σ́Σ̀ is listed by a triple (ć, c̀, p), where p is
the pointer to the occurrence. Then we sort the list according to the pair of integers (ć, c̀),
which can be done in O(|Sh|+ n) time and space by radix sort because ć and c̀ are O(n2).
Finally, we replace each pair at position p with a fresh letter based on the rank of (ć, c̀). J

T. I 18:11

4.1.2 BComp on CFGs
For any even h (0 ≤ h < ĥ), BComp can be implemented in a similar way to PComp of
Lemma 16. A block Th[b..e] of length ≥ 2 is uniquely associated with a variable X that
is the label of the lowest node covering the interval [b − 1..e + 1] in the derivation tree of
Sh (if b = 0 or e = |Th|, the block is associated with the starting variable). Here we take
[b− 1..e + 1] rather than [b..e] to be sure that the block cannot extend outside the variable.
Some blocks are explicitly written in Dh(X) and the others are crossing the boundaries of
variables in Dh(X). The numbers of explicit blocks and crossing blocks in Dh is at most |Sh|
and 2n, respectively. The crossing blocks can be uncrossed in a similar way to uncrossing
pairs. Then BComp can be done by replacing all the blocks with fresh letters on righthand
sides of Dh.

However here we have a problem. In order to give a unique letter to a block cd, we have
to sort the pairs of integers (c, d). Since d might be exponentially larger than |Sh|+ n, radix
sort cannot be executed in O(|Sh|+ n) time and space. In Section 6.2 of [10], Jeż showed
how to solve this problem by tweaking the representation of lengths of long blocks, but its
implementation and analysis are involved.6

We show in Lemma 17 our new observation, which leads to a simpler implementation and
analysis of BComp. We say that a block cd is short if d = O(|Sh|+ n) and long otherwise.
Also, we say that a variable is unary iff its righthand side consists of a single block.

I Lemma 17. For any even h (0 ≤ h < ĥ), a block Th[b..e] = cd is short if it does not
include a substring generated from a unary variable.

Proof. Consider the derivation tree of Sh and the shortest path from Th[b] to Th[e]. Let
X1X2 · · ·Xm′ · · ·Xm be the sequence of labels of internal nodes on the path, where Xm′

corresponds to the lowest common ancestor of Th[b] and Th[e]. Since SLPs have no loops in
the derivation tree, X1, . . . , Xm′ are all distinct. Similarly Xm′+1, . . . , Xm are all distinct.
Since a unary variable is not involved to generate the block, it is easy to see that d ≤∑m

i=1 |Dh(Xi)| ≤ 2|Sh| holds. J

Lemma 17 implies that most of blocks we find during the compression are short, which
can be sorted efficiently by radix sort. If there is a long block in Dh, an occurrence of a unary
variable X must be involved to generate the block. Since BComp at level h pops out all the
letters from X and removes the occurrences of X in Dh, there are at most 2n long blocks
in total. The number of long blocks can also be upper bounded by 2N/n with a different
analysis based on the following fact:

I Fact 18. If a substring of original text T generated from a long block overlaps with that
generated from another long block, one substring must include the other, and moreover, the
shorter block is completely included in “one” letter of the longer block. Hence the length of
the substring of the longer block is at least n times longer than that of the shorter block.

Let us consider the long blocks that generate substrings whose lengths are [ni..ni+1) for a
fixed integer i ≥ 1. By Fact 18, the substrings cannot overlap, and hence, the number of
such long blocks is at most N/ni. Therefore, the total number of long blocks is at most∑

i≥1 N/ni ≤ 2N/n. Thus we get the following lemma.

6 Note that Section 6.2 of [10] also takes care of the case where the word size is Θ(lg n) rather than
Θ(lg N). We do not consider the Θ(lg n)-bits model in this paper because using Θ(lg N) bits to store
the length of string generated by every letter is crucial for extract and LCE queries. However, we believe
that our new observation stated in Lemma 17 will simplify the analysis for the Θ(lg n)-bits model, too.

CPM 2017

18:12 Longest Common Extensions with Recompression

I Lemma 19. There are at most O(min(n, N/n)) long blocks found during SimTtoG.

By Lemma 19, we can employ a standard comparison-based sorting algorithm to sort all
long blocks in O(n lg(min(n, N/n))) time in total. In particular, BComp of one level can be
implemented in the following complexities:

I Lemma 20. For any even h (0 ≤ h < ĥ), we can compute Sh+1 from Sh in O(|Sh| +
n + m lg m)) time and O(|Sh|+ n) space, where m is the number of long blocks in Dh. In
addition, |Sh+1| ≤ |Sh|+ 2n.

4.1.3 The complexities of SimTtoG
I Theorem 21. SimTtoG runs in O(n lg2(N/n)) time and O(n lg(N/n)) space.

Proof. Using PComp and BComp implemented on CFGs (see Lemma 16 and 20), SimTtoG
transforms level by level S0 into S1,S2, . . . ,Sĥ. In each level, the size of CFGs can increase
at most 2n by the procedure of uncrossing. Since |Sh| = O(n lg N) for any h (0 ≤ h < ĥ),
we get the time complexity O(n lg2 N) by simply applying Lemmas 16 and 20.

We can improve it to O(n lg2(N/n)) by a similar trick used in the proof of Lemma 13.
At some level h′ where |Th′ | becomes less than n, we decompress Sh′ and switch to TtoG,
which transforms Th′ into Tĥ in O(n) time by Lemma 9. We apply Lemmas 16 and 20 only
for h with 0 ≤ h < h′. Since h′ = O(lg(N/n)), |Sh| = O(n lg(N/n)) for any h (0 ≤ h < h′).
Hence, we get the time complexity O(n lg2(N/n)). The space complexity is bounded by the
maximum size of CFGs S0,S1, . . . ,Sh′ , which is O(n lg(N/n)). J

4.2 GtoG: O(n lg(N/n))-time recompression
We modify SimTtoG slightly to run in O(n lg(N/n)) time and O(n + z lg(N/z)) space. The
idea is the same as what has been presented in Section 6.1 of [10]. The problem of SimTtoG
is that the sizes of intermediate CFGs Sh can grow up to O(n lg(N/n)). If we can keep their
sizes to O(n), everything goes fine. This can be achieved by using two different types of
partitions of Σh for PComp: One is for compressing Th by a constant factor, and the other
for compressing |Sh| by a constant factor (unless |Sh| is too small to compress). Recall that
the former partition has been used in TtoG and SimTtoG, and the partition is computed
from the adjacency list of Th by Algorithm 1. Algorithm 1 can be extended to work on a set
of strings by just inputting the adjacency list from a set of strings. Then, we can compute
the partition for compressing |Sh| by a constant factor by considering the adjacency list from
a set of strings in the righthand sides of Dh. The adjacency list can be easily computed in
O(|Sh|+ n) time and space by modifying the algorithm described in the proof of Lemma 15:
We just ignore the weight VOcc(X), i.e., use a unit weight 1 for every listed pair. Using
the two types of partitions alternately, we can compress strings by a constant factor while
keeping the sizes of the intermediate CFGs to O(n).

We denote the modified algorithm by GtoG and the resulting RLSLP by GtoG(S). Note
that GtoG(S) is not identical to TtoG(T) in general because the partitions used in GtoG
depend on the input S. Still the height of GtoG(S) is O(lg N) and the properties of PSeqs
hold. Hence we can support LCE queries on GtoG(S) as we did on TtoG(T) by Lemma 14.

4.3 Proof of Theorem 2
Proof of Theorem 2. Let S be an input SLP of size n generating T. We compute GtoG(S)
in O(n lg(N/n)) time and O(n + z lg(N/z)) space as described in Section 4.2. Since the

T. I 18:13

height of GtoG(S) is O(lg N), we can support Extract(i, `) queries in O(lg N + `) time due
to Lemma 5. GtoG(S) supports LCE queries in O(lg N) time in the same way as what was
described in Lemma 14. J

References
1 Michael A. Bender, Martin Farach-Colton, Giridhar Pemmasani, Steven Skiena, and Pavel

Sumazin. Lowest common ancestors in trees and directed acyclic graphs. J. Algorithms,
57(2):75–94, 2005. doi:10.1016/j.jalgor.2005.08.001.

2 Philip Bille, Anders Roy Christiansen, Patrick Hagge Cording, and Inge Li Gørtz. Finger
search in grammar-compressed strings. In Akash Lal, S. Akshay, Saket Saurabh, and
Sandeep Sen, editors, Proceedings of the 36th IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS 2016), volume 65 of
LIPIcs, pages 36:1–36:16. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2016. doi:
10.4230/LIPIcs.FSTTCS.2016.36.

3 Philip Bille, Patrick Hagge Cording, Inge Li Gørtz, Benjamin Sach, Hjalte Wedel Vildhøj,
and Søren Vind. Fingerprints in compressed strings. In Frank Dehne, Roberto Solis-
Oba, and Jörg-Rüdiger Sack, editors, Proceedings of the 13th International Symposium
on Algorithms and Data Structures (WADS 2013), volume 8037 of LNCS, pages 146–157.
Springer, 2013. doi:10.1007/978-3-642-40104-6_13.

4 Philip Bille, Inge Li Gørtz, Mathias Bæk Tejs Knudsen, Moshe Lewenstein, and
Hjalte Wedel Vildhøj. Longest common extensions in sublinear space. In Ferdinando
Cicalese, Ely Porat, and Ugo Vaccaro, editors, Proceedings of the 26th Annual Symposium
on Combinatorial Pattern Matching (CPM 2015), volume 9133 of LNCS, pages 65–76.
Springer, 2015. doi:10.1007/978-3-319-19929-0_6.

5 Philip Bille, Inge Li Gørtz, Benjamin Sach, and Hjalte Wedel Vildhøj. Time-space trade-
offs for longest common extensions. J. Discrete Algorithms, 25:42–50, 2014. doi:10.1016/
j.jda.2013.06.003.

6 Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Com-
putational Biology. Cambridge University Press, 1997. doi:10.1017/CBO9780511574931.

7 Tomohiro I, Wataru Matsubara, Kouji Shimohira, Shunsuke Inenaga, Hideo Bannai, Masay-
uki Takeda, Kazuyuki Narisawa, and Ayumi Shinohara. Detecting regularities on grammar-
compressed strings. Inf. Comput., 240:74–89, 2015. doi:10.1016/j.ic.2014.09.009.

8 Artur Jeż. Compressed membership for NFA (DFA) with compressed labels is in NP
(P). In Christoph Dürr and Thomas Wilke, editors, Proceedings of the 29th Interna-
tional Symposium on Theoretical Aspects of Computer Science (STACS 2012), volume 14
of LIPIcs, pages 136–147. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2012. doi:
10.4230/LIPIcs.STACS.2012.136.

9 Artur Jeż. Approximation of grammar-based compression via recompression. Theor. Com-
put. Sci., 592:115–134, 2015. doi:10.1016/j.tcs.2015.05.027.

10 Artur Jeż. Faster fully compressed pattern matching by recompression. ACM Trans. Al-
gorithms, 11(3):20:1–20:43, 2015. doi:10.1145/2631920.

11 Artur Jeż. One-variable word equations in linear time. Algorithmica, 74(1):1–48, 2016.
doi:10.1007/s00453-014-9931-3.

12 Artur Jeż. Recompression: A simple and powerful technique for word equations. J. ACM,
63(1):4, 2016. doi:10.1145/2743014.

13 Artur Jeż and Markus Lohrey. Approximation of smallest linear tree grammar. In Ernst W.
Mayr and Natacha Portier, editors, Proceedings of the 31st International Symposium on
Theoretical Aspects of Computer Science (STACS 2014), volume 25 of LIPIcs, pages 445–
457. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2014. doi:10.4230/LIPIcs.STACS.
2014.445.

CPM 2017

http://dx.doi.org/10.1016/j.jalgor.2005.08.001
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2016.36
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2016.36
http://dx.doi.org/10.1007/978-3-642-40104-6_13
http://dx.doi.org/10.1007/978-3-319-19929-0_6
http://dx.doi.org/10.1016/j.jda.2013.06.003
http://dx.doi.org/10.1016/j.jda.2013.06.003
http://dx.doi.org/10.1017/CBO9780511574931
http://dx.doi.org/10.1016/j.ic.2014.09.009
http://dx.doi.org/10.4230/LIPIcs.STACS.2012.136
http://dx.doi.org/10.4230/LIPIcs.STACS.2012.136
http://dx.doi.org/10.1016/j.tcs.2015.05.027
http://dx.doi.org/10.1145/2631920
http://dx.doi.org/10.1007/s00453-014-9931-3
http://dx.doi.org/10.1145/2743014
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.445
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.445

18:14 Longest Common Extensions with Recompression

14 Shirou Maruyama, Masaya Nakahara, Naoya Kishiue, and Hiroshi Sakamoto. Esp-index:
A compressed index based on edit-sensitive parsing. J. Discrete Algorithms, 18:100–112,
2013. doi:10.1016/j.jda.2012.07.009.

15 Kurt Mehlhorn, R. Sundar, and Christian Uhrig. Maintaining dynamic sequences under
equality tests in polylogarithmic time. Algorithmica, 17(2):183–198, 1997. doi:10.1007/
BF02522825.

16 Takaaki Nishimoto, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Dynamic index and LZ factorization in compressed space. In Jan Holub and Jan Žďárek,
editors, Proceedings of the Prague Stringology Conference (PSC 2016), pages 158–170, 2016.
URL: http://www.stringology.org/event/2016/p14.html.

17 Takaaki Nishimoto, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Fully dynamic data structure for LCE queries in compressed space. In Piotr Faliszewski,
Anca Muscholl, and Rolf Niedermeier, editors, Proceedings of the 41st International Sym-
posium on Mathematical Foundations of Computer Science (MFCS 2016), volume 58 of
LIPIcs, pages 72:1–72:15. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2016. doi:
10.4230/LIPIcs.MFCS.2016.72.

18 Nicola Prezza. In-place longest common extensions, 2017. arXiv:1608.05100v9.
19 Simon J. Puglisi and Andrew Turpin. Space-time tradeoffs for longest-common-prefix

array computation. In Seok-Hee Hong, Hiroshi Nagamochi, and Takuro Fukunaga, ed-
itors, Proceedings of the 19th International Symposium on Algorithms and Computation
(ISAAC 2008), volume 5369 of LNCS, pages 124–135. Springer, 2008. doi:10.1007/
978-3-540-92182-0_14.

20 Wojciech Rytter. Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theor. Comput. Sci., 302(1–3):211–222, 2003. doi:10.1016/
S0304-3975(02)00777-6.

21 Yuka Tanimura, Tomohiro I, Hideo Bannai, Shunsuke Inenaga, Simon J. Puglisi, and Masay-
uki Takeda. Deterministic sub-linear space LCE data structures with efficient construction.
In Roberto Grossi and Moshe Lewenstein, editors, Proceedings of the 27th Annual Sym-
posium on Combinatorial Pattern Matching (CPM 2016), volume 54 of LIPIcs, pages 1:1–
1:10. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.CPM.
2016.1.

A Appendix: Omitted proofs

A.1 Proof of Lemma 6
Proof. We first scan w in O(|w|) time and list all the blocks of length ≥ 2. Each block
cd (c ∈ Σ, d ≥ 2) at position i is listed by a triple (c, d, i) of integers in Σ. Next we sort the
list according to the pair of integers (c, d), which can be done in O(|w|) time and space by
radix sort. Finally, we replace each block cd by a fresh letter based on the rank of (c, d). J

A.2 Proof of Lemma 7
Proof. In the foreach loop, we first run a 1/2-approximation algorithm of maximum “undirec-
ted” cut problem on the adjacency list, i.e., we ignore the direction of the edges here. For each
c in increasing order, we greedily determine whether c is added to Σ́ or to Σ̀ depending on∑

c̃∈Σ̀ Freq(c, c̃, ·) ≥
∑

c̃∈Σ́ Freq(c, c̃, ·). Note that
∑

c̃∈Σ̀ Freq(c, c̃, ·) (resp.
∑

c̃∈Σ́ Freq(c, c̃, ·))
represents the number of edges between c and a character in Σ̀ (resp. Σ́). By greedy choice,
at least half of the edges in question become the ones connecting two characters each from
Σ́ and Σ̀ . Hence, in the end, |E| becomes at least (|w| − 1)/2, where let E denote the set

http://dx.doi.org/10.1016/j.jda.2012.07.009
http://dx.doi.org/10.1007/BF02522825
http://dx.doi.org/10.1007/BF02522825
http://www.stringology.org/event/2016/p14.html
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.72
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.72
http://arxiv.org/abs/1608.05100v9
http://dx.doi.org/10.1007/978-3-540-92182-0_14
http://dx.doi.org/10.1007/978-3-540-92182-0_14
http://dx.doi.org/10.1016/S0304-3975(02)00777-6
http://dx.doi.org/10.1016/S0304-3975(02)00777-6
http://dx.doi.org/10.4230/LIPIcs.CPM.2016.1
http://dx.doi.org/10.4230/LIPIcs.CPM.2016.1

T. I 18:15

of edges between characters from Σ́ and Σ̀ (recalling that there are exactly |w| − 1 edges).
Since each edge in E corresponds to an occurrence of a pair from Σ́Σ̀ ∪ Σ̀Σ́ in w, at least
one of the two partitions (Σ́ , Σ̀) and (Σ̀ , Σ́) covers more than half of E. Hence we achieve
our final bound |E|/2 = (|w| − 1)/4 by choosing an appropriate partition at Line 7.

In order to see that Algorithm 1 runs in O(m) time, we only have to care about Line 3
and Line 7. We can compute

∑
c̃∈Σ̀ Freq(c, c̃, ·) and

∑
c̃∈Σ́ Freq(c, c̃, ·) by going through all

Freq(c, ·, ·) for fixed c in the adjacency list, which are consecutive in the sorted list. Since
each element of the list is used only once, the cost for Line 3 is O(m) in total. Similarly the
computation at Line 7 can be done by going through the adjacency list again. Thus the
algorithm runs in O(m) time. J

A.3 Proof of Lemma 8
Proof. We first compute the adjacency list of w. This can be easily done in O(|w|) time
and space by sorting the |w| − 1 size multiset {(w[i], w[i + 1], 0) | 1 ≤ i < |w|, w[i] >

w[i + 1]} ∪ {(w[i + 1], w[i], 1) | 1 ≤ i < |w|, w[i] < w[i + 1]} by radix sort. Then by Lemma 7
we compute a partition (Σ́ , Σ̀) in linear time in the size of the adjacency list, which is O(|w|).
Next we scan w in O(|w|) time and list all the occurrences of pairs to be compressed. Each
pair ćc̀ ∈ Σ́Σ̀ at position i is listed by a triple (ć, c̀, i) of integers in Σ. Then we sort the list
according to the pair of integers (ć, c̀), which can be done in O(|w|) time and space by radix
sort. Finally, we replace each pair with a fresh letter based on the rank of (ć, c̀). J

A.4 Proof of Lemma 9
Proof. We first compute T0 in O(N) by sorting the characters used in T and replacing them
with ranks of characters. Then we compress T0 by applying BComp and PComp by turns
and get T1, T2 . . . Tĥ. One technical problem is that characters used in an input string w

of BComp and PComp should be in [1..|w|], which is crucial to conduct radix sort efficiently
in O(|w|) time (see Lemmas 6 and 8). However letters in Th do not necessarily hold this
property. To overcome this problem, during computation we maintain ranks of letters among
those used in the current Th, which should be in [1..|Th|], and use the ranks instead of letters
for radix sort. If we have such ranks in each level, we can easily maintain them by radix
sort for the next level. Now, in every level h (0 ≤ h < ĥ) the compression from Th to Th+1
can be conducted in O(|Th|) time and space. Since PComp compresses a given string by a
constant factor, the total running time can be bounded by O(N) time. J

A.5 Proof of Lemma 11
Proof. Since a block is compressed into one letter, the number of parent nodes of C is at
most m. As every internal node has two or more children, it is easy to see that there are
O(m) ancestor nodes of the parent nodes of C. J

CPM 2017

Fast and Simple Jumbled Indexing for Binary
Run-Length Encoded Strings∗

Luís Cunha1, Simone Dantas2, Travis Gagie3, Roland Wittler4,
Luis Kowada5, and Jens Stoye6

1 Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; and
Universidade Federal Fluminense, Niterói, Brazil
lfignacio@cos.ufrj.br

2 Universidade Federal Fluminense, Niterói, Brazil
sdantas@im.uff.br

3 CeBiB – Center for Biotechnology and Bioengineering, University of Chile,
Santiago, Chile; and
School of Computer Science and Telecommunications, Diego Portales
University, Santiago, Chile
travis.gagie@gmail.com

4 Universität Bielefeld, Bielefeld, Germany
roland.wittler@uni-bielefeld.de

5 Universidade Federal Fluminense, Niterói, Brazil
luis@ic.uff.br

6 Universidade Federal Fluminense, Niterói, Brazil; and
Universität Bielefeld, Bielefeld, Germany
jens.stoye@uni-bielefeld.de

Abstract
Important papers have appeared recently on the problem of indexing binary strings for jumbled
pattern matching, and further lowering the time bounds in terms of the input size would now be
a breakthrough with broad implications. We can still make progress on the problem, however, by
considering other natural parameters. Badkobeh et al. (IPL, 2013) and Amir et al. (TCS, 2016)
gave algorithms that index a binary string in O(n+ ρ2 log ρ) time, where n is the length and ρ is
the number of runs, and Giaquinta and Grabowski (IPL, 2013) gave one that runs in O(n+ ρ2)
time. In this paper we propose a new and very simple algorithm that also runs in O(n+ρ2) time
and can be extended either so that the index returns the position of a match (if there is one), or
so that the algorithm uses only O(n) bits of space instead of O(n) words.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Com-
binatorics

Keywords and phrases string algorithms, indexing, jumbled pattern matching, run-length en-
coding

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.19

1 Introduction

Since its introduction at the 2009 Prague Stringology Conference [6, 8], the problem of
indexed binary jumbled pattern matching has been discussed in many top conferences and

∗ This work was partially supported by CAPES, CNPq and FAPERJ.

© Luís Cunha, Simone Dantas, Travis Gagie, Roland Wittler, Luis Kowada, and Jens Stoye;
licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 19; pp. 19:1–19:9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

19:2 Fast and Simple Jumbled Indexing for Binary RLE Strings

journals. It asks us to preprocess a binary string such that later, given a number of 0s and a
number of 1s, we can quickly report whether there exists a substring with those numbers of
0s and 1s and, optionally, return the position of one such substring or possibly even all of
them. The naïve preprocessing algorithm takes quadratic time but researchers have reduced
that bound to O(n2/ logn) [5, 16], O(n2/ log2 n) [17], O(n2/2Ω(

√
logn/ log logn)) [4, 14] and

finally O(n1.859) with randomization or O(n1.864) without [7].
Researchers have also looked at indexing for approximate matching [9, 10], indexed

jumbled pattern matching over larger alphabets [2, 15], indexing labelled trees and other
structures [9, 11, 12], and how to index faster when the (binary) input string is compressible.
Gagie et al. [12] gave an algorithm that runs in O(g2/3n4/3) when the input is represented
as a straight-line program with g rules, and Badkobeh et al. [3] gave one that runs in
O(n+ ρ2 log ρ) time when the input consists of ρ runs, i.e., maximal unary substrings (we
will denote later as ρ the number of maximal substrings of 1s, for convenience). Giaquinta
and Grabowski [13] gave two algorithms: one runs in O(ρ2 log k + n/k) time, where k is
a parameter, and produces an index that uses O(n/k) extra space and answers queries in
O(log k) time; the other runs in O(n2 log2(w)/w) time, where w is the size of a machine
word. Amir et al. [1] gave an algorithm that runs in O(ρ2 log ρ) time when the input is a
run-length encoded binary string, or O(n+ ρ2 log ρ) time when it is a plain binary string; it
builds an index that takes O(ρ2) words and answers queries in O(log ρ) time, however. Very
recently, Sugimoto et al. [19] considered the related problems of finding Abelian squares,
Abelian periods and longest common Abelian factors, also on run-length encoded strings.

We first review some preliminary notions in Section 2. We present our main result in
Section 3: a new and very simple indexing algorithm that runs in O(n + ρ2) time, which
matches Giaquinta and Grabowski’s algorithm with the parameter k = 1 and is thus tied as
the fastest known when ρ = Ω(n0.5) ∩ o(n0.932) and the smallest straight-line program for
the input has ω(ρ3/n2) rules. For an input string of up to ten million bits, for example, if
the average run-length is three or more then ρ < n0.932. While Giaquinta and Grabowski
found an efficient way to construct the Corner Index of Badkobeh et al. [3], our algorithm
constructs a more direct index and takes only 17 lines of pseudocode, making it a promising
starting point for investigating other possible algorithmic features. In Section 4, for example,
we show how to extend our algorithm to store information that lets us report the position of
a match (if there is one). Finally, in Section 5, we show how we can alternatively adapt it to
use only O(n) bits of space.

2 Preliminaries

Consider a string s ∈ {0, 1}n. We denote by s[i · · · j] the substring of s consisting of the ith
through jth characters, for 1 ≤ i ≤ j ≤ n; if i = j, we can also write simply s[i]. Cicalese
et al. [6, 8] observed that, if we slide a window of length k over s, the number of 1s in the
window can change by at most 1 at each step. It follows that if s[i · · · i+ k − 1] contains x
copies of 1 and s[j · · · j + k− 1] contains z copies of 1 with i ≤ j then, for y between x and z
(notice x could be smaller than, larger than, or equal to z), there is a substring of length k in
s[i · · · j + k − 1] with exactly y copies of 1. This immediately implies the following theorem:

I Theorem 1. Let x and z be the minimum and maximum numbers of 1s in any substring
of length k. There is a substring of length k with y copies of 1 if and only if x ≤ y ≤ z.

By Theorem 1, if we compute and store, for 1 ≤ k ≤ n, the minimum and maximum
numbers of 1s in a substring of s of length k then later, given a number of 0s and a number

L. Cunha, S. Dantas, T. Gagie, R. Wittler, L. Kowada, and J. Stoye 19:3

of 1s, we can report in constant time whether there exists a substring with that many 0s
and 1s. For example, if s = 010101110011 then, as k goes from 1 to n = 12, the minimum
and maximum numbers of 1s are 0, 0, 1, 2, 2, 3, 4, 4, 5, 5, 6, 7 and 1, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7,
respectively. Since the fifth numbers in these lists are 2 and 4, we know that there are
substrings of length 5 with exactly 2, 3 and 4 copies of 1, but none with 0, 1 or 5 (or more
than 5, obviously).

Cicalese et al. [9] noted that, if we also store the positions of the substrings with the
minimum and maximum numbers of 1s and a bitvector for s that supports constant time
rank queries, then via binary search in O(logn) time we can find an example of a substring
with any desired numbers of 0s and 1s, called a witness if such a substring exists. (The query
rank(i) returns the number of 1s in s[1 · · · i]; see, e.g., [18] for more details of rank queries
on bitvectors.) For example, suppose we want to find a substring of length 5 with exactly 3
copies of 1 in our example string s. We have stored that there are substrings of length 5 with
2 and 4 copies of 1 starting at positions 1 and 4, respectively, so we know there is a substring
of length 5 with exactly 3 copies of 1 starting in s[1 · · · 4]. We choose b(1 + 4)/2c = 2 and
check how many 1s there are in s[2 · · · 2 + 5− 1 = 6] via two rank queries. In this case, the
answer is 3, so we have found a witness in one step; otherwise, we would know there is a
witness starting in s[3 · · · 4] and we would recurse on that interval.

The same authors noted that in each step, the lists of minimum and maximum numbers
can only stay the same or increment, so we can represent each list as a bitvector of length n
and support access to it using rank queries. For example, the bitvector for the list of minimum
numbers in our example is 001101101011, so rank(i) returns the ith number in the list. Since
an n-bit bitvector takes O(n) bits of space, it follows that we can store our index in O(n) bits
and still support constant-time queries, if we do not want a witness. We note, however, that
even though the input s takes n bits and the resulting index takes O(n) bits, all previous
constructions have used Ω(n) words of workspace in the worst case.

A run in s is a maximal unary substring and the run-length encoding rle(s) is obtained
by replacing each run by a copy of the character it contains and its length. Although ρ is
usually used to denote the number of runs, for convenience, we use it to denote only the
number of runs of 1s – about half its normal value for binary strings – and consider s to
begin and end with (possibly empty) runs of 0s. For example, for our example string the
run-length encoding is 011101110113021200 and ρ = 4 (instead of 9). We denote the lengths
of the runs of 0s and 1s as z[0], . . . , z[ρ] and o[1], . . . , o[ρ], respectively.

3 Basic Indexing

Since finding substrings with the minimum numbers of 1s is symmetric to finding substrings
with the maximum numbers of 1s (e.g., by taking the complement of the string), we describe
how, given a binary run-length encoded string s[1 · · ·n], we can build a table T [1 · · ·n] such
that T [k] = f(k), where f(k) denotes the maximum number of 1s in a substring of s of
length k.

The complete pseudo-code of our algorithm – only 17 lines – is shown as Algorithm 1.
The starting point of our explanation and proof of correctness is the observation that, if
the bit immediately to the left of a substring is a 1, we can shift the substring one bit left
without decreasing the number of 1s; if the first bit of the substring is a 0, then we can
shift the substring one bit right (shortening it on the right if necessary) without decreasing
the number of 1s. It follows that, for 1 ≤ k ≤ n, there is a substring of length at most k
containing f(k) copies of 1 and starting at the beginning of a run of 1s. Since we can remove

CPM 2017

19:4 Fast and Simple Jumbled Indexing for Binary RLE Strings

Algorithm 1: Building the index table T of string s.
1 for i = 1, . . . , n do
2 T [i] = 0
3 for i = 1, . . . , ρ do
4 ones = o[i]
5 zeros = 0
6 T [ones] = ones

7 for j = i+ 1, . . . , ρ do
8 ones += o[j]
9 zeros += z[j − 1]

10 if ones > T [ones+ zeros] then
11 T [ones+ zeros] = ones

12 for i = n− 1, . . . , 1 do
13 if T [i] < T [i+ 1]− 1 then
14 T [i] = T [i+ 1]− 1

15 for i = 2, . . . , n do
16 if T [i] < T [i− 1] then
17 T [i] = T [i− 1]

any trailing 0s from such a substring also without changing the number of 1s, there is such a
substring that also ends in a run of 1s. Therefore we have the following lemma:

I Lemma 2. For 1 ≤ k ≤ n, there is a substring of length at most k containing f(k) copies
of 1, starting at the beginning of a run of 1s and ending in a run of 1s.

Applying Lemma 2 immediately yields an O(nρ)-time algorithm: set T [1 · · ·n] to all 0s;
for each position i at the beginning of a run of 1s and each position j ≥ i in a run of 1s, set
T [j − i+ 1] = max(T [j − i+ 1], s[i] + · · ·+ s[j]); finally, because f is non-decreasing, make a
pass over T from T [2] to T [n] setting each T [i] = max(T [i], T [i− 1]). Computing the number
s[i] + · · · + s[j] of 1s in a substring s[i . . . j] starting at the beginning of a run of 1s and
ending in a run of 1s is easy to do from the run-length encoding in amortized constant time.

To speed this preliminary algorithm up to run in O(n+ ρ2) time, we first observe that,
if ` is the length of a substring starting at the beginning of a run of 1s, ending in a run of
1s and containing f(`) copies of 1, and d > ` is the length of a substring starting at the
beginning of a run of 1s and ending at the end of a run of 1s, then f(`) ≥ f(d)− d+ `. (In
fact this is true for any ` and d ≥ `, simply because f(x + 1) ≤ f(x) + 1 for all x.) We
then observe that, for some such d, we have f(`) = f(d)− d+ `. To see why, consider any
substring s[i · · · j] of length ` starting at the beginning of a run of 1s, ending within a run of
1s and containing f(`) copies of 1: let d be the length of the substring starting at s[i] and
ending at the end of the run of 1s containing s[i+ `− 1], so f(`) = f(d)− d+ `.

I Lemma 3. If ` is the length of a substring starting at the beginning of a run of 1s, ending
in a run of 1s and containing f(`) copies of 1, and d > ` is the length of a substring starting
at the beginning of a run of 1s and ending at the end of a run of 1s, then f(`) ≥ f(d)− d+ `.
Furthermore, for some such d, we have f(`) = f(d)− d+ `.

With Lemma 3, we can compute the number s[i]+ · · ·+s[j] of 1s in each substring s[i . . . j]
starting at the beginning of a run of 1s and ending in a run of 1s, in a total of O(n+ρ2) time:

L. Cunha, S. Dantas, T. Gagie, R. Wittler, L. Kowada, and J. Stoye 19:5

again, set T [1 · · ·n] to all 0s; for each position i at the beginning of a run of 1s and each
position j ≥ i at the end of a run of 1s, set T [j−i+1] = max(T [j−i+1], s[i]+· · ·+s[j]); make
a pass over T from T [n− 1] to T [1] setting each T [i] = max(T [i], T [i+ 1]− 1). Computing
the number s[i] + · · ·+ s[j] of 1s in a substring s[i · · · j] starting at the beginning of a run of
1s and ending at the end of a run of 1s is again easy to do from the run-length encoding in
amortized constant time.

Combining Lemmas 2 and 3, we have a complete algorithm for computing T in O(n+ ρ2)
time: set T [1 · · ·n] to all 0s; for each position i at the beginning of a run of 1s and each
position j ≥ i at the end of a run of 1s, set T [j − i+ 1] = max(T [j − i+ 1], s[i] + · · ·+ s[j]);
make a pass over T from T [n− 1] to T [1] setting each T [i] = max(T [i], T [i+ 1]− 1) (which
sets T [`] correctly for every length ` of a substring starting at the beginning of a run of 1s,
ending in a run of 1s and containing f(`) copies of 1); and make a pass over T from T [2] to
T [n] setting each T [i] = max(T [i], T [i− 1]) (which sets every entry in T correctly). Once we
have T , we can convert it into a bitvector in O(n) time. Summarizing our results so far, we
have the following theorem, which we adapt in later sections:

I Theorem 4. Given a binary string s of length n containing ρ runs of 1s, we can build an
O(n)-bit index for constant-time jumbled pattern matching in O(n+ ρ2) time.

Now we examine how our algorithm works on our example s = 010101110011. First we
set all entries of T to 0, then we loop through the runs of 1s and, for each, loop through the
runs of 1s not earlier, computing distance from the start of the first to the end of the second
and the number of 1s between those positions. While doing this, we set T [1] = 1, the number
of 1s from the start to the end of the first run of 1s; T [3] = 2, the number of 1s from the start
of the first run of 1s to the end of the second run of 1s; T [7] = 5, the number of 1s from the
start of the first run of 1s to the end of the third run of 1s; T [11] = 7, the number of 1s from
the start of the first run of 1s to the end of the fourth run of 1s; T [5] = 4, the number of 1s
from the start of the second run of 1s to the end of the third run; etc. When we have finished
this stage, T = [1, 2, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0]. We then make a pass over T from right to left,
setting each T [i] = max(T [i], T [i+ 1]− 1). After this stage, T = [1, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 0].
Finally, we make a pass over T from left to right, setting each T [i] = max(T [i], T [i − 1]).
This fills in T [12] and leaves T correctly computed as T = [1, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7].

4 Witnessing Index

As described in Section 2, if together with computing the minimum and maximum number
of 1s in a substring of length k for 1 ≤ k ≤ n, we also store the positions of substrings of
length k with those numbers of 1s, and a single bitvector for s, then, together with confirming
that s contains a substring with a given number of 0s and 1s (if it does), we can give the
starting position of such a substring, still in constant time.

In this section, we show how to modify our algorithm from Section 3 to build also a
table P [1..n] such that P [k] is the starting position of a substring of length k containing f(k)
copies of 1s. Computing and storing the starting position of a substring of length k with the
minimum number of 1s is symmetric.

First, notice that during the first stage of Algorithm 1, whenever we set T [k] = f(k), we
have found a substring of length k containing f(k) copies of 1, so we can set P [k] at the
same time. Now consider the second stage of the algorithm, in which we make a right-to-left
pass over T setting T [i] = max(T [i], T [i + 1] − 1) for 1 ≤ i ≤ n − 1. When we start this
stage, for every positive entry in T we have set the corresponding entry in P . Therefore, by

CPM 2017

19:6 Fast and Simple Jumbled Indexing for Binary RLE Strings

induction, whenever we set T [i] = T [i+ 1]− 1, we have P [i+ 1] set to the starting position of
a substring of length i+ 1 containing T [i+ 1] copies of 1. The substring of length i starting
at P [i+ 1] contains at least T [i+ 1]− 1 copies of 1, so we can set P [i] = P [i+ 1]. In the
last stage of the algorithm, in which we make a left-to-right pass over T , we can almost use
the same kind of argument and simply copy P values when we copy T values, except that
we must ensure the starting positions we copy are far enough to the left of the end of the
string (i.e., that the substrings have the correct lengths). Our modified algorithm is shown
as Algorithm 2 – still only 25 lines – and we now have the following theorem:

I Theorem 5. Given a binary string s of length n containing ρ runs of 1s, we can build an
O(n)-word index for constant-time jumbled pattern matching with O(logn) time witnessing
in O(n+ ρ2) time.

Running our modified algorithm on our example s = 010101110011, in the first stage we set
T = [1, 2, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0] and, simultaneously, P = [2, 11, 6, 0, 4, 0, 2, 0, 4, 0, 2, 0], where
0 indicates an unset value in P . In the second stage, we set T = [1, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 0]
and P = [2, 11, 6, 4, 4, 2, 2, 4, 4, 2, 2, 0]. Finally, in the third stage, we fill in T [12] = T [11], but
we cannot just set P [12] = P [11] = 2 because s[2 · · ·n = 12] has length only 11, so we set
P [12] = 1.

5 Reducing Workspace

It is frustrating that both s and the index described in Theorem 4 take O(n) bits, but we
use O(n) words to build the index. In this section, we show how to reduce this workspace to
O(n) bits also, without increasing the time bound for construction by more than a constant
factor.

Suppose we divide T into blocks of size lg(n)/2 and modify our algorithm such that,
whenever we set a value T [i], we ensure that each value T [j] in the same block with j < i is
at least T [i]− i+ j and each value T [j] in the same block with i < j is at least T [i]. Since we
would eventually set each such T [j] to a value at least as great during the normal execution
of the algorithm, this does not change its correctness, apart from perhaps slowing it down by
an O(logn) factor.

For any two consecutive values T [i] and T [i + 1] in the same block now, however, we
have T [i] ≤ T [i+ 1] ≤ T [i] + 1. We can thus store each block by storing its first value and a
binary string of length lg(n)/2 whose bits indicate where the values in the block increase.
Therefore, we need a total of only O(n) bits to store all the blocks.

Notice that, if we increase a value T [i] by more than lg(n)/2, we reset the first value T [h]
of the block to be T [i]− i+h, set the leading bits of the block to 1s to indicate that the values
increase until reaching T [i], and set the later bits of the block to 0s to indicate that the values
remain equal to T [i] until the end of the block. Therefore, we can speed the algorithm up to
run in O(n+ ρ2) time again, by using a universal table of size 2lg(n)/2 logO(1) n = o(n1/2+ε)
to decide how to update blocks when we set values in them.

I Theorem 6. Given a binary string s of length n containing ρ runs of 1s, we can build an
O(n)-bit index for constant-time jumbled pattern matching in O(n+ ρ2) time using O(n) bits
of workspace.

In fact, it seems possible to make the algorithm run in O(n+ ρ2) time and O(n) bits of
space even without a universal table, using AC0 operations on words that are available on
standard architectures.

L. Cunha, S. Dantas, T. Gagie, R. Wittler, L. Kowada, and J. Stoye 19:7

Algorithm 2: Building the tables T and P for s.
1 for i = 1, . . . , n do
2 T [i] = 0
3 p = z[0]
4 for i = 1, . . . , ρ do
5 ones = o[i]
6 zeros = 0
7 T [ones] = ones

8 P [ones] = p

9 for j = i+ 1, . . . , ρ do
10 ones += o[j]
11 zeros += z[j − 1]
12 if ones > T [ones+ zeros] then
13 T [ones+ zeros] = ones

14 P [ones+ zeros] = p

15 p += ones[i] + zeros[i]
16 for i = n− 1, . . . , 1 do
17 if T [i] < T [i+ 1]− 1 then
18 T [i] = T [i+ 1]− 1
19 P [i] = P [i+ 1]

20 for i = 2, . . . , n do
21 if T [i] < T [i− 1] then
22 T [i] = T [i− 1]
23 P [i] = P [i− 1]
24 if P [i] + i > n then
25 P [i] = n− i

This workspace reduction makes little sense for a string as small as our example s =
010101110011 but, for the sake of argument, suppose we partition our array T for it into
three blocks of length 4 each. We keep T [1], T [5] and T [9] stored explicitly and represent
the other entries of T implicitly with three 3-bit binary strings B1, B2 and B3. Initially we
set T [1] = T [5] = T [9] = 0 and B1 = B2 = B3 = 000. Recall from Section 3 that we first set
T [1] = 1, the number of 1s from the start to the end of the first run of 1s. At this point, we
do not need to change B1. We then set T [3] = 2 – the number of 1s from the start of the first
run of 1s to the end of the second run of 1s – by setting B1 = 010: starting from T [1] = 1,
this encodes T [2] = T [1] + 0 = 1, T [3] = T [1] + 0 + 1 = 2 and T [4] = T [1] + 0 + 1 + 0 = 2.
Next we set T [7] = 5 – the number of 1s from the start of the first run of 1s to the end of
the third run of 1s – by setting T [5] = 3 and B2 = 110: starting from T [5] = 3, this encodes
T [6] = T [5] + 1 = 4, T [7] = T [5] + 1 + 1 = 5 and T [8] = T [5] + 1 + 1 + 0 = 5. Continuing
like this, we set T [11] = 7 by setting T [9] = 5 and B3 = 110; set T [5] = 4 and B2 = 010; etc.
When we are finished this stage, T [1] = 1, T [5] = 4 and T [9] = 6, and B1 = 110, B2 = 010
and B3 = 010, encoding T = [1, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7]. In this case the final right-to-left
and left-to-right passes have no effect, but there are cases (e.g., when we do not set any
values in a certain block) when they are still necessary.

CPM 2017

19:8 Fast and Simple Jumbled Indexing for Binary RLE Strings

References

1 Amihood Amir, Alberto Apostolico, Tirza Hirst, Gad M. Landau, Noa Lewenstein, and
Liat Rozenberg. Algorithms for jumbled indexing, jumbled border and jumbled square on
run-length encoded strings. Theor. Comput. Sci., 656:146–159, 2016. doi:10.1016/j.tcs.
2016.04.030.

2 Amihood Amir, Timothy M. Chan, Moshe Lewenstein, and Noa Lewenstein. On hard-
ness of jumbled indexing. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias
Koutsoupias, editors, Proceedings of the 41st International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2014), volume 8572 of LNCS, pages 114–125. Springer,
2014. doi:10.1007/978-3-662-43948-7_10.

3 Golnaz Badkobeh, Gabriele Fici, Steve Kroon, and Zsuzsanna Lipták. Binary jumbled
string matching for highly run-length compressible texts. Inf. Process. Lett., 113(17):604–
608, 2013. doi:10.1016/j.ipl.2013.05.007.

4 David Bremner, Timothy M. Chan, Erik D. Demaine, Jeff Erickson, Ferran Hurtado, John
Iacono, Stefan Langerman, Mihai Pătraşcu, and Perouz Taslakian. Necklaces, convolutions,
and X + Y . Algorithmica, 69(2):294–314, 2014. doi:10.1007/s00453-012-9734-3.

5 Péter Burcsi, Ferdinando Cicalese, Gabriele Fici, and Zsuzsanna Lipták. On table ar-
rangements, scrabble freaks, and jumbled pattern matching. In Paolo Boldi and Lu-
isa Gargano, editors, Proceedings of the 5th International Conference on Fun with Al-
gorithms (FUN 2010), volume 6099 of LNCS, pages 89–101. Springer, 2010. doi:10.1007/
978-3-642-13122-6_11.

6 Péter Burcsi, Ferdinando Cicalese, Gabriele Fici, and Zsuzsanna Lipták. On approximate
jumbled pattern matching in strings. Theory Comput. Syst., 50(1):35–51, 2012. doi:10.
1007/s00224-011-9344-5.

7 Timothy M. Chan and Moshe Lewenstein. Clustered integer 3SUM via additive combinat-
orics. In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of the 47th Annual
ACM on Symposium on Theory of Computing (STOC 2015), pages 31–40. ACM, ACM,
2015. doi:10.1145/2746539.2746568.

8 Ferdinando Cicalese, Gabriele Fici, and Zsuzsanna Lipták. Searching for jumbled patterns
in strings. In Jan Holub and Jan Zdárek, editors, Proceedings of the Prague Stringology Con-
ference (PSC 2009), pages 105–117, 2009. URL: http://www.stringology.org/event/
2009/p10.html.

9 Ferdinando Cicalese, Travis Gagie, Emanuele Giaquinta, Eduardo Sany Laber, Zsuzsanna
Lipták, Romeo Rizzi, and Alexandru I. Tomescu. Indexes for jumbled pattern matching
in strings, trees and graphs. In Oren Kurland, Moshe Lewenstein, and Ely Porat, editors,
Proceedings of the 20th International Symposium on String Processing and Information
Retrieval (SPIRE 2013), volume 8214 of LNCS, pages 56–63. Springer, 2013. doi:10.
1007/978-3-319-02432-5_10.

10 Ferdinando Cicalese, Eduardo Laber, Oren Weimann, and Raphael Yuster. Near linear time
construction of an approximate index for all maximum consecutive sub-sums of a sequence.
In Juha Kärkkäinen and Jens Stoye, editors, Proceedings of the 23rd Annual Symposium
on Combinatorial Pattern Matching (CPM 2012), volume 7354 of LNCS, pages 149–158.
Springer, 2012. doi:10.1007/978-3-642-31265-6_12.

11 Stephane Durocher, Robert Fraser, Travis Gagie, Debajyoti Mondal, Matthew Skala, and
Sharma V. Thankachan. Indexed geometric jumbled pattern matching. In Alexander S.
Kulikov, Sergei O. Kuznetsov, and Pavel A. Pevzner, editors, Proceedings of the 25th Annual
Symposium on Combinatorial Pattern Matching (CPM 2014), volume 8486 of LNCS, pages
110–119. Springer, Springer, 2014. doi:10.1007/978-3-319-07566-2_12.

http://dx.doi.org/10.1016/j.tcs.2016.04.030
http://dx.doi.org/10.1016/j.tcs.2016.04.030
http://dx.doi.org/10.1007/978-3-662-43948-7_10
http://dx.doi.org/10.1016/j.ipl.2013.05.007
http://dx.doi.org/10.1007/s00453-012-9734-3
http://dx.doi.org/10.1007/978-3-642-13122-6_11
http://dx.doi.org/10.1007/978-3-642-13122-6_11
http://dx.doi.org/10.1007/s00224-011-9344-5
http://dx.doi.org/10.1007/s00224-011-9344-5
http://dx.doi.org/10.1145/2746539.2746568
http://www.stringology.org/event/2009/p10.html
http://www.stringology.org/event/2009/p10.html
http://dx.doi.org/10.1007/978-3-319-02432-5_10
http://dx.doi.org/10.1007/978-3-319-02432-5_10
http://dx.doi.org/10.1007/978-3-642-31265-6_12
http://dx.doi.org/10.1007/978-3-319-07566-2_12

L. Cunha, S. Dantas, T. Gagie, R. Wittler, L. Kowada, and J. Stoye 19:9

12 Travis Gagie, Danny Hermelin, Gad M. Landau, and Oren Weimann. Binary jumbled
pattern matching on trees and tree-like structures. Algorithmica, 73(3):571–588, 2015.
doi:10.1007/s00453-014-9957-6.

13 Emanuele Giaquinta and Szymon Grabowski. New algorithms for binary jumbled pattern
matching. Inf. Process. Lett., 113(14):538–542, 2013. doi:10.1016/j.ipl.2013.04.013.

14 Danny Hermelin, Gad M. Landau, Yuri Rabinovich, and Oren Weimann. Binary jumbled
pattern matching via all-pairs shortest paths, 2014. arXiv:1401.2065.

15 Tomasz Kociumaka, Jakub Radoszewski, and Wojciech Rytter. Efficient indexes for
jumbled pattern matching with constant-sized alphabet. In Hans L. Bodlaender and
Giuseppe F. Italiano, editors, Proceedings of the 21st Annual European Symposium on
Algorithms (ESA 2013), volume 8125 of LNCS, pages 625–636. Springer, 2013. doi:
10.1007/978-3-642-40450-4_53.

16 Tanaeem M. Moosa and M. Sohel Rahman. Indexing permutations for binary strings. Inf.
Process. Lett., 110(18-19):795–798, 2010. doi:10.1016/j.ipl.2010.06.012.

17 Tanaeem M. Moosa and M. Sohel Rahman. Sub-quadratic time and linear space data
structures for permutation matching in binary strings. J. Discrete Algorithms, 10:5–9,
2012. doi:10.1016/j.jda.2011.08.003.

18 Gonzalo Navarro. Compact Data Structures: A practical approach. Cambridge University
Press, 2016. doi:10.1017/CBO9781316588284.

19 Shiho Sugimoto, Naoki Noda, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Computing Abelian regularities on RLE strings, 2017. arXiv:1701.02836.

CPM 2017

http://dx.doi.org/10.1007/s00453-014-9957-6
http://dx.doi.org/10.1016/j.ipl.2013.04.013
http://arxiv.org/abs/1401.2065
http://dx.doi.org/10.1007/978-3-642-40450-4_53
http://dx.doi.org/10.1007/978-3-642-40450-4_53
http://dx.doi.org/10.1016/j.ipl.2010.06.012
http://dx.doi.org/10.1016/j.jda.2011.08.003
http://dx.doi.org/10.1017/CBO9781316588284
http://arxiv.org/abs/1701.02836

Faster STR-IC-LCS Computation via RLE∗

Keita Kuboi1, Yuta Fujishige2, Shunsuke Inenaga3, Hideo Bannai4,
and Masayuki Takeda5

1 Department of Informatics, Kyushu University, Fukuoka, Japan
keita.kuboi@inf.kyushu-u.ac.jp

2 Department of Informatics, Kyushu University, Fukuoka, Japan
yuta.fujishige@inf.kyushu-u.ac.jp

3 Department of Informatics, Kyushu University, Fukuoka, Japan
inenaga@inf.kyushu-u.ac.jp

4 Department of Informatics, Kyushu University, Fukuoka, Japan
bannai@inf.kyushu-u.ac.jp

5 Department of Informatics, Kyushu University, Fukuoka, Japan
takeda@inf.kyushu-u.ac.jp

Abstract
The constrained LCS problem asks one to find a longest common subsequence of two input strings
A and B with some constraints. The STR-IC-LCS problem is a variant of the constrained LCS
problem, where the solution must include a given constraint string C as a substring. Given two
strings A and B of respective lengths M and N , and a constraint string C of length at most
min{M,N}, the best known algorithm for the STR-IC-LCS problem, proposed by Deorowicz (Inf.
Process. Lett., 11:423–426, 2012), runs in O(MN) time. In this work, we present an O(mN+nM)-
time solution to the STR-IC-LCS problem, where m and n denote the sizes of the run-length
encodings of A and B, respectively. Since m ≤ M and n ≤ N always hold, our algorithm is
always as fast as Deorowicz’s algorithm, and is faster when input strings are compressible via
RLE.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases longest common subsequence, STR-IC-LCS, run-length encoding

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.20

1 Introduction

Longest common subsequence (LCS) is one of the most basic measures of similarity between
strings, and there is a vast amount of literature concerning its efficient computation. An
LCS of two strings A and B of lengths M and N , respectively, is a longest string that is
a subsequence of both A and B. There is a well known O(MN) time and space dynamic
programming (DP) algorithm [15] to compute an LCS between two strings. LCS has
applications in bioinformatics [10, 16], file comparisons [9, 8], pattern recognition [13], etc.

Recently, several variants of the problem which try to find a longest common subsequence
that satisfy some constraints have been considered. In 2003, Tsai [14] proposed the constrained
LCS (CLCS) problem, where, given strings A,B with respective lengths M,N , and a
constraint string C of length K, the problem is to find a longest string that contains C as a
subsequence and is also a common subsequence of A and B. Tsai gave an O(M2N2K) time

∗ This work was in part supported by JSPS KAKENHI Grant Numbers JP25240003, JP26280003,
JP16H02783, JP17H01697 and by JST CREST Grant Number JPMJCR1402.

© Keita Kuboi, Yuta Fujishige, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda;
licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 20; pp. 20:1–20:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.20
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

20:2 Faster STR-IC-LCS Computation via RLE

Table 1 Time complexities of best known solutions to various constrained LCS problems.

Problem DP solution DP solution using RLE
SEQ-IC-LCS O(MNK) [6] O(M +N +K min{mN,nM}) [12]
SEQ-EC-LCS O(MNK) [5] –
STR-IC-LCS O(MN) [7] O(mN + nM) [this work]
STR-EC-LCS O(MNK) [17] –

solution, which was improved in 2004 by Chin et al. to O(MNK) time [6]. Variants of the
constrained LCS problem called SEQ-IC-LCS, SEQ-EC-LCS, STR-IC-LCS, and STR-EC-
LCS, were considered by Chen and Chao in 2011 [5]. Each problem considers as input, three
strings A,B and C, and the problem is to find a longest string that includes (IC) or excludes
(EC) C as a subsequence (SEQ) or substring (STR) and is a common subsequence of A and
B (i.e., CLCS is equivalent to the SEQ-IC-LCS problem). The best solution for each of the
problems is shown in Table 1.

In order to speed up the LCS computation, one direction of research that has received
much attention is to apply compression, namely, run-length encoding (RLE) of strings.
Bunke and Csirik [4] were one of the first to consider such a scenario, and proposed an
O(mN + nM) time algorithm. Here, m,n are the sizes of the RLE of the input strings
of lengths M and N , respectively. Notice that since RLE can be computed in linear
time, and m ≤ M and n ≤ N , the algorithm is always asymptotically faster than the
standard O(NM) time dynamic programming algorithm, especially when the strings are
compressible by RLE. Furthermore, Ahsan et al. proposed an algorithm which runs in
O((m+n) +R log log(mn) +R log log(M +N)) time [1], where R is the total number of pairs
of runs of the same character in the two RLE strings, i.e. R ∈ O(mn), and the algorithm
can be much faster when the strings are compressible by RLE.

For the constrained LCS problems, RLE based solutions for only the SEQ-IC-LCS problem
have been proposed. In 2012, an O(K(mN + nM)) time algorithm was proposed by Ann
et al. [2]. Later, in 2015, Liu et al. proposed a faster O(M +N +K min{mN,nM}) time
algorithm [12].

In this paper, we present the first RLE based solution for the STR-IC-LCS problem that
runs in O(mN + nM) time. Again, since RLE can be computed in linear time, and m ≤M
and n ≤ N , the proposed algorithm is always asymptotically faster than the best known
solution for the STR-IC-LCS problem by Deorowicz [7], which runs in O(MN) time.

A common criticism against RLE based solutions is a claim that, although they are
theoretically interesting, since most strings “in the real world” are not compressible by RLE,
their applicability is limited and they are only useful in extreme artificial cases. We believe
that this is not entirely true. There can be cases where RLE is a natural encoding of the data,
for example, in music, a melody can be expressed as a string of pitches and their duration.
Furthermore, in the data mining community, there exist popular preprocessing schemes for
analyzing various types of time series data, which convert the time series to strings over a
fairly small alphabet as an approximation of the original data, after which various analyses are
conducted (e.g. SAX (Symbolic Aggregate approXimation) [11], clipped bit representation [3],
etc.). These conversions are likely to produce strings which are compressible by RLE (and in
fact, shown to be effective in [3]), indicating that RLE based solutions may have a wider
range of application than commonly perceived.

K. Kuboi, Y. Fujishige, S. Inenaga, H. Bannai, and M. Takeda 20:3

2 Preliminaries

Let Σ be the finite set of characters, and Σ∗ be the set of strings. For any string A, let
|A| be the length of A. For any 1 ≤ i ≤ i′ ≤ |A|, let A[i] be the ith character of A and let
A[i..i′] = A[i] · · ·A[i′] denote a substring of A. Especially, A[1..i′] denotes a prefix of A, and
A[i..|A|] denotes a suffix of A. A string Z is a subsequence of A if Z can be obtained from
A by removing zero or more characters. For two string A and B, a string Z is a longest
common subsequence (LCS) of A,B, if Z is a longest string that is a subsequence of both
A and B. For any 1 ≤ i ≤ |A| and 1 ≤ j ≤ |B|, let Lpref (i, j) denote the length of an LCS
of A[1..i], B[1..j], and let Lsuf (i, j) denote the length of an LCS of A[i..|A|], B[j..|B|]. The
LCS problem is to compute the length of an LCS of given two strings A and B. A well
known solution is dynamic programming, which computes in O(MN) time, a table (which
we will call DP table) of size O(MN) that stores values of Lpref (i, j) for all 1 ≤ i ≤ M ,
1 ≤ j ≤ N . The DP table for Lsuf (i, j) can be computed similarly.

For two strings A,B and a constraint string C, a string Z is an STR-IC-LCS of A,B,C,
if Z is a longest string that includes C as a substring and also is a subsequence of both A
and B. The STR-IC-LCS problem is to compute the length of an STR-IC-LCS of any given
three strings A, B and C. For example, if A = abacab, B = babcaba, C = bb, then abcab
and bacab are LCSs of A,B, and abb is an STR-IC-LCS of A,B,C.

The run-length encoding (RLE) of a string A is a kind of compressed representation of A
where each maximal run of the same character is represented by a pair of the character and
the length of the run. Let RLE(A) denote the RLE of a string A. The size of RLE(A) is the
number of the runs in A, and is denoted by |RLE(A)|. By definition, |RLE(A)| is always
less than or equal to |A|.

In the next section, we consider the STR-IC-LCS problem of strings A, B and constraint
string C. Let |A| = M , |B| = N , |C| = K, |RLE(A)| = m and |RLE(B)| = n. We assume
that K ≤ min(M,N) and |RLE(C)| ≤ min(m,n), since otherwise there is no solution. We
also assume that K > 0, because in that case the problem becomes the normal LCS problem
of A,B.

3 Algorithm

In this section, we will first introduce a slightly modified version of Deorowicz’s O(MN)-
time algorithm for the STR-IC-LCS problem [7], and then propose our O(mN + nM)-time
algorithm, which is based on his dynamic programming approach, but uses RLE.

3.1 Deorowicz’s O(MN) Algorithm
We first define the notion of minimal C-intervals of a string.

I Definition 1. For any strings A and C, an interval [s, f] is a minimal C-interval of A if
C is a subsequence of A[s..f], and
C is not a subsequence of A[s+ 1..f] or A[s..f − 1].

Deorowicz’s algorithm is based on Lemma 2, which is used implicitly in [7].

I Lemma 2 (implicit in [7]). If Z is an STR-IC-LCS of A,B,C, then there exist minimal
C-intervals [s, f], [s′, f ′] (1 ≤ s ≤ f ≤ M , 1 ≤ s′ ≤ f ′ ≤ N) respectively of A and B, such
that Z = XCY , where X is an LCS of A[1..s − 1] and B[1..s′ − 1] and Y is an LCS of
A[f + 1..M] and B[f ′ + 1..N].

CPM 2017

20:4 Faster STR-IC-LCS Computation via RLE

Proof. From the definition of STR-IC-LCS, C is a substring of Z, and therefore, there
exist (possibly empty) strings X,Y such that Z = XCY . Also, since Z is a common
subsequence of A and B, there exist monotonically increasing sequences i1, . . . , i|Z| and
j1, . . . , j|Z| such that Z = A[i1] · · ·A[i|Z|] = B[j1] · · ·B[j|Z|], and C = A[i|X|+1] · · ·A[i|X|+K]
= B[j|X|+1] · · ·B[j|X|+K].

Now, since C is a subsequence of A[i|X|+1..i|X|+K] and B[j|X|+1..j|X|+K] there exist
minimal C-intervals [s, f], [s′, f ′] respectively of A and B that satisfy i|X|+1 ≤ s ≤ f ≤ i|X|+K
and j|X|+1 ≤ s′ ≤ f ′ ≤ j|X|+K . Let X ′ be an LCS of A[1..s− 1] and B[1..s′ − 1], and Y ′ an
LCS of A[f + 1..M] and B[f ′+ 1..N]. Since X must be a common subsequence of A[1..s− 1]
and B[1..s′ − 1], and Y a common subsequence of A[f + 1..M] and B[f ′ + 1..N], we have
|X ′| ≥ |X| and |Y ′| ≥ |Y |. However, we cannot have that |X ′| > |X| or |Y ′| > |Y | since
otherwise, X ′CY ′ would be a string longer than Z that contains C as a substring, and is
a common subsequence of A,B, contradicting that Z is an STR-IC-LCS of A,B,C. Thus,
|X| = |X ′| and |Y | = |Y ′| implying that X is also an LCS of A[1..s− 1], B[1..s′ − 1], and Y
is also an LCS of A[f + 1..M], B[f ′ + 1..N], proving the lemma. J

The algorithm consists of the following two steps, whose correctness follows from Lemma 2.
Step 1. Compute all minimal C-intervals of A and B.
Step 2. For all pairs of a minimal C-interval [s, f] of A and a minimal C-interval [s′, f ′] of B,

compute the length of an LCS of the corresponding prefixes of A and B (i.e., Lpref (s−
1, s′−1)) and that of the corresponding suffixes of A and B (i.e., Lsuf (f +1, f ′+1)). The
largest sum of LCS lengths plus |C| (i.e., Lpref (s− 1, s′ − 1) + Lsuf (f + 1, f ′ + 1) + |C|)
is the length of an STR-IC-LCS.

The steps can be executed in the following running times. For Step 1, there are respectively
at most M and N minimal C-intervals of A and B, which can be enumerated in O(MK) and
O(NK) time. For Step 2, we precompute, in O(MN) time, two dynamic programming tables
which respectively contain the values of Lpref (i, j) and Lsuf (i, j) for each 1 ≤ i ≤ M and
1 ≤ j ≤ N . Using these tables, the value Lpref (s− 1, s′ − 1) + Lsuf (f + 1, f ′ + 1) + |C| can
be computed in constant time for any [s, f] and [s′, f ′]. There are O(MN) possible pairs of
minimal C-intervals, so Step 2 can be done in O(MN) time. In total, since K ≤M,K ≤ N ,
the STR-IC-LCS problem can be solved in O(MN) time.

We note that in the original presentation of Deorowicz’s algorithm, right-minimal C-
intervals, that is, intervals [s, f] where C is a subsequence of A[s..f] but not of A[s..f −1] are
computed, instead of minimal C-intervals as defined in Definition 1. Although the number
of considered intervals changes, this does not influence the asymptotic complexities in the
non-RLE case. However, as we will see in Lemma 4 of Section 3.2, this is an essential
difference for the RLE case, since, when |RLE(C)| > 1, the number of minimal C-intervals of
A and B can be bounded by O(m) and O(n), but the number of right-minimal C-intervals
of A and B cannot, and are only bounded by O(M) and O(N).

3.2 Our Algorithm via RLE

In this subsection, we propose an efficient algorithm based on Deorowicz’s algorithm explained
in Subsection 3.1, extended to strings expressed in RLE. There are two main cases to
consider: when |RLE(C)| = 1, i.e., when C consists of only one type of character, and when
|RLE(C)| > 1, i.e., when C contains at least two different characters.

K. Kuboi, Y. Fujishige, S. Inenaga, H. Bannai, and M. Takeda 20:5

3.2.1 Case |RLE(C)| > 1
I Theorem 3. Let A,B,C be any strings and let |A| = M , |B| = N , |RLE(A)| = m and
|RLE(B)| = n. If |RLE(C)| > 1, we can compute the length of an STR-IC-LCS of A,B,C
in O(mN + nM) time.

For Step 1, we execute the following procedure to enumerate all minimal C-intervals of A
and B. Let s0 = 0. First, find the right minimal C-interval starting at s0 +1, i.e., the smallest
position f1 such that C is a subsequence of A[s0 + 1..f1]. Next, starting from position f1 of
A, search backwards to find the left minimal C-interval ending at f1, i.e., the largest position
s1 such that C is a subsequence of A[s1..f1]. The process is then repeated, i.e., find the
smallest position f2 such that C is a subsequence of A[s1 + 1..f2], and then search backwards
to find the largest position s2 such that C is a subsequence of A[s2..f2], and so on. It is
easy to see that the intervals [s1, f1], [s2, f2], . . . obtained by repeating this procedure until
reaching the end of A are all the minimal C-intervals of A, since each interval that is found
is distinct, and there cannot exist another minimal C-interval between those found by the
procedure. The same is done for B. For non-RLE strings, this takes O((M +N)K) time.
The lemma below shows that the procedure can be implemented more efficiently using RLE.

I Lemma 4. Let A and C be strings where |A| = M , |RLE(A)| = m and |C| = K. If
|RLE(C)| > 1, the number of minimal C-intervals of A is O(m) and can be enumerated in
O(M +mK) time.

Proof. Because |RLE(C)| > 1, it is easy to see from the backward search in the procedure
described above, that for any minimal C-interval of A, there is a unique run of A such
that the last character of the first run of C corresponds to the last character of that run.
Therefore, the number of minimal C-intervals of A is O(m).

We can compute RLE(A) = aM1
1 · · · aMm

m and RLE(C) = cK1
1 · · · c

Kk

k in O(M +K) time.
What remains is to show that the forward/backward search procedure described above to
compute all minimal C-intervals of A can be implemented in O(mK) time. The pseudo-code
of the algorithm described is shown in Algorithm 1.

In the forward search, we scan RLE(A) to find a right minimal C-interval by greedily
matching the runs of RLE(C) to RLE(A). We maintain the character cq and exponent rest
of the first run crest

q of RLE(C ′), where C ′ is the suffix of C that is not yet matched. When
comparing a run aMp

p of RLE(A) and crest
q , if the characters are different (i.e., ap 6= cq), we

know that the entire run aMp
p will not match and thus we can consider the next run of A.

Suppose the characters are the same. Then, if Mp < rest, the entire run aMp
p of A is matched,

and we can consider the next run a
Mp+1
p+1 of A. Also, rest can be updated accordingly in

constant time by simple arithmetic. Furthermore, since cq = ap 6= ap+1, we can in fact skip
to the next run aMp+2

p+2 . If Mp ≥ rest, the entire run crest
q is matched, and we consider the

next run cKq+1
q+1 in C. Also, since ap = cq 6= cq+1, we can skip the rest of aMp

p and consider the
next run aMp+1

p+1 of A. Thus, we spend only constant time for each run of A that is scanned
in the forward search. The same holds for the backward search.

To finish the proof, we show that the total number of times that each run of A is scanned
in the procedure is bounded by O(K), i.e., the number of minimal C-intervals of A that
intersects with a given run aMp

p of A is O(K). Since |RLE(C)| > 1, a minimal C-interval
cannot be contained in aMp

p . Thus, for a minimal C-interval to intersect with the run aMp
p ,

it must cross either the left boundary of the run, or the right boundary of the run. For a
minimal C-interval to cross the left boundary of the run, it must be that for some non-empty
strings u, v such that C = uv, u occurs as a subsequence in aM1

1 · · · aMp−1
p−1 and v occurs as a

CPM 2017

20:6 Faster STR-IC-LCS Computation via RLE

Algorithm 1: computing all minimal C-intervals of A.
Input: strings A and C
Output: all minimal C-intervals [s1, f1], . . . , [sl, fl] of A
// RLE(A) = aM1

1 · · · aMm
m , RLE(C) = cK1

1 · · · c
Kk

k

// M1..p = M1 + · · ·+Mp

// p, q : index of run in A,C respectively

// rest : number of rest of searching characters of c
Kq
q

// l : number of minimal C-intervals in A

1 p← 1; q ← 1; rest← K1; l← 0;
2 while true do
3 while p ≤ m and q ≤ k do // forward search
4 if ap 6= cq then p← p+ 1;
5 else
6 if Mp ≥ rest then
7 q ← q + 1;
8 if q > k then l← l + 1; fl ←M1..p−1 + rest;
9 else p← p+ 1; rest← Kq;

10 else rest← rest−Mp; p← p+ 2;

11 if p > m then break;
12 p← p− 1;
13 if rest = Kk then q ← q − 1; rest← Kk−1;
14 else q ← k; rest← Kk − rest;
15 while q ≥ 1 do // backward search
16 if ap 6= cq then p← p− 1;
17 else
18 if Mp ≥ rest then
19 q ← q + 1;
20 if q < 1 then sl ←M1..p − rest+ 1;
21 else p← p− 1; rest← Kq;
22 else rest← rest−Mp; p← p− 2;

23 p← p+ 1; q ← 1; rest← K1 − rest+ 1;
24 return [s1, f1], . . . , [sl, fl];

subsequence in aMp
p · · · aMm

m . The minimal C-interval corresponds to the union of the left
minimal u-interval ending at the left boundary of the run and the right minimal v-interval
starting at the left boundary of the run and is thus unique for u, v. Similar arguments also
hold for minimal C-intervals that cross the right boundary of aMp

p . Since there are only
K − 1 choices for u, v, the claim holds, thus proving the Lemma. J

In Deorowicz’s algorithm, two DP tables were computed for Step 2, which took O(MN)
time. For our algorithm, we use a compressed representation of the DP table for A and B,
proposed by Bunke and Csirik [4], instead of the normal DP table. We note that Bunke and
Csirik actually solved the edit distance problem when the cost is 1 for insertion and deletion,
and 2 for substitution, but this easily translates to LCS: Lpref (i, j) = (i+ j−EDpref (i, j))/2,
where EDpref (i, j) denotes the edit distance with such costs, between A[1..i] and B[1..j].

K. Kuboi, Y. Fujishige, S. Inenaga, H. Bannai, and M. Takeda 20:7

B

a a a a b b b a a
b 0 1 1
b 0 2 2
b 0 0 0 0 1 2 3 3 3

A a 1 3 4
a 2 3 5
a 3 3 5
a 1 2 3 4 4 4 4 4 5

Figure 1 An example of a compressed Lpref DP table for strings A = bbbaaaa and B =
aaaabbbaa.

I Definition 5 ([4]). Let A, B be strings of length M , N respectively, where RLE(A) =
aM1

1 · · · aMm
m and RLE(B) = bN1

1 · · · bNn
n . The compressed DP table (cDP table) of A,B is an

O(mN + nM)-space compressed representation of the DP table of A,B which holds only the
values of the DP table for (M1..p, j) and (i,N1..q), where, 1 ≤ i ≤M , 1 ≤ j ≤ N , 1 ≤ p ≤ m,
1 ≤ q ≤ n, M1..p = M1 + · · ·+Mp, N1..q = N1 + · · ·+Nq.

Figure 1 illustrates the values stored in the cDP table for strings A = bbbaaaa, B =
aaaabbbaa. Note that although the figure depicts a sparsely filled table of size M ×N , the
values are actually stored in two (completely filled) tables: one of size m×N , holding the
values of (M1..p, j), and another of size M × n, holding the values of (i,N1..q), for a total of
O(mN + nM) space. Below are results adapted from [4] we will use.

I Lemma 6 ([4, Theorem 7]). Let A and B be any strings where |A| = M , |B| = N ,
|RLE(A)| = m and |RLE(B)| = n. The compressed DP table of A and B can be computed
in O(mN + nM) time and space.

I Lemma 7 ([4, Lemma 3]). Let α ∈ Σ and let A and B be any strings where |A| = M

and |B| = N . For any integer d ≥ 1, if A[M − d + 1..M] = B[N − d + 1..N] = αd, then
Lpref (M,N) = Lpref (M − d,N − d) + d.

I Lemma 8 ([4, Lemma 5]). Let α, β ∈ Σ, α 6= β and let A and B be any strings where
|A| = M and |B| = N . For any integers d ≥ 1 and d′ ≥ 1, if A[M − d + 1..M] = αd and
B[N − d′ + 1..N] = βd

′ then Lpref (M,N) = max{Lpref (M − d,N), Lpref (M,N − d′)}.

From Lemmas 7 and 8, we easily obtain the following Lemma 9.

I Lemma 9. Let A and B be any strings. Any entry of the DP table of A and B can be
retrieved in O(1) time by using the compressed DP table of A and B.

From Lemma 6, we can compute in O(mN +nM) time, two cDP tables of A,B which re-
spectively hold the values of Lpref (M1..p, j), Lpref (i,N1..q) and Lsuf (M1..p, j), Lsuf (i,N1..q),
each of them taking O(mN+nM) space. From Lemma 9, we can obtain Lpref (i, j), Lsuf (i, j)
for any i and j in O(1) time. Actually, to make Lemma 9 work, we also need to be able
to convert the indexes between DP and cDP in constant time, i.e., for any 1 ≤ p ≤ m,
1 ≤ q ≤ n, the values M1..p and N1..q, and for any 1 ≤ i ≤ M , 1 ≤ j ≤ N , the largest p, q
such that M1..p ≤ i, N1..q ≤ j. This is easy to do by preparing some arrays in O(M +N)
time and space.

Now we are ready to show the running time of our algorithm for the case |RLE(C)| > 1.
We can compute RLE(A),RLE(B),RLE(C) from A,B,C in O(M +N +K) time. In Step 1,

CPM 2017

20:8 Faster STR-IC-LCS Computation via RLE

we have from Lemma 4, that the number of all minimal C-intervals of A,B are respectively
O(m) and O(n), and can be computed in O(M +N +mK+nK) time. For the preprocessing
of Step 2, we build the cDP tables holding the values of Lpref (i, j), Lsuf (i, j) for 1 ≤ i ≤M ,
1 ≤ j ≤ N , which can be computed in O(mN + nM) time and space from Lemma 6. With
these tables, we can obtain for any i, j, the values Lpref (i, j), Lsuf (i, j) in constant time
from Lemma 9. Since there are O(mn) pairs of a minimal C-interval of A and a minimal
C-interval of B, the total time for Step 2, i.e. computing Lpref and Lsuf for each of the
pairs, is O(mn). Since n ≤ N,m ≤M , and we can assume that K ≤M,N , the total time is
O(mN + nM). Thus Theorem 3 holds.

3.2.2 Case |RLE(C)| = 1
Next, we consider the case where |RLE(C)| = 1, and C consists of only one run.

I Theorem 10. Let A,B,C be any strings and let |A| = M , |B| = N , |RLE(A)| = m and
|RLE(B)| = n. If |RLE(C)| = 1, we can compute the length of an STR-IC-LCS of A,B,C
in O(mN + nM) time.

For Step 1, we compute all minimal C-intervals of A and B by Lemma 11. Note the
difference from Lemma 4 in the case of |RLE(C)| > 1.

I Lemma 11. If |RLE(C)| = 1, the number of minimal C-intervals of A and B are O(M)
and O(N), respectively, and these can be enumerated in O(M) and O(N) time, respectively.

Proof. Let α ∈ Σ, C = αK , and let Mα be the number of times that α occurs in A. Then
the number of minimal C-intervals of A is Mα −K + 1 ∈ O(M). The minimal C-intervals
can be enumerated in O(M) time by checking all positions of α in A. The same applies to
B. J

From Lemma 11, we can see that the number of pairs of minimal C-intervals of A and B
can be Θ(MN), and we cannot afford to consider all of those pairs for Step 2. We overcome
this problem as follows. Let U = {[s1, f1], . . . , [sl, fl]} be the set of all minimal C-intervals
of A. Consider the partition G(1), . . . , G(g) of U which are the equivalence classes induced
by the following equivalence relation on U : For any 1 ≤ p ≤ q ≤ m and [sx, fx], [sy, fy] ∈ U ,

[sx, fx] ≡ [sy, fy] ⇐⇒ M1..p−1 < sx, sy ≤M1..p and M1..q−1 < fx, fy ≤M1..q, (1)

where, M1..0 = 0. In other words, [sx, fx] and [sy, fy] are in the same equivalence class if they
start in the same run, and end in the same run. Noticing that minimal C-intervals cannot be
completely contained in another minimal C-interval, we can assume that for 1 ≤ h < h′ ≤ g,
[sx, fx] ∈ G(h) and [sy, fy] ∈ G(h′), we have sx < sy and fx < fy.

I Lemma 12. Let G(1), . . . , G(g) be the partition of the set U of all minimal C-intervals of
A induced by the equivalence relation (1). Then, g ∈ O(m).

Proof. Let 1 ≤ x < y ≤ l and 2 ≤ h ≤ g. For any [sx, fx] ∈ G(h− 1) and [sy, fy] ∈ G(h), let
1 ≤ p ≤ q ≤ m satisfy M1..p−1 < sx ≤ M1..p, M1..q−1 < fx ≤ M1..q. Since the intervals are
not equivalent, either M1..p < sy or M1..q < fy must hold. Thus, g ∈ O(m). J

Equivalently for B, we consider the set U ′ = {[s′1, f ′1], . . . , [s′l′ , f ′l′]} of all minimal C-
intervals of B, and the partition G′(1), . . . , G′(g′) of U ′ based on the analogous equivalence
relation, where g′ ∈ O(n).

K. Kuboi, Y. Fujishige, S. Inenaga, H. Bannai, and M. Takeda 20:9

B

a b b b a a a · · ·
a 1 1 (1) (1)
a 1 1 (2) (2)
a 1 1 (2) (3)

A a 1 1 (2) (3)
a 1 1 1 1 2 3 4 · · ·
b 1 2
...

...
...

B

· · · a a a b b b
...

...
a (4) (3) 2
a (4) (3) 2

A a (3) (3) 2
b · · · 2 2 2 2 2 1
b 1
a · · · 1 1 1 0 0 0

Figure 2 An example depicting the LCSs of corresponding prefixes (left) and suffixes (right) of
all combinations of G(2) and G′(2) for strings RLE(A) = a5b3a4b2a1, RLE(B) = a1b3a7b3, and
RLE(C) = a5. The values denoted inside parentheses are not stored in the cDP table, but each of
them can be computed in O(1) time.

For some h, let [sx, fx], [sy, fy] be the minimal C-intervals in G(h) with the smallest and
largest start positions. Since by definition, A[sx] = · · · = A[sy] = A[fx] = · · · = A[fy], we
have G(h) = {[sx, fx], [sx + 1, fx + 1], . . . , [sy, fy]}. The same can be said for G′(h′) of B.
From this observation, we can show the following Lemma 13.

I Lemma 13. For any 1 ≤ h ≤ g and 1 ≤ h′ ≤ g′, let [s, f], [s+ d, f + d] ∈ G(h) and [s′, f ′],
[s′ + d, f ′ + d] ∈ G′(h′), for some positive integer d. Then,

Lpref (s−1, s′−1)+Lsuf (f+1, f ′+1) = Lpref (s+d−1, s′+d−1)+Lsuf (f+d+1, f ′+d+1).

Proof. Since A[s..s+ d] = A[f..f + d] = B[s′..s′ + d] = B[f ′..f ′ + d] = C[1]d, we have from
Lemma 7, Lpref (s+ d− 1, s′ + d− 1) = Lpref (s− 1, s′ − 1) + d, and Lsuf (f + 1, f ′ + 1) =
Lsuf (f + d+ 1, f ′ + d+ 1) + d. J

From Lemma 13, we can see that for any G(h), G′(h′) (1 ≤ h ≤ g, 1 ≤ h′ ≤ g′), we do
not need to compute Lpref (s− 1, s′ − 1) + Lsuf (f + 1, f ′ + 1) for all pairs of [s, f] ∈ G(h)
and [s′, f ′] ∈ G′(h′). Let Gmin(h) and G′min(h′) be the minimal C-intervals respectively
in G(h) and G′(h′) with the smallest starting position. Then, we only need to consider
the combination of Gmin(h) with each of [s′, f ′] ∈ G′(h′), and the combination of each of
[s, f] ∈ G(h) with G′min(h′). Therefore, of all combinations of minimal C-intervals in U and
U ′, we only need to consider for all 1 ≤ h ≤ g and 1 ≤ h′ ≤ g′, the combination of Gmin(h)
with each of U ′, and each of U with G′min(h′). The number of such combinations is clearly
O(mN + nM).

For example, consider RLE(A) = a5b3a4b2a1, RLE(B) = a1b3a7b3, RLE(C) = a5. For
the minimal C-intervals of A, we have G(1) = {[1, 5]}, G(2) = {[2, 9], [3, 10], [4, 11], [5, 12]},
G(3) = {[9, 15]}. For the minimal C-intervals of B, we have G′(1) = {[1, 8]}, G′(2) =
{[5, 9], [6, 10], [7, 11]}. Also, Gmin(2) = [2, 9], G′min(2) = [5, 9]. Figure 2 shows the lengths of
the LCS of prefixes and suffixes for each combination between minimal C-intervals in G(2) and
G′(2). The gray part is the values that are referred to. The values denoted inside parentheses
are not stored in the cDP table, but each of them can be computed in O(1) time from
Lemma 9. Figure 3 shows the sum of the LCS of prefixes and suffixes corresponding to the gray
part. Due to Lemma 13, the values along the diagonal are equal. Thus, for the combinations
of minimal C-intervals in G(2), G′(2), we only need to consider the six combinations:
([2, 9], [5, 9]),([2, 9], [6, 10]),([2, 9], [7, 11]),([3, 10], [5, 9]),([4, 11], [5, 9]),([5, 12], [5, 9]).

CPM 2017

20:10 Faster STR-IC-LCS Computation via RLE

5 4 3
5 5 4
4 5 5
3 4 5

Figure 3 Sum of the lengths of LCSs of corresponding prefixes and suffixes shown in Figure 2.
Values along the diagonal are equal (each value is equal to the value to its upper left/lower right).

Now, we are ready to show the running time of our algorithm for the case |RLE(C)| = 1.
We can compute RLE(A), RLE(B), RLE(C) from A,B,C in O(M +N +K) time. There
are respectively O(M) and O(N) minimal C-intervals of A and B, and each of them can be
assigned to one of the O(m) and O(n) equivalence classes G,G′, in total of O(M +N) time.
The preprocessing for the cDP table is the same as for the case of |RLE(C)| > 1, which can
be done in O(mN + nM) time. By Lemma 13, we can reduce the number of combinations of
minimal C-intervals to consider to O(mN + nM). Finally, from Lemma 9, the LCS lengths
for each combination can be computed in O(1) using the cDP table. Therefore, the total
running time is O(mN + nM), proving Theorem 10.

From Theorems 3 and 10, the following Theorem 14 holds. The pseudo-code for our
proposed algorithm is shown in Algorithm 2.

I Theorem 14. Let A,B,C be any strings and let |A| = M , |B| = N , |RLE(A)| = m and
|RLE(B)| = n. We can compute the length of an STR-IC-LCS of A,B,C in O(mN + nM)
time.

Although we only showed how to compute the length of an STR-IC-LCS, we note that
the algorithm can be modified so as to obtain a RLE of an STR-IC-LCS in O(m+ n) time,
provided that RLE(C) is precomputed, simply by storing the minimal C-intervals [s, f],
[s′, f ′], respectively of A and B, that maximizes Lpref (s−1, s′−1)+Lsuf (f +1, f ′+1)+ |C|.
From Lemmas 7 and 8, we can simulate a standard back-tracking of the DP table for obtaining
LCSs with the cDP table to obtain RLE of the LCSs in O(m + n) time. Finally an RLE
of STR-IC-LCS can be obtained by combining the three RLE strings (the two LCSs with
RLE(C) in the middle), appropriately merging the boundary runs if necessary.

4 Conclusion

In this work, we proposed a new algorithm to solve the STR-IC-LCS problem using an
RLE representation. We can compute the length of an STR-IC-LCS of strings A,B,C in
O(mN +nM) time and space using this algorithm, where |A| = M , |B| = N , |RLE(A)| = m

and |RLE(B)| = n. This result is better than Deorowicz’s O(MN) time and space [7], which
does not use RLE. If we want to know not only the length but also an STR-IC-LCS of
A,B,C, we can retrieve it in O(m+ n) time.

K. Kuboi, Y. Fujishige, S. Inenaga, H. Bannai, and M. Takeda 20:11

Algorithm 2: Proposed O(mN +Mn) time algorithm for STR-IC-LCS.
Input: strings A, B and C
Output: length of an STR-IC-LCS of A,B,C
// [sx, fx] : a minimal C-interval in A

// [s′y, f ′y] : a minimal C-interval in B

// l, l′ : number of minimal C-intervals in A,B respectively
// Gmin(h), G′min(h′) : minimum element in G(h), G′(h′) respectively
// g, g′ : number of sets G,G′ respectively

1 Make compressed DP tables of A and B.;
2 if |RLE(C)| > 1 then
3 Compute all minimal C-intervals [s1, f1], . . . , [sl, fl] of A and [s′1, f ′1], . . . , [s′l′ , f ′l′] of

B. (use Algorithm 1);
4 Lmax ← 0;
5 for x = 1 to l do
6 for y = 1 to l′ do
7 Lsum ← Lpref (sx − 1, s′y − 1) + Lsuf (fx + 1, f ′y + 1);
8 if Lmax < Lsum then Lmax ← Lsum ;

9 else
10 1 l← 1−K; g ← 1; Gmin(1)← 1;
11 for p = 1 to m do
12 if ap = C[1] then
13 for p′ = 1 to Mp do
14 l← l + 1; sl+K ←M1..p + p′;
15 if l ≥ 1 then fl ←M1..p + p′ ;
16 if l ≥ 2 then
17 if sl−1 + 1 6= sl or fl−1 + 1 6= fl then g ← g + 1; Gmin(g)← l ;

18 l′ ← 1−K; g′ ← 1; G′min(1)← 1;
19 for q = 1 to n do
20 if bq = C[1] then
21 for q′ = 1 to Nq do
22 l′ ← l′ + 1; s′l′+K ← N1..q + q′;
23 if l′ ≥ 1 then f ′l′ ← N1..q + q′ ;
24 if l′ ≥ 2 then
25 if s′l′−1 + 1 6= s′l′ or f ′l′−1 + 1 6= f ′l′ then g′ ← g′+ 1; G′min(g′)← l′ ;

26 Gmin(g + 1)← l + 1; G′min(g′ + 1)← l′ + 1;
27 Lmax ← 0;
28 for h = 1 to g do
29 for h′ = 1 to g′ do
30 for x = Gmin(h) to Gmin(h+ 1)− 1 do
31 Lsum ← Lpref (sx − 1, s′G′min(h′) − 1) + Lsuf (fx + 1, f ′G′min(h′) + 1);
32 if Lmax < Lsum then Lmax ← Lsum ;
33 for y = G′min(h′) to G′min(h′ + 1)− 1 do
34 Lsum ← Lpref (sGmin(h) − 1, s′y − 1) + Lsuf (fGmin(h) + 1, f ′y + 1);
35 if Lmax < Lsum then Lmax ← Lsum ;

36 return Lmax +K;

CPM 2017

20:12 Faster STR-IC-LCS Computation via RLE

References
1 Shegufta Bakht Ahsan, Syeda Persia Aziz, and M. Sohel Rahman. Longest common

subsequence problem for run-length-encoded strings. J. Comput., 9(8):1769–1775, 2014.
doi:10.4304/jcp.9.8.1769-1775.

2 Hsing-Yen Ann, Chang-Biau Yang, Chiou-Ting Tseng, and Chiou-Yi Hor. Fast algorithms
for computing the constrained LCS of run-length encoded strings. Theor. Comput. Sci.,
432:1–9, 2012. doi:10.1016/j.tcs.2012.01.038.

3 Anthony Bagnall, Chotirat “Ann” Ratanamahatana, Eamonn Keogh, Stefano Lonardi, and
Gareth Janacek. A bit level representation for time series data mining with shape based sim-
ilarity. Data Min. Knowl. Discov., 13(1):11–40, 2006. doi:10.1007/s10618-005-0028-0.

4 Horst Bunke and János Csirik. An improved algorithm for computing the edit dis-
tance of run-length coded strings. Inf. Process. Lett., 54(2):93–96, 1995. doi:10.1016/
0020-0190(95)00005-W.

5 Yi-Ching Chen and Kun-Mao Chao. On the generalized constrained longest com-
mon subsequence problems. J. Comb. Optim., 21(3):383–392, 2011. doi:10.1007/
s10878-009-9262-5.

6 Francis Y. L. Chin, Alfredo De Santis, Anna Lisa Ferrara, N. L. Ho, and S. K. Kim. A
simple algorithm for the constrained sequence problems. Inf. Process. Lett., 90(4):175–179,
2004. doi:10.1016/j.ipl.2004.02.008.

7 Sebastian Deorowicz. Quadratic-time algorithm for a string constrained LCS problem. Inf.
Process. Lett., 112(11):423–426, 2012. doi:10.1016/j.ipl.2012.02.007.

8 Paul Heckel. A technique for isolating differences between files. Commun. ACM, 21(4):264–
268, 1978. doi:10.1145/359460.359467.

9 James W. Hunt and Malcolm Douglas McIlroy. An algorithm for differential file compar-
ison. Technical Report 41, Bell Laboratories, 1976. URL: http://www.cs.dartmouth.edu/
~doug/diff.pdf.

10 Dmitry Korkin and Lev Goldfarb. Multiple genome rearrangement: a general approach
via the evolutionary genome graph. Bioinformatics, 18(suppl_1):S303–S311, 2002. doi:
10.1093/bioinformatics/18.suppl_1.s303.

11 Jessica Lin, Eamonn Keogh, Li Wei, and Stefano Lonardi. Experiencing SAX: a novel
symbolic representation of time series. Data Min. Knowl. Discov., 15(2):107–144, 2007.
doi:10.1007/s10618-007-0064-z.

12 Jia-Jie Liu, Yue-Li Wang, and Yu-Shan Chiu. Constrained longest common subsequences
with run-length-encoded strings. Comput. J., 58(5):1074–1084, 2015. doi:10.1093/
comjnl/bxu012.

13 Helman Stern, Merav Shmueli, and Sigal Berman. Most discriminating segment – longest
common subsequence (MDSLCS) algorithm for dynamic hand gesture classification. Pat-
tern Recognit. Lett., 34(15):1980–1989, 2013. doi:10.1016/j.patrec.2013.02.007.

14 Yin-Te Tsai. The constrained longest common subsequence problem. Inf. Process. Lett.,
88(4):173–176, 2003. doi:10.1016/j.ipl.2003.07.001.

15 Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem. J.
ACM, 21(1):168–173, 1974. doi:10.1145/321796.321811.

16 Congmao Wang and Dabing Zhang. A novel compression tool for efficient storage of genome
resequencing data. Nucleic Acids Res., 39(7):e45, 2011. doi:10.1093/nar/gkr009.

17 Lei Wang, Xiaodong Wang, Yingjie Wu, and Daxin Zhu. A dynamic programming solution
to a generalized LCS problem. Inf. Process. Lett., 113(19-21):723–728, 2013. doi:10.1016/
j.ipl.2013.07.005.

http://dx.doi.org/10.4304/jcp.9.8.1769-1775
http://dx.doi.org/10.1016/j.tcs.2012.01.038
http://dx.doi.org/10.1007/s10618-005-0028-0
http://dx.doi.org/10.1016/0020-0190(95)00005-W
http://dx.doi.org/10.1016/0020-0190(95)00005-W
http://dx.doi.org/10.1007/s10878-009-9262-5
http://dx.doi.org/10.1007/s10878-009-9262-5
http://dx.doi.org/10.1016/j.ipl.2004.02.008
http://dx.doi.org/10.1016/j.ipl.2012.02.007
http://dx.doi.org/10.1145/359460.359467
http://www.cs.dartmouth.edu/~doug/diff.pdf
http://www.cs.dartmouth.edu/~doug/diff.pdf
http://dx.doi.org/10.1093/bioinformatics/18.suppl_1.s303
http://dx.doi.org/10.1093/bioinformatics/18.suppl_1.s303
http://dx.doi.org/10.1007/s10618-007-0064-z
http://dx.doi.org/10.1093/comjnl/bxu012
http://dx.doi.org/10.1093/comjnl/bxu012
http://dx.doi.org/10.1016/j.patrec.2013.02.007
http://dx.doi.org/10.1016/j.ipl.2003.07.001
http://dx.doi.org/10.1145/321796.321811
http://dx.doi.org/10.1093/nar/gkr009
http://dx.doi.org/10.1016/j.ipl.2013.07.005
http://dx.doi.org/10.1016/j.ipl.2013.07.005

Gapped Pattern Statistics
Philippe Duchon1, Cyril Nicaud2, and Carine Pivoteau3

1 CNRS and Université Bordeaux, LaBRI, Talence, France
philippe.duchon@u-bordeaux.fr

2 CNRS and Université Paris-Est, Marne-la-Vallée, France
cyril.nicaud@u-pem.fr

3 CNRS and Université Paris-Est, Marne-la-Vallée, France
pivoteau@univ-mlv.fr

Abstract
We give a probabilistic analysis of parameters related to α-gapped repeats and palindromes in
random words, under both uniform and memoryless distributions (where letters have different
probabilities, but are drawn independently). More precisely, we study the expected number of
maximal α-gapped patterns, as well as the expected length of the longest α-gapped pattern in a
random word.

1998 ACM Subject Classification G.2.1 Combinatorics

Keywords and phrases combinatorics on words, α-gapped repeats, random words, memoryless
sources, analytic combinatorics

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.21

1 Introduction

In this article, we are interested in the combinatorial aspects of the notion of α-gapped repeat
and α-gapped palindromes [10, 7, 4]. An α-gapped repeat in a word is a factor of the form
uvu, where u and v are words with |uv| ≤ α|u|. More precisely, such a pattern is essentially
a repetition of u, but the second occurrence is not too far away from the first one. The
definition for palindromes is similar, as we are looking for factors of the form uvu instead,
where u is the reverse of u. The study of gapped patterns (see also [1, 12]) finds most of its
motivation in bioinformatics. Recent works show that these patterns can be found in linear
time [11, 17, 6], and there cannot be more than a linear number of them [2, 7]. Note that
α-gapped repeats are also called fractional powers [16]: uvu is an α-gapped repeat if and
only if it is a fractional power of uv with exponent at least 1 + α−1.

When looking at patterns in words, there are usually two main categories of questions:
providing efficient algorithms to find a specific set of patterns and studying the combinatorics
of words with a focus on the appearance (or avoidance) of these patterns. These two points
of view are of course directly related, as insights on the combinatorial properties often yield
ideas for building new efficient algorithms.

In the sequel, we propose a probabilistic analysis of parameters related to α-gapped
repeats and palindromes; more precisely, we answer the following questions:

What is the expected number of α-gapped patterns in a random word?
What is the expected length of the longest α-gapped pattern in a random word?

This only makes sense if one specifies what is meant by a random word, i.e., what the
distribution on words is. We first consider the uniform distribution, which often serves as
an introductory example for the techniques we use and can provide, for instance, useful
elements for average analysis of algorithms, while still being mathematically tractable. We

© Philippe Duchon, Cyril Nicaud, and Carine Pivoteau;
licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 21; pp. 21:1–21:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

21:2 Gapped Pattern Statistics

also consider memoryless sources, which give a more general, yet simple distribution where
all letters are not constrained to have identical frequencies. In this model, each letter is
drawn independently following a fixed, but possibly biased, distribution on the alphabet. In
particular, we exhibit a noteworthy behavior on the longest α-gapped repeat: if each letter
ai has probability πi, then a long random word of length n has about πin occurrences of
each letter ai; however, in a long α-gapped repeat uvu, the frequencies of the letters in the u
parts of the factor do not follow this typical distribution (see section 4.2).

Our work follows several other combinatorial and probabilistic results obtained for different
kinds of patterns in words, such as the expected number of runs [14], the expected total
run length [8], the expected number of distinct palindromic factors [15], etc. We use both
techniques from analytic combinatorics, based on the definition of generating series for gapped
patterns in words, as in [13], and classical discrete probabilities.

2 Preliminaries

For any two nonnegative integers i, j, let [i, j] denote the integer interval {i, . . . , j}. By
convention, [i, j] = ∅ if j < i. Let also [i] denote the integer interval [1, i].

In the sequel we consider words on a finite alphabet A, of cardinality k ≥ 2. We assume
the reader is familiar with the classical definitions on words [3], such as prefixes, suffixes,
and factors. For w ∈ A∗ of length n and i ∈ [n], let wi (or w[i]) denote the i-th letter of w,
with the convention that positions start at 1. The last letter of w is therefore w|w|. Let also
w[i, j] = wi · · ·wj denote the factor of w that starts at position i and ends at position j, with
w[i, j] = ε if i > j or if i or j is not in [n]. The factor of w of length ` that starts at position
i is w[i, i+ `− 1]. For a given length `, a position i in w is valid if i+ `− 1 ≤ n.

A gapped repeat in a word w of length n is a triple (i, u, v), where i ∈ [n] and u and v
are nonempty words, such that the factor of w of length |uvu| starting at position i is uvu.
For a given real α ≥ 1, it is an α-gapped repeat if |uv| ≤ α|u|. A gapped repeat (i, u, v) of
w is maximal if, when the positions exist, wi−1 6= wi+|uv|−1 and wi+|uvu| 6= wi+|u|, i.e., the
gapped repeat cannot be extended to the left or to the right.

Similar notions can be defined for palindromes. Under the same conditions for i, u and v,
a triple (i, u, v) is an α-gapped palindrome if the factor of length |uvu| starting at position i
in w is uvu, where u = u|u| · · ·u1 denote the reverse of u. It is an α-gapped palindrome if
|uv| ≤ α|u| and maximal if wi−1 6= wi+|uvu| (when they exist) and either |v| = 1 or v1 6= v|v|.

I Example 1. Consider w = aababbbabab and α = 2. The triple (4, ab, bb) is an α-gapped
repeat, but it is not maximal since it can be extended to the left to form (3, bab, b).

I Remark. In the sequel, we only consider α-gapped patterns (repeats or palindromes) for
rational α ≥ 1. This really matters for Section 3 only, as the other results hold for any real
α ≥ 1. It is also convenient to consider β := α− 1 in most computations, as it changes the
condition into |u| ≤ β|v|, and we therefore use this notation from now on.

The uniform distribution on a finite set E is the probability π defined for all e ∈ E by
π(e) = 1

|E| . By a slight abuse of notation, we will speak of the uniform distribution on A∗ to
denote the sequence (πn)n≥0 of uniform distributions on An. For instance, if A = {a, b, c},
then each element of An has probability 3−n under this distribution.

Another very classical distribution on An is the memoryless distribution of probability π,
where π is a probability on the alphabet A. Under this distribution, the probability of a
word w = w1 · · ·wn ∈ An is Pn(w) = π(w1) · · ·π(wn). This distribution can also be seen as
generating each letter of the word independently, following π.

Ph. Duchon, C. Nicaud, and C. Pivoteau 21:3

It is convenient to fix a total order a1 < . . . < ak on A and to define πi = π(ai), for
all i ∈ [k]. We also see π as a vector ~π = (π1, . . . , πk) of [0, 1]k. This notation will be used
repeatedly in the sequel.

3 Number of gapped patterns

In this section, we compute the average number of maximal α-gapped patterns (repeats or
palindromes) in random words of length n under a memoryless distribution. Our main tool
is writing exact generating functions, which happen to be rational fractions; the asymptotic
behavior is then obtained by using standard theorems of analytic combinatorics [5].

3.1 Framework
Let A = {a1, . . . , ak} be an alphabet and, for every i ∈ [k], let zi be a formal variable
(associated with the letter ai). To each word w ∈ A∗ we associate a monomial c(w) =
z
|w|1
1 . . . z

|w|k
k , where |w|i is the number of occurrences of the letter ai in w. In other words,

the mapping c allows us to consider words as in the abelian world, where letters commute.
Let ~z = (z1, . . . , zk). If X is a set of words, its formal power series X(~z) is defined as the
formal sum of the monomials associated with its words: X(~z) =

∑
w∈X c(w). As we shall

see, this power series is a tool of choice to study the probabilistic properties of the set X .
First, the symbolic method [5] can be used to build X(~z), directly from a nonambiguous

regular description of X : if X , Y and Z are three sets of words whose respective series are
X(~z), Y (~z) and Z(~z), then

if X is the disjoint union of Y and Z, then X(~z) = Y (~z) + Z(~z);
if X is the nonambiguous concatenation of Y and Z, then X(~z) = Y (~z)Z(~z);
if X is the nonambiguous Kleene star of Y, then X(~z) = 1

1−Y (~z) .

Second, for a given probability ~π = (π1, . . . , πk) on A, one can build the formal power
series in a single variable X(z), by substituting πi z to each zi. After the substitution, the
contribution of each word of length n to the coefficient of zn in X(z), in the memoryless
model, is exactly its probability. By marking a certain set of patterns with a copy of the
alphabet, one can effectively multiply the contribution of a word by its number of patterns,
and hence compute the expected number of such patterns using this technique (another
approach is to control the unambiguity of the description [13]). Once X(z) is known, analytic
combinatorics can be used to estimate the quantities under study.

Let us illustrate this technique on a toy example. Assume that we want to compute the
expected number of occurrences of the pattern aba in a random word of length n under the
memoryless distribution on the alphabet {a, b}, with1 πa = 1

3 and πb = 2
3 . Observe that the

word w = bbababaaab contains two (overlapping) occurrences of the pattern. The marking
technique consists in distinguishing these two occurrences by using another alphabet, say {a, b}
for the letters of the pattern. The associated regular language is L = (a+ b)∗aba(a+ b)∗. The
two words w = bbababaaab and w = bbababaaab correspond to w, which therefore contributes
twice, as the pattern occurs twice. Using the symbolic method directly yields that the
generating series of L is

L(~z) = 1
1− (za + zb)

· zazbza ·
1

1− (za + zb)
= z2

azb

(1− za − zb)2 .

1 For readability, we use πa, πb, za and zb instead of π1, π2, z1 and z2.

CPM 2017

21:4 Gapped Pattern Statistics

Then, we compute L(z) by performing the substitutions za 7→ πaz and zb 7→ πbz:

L(z) = π2
aπbz

3

(1− πaz − πbz)2 = π2
aπbz

3

(1− z)2 = 2z3

27 (1− z)2 .

The coefficient of zn in L(z) is the expected number of occurrences of the pattern in a random
word of length n. The expression above is amenable to the analytic technique presented
below (see Section 3.3), yielding the (natural) estimate of 2n

27 occurrences on average.

3.2 Generating series for the expected number of patterns
We now use this general framework to compute the expected number of maximal α-gapped
patterns. To simplify the notations, for any positive integer i and any vector ~z, let Ni(~z) =
zi1 + . . .+ zik. In particular, N1(~z) = z1 + . . .+ zk.

A gapped pattern is equivalent to a triple of words (u, v, u′), with a condition u′ = u (for
gapped repeats) or u′ = u (for gapped palindromes), and a length condition 1 ≤ |v| ≤ β|u|,
which we rewrite into the equivalent |u| ≥ |v|/β and |v| ≥ 1. Because we are ultimately
interested in maximal patterns, we need to keep track of the first and last letters of v; this,
in turn, forces us to distinguish between the subcases |v| = 1 and |v| ≥ 2.

In the simpler case |v| = 1, a pattern is just given by a single letter a ∈ A, and an
arbitrary word u of length at least d1/βe. The generating series for words of length at
least ` is N1(~z)`/(1−N1(~z)). In our patterns, the letters of u are to be counted twice,
once in u and once in u′. This is taken into account by just changing N1(~z) into N2(~z)
into the formula. Hence, the generating series for α-gapped patterns with v = ai is
ziN2(~z)d1/βe

1−N2(~z) .
We now want to add a prefix and a suffix (both possibly empty) to the patterns. To
avoid ambiguity in the description, we duplicate the alphabet and consider that patterns
are written using this newly introduced copy. We are therefore considering words with
one marked pattern, clearly identified. We also want the marked patterns to be maximal;
this adds a condition on the prefix (resp. suffix) when it is not empty. This condition
is slightly different for gapped repeats and gapped palindromes; we deal with gapped
repeats first. Then the condition is that both prefix and suffix can be empty, but if they
are not, the last letter of the prefix and the first letter of the suffix must be different
from ai. The generating series for both the possible prefixes and suffixes are the same,
and equal to (1− zi)/(1−N1(~z)). Summing over all possible i, the generating series for
all words with a marked maximal α-gapped pattern having a gap of length exactly 1 is
therefore

Uα(~z) = (N1(~z)− 2N2(~z) +N3(~z))N2(~z)d1/βe

(1−N1(~z))2(1−N2(~z)) .

For gapped palindromes, there is a condition on the prefix and suffix when they are both
nonempty: the last letter of the prefix must be different from the first letter of the suffix.
This leads to multiplying the generating series for all patterns by the generating series
for this set of pairs of words, which is 1−N2(~z)

(1−N1(~z))2 . We thus get as the generating series for
all words with a marked maximal α-gapped palindrome having a gap of length exactly 1,

Uα(~z) = (1−N2(~z))N1(~z)N2(~z)b1/βc

(1−N1(~z))2 (1−N2(~z)) .

Ph. Duchon, C. Nicaud, and C. Pivoteau 21:5

ai aj

u v u′

Figure 1 A gapped pattern uvu′ with the first and last letters in v distinguished.

We now turn to the case |v| ≥ 2. For any two letters ai and aj , we consider the possible
gapped patterns (see Figure 1) such that v starts with ai and ends with aj (for maximal
gapped palindromes, an additional condition is i 6= j). Let `+ 2 be the length of such a
word v; the α-gapped condition is thus |u| ≥ (`+ 2)/β. Writing β = p/q with positive
integers p and q, and writing the Euclidean division of ` by p as ` = tp+m, the condition
becomes |u| ≥ tq + (m+ 2)/β.
Thus, in the pattern uvu′, u is obtained by concatenation of t arbitrary words of length q,
plus one arbitrary word of length d(m+ 2)/βe, plus an arbitrary (possibly empty) word;
and v starts with ai, concatenated with t arbitrary words of length p, plus one arbitrary
word of length m, and ends with aj . In the pattern composition, the composition of u has
to be counted twice since u′ also contributes and has the same composition. Summing
over all possible values of t and m, we get the generating series for all α-gapped patterns
such that v starts with ai and ends with aj :

Gα,i,j(~z) = zizjQα(~z)
(1−N2(~z))(1−N1(~z)pN2(~z)q) , with Qα(~z) =

p−1∑
m=0

N1(~z)mN2(~z)d(m+2)/βe.

Writing the generating functions for all words with a marked maximal gapped pattern
again corresponds to adding a prefix and suffix, but leads to different generating functions
for repeats and palindromes because the conditions on the suffix and prefix are slightly
different.
For gapped repeats, both the prefix and the suffix can be empty, or an arbitrary word that
does not end with aj (for the prefix), or that does not start with ai (for the suffix). This
is done by multiplying the generating series Gα,i,j(~z) by (1− zi)(1− zj)/(1−N1(~z))2.
Taking the sum over all possible j yields that the generating series of all words with a
marked maximal α-gapped repeat and |v| ≥ 2 is

Vα(~z) = (N1(~z)−N2(~z))2 Qα(~z)
(1−N1(~z))2(1−N2(~z))(1−N1(~z)pN2(~z)q) .

For gapped palindromes, maximality induces two conditions. First the last letter of v
must be different from its first letter; this is taken into account by summing Gα,i,j(~z)
over all possible i 6= j. Second, the prefix and suffix must also satisfy the same conditions
as for the case |v| = 1, which leads to multiply by 1−N2(~z)

(1−N1(~z))2 as before. Hence, the
generating series of all words with a marked maximal α-gapped palindrome and |v| ≥ 2 is

V α(~z) = (N1(~z)2 −N2(~z))Qα(~z)
(1−N1(~z))2(1−N1(~z)pN2(~z)q) .

We can now proceed with the substitution zi → πiz, which changes N1(~z) into z, N2(~z)
into λ2z

2 and N3(~z) into λ3z
3, with λj =

∑
i π

j
i .

Let χ(w) (resp. ξ(w)) denote the number of maximal α-gapped repeats (resp. palindromes)
in a word w. Let R(z) =

∑
w χ(w)P(w)z|w| and P (z) =

∑
w ξ(w)P(w)z|w| be the

generating series of the expectations of χ and ξ, that is, the coefficients of zn of R(z)
and P (z) are En[χ] and En[ξ], respectively. These series R(z) and P (z) are obtained by

CPM 2017

21:6 Gapped Pattern Statistics

the previous substitutions zi → πiz from the series Uα(~z) + Vα(~z) and Uα(~z) + V α(~z),
respectively. From the computations above, we obtain the following statement.

I Theorem 2. For β = α− 1 = p
q , the series R(z) and P (z) for the memoryless model of

probability ~π are given by

R(z) = (z − 2λ2z
2 + λ3z

3)λd1/βe2 z2d1/βe

(1− z)2(1− λ2z2) + (z − λ2z
2)2 Qα(z)

(1− z)2(1− λ2z2)(1− λq2 zp+2q) ,

P (z) = λ
d1/βe
2 z1+2d1/βe

(1− z)2 + (z2 − λ2z
2)Qα(z)

(1− z)2(1− λq2 zp+2q) ,

with

Qα(z) =
p−1∑
j=0

λ
d(j+2)/βe
2 zj+2d(j+2)/βe, λ2 =

k∑
i=1

π2
i , and λ3 =

k∑
i=1

π3
i .

3.3 From generating series to asymptotics
Analytic combinatorics links asymptotic behavior of counting sequences to singularities of
the corresponding generating functions, viewed as analytic functions of a complex variable.
For rational generating series of one variable, as in Theorem 2, the situation is quite simple,
and we use this simplified version of the Transfer Theorem [5] for rational functions:

I Theorem 3 (Simplified Transfer Theorem [5]). Assume A(z) = F (z)(1− z)−`, where ` is a
positive integer, F (z) is a rational function with no pole in the closed disc of radius 1 and
F (1) 6= 0. Then the n-th coefficient of A(z) is asymptotically equivalent to F (1)

(`−1)! n
`−1.

The series R(z) and P (z) of Theorem 2 both have a dominant pole of order 2 at z = 1.
Applying Theorem 3 yields the following statement. Note that, though the generating series
R(z) and P (z) are different, they lead to the same asymptotics for the coefficients; the
difference is in lower order terms.

I Theorem 4. Under the memoryless distribution of probability ~π, and for any rational
α = 1 + p/q, the expected number of maximal α-gapped repeats (respectively, palindromes) in
a random word of length n is asymptotically equivalent to rαn (respectively, pαn) defined by

rα = (1− 2λ2 + λ3)λdq/pe2
1− λ2

+ (1− λ2)
1− λq2

p+1∑
j=2

λ
djq/pe
2 and pα = λ

dq/pe
2 + (1− λ2)

1− λq2

p+1∑
j=2

λ
djq/pe
2 .

In particular, when α is a positive integer, these reduce to

rα = (α− 1)λ2 + λ2(λ3 − λ2
2)

1− λ2
and pα = (α− 1)λ2 + λ2

2.

For the uniform distribution, we have λ2 = 1/k and λ3 = 1/k2, yielding the following result.

I Corollary 5. For the uniform distribution on an alphabet of size k ≥ 2, we have

rα = k − 1
k

(
k−dq/pe +

∑p+1
j=2 k

−djq/pe

1− k−q

)
and pα = rα + k−1−dq/pe.

In particular, if α is a positive integer, then rα = α−1
k and pα = α−1

k + 1
k2 .

Ph. Duchon, C. Nicaud, and C. Pivoteau 21:7

I Remark. As a function of α = 1 + p
q , the value of rα is not very regular. It is increasing, as

expected, but there are some large variations when reaching a value with a small denominator
(typically integers or half-integers). This also gives hints on the difficulty of giving a formula
if α is not rational. Some examples are given in the table below, for k = 4.

α 5/4 3/2 7/4 2 9/4 5/2 11/4 3 13/4 7/2 15/4 4 17/4
rα 0.002 0.05 0.061 0.25 0.252 0.3 0.311 0.5 0.502 0.55 0.561 0.75 0.752

4 Longest pattern

In this section we focus on the typical and expected length of the longest α-gapped patterns
(repeat or palindromes) in a random word. Contrarily to the previous section, our analysis
relies on discrete probabilities rather than on generating series.

Let Ln denote the random variable associated with the length of the longest α-gapped
patterns in a random word of length n. We first focus on the uniform distribution, in
order to introduce the main techniques of this section. For memoryless distributions, the
computations are more involved, but the general idea remains the same.

If Xn is a random variable, we say that it is concentrated around its mean if there exists
a sequence (νn)n≥1 that tends to 0 such that P(|Xn − E[Xn]| > νn E[Xn]) −−−−→

n→∞
0.

In this whole section, whenever we say that some property holds with asymptotic probability
1, the property implicitly depends on some integer n, which denotes the length of the random
words considered; and we mean that, as n goes to infinity, the probability tends to 1. The
details in the text typically make it possible to derive a more explicit bound on the speed of
convergence.

4.1 Uniform distribution
We establish the following theorem. Its proof is obtained by computing tight lower and upper
bounds for the typical value of Ln, for the uniform distribution.

I Theorem 6. For the uniform distribution on words of length n, on an alphabet of size k,
the expected length of the longest α-gapped repeat (or palindrome) is asymptotically equivalent
to (α+ 1) logk n. Moreover, the random variable Ln is concentrated around its mean.

Observe that a longest α-gapped repeat is necessarily maximal. Moreover, the proof is
exactly the same for palindromes, so we focus on repeats only.

To establish the lower bound, we prove that with asymptotic probability 1 there is an
α-gapped repeat of length t0 in a random word of length n, where t0 is a well chosen value,
which is asymptotically equivalent to (α+ 1) logk n. This property is proved to hold by just
looking for α-gapped repeats lying at very specific positions: the word is split into roughly
n/t0 factors of length t0, and we only compute the probability that at least one of these
factors is an α-gapped repeat of a particular |v|/|u| ratio. This fairly rough estimation is
enough to establish a lower bound that is asymptotically tight.

For any ` ≥ 1, let Mβ(`) denote the set of words of the form uvu, with u ∈ A` and
v ∈ Abβ`c. The set Mβ(`) therefore contains all the α-gapped repeats where u has size `
and v is of maximal length. Let `0 = blogk n − 2 logk logk nc. Every word of Mβ(`0) has
length t0 = 2`0 + bβ`0c, and t0 is asymptotically equivalent to (α+ 1) logk n, as required.

The probability for an element ofMβ(`0) to be a factor of a random word of length n is
exactly the probability that, for some i ∈ [n], the factor of length t0 starting at position i
belongs toMβ(`0). Thus, it is at least the probability that the factor of length t0 starting

CPM 2017

21:8 Gapped Pattern Statistics

at position 1 + jt0 is inMβ(`0) for some j ≥ 1 such that (j + 1)t0 ≤ n. For such a given
j, the probability that the factor starting at position 1 + jt0 is in Mβ(`0) is k−`0 , since
|Mβ(`0)| = k`0+bβ`0c and each possible factor has probability k−`0−2bβ`0c. Since the integer
intervals [1 + jt0, (j + 1)t0] do not overlap, the factors they define are independent, and the
probability that none of them is inMβ(`0) is (1− k−`0)bn/t0c. Therefore, with probability
at least 1 − (1 − k−`0)bn/t0c, a random word of length n contains an α-gapped repeat of
length t0.

Straightforward computations yield that (1− k−`0)bn/t0c ≤ exp(− logk n), which tends
to 0 as n→∞. Thus, with asymptotic probability 1, a random uniform word of length n
contains an α-gapped repeat of length t0, which is asymptotically equivalent to (α+ 1) logk n.

We now proceed with the upper bound. Let Rβ(t) denote the set of all words uvu such
that |uvu| = t and |v| ≤ β|u|. The set Rβ(t) contains all the possible α-gapped repeats of
length t. Observe that, by summing over all the possible lengths ` for u, we have

|Rβ(t)| =
b(t−1)/2c∑
`=dt/(2+β)e

kt−` ≤ kt−dt/(2+β)e
∞∑
j=0

k−j ≤ 2k(β+1)t/(β+2).

Let t1 = d(β + 2) logk n + 2(β + 2) logk logk ne + 1. The probability that a random word
contains a factor in Rβ(t1) at a given valid position is |Rβ(t1)|k−t1 ≤ 2k−t1/(β+2). Since the
number of valid positions is no more than n, by the union bound, the probability that a
uniform random word of length n contains an element of Rβ(t1) (as a factor in any position)
is at most 2nk−t1/(β+2). These computations also hold if one substitutes t1 + i for t1. This
yields that the probability that a uniform random word of length n contains an element of
Rβ(t1 + i) is bounded from above by 2k−i/(β+2)

log2
k
n

.
Using the union bound again, we sum these bounds for i ≥ 0, and obtain that, with

asymptotic probability 1, a uniform random word of length n contains no α-gapped repeat
of length greater than or equal to t1, which is asymptotically equivalent to (α+ 1) logk(n).

A bit more is required to estimate the expectation of Ln, but this can be easily done from
the computations above: they yield that the contribution to the expectation of the values
that are not between t0 and t1 is negligible, and t0 ∼ t1 ∼ (α+ 1) logk n. The concentration
around the mean can be proved by taking any sequence νn that tends to 0 and such that
νn logk n

logk logk n
tends to infinity.

4.2 Memoryless sources
In this section, we associate to each letter ai ∈ A = {a1, . . . , ak} a probability πi = p(ai) as
described in Section 2. We assume all these probabilities to be positive (otherwise, reduce
the alphabet size accordingly).

From the probability ~π, we build another probability ~τ proportional to the square of π:
for every i ∈ [k], τi = π2

i /λ2, where λ2 =
∑
i∈[k] π

2
i is the coincidence probability of ~π (as in

Section 3). The result for memoryless sources, which generalizes Theorem 6, is the following.

I Theorem 7. For the memoryless source of probability ~π, the expected length of the longest
α-gapped repeat (or palindrome) in a random word of length n is asymptotically E[Ln] ∼
(α+ 1) log1/λ2 n, where λ2 =

∑
i∈[k] π

2
i . Moreover, Ln is concentrated around its mean.

Though it follows the same main ideas as in the proof of Theorem 6, the proof of
Theorem 7 is more technical. Due to lack of space, we only focus on the main steps in this
extended abstract. We will focus on the most probable words, and the most probable longest

Ph. Duchon, C. Nicaud, and C. Pivoteau 21:9

α-gapped repeat. For this purpose, for a probability vector ~s on A and δ ≥ 0, we consider
the set Wn(~s, δ) of words whose letters roughly follow the distribution of ~s, defined by

Wn(~s, δ) =
{
u ∈ An :

∣∣ |u|a − s(a)n
∣∣ ≤ δ, ∀a ∈ A} .

To establish the lower bound, we define the setMβ(~π, `) of α-gapped repeats uvu where the
letters are distributed following ~π in v and following ~τ in u. More formally:

Mβ(~π, `) =
{
uvu ∈ A∗ : u ∈ W`(~τ ,

√
logn) and v ∈ Wbβ`c(~π,

√
logn)

}
.

The setMβ(~π, `) will play the same role as the setMβ(`) of the previous section. They do
not coincide if the distribution is uniform, but they still have the same order of size.

We now proceed with the lower bound. We define `0 and t0 by

`0 =
⌊

logn
log(1/λ2) −

(logn)2/3

log(1/λ2)

⌋
and t0 = 2`0 + bβ`0c,

then prove that long random words have a factor inMβ(~π, `0) with high probability.
For this purpose, we need to estimate the probability that a factor of length t0 at a given

position is inMβ(~π, `0). The computations are done as follows. Let ~n = (n1, . . . , nk) with
n1 + . . .+ nk = `0 and let ~m = (m1, . . . ,mk) with m1 + . . .+mk = bβ`0c. We are interested
in the set of words E(~n, ~m), with fixed compositions for u and v, defined by

E(~n, ~m) = {uvu : |u|ai = ni and |v|ai = mi, ∀i ∈ [k]} .

Observe thatMβ(`0) can be written as a union of E(~n, ~m) for properly chosen ranges for ~n
and ~m. The probability that the factor of length t0 at a given valid position lies in E(~n, ~m) is

Pt0(E(~n, ~m)) =
(

`0

n1, . . . , nk

) ∏
i∈[k]

π2ni
i

(
bβ`0c

m1, . . . ,mk

) ∏
i∈[k]

πmii .

By estimating this quantity and summing for all ~n and ~m such that E(~n, ~m) ⊆Mβ(`0), we
obtain that the probability of the factor of length t0 at a given valid position not being in
Mβ(~π, `0) is O(1

log2 n
). At this point, the proof continues exactly as in Section 4.1.

We now turn to the upper bound. As in Section 4.1 let Rβ(t) be the set of all uvu such
that |uvu| = t and 1 ≤ |v| ≤ β|u|. We want to compute an upper bound for the probability
that the factor of length t at a given valid position lies in Rβ(t).

We need to partition the set Rβ(t) for our computations. Let ~̀= (`1, . . . , `k) be a vector
of non-negative integers such that N1(~̀) = `1 + · · ·+ `k = `. Let Rβ(~̀, t) be the set of all
words uvu such that |uvu| = t and |u|ai = `i for every i ∈ [k]. Observe that Rβ(t) can be
written as the following disjoint union:

Rβ(t) =
b(t−1)/2c⋃
`=dt/(β+2)e

⋃
N1(~̀)=`

R(~̀, t).

Moreover, Pt(R(~̀, t)) =
(

`
`1,...,`k

)∏
i∈[k] π

2`i
i . But

∑
N1(~̀)=`

(
`

`1,...,`k

)∏
i∈[k] τ

`i
i = 1, as it is

the sum of the probabilities of all the words of length ` for the memoryless distribution of
probability vector ~τ . Hence, P`(∪N1(~̀)=`R(~̀, t)) = λ`2. Therefore, Pt(Rβ(t)) ≤ t λt/(β+2)

2 . In
particular, for t1 = d(β + 2) log1/λ2 n+ 3(β + 2) log1/λ2 logne, we have

P(Rβ(t1 + i)) ≤ 2λi/(β+2)
2

log2 n
,

and the proof continues as in the uniform case.

CPM 2017

21:10 Gapped Pattern Statistics

I Remark. As a byproduct of the proof, we obtain the following interesting result on the
probabilistic nature of the longest α-gapped repeat. Though a sufficiently large random word
in the memoryless model contains roughly a proportion πi of each letter ai, the letters are
distributed differently in the arms (the u’s of uvu) of a typical longest α-gapped repeat: the
proportion of each letter is roughly τi instead of πi. This phenomenon is completely hidden
in the uniform case, where τi = πi = 1/k for every i ∈ [k].

5 A remark on the number of distinct factors

In [15], Rubinchik and Shur estimated the expected number of distinct palindromes in a
random word: these factors are counted only once, even if they have multiple occurrences.
They established that for the uniform distribution, a random word contains Θ(

√
n) distinct

palindromes, and several refinements of this result.
In this short section we explain how their proof can be extended to estimate the expected

number of distinct α-gapped repeats and palindromes, for the uniform distribution. There is
no new idea, one just has to take care of the possibilities for the additional v part in the
pattern. The result, however, is interesting on its own. It is stated as followed.

I Theorem 8. For the uniform distribution over words of length n, the expected number of
distinct α-gapped repeats (or palindromes) is in Θ(nα/(α+1)).

We only consider repeats in our proof sketch; gapped palindromes are treated the same
way. The lower bound is obtained using Guibas and Odlyzko’s result on pattern avoidance [9]:
the number of words of length n that avoid a given pattern w of length m > 3 is equal to
Cwθ

n
w +O(1.7n). In [15], the authors prove that the constants are maximal when w = am:

θw ≤ θam = k

(
1− k − 1

km+1 +O
(m

k2m+2

))
and Cw ≤ Cam = 1 +O

(m
km

)
. (1)

Let §β(n) be the set of all uvu such that |u| = ` = b 1
β+2 logk nc and |v| = bβ`c. Let

m = 2`+ bβ`c. As a direct application of Equation (1), for a given w ∈ §β(n), the probability
that a random word of length n avoids w satisfies

Pn(avoiding w) ≤
(

1− k − 1
km+1 +O

(m

k2m+2

))n (
1 +O

(m
km

))
,

which is at most C for some positive constant C < 1 and n sufficiently large (for our choice of
`, and thus of m). Hence, the probability for w to be a factor in a random word of length n is
at least 1−C, and by linearity of the expectation, the expected number of distinct α-gapped
repeats is greater than or equal to (1− C)|§β(n)| = (1− C)km−` = Ω(nα/(α+1)).

For the upper bound, let Rβ(t) denote all the uvu such that |uvu| = t and |v| ≤ β|u|.
Let also t0 = dlogk ne. We count differently the α-gapped repeats, depending on whether
they are shorter or longer than t0.

We count all the α-gapped repeats of length at most t0 as contributing to the upper
bound. By summing over all possible values for the length ` of the arms, we have

|Rβ(t)| =
b(t−1)/2c∑
`=dt/(β+1)e

kt−` ≤ kt
∞∑

`=dt/(β+1)e

kt−` ≤ 2k(β+1)t/(β+2).

Hence,
t0∑
t=1
|Rβ(t)| ≤

t0∑
t=1

2k(β+1)t/(β+2) ≤ 4k(β+1)t0/(β+2) ≤ 4nα/(α+1).

Ph. Duchon, C. Nicaud, and C. Pivoteau 21:11

To obtain an upper bound for the expected number of patterns of length greater than t0,
we observe as in [15] that the probability for a given α-gapped repeat uvu to be a factor
is at most the expected number of occurrences of uvu. As we shall see, this rough upper
bound is enough to conclude. Let Rβ(t, `) be the set of uvu such that |uvu| = t, |u| = `

and |v| ≤ β`. The probability that there is pattern of Rβ(t, `) at a given valid position in a
random word is k−`. Hence, the expected number of occurrences of such patterns is at most
nk−`, for given t and `. By summing over all t > t0 and all valid ` for each t we obtain the
following upper bound:

n∑
t=t0

bt/2c∑
`=dt/(β+2)e

nk−` ≤
n∑

t=t0

2k−t/(β+2) ≤ 4k−t0/(β+2) ≤ 4nα/(α+1).

Combining both results, for short and long α-gapped repeats, we get that the expected
number of distinct such factors is bounded from above by 8nα/(α+1), concluding the proof.
I Remark. Theorem 8 also holds for maximal patterns. The proof simply needs to be adapted
for the lower bound, and there are sufficiently many of them to obtain the same result.

6 Conclusions

In this article we establish results about some statistics of random words related to the
notion of α-gapped patterns, for both the uniform and memoryless distributions. We propose
different techniques, generating series and discrete probabilities, to provide some tools for
further analysis of statistics of interest. Amongst them, if would be natural to consider
gapped patterns as a whole, i.e. if uvu = u′v′u′ then it is considered as one pattern instead
of two different ones.

The biased distribution on letters in the arms of a typical α-gapped pattern, in the
memoryless model, is something worth noticing (see Section 4.2). It may provide some
leverage for speeding up algorithms, though the difference might be too thin to be exploited.

Finally, generalizing Theorem 8 to memoryless proves quite difficult. This is ongoing
work, and the techniques involved are more advanced than what is presented in this article.

References
1 Gerth Stølting Brodal, Rune B. Lyngsø, Christian N. S. Pedersen, and Jens Stoye. Finding

maximal pairs with bounded gap. In Maxime Crochemore and Mike Paterson, editors, Pro-
ceedings of the 10th Annual Symposium on Combinatorial Pattern Matching (CPM 1999),
volume 1645 of LNCS, pages 134–149. Springer, 1999. doi:10.1007/3-540-48452-3_11.

2 Maxime Crochemore, Roman Kolpakov, and Gregory Kucherov. Optimal bounds for com-
puting α-gapped repeats. In Adrian-Horia Dediu, Jan Janousek, Carlos Martín-Vide, and
Bianca Truthe, editors, Proceedings of the 10th International Conference on Language and
Automata Theory and Applications (LATA 2016), volume 9618 of LNCS, pages 245–255.
Springer, 2016. doi:10.1007/978-3-319-30000-9_19.

3 Maxime Crochemore and Wojciech Rytter. Text Algorithms. Oxford University Press, 1994.
4 Marius Dumitran and Florin Manea. Longest gapped repeats and palindromes. In Gi-

useppe F. Italiano, Giovanni Pighizzini, and Donald Sannella, editors, Proceedings of
the 40th International Symposium on Mathematical Foundations of Computer Science
(MFCS 2015), volume 9234 of LNCS, pages 205–217. Springer, 2015. doi:10.1007/
978-3-662-48057-1_16.

5 Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University
Press, 2009. doi:10.1017/CBO9780511801655.

CPM 2017

http://dx.doi.org/10.1007/3-540-48452-3_11
http://dx.doi.org/10.1007/978-3-319-30000-9_19
http://dx.doi.org/10.1007/978-3-662-48057-1_16
http://dx.doi.org/10.1007/978-3-662-48057-1_16
http://dx.doi.org/10.1017/CBO9780511801655

21:12 Gapped Pattern Statistics

6 Paweł Gawrychowski, Tomohiro I, Shunsuke Inenaga, Dominik Köppl, and Florin Manea.
Efficiently finding all maximal α-gapped repeats. In Nicolas Ollinger and Heribert Vollmer,
editors, Proceedings of the 33rd Symposium on Theoretical Aspects of Computer Science
(STACS 2016), volume 47 of LIPIcs, pages 39:1–39:14. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2016. doi:10.4230/LIPIcs.STACS.2016.39.

7 Paweł Gawrychowski and Florin Manea. Longest α-gapped repeat and palindrome. In
Adrian Kosowski and Igor Walukiewicz, editors, Proceedings of the 20th International Sym-
posium on Fundamentals of Computation Theory (FCT 2015), volume 9210 of LNCS, pages
27–40. Springer, 2015. doi:10.1007/978-3-319-22177-9_3.

8 Amy Glen and Jamie Simpson. The total run length of a word. Theor. Comput. Sci.,
501:41–48, 2013. doi:10.1016/j.tcs.2013.06.004.

9 Leonidas J. Guibas and Andrew M. Odlyzko. String overlaps, pattern matching, and
nontransitive games. J. Comb. Theory, Ser. A, 30(2):183–208, 1981. doi:10.1016/
0097-3165(81)90005-4.

10 Roman Kolpakov and Gregory Kucherov. Searching for gapped palindromes. Theor. Com-
put. Sci., 410(51):5365–5373, 2009. doi:10.1016/j.tcs.2009.09.013.

11 Roman Kolpakov, Mikhail Podolskiy, Mikhail Posypkin, and Nickolay Khrapov. Search-
ing of gapped repeats and subrepetitions in a word. In Alexander S. Kulikov, Sergei O.
Kuznetsov, and Pavel A. Pevzner, editors, Proceedings of the 25th Annual Symposium
on Combinatorial Pattern Matching (CPM 2014), volume 8486 of LNCS, pages 212–221.
Springer, 2014. doi:10.1007/978-3-319-07566-2_22.

12 Roman M. Kolpakov and Gregory Kucherov. Finding repeats with fixed gap. In Pablo
de la Fuente, editor, Proceedings of the 7th International Symposium on String Processing
and Information Retrieval (SPIRE 2000), pages 162–168. IEEE Computer Society, 2000.
doi:10.1109/SPIRE.2000.878192.

13 Cyril Nicaud. Estimating statistics on words using ambiguous descriptions. In Roberto
Grossi and Moshe Lewenstein, editors, Proceedings of the 27th Annual Symposium on Com-
binatorial Pattern Matching (CPM 2016), volume 54 of LIPIcs, pages 9:1–9:12. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.CPM.2016.9.

14 Simon J. Puglisi and Jamie Simpson. The expected number of runs in a word. Australas.
J. Comb., 42:45–54, 2008. URL: https://ajc.maths.uq.edu.au/pdf/42/ajc_v42_p045.
pdf.

15 Mikhail Rubinchik and Arseny M. Shur. The number of distinct subpalindromes in random
words. Fundam. Inform., 145(3):371–384, 2016. doi:10.3233/FI-2016-1366.

16 Arseny M. Shur. Growth properties of power-free languages. Comput. Sci. Rev., 6(5-6):187–
208, 2012. doi:10.1016/j.cosrev.2012.09.001.

17 Yuka Tanimura, Yuta Fujishige, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masay-
uki Takeda. A faster algorithm for computing maximal α-gapped repeats in a string. In Cos-
tas S. Iliopoulos, Simon J. Puglisi, and Emine Yilmaz, editors, Proceedings of the 22nd Inter-
national Symposium on String Processing and Information Retrieval (SPIRE 2015), volume
9309 of LNCS, pages 124–136. Springer, 2015. doi:10.1007/978-3-319-23826-5_13.

http://dx.doi.org/10.4230/LIPIcs.STACS.2016.39
http://dx.doi.org/10.1007/978-3-319-22177-9_3
http://dx.doi.org/10.1016/j.tcs.2013.06.004
http://dx.doi.org/10.1016/0097-3165(81)90005-4
http://dx.doi.org/10.1016/0097-3165(81)90005-4
http://dx.doi.org/10.1016/j.tcs.2009.09.013
http://dx.doi.org/10.1007/978-3-319-07566-2_22
http://dx.doi.org/10.1109/SPIRE.2000.878192
http://dx.doi.org/10.4230/LIPIcs.CPM.2016.9
https://ajc.maths.uq.edu.au/pdf/42/ajc_v42_p045.pdf
https://ajc.maths.uq.edu.au/pdf/42/ajc_v42_p045.pdf
http://dx.doi.org/10.3233/FI-2016-1366
http://dx.doi.org/10.1016/j.cosrev.2012.09.001
http://dx.doi.org/10.1007/978-3-319-23826-5_13

Computing All Distinct Squares in Linear Time for
Integer Alphabets∗

Hideo Bannai1, Shunsuke Inenaga2, and Dominik Köppl3

1 Department of Informatics, Kyushu University, Fukuoka, Japan
bannai@inf.kyushu-u.ac.jp

2 Department of Informatics, Kyushu University, Fukuoka, Japan
inenaga@inf.kyushu-u.ac.jp

3 Department of Computer Science, TU Dortmund, Dortmund, Germany
dominik.koeppl@tu-dortmund.de

Abstract
Given a string on an integer alphabet, we present an algorithm that computes the set of all
distinct squares belonging to this string in time linear in the string length. As an application,
we show how to compute the tree topology of the minimal augmented suffix tree in linear time.
Asides from that, we elaborate an algorithm computing the longest previous table in a succinct
representation using compressed working space.

1998 ACM Subject Classification G.2.1 Combinatorial Algorithms

Keywords and phrases tandem repeats, distinct squares, counting algorithms

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.22

1 Introduction

A square is a string of the form SS, where S is some non-empty string. It is well-known that
a string of length n contains at most n2/4 squares. This bound is the number of all squares,
i.e., we count multiple occurrences of the same square, too. If we consider the number of all
distinct squares, i.e., we count exactly one occurrence of each square, then it becomes linear
in n: The first linear upper bound was given by Fraenkel and Simpson [17] who proved that
a string of length n contains at most 2n distinct squares. Later, Ilie [26] showed the slightly
improved bound of 2n−Θ(lgn). Recently, Deza et al. [10] refined this bound to b11n/6c. In
the light of these results one may wonder whether future results will “converge” to the upper
bound of n: The distinct square conjecture [17, 27] is that a string of length n contains at
most n distinct squares; this number is known to be independent of the alphabet size [37].
However, there still is a big gap between the best known bound and the conjecture. While
studying a combinatorial problem like this, it is natural to think about ways to actually
compute the exact number.

This article focuses on a computational problem on distinct squares, namely, we wish
to compute (a compact representation of) the set of all distinct squares in a given string.
Gusfield and Stoye [23] tackled this problem with an algorithm running in O(nσT) time,
where σT denotes the number of different characters contained in the input text T of length n.

∗ This work was mainly done while Dominik Köppl visited Kyushu University in Japan under the support
by the JSPS Summer Program SP16305. Hideo Bannai and Shunsuke Inenaga were supported in part
by JSPS KAKENHI Grant Numbers JP26280003, JP16H02783, JP17H01697.

© Hideo Bannai, Shunsuke Inenaga, and Dominik Köppl;
licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 22; pp. 22:1–22:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.22
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22:2 Computing All Distinct Squares in Linear Time for Integer Alphabets

Although its running time is optimal O(n) for a constant alphabet, it becomes O
(
n2) for a

large alphabet since σT can be as large as O(n).
We present an algorithm (Section 4.1) that computes this set in O(n) time for a given

string of length n over an integer alphabet of size nO(1). Like Gusfield and Stoye, we can use
the computed set to decorate the suffix tree with all squares (Section 5.1). As an application,
we provide an algorithm that computes the tree topology of the minimal augmented suffix
tree [1] in linear time (Section 5.2). The fastest known algorithm computing this tree topology
takes O(n lgn) time [5].

For our approach, we additionally need the longest previous factor table [18, 8]. As a
side result of independent interest, we show in Section 3 how to store this table in 2n+ o(n)
bits, and give an algorithm that computes it using compressed working space.

2 Definitions

Our computational model is the word RAM model with word size Ω(lgn) for some natural
number n. Let Σ denote an integer alphabet of size σ = |Σ| = nO(1). An element w in Σ∗
is called a string, and |w| denotes its length. We denote the i-th character of w with w[i],
for 1 ≤ i ≤ |w|. When w is represented by the concatenation of x, y, z ∈ Σ∗, i.e., w = xyz,
then x, y and z are called a prefix, substring and suffix of w, respectively. For i, j with
1 ≤ i ≤ j ≤ |w|, let w[i..j] denote the substring of w that begins at position i and ends at
position j in w.

The longest common prefix (LCP) of two strings is the longest prefix shared by both
strings. The longest common extension (LCE) query asks for the longest common prefix
of two suffixes of the same string. The time for an LCE query is denoted by tLCE.

A factorization of a string T is a sequence of non-empty substrings of T such that the
concatenations of the substrings is T . Each substring in the factorization is called a factor.

In the rest of this paper, we take a string T of length n > 0, and call it the text. We
assume that T [n] = $ is a special character that appears nowhere else in T , so that no suffix
of T is a prefix of another suffix of T . We further assume that T is read-only; accessing a
character costs constant time. We sometimes need the reverse of T , which is given by the
concatenation T [n− 1] · · ·T [1] · T [n] = T [n− 1] · · ·T [1]$.

The suffix tree of T is the tree obtained by compacting the trie of all suffixes of T ; it
has n leaves and at most n − 1 internal nodes. The leaf corresponding to the i-th suffix
T [i..n] is labeled with i. Each edge e is associated with a non-empty substring x of T called
the edge label of e. Each edge label x is represented by tuple (i, `) of integers such that
T [i..i+ `− 1] = x. This way the suffix tree of T takes O(n) words of space, and it can be
computed in O(n) time for strings of length n over an integer alphabet of size nO(1) [11].
The string label of a node v is defined as the concatenation of all edge labels on the path
from the root to v; the string depth of a node is the length of its string label.

SA and ISA denote the suffix array and the inverse suffix array of T , respectively [36].
The access time to an element of SA is denoted by tSA. LCP is an array such that LCP[i] is
the length of the longest common prefix of T [SA[i]..n] and T [SA[i − 1]..n] for i = 2, . . . , n.
For our convenience, we define LCP[1] := 0. The arrays SA, ISA, and LCP can be constructed
in O(n) time [30, 32, 31].

A range minimum query (RMQ) asks for the smallest value in a sub-array of an
integer array. There are data structures that can answer RMQs on an integer array of
length n in constant time while taking 2n+ o(n) bits of space [15]. An LCE query for the
suffixes T [s..n] and T [t..n] can be answered with an RMQ data structure on LCP with the
range [min(ISA[s], ISA[t]) + 1..max(ISA[s], ISA[t])] in constant time.

H. Bannai, S. Inenaga, and D. Köppl 22:3

A bit vector is a string on the binary alphabet {0, 1}. A select query on a bit vector
asks the position of the i-th ‘0’ or ‘1’ in the bit vector. There is a data structure that can be
built in O(n) time with O(n) bits of working space such that it takes o(n) bits on top of the
bit vector, and can answer a select query in constant time [6].

We identify occurrences of substrings with their position and length in the text, i.e., if x
is a substring of T , then there is an i with 1 ≤ i ≤ n and an ` with 0 ≤ ` ≤ n− i+ 1 such
that T [i..i+ `− 1] = x. In the following, we will represent the occurrences of substrings by
tuples of position and length. When storing these tuples in a set, we call the set distinct, if
there are no two tuples (i, `) and (i′, `) such that T [i..i+ `− 1] = T [i′..i′ + `− 1]. A special
kind of substring is a square: A square is a string of the form SS for S ∈ Σ+; we call S
and |S| the root and the period of the square SS, respectively. Like with substrings, we
can generate a set containing some occurrences of squares. A set of all distinct squares is
a distinct set of occurrences of squares that is maximal under inclusion.

3 A Compact Representation of the LPF Array

The longest previous factor table LPF of T is formally defined as

LPF[j] := max {` | there exists an i ∈ [1..j − 1] such that T [i..i+ `− 1] = T [j..j + `− 1]} .

It is useful for computing the Lempel-Ziv factorization of T = f1 · · · fz, which is defined
as fi = T [k..k + max(1, LPF[k])] with k :=

∑i−1
j=1 |fj |+ 1 for 1 ≤ i ≤ z.

In the following, we will use the text T =
0

a
0

b
3

a
2

b
1

a
2

a
5

a
4

b
3

a
2

b
1

a
0

$ as our running example whose
LPF array is represented by the small numbers above the characters. The Lempel-Ziv
factorization of T is given by

1

a|
2

b|
3

aba|
4

aa|
5

baba|
6

$, where the small numbers denote the factor
indices, and the vertical bars denote the factor borders.

I Corollary 1. Given LPF, we can compute the Lempel-Ziv factorization in O(n) time. If
the factorization consists of z factors, the factorization can be represented by an array of
z lgn bits, where the x-th entry stores the beginning of the x-th factor. Alternatively, it can
be represented by a bit vector of length n in which we mark the factor beginnings. A select
data structure on top of the bit vector can return the length and the position of a factor in
constant time.

Since we will need LPF in Section 4, we are interested in the time and space bounds for
computing LPF. We start with the (to the best of our knowledge) state of the art algorithm
with respect to time and space requirements.

I Lemma 2 ([9, Theorem 1]). Given SA and LCP, we can compute LPF in O(ntSA) time.
Besides the output space of n lgn bits, we only need constant working space.

Apart from this algorithm, we are only aware of some practical improvements [40, 28].
Let us consider the size of LCP needed in Lemma 2. Sadakane [41] showed a 2n+o(n)-bits

representation of LCP. Thereto he stores the permuted longest-common-prefix array
PLCP defined as PLCP[SA[i]] = LCP[i] in a bit vector in the following way (also described
in [13]): Since PLCP[1] + 1,PLCP[2] + 2, . . . ,PLCP[n] + n is a non-decreasing sequence with
1 ≤ PLCP[1]+1 ≤ PLCP[n]+n = n (PLCP[i] ≤ n−i since the terminal $ is a unique character
in T) the values I[1] := PLCP[1] and I[i] := PLCP[i] − PLCP[i − 1] + 1 (2 ≤ i ≤ n) are
non-negative. By writing I[i] in the unary code 0I[i]1 to a bit vector S subsequently for each
2 ≤ i ≤ n, we can compute PLCP[i] = select1(S, i)−2i and LCP[i] = select1(S, SA[i])−2SA[i].
Moreover,

∑n
i=1 I[i] ≤ n and therefore S is of length at most 2n.

CPM 2017

22:4 Computing All Distinct Squares in Linear Time for Integer Alphabets

Table 1 Algorithms computing LPF; space is counted in bits. The output space |LPF| is not
considered as working space. 0 < ε ≤ 1 is a constant.

algorithm time working space |LPF|

Lemma 2,[9] O(ntSA) |SA|+ |LCP|+O(lgn) n lgn

Corollary 3,[35, 24] O(n) n lgn+ 2n+O(lgn) n lgn

Lemma 6,[34] O(n/ε) (1 + ε)n lgn+O(n) 2n+ o(n)

Lemma 6,[16] O(ntSA) O(n lg σ) 2n+ o(n)

By using Sadakane’s LCP-representation, we get LPF with the algorithm of Crochemore
et al. [9] in the following time and space bounds:

I Corollary 3. Having SA and LCP stored in n lgn bits (this allows tSA= O(1)) and 2n+o(n)
bits, respectively, we can compute LPF with O(lgn) additional bits of working space (not
counting the space for LPF) in O(n) time.

By plugging in a suffix array construction algorithm like the in-place construction algorithm
by Goto [21], we get the bounds shown in Table 1.

Although this result seems compelling, this approach stores SA and LPF in plain arrays
(the former for getting constant time access). In the following, we will show that the LPF
array can be stored more compactly. We start with a new representation of LPF, for which we
use the same trick as for PLCP due to the following property (which is crucial for squeezing
PLCP into 2n+ o(n) bits).

I Lemma 4. n− j ≥ LPF[j] ≥ LPF[j − 1]− 1 for 2 ≤ j ≤ n.

Proof. There is an i with 1 ≤ i < j − 1 such that T [i..i+ LPF[j − 1]− 1] = T [j − 1..j − 1 +
LPF[j − 1]− 1]. Hence T [i+ 1..i+ LPF[j − 1]− 1] = T [j..j − 1 + LPF[j − 1]− 1]. J

We conclude that the sequence LPF[1] + 1, LPF[2] + 2, . . . , LPF[n] + n is non-decreasing with
1 ≤ LPF[1] + 1 ≤ LPF[n] + n ≤ n. We immediately get:

I Corollary 5. LPF can be represented by a bit vector with a select data structure such that
accessing an LPF value can be performed in constant time. The data structures use 2n+ o(n)
bits.

To get a better working space bound, we have to come up with a new algorithm since the
algorithm of Lemma 2 creates a plain array to get constant time random write-access for
computing the entries of LPF. To this end, we present two algorithms that compute LPF
in this representation with the aid of the suffix tree. The two algorithms are derivatives
of the algorithms [34, 16] that compute the Lempel-Ziv factorization, either in O(n lg lg σ)
time using O(n lg σ) bits, or in O

(
n/ε2

)
time using (1 + ε)n lgn+O(n) bits, for a constant

0 < ε ≤ 1. The current bottleneck of both algorithms is the suffix tree implementation with
respect to space and time. Due to current achievements [39, 35], the algorithms now run in
O(n) time using O(n lg σ) bits, or in O(n/ε) time using (1 + ε)n lgn+O(n) bits, respectively.

We aim at building the LPF-representation of Corollary 5 directly such that we do not
need to allocate the plain LPF array using n lgn bits in the first place. To this end we create
a bit vector of length 2n and store the LPF values in it successively. In more detail, we follow
the description of the Lempel-Ziv factorization algorithms presented in [34, 16]. There, the
algorithms are divided into several passes. In each pass we successively visit leaves in text

H. Bannai, S. Inenaga, and D. Köppl 22:5

order (determined by the labels of the leaves). To compute LPF, we only have to do a single
pass. Similarly to the first passes of the two Lempel-Ziv algorithms, we use a bit vector BV
to mark already visited internal nodes. On visiting a leaf we climb up the tree until reaching
the root or an already marked node. In the former case (we climbed up to the root) we
output zero. In the latter case, we output the string depth of the marked node. By doing so,
we have computed LPF[1..j] after having processed the leaf with label j.

I Lemma 6. We can compute LPF in O(ntSA) time with O(n lg σ) bits of working space, or
in O(n/ε) time using (1 + ε)n lgn +O(n) bits of working space, for a constant 0 < ε ≤ 1.
Both variants include the space of the output in their working spaces.

Proof. Computing the string depth of a node needs access to an RMQ data structure of
LCP, and an access to SA. Both accesses can be emulated by the compressed suffix array in
tSA time, given that we have computed PLCP in the above representation. J

4 The Set of All Distinct Squares

Given a string T , our goal is to compute all distinct squares of T . Thereto we return a set
of pairs, where each pair (s, `) consists of a starting position s and a length ` such that
T [s..s+ `− 1] is the leftmost occurrence of a square. The size of this set is linear due to

I Lemma 7 (Fraenkel and Simpson [17]). A string of length n can contain at most 2n distinct
squares.

We follow the approach of Gusfield and Stoye [23]. Their idea is to compute a set
of squares (the set stores pairs of position and length like described in Section 2)1 with
which they can generate all distinct squares. They call this set of squares a leftmost
covering set. A leftmost covering set obeys the property that every square of the text
can be constructed by right-rotating a square of this set. A square (k, `) is constructed by
right-rotating a square (i, `) with i ≤ k iff each tuple (i+ j, `) with 1 ≤ j ≤ k− i represents
a square T [i+ j..i+ `+ j − 1] = T [i+ j..i+ `− 1]T [i..i+ j − 1].

The set of the leftmost occurrences of all squares is a set of all distinct squares. Unfor-
tunately, the leftmost covering set computed in [23] is not necessarily a set of all distinct
squares since (a) it does not have to be distinct, and (b) a square might be missing that can
be constructed by right-rotating a square of the computed leftmost covering set.

For illustration, the squares of our running example T = ababaaababa$ are highlighted
with bars. The set of all squares is {(1, 4), (2, 4), (5, 2), (6, 2), (7, 4), (8, 4)}. If we take the
leftmost occurrences of all squares, we get {(1, 4), (2, 4), (5, 2)}; this set comprises all squares
marked by the solid bars, i.e., the dotted bars correspond to occurrences of squares that are
not leftmost. In this example, the dotted bars form the set {(6, 2), (7, 4), (8, 4)}, which is a
set of all distinct squares. A leftmost covering set is {(1, 4), (5, 2)}.

Our goal is to compute the set of all leftmost occurrences directly by modifying the
algorithm of [23]. To this end, we briefly review how their approach works: They compute their
leftmost covering set by examining the borders between all Lempel-Ziv factors f1 · · · fz = T .
That is because of

1 It differs to the set we want to compute by the fact that they allow, among others, occurrences of the
same square in their set.

CPM 2017

22:6 Computing All Distinct Squares in Linear Time for Integer Alphabets

pfx fx+1

q

`R `R`L `L

p fxfx−1

q

`R
`R`L`L

Figure 1 Search for squares on Lempel-Ziv borders. The left image corresponds to squares of
type Lemma 8(1), the right image to the type Lemma 8(2). Given two adjacent factors, we determine
a position q that is p positions away from the border (the direction is determined by the type of
square we want to search for). By two LCE queries we can determine the lengths `L and `R that
indicate the presence of a square if `L + `R ≥ p.

I Lemma 8 ([23, Theorem 5]). The leftmost occurrence of a square T [i..i+ 2p− 1] touches
at least two Lempel-Ziv factors. Let fx (1 ≤ x ≤ z) be the factor that contains the center of
the square i+ p− 1. Then either
(a) the square has its left end (position i) inside fx and its right end (position i+ 2p− 1)

inside fx+1, or
(b) the left end of the square extends into fx−1 (or even further left). The right end can be

contained inside fx or fx+1.

Having a data structure for computing LCE queries on the text and on its inverse, they
can probe at the borders of two consecutive factors whether there is a square. Roughly
speaking, they have to check at most |fx| + |fx+1| many periods at the borders of every
two consecutive factors fx and fx+1 due to the above lemma (1 ≤ x ≤ z, set fz+1 to the
empty string). This gives

∑z
x=1 tLCE (|fx|+ |fx+1|) = O(ntLCE) time, during which they can

compute a leftmost covering set L. Figure 1 visualizes how the checks are done. Applying the
algorithm on our running example will yield the set L = {(1, 4), (5, 2), (7, 4)}. To transform
this set into a set of all distinct squares, their algorithm runs the so-called Phase II that
uses the suffix tree. It begins with computing the locations of the squares belonging to a
subset L′ ⊆ L in the suffix tree in O(n) time. This subset L′ is still guaranteed to be a
leftmost covering set. Finally, their algorithm computes all distinct squares of the text by
right-rotating the squares in L′. In their algorithm, the right-rotations are done by suffix link
walks over the suffix tree. Their running time analysis is based on the fact that each node
has at most σT incoming suffix links, where σT denotes the number of different characters
occurring in the text T . Given that the number of distinct squares is linear, Phase II runs in
O(nσT) time.

4.1 Algorithm Computing the Set of All Distinct Squares
In the following, we will present our modification of the above sketched algorithm. To speed
up the computation, we discard the idea of using the suffix links for right-rotating squares
(i.e., we skip Phase II completely). Instead, we compute a list of all distinct squares directly.
To this end, we show a modification of the sketched algorithm such that it outputs this list
sorted first by the lengths (of the squares), and second by the starting position.

First, we want to show that we can change the original algorithm to output its leftmost
covering set in the above described order. To this end, we iterate over all possible periods, and
search not yet reported squares at all Lempel-Ziv borders, for each period. To achieve linear
running time, we want to skip a factor fx when the period becomes longer than |fx|+ |fx+1|.
We can do this with an array Z of z lg z bits that is zero initialized. When the currently
tested period p exceeds |fx|+ |fx+1|, we write Z[x]← min {y > x : |fy|+ |fy+1| ≥ p} such

H. Bannai, S. Inenaga, and D. Köppl 22:7

that Z[x] refers to the next factor whose length is sufficiently large. By doing so, if Z[x] 6= 0,
we can skip all factors fy with y ∈ [x..Z[x]− 1] in constant time. This allows us running the
modified algorithm still in linear time.

We have to show that the modified algorithm still computes the same set. To this end, let
us fix the period p (over which we iterate in the outer loop). By [23, Lemma 7], processing
squares satisfying Lemma 8(1) before processing squares satisfying Lemma 8(2) (all squares
have the same period p) produces the desired output for period p.

Finally, we show the modification that computes all distinct squares (instead of the
original leftmost covering set). On a high level, we use an RMQ data structure on LPF
to filter already found squares. The filtered squares are used to determine the leftmost
occurrences of all squares by right-rotation. In more detail, we modify Algorithm 1 of [23]
by filtering the squares in the following way (see Algorithm 1 in the full version [2]): For
each period p, we use a bit vector B marking the beginning positions of all found squares
with period p. On reporting a square, we additionally mark its starting position in B. By
doing so, an invariant of the algorithm below is that all right-rotated squares of a marked
square are already reported.

Let us assume that we are searching for the leftmost occurrences of all squares whose
periods are equal to p. Given the starting position s of a square returned by [23, Algorithm 1],
we consider the square (s, 2p) and its right-rotations as candidates of our list: If B[s] = 1,
then this square and its right-rotations have already been reported. Otherwise, we report
(s, 2p) if LPF[s] < 2p. In order to find the leftmost occurrences of all not yet reported
right-rotated squares efficiently, we first compute the rightmost position e of the repetition
of period p containing the square (s, 2p) by an LCE query. Second, we check the interval
I := [s+ 1..min(s+ p− 1, e− 2p+ 1)] for the starting positions of the squares whose LPF
values are less than 2p. To this end, we perform an RMQ query on LPF to find the position j
whose LPF value is minimal in I. If LPF[j] > 2p, then there is no leftmost occurrence of a
square with the period p in the considered range. Otherwise, we report (j, 2p) and recursively
search for the text position with the minimal LPF value within the intervals [s+ 1..j − 1]
and [j + 1..min(s + p − 1, e − 2p + 1)]. In overall, the time of the recursion is bounded
by twice the number of distinct squares starting in the interval I, since a recursion step
terminates if it could not report any square.

I Theorem 9. Given an LCE data structure with tLCE access time and LPF, we can compute
all distinct squares in O(ntLCE + occ) = O(ntLCE) time, where occ is the number of distinct
squares.

Proof. We show that the returned list is the list of all distinct squares. No square occurs in
the list twice since we only report the occurrence of a square (i, `) if LPF[i] < `. Assume that
there is a square missing in the list; let (i, `) be its leftmost occurrence. There is a square (j, `)
reported by the (original) algorithm [23] such that i− `/2 < j ≤ i and right-rotating (j, `)
yields (i, `). Since we right-rotate all found squares, we obviously have reported (j, `).

The occ term in the running time is dominated by the ntLCE term due to Lemma 7. J

The next corollary, which is immediate from Theorem 9, yields the main result.

I Corollary 10. Given a string T of length n over an integer alphabet of size nO(1), we can
compute all distinct squares in T in O(n) time.

CPM 2017

22:8 Computing All Distinct Squares in Linear Time for Integer Alphabets

4.2 Need for RMQ on LPF
Our algorithm performs right-rotations of a square (s, 2p) with an RMQ on the interval
I := [s+ 1..min(s+ p− 1, e− 2p+ 1)], where e is the last position of the maximal repetition
of period p that contains the square. Without an RMQ data structure, we could linearly
scan all LPF values in I, giving O(p) = O(n) time. We cannot do better since the LPF values
are arbitrary in general. For instance, consider the text T = abaaabaababaaabaaa$. The
text aligned with LPF is shown in the table below.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

T a b a a a b a a b a b a a a b a a a $

LPF 0 0 1 2 4 3 4 3 2 8 7 6 5 5 4 3 2 1 0

The square abaaabaa has two occurrences starting at positions 1 and 10. The square
baaabaaa at position 11 is found by right-rotating the occurrence of abaaabaa at position 10.
It is found by a linear scan over LPF or an RMQ on LPF. A slight modification of this
example can change the LPF values around this occurrence. This shows that we cannot
perform a shortcut in general (like stopping the search when the LPF value is at least twice
as large as p).

4.3 Practical Evaluation
We have implemented the algorithm computing the leftmost occurrences of all squares in
C++11 [33]. The primary focus was on the execution time, rather than on a small memory
footprint: We have deliberately chosen plain 32-bit integer arrays for storing all array data
structures like SA, LCP and LPF. These data structures are constructed as follows: First, we
generate SA with divsufsort [38]. Subsequently, we generate LCP with the Φ-algorithm [29],
and LPF with the simple algorithm of [9, Proposition 1]. Finally, we use the bit vector class
and the RMQ data structure provided by the sdsl-lite library [20]. In practice, it makes
sense to use an RMQ only for very large LCP values and periods (i.e., RMQs on LPF) due
to its long execution time. For small values, we naively compared characters, or scanned
LPF linearly.

We ran the algorithm on all 200MiB collections of the Pizza&Chili Corpus [12]. The
Pizza&Chili Corpus is divided in a real text corpus with the prefix pc, and in a repetitive
corpus with the prefix pcr. The experiments were conducted on a machine with 32 GB of
RAM and an Intel® Xeon® CPU E3-1271 v3. The operating system was a 64-bit version of
Ubuntu Linux 14.04 with the kernel version 3.13. We used a single execution thread for the
experiments. The source code was compiled using the GNU compiler g++ 6.2.0 with the
compile flags -O3 -march=native -DNDEBUG.

Table 2 shows the running times of the algorithm on the described datasets. It seems
that large factors tend to slow down the computation, since the algorithm has to check all
periods up to maxx(|fx| + |fx+1|). This seems to have more impact on the running time
than the number of Lempel-Ziv factors z.

4.4 Online Variant
In this section, we consider the online setting, where new characters are appended to the end of
the text T . Given the text T [1..i] up to position i with the Lempel-Ziv factorization f1 · · · fy =
T [1..i], we consider computing the set of all distinct squares of f1 · · · fy−2, i.e., up to the last
two Lempel-Ziv factors. For this setting, we show that we can compute the set of all distinct

H. Bannai, S. Inenaga, and D. Köppl 22:9

Table 2 Practical evaluation of the algorithm computing all distinct squares on the datasets
described in Section 4.3. Execution time is in seconds, K = 103. It is the median of several conducted
experiments, whose variance in time was small. The expression avgLCP is the average of all LCP
values, and z is the number of Lempel-Ziv factors.

collection σ avgLCP z maxx |fx| maxx |fxfx+1| |occ| time
pc-dblp.xml 97 44 7035K 1K 1K 7K 70
pc-dna 17 60 13,970K 98K 98K 133K 310
pc-english 226 9390 13,971K 988K 1094K 13K 2639
pc-proteins 26 278 20,875K 46K 68K 3108K 245
pc-sources 231 373 11,542K 308K 308K 340K 792
pcr-cere 6 3541 1447K 176K 185K 47K 535
pcr-einstein.en 125 45,983 50K 907K 1634K 18,193K 3953
pcr-kernel 161 149,872 775K 2756K 2756K 9K 6608
pcr-para 6 2268 1927K 71K 74K 37K 265

squares in O
(
nmin

(
lg2 lgn/ lg lg lgn,

√
lgn/ lg lgn

))
time using O(n) words of space. To

this end, we adapt the algorithm of Theorem 9 to the online setting. We need an algorithm
computing LPF online, and a semi-dynamic LCE data structure (answering LCE queries on
the text and on the reversed text while supporting appending characters to the text).

The main idea of our solution is to build suffix trees with two online suffix tree construction
algorithms. The first is Ukkonen’s algorithm that computes the suffix tree online in O(ntnav)
time [43], where tnav is the time for inserting a node and navigating (in particular, selecting
the child on the edge starting with a specific character). We can adapt this algorithm to
compute LPF online: Assume that we have computed the suffix tree of T [1..i − 1]. The
algorithm processes the new character T [i] by (1) taking the suffix links of the current suffix
tree, and (2) adding new leaves where a branching occurs. On adding a new leaf with suffix
number i, we additionally set LPF[i] to the string depth of its parent. By doing so, we can
update the LPF values in time linear in the update time of the suffix tree. We build the
semi-dynamic RMQ data structure of Fischer [14] (or of [42] if n is known beforehand) on
top of LPF. This data structure takes O(n) words and can perform query and appending
operations in constant amortized time.

The second suffix tree construction algorithm is a modified version [4] of Weiner’s
algorithm [44] that builds the suffix tree in the reversed order of Ukkonen’s algorithm in
O(ntnav) time. Since Weiner’s algorithm incrementally constructs the suffix tree of a given
text from right to left, we can adapt this algorithm to compute the suffix tree of the reversed
text online in O(ntnav) time.

To get a suffix tree construction time of O
(
nmin

(
lg2 lgn/ lg lg lgn,

√
lgn/ lg lgn

))
, we

use the predecessor data structure of Beame and Fich [3]. We create a predecessor data
structure to store the children of each suffix tree node, such that we get the navigation
time tnav = O

(
min

(
lg2 lgn/ lg lg lgn,

√
lgn/ lg lgn

))
for both suffix trees. We also create

a predecessor data structure to store the out-going suffix link of each node of the suffix tree
constructed by Weiner’s algorithm. Overall, these take a total of O(n) words of space.

Finally, our last ingredient is a dynamic lowest common ancestor data structure with
O(n) words that performs querying and modification operations in constant time [7]. The
lowest common ancestor of two suffix tree leaves with the labels j and k is the node whose
string depth is equal to the longest common extension of T [j..i] and T [k..i] — remember
that we consider the text T up to the position i, hence T [j..i] is (currently) the j-th suffix.
Building this data structure on the suffix tree of the text T and on the suffix tree of the
reversed text allows us to compute LCE queries in both directions in constant time.

Given the text T [1..i] = f1 · · · fy up to the i-th character, the entries of

CPM 2017

22:10 Computing All Distinct Squares in Linear Time for Integer Alphabets

LPF[1.. |f1 · · · fy−2| − 1] are fixed (i.e., they will not change when appending new char-
acters) due to the properties of the Lempel-Ziv factorization. We let the semi-dynamic RMQ
data structure grow with LPF, but only up to the fixed range of LPF. Similarly, the text
positions from 1 up to |f1 · · · fy−2| − 1 are represented as leaves in both suffix trees that are
fixed, i.e., these leaves will always be leaves representing their respective suffixes. To sum up,
our data structures support LCE queries and RMQs on LPF in the range [1.. |f1 · · · fy−2| − 1]
in constant time.

We adapt the algorithm of Section 4.1 by switching the order of the loops (again).
The algorithm first fixes a Lempel-Ziv factor fx and then searches for squares with a
period between one and |fx| + |fx+1|. Unfortunately, we would need an extra bit vector
for each period so that we can track all found leftmost occurrences. Instead, we use the
predecessor data structure of [3] storing the found occurrences of squares as pairs of starting
positions and lengths. These pairs can be stored in lexicographic order (first sorted by
starting position, then by length). The predecessor data structure will contain at most occ
elements, hence takes O(occ) = O(n) words of space. An insertion or a search costs us
O
(

min
(

lg2 lgn/ lg lg lgn,
√

lgn/ lg lgn
))

time.
Let us assume that we have computed the set for T [1..i− 1], and that the Lempel-Ziv

factorization of T [1..i − 1] is f1 · · · fy. If appending a new character T [i] will result in
a new factor fy+1, we check for squares of type Lemma 8(1) and Lemma 8(2) at the
borders of fy−1. Duplicates are filtered by the predecessor data structure storing all
already reported leftmost occurrences. The algorithm outputs only the leftmost occur-
rences with the aid of LPF, whose entries are fixed up to the last two factors (this is
sufficient since we search for the starting position of the leftmost occurrence of a square with
type Lemma 8(1) only in T [1.. |f1 · · · fy−1|], including right-rotations). In overall, we need
O
(

(|fy−1|+ |fy|) min
(

lg2 lgn/ lg lg lgn,
√

lgn/ lg lgn
))

time.

5 Applications

In this section, we provide two applications of the (offline) variant.

5.1 Decorating the Suffix Tree with All Squares
Gusfield and Stoye described a representation of the set of all distinct squares by a decoration
of the suffix tree, like the highlighted nodes (additionally annotated with its respective square)
shown in the suffix tree of our running example below.

1

12
$

3
a

11
$

5
a

5
a

6
b

8

b

a

9
$

3
a

11

b

a

7
$

1
a

14

b

a

10
$

4
a

17

b

a

8
$

2
a

5,aa

17,baba

11,abab

This representation asks for a set of tuples of the form (node, length) such that each
square T [i..i+ `− 1] is represented by a tuple (v, `), where v is the highest node whose string
label has T [i..i+ `− 1] as a (not necessarily proper) prefix. We show that we can compute

H. Bannai, S. Inenaga, and D. Köppl 22:11

this set of tuples in linear time by applying the Phase II algorithm [23] described in Section 4
to our computed set of all distinct squares. The Phase II algorithm takes a list Li storing
squares starting at text position i, for each 1 ≤ i ≤ n. Each of these lists has to be sorted in
descending order with respect to the squares’ lengths. It is easy to adapt our algorithm to
produce these lists: On reporting a square (i, `), we insert it at the front of Li. By doing so,
we can fill the lists without sorting, since we iterate over the period length in the outer loop,
while we iterate over all Lempel-Ziv factors in the inner loop.

Finally, we can conduct Phase II. In the original version, the goal of Phase II was to
decorate the suffix tree with the endpoints of a subset of the original leftmost covering
set. We will show that performing exactly the same operations with the set of the leftmost
occurrences of all squares will decorate the suffix tree with all squares directly. In more
detail, we first augment the suffix tree leaf having label i with the list Li, for each 1 ≤ i ≤ n.
Subsequently, we follow Gusfield and Stoye [23] by processing every node of the suffix tree
with a bottom-up traversal. During this traversal we propagate the lists of squares from
the leaves up to the root: An internal node u inherits the list of the child whose subtree
contains the leaf with the smallest label among all leaves in the subtree rooted at u. If the
edge to the parent node contains the ending position of one or more squares in the list (these
candidates are stored at the front of the list), we decorate the edge with these squares, and
pop them off from the list. By [23, Theorem 8], there is no square of the set L′ (defined in
Section 4) neglected during the bottom-top traversal. The same holds if we exchange L′ with
our computed set of all distinct squares:

I Lemma 11. By feeding the algorithm of Phase II with the above constructed lists Li

containing the leftmost occurrences of the squares starting at the text position i, it will
decorate the suffix tree with all distinct squares.

Proof. We adapt the algorithm of Section 4.1 to build the lists Li. These lists contain
the leftmost occurrences of all squares. In the following we show that no square is left out
during the bottom-up traversal. Let us take a suffix tree node u with its children v and w.
Without loss of generality, assume that the smallest label among all leaves contained in the
subtree of v is smaller than the label of every leaf contained in w’s subtree. For the sake
of contradiction, assume that the list of w contains the occurrence of a square (i, `) at the
time when we pass the list of v to its parent u. The length ` is smaller than v’s string depth,
otherwise it would already have been popped off from the list. But since v’s subtree contains
a leaf whose label j is the smallest among all labels contained in the subtree of w, the square
occurs before at T [j..j + `− 1] = T [i..i+ `− 1], a contradiction to the distinctness. J

This concludes the correctness of the modified algorithm. We immediately get:

I Theorem 12. Given LPF, an LCE data structure on the reversed text, and the suffix tree
of T , we can decorate the suffix tree with all squares of the text in O(ntLCE) time. Asides
from these data structures, we use (occ+n) lgn+ z lg z+ min(n+ o(n) , z lgn) +O(lgn) bits
of additional working space.

I Corollary 13. We can compute the suffix tree and decorate it with all squares of the text
in O(n/ε) time using (3n+ occ + 2nε) lgn+ z lg z +O(n) bits, for a constant 0 < ε ≤ 1.

As an application, we consider the common squares problem: Given a set of non-empty
strings with a total length n, we want to find all squares that occur in every string in O(n)
time. We solve this problem by first decorating the generalized suffix tree built on all strings
with the distinct squares of all strings. Subsequently, we apply the O(n) time solution of

CPM 2017

22:12 Computing All Distinct Squares in Linear Time for Integer Alphabets

Hui [25] that annotates each internal suffix tree node v with the number of strings that
contain v’s string label. This solves our problem since we can simply report all squares
corresponding to nodes whose string labels are found in all strings. This also solves the
problem asking for the longest common square of all strings in O(n) time, analogously to
the longest common substring problem [22].

The last subsection is dedicated to another application of our suffix tree decoration:

5.2 Computing the Tree Topology of the MAST in Linear Time
A modification of the suffix tree is the minimal augmented suffix tree (MAST) [1].
This tree can answer the number of the non-overlapping occurrences of a substring S of T in
O(|S|) time. The MAST can be built in O(n lgn) time [5].

1

12
$

3
a

11
$

5
a

5
a

6
b

8

b

a

9
$

3
a

11

b

a

7
$

1
a

14

b

a

10
$

4
a

17

b

a

8
$

2
a

4 4

7

7

1

2

2

2

In this section, we show how to compute the tree topology of the MAST in linear time.
The topology of the MAST differs to the suffix tree topology by the fact that the root of
each square is the string label of an MAST node. Our goal is to compute a list storing the
information about where to insert the missing nodes. The list stores tuples consisting of a
node v and a length `; we use this information later to create a new node w splitting the
edge (u, v) into (u,w) and (w, v), where u is the (former) parent of v. We will label (w, v)
with the last ` characters and (u, v) with the rest of the characters of the edge label of (u, v).

To this end, we explore the suffix tree with a top-down traversal while locating the roots
of the squares in the order of their lengths. To locate the roots of the squares in linear time
we use two data structures. The first one is a semi-dynamic lowest marked ancestor data
structure [19]. It allows marking a node and querying for the lowest marked ancestor of a
node in constant amortized time. We will use it to mark the area in the suffix tree that has
already been processed for finding the roots of the squares.

The second data structure is the list of tuples of the form (node, length) computed in
Section 5.1, where each tuple (v, `) consists of the length ` of a square T [i..i+ `− 1] and the
highest suffix tree node v whose string label has T [i..i+ `− 1] as a (not necessarily proper)
prefix. We sort this list, which we now call L, with respect to the square lengths with a
linear time integer sorting algorithm.

Finally, we explain the algorithm locating the roots of all squares. We successively process
all tuples of L, starting with the shortest square length. Given a tuple of L containing the
node v and the length `, we want to split an edge on the path from the root to v and insert a
new node whose string depth is `/2. To this end, we compute the lowest marked ancestor u
of v. If u’s string depth is smaller than `/2, we mark all descendants of u whose string depths
are smaller than `/2, and additionally the children of those nodes (this can be done by a
DFS or a BFS). If we query for the lowest marked ancestor of u again, we get an ancestor w
whose string depth is at least `/2, and whose parent has a string depth less than `/2. We
report w and the subtraction of `/2 from w’s string depth (if `/2 is equal to the string depth

H. Bannai, S. Inenaga, and D. Köppl 22:13

of w, then w’s string label is equal to the root of v’s string label, i.e., we do not have to
report it).

I Theorem 14. We can compute the tree topology of the MAST in linear time using linear
number of words.

Proof. By using the semi-dynamic lowest marked ancestor data structure, we visit a node
as many times as we have to insert nodes on the edge to its parent, plus one. This gives
O(n+ 2occ) = O(n) time. J

Open Problems. It is left open to compute the number of the non-overlapping occurrences
of the string labels of the MAST nodes in linear time. Since RMQ data structures are
practically slow, we wonder whether we can avoid the use of any RMQ without loosing
linear running time. The current bottleneck of the online algorithm is the predecessor data
structure in terms of the running time. Future integer dictionary data structures can improve
the overall performance of this algorithm.

Acknowledgements. We thank Thomas Schwentick for the question whether we can run
our algorithm online, for which we provided a solution in Section 4.4.

References
1 Alberto Apostolico and Franco P. Preparata. Data structures and algorithms for the string

statistics problem. Algorithmica, 15(5):481–494, 1996. doi:10.1007/BF01955046.
2 Hideo Bannai, Shunsuke Inenaga, and Dominik Köppl. Computing all distinct squares in

linear time for integer alphabets, 2016. arXiv:1610.03421.
3 Paul Beame and Faith E. Fich. Optimal bounds for the predecessor problem and related

problems. J. Comput. Syst. Sci., 65(1):38–72, 2002. doi:10.1006/jcss.2002.1822.
4 Anselm Blumer, Janet A. Blumer, David Haussler, Andrzej Ehrenfeucht, M. T. Chen, and

Joel I. Seiferas. The smallest automaton recognizing the subwords of a text. Theor. Comput.
Sci., 40:31–55, 1985. doi:10.1016/0304-3975(85)90157-4.

5 Gerth Stølting Brodal, Rune B. Lyngsø, Anna Östlin, and Christian N. S. Pedersen. Solving
the string statistics problem in time O(n logn). In Peter Widmayer, Francisco Triguero
Ruiz, Rafael Morales Bueno, Matthew Hennessy, Stephan Eidenbenz, and Ricardo Conejo,
editors, Proceedings of the 29th International Colloquium on Automata, Languages, and
Programming (ICALP 2002), volume 2380 of LNCS, pages 728–739. Springer, 2002. doi:
10.1007/3-540-45465-9_62.

6 David R. Clark. Compact Pat Trees. PhD thesis, University of Waterloo, Canada, 1996.
URL: http://hdl.handle.net/10012/64.

7 Richard Cole and Ramesh Hariharan. Dynamic LCA queries on trees. SIAM J. Comput.,
34(4), 2005. doi:10.1137/S0097539700370539.

8 Maxime Crochemore and Lucian Ilie. Computing longest previous factor in linear time and
applications. Inf. Process. Lett., 106(2):75–80, 2008. doi:10.1016/j.ipl.2007.10.006.

9 Maxime Crochemore, Lucian Ilie, Costas S. Iliopoulos, Marcin Kubica, Wojciech Ryt-
ter, and Tomasz Waleń. LPF computation revisited. In Jirí Fiala, Jan Kratochvíl,
and Mirka Miller, editors, Proceedings of the 20th International Workshop on Combina-
torial Algorithms (IWOCA 2009), volume 5874 of LNCS, pages 158–169. Springer, 2009.
doi:10.1007/978-3-642-10217-2_18.

10 Antoine Deza, Frantisek Franek, and Adrien Thierry. How many double squares can a string
contain? Discrete Appl. Math., 180:52–69, 2015. doi:10.1016/j.dam.2014.08.016.

CPM 2017

http://dx.doi.org/10.1007/BF01955046
http://arxiv.org/abs/1610.03421
http://dx.doi.org/10.1006/jcss.2002.1822
http://dx.doi.org/10.1016/0304-3975(85)90157-4
http://dx.doi.org/10.1007/3-540-45465-9_62
http://dx.doi.org/10.1007/3-540-45465-9_62
http://hdl.handle.net/10012/64
http://dx.doi.org/10.1137/S0097539700370539
http://dx.doi.org/10.1016/j.ipl.2007.10.006
http://dx.doi.org/10.1007/978-3-642-10217-2_18
http://dx.doi.org/10.1016/j.dam.2014.08.016

22:14 Computing All Distinct Squares in Linear Time for Integer Alphabets

11 Martin Farach-Colton, Paolo Ferragina, and S. Muthukrishnan. On the sorting-complexity
of suffix tree construction. J. ACM, 47(6):987–1011, 2000. doi:10.1145/355541.355547.

12 Paolo Ferragina and Gonzalo Navarro. The Pizza & Chili Corpus. Available at http:
//pizzachili.di.unipi.it and http://pizzachili.dcc.uchile.cl, 2005.

13 Johannes Fischer. Wee LCP. Inf. Process. Lett., 110(8–9):317–320, 2010. doi:10.1016/j.
ipl.2010.02.010.

14 Johannes Fischer. Inducing the LCP-array. In Frank Dehne, John Iacono, and Jörg-
Rüdiger Sack, editors, Proceedings of the 12th International Symposium on Algorithms
and Data Structures (WADS 2011), volume 6844 of LNCS, pages 374–385. Springer, 2011.
doi:10.1007/978-3-642-22300-6_32.

15 Johannes Fischer and Volker Heun. Space efficient preprocessing schemes for range min-
imum queries on static arrays. SIAM J. Comput., 40(2):465–492, 2011. doi:10.1137/
090779759.

16 Johannes Fischer, Tomohiro I, and Dominik Köppl. Lempel-Ziv computation in small space
(LZ-CISS). In Ferdinando Cicalese, Ely Porat, and Ugo Vaccaro, editors, Proceedings of the
26th Annual Symposium on Combinatorial Pattern Matching (CPM 2015), volume 9133 of
LNCS, pages 172–184. Springer, 2015. doi:10.1007/978-3-319-19929-0_15.

17 Aviezri S. Fraenkel and Jamie Simpson. How many squares can a string contain? J. Comb.
Theory, Ser. A, 82(1):112–120, 1998. doi:10.1006/jcta.1997.2843.

18 Frantisek Franek, Jan Holub, William F. Smyth, and Xiangdong Xiao. Computing quasi
suffix arrays. J. Autom. Lang. Comb., 8(4):593–606, 2003.

19 Harold N. Gabow and Robert Endre Tarjan. A linear-time algorithm for a special case of dis-
joint set union. J. Comput. Syst. Sci., 30(2):209–221, 1985. doi:10.1016/0022-0000(85)
90014-5.

20 Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to prac-
tice: Plug and play with succinct data structures. In Joachim Gudmundsson and
Jyrki Katajainen, editors, Proceedings of the 13th International Symposium on Experi-
mental Algorithms (SEA 2014), volume 8504 of LNCS, pages 326–337. Springer, 2014.
doi:10.1007/978-3-319-07959-2_28.

21 Keisuke Goto. Optimal time and space construction of suffix arrays and LCP arrays for
integer alphabets, 2017. arXiv:1703.01009.

22 Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Com-
putational Biology. Cambridge University Press, 1997. doi:10.1017/CBO9780511574931.

23 Dan Gusfield and Jens Stoye. Linear time algorithms for finding and representing all the
tandem repeats in a string. J. Comput. Syst. Sci., 69(4):525–546, 2004. doi:10.1016/j.
jcss.2004.03.004.

24 Wing-Kai Hon and Kunihiko Sadakane. Space-economical algorithms for finding maximal
unique matches. In Alberto Apostolico and Masayuki Takeda, editors, Proceedings of the
13th Annual Symposium on Combinatorial Pattern Matching (CPM 2002), volume 2373 of
LNCS, pages 144–152. Springer, 2002. doi:10.1007/3-540-45452-7_13.

25 Lucas Chi Kwong Hui. Color set size problem with application to string matching. In
Alberto Apostolico, Maxime Crochemore, Zvi Galil, and Udi Manber, editors, Proceedings
of the 3rd Annual Symposium on Combinatorial Pattern Matching (CPM 1992), volume
644 of LNCS, pages 230–243. Springer, 1992. doi:10.1007/3-540-56024-6_19.

26 Lucian Ilie. A note on the number of squares in a word. Theor. Comput. Sci., 380(3):373–
376, 2007. doi:10.1016/j.tcs.2007.03.025.

27 Natasa Jonoska, Florin Manea, and Shinnosuke Seki. A stronger square conjecture on bi-
nary words. In Viliam Geffert, Bart Preneel, Branislav Rovan, Julius Stuller, and A Min

http://dx.doi.org/10.1145/355541.355547
http://pizzachili.di.unipi.it
http://pizzachili.di.unipi.it
http://pizzachili.dcc.uchile.cl
http://dx.doi.org/10.1016/j.ipl.2010.02.010
http://dx.doi.org/10.1016/j.ipl.2010.02.010
http://dx.doi.org/10.1007/978-3-642-22300-6_32
http://dx.doi.org/10.1137/090779759
http://dx.doi.org/10.1137/090779759
http://dx.doi.org/10.1007/978-3-319-19929-0_15
http://dx.doi.org/10.1006/jcta.1997.2843
http://dx.doi.org/10.1016/0022-0000(85)90014-5
http://dx.doi.org/10.1016/0022-0000(85)90014-5
http://dx.doi.org/10.1007/978-3-319-07959-2_28
http://arxiv.org/abs/1703.01009
http://dx.doi.org/10.1017/CBO9780511574931
http://dx.doi.org/10.1016/j.jcss.2004.03.004
http://dx.doi.org/10.1016/j.jcss.2004.03.004
http://dx.doi.org/10.1007/3-540-45452-7_13
http://dx.doi.org/10.1007/3-540-56024-6_19
http://dx.doi.org/10.1016/j.tcs.2007.03.025

H. Bannai, S. Inenaga, and D. Köppl 22:15

Tjoa, editors, Proceedings of the 40th International Conference on Current Trends in The-
ory and Practice of Computer Science (SOFSEM 2014), volume 8327 of LNCS, pages
339–350. Springer, 2014. doi:10.1007/978-3-319-04298-5_30.

28 Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. Linear time Lempel-Ziv factor-
ization: Simple, fast, small. In Johannes Fischer and Peter Sanders, editors, Proceedings
of the 24th Annual Symposium on Combinatorial Pattern Matching (CPM 2013), volume
7922 of LNCS, pages 189–200. Springer, 2013. doi:10.1007/978-3-642-38905-4_19.

29 Juha Kärkkäinen, Giovanni Manzini, and Simon John Puglisi. Permuted longest-common-
prefix array. In Gregory Kucherov and Esko Ukkonen, editors, Proceedings of the 20th An-
nual Symposium on Combinatorial Pattern Matching (CPM 2009), volume 5577 of LNCS,
pages 181–192. Springer, 2009. doi:10.1007/978-3-642-02441-2_17.

30 Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. Linear work suffix array construc-
tion. J. ACM, 53(6):918–936, 2006. doi:10.1145/1217856.1217858.

31 Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park. Linear-time
longest-common-prefix computation in suffix arrays and its applications. In Amihood Amir
and Gad M. Landau, editors, Proceedings of the 12th Annual Symposium on Combinatorial
Pattern Matching (CPM 2001), volume 2089 of LNCS, pages 181–192. Springer, 2001. doi:
10.1007/3-540-48194-X_17.

32 Pang Ko and Srinivas Aluru. Space efficient linear time construction of suffix arrays. J.
Discrete Algorithms, 3(2-4):143–156, 2005. doi:10.1016/j.jda.2004.08.002.

33 Dominik Köppl. Computing all distinct squares efficiently, 2017. URL: https://github.
com/koeppl/distinct_squares.

34 Dominik Köppl and Kunihiko Sadakane. Lempel-Ziv computation in compressed space
(LZ-CICS). In Ali Bilgin, Michael W. Marcellin, Joan Serra-Sagristà, and James A. Storer,
editors, Proceedings of the 2016 Data Compression Conference (DCC 2016), pages 3–12.
IEEE Computer Society, 2016. doi:10.1109/DCC.2016.38.

35 Zhize Li, Jian Li, and Hongwei Huo. Optimal in-place suffix sorting, 2016. arXiv:1610.
08305.

36 Udi Manber and Eugene W. Myers. Suffix arrays: A new method for on-line string searches.
SIAM J. Comput., 22(5):935–948, 1993. doi:10.1137/0222058.

37 Florin Manea and Shinnosuke Seki. Square-density increasing mappings. In Florin Manea
and Dirk Nowotka, editors, Proceedings of the 10th International Conference on Combi-
natorics on Words (WORDS 2015), volume 9304 of LNCS, pages 160–169. Springer, 2015.
doi:10.1007/978-3-319-23660-5_14.

38 Yuta Mori. libdivsufsort, 2015. URL: https://github.com/y-256/libdivsufsort.
39 J. Ian Munro, Gonzalo Navarro, and Yakov Nekrich. Space-efficient construction of com-

pressed indexes in deterministic linear time. In Philip N. Klein, editor, Proceedings of the
28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2017), pages 408–424.
SIAM, 2017. doi:10.1137/1.9781611974782.26.

40 Enno Ohlebusch and Simon Gog. Lempel-Ziv factorization revisited. In Raffaele Giancarlo
and Giovanni Manzini, editors, Proceedings of the 22nd Annual Symposium on Combina-
torial Pattern Matching (CPM 2011), volume 6661 of LNCS, pages 15–26. Springer, 2011.
doi:10.1007/978-3-642-21458-5_4.

41 Kunihiko Sadakane. Compressed suffix trees with full functionality. Theory Comput. Syst.,
41(4):589–607, 2007. doi:10.1007/s00224-006-1198-x.

42 Yohei Ueki, Diptarama, Masatoshi Kurihara, Yoshiaki Matsuoka, Kazuyuki Narisawa, Ryo
Yoshinaka, Hideo Bannai, Shunsuke Inenaga, and Ayumi Shinohara. Longest common
subsequence in at least k length order-isomorphic substrings. In Bernhard Steffen, Christel
Baier, Mark van den Brand, Johann Eder, Mike Hinchey, and Tiziana Margaria, editors,
Proceedings of the 43rd International Conference on Current Trends in Theory and Practice

CPM 2017

http://dx.doi.org/10.1007/978-3-319-04298-5_30
http://dx.doi.org/10.1007/978-3-642-38905-4_19
http://dx.doi.org/10.1007/978-3-642-02441-2_17
http://dx.doi.org/10.1145/1217856.1217858
http://dx.doi.org/10.1007/3-540-48194-X_17
http://dx.doi.org/10.1007/3-540-48194-X_17
http://dx.doi.org/10.1016/j.jda.2004.08.002
https://github.com/koeppl/distinct_squares
https://github.com/koeppl/distinct_squares
http://dx.doi.org/10.1109/DCC.2016.38
http://arxiv.org/abs/1610.08305
http://arxiv.org/abs/1610.08305
http://dx.doi.org/10.1137/0222058
http://dx.doi.org/10.1007/978-3-319-23660-5_14
https://github.com/y-256/libdivsufsort
http://dx.doi.org/10.1137/1.9781611974782.26
http://dx.doi.org/10.1007/978-3-642-21458-5_4
http://dx.doi.org/10.1007/s00224-006-1198-x

22:16 Computing All Distinct Squares in Linear Time for Integer Alphabets

of Computer Science (SOFSEM 2017), volume 10139 of LNCS, pages 363–374. Springer,
2017. doi:10.1007/978-3-319-51963-0_28.

43 Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.
doi:10.1007/BF01206331.

44 Peter Weiner. Linear pattern matching algorithms. In H. Raymond Strong, editor, Pro-
ceedings of the 14th Annual Symposium on Switching and Automata Theory (SWAT 1973),
pages 1–11. IEEE Computer Society, 1973. doi:10.1109/SWAT.1973.13.

Small Observation. In [23, Line 6 of Algorithm 1b], the condition start+ k < h1 has to be
changed to start+ k ≤ h1. Otherwise, given the text T = abaabab$, the algorithm would
find only the square aa, but not abaaba.

A Algorithm Execution with one Step at a Time

In this section, we process the running example T = ababaaababa$ with the algorithm
devised in Section 4.1 step by step. SA, LCP, PLCP, and LPF are given in the table below
(the LZ row partitions the text into factors, their borders are represented by the vertical
bars):

i 1 2 3 4 5 6 7 8 9 10 11 12

T a b a b a a a b a b a $

SA 12 11 5 6 9 3 7 1 10 4 8 2

LCP 0 0 1 2 1 3 3 5 0 2 2 4

PLCP 5 4 3 2 1 2 3 2 1 0 0 0

LPF 0 0 3 2 1 2 5 4 3 2 1 0

LZ f1 f2 f3 f4 f5 f6

The text T =
1

a|
2

b|
3

aba|
4

aa|
5

baba|
6

$ = f1 · · · f6 is factorized in six Lempel-Ziv factors. We call
T [1+ |f1 · · · fi−1|] (first position of the i-th factor) and T [1+ |f1 · · · fi|] (position after the i-th
factor) the left border and the right border of fi, respectively. The idea of the algorithm
is to check the presence of a square at a factor border and at an offset value q of the border
with LCE queries. q is either the addition of p to the left border, or the subtraction of p from
the right border (see Figure 1).
The algorithm finds the leftmost occurrences of all squares in the order (first) of their lengths
and (second) of their starting positions. We start with the period p = 1 and try to detect
squares at each Lempel-Ziv factor border. To this end, we create a bit vector B marking all
found squares with period p = 1. A square of this period is found at the right border of f3.
It is of type Lemma 8(1), since its starting position is in f3. To find it, we take the right
border b = 6 of f3, and the position q := b− p = 5. We perform an LCE query at b and q
in the forward and backward direction. Only the forward query returns the non-zero value
of one. But this is sufficient to find the square aa of period one. Its LPF value is smaller
than 2p = 2, so it is the leftmost occurrence. It is not yet marked in B, thus we have not yet
reported it. Right-rotations are not necessary for period 1. Having found all squares with
period 1, we clear B.

http://dx.doi.org/10.1007/978-3-319-51963-0_28
http://dx.doi.org/10.1007/BF01206331
http://dx.doi.org/10.1109/SWAT.1973.13

H. Bannai, S. Inenaga, and D. Köppl 22:17

Next, we search for squares with period 2. We find a square of type Lemma 8(2) at
the left border b = 2 of f2. To this end, we perform an LCE query starting from b and
q := b+ p = 4 in both directions. Both LCE queries show that T [1..5] is a repetition with
period p = 2. Thus we know that T [1..4] is a square. It is not yet marked in B, and has an
LPF value smaller than 2p = 4, i.e., it is a not yet reported leftmost occurrence. On finding
a leftmost occurrence of a square, we right-rotate it, and report all right-rotations whose
LPF values are below 2p. This is the case for T [2..5], which is the leftmost occurrence of the
square baba.

After some unsuccessful checks at the next factor borders, we come to factor f5 and
search for a square of type Lemma 8(2). Two LCE queries in both directions at the left
border b = 8 of f5 and q := b+ p = 10 reveal that T [7..11] is a repetition of period 2. The
substring T [7..10] is a square, but its LPF value is 5(≥ 2p), i.e., we have already reported this
square. Although we have already reported it, some right-rotation of it might not have been
reported yet (see Section 4.2 for an example). This time, all right-rotations (i.e., T [8..12])
have an LPF value ≥ 2p, i.e., there is no leftmost occurrence of a square of period 2 found
by right-rotations. In overall, we have found and reported the leftmost occurrences of all
squares once.

B More Evaluation

Table 3 Running times in seconds, evaluated on different input sizes. We took prefixes of 1MiB,
10MiB, 50MiB, and 100MiB of all collections.

collection 1MiB 10MiB 50MiB 100MiB 200MiB

pc-dblp.xml 0.2 3 16 33 70
pc-dna 0.3 3 23 56 310
pc-english 0.2 5 42 500 2639
pc-proteins 0.3 4 25 74 245
pc-sources 0.2 3 31 286 792
pcr-cere 0.6 6 30 79 535
pcr-einstein.en 0.4 12 83 1419 3953
pcr-kernel 0.2 8 233 1274 6608
pcr-para 0.4 4 26 98 265

C Proofs

Proof of Theorem 12

Proof. We need (occ+n) lgn bits for storing the lists Li (occ lgn bits for storing the lengths
of all squares in an integer array, and n lgn bits for the pointers to the first element of each
list). The array Z uses z lg z bits. The Lempel-Ziv factors are represented as in Corollary 1.
The time tLCE is the maximum time of the LCE data structure and the suffix tree for
answering an LCE query. J

Proof of Theorem 13

Proof. We use Theorem 6 to store SA, ISA, LCP, and LPF in (1 + ε)n lgn + O(n) bits.
Subsequently, we build an RMQ data structure on LCP such that LCE queries can be

CPM 2017

22:18 Computing All Distinct Squares in Linear Time for Integer Alphabets

answered in constant time. We additionally need the suffix array, its inverse, and the LCP
array (with an RMQ data structure) of the reversed text to answer LCE queries on the
reversed text. Finally, we endow LPF with an RMQ data structure for the right-rotations.
An LCE query on the text can be answered by the string depth of a lowest common ancestor
in the suffix tree in constant time. J

D Pseudo Code

Algorithm 1: Modified Algorithm 1 of [23].
1 b(f) denotes the left end of a factor f = T [b(f)..b(f) + |f | − 1], lcp and lcs compute the LCE

in T and the LCE in the reverse of T (mirroring the input indices by i 7→ n− i for
1 ≤ i ≤ n− 1), respectively.

2 Let f1, . . . , fz be the factors of the Lempel-Ziv factorization
3 fz+1 ← T [n] // dummy factor
4 Function recursive-rotate(s : starting position, e: ending position)
5 m← LPF.RMQ[s..e]
6 if m > 2p then return
7 report(m, 2p) and B[m]← 1
8 recursive-rotate(s,m− 1) and recursive-rotate(m+ 1,e)
9 Function right-rotate(s : starting position of square, p: period of square)

10 if B[s] = 1 then return
11 if LPF[s] < 2p then report(s, 2p) and B[s]← 1
12 `← lcp(s, s+ p)
13 recursive-rotate(s+ 1, s+ p− 1, s+ `− p)
14 Z ← array of size z lg z bits, zero initialized
15 m← max(|f1|+ |f2| , . . . , |fz−1|+ |fz|)
16 for p = 1, . . . ,m do
17 B ← bit vector of length n, zero initialized
18 for x = 1, . . . , z do
19 if |fx|+ |fx+1| < p then
20 y ← x

21 while |fy|+ |fy+1| < p do
22 if Z[y] 6= 0 then y ← Z[y]
23 else incr y

24 Z[x]← y and x← y

25 if |fx| ≥ p then // probe for squares satisfying Lemma 8(1)
26 q ← b(fx+1)− p
27 `R ← lcp(b(fx+1), q) and `L ← lcs(b(fx+1)− 1, q − 1)
28 if `R + `L ≥ p and `R > 0 then // found a square of length 2p with its

right end in fx+1

29 s← max(q − `L, q − p+ 1) // square starts at s

30 right-rotate(s, p)

31 q ← b(fx) + p // probe for squares satisfying Lemma 8(2)
32 `R ← lcp(b(fx), q) and `L ← lcs(b(fx)− 1, q − 1)
33 s← max(b(fx)− `L, b(fx)− p+ 1) // square starts in a factor preceding fx

34 if `R + `L ≥ p and `R > 0 and s+ p ≤ b(fx+1) and `L > 0 then // found a square
of length 2p whose center is in fx

35 right-rotate(s, p)

Palindromic Length in Linear Time
Kirill Borozdin1, Dmitry Kosolobov2, Mikhail Rubinchik3, and
Arseny M. Shur4

1 Ural Federal University, Ekaterinburg, Russia
borozdin.kirill,@gmail.com

2 University of Helsinki, Helsinki, Finland
dkosolobov@mail.ru

3 Ural Federal University, Ekaterinburg, Russia
mikhail.rubinchik@gmail.com

4 Ural Federal University, Ekaterinburg, Russia
arseny.shur@urfu.ru

Abstract
Palindromic length of a string is the minimum number of palindromes whose concatenation is
equal to this string. The problem of finding the palindromic length drew some attention, and a
few O(n logn) time online algorithms were recently designed for it. In this paper we present the
first linear time online algorithm for this problem.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Com-
binatorics

Keywords and phrases palindrome, palindromic length, palindromic factorization, online

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.23

1 Introduction

Algorithmic and combinatorial problems involving palindromes attracted the attention of
researchers since the first days of stringology. Recall that a string w = a0a1 · · · an−1 is
a palindrome if it is equal to the string ←w = an−1 · · · a1a0. The early works [4, 6, 8, 11]
considered palindromes as structures that might provide examples of (context-free) languages
that are impossible to recognize in linear time, thus provably restricting the computational
power of some models (RAM, in particular). Subsequently, it was shown that many of such
languages are, in fact, linear recognizable. Recently it was proved [7] that the language Pk,
where P is the set of all palindromes on a given alphabet, is recognizable online in O(kn)
time, where n is the length of the input string. Roughly at the same time, a closely related
notion of palindromic length of a string was introduced: this is the minimal number k such
that the string belongs to Pk. In 2014–2015 three different algorithms that compute the
palindromic length of a string of length n in O(n logn) time were presented in [3, 5, 10]
(however, they all are based on similar principles). In this paper we present the first linear
algorithm computing the palindromic length. Moreover, our algorithm is online, i.e., it reads
the input string sequentially from left to right and computes the palindromic length for each
prefix after reading the rightmost letter of that prefix. Thus, we prove the following theorem.

I Theorem 1. Palindromic length of a string is computable online in linear time.

The implementation of our algorithm and tests for it can be found in [9]. Due to a large
constant under the big-O, it is slower in practice (for 32/64 bit machine words) than the
existing O(n logn) solutions; the fastest algorithm is the one of [10].

© Kirill Borozdin, Dmitry Kosolobov, Mikhail Rubinchik, and Arseny M. Shur;
licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 23; pp. 23:1–23:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Palindromic Length in Linear Time

The paper is organized as follows. Section 2 contains a high-level description of the
algorithm: it starts with a naive O(n2) algorithm, then improves the time to O(n logn), and,
finally, describes on a high level a modified O(n)-time version of the O(n logn) algorithm.
In Section 3 we discuss the main components of the linear algorithm in details.

1.1 Preliminaries
Let w be a string of length n = |w|. We write w[i] for the ith letter of w (i = 0, . . . , n−1) and
w[i..j] for w[i]w[i+1] · · ·w[j]. A string u is a substring of w if u = w[i..j] for some i, j. Such
pair (i, j) is not necessarily unique; i specifies an occurrence of u at position i. A substring
w[0..j] (resp., w[i..n−1]) is a prefix (resp. suffix) of w. The empty string is denoted by ε. For
any i, j, [i..j] denotes the set {k ∈ Z : i ≤ k ≤ j}; let (i..j] = [i..j] \ {i}, [i..j) = [i..j] \ {j},
(i..j) = [i..j) ∩ (i..j]. Our notation for arrays is the same as for strings.

A substring (resp. suffix, prefix) that is a palindrome is called a subpalindrome (resp.
suffix-palindrome, prefix-palindrome). If w[i..j] is a subpalindrome of w, then the number
(j + i)/2 is the center of w[i..j] and the number b(j − i+ 1)/2c is the radius of w[i..j]. The
following remarkable property of palindromic lengths is crucial for our algorithm.

I Lemma 2 (see [10, Lemma 11]). Denote by `0, `1, . . . , `n−1, resp., the palindromic lengths of
the prefixes w[0..0], w[0..1], . . . , w[0..n−1] of a string w. Then, for any i ∈ (0..n), |`i−`i−1|≤1.

An integer p is a period of w if w[i] = w[i+p] for any i ∈ [0..n−p). As the previous
results [3, 5, 10], our approach relies on a number of periodic properties of palindromes.

I Lemma 3 (see [7, Lemmas 2, 3]). For any palindrome w and any p ∈ (0..|w|], the following
conditions are equivalent: (1) p is a period of w, (2) there are palindromes u, v such that
|uv| = p and w = (uv)ku for some k ≥ 1, (3) w[p..|w|−1] (w[0..|w|−p−1]) is a palindrome.

I Lemma 4 (see [7, Lemma 7]). Suppose that w = (uv)ku for k ≥ 1 and for palindromes u
and v such that |uv| is the minimal period of w; then, the center of any subpalindrome x of
w such that |x| ≥ |uv|−1 coincides with the center of some u or v from the decomposition.

Henceforth, let s denote the input string of length n. We assume that the algorithm
works in the unit-cost word-RAM model with Θ(logn)-bit machine words (an assumption
justified in, e.g., [2]) and standard operations like in the C programming language.

2 High-Level Description of the Algorithm

Our aim is to maintain an array ans[0..n−1] in which each element ans[i] is the palindromic
length of s[0..i]. We always assume n to be the length of the string s processed so far (i.e.,
s = s[0..n−1]). Processing the next letter s[n], we compute ans[n] and then increment n.

2.1 Naive approach
An easy quadratic-time approach is to maintain the list of all non-empty suffix-palindromes
u1, . . . , uk of the string s and calculate ans[n] = 1 + mini∈[1..k] ans[n−|ui|]. The list can be
updated in linear time: the suffix-palindromes of wa have the form aua, where u is a suffix
palindrome of w, plus the palindrome a and, optionally, aa. As a first speedup to this basic
approach, we utilize the (palindromic) iterator, introduced in [7]; this data structure contains
a string s and supports the following operations:

K. Borozdin, D. Kosolobov, M. Rubinchik, and A.M. Shur 23:3

1. add(a) appends the letter a to the end of s;
2. maxPal returns the center of the longest suffix-palindrome of s;
3. rad(x) returns the radius of the longest subpalindrome of s with the center x;
4. nextPal(x) returns the center of the longest proper suffix-palindrome of the suffix-

palindrome of s with the center x; undefined if x is not the center of a suffix-palindrome.

The iterator can be implemented so that all its operations work in O(1) time (amortized,
for add) [7, Prop. 1]. The same time bound applies to computing length of the longest
subpalindrome centered at x: len(x) = 2 · rad(x) + bxc − bx− 1

2c. Still, the iterator alone
cannot lower the asymptotic time of the naive algorithm; its improved version looks as follows:

1: add(s[n]); ans[n]← +∞
2: for (x← maxPal; x 6= n + 1

2 ; x← nextPal(x)) do ans[n]← min{ans[n], 1 + ans[n− len(x)]}

2.2 Algorithm working in O(n log n) time
All subquadratic algorithms for palindromic length heavily use grouping of suffix-palindromes
into series. Let u1, . . . , uk be all non-empty suffix-palindromes of a string s in the order of
decreasing length. Since uj is a suffix of ui for any i < j, any period of ui is a period of
uj ; hence the sequence of minimal periods of u1, . . . , uk is non-increasing. The groups of
suffix-palindromes with the same minimal period are series of palindromes (of s):

u1, . . . , ui1︸ ︷︷ ︸
p1

, ui1+1, . . . , ui2︸ ︷︷ ︸
p2

, . . . , uit−1+1, . . . , uk︸ ︷︷ ︸
pt

.

We refer to the longest and the shortest palindrome in a series as its head and baby respectively
(they coincide in the case of a 1-element series); we enumerate the elements of a series from
the head to the baby. Given an integer p, the p-series is the series with period p. A very
useful observation [3, 5, 7] is that the length of a head is multiplicatively smaller than the
length of the baby from the previous series, and thus every string of length n has O(logn)
series. (As it was shown in [3], strings with Ω(logn) series for Ω(n) prefixes do exist.)

The idea of the O(n logn) solution is to use the dynamic programming rule ans[n] =
1 + minU minu∈U ans[n−|u|], where U runs through the series of s, and compute the internal
minimum in O(1) time using precalculations based on the structure of series. The structure
of any series is described in the following lemma, which is easily implied by Lemmas 3, 4.

I Lemma 5. For a string s and p ≥ 1, let U be a p-series of palindromes. There exist k ≥ 1
and unique palindromes u, v with |uv| = p, v 6= ε such that one of three conditions hold:

U = {(uv)k+1u, (uv)ku, . . . , (uv)2u} and the next series begins with uvu,
U = {(uv)ku, (uv)k−1u, . . . , uvu} and the next series begins with u,
U = {vk, vk−1, . . . , v}, p = 1, |v| = 1, u = ε, and U is the last series for s.

Let U be a p-series for s[0..n] with k > 1 palindromes (w.l.o.g., U = {(uv)ku, . . . , uvu}).
Updating ans[n] using this series, we compute m = min{ans[n−kp−|u|], . . . , ans[n−p−|u|]}.
Now note that s[0..n] ends with (uv)ku but not with (uv)k+1u: otherwise, the latter
string would belong to U . Then s[0..n−p] ends with (uv)k−1u but not with (uv)ku and
thus has the p-series U ′ = {(uv)k−1u, . . . , uvu}. Thus, at that iteration we computed
m′ = min{ans[n−kp−|u|], . . . , ans[n−2p−|u|]} for updating ans[n−p]. If we save m′ into
an auxiliary array, then m = min{m′, ans[n− p− |u|]} is computable in constant time, as
required. Let us implement this construction using the iterator.

We start an iteration calling add(s[n]). Let x be the center of a suffix-palindrome u. By
Lemma 3, the minimal period p of u equals len(x) − len(nextPal(x)). Let cntr(d) denote

CPM 2017

23:4 Palindromic Length in Linear Time

the center of the length d suffix-palindrome of s[0..n] (i.e., cntr(d) = n − (d − 1)/2). Let
x′ = cntr(p+ (len(x) mod p)). By Lemma 5, x′ is the center either of the baby of the p-series
or of the head of the next series, depending on the period len(x′)− len(nextPal(x′)) of this
suffix-palindrome. All these computations take O(1) amortized time using the iterator.

Our algorithm maintains an array left[1..n]: for p ∈ [1..n], if there is a p-series, then
s[left[p]+1..n] is the longest suffix (which is not necessarily a palindrome) of s[0..n] with
period p; otherwise, left[p] is undefined. E.g., if s[0..n] = · · · aaabaaba and p = 3, then the
mentioned suffix is s[n−6..n] = aabaaba and left[3] = n−7. Computing left[p] in O(1) time is
done as follows. Let w = (uv)ku be the head of the p-series (see Lemma 5), x be the center of
w, and z(uv)ku be the longest suffix of s[0..n] with period p (in our example, u = ε, v = aba,
x = n− 5/2, z = a). Then z is a proper suffix of uv. Hence len(x1) = 2|z|+ |u|, where x1 is
the center of the prefix-palindrome u of w (in the example, x1 = n− 11/2, len(x1) = |aa|).
Note that |u| = len(x) mod p and x1 = 2x− x2, where x2 = cntr(len(x) mod p) is the center
of the suffix u of w. Thus, |z| and left[p] = n−len(x)−|z| are computed in O(1) time.

All precalculated minimums are stored in an array pre[1..n], where each pre[p] is, in
turn, an array pre[p][0..p−1] (we discuss in the next subsection why only O(n) of possible
O(n2) elements of pre are actually stored). For each j such that n− j > left[p], the string
s[0..n−j] usually has a suffix-palindrome with period p and thus can have a p-series; the
array pre[p][0..p−1] contains the precalculations made for all these series. Formally,

pre[p][i] = min{ans[t] :
(t− left[p]) mod p = i and s[t+1..n] has a prefix-palindrome of minimal period p};

pre[p][i] is undefined if there is no such t (i.e., no p-series for the corresponding string). So if
u1, . . . , uk is a p-series for s[0..n], then pre[p][n−|u1|−left[p]] = min{ans[n−|ui|] : i ∈ [1..k]}.
Hence, given a new letter s[n], we compute ans[n] as follows:

1: add(s[n]); ans[n]← +∞;
2: for (x← maxPal; x 6= n + 1

2 ; x← nextPal(cntr(d))) do . goes to next head each time
3: p← len(x)− len(nextPal(x)); . min. period of the suf.-pal. centered at x

4: d← p + (len(x) mod p); . length of the baby in the p-series
5: if len(cntr(d))− len(nextPal(cntr(d))) 6= p then d← d + p; . corrected length
6: compute left[p]; . in O(1) time, see above
7: if len(x) = d then pre[p][n−len(x)−left[p]]← ans[n−d];
8: pre[p][n−len(x)−left[p]]← min{pre[p][n−len(x)−left[p]], ans[n−d]};
9: ans[n]← min{ans[n], 1 + pre[p][n−len(x)−left[p]]};

Let u1, . . . , uk be a p-series, i = n−|u1|−left[p]. If k = 1, there was no p-series p iterations
ago, so we set the undefined value pre[p][i] to ans[n−|uk|] in line 7. Otherwise, by the
definition of pre, we have pre[p][i] = min{ans[n−|u1|], . . . , ans[n−|uk−1|]}. We update this
value using ans[n−|uk|] in line 8. So pre is correctly maintained, and the above algorithm
computes the array ans in O(n logn) time due to logarithmic number of series.

2.3 Sketch of the linear algorithm
The idea of the linear solution is to perform the above log-time processing of all series of the
current string not n times, but only O(n

log n) times during the run of the algorithm. (However,
we are able to make Θ(n) calls to the iterator.) To achieve this, during the processing of
a series we replace each computation of the minimum ans[n] ← min{ans[n], 1 + z}, for a
precomputed value z from pre, with the simultaneous computation (“prediction”) for the range
of values ans[n..n+b], where b = b log n

8 c: we compute in advance ans[j]← min{ans[j], 1 + zj}

K. Borozdin, D. Kosolobov, M. Rubinchik, and A.M. Shur 23:5

a a b a a a c e c a a b a c a b a a c e c a a a b
0 x n

︷︸︸︷︷ ︸︸ ︷
maxPal

︷ ︸︸ ︷
` = live(x)

b
`

b

Figure 1 Predictable extensions.

for all j ∈ [n..n+b] and corresponding precomputed zj from pre. It is proved below that
the arrays ans and pre can be organized so that, after a linear time preprocessing, such
range operations on O(b) elements of ans will take O(1) time (this type of bit compression
techniques is referred to as the four Russians’ trick [1]).

Let us extend s[0..n−1] with s[n] = a. We say that a suffix-palindrome u of s[0..n−1],
centered at x, survives if s[0..n] has the suffix aua (i.e, x remains the center of a suffix-
palindrome), and dies otherwise. We say that an extension of s[0..n−1] by s[n] is predictable
if it retains maxPal, i.e., if the longest suffix-palindrome survives. From maxPal it can be
calculated which of the other suffix-palindromes survive. If a suffix-palindrome of s centered
at x survives d ≥ 0 consecutive predictable extensions but dies after the (d+1)th such
extension (or the (d+1)th predictable extension is not possible), we write live(x) = d. We
have live(maxPal) = n − len(maxPal) and live(x) = rad(refl(x)) − rad(x) for x 6= maxPal;
here refl(x) = 2 ·maxPal − x is the position symmetric to x w.r.t. maxPal. (See Fig. 1 for
clarification; e.g., in Fig. 1 live(x) = 2 and live(maxPal) = 6.)

Suppose that ans[n+j] = +∞ for j ∈ [0..b]. Having performed add(s[n]), we get access to
the suffix-palindromes of s[0..n]. If, for the center x of each such palindrome, we perform

ans[n+j]← min{ans[n+j], 1 + ans[n−len(x)−j]} for all j ∈ [0..min{b, live(x)}], (1)

then we accumulate all information we can obtain from these palindromes during the next b
predictable extensions. Thus we get an approximation of ans[n..n+b], which later will be
updated using suffix-palindromes with the centers x ≥ n+ 1

2 . One phase of our algorithm is
roughly as follows:

append s[n] to the iterator, update precalculations, and “predict” ans[n..n+b] with the
assignments (1), using operations on blocks of bits (ans[n] is computed exactly);
append subsequent letters, each time updating the predictions with either one or two
new palindromes (after processing s[n+j], ans[n..n+j] contains correct values);
stop after b iterations or at the moment when an unpredicted letter is encountered;
discard unused predictions and start a new phase with the first unpredicted letter.

For arrays α, β and numbers i, j, ` ≥ 0, denote by α[i..i+`] min← β[j..j+`] the sequence of
assignments α[i+k]← min{α[i+k], β[j+k]} for all k ∈ [0..`]. Let increv(i, j) be the function
returning an array a[0..j−i] such that a[k] = 1 + ans[j−k] for k ∈ [0..j−i] (“increment &
reverse”). The predictions are made by the function predict that uses precalculations stored
in pre to perform in a fast way the assignments ans[n..n+c] min← increv(n−len(x)−c, n−len(x)),
where c = min{b, live(x)}, for all centers x of suffix-palindromes. (Hence predict computes
the value ans[n] correctly even if c = 0 for some x.) Let precalc be a function that updates
(possibly once in several iterations) the array pre to the actual state. The implementations
of predict and precalc are discussed in Section 3. Our algorithm is as follows:

1: for (n← 0, end← 0; not(end_of_input); n← n + 1) do
2: if n = end or len(maxPal) = n or s[n] 6= s[n−len(maxPal)−1] then . new phase
3: add(s[n]); precalc; predict; end← n + b

4: else add(s[n]) . old phase continues, s[n] is predictable
5: c← min{b, live(n)}; ans[n..n+c] min← increv(n−1−c, n−1)
6: if s[n] = s[n−1] then c← min{b, live(n− 1

2)}; ans[n..n+c] min← increv(n−2−c, n−2)

CPM 2017

23:6 Palindromic Length in Linear Time

This algorithm computes the same values ans[n] as the O(n logn) algorithm above,
because finally all suffix-palindromes of s[0..n] are used. So, the algorithm is correct.

Let t be the number of series in the current string s[0..n] and q is the time required to
perform all the calls add(s[n]), add(s[n−1]), . . . , add(s[n′+1]), where s[0..n′] is the string for
which precalc was called last time. Below we show that predict and precalc work in O(t) and
O(t+ q) time respectively, and the array ans can be organized so that the range operations
in lines 5–6 can be performed in O(1) time using the four Russians’ trick. Let us estimate
the running time of the algorithm under these assumptions.

During predictable extensions, line 3 is reached iff n = end, i.e., at most O(n
b) times. Since

add works in O(1) amortized time (see [7, Prop. 1]), the sum of all q’s in the working time of
precalc is O(n). Since O(t) = O(logn), all predictable extensions take O(n+ n

b logn) = O(n)
overall time. To estimate the running time of unpredictable extensions, consider the value
γi = live[maxPal] = i− len(maxPal) after processing s[0..i]. If s[i+1] is predictable, one has
γi+1 = (i + 1) − (len(maxPal) + 2) = γi − 1. If s[i+1] is unpredictable, γi+1 ≥ (i + 1) −
(len(nextPal(maxPal)) + 2); by Lemma 5, γi+1 − γi ≥ p− 1, where p is the minimal period
of the longest suffix-palindrome of s[0..i]. By Lemmas 4 and 5, the length of the longest
suffix-palindrome whose minimal period differs from p is less than 2p. Therefore, predict and
precalc take O(p+ q) time during this unpredictable extension (actually, O(log p+ q)). Since
γn − γ1 < n, the sum of the working times of all calls to predict and precalc is O(n).

2.4 Organization of the arrays ans and pre

Informally, the four Russians’ trick allows us to compute any operation on structures
of size ≤ε logn bits in O(1) time using a precomputed table of size O(nε logO(1) n) bits.
For example, let a b log n

2 c-bit integer x encode a sequence x1, . . . , xblog n/4c so that xj =
1− (bx/22j−2c mod 4), i.e., (2j−1)th and (2j−2)th bits of x encode xj . We can compute,
for j ∈ [1.. logn/4], the sum x1 + · · ·+ xj in O(1) time using a table T [0..b

√
nc][1..blogn/4c]

such that T [x][j] = x1 + · · ·+ xj for any x ∈ [0..2log n/2] = [0..
√
n] and j ∈ [1.. logn/4]. The

table T can be precomputed in O(
√
n logO(1) n) time.

In our case, we split ans into blocks of length b. By Lemma 2, adjacent elements of
ans differ by at most one. This allows us to encode each block ans[ib+1..(i+1)b] as the
number ans[ib+1] and the sequence x1, x2, . . . , xb such that xj ∈ {−1, 0, 1} and ans[ib+j] =
ans[ib+1] +x1 + · · ·+xj for any j ∈ [1..b]. This sequence x1, x2, . . . , xb is encoded in a 2b-bit
integer exactly as in the example above (note that 2b ≤ b log n

4 c). Using a precomputed table
of size O(4

√
nb), we can extract any element ans[j] in O(1) time. It is shown in Sect. 3 that

arrays in pre can be encoded in a similar way (with some additional complications).
Applying a similar trick, one can perform many other operations. Let c[0..`] be an

array of integers such that ` ∈ [0..b], |c[i−1] − c[i]| ≤ 1, and c is encoded, like a block of
ans, by c[0] and a 2b-bit integer. Let us show how to perform in O(1) time the operation
ans[n..n+`] min← c[0..`] as in lines 5–6 of the algorithm (similar operations are also performed
in predict). We first check whether c[0] > ans[n] + 2`: if so, then ans remains unchanged.
It is guaranteed by the algorithm that c[0] ≥ ans[n−1] − 1. Then, we concatenate bit
representations of all required components: the (at most) two blocks ans[ib+1..(i+1)b] and
ans[(i+1)b+1..(i+2)b] encoding the subarray ans[n..n+`] are stored as two 2b-bit sequences
(encoding the differences ans[i] − ans[i−1] for i ∈ [ib+2..(i+2)b] as above), c[0..`] is also
stored as a 2b-bit sequence, the offset (n−ib) and the difference c[0]− ans[n−1] are stored as
O(log b)-bit integers; 6b+O(log b) bits in total. We precompute a table T that, for a given

K. Borozdin, D. Kosolobov, M. Rubinchik, and A.M. Shur 23:7

combined bit representation, stores two 2b-bit sequences encoding two blocks that represent
the resulting modified ans[n..n+`] array. It should be noted that the information provided
in the given representation suffices to compute the result and, since the resulting array ans
satisfies Lemma 2, we may put ans[n+`+j] = min{ans[n+`+j], ans[n+`] + j} for j ≥ 1 so
that the structure of the last block is preserved. Since 6b≤ 3

4 logn, the size of the table T
is O(b · 26b+O(log b)) = O(n3/4 logk n) for some k = O(1). Obviously, T can be precomputed
in O(n3/4 logk+O(1) n) time. Analogously, we precompute tables that allow us to calculate
increv(i, j) in O(1) time if j − i ≤ b; the resulting array of increv is encoded, like the array
c, by the first element and a 2b-bit integer. Thus, all range operations in lines 5–6 of the
algorithm can be performed in O(1) time.

We use a number of different range operations on the arrays ans and pre in Section 3 but
all of them are similar to the discussed ones, so we omit detailed descriptions.

3 Implementation of the Main Functions

Now it remains to describe the functions predict and precalc and prove their time complexity.

3.1 Function predict
At the beginning, the function predict sets ans[n+j] ← ans[n−1]+j+1 for j ∈ [0..b]. By
Lemma 2, the assigned values are upper bounds for the elements of ans[n..n+b]. The
assignments are performed in O(1) time using range operations. Then predict processes each
of the t series; let us describe precisely how we process a p-series u1, . . . , uk.

Let u, v be the palindromes described in Lemma 5, xi be the center of ui for i ∈ [1..k]. If
len(xi) < n− left[p] (i.e., either i > 1 or i = 1 and u1 is not the longest suffix of s with period
p), then xi will remain the center of a new suffix-palindrome after the appending of s[n] iff
s[n] = s[n−p] = v[0]. In this case, the period p “extends” and xi remains the center of a
suffix-palindrome with the minimal period p. In the remaining case len(x1) = n− left[p] (u1
is the longest suffix with period p) x1 will remain the center of a suffix-palindrome iff s[n] =
s[left[p]]; the period p breaks and the palindrome s[n]u1s[n] will belong to a different series.

Suppose that d upcoming predictable extensions extend the period p of the suffix
s[left[p]+1..n−1] and the (d+1)st predictable extension breaks this period. It follows from
the previous paragraph that the only suffix-palindrome ui that can survive the (d+1)st
extension (in other words, for which live(xi) > d) must have length n− left[p]− d (see Fig. 2).
So if d is known, we check whether x = cntr(n−left[p]−d) is the center of a suffix-palindrome
(i.e., cntr(len(x)) = x) and, if so, we compute ans[n..n+c] min← increv(n−len(x)−c, n−len(x)),
where c = min{b, live(x)}, in O(1) time using range operations.

Now it remains to find d and change ans[n..n+ min{b, d}] taking u1, . . . , uk into account.
Since predictable extensions append the letters s[n−len(maxPal)], s[n−len(maxPal)−1], . . .
to the right of s, we can approximately find d looking at the string s[0..n−len(maxPal)−1].
Put d′ = min{live(cntr(|u|)), live(cntr(|uvu|))} (see Fig. 2). Let us show that we can use d′
instead of d. If d′ < n − left[p] − |uvu|, then the longest suffix-palindrome is preceded by
the reversed prefix of (vu)∞ of length d′. In turn, this prefix either is preceded by a letter
that breaks the period p of this prefix (the letter e in Fig. 2) or is a prefix of the whole
string. In either case, d′ = d. If d′ ≥ n− left[p]− |uvu|, then the longest suffix-palindrome is
also preceded by the reversed prefix of (vu)∞ of length d′ but d ≥ d′ in general. However,
even in this case, we can use d′ in the sequel since none of the suffix-palindromes from our
series survives after n− left[p]− |uvu| predictable extensions; therefore, also, the possible
processing of a suffix-palindrome of length n− left[p]− d′ mentioned above is not required.

CPM 2017

23:8 Palindromic Length in Linear Time

e a b a b a b a b a b a b a b a b a c c c a b a b a b a b a b a b a b a b a c

︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷
x1x2x3x4x5

nleft[p]

maxPal

p = 2
d = 6

p p pd′

refl(cntr(|a|)) = refl(n) refl(cntr(|aba|))
Figure 2 A series x1, . . . , x5: live(x4) > d, the shaded region corresponds to ans[n..n+d].

x b a a b a b a a b a a b a b a a b a a b a b a
n

u︷ ︸︸ ︷ u︷ ︸︸ ︷ u︷ ︸︸ ︷v︷︸︸︷ v︷︸︸︷left[p]

0 k1 k2 k3
p = 8

φ0 = φ1 = 0, φ2 = φ3 = 1,
φ4 = φ5 = φ6 = 0, φ7 = −1.

Figure 3 Partition of [0..p) in Lemma 6.

Let us track the set S = {`1 = n−len(x1)+1, . . . , `k = n−len(xk)+1} of the leftmost
positions of the suffix-palindromes centered at x1, x2, . . . , xk in the d′ predictable extensions:
all these positions shift to the left by one after each extension; if a position reaches left[p], the
corresponding palindrome dies and this position is excluded from S. By Lemma 3, for any
i ∈ [1..k], if `i is in the set after f ∈ [0..d′] predictable extensions, then the suffixes s[`i+jp..n]
(here n is increased by f) are palindromes for all integers j ≥ 0 such that `i+jp ≤ n; therefore,
along with the assignments ans[n] min← 1 + ans[`i−1] (here n is increased by f) that we are
intended to perform, we can occasionally perform ans[n] min← 1 + ans[`i+jp−1] for any such j.

Obviously, |u1|+ p > n− left[p] since otherwise uvu1 would be a longer suffix-palindrome
with the minimal period p. Based on the above observation, we perform the assignments
ans[n+j] min← 1+pre[p][r(j)] for all j ∈ [0..min{b, d′}], where r(j) = (n−|uk|−left[p]−j) mod p
(see Fig. 3; r(j) cyclically runs through the range [0..p) from right to left when j increases).
Recall that, immediately before the execution of predict, the function precalc recalculates
the array pre. After this recalculation pre[p] stores an array pre[p][0..p−1] for each p ∈ [1..n]
such that p is the minimal period of a suffix-palindrome of s[0..n]. For i ∈ [0..p) we have
pre[p][i] = min{ans[left[p]+i+jp] : j ∈ [0..φi]}, where φi ≥ 0 is the maximal integer such that
the string s[left[p]+i+φip+1..n] has a prefix-palindrome with the minimal period p; if there
is no such φi, we put pre[p][i] = +∞ and φi := −1.

We perform ans[n+j] min← 1 + pre[p][r(j)], for all j ∈ [0..min{b, d′}], in O(1) time using
range operations on the arrays pre and ans. (These operations are discussed below.) It follows
from Lemma 5 that, after f ∈ [0..d′] predictable extensions, the strings s[`i..n

′] (here n′
denotes the value of n before the extensions), for i ∈ [1..k) such that `i is still in the set S, have
prefix-palindromes with the minimal period p. Therefore, the above assignments will really
process the palindromes u1, . . . , uk−1 for the upcoming d′ predictable extensions (see Fig. 2)
but will, probably, perform some additional unnecessary assignments for suffix-palindromes
with period p that will appear only after a number of predictable extensions; but this does
not harm since such assignments will be performed anyway in the future. For the baby
uk, we compute explicitly ans[n..n+c] min← increv(n−len(xk)−c, n−len(xk)), where c = min{b,
live(xk)}, in O(1) time using range operations. It remains to describe the structure of the
array pre that allows us to perform constant time range operations on subarrays of length ≤b.

I Lemma 6. For each i ∈ [0..p), let φi be the minimal integer such that the string
s[left[p]+i+(φi+1)p+1..n] has no prefix-palindromes with the minimal period p. Then, the
segment [0..p) can be split into subsegments [k0..k1), . . . , [k6..k7), for 0 = k0 ≤ · · · ≤ k7 = p,
such that, for i ∈ (0..p), we have φi = φi−1 whenever i and i−1 belong to the same subsegment
(see Fig. 3).

K. Borozdin, D. Kosolobov, M. Rubinchik, and A.M. Shur 23:9

Proof. For i ∈ [0..p) and j ≥ 0, denote i(j) = left[p]+i+jp. Let k be an integer such that,
for i = p − 1, we have i(k) < n and i(k) + p ≥ n. So, for i ∈ [0..p), we obtain φi = j′i − 1,
where j′i is the minimal integer such that j′i ∈ [0..k] and the string s[i(j′i)+1..n] has no
prefix-palindromes with the minimal period p. While i descends from p−1 to 0 with step one,
some of the suffixes s[i(j)+1..n] may acquire prefix-palindromes with the minimal period p
and some may lose such prefix-palindromes thus changing the value of φi (see Fig. 3).

Let us choose i ∈ [0..p) that maximizes the value of φi. Denote j′ = φi for this i. If
j′ ≥ 0, then s[i(j′)+1..n] has a prefix-palindrome w with the minimal period p; by Lemma 3,
there are palindromes u and v such that |uv| = p and w = (uv)ru for r ≥ 1. Thus, for
any j′′ ∈ [0..j′−2], the suffix s[i(j′′)+1..n] has prefix-palindromes (uv)3u and (uv)2u both
having the minimal period p. When i further decreases to 0, the prefix-palindrome (uv)2u

“grows” together with s[i(j′′)+1..n] and, when i increases, (uv)3u “shrinks”; in both cases
s[i(j′′)+1..n] retains a prefix-palindrome with the minimal period p while i ∈ [0..p). Hence,
only suffixes s[i(j′−1)+1..n] and s[i(j′)+1..n] may lose or acquire a prefix-palindrome with
the minimal period p while i changes from p−1 to 0, i.e., φi varies in the range [j′−2..j′].

Let us prove that any suffix s[i(j)+1..n] can lose a prefix-palindrome with the minimal
period p at most once during the descending of i from p−1 to 0. Then, the existence of the
desired numbers k0, k1, . . . , k7 follows from a simple analysis of possible cases.

Suppose that s[i(j)+1..n] has a prefix-palindrome centered at x with the minimal period
p. When i decreases, s[i(j)+1..n] grows and the prefix-palindrome “grows” simultaneously.
Then, before s[i(j)+1..n] loses the prefix-palindrome, we have |s[i(j)+1..n]| = len(x) for
some i ∈ [0..p). By Lemma 4, there are palindromes u′ and v′ such that |u′v′| = p and
s[n−len(x)+1..n] = (u′v′)r′u′ for r′ ≥ 1. If, for some smaller i ∈ [0..p), s[i(j)+1..n] again
acquires a prefix-palindrome with the minimal period p, then, by Lemma 4, the center x′
of this prefix-palindrome must coincide with the center of u′ or v′ from the decomposition.
Hence x′ ≤ x− p/2. Then, this prefix-palindrome can be lost only after p decrements of i
once we have had |s[i(j)+1..n]| = len(x). This proves the claim. J

We partition pre[p][0..p−1] into subarrays pre[p][k0..k1−1], . . . , pre[p][k6..k7−1] according
to Lemma 6. Consider a segment [a..b] ⊂ [0..p) such that φi1 = φi2 and φi1 6= −1 whenever
i1, i2 ∈ [a..b]. Since pre[p][i] = min{ans[left[p]+i+jp] : j ∈ [0..φi]} and, by Lemma 2, |ans[j]−
ans[j−1]| ≤ 1 for any j ∈ (0..n), we easily obtain |pre[p][i]− pre[p][i−1]| ≤ 1 for any i ∈ (a..b].
Therefore, by Lemma 6, each of the subarrays of pre either contains only +∞ or has a
structure similar to the structure of ans described in Lemma 2. We do not store the subarrays
that contain +∞ and encode all other subarrays in a way described for ans in Sect. 2.4: we
split them into blocks of length b and encode each block as its starting element and a 2b-bit
integer encoding the differences between adjacent elements (the last block may contain less
than b elements). The linear size of pre measured in machine words (but not in the number
of elements) follows from the overall linear running time of the function precalc maintaining
pre; this analysis is given below.

To perform ans[n+j] min← pre[p][r(j)] for all j ∈ [0..min{b, d′}], we concatenate 2b-bit
integers from the blocks covering the subarray ans[n..n+ min{b, d′}], 2b-bit integers from a
constant number of blocks covering the subarrays of pre[p][0..p−1] containing positions r(j)
for j ∈ [0..min{b, d′}], and some other lightweight auxiliary data similar to the data used in
the operation min← considered above; then we compute the resulting array ans[n..n+ min{b, d′}]
using the obtained bit string and a precomputed table of size o(n). This might require
to duplicate the content of pre[p] if p < min{b, d′} (see the shaded region in Fig. 2); these
duplications must be already precalculated in the tables. Note that thus defined changes of
ans may affect the whole subarray ans[n..n+b] and not only ans[n..n+ min{b, d′}]: e.g., if we

CPM 2017

23:10 Palindromic Length in Linear Time

. . . e a b a a b a b a a b a a b a b a a b a a b a

︷ ︸︸ ︷︷ ︸︸ ︷ ︷ ︸︸ ︷︷︸︸︷︸ ︷︷ ︸ ︸ ︷︷ ︸
w

ũ ṽ ũ

v u v u
n′−|w|−left[p]

left[p]

nn′

Figure 4 Palindrome w with the center x, the minimal period p = 8; for i = 1, 2, 3, j = 0.

perform ans[n] min← x, then, to maintain the property of ans described in Lemma 2, we must also
perform ans[n+j] min← x+ j for j ∈ [1..b] (it is guaranteed by the algorithm that the elements
of ans[0..n−1] cannot be affected analogously since always |ans[n−1]− ans[n]| ≤ 1). Similar
“normalizations” must be included in the precomputed assignments ans[n+j] min← pre[p][r(j)]
for all j ∈ [0..min{b, d′}]. Thus, the structure of ans is preserved.

The computations seem to be quite sophisticated but, nevertheless, since all involved
structures occupy ε logn bits, for ε < 1, all required precalculations can be performed in
O(nε logO(1) n) time at the beginning of our algorithm. The tedious details are omitted here
and can be retrieved from the implementation [9].

3.2 Function precalc
Denote by n′ the value of n at the moment of the last call of precalc. (The first call of precalc
for n = 0 is trivial.) Our goal is to compute the array pre[p][0..p−1] for each p for which
there exists a p-series in s[0..n]. Note that since, as described above, pre[p][0..p−1] is stored
as a constant number of pointers to subarrays containing non-infinite values, we can fill
pre[p][0..p−1] with +∞ in O(1) time simply removing all these pointers.

The function precalc loops through all series in s[0..n] and processes each p-series as
follows: precalc computes the new value of left[p] in O(1) time and, if left[p] has changed since
s[0..n′] (this is where we really use the array left), then fills pre[p][0..p−1] with +∞ in O(1)
time; otherwise, precalc uses the array pre[p][0..p−1] calculated for s[0..n′]. In either case, for
each i ∈ [0..p), if there is an integer j ≥ 0 such that s[left[p]+i+jp..n′] does not have a prefix-
palindrome with the minimal period p and s[left[p]+i+jp..n] has such a prefix-palindrome,
then pre[p][i] is updated by performing pre[p][i] min← ans[left[p]+i+jp−1]. The methods by
which we find such i ∈ [0..p) and really perform the later assignments are described below. It
follows from the definition of pre that thus defined precalc computes the arrays pre[p][0..p−1]
for s[0..n].

Let us process all centers x for which there are i ∈ [0..p) and j ≥ 0 such that x is the center
of a prefix-palindrome of s[left[p]+i+jp..n] with the minimal period p but s[left[p]+i+jp..n′]
does not have a prefix-palindrome with the minimal period p. We consider two cases.

Case 1. Suppose that such x is less than n′+1 and the longest subpalindrome w in s[0..n′]
centered at x has the minimal period p. Clearly, the leftmost position of w is greater than
left[p] + i+ jp and w must be a suffix-palindrome of s[0..n′]. Let us describe all positions
hm = n′−|w|−m such that x is the center of a prefix-palindrome of s[hm+1..n] and is not
the center of a prefix-palindrome of s[hm+1..n′]. Obviously m > 0. After n′−|w|−left[p]+1
extensions of s[0..n′], the suffix-palindrome centered at x dies because it reaches left[p]
by its leftmost position (see Fig. 4). So, since w grows at most n − n′ times, we obtain
m ∈ [1..min{n−n′, n′−|w|−left[p]}]. For each such m, the prefix-palindrome of s[hm+1..n]
centered at x has length |w| + 2m and the minimal period p since the minimal period
of w, centered at x, is p and the palindrome with the length |w| + 2m and the center x,
for the given m, is a substring of the suffix of s with period p. Hence, we can perform

K. Borozdin, D. Kosolobov, M. Rubinchik, and A.M. Shur 23:11

pre[p][(r−m) mod p] min← ans[n′−|w|−m], where r = n′ − |w| − left[p], for all such m. Among
these assignments there is the required pre[p][i] min← ans[left[p]+i+jp−1] (see Fig. 4). Since
n− n′ ≤ b, once x is known, we can perform all these assignments in O(1) time using range
operations and precomputed tables; the boundaries of subarrays of pre can be adjusted
appropriately after these calculations. Now it remains to find all such centers x.

By Lemma 3, there are palindromes ũ and ṽ such that p = |ũṽ| and w = (ũṽ)rũ for
r ≥ 1 (see Fig. 4). If the minimal period of (ũṽ)r−1ũ is p, then all strings s[h..n′], for
h ∈ (left[p]..n′−|w|], have prefix-palindromes of the form α(ũṽ)r−1ũ

←
α, where α is a suffix of

ũṽ, with the minimal period p. But, by our assumption, s[left[p]+i+jp..n′] cannot have such
a prefix-palindrome. Therefore, w is the baby in the p-series of the string s[0..n′], i.e., either
w = ũṽũ or w = ũṽũṽũ. We find the baby in O(1) time by the techniques described above
using an instance of the iterator and the list of all series of suffix-palindromes for the string
s[0..n′]; these iterator and list are further discussed below.

Case 2. It remains to detect all x such that x is the center of a prefix-palindrome of
s[left[p]+i+jp..n] with the minimal period p, for some i ∈ [0..p) and j ≥ 0, and either x > n′

or the minimal period of any subpalindrome in s[0..n′] centered at x is not p. Hence, a
subpalindrome with the minimal period p and the center x appeared after several extensions
of s[0..n′] and, thus, was a suffix-palindrome at that moment. To catch the moments when
growing suffix-palindromes acquire new minimal periods, we need a device tracking changes
of periods in all suffix-palindromes after extensions. The iterator can serve as such a device.

Let w be a suffix-palindrome of s[0..n′] with the minimal period p′. By Lemma 3, we have
p′ = |w| − |u|, where u is the longest proper suffix-palindrome of w. Suppose that s[0..n′]
is extended by the letter a = s[n′+1] and awa is a suffix-palindrome of the new string. By
Lemma 3, awa has period p′ iff aua is a suffix-palindrome of s[0..n′+1]. Thus, to detect new
suffix-palindromes with a given period p, we can track, during the extensions of s, changes
in the list of the centers of all suffix-palindromes. The iterator maintains such list. The
following lemma is a straightforward corollary of the proof of [7, Prop. 1].

I Lemma 7. The iterator maintains a linked list of the centers of all suffix-palindromes of
s[0..n]. The function add(a) removes a number of centers from the list, adds the centers
n+ 1

2 (if a = s[n]) and n+1 to the end of the list, and thus obtains a new list for the string
s[0..n]a; all in Ω(1 + c) time, where c is the number of removed centers.

We maintain an instance of the iterator for the previously processed string s[0..n′] and
store the list of the centers of all suffix-palindromes of s[0..n′] since the last call of precalc.
The function precalc performs add(s[n′+1]), . . . , add(s[n]) and thus consecutively obtains the
lists of the centers of all suffix-palindromes of s[0..n′+1], . . . , s[0..n].

Consider, for n′′ ∈ (n′..n], such list x1, . . . , xk for s[0..n′′−1] so that x1 < · · · < xk. By
Lemma 7, the call to add(s[n′′]) gives us a sublist xi1 , . . . , xic

of the centers removed from
x1, . . . , xk. By Lemma 3, for xi /∈ {xi1 , . . . , xic} the minimal period of the suffix-palindrome
with the center xi has changed iff xi+1 ∈ {xi1 , . . . , xic

}. We easily find all such xi parsing the
list xi1 , . . . , xic from left to right and compute the new period as p = len(xi)− len(nextPal(xi)).
Denote by ` the number that is equal to len(xi) for s[0..n′′]. By the definition of pre, we
must perform pre[p][r] min← ans[n′′−`], where r = (n′′ − `− left[p]) mod p, if the string s[0..n]
has a p-series. In this case, we must also perform pre[p][(r−m) mod p] min← ans[n′′−`−m]
for all m ∈ [0..min{n− n′′, n′′ − `− left[p]}] because the strings s[n′′−`−m..n] have prefix-
palindromes of length `+2m centered at xi with the minimal period p; after n′′−`− left[p]+1
extensions, such palindrome dies since it reaches left[p] by its leftmost position and thus its
period breaks. Since n − n′′ ≤ b, these assignments, for all such m, can be performed by

CPM 2017

23:12 Palindromic Length in Linear Time

range operations on pre and ans in O(1) time using precomputed tables like those described
in Sect. 2.4 (subarrays of pre[p] can be also adjusted appropriately).

Thus, precalc works in O(t+ q) time as required, where t is the number of series in s[0..n]
and q is the time required to perform the sequence of calls add(s[n′+1]), . . . , add(s[n]). This
finishes the proof of the linear time complexity of main algorithm.

References
1 Vladimir Arlazarov, Efim Dinic, Mikhail Kronrod, and Igor Faradzev. On economical

construction of the transitive closure of a directed graph. Dokl. Akad. Nauk SSSR,
194(11):1209–1210, 1970.

2 Stefan Burkhardt and Juha Kärkkäinen. Fast lightweight suffix array construction and
checking. In Ricardo A. Baeza-Yates, Edgar Chávez, and Maxime Crochemore, editors,
Proc. of the 14th Annual Symposium on Combinatorial Pattern Matching (CPM 2003),
volume 2676 of LNCS, pages 55–69. Springer, 2003. doi:10.1007/3-540-44888-8_5.

3 Gabriele Fici, Travis Gagie, Juha Kärkkäinen, and Dominik Kempa. A subquadratic al-
gorithm for minimum palindromic factorization. J. Discrete Algorithms, 28:41–48, 2014.
doi:10.1016/j.jda.2014.08.001.

4 Zvi Galil and Joel I. Seiferas. A linear-time on-line recognition algorithm for “palstar”. J.
ACM, 25(1):102–111, 1978. doi:10.1145/322047.322056.

5 Tomohiro I, Shiho Sugimoto, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Computing palindromic factorizations and palindromic covers on-line. In Alexander S.
Kulikov, Sergei O. Kuznetsov, and Pavel A. Pevzner, editors, Proceedings of the 25th Annual
Symposium on Combinatorial Pattern Matching (CPM 2014), volume 8486 of LNCS, pages
150–161. Springer, 2014. doi:10.1007/978-3-319-07566-2_16.

6 Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern matching in
strings. SIAM J. Comput., 6(2):323–350, 1977. doi:10.1137/0206024.

7 Dmitry Kosolobov, Mikhail Rubinchik, and Arseny M. Shur. Palk is linear recognizable
online. In Giuseppe F. Italiano, Tiziana Margaria-Steffen, Jaroslav Pokorný, Jean-Jacques
Quisquater, and Roger Wattenhofer, editors, Proceedings of the 41st International Con-
ference on Current Trends in Theory and Practice of Computer Science (SOFSEM 2015),
volume 8939 of LNCS, pages 289–301. Springer, 2015. doi:10.1007/978-3-662-46078-8_
24.

8 Glenn K. Manacher. A new linear-time "on-line" algorithm for finding the smallest initial
palindrome of a string. J. ACM, 22(3):346–351, 1975. doi:10.1145/321892.321896.

9 Palindromic Length. Sources and tests for linear palindromic length problem, 2017. URL:
https://github.com/kborozdin/palindromic-length.

10 Mikhail Rubinchik and Arseny M. Shur. EERTREE: an efficient data structure for pro-
cessing palindromes in strings. In Zsuzsanna Lipták and William F. Smyth, editors, Proc.
of the 26th International Workshop on Combinatorial Algorithms (IWOCA 2015), volume
9538 of LNCS, pages 321–333. Springer, 2015. doi:10.1007/978-3-319-29516-9_27.

11 Anatol O. Slisenko. A simplified proof of the real-time recognizability of palindromes on
turing machines. J. Soviet. Math., 15(1):68–77, 1977. doi:10.1007/BF01404109.

http://dx.doi.org/10.1007/3-540-44888-8_5
http://dx.doi.org/10.1016/j.jda.2014.08.001
http://dx.doi.org/10.1145/322047.322056
http://dx.doi.org/10.1007/978-3-319-07566-2_16
http://dx.doi.org/10.1137/0206024
http://dx.doi.org/10.1007/978-3-662-46078-8_24
http://dx.doi.org/10.1007/978-3-662-46078-8_24
http://dx.doi.org/10.1145/321892.321896
https://github.com/kborozdin/palindromic-length
http://dx.doi.org/10.1007/978-3-319-29516-9_27
http://dx.doi.org/10.1007/BF01404109

Tight Bounds on the Maximum Number of
Shortest Unique Substrings∗

Takuya Mieno1, Shunsuke Inenaga2, Hideo Bannai3, and
Masayuki Takeda4

1 Department of Informatics, Kyushu University, Japan
takuya.mieno@inf.kyushu-u.ac.jp

2 Department of Informatics, Kyushu University, Japan
inenaga@inf.kyushu-u.ac.jp

3 Department of Informatics, Kyushu University, Japan
bannai@inf.kyushu-u.ac.jp

4 Department of Informatics, Kyushu University, Japan
takeda@inf.kyushu-u.ac.jp

Abstract
A substring Q of a string S is called a shortest unique substring (SUS) for interval [s, t] in S,
if Q occurs exactly once in S, this occurrence of Q contains interval [s, t], and every substring
of S which contains interval [s, t] and is shorter than Q occurs at least twice in S. The SUS
problem is, given a string S, to preprocess S so that for any subsequent query interval [s, t] all
the SUSs for interval [s, t] can be answered quickly. When s = t, we call the SUSs for [s, t] as
point SUSs, and when s ≤ t, we call the SUSs for [s, t] as interval SUSs. There exist optimal
O(n)-time preprocessing scheme which answers queries in optimal O(k) time for both point and
interval SUSs, where n is the length of S and k is the number of outputs for a given query. In
this paper, we reveal structural, combinatorial properties underlying the SUS problem: Namely,
we show that the number of intervals in S that correspond to point SUSs for all query positions
in S is less than 1.5n, and show that this is a matching upper and lower bound. Also, we consider
the maximum number of intervals in S that correspond to interval SUSs for all query intervals
in S.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases shortest unique substrings, maximal unique substrings

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.24

1 Introduction

1.1 Shortest unique substring (SUS) problems
A substring Q of a string S is called a shortest unique substring (SUS) for interval [s, t] in
S, if (1) Q occurs exactly once in S, (2) this occurrence of Q contains interval [s, t], and
(3) every substring of S which contains interval [s, t] and is shorter than Q occurs at least
twice in S. The SUS problem is to preprocess a given string S so that for any subsequent
query interval [s, t], SUSs for interval [s, t] can be answered quickly. When s = t, a query
[s, t] refers to a single position in the string S, and the problem is specifically called the point
SUS problem. For clarity, when s ≤ t, the problem is called the interval SUS problem.

∗ This work was in part supported by JSPS KAKENHI Grant Numbers JP25240003, JP26280003,
JP16H02783, JP17H01697.

© Takuya Mieno, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda;
licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 24; pp. 24:1–24:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.24
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

24:2 Tight Bounds on the Maximum Number of Shortest Unique Substrings

Pei et al. [5] were the first to consider the point SUS problem, motivated by some
applications in bioinformatics. They considered two versions of this problem, depending on
whether a single point SUS has to be returned (the single point SUS problem) or all point
SUSs have to be returned (the all point SUSs problem) for a query position.

There is a series of research for the single point SUS problem. Pei et al. [5] gave an
O(n2)-time preprocessing scheme which returns a single point SUS for a query position in
O(1) time, where n is the length of the input string. Tsuruta et al. [6] and Ileri et al. [3]
independently showed optimal O(n)-time preprocessing schemes which return a single point
SUS for a query position in O(1) time. Hon et al. [1] proposed an in-place algorithm for the
same version of the problem, achieving the same bounds as the above solutions.

For the all point SUS problem which is more difficult, Tsuruta et al. [6] and Ileri et al. [3]
also showed optimal algorithms achieving O(n) preprocessing time and O(k) query time,
where k is the number of all point SUSs for a query point.

Hu et al. [2] were the first to consider the interval SUS problem, and they proposed an
optimal algorithm for the interval SUS problem, using O(n) time for preprocessing and O(k′)
time for queries, where k′ is the number of interval SUSs for a query interval. Recently, Mieno
et al. [4] proposed an algorithm which solves the interval SUS problem on strings represented
by run-length encoding (RLE). If r is the size of the RLE of a given string of length n, then
r ≤ n always holds. Mieno et al.’s algorithm uses O(r) space, requires O(r log r) time to
construct, and answers all SUSs for a query interval in O(k′ +

√
log r/ log log r) time.

A substring X of a string S is said to be a minimal unique substring (MUS) of S, if (i)
X occurs in S exactly once and (ii) every proper substring of X occurs at least twice in S.
All the above algorithms for the SUS problems pre-compute all MUSs of the input string S
(or some data structure which is essentially equivalent to MUSs), and extensively use MUSs
to return the SUSs for a query position or interval.

Tsuruta et al. [6] showed that the maximum number of MUSs contained in a string of
length n is at most n. This immediately follows from the fact that MUSs do not nest. Mieno
et al. [4] proved that the maximum number of MUSs in a string is bounded by 2r− 1, where
r is the size of the RLE of the string. They also showed a series of strings which have 2r − 1
MUSs, and hence this bound is tight. These properties played significant roles in designing
efficient algorithms for the SUS problems.

On the other hand, structural properties of SUSs are not well understood. A trivial
upperbound for the maximum number of intervals that correspond to point SUSs is 3n, since
every MUS can be a SUS for some position of the input string S, and for each query position
p (1 ≤ p ≤ n), there can be at most 2 SUSs that are not MUSs (one that ends at position p
and the other that begins at position p).

1.2 Our contribution
The main contribution of this paper is matching upper and lower bounds for the maximum
number of SUSs for the point SUS problem, which translate to “less than 1.5n point SUSs”.
Namely, we prove that any string of length n contains at most (3n− 1)/2 SUSs for the point
SUS problem. We give a series of strings which contains (3n− 1)/2 SUSs for any odd number
n ≥ 5. Therefore, our bound is tight, and to our knowledge, this is the first non-trivial result
for structural properties of SUSs.

We also consider the maximum number of SUSs for the interval SUS problem. In so
doing, we exclude a special case where a query interval [s, t] itself is a unique substring that
occurs exactly once in S. This is because we have Θ(n2) bounds for such trivial SUSs. We
then prove that any string of length n contains less than 2n non-trivial SUSs for the interval

T. Mieno, S. Inenaga, H. Bannai, and M. Takeda 24:3

SUS problem. We also prove that there exists a string of length n which contains (2− ε)n
non-trivial SUSs for any small number ε > 0.

1.3 Related work
Xu [7] introduced the longest repeat (LR) problem. An interval [i, j] of a string S is said to
be an LR for interval [s, t] if (a) the substring R = S[i..j] occurs at least twice in S, (b) the
occurrence [i, j] of R contains [s, t] and (c) there does not exist an interval [i′, j′] of S such
that j′ − i′ > j − i, the substring S[i′..j′] occurs at least twice in S, and the interval [i′, j′]
contains interval [s, t]. The point and interval LR problems are defined analogously as the
point and interval SUS problems, respectively.

Xu [7] presented an optimal algorithm which, after O(n)-time preprocessing, returns all
LRs for a given interval in O(k′′) time, where k′′ is the number of output LRs. He claimed
that although the point/interval SUS problems and the point/interval LR problems look
alike, these problems are actually quite different, with a support from an example where an
SUS and LR for the same query point seem rather unrelated.

Our (3n− 1)/2 bound for the maximum number of SUSs for the point SUS problem also
supports his claim in the following sense: In the preprocessing, Xu’s algorithm computes the
set of maximal repeats (MR). An interval [i, j] of a string S is said to be an MR if (A) the
substring W = S[i..j] occurs at least twice in S, and (B) for any 1 ≤ i′ ≤ i ≤ j ≤ j′ ≤ n with
j′ − i′ > j − i, the superstring Y = S[i′..j′] of W occurs once in S. It is easy to see that the
maximum number of MRs is bounded by n, since for any position in S, there can be at most
one MR that begins at that position. This bound is also tight: any even palindrome consisting
of n/2 distinct characters contains n intervals for which the corresponding substrings are
MRs (e.g., for even palindrome abcdeedcba of length 10, any interval [i, i] for 1 ≤ i ≤ 10 is
an MR). By definition, any LR of string S is also an MR of S. Hence, the maximum number
of LRs is also bounded by n. Since the above lower bound for MRs with palindromes also
applies to LRs, this upper bound for LRs is also tight. Thus, there is a gap of (n − 1)/2
between the maximum numbers of SUSs and LRs.

2 Preliminaries

2.1 Notations
Let Σ be the alphabet. An element of Σ∗ is called a string. We denote the length of string S
by |S|. The empty string is the string of length 0. For any string S of length n and integer
1 ≤ i ≤ n, let S[i] denote the ith character of S. For any 1 ≤ i ≤ j ≤ n, let S[i..j] denote the
substring of S that starts at position i and ends at position j in S. For convenience, S[i..j]
is the empty string if i > j. For any strings S and w, let #occS(w) denote the number of
occurrences of w in S, namely, #occS(w) = |{i : S[i..i+ |w| − 1] = w}|.

2.2 MUSs and SUSs
Let S be any string of length n, and w be any non-empty substring of S. We say that
w is a repeating substring of S iff #occS(w) ≥ 2, and that w is a unique substring of S
iff #occS(w) = 1. Since any unique substring w of S occurs exactly once in S, we will
sometimes identify w with its corresponding interval [i, j] such that w = S[i..j]. We also say
that interval [i, j] is unique iff the corresponding S[i..j] is a unique substring of S.

A unique substring w = S[i..j] of S is said to be a minimal unique substring (MUS) iff
any proper substring of w is a repeating substring, namely, #occS(S[i′..j′]) ≥ 2 for any i′

CPM 2017

24:4 Tight Bounds on the Maximum Number of Shortest Unique Substrings

1 2 3 4 5 6 7 8 9 10 11

S = aabbaa babaa
All MUSs in S

All point SUSs in S

AllSUSs.eps

Figure 1 For string S = aabbaababaa, the set MS = {[3..4], [4..7], [5..8], [7..9], [8..11]} =
{bb, baab, aaba, bab, abaa} of all MUSs of S is shown in the upper part of the diagram. The
set PSS of all SUSs for all positions of string S is shown in the lower part of the diagram. For
example, the intervals [3..6] = bbaa, [4..7] = baab, [5..8] = aaba, and [6..9] = abab are SUSs for
query position 6, where the first SUS [3..6] is obtained by extending the right-end of MUS [3..4] up
to position 6, the second SUS [4..7] and the third [5..8] are MUSs of S, and the fourth SUS [6..9] is
obtained by extending the left-end of MUS [8..11] up to position 6.

and j′ with i′ ≥ i, j′ ≤ j, and j′ − i′ < j − i. LetMS be the set of all MUSs in S, namely,
MS = {[i, j] : S[i..j] is a MUS of S}. The next lemma follows from the definition of MUSs.

I Lemma 1 ([6]). No element of MS is nested in another element of MS, namely, any two
MUSs [i, j], [k, `] ∈MS satisfy [i, j] 6⊂ [k, `] and [k, `] 6⊂ [i, j]. Therefore, 0 < |MS | ≤ n.

For any substring S[i..j] and an interval [s, t] in S, S[i..j] is said to be a shortest unique
substring (SUS) for interval [s, t] iff
1. S[i..j] is a unique substring of S,
2. [s, t] ⊂ [i, j], and
3. S[i′..j′] is a repeating substring of S for any i′, j′ with [s, t] ⊂ [i′, j′] and j′ − i′ < j − i.

In particular, a SUS for some interval [p, p] of length 1 is said to be a SUS for position p
and is sometimes referred to as a point SUS in S. Also, a SUS for some interval (including
those of length 1) is sometimes referred to as an interval SUS in S.

Since any SUS S[i..j] occurs in S exactly once, we will sometimes identify it with the
interval [i, j] which corresponds to its unique occurrence in S.

Clearly, if [i, j] is unique, then [i, j] is the only SUS for the interval [i, j]. For any interval
[i, j] with i < j, if [i, j] is unique and there is no other interval [s, t] ⊂ [i, j] for which [i, j] is
a SUS, then we say that [i, j] is a trivial interval SUS. Also, we say that [i, j] is a non-trivial
interval SUS if [i, j] is not a trivial SUS.

For any interval [s, t] ⊂ [1, |S|], let SUSS([s, t]) denote the set of interval SUSs of S that
contain query interval [s, t], and ISS the set of all non-trivial interval SUSs of S. Also, for
any position p ∈ [1, |S|], let SUSS(p) denote the set of point SUSs of S that contain query
position p, and PSS the set of all point SUSs of S, namely, PSS =

⋃n
p=1 SUSS(p). Figure 1

shows examples of MUSs and SUSs.
Hu et al. [2] showed that it is possible to preprocess a given string S of length n in O(n)

time so that later, we can return all SUSs that contain a query interval [s, t] in O(k) time,
where k is the number of such SUSs.

As is shown in Lemma 1, the number of MUSs in any string S of length n is bounded
by n. In this paper, we show that the number of point SUSs in S is less than 1.5n, more
precisely, |PSS | ≤ (3n− 1)/2. We will do so by first showing two different bounds on |PSS |
in terms of the number |MS | of MUSs in the string S, and then merging these two results
that lead to the claimed bound. Moreover, this bound is indeed tight, namely, we show

T. Mieno, S. Inenaga, H. Bannai, and M. Takeda 24:5

a series of strings containing (3n − 1)/2 SUSs. In addition, we show that the number of
non-trivial SUSs in S is less than 2n, namely, |ISS | < 2n. We also prove that there exists a
string of length n which contains (2− ε)n non-trivial SUSs for any small number ε > 0.

3 Bounds on the number of point SUSs

Here we show a tight bound for the maximum number of point SUSs in a string. In this
section, whenever we speak of SUSs, we mean point SUSs (those for the point SUS problem).

3.1 Upperbound A
In this subsection, we show our first upperbound on the number of SUSs in a string S. In so
doing, we define the subsets LSS ,MSS , and RSS of the set PSS of all SUS of string S by

LSS = PSS ∩ {[x, y] 6∈ MS : x < ∃i ≤ y [i, y] ∈MS},
MSS = PSS ∩MS , and
RSS = PSS ∩ {[x, y] 6∈ MS : x ≤ ∃j < y [x, j] ∈MS}.

Intuitively, LSS is the set of SUSs of S which are not MUSs of S and can be obtained by
extending the beginning positions of some MUSs to the left up to query positions,MSS is
the set of SUSs of S which are also MUSs of S, and RSS is the set of SUSs of S which are
not MUSs of S and can be obtained by extending the ending positions of some MUSs to the
right up to query positions.

It follows from their definitions that LSS ∩MSS = φ,MSS ∩RSS = φ, RSS ∩LSS = φ

and that PSS = LSS ∪MSS ∪RSS .
Figure 3 in the next subsection shows examples of LSS , MSS , and RSS for string

S = aabbaababaa. Also compare it with Figure 1 which shows PSS for the same string S.
In the proof of the following theorem, we will evaluate the sizes of these three sets LSS ,

MSS , and RSS separately.

I Theorem 2. For any string S, |PSS | ≤ 2|S| − |MS |.

Proof. Let n = |S| and m = |MS |. For any 1 ≤ i ≤ m, let [bi, ei] denote the MUS of S that
has the ith smallest beginning position inMS .

It is clear that |MSS | ≤ m. Note that the inequality is due to that fact that some MUS
may not be a point SUS for any position in S (such a MUS is called meaningless in the
literature [6]).

Next, we consider the size of RSS . By definition, for any [x, y] ∈ RSS , x is equal to
the beginning position of a MUS of S. Therefore, we can bound |RSS | by summing up
the number of SUSs that begin with bi for every [bi, ei] ∈ MS . For any 1 ≤ i ≤ m − 1,
consider two adjacent MUSs [bi, ei], [bi+1, ei+1] ∈ MS . Recall that bi < bi+1. Then, for
any j ≥ ei+1, the interval [bi, j] contains both MUSs [bi, ei] and [bi+1, ei+1]. This implies
that [bi, j] 6∈ PSS (see Figure 2), since otherwise both [bi, j] and [bi+1, j] are SUSs for
position j, a contradiction. Thus, for any [bi, ei] ∈ MS with 1 ≤ i ≤ m − 1, the number
of SUSs that begin with bi and belong to RSS is at most ei+1 − ei − 1. Also, the number
of SUSs that begin with bm and belong to RSS is at most n − em. Consequently, we get
|RSS | =

∑m−1
i=1 (ei+1 − ei − 1) + n− em = em − e1 − (m− 1) + n− em ≤ n−m.

A symmetric argument gives us the same bound for |LSS |, namely, |LSS | ≤ n − m.
Overall, we obtain |PSS | = |LSS |+ |MSS |+ |RSS | ≤ 2(n−m) +m = 2n−m. J

CPM 2017

24:6 Tight Bounds on the Maximum Number of Shortest Unique Substrings

bi ei bi+1 ei+1

・ ・ ・

・ ・ ・
Intervals not in RSS

Candidates for
the elements of RSS

S
n1

Figure 2 Illustration for Theorem 2. Consider two adjacent MUSs [bi, ei] and [bi+1, ei+1] depicted
as the two intervals on the top. For any ei < e < ei+1, [bi, e] can be an element of RSS . On the
other hand, for any e′ ≥ ei+1, [bi, e′] can never be an element of PSS since [bi, e′] contains two
distinct MUSs [bi, ei] and [bi, ei+1], and hence [bi, e′] can never be an element of RSS as well.

3.2 Upperbound B
In this subsection, we provide another upperbound on the size of PSS .

I Theorem 3. For any string S, |PSS | ≤ |S|+ |MS | − 1.

In order to show Theorem 3, we will use a function f : PSS → {1, 2, . . . , n} and its
inverse image f−1 : {1, 2, . . . , n} → 2PSS . The next lemma is useful to define f and f−1.

I Lemma 4. For any string S and interval [x, y] such that 1 ≤ x ≤ y ≤ |S|, if [x, y] ∈ RSS
then [x, y] ∈ SUSS(y), and if [x, y] ∈ LSS then [x, y] ∈ SUSS(x).

Proof. We first prove the former case. Assume on the contrary that some [x, y] ∈ RSS
satisfies [x, y] 6∈ SUSS(y). This implies that there exists a position p in S such that x ≤ p < y

and [x, y] ∈ SUSS(p). In addition, since [x, y] ∈ RSS , there exists a position q such that
x ≤ q < y and [x, q] ∈ MS . Let z = max{p, q}. Then, S[x..z] is a unique substring of S
which is shorter than S[x..y] and contains position p. However, this contradicts that S[x..y]
is a SUS for position p. Thus, if [x, y] ∈ RSS then [x, y] ∈ SUSS(y). The latter case is
symmetric and thus can be shown similarly. J

We are now ready to define f :

f([x, y]) =
{
x if [x, y] ∈ LSS ∪MSS ,
y if [x, y] ∈ RSS .

Intuitively, the function f charges a given interval [x, y] to its beginning position x if [x, y]
is an element ofMS ∩ PSS or if [x, y] is an element of SUSS(p) for some query position p
which is obtained by extending the left-end of a MUS to the left up to p. On the other hand,
it charges [x, y] to its ending position y if the interval is an element of SUSS(p) for some
query position p which is obtained by extending the right-end of a MUS to the right up to p.
Figure 3 shows examples for how the function f charges given interval [x, y] ∈ PSS .

We also define the inverse image f−1 of f as follows:

f−1(u) = {[x, y] ∈ PSS : f([x, y]) = u}.

For positions u for which there is no element [x, y] in PSS satisfying f([x, y]) = u, let
f−1(u) = ∅. See also Figure 3 for examples of f−1.

T. Mieno, S. Inenaga, H. Bannai, and M. Takeda 24:7

1 2 3 4 5 6 7 8 9 10 11

S = aabbaababaa
All MUSs in S

Intervals in RSS

3TypeSUSs.eps

Intervals in MSS

Intervals in LSS

Figure 3 Illustration for functions f and f−1 of string S = aabbaababaa. The upper part
of this diagram shows all MUSs in S, and the lower part shows all SUSs for all positions in
S. Each star shows the position to which the function f maps the corresponding interval. Here,
RSS = {[3, 5], [3, 6], [7, 10]},MSS = {[3, 4], [4, 7], [5, 8], [7, 9], [8, 11]}, and LSS = {[1, 4], [2, 4], [6, 10]}.
Hence, we have f([3, 5]) = 5, f([3, 6]) = 6, f([7, 10]) = 10, f([3, 4]) = 3, f([4, 7]) = 4, f([5, 8]) = 5,
f([7, 9]) = 7, f([8, 11]) = 8, f([1, 4]) = 1, f([2, 4]) = 2, and f([6, 10]) = 6. For the inverse image,
f−1, we have f−1(1) = {[1, 4]}, f−1(2) = {[2, 4]}, f−1(3) = {[3, 4]}, f−1(4) = {[4, 7]}, f−1(5) =
{[3, 5], [5, 8]}, f−1(6) = {[3, 6], [6, 10]}, f−1(7) = {[7, 9]}, f−1(8) = {[8, 11]}, f−1(9) = f−1(11) = ∅,
and f−1(10) = {[7, 10]}.

By the definition of f−1, it is clear that |PSS | =
∑|S|
u=1 |f−1(u)|. Hence, in what follows

we analyze |f−1(u)| for all positions u in string S.

I Lemma 5. For any string and position 1 ≤ u ≤ |S|, |f−1(u)| ≤ 2.

Proof. Assume on the contrary that |f−1(u)| ≥ 3 for some position u in S. Let [x1, y1],
[x2, y2] be any distinct elements of f−1(u). We firstly consider the following cases.
1. Case where [x1, y1], [x2, y2] ∈ LSS : It follows from the definition of f−1 that f([x1, y1]) =

f([x2, y2]) = u, and it follows from the definition of f that x1 = x2 = u. Since [x1, y1]
and [x2, y2] are distinct, y1 6= y2. Assume w.l.o.g. that y1 < y2. Then, [x2, y2] = [u, y2] is
a SUS for position u but it is longer than another SUS [x1, y1] = [u, y1] for position u, a
contradiction.

2. Case where [x1, y1], [x2, y2] ∈MSS : It follows from the definition of f−1 that f([x1, y1]) =
f([x2, y2]) = u, and it follows from the definition of f that x1 = x2 = u. Since [x1, y1]
and [x2, y2] are distinct, y1 6= y2. Assume w.l.o.g. that y1 < y2. Then, [x2, y2] = [u, y2] is
a MUS, but it contains another MUS [x1, y1] = [u, y1], a contradiction.

3. Case where [x1, y1], [x2, y2] ∈ RSS : This is symmetric to Case (1) and thus we can obtain
a contradiction in a similar way.

Hence, none of the above three cases is possible, and thus the remaining possibility is the
case where |f−1(u)| = 3 and each element of f−1(u) belongs to a different subset of PSS ,
namely, f−1(u) = {[x1, y1], [x2, y2], [x3, y3]} for some [x1, y1] ∈ LSS , [x2, y2] ∈ MSS , and
[x3, y3] ∈ RSS . It follows from the definition of f−1 that f([x1, y1]) = f([x2, y2]) = u, and
it follows from the definition of f that x1 = x2 = u. Since [x1, y1] and [x2, y2] are distinct,
y1 6= y2. There are two sub-cases.
(i) If y1 < y2, then a MUS [x2, y2] = [u, y2] contains a shorter SUS [x1, y1] = [u, y1] for

position u, a contradiction.
(ii) If y1 > y2, then a SUS [x1, y1] = [u, y1] for position u contains a shorter MUS [x2, y2] =

[u, y2], a contradiction.
Hence, neither of the sub-cases is possible.

Overall, we conclude that |f−1(u)| ≤ 2. J

CPM 2017

24:8 Tight Bounds on the Maximum Number of Shortest Unique Substrings

By Lemma 5, for any position u in string S we have |f−1(u)| ≤ 2. Now let us consider
any position u for which |f−1(u)| = 2. We have the next lemma.

I Lemma 6. For any position u in string S for which |f−1(u)| = 2, let f−1(u) =
{[x1, y1], [x2, y2]} and assume w.l.o.g. that x1 ≤ x2. Then, x1 6= x2, [x1, y1] ∈ RSS
and [x2, y2] ∈ LSS ∪MSS.

Proof. Suppose x1 = x2 and assume w.l.o.g. that y1 < y2. Then, from the definition of
f , we have that (x1 = u or y1 = u) and (x2 = u or y2 = u) and thus x1 = x2 = u. Since
[x2, y2] ∈ f−1(u) is not a MUS since it includes [x1, y1], it must be that [x2, y2] ∈ SUSS(u).
This is a contradiction, because there exists a shorter unique substring [x1, y1] that contains
u. Thus we have x1 6= x2. Assume on the contrary that [x1, y1] ∈ LSS ∪MSS . Then, it
follows from the definition of f that f([x1, y1]) = x1. In addition, since [x1, y1] ∈ f−1(u), we
have u = x1. This implies that u = x1 < x2, but it contradicts that [x2, y2] ∈ f−1(u). Thus,
[x1, y1] 6∈ LSS ∪MSS , namely, [x1, y1] ∈ RSS . Now, it follows from the arguments in the
proof of Lemma 5 that [x2, y2] 6∈ RSS , and hence [x2, y2] ∈MSS ∪ LSS . J

Let m = |MS |, andMS = {[b1, e1], . . . , [bm, em]}. The next corollary immediately follows
from Lemmas 4 and 6.

I Corollary 7. For any position u in string S with |f−1(u)| = 2, there exist two integers
1 ≤ i < j ≤ m such that SUSS(u) = {[bi, u], [u, ej]}.

For any position u in string S before b1 or after bm, we have the next lemma.

I Lemma 8. For any position u in string S s.t. 1 ≤ u ≤ b1 or bm < u ≤ n, |f−1(u)| ≤ 1.

Proof. Assume on the contrary that |f−1(u)| = 2 for some 1 ≤ u ≤ b1. By Lemma 6, there
exists [x, y] ∈ f−1(u) such that [x, y] ∈ RSS . By the definitions of f and f−1, we have y = u.
Also, by the definition of RSS , there exists a position e < y in S such that [x, e] ∈MS . Now
we have x ≤ e < y = u ≤ b1, however, this contradicts that b1 is the beginning position of
the first (leftmost) MUS inMS . Thus |f−1(u)| ≤ 1 for any 1 ≤ u ≤ b1.

Assume on the contrary that |f−1(u)| = 2 for some bm < u ≤ n. By Lemma 6, there
exists [x′, y′] ∈ f−1(u) such that [x′, y′] ∈MSS ∪ LSS . By the definition of f and f−1, we
have x′ = u. There are two cases to consider:

If [x′, y′] ∈ MSS , then [x′, y′] ∈ MS . Thus x′ = u > bm is the beginning position of
a MUS inMS , however, this contradicts that bm is the beginning position of the last
(rightmost) MUS inMS .
If [x′, y′] ∈ LSS , then by the definition of LSS there exists a position b > x′ such that
[b, y′] ∈ MS . Now we have b > x′ = u > bm, however, this contradicts that bm is the
beginning position of the last (rightmost) MUS inMS .

Consequently, |f−1(u)| ≤ 1 for any bm < u ≤ n. J

I Lemma 9. For any non-empty string S, let U = {u : |f−1(u)| = 2}. Then, |U | ≤ |MS |−1.

Proof. Let n = |S| and m = |MS |. Recall that for any 1 ≤ i ≤ m, [bi, ei] denotes the ith
element ofMS .

Let B = {bi : 1 ≤ i ≤ m − 1}. We define function g : U → B as g(u) = max{b <
u : b ∈ B}. By the definition of U and Lemma 8, any position u ∈ U satisfies b1 < u ≤ bm.
Therefore, g(u) is well-defined for any position u ∈ U , and g(u) returns the predecessor of u
in the set B. It is clear that |B| = m− 1. Thus, if g is an injection, then we immediately
obtain the claimed bound |U | ≤ |B| = m− 1.

T. Mieno, S. Inenaga, H. Bannai, and M. Takeda 24:9

bk u1 bi+1 ei+1
S

u2 ≤<<

MUS MUS

l2 l2

l1

injective.eps

Figure 4 Illustration for Lemma 9. The two intervals show two MUSs [bk, ek], [bi+1, ei+1] ∈MS ,
where bk ≤ bi. Both [bk, u2] and [u2, bi+1] are SUSs for position u2, and [u1, ei+1] is a SUS for
position u1. Since u1 < u2, it holds that l1 > l2, where l1 and l2 are the lengths of SUSs for positions
u1 and u2, respectively. Then, the interval [bk, u2] of length l2 contains position u1 and S[bk..u2] is
a unique substring of S. However, this contradicts that l1 is the length of each SUS for position u1.

In what follows, we show that g is indeed an injection. Assume on the contrary that g is not
an injection. Let u1 and u2 be elements in U such that u1 < u2 and g(u1) = g(u2). Let bi ∈ B
such that bi = g(u1) = g(u2). Then, by the definition of g, we have bi < u1 < u2 ≤ bi+1. See
Figure 4 for illustration.

Let l1 and l2 be the lengths of the SUSs for positions u1 and u2, respectively. Since
|f−1(u2)| = 2, it follows from Corollary 7 that there exists bk ∈ B such that bk ≤ bi and
SUSS(u2) = {[bk, u2], [u2, ei+1]}. This implies l2 = u2− bk + 1 = ei+1− u2 + 1. On the other
hand, since |f−1(u1)| = 2, it follows from Corollary 7 that [u1, ei+1] ∈ SUSS(u1), which
implies l1 = ei+1 − u1 + 1. Since u1 < u2, we have l1 > l2.

Now focus on a SUS [bk, u2] for position u2. Since bk ≤ bi < u1 < u2, [bk, u2] contains
u1. However, [bk, u2] is a SUS for position u2 and is of length l2 < l1. This contradicts that
[u1, ei+1] of length l1 is each SUS for position u1. Hence g is an injection. J

We are ready to prove the main result of this subsection, Theorem 3.

Proof. Let n = |S|, m = |MS |, U = {u : |f−1(u)| = 2}, and V = {1, · · · , n} \ U . It is
clear that |U | + |V | = n. By Lemma 5, V = {u : |f−1(u)| ≤ 1}. Also, by Lemma 9,
|U | ≤ m− 1. Recall that |PSS | =

∑n
u=1 |f−1(u)|. Putting all together, we obtain |PSS | =∑n

u=1 |f−1(u)| ≤ |V |+ 2|U | = n+ |U | ≤ n+m− 1. J

3.3 Matching upper and lower bounds
We are ready to show the main result of this paper.

I Theorem 10. For any non-empty string S, |PSS | ≤ (3|S| − 1)/2. This bound is tight,
namely, for any odd n ≥ 5 there exists a string T of length n s.t. |PST | = (3n− 1)/2.

Proof. By Theorem 2, we have |MS | ≤ 2|S| − |PSS |. Also, by Theorem 3, we have
|PSS | − |S|+ 1 ≤ |MS |. Thus |PSS | − |S|+ 1 ≤ 2|S| − |PSS |, which immediately leads to
the claimed bound |PSS | ≤ (3|S| − 1)/2.

We show that the above upperbound is indeed tight. For any odd number n = 2k− 1 ≥ 5,
consider string T = a1xa2x · · · ak−1xak, where a1, . . . , ak, x ∈ Σ, ai 6= aj for all 1 ≤ i 6= j ≤ k,
and x 6= ai for all 1 ≤ i ≤ k. For any 1 ≤ i ≤ k, T [2i − 1] = ai is a unique substring
of T , and thus [2i − 1, 2i − 1] ∈ SUST (2i − 1). Also, for any 1 ≤ i ≤ k − 1, T [2i] = x is
a repeating substring of T while T [2i − 1..2i] = aix and T [2i..2i + 1] = xai+1 are unique
substrings of T . This implies that [2i − 1, 2i], [2i, 2i + 1] ∈ SUST (2i). Hence, we have
|PST | = k + 2(k − 1) = 3k − 2 = 3(n+ 1)/2− 2 = (3n− 1)/2. J

CPM 2017

24:10 Tight Bounds on the Maximum Number of Shortest Unique Substrings

3.4 Lower bound for fixed-size alphabet
The lowerbound of Theorem 10 is due to a series of strings over an alphabet of unbounded
size. In this subsection, we fix the alphabet size σ and present a series of strings that contain
many point SUSs.

I Theorem 11. Let n ≥ 2 and 2 ≤ σ ≤ (n+ 3)/2. There exists a string T of length n over
an alphabet of size σ such that |PST | = n+ σ − 2.

Proof. Let Σ = {a1, · · · , aσ−1, x} and T = a1xa2x · · · aσ−1x
n−2σ+3. For any 1 ≤ i ≤ σ − 1,

T [2i − 1] = ai is a unique substring of T , and thus [2i − 1, 2i − 1] ∈ SUST (2i − 1). For
any 1 ≤ j ≤ σ − 2, T [2j] = x is a repeating substring of T while T [2j − 1..2j] = ajx and
T [2j..2j + 1] = xaj+1 are unique substrings of T . This implies that [2j − 1, 2j], [2j, 2j + 1] ∈
SUST (2j). For any 2σ − 2 ≤ k ≤ n − 1, T [2σ − 2..k] = xk−2σ+3 is a repeating substring
of T while T [2σ − 1..k] = aσ−1x

k−2σ+3 is a unique substrings of T . This implies that
[2σ − 1, k] ∈ SUST (k). Also, T [2σ − 1..n] = xn−2σ+2 is a repeating substring of T and
T [2σ−2..n] = xn−2σ+3 is a unique substring of T , and thus [2σ−2..n] ∈ SUST (n). Summing
up all the point SUSs above, we obtain |PST | = σ−1+2(σ−2)+n−2σ+2+1 = n+σ−2. J

4 Bounds on the number of interval SUSs

In this section, we show almost tight bounds for the maximum number of non-trivial interval
SUSs ISS of a string S. The following upper bound for |ISS | can be obtained in an analogous
way to Theorem 2.

I Lemma 12. For any non-empty string S, |ISS | ≤ 2|S| − |MS |.

We also have the following lower bound for |ISS |.

I Lemma 13. For any ε > 0, there exists a string T of length n such that |IST | > (2− ε)n.

Proof. Let x = d3/(2ε)e, T = c1a
xc2a

xc3 and n = |T | = 2x+ 3. Clearly, c1, c2 and c3 are
MUSs of T and are in IST . For all 2 ≤ i ≤ x+1, T [1..i] and T [i..x+2] are unique substrings of
T , and T [2..i] and T [i..x+ 1] are repeating substrings of T . This implies T [1..i] ∈ SUSS([2, i])
and T [i..x + 2] ∈ SUSS([i, x + 1]). Similarly, for all x + 3 ≤ j ≤ 2x + 2, T [x + 2..j] ∈
SUSS([x+ 3, j]) and T [j..2x+ 3] ∈ SUSS([j, 2x+ 2]). Then, we have |IST | = 4x+ 3. Hence,
|IST |− (2−ε)n = 4x+3− (2−ε)(2x+3) = 2εx+3ε−3 = 2εd3/(2ε)e+3ε−3 ≥ 3ε > 0. J

As is shown in the following theorem, the number of non-trivial interval SUSs contained
in the string T of Lemma 13 “almost coincides” with the upper bound of Lemma. Namely:

I Theorem 14. For any ε > 0, there is a string T such that (2|T |− |MT |)− (2− ε)|T | ≤ 5ε.

Proof. For any ε > 0, consider the string T of Lemma 13. We remark that T contains 3 MUSs,
namely, |MT | = 3. Hence, we obtain (2|T | − |MT |)− (2− ε)|T | = ε|T | − |MT | = ε|T | − 3 =
ε(2d3/(2ε)e+ 3)− 3 = 2εd3/(2ε)e+ 3ε− 3 ≤ 2ε(3/(2ε) + 1) + 3ε− 3 = 5ε→ 0 (ε→ 0). J

5 Conclusions and open questions

In this paper, we presented matching upper and lower bounds for the maximum number of
SUSs for the point SUS problem. Namely, we proved that any string of length n can contain
at most (3n− 1)/2 SUSs for the point SUS problem, and showed that this bound is tight
by giving a string of length n containing (3n− 1)/2 SUSs. For a fixed alphabet size σ, we

T. Mieno, S. Inenaga, H. Bannai, and M. Takeda 24:11

also presented a string of length n containing n+ σ − 2 SUSs. Moreover, we showed that
any string of length n which contains m MUSs can have at most 2n−m non-trivial interval
SUSs, and that for any ε > 0 there is a string of length n which contains (2− ε)n non-trivial
interval SUSs.

An interesting future work is to show a non-trivial upper bound of the maximum number
of point SUSs for a fixed alphabet size σ. We conjecture that the tight upper bound matches
our lower bound n + σ − 2. Another future work is to close the small gap between the
upper and lower bounds on the maximum number of non-trivial interval SUSs shown in
Theorem 14.

References
1 Wing-Kai Hon, Sharma V. Thankachan, and Bojian Xu. An in-place framework for ex-

act and approximate shortest unique substring queries. In Khaled M. Elbassioni and
Kazuhisa Makino, editors, Proceedings of the 26th International Symposium on Algorithms
and Computation (ISAAC 2015), volume 9472 of LNCS, pages 755–767. Springer, 2015.
doi:10.1007/978-3-662-48971-0_63.

2 Xiaocheng Hu, Jian Pei, and Yufei Tao. Shortest unique queries on strings. In Edleno Silva
de Moura and Maxime Crochemore, editors, Proceedings of the 21st International Sym-
posium on String Processing and Information Retrieval (SPIRE 2014), volume 8799 of
LNCS, pages 161–172. Springer, 2014. doi:10.1007/978-3-319-11918-2_16.

3 Atalay Mert Ileri, M. Oguzhan Külekci, and Bojian Xu. Shortest unique substring query
revisited. In Alexander S. Kulikov, Sergei O. Kuznetsov, and Pavel A. Pevzner, editors, Pro-
ceedings of the 25th Annual Symposium on Combinatorial Pattern Matching (CPM 2014),
volume 8486 of LNCS, pages 172–181. Springer, 2014. doi:10.1007/978-3-319-07566-2_
18.

4 Takuya Mieno, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. Shortest unique
substring queries on run-length encoded strings. In Piotr Faliszewski, Anca Muscholl, and
Rolf Niedermeier, editors, Proceedings of the 41st International Symposium on Mathem-
atical Foundations of Computer Science (MFCS 2016), volume 58 of LIPIcs, pages 69:1–
69:11. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.
MFCS.2016.69.

5 Jian Pei, Wush Chi-Hsuan Wu, and Mi-Yen Yeh. On shortest unique substring queries. In
Christian S. Jensen, Christopher M. Jermaine, and Xiaofang Zhou, editors, Proceedings of
the 29th IEEE International Conference on Data Engineering (ICDE 2013), pages 937–948.
IEEE Computer Society, 2013. doi:10.1109/ICDE.2013.6544887.

6 Kazuya Tsuruta, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. Shortest unique
substrings queries in optimal time. In Viliam Geffert, Bart Preneel, Branislav Rovan,
Julius Stuller, and A Min Tjoa, editors, Proceedings of the 40th International Conference
on Current Trends in Theory and Practice of Computer Science (SOFSEM 2014), volume
8327 of LNCS, pages 503–513. Springer, 2014. doi:10.1007/978-3-319-04298-5_44.

7 Bojian Xu. On stabbing queries for generalized longest repeat. In Jun Huan, Satoru Miyano,
Amarda Shehu, Xiaohua Tony Hu, Bin Ma, Sanguthevar Rajasekaran, Vijay K. Gombar,
Matthieu-P. Schapranow, Illhoi Yoo, Jiayu Zhou, Brian Chen, Vinay Pai, and Brian G.
Pierce, editors, Proceedings of the 2015 IEEE International Conference on Bioinformatics
and Biomedicine (BIBM 2015), pages 523–530. IEEE Computer Society, 2015. doi:10.
1109/BIBM.2015.7359738.

CPM 2017

http://dx.doi.org/10.1007/978-3-662-48971-0_63
http://dx.doi.org/10.1007/978-3-319-11918-2_16
http://dx.doi.org/10.1007/978-3-319-07566-2_18
http://dx.doi.org/10.1007/978-3-319-07566-2_18
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.69
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.69
http://dx.doi.org/10.1109/ICDE.2013.6544887
http://dx.doi.org/10.1007/978-3-319-04298-5_44
http://dx.doi.org/10.1109/BIBM.2015.7359738
http://dx.doi.org/10.1109/BIBM.2015.7359738

Can We Recover the Cover?
Amihood Amir1, Avivit Levy2, Moshe Lewenstein3, Ronit Lubin4,
and Benny Porat5

1 Bar-Ilan University, Ramat Gan, Israel; and
Johns Hopkins University, Baltimore, MD, USA
amir@cs.biu.ac.il

2 Shenkar College, Ramat Gan, Israel
avivitlevy@shenkar.ac.il

3 Bar-Ilan University, Ramat Gan, Israel
moshe.lewenstein@gmail.com

4 Bar-Ilan University, Ramat Gan, Israel
ronit.moldovan@gmail.com

5 Bar-Ilan University, Ramat Gan, Israel
bennyporat@gmail.com

Abstract
Data analysis typically involves error recovery and detection of regularities as two different key
tasks. In this paper we show that there are data types for which these two tasks can be powerfully
combined. A common notion of regularity in strings is that of a cover. Data describing measures
of a natural coverable phenomenon may be corrupted by errors caused by the measurement pro-
cess, or by the inexact features of the phenomenon itself. Due to this reason, different variants of
approximate covers have been introduced, some of which are NP-hard to compute. In this paper
we assume that the Hamming distance metric measures the amount of corruption experienced,
and study the problem of recovering the correct cover from data corrupted by mismatch errors,
formally defined as the cover recovery problem (CRP). We show that for the Hamming distance
metric, coverability is a powerful property allowing detecting the original cover and correcting
the data, under suitable conditions.

We also study a relaxation of another problem, which is called the approximate cover problem
(ACP). Since the ACP is proved to be NP-hard [5], we study a relaxation, which we call the
candidate-relaxation of the ACP, and show it has a polynomial time complexity. As a result,
we get that the ACP also has a polynomial time complexity in many practical situations. An
important application of our ACP relaxation study is also a polynomial time algorithm for the
cover recovery problem (CRP).

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Com-
binatorics, G.4 Mathematical Software, I.5.2 Design Methodology

Keywords and phrases periodicity, quasi-periodicity, cover, approximate cover, data recovery

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.25

1 Introduction

Data analysis typically involves error recovery and detection of regularities as two different
key tasks. In this paper we show that there are data types for which these two tasks can be
powerfully combined. A classical tool for handling data recovery is through the use of error
correcting codes. Error correcting codes are an invaluable method of adding redundancy
to data so that the initial data can be recovered even after the introduction of a bounded
number of errors. Errors in raw natural data with no prior knowledge of its structure are

© Amihood Amir, Avivit Levy, Moshe Lewenstein, Ronit Lubin, and Benny Porat;
licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 25; pp. 25:1–25:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.25
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

25:2 Can We Recover the Cover?

usually considered beyond the feasible scope of recovery. Nonetheless, it was recently [4]
shown, that data regularity, even if its structure is unknown a-priori, can serve as an aid to
error recovery.

Regularities in strings arise in various areas of science, including coding and automata
theory, formal language theory, combinatorics, molecular biology and many others. A typical
form of regularity is periodicity, meaning that a “long” string T can be represented as a
concatenation of copies of a “short” string P , possibly ending in a prefix of P . Periodicity
has been extensively studied in Computer Science over the years (see [28]).

1.1 Regularities and Data Recovery
Recently, it was shown [4] that periodicity can serve as an aid to error recovery. It was proven
that if no more than n

(1+ε)p mismatch errors are introduced to a periodic string of length n
having period of length p then, even if p is not known a-priori, it is possible to recover O(logn)
possible candidates, one of which is guaranteed to be the original period. This surprising
result was further reinforced by discovering that a similar result holds not just for mismatch
error corruptions bounded by the Hamming distance, but for any errors bounded by a pseudo
local metric (e.g. the swap or interchange metrics). An interesting additional result was that
even under some non-pseudo local metrics, such as the edit distance, periodicity can still
allow recovery of O(logn) candidate periods [4, 2]. However, these candidate periods are
distinguished in that none are cyclic rotations of each other. In other words, if we take one
representative of all candidates that are cyclic rotations of each other, we end up with the
small number of candidates. It was unknown whether there are other regularities in natural
phenomena that allow recovery of the original string. Identifying such a type of regularity is
the first topic of this paper.

In particular, for many phenomena, it is desirable to broaden the definition of periodicity
and study wider classes of repetitive patterns in strings. One common such notion is that of
a cover, defined as follows.

I Definition 1 (Cover). A length m substring C of a string T of length n, is said to be a
cover of T , if n > m and every letter of T lies within some occurrence of C.

Note that the string C is both a prefix and a suffix of the string T . For example, consider the
string T = abaababaaba. Clearly, T is “almost” periodic with period aba, however, as it is
not completely periodic, the algorithms that exploit repetitions cannot be applied to it. On
the other hand, the string C = aba is a cover of T , which allows applying to T cover-based
algorithms. We study error correction feasibility for coverable phenomena.

1.2 Related Work
We review related regularity types and other approaches to handle errors in regularities.
Quasi-periodicity was introduced by Ehrenfeucht in 1990 (according to [7]). The earliest
paper in which it was studied is by Apostolico, Farach and Iliopoulos [9], which defined the
quasi-period of a string to be the length of its shortest cover and presented an algorithm
for computing the quasi-period of a given string in O(n) time and space. The new notion
attracted immediately several groups of researchers (e.g. [10], [29, 30], [27], [11]). An overview
on the first decade of the research on covers can be found in the surveys [7, 20, 32].

While covers are a significant generalization of the notion of periods as formalizing
regularities in strings, they are still restrictive, in the sense that it remains unlikely that an
arbitrary string has a cover shorter than the word itself. Due to this reason, different variants

A. Amir, A. Levy, M. Lewenstein, R. Lubin, and B. Porat 25:3

of quasi-periodicity have been introduced. These include seeds [19], maximal quasi-periodic
substring [8], the notion of k-covers [21], λ-cover [33], enhanced covers [16], partial cover [23].
Since the notion of a seed is necessary to our study and presentation of results, we give its
formal definition here.
I Definition 2 (Seed). A length m substring C of a string T of length n, is said to be a seed
of T , if n > m and there exists a superstring T ′ of T such that C is a cover of T ′.
Note that the first and last occurrence of the seed C in T may be incomplete. Other recently
explored directions include the inverse problem for cover arrays [14], extensions to strings
in which not all letters are uniquely defined, such as indeterminate strings [6] or weighted
sequences [34]. Some of the related problems are NP-hard (see e.g., [6, 12, 23]).

In applications such as molecular biology and computer-assisted music analysis, finding
exact repetitions and covers is not always sufficient. A more appropriate notion is that of
approximate repetitions, where errors are allowed (see, e.g., [13, 15]). This notion was first
studied in 1993 by Landau and Schmidt [25, 26] who concentrated on approximate tandem
repeats. Note that, the natural definition of an approximate repetition is not clear. One
possible definition is that the distance between any two adjacent repeats is small. Another
possibility is that all repeats lie at a small distance from a single “original”. Such a definition of
approximate seeds is studied in [12, 18, 17]. Indeed, all these definitions along with other ones
were proposed and studied (see [3, 24, 31]). Yet another possibility is that all repeats must
be equal, but we allow a fixed total number of mismatches. The possibility presented in [3]
is a global one, assuming that an original unknown string is a sequence of repeats without
errors, but the process of sequence creation or transmission incurs errors to the sequence
of repeats, and, thus, the examined input string is not a sequence of repeats. Therefore, a
(smallest) repeat generating a string with the minimum total number of mismatches with
the input string is sought. Extension of this definition approach to approximate covers is
another topic of this paper.

1.3 Our Results
In this paper we show that coverability is also a tool that allows error correction. We formally
define the Cover Recovery Problem (CRP) and characterize the feasibility of its solution. In
particular, we show:
I Theorem 3. Let S be a string coverable by a cover C of length c, and let ε > 0. Assume
that at most n

(2+ε)c mismatch errors were introduced to S resulting in a string S′. Then there
exist O(logn) possible primitive substrings of S′, one of which is guaranteed to be C or a
seed of C.

In addition, extending the approach of [3] to the notion of covers, [5] define the approximate
cover problem (ACP), in which we are given a text that is a sequence of some cover repetitions
with possible mismatch errors. Since the ACP is proved to be NP-hard [5], we study a
relaxation of this problem. In our relaxation, which we call the candidate relaxation of
the ACP, a candidate cover is also given, and we seek to align it with the given text (this
alignment is called a tiling) such that the number of mismatches is minimized. This scenario
is quite realistic in the case where a cover is sought for a string where the errors are distributed
in a manner that at least one occurrence of the cover appears in the string without errors.
We examine this relaxation and show it has polynomial time complexity. As a result, we get
that the ACP also has polynomial time complexity in many practical situations. This ACP
relaxation study enables also an efficient algorithm for recovering the candidate covers in
CRP.

CPM 2017

25:4 Can We Recover the Cover?

Paper Contributions. The main contributions of this paper are:
Proving that recovery of raw data from errors is possible not only for periodic phenomena
but also for the less rigid coverable phenomena.
Demonstrating that efficient recovery is feasible even when the underlying problem of
computing an approximate cover is NP-hard. This is in line with the previous result of [4]
that show efficient recovery for the interchange metric, which is NP-hard to compute.
Formalizing the candidate relaxation of the ACP and showing it is polynomial time
computable. This study served both to give a solution to the CRP and to suggest an
efficient solution for the ACP in many practical situations.

The paper is organized as follows. In Section 2, we give formal definitions and basic
lemmas. In Section 3, we study the cover recovery problem (CRP) and characterize the
extent to which the cover of the unknown uncorrupted original string can be recovered given
the possibly corrupted by mismatch errors input string. In Section 4, we study the candidate
relaxation of the ACP with its application to the ACP itself and, more importantly, to the
CRP. We conclude with some open problems in Section 5.

2 Preliminaries

In this section we give the needed formal definitions and basic lemmas.

I Definition 4 (Tiling). Let T be a string over alphabet Σ such that the string C over
alphabet Σ is a cover of T . Then, the sorted list of indices representing the start positions of
occurrences of the cover C in the text T is called the tiling of C in T .

In this paper we have a text T which may have been introduced to errors and, therefore,
is not coverable. However, we would like to refer to a retained tiling of an unknown string C
in T although C does not cover T because of mismatch positions. The following definition
makes a distinction between a list of indices that may be assumed to be a tiling of the text
before mismatch errors occurred and a list of indices that cannot be such a tiling.

I Definition 5 (A Valid Tiling). Let T be an n-length string over alphabet Σ and let L be
a sorted list of indices L ⊂ {1, ..., n}. Let m = n+ 1− Llast, where Llast is the last index
in L. Then, L is called a valid tiling of T , if i1 = 1 and for every ik, ik+1 ∈ L, it holds that
ik+1 − ik ≤ m.

I Notation 1. Let C be an m length string over alphabet Σ. Denote by S(C) a string of
length n, n > m, such that C is a cover of S(C).

Note that S(C) is not uniquely defined even for a fixed n > m, since every different valid
tiling of the m-length string C generates a different n-length string S(C). A unique version
can be obtained if a valid tiling L is also given.

I Notation 2. Let T be an n-length string over alphabet Σ and let L be a valid tiling of
T . Let m = n + 1 − Llast, where Llast is the last index in the tiling L. For any m-length
string C ′, let SL(C ′) be the n-length string obtained using C ′ as a cover and L as the tiling
as follows: SL(C ′) begins with a copy of C ′ and for each index i in L a new copy of C ′ is
concatenated starting from index i of SL(C ′) (running over a suffix of the last copy of C ′ if
the difference between i and the previous index in L is less than m).

A. Amir, A. Levy, M. Lewenstein, R. Lubin, and B. Porat 25:5

I Definition 6. Let T be a string of length n over alphabet Σ. Let H be the Hamming
distance. The distance of T from being covered is:

dist = min
C∈Σ∗,|C|<n,S(C)∈Σn

H(S(C), T).

We will also refer to dist as the number of errors in T .

I Definition 7. Let T be an n-long string over alphabet Σ. An m-long string C over Σ,
m ∈ N, m < n, is called an m-length approximate cover of T , if for every string C ′ of length
m over Σ, minS(C′)∈Σn H(S(C ′), T) ≥ minS(C)∈Σn H(S(C), T), where H is the Hamming
distance of the given strings.
We refer to minS(C)∈Σn H(S(C), T) as the number of errors of an m-length approximate
cover of T .

I Definition 8 (Approximate Cover). Let T be a string of length n over alphabet Σ. A string
C over alphabet Σ is called an approximate cover of T if:
1. C is an m-length approximate cover of T for some m ∈ N, m < n, for which

min
S(C)∈Σn

H(S(C), T) = dist.

2. for every m′-length approximate cover of T , C ′, s.t. minS(C′)∈Σn H(S(C ′), T) = dist, it
holds that: m′ ≥ m.

Primitivity. By definition, an approximate cover C should be primitive, i.e., it cannot be
covered by a string other than itself (otherwise, T has a cover with a smaller length). Note
that a periodic string can be covered by a smaller string (not necessarily the period), and
therefore, is not primitive.

I Definition 9. The Approximate Cover Problem (ACP) is the following:
INPUT: String T of length n over alphabet Σ.
OUTPUT: An approximate cover of T , C, and the number of errors in T .

The goal of the following definition and lemmas is Lemma 15, which is a crucial tool for
the efficiency of the candidate relaxation algorithm.

I Definition 10 (String Mask). Given a string C of length m, the mask M of C is a boolean
array of length m, such that M [i] = 1 if and only if the suffix C[i..m] is equal to the prefix
C[1..m− i+ 1].

I Lemma 11. Let C be a string of length m and let M be its mask. Let i, j be indices such
that 1 ≤ i < j ≤ m and M [i] = M [j] = 1, then the substring C[i..m] has a period of length
j − i.

I Lemma 12. Let C be a primitive string of length m and let M be its mask. Let i be the
smallest index such that 1 < i ≤ m and M [i] = 1, then i > bm2 c+ 1.

I Lemma 13. Let C be a string of length m and let M be its mask. Let i, j be indices such
that M [i] = M [j] = 1, j − i = g > 0. Let k be the minimal index such that j < k ≤ m and
M [k] = 1. Then, k = j + g or k ≥ j + b g2c.

I Lemma 14. Let C be a string of length m and let M be its mask. Let i, j, k, ` be indices
such that i < j, k < `, M [i] = M [j] = M [k] = M [`] = 1 and j − i = ` − k then
C[i..j − 1] = C[k..`− 1].

CPM 2017

25:6 Can We Recover the Cover?

I Lemma 15. Let C be a primitive string of length m and let M be its mask. Let IM be
the sorted list of indices i such that 1 ≤ i ≤ m and M [i] = 1. Let SC = {C[ik..ik+1 −
1] | ik, ik+1 are adjacent indices in IM} ∪ {C[ilast..m] | ilast = maxik∈IM

ik} be a set of
substrings of C. Then, |SC | = O(logm).

3 Characterization of the Cover Recovery Problem Approximation

In this section we study the Cover Recovery Problem (CRP) and characterize the extent to
which the cover of the original unknown uncorrupted original string can be recovered given
the possibly corrupted by mismatch errors input string. The term approximation here refer
to the ability to give a relatively small size set of candidates that includes the exact cover of
the original string or a seed of it. We begin with a formal definition of the CRP problem.

I Definition 16 (The Cover Recovery Problem).
INPUT: An ε > 0 and a string S′ of length n over alphabet Σ, which is a string S covered
by the primitive cover C possibly corrupted by at most n

(2+ε)c mismatch errors, where c is
the length of C.
OUTPUT: A small size set O of candidate strings such that C ∈ O.

First, we show the bounds on the number of errors that still guarantees a small-size set
O of candidates. We then prove a bound on the size of this set O. In Section 4 we then
conclude how this set can be identified, and thus the original uncorrupted string can be
approximately recovered. Some more formal definitions and lemmas are needed. We start
with the definitions of alignment and neighbourhood that we use to prove the bound on the
number of errors that still enable a recovery.
I Remark. Throughout this section we use c to denote a cover length and C the cover string,
i.e., c = |C|.

I Definition 17. Let S = S[1], . . . , S[s] and T = T [1], . . . , T [t] be strings, and let 1 ≤ i ≤ |T |.
The alignment of S with T in location i is the comparison of S[j] and T [i + j − 1],∀j =
1, . . . ,min(s, t− i+ 1). In other words, we place S above T such that the first location of S
is aligned with the i-th location of T .

I Definition 18. Let C = C[1], . . . , C[c] be a primitive cover, and let 1 ≤ i ≤ c. We call i a
neighbouring index of C if ∀j, j = 1, . . . , c− i, we have C[i+ j] = C[j]. For any neighbouring
index i, denote by C ◦i C the string composed of the prefix of length i of C concatenated by
C. We call C ◦i C the neighbourhood of C at index i. In particular, if i = c then C ◦i C is
C2, the concatenation of C with itself.

If we are interested in a neighbourhood of C where the location is not important, we will
denote it by C ◦ C.

Lemma 19 is the basic building block in our error bound proof.

I Lemma 19. Let C be a primitive cover and C ◦i C be a neighbourhood of C at location i.
Then for every j 6= i, 1 < j ≤ c, the alignment of C with C ◦i C in location j has at least
one mismatch.

Proof. Because C is a primitive cover, then i > c/2, by Lemma 12. If 1 < j ≤ c/2 then an
exact alignment leads to non-primitivity of C, contradiction. However, if there is an exact
alignment for c/2 < j 6= i, then |j − i| < c/2 and thus we again have a contradiction to the
primitivity of C. Therefore, there must be at least one mismatch in an alignment at any
index j 6= i. J

A. Amir, A. Levy, M. Lewenstein, R. Lubin, and B. Porat 25:7

We make use of following lemma for proving the upper bound on the number of candidates
in our output set.

I Lemma 20. Let S and C be two primitive strings such that C is a seed of S. Then there
is at most one string S′ with the following properties:
1. S′ is covered by C.
2. S is a substring of S′
3. S′ is the shortest string with properties 1 and 2 above.

Proof. Assume there are two such strings, S′ and S′′. Since they are both shortest possible
superstrings of S (i.e., strings containing S as a substring), then S matches each of them in
their first occurrence of C. If S′ 6= S′′ then there must be at least one index i in S where C
starts in S′ but not in S′′. However, then by Lemma 19 there must be at least one mismatch
in the alignment of at least one of them with S, contradiction to the fact that S is a substring
of both of them. J

I Lemma 21. Let n ∈ N and let S1, S2 be two n-long coverable strings with C1 and C2 the
covers of S1 and S2 respectively, where c1 ≥ c2 and C2 is not a seed of C1. Then

H(S1, S2) ≥ n

c1
.

We are now ready to prove our approximation bound for the CRP. Lemma 22 is needed
for proving our characterization theorem.

I Lemma 22. Let ε > 0 be a constant, S an n-long string, and C1, C2 are c1 and c2-length
approximate seeds of S with at most n

(2+ε)·c1
, n

(2+ε)·c2
errors respectively (w.l.o.g. assume

that c1 ≥ c2), where C2 is not a seed of C1. Then,

c1 ≥ (1 + ε) · c2

Proof. Let S1 be the n-long string such that C1 is its seed and S2 be the n-long string
such that C2 is its seed. We are given that H(S1, S) ≤ n

(2+ε)·c1
and H(S2, S) ≤ n

(2+ε)·c2
.

Therefore,
n

(2 + ε) · c1
+ n

(2 + ε) · c2
≥ H(S1, S) +H(S2, S) .

By triangle inequality we have,

H(S1, S) +H(S2, S) ≥ H(S1, S2) .

By Lemma 21,

H(S1, S2) ≥ n

c1
.

Therefore,
n

(2 + ε) · c1
+ n

(2 + ε) · c2
≥ n

c1

from which we get,

c2 + c1 ≥ (2 + ε)c2

or,

c1 ≥ (1 + ε)c2. J

CPM 2017

25:8 Can We Recover the Cover?

We conclude with our characterization theorem, which is a more accurate version of
Theorem 3.

I Theorem 23. Let S be an n-long string. Then, there are at most log1+ε n+ 1 different
c-length approximate covers C of S with at most n

(2+ε)·c errors such that none is a seed of
another.

Proof. First, note that there cannot be two such different c-length approximate covers unless
one is a seed of the other, because then, by Lemma 22, we get c ≥ (1 + ε)c, contradiction.
Thus, such different c-length approximate covers must have different length. Now, let
1 ≤ l1 < l2 < . . . < lt−1 < lt ≤ n be the different lengths of c-length approximate covers of S.
By Lemma 22,

(1 + ε)t−1 ≤ (1 + ε)t−1 · l1 < (1 + ε)t−2 · l2 < . . . < (1 + ε)2 · lt−2 < (1 + ε) · lt−1 < lt ≤ n

Therefore, t− 1 ≤ log1+ε n. J

I Example 24. We now show an example where a string has many substrings that all cover
the given string with two errors. However, all these substrings have a single shortest 2-error
seed. Consider the string S = aaaaaaaaa(baaaa)kbaaaaaaaaa. Then, all the following
primitive strings cover S with two errors: aaaabaaaa, aaaabaaa, aaaabaa, aaaaba, aaabaaaa,
aabaaaa, abaaaa. They all have either abaaaa or aaaaba as a seed. Note that there are 2
such shortest 2-error covers, however, each is a seed of the other.

4 The Candidate Relaxation of the ACP

In this section we study the following relaxation of the approximate cover problem:

I Definition 25 (The Candidate Relaxation of the ACP).
INPUT: String T of length n over alphabet Σ, and a candidate cover C of length m over
alphabet Σ.
OUTPUT: minS(C)∈Σn H(S(C), T), i.e., the minimum number of errors in any valid tiling of
C in T .

I Remark. If k = minS(C)∈Σn H(S(C), T), we use the term k-error cover for the given C.
Note that, since a candidate cover must be primitive, we may assume that this is indeed

the case. A linear-time verification is possible using the algorithm of [9]. We describe a
dynamic programming algorithm for this problem, which uses the well-known Knuth-Morris-
Pratt [22] and Abrahamson-Kosaraju [1] algorithms. Our algorithm consists of a preparation
phase, and a dynamic programming phase. We denote by m∗ the number of set bits in the
mask M of the given candidate C.

4.1 The preparation phase
The preparation phase is composed of the following three stages:
1. Computing the mask of C. This computation can be performed efficiently using the

KMP algorithm. We compute the “failure automaton” for C. Denote the states of the
automaton by s0, s1, s2, . . . , sm. We consider the final state sm of the automaton, and
follow the sequence of fail links that start from it. Assume that this sequence is sm, si1 , si2 ,
etc. The first link in the sequence means that C1, the longest proper prefix of C that is
equal to the corresponding suffix, is of length i1. The second link means that C2, the

A. Amir, A. Levy, M. Lewenstein, R. Lubin, and B. Porat 25:9

longest proper prefix of C1 that is equal to the corresponding suffix of C1, is of length i2.
However, C2 is also the second longest prefix of C that is equal to the corresponding suffix
of C. By continuing in this process, we obtain the sequence C1, C2, . . . of all prefixes of
C that are equal to the corresponding suffixes. Hence, the corresponding sequence of
lengths i1, i2, . . . gives the (decreasing) sequence of indices j` = m − i` + 1, for which
M [j`] = 1, where M is the mask of C.

2. Dividing C into disjoint substrings. We divide C into substrings according to the indices
i for which M [i] = 1. Specifically, if the (increasing) sequence of indices i for which
M [i] = 1 is i1, i2, . . . im∗ where 1 = i1 < i2 < . . . < im∗ , then the substrings we consider
are all substrings of C of the form sj = C[ij ..ij+1 − 1], for 1 ≤ j ≤ m∗ − 1, along with
the suffix sm∗ = C[im∗ ..m].

3. Computing the Hamming distance from substrings of T to the strings sj . For each
string sj , 1 ≤ j ≤ m∗, we compute its Hamming distance to all substrings of T simul-
taneously using the Abrahamson-Kosaraju algorithm. Since for many values of j, sj is
equal to sj−1 (actually, by Lemma 15, the sequence s1, s2, . . . , sm∗ contains only O(logm)
distinct elements), we first check whether sj = sj−1 and apply the Abrahamson-Kosaraju
algorithm only in the rare cases of inequality. The array of Hamming distances returned
by the Abrahamson-Kosaraju algorithm is denoted below by Hamming(sj , T).

4.2 The dynamic programming phase
When the preparation phase is done, we are ready to compute the minimal k such that C
is a k-error cover of T . This computation is performed in a dynamic fashion. Namely, we
go over all suffixes of T in an increasing order, and for each suffix T [i..n], we compute the
minimal k(T [i..n]) such that C is a k(T [i..n])-cover of T [i..n], utilizing the computations
performed for the previous suffixes. The values k(T [i..n]) are stored in an array MIN , where
MIN [i] = k(T [i..n]). In the beginning of the algorithm, all values of MIN are initialized to
∞. The output of the algorithm is MIN [1].

As a cover must be a suffix of the covered string, we haveMIN [i] =∞ for all i > n−m+1,
meaning that there does not exist a string of length n − i + 1 that can be covered by C.
For the same reason, MIN [n−m+ 1] = H(C, T [n−m+ 1..n]), as there is a unique way
to cover a string of length m by C. Since any two overlapping occurrences of C in a tiling
that covers the suffix T [i..n] must differ by a value j such that M [j + 1] = 1, and since
|s1| = min({j : 1 < j ≤ m,M [j + 1] = 1}), it is impossible to cover a string of length m+ j,
1 ≤ j < |s1|, by copies of C. Thus, MIN [i] =∞ for all n−m− |s1|+ 1 < i < n−m+ 1.
The following steps are performed for all i ≤ n−m− |s1|, in a decreasing order.

For each such i, we go over all possible strings of length n − i + 1, SLi
(C) that cover

T [i..n] by C with k-errors (resulted from different tiling Li for which its first index is aligned
with index i in the text). As each such tiling must start with a copy of C, and as the second
occurrence of C in this tiling must differ from the initial one either by m or by a value j such
that M [j + 1] = 1, we can compute the minimal number of error in any such tiled strings
SLij

(C) (for which the first occurrence of C is aligned with index i in T and the second
occurrence of C is index j) as Error(SLij (C)) = H(C[1..j], T [i..i + j − 1]) + MIN [i + j]
(note that by the structure of the algorithm, MIN [i + j] is already known at this stage.)
The value MIN [i] is given by:

MIN [i] = min
j∈{j:M [j+1]=1}∪{m}

Error(SLij
(C)).

Naively, we can go over all m∗ possible values of j, compute Error(SLij (C)) for each of them,
and find out the minimum. For the sake of efficiency, we compute these values incrementally,

CPM 2017

25:10 Can We Recover the Cover?

by advancing the starting point of the second occurrence of C in the covering by |sj | every
time. Formally, this is performed as follows.

We define a counter j that corresponds to the initial shift of the second occurrence of C
in the tiling relative to the position i in T . j is initialized to 0. Then, for ` = 1, 2, . . . ,m∗, we
advance j by |s`| and check whether H(C[1..j], T [i..i+ j−1]) +MIN [i+ j] for j =

∑`
r=1 |sr|

is lower than the previously best value of Error. If the answer is positive, the temporary
value of MIN [i] is replaced by H(C[1..j], T [i..i+ j − 1]) +MIN [i+ j].

In order to compute the values H(C[1..j], T [i..i+ j − 1]) efficiently, we observe that for
j =

∑`
r=1 |sr|, we have

H(C[1..j], T [i..i+ j − 1]) = H(s1, T [i..i+ |s1| − 1])
+ H(s2, T [i+ |s1|..i+ |s1|+ |s2| − 1]) + . . .

+ H(s`, T [i+
`−1∑
r=1
|sr|..i+

`−1∑
r=1
|sr|])

Hence, we computeH(C[1..j], T [i..i+j−1]) incrementally by keeping a counter err, initializing
it to 0, and advancing it by H(s`, T [i +

∑`−1
r=1 |sr|..i +

∑`−1
r=1 |sr|]) when j is advanced

by |s`|. Finally, in order to skip unnecessary operations, for each ` we check whether
i+ j + |s`| ≤ n−m+ 1, as otherwise, an occurrence of C clearly cannot start at position
i+ j.

After going over ` = 1, 2, . . . ,m∗, we fix the last temporary value MIN [i] to be its final
value, and proceed to i− 1. As mentioned before, MIN [1] is the output of the algorithm. A
pseudo-code of the algorithm is presented in Figure 1.

The correctness of the Candidate Relaxation Dynamic Programming algorithm is given
in Lemma 26. The complexity of the algorithm is given in Lemma 27.

I Lemma 26. Let T be a length-n string and let C be a length-m cover. Let MIN be the
final array obtained by the dynamic programming algorithm described above with input T
and C. Then for any 1 ≤ i ≤ n, MIN [i] is equal to the minimal k such that C is a k-error
cover of T [i..n].

Proof. The proof is by an inverse induction on i. The induction basis is the cases i >
n−m− |s1|+ 1, for which MIN [i] was calculated explicitly above and is easily seen to be
equal to their final value computed by the algorithm.

Assume that the claim holds for all i > i0, and consider the case i = i0. Let SLi0
(C)

be the tiled string of T [i0..n] by copies of C starting from index i0, for which the minimal
number of errors k(T [i0..n]) is attained. The tiling SLi0

(C) must start with a copy of C, and
the second occurrence of C in SLi0

(C) must differ from the initial one either by m or by a
value j such that M [j + 1] = 1. As the total error of SLi0

(C) is k(T [i0..n]), we have

k(T [i0..n]) ≥ H(C[1..j], T [i..i0 + j − 1]) + k(T [i0 + j..n]).

On the other hand, by the structure of our algorithm, its outputs satisfy

MIN [i] ≤ H(C[1..j], T [i..i0+j−1])+MIN [i0+j] = H(C[1..j], T [i..i0+j−1])+k(T [i0+j..n]),

where the equality holds by the induction assumption. Hence, MIN [i0] ≤ k(T [i0..n]).
Finally, since MIN [i] is obtained in the algorithm by computing the error of a concrete cover
(that can be traced inductively), it is clear that MIN [i] ≥ k(T [i0..n]). This completes the
proof. J

A. Amir, A. Levy, M. Lewenstein, R. Lubin, and B. Porat 25:11

The Candidate Relaxation Dynamic Programming Algorithm
Input: A string T of length n, and a candidate cover C of length m

1 find the mask M of C using the KMP algorithm
2 start← 1
3 for i← 2 to m do
4 if M [i] = 1 then
5 s← s ∪ C[start..i− 1]
6 start← i

7 s← s ∪ C[start..m]
8 for each substring si do
9 if |si| = |si−1| then
10 Hamming(si, T)← Hamming(si−1, T)
11 else
12 Hamming(si, T)← Abrahamson−Kosaraju(si, T)
13 for i← 1 to n do
14 MIN [i]←∞
15 MIN [n−m + 1]← H(C, T [n−m + 1..n])
16 for i← n−m + 1− |s1| to 1 by -1 do
17 j ← 0
18 err ← 0
19 for each substring s` do
20 if j + |s`| ≤ n−m then
21 err ← err + Hamming(s`, T [i + j])
22 if MIN [i] > err + MIN [i + j + |s`|] then
23 MIN [i]← err + MIN [i + j + |s`|]
24 j ← j + |s`|
Output:
25 MIN [1]

Figure 1 The dynamic programming algorithm for the candidate relaxation of the ACP.

I Lemma 27. Let T be a text of length n and C a candidate cover of length m. Then, the
time complexity of the Candidate Relaxation Dynamic Programming algorithm on T and C
is O(n ·m∗ + n

√
m logm), where m∗ is the number of set bits in the mask M of C.

Proof. First, we analyze the preparation phase of the algorithm. As explained above in the
description of the algorithm, computing the mask M of C can be done by running the KMP
algorithm for C, which requires O(m) operations. Dividing C into disjoint substrings given
the mask M of C can clearly be done in O(m) operations. Computing the Hamming distance
from substrings of T to the strings sj can be performed by applying the Abrahamson-
Kosaraju algorithm once for each of the substrings sj . As by Lemma 15, the number
of distinct substrings sj is O(logm), the Abrahamson-Kosaraju algorithm is applied only
O(logm) times, while for the other values of j (whose total number is bounded from above
by m) we perform only a simple “copy” operation. The complexity of each application of the
Abrahamson-Kosaraju algorithm is O(n

√
m logm), and hence, the total complexity of this

step is O(logm · n
√
m logm).

A refinement of the analysis of this computation shows that the complexity is actually
O(n
√
m logm). Note that the Abrahamson-Kosaraju algorithm is applied for distinct strings

of the form sj . Consider the lengths of these strings. By Lemma 15, if we denote |sk| = gk
and let hk denote the distance from the end of sk to the end of C, we have that whenever

CPM 2017

25:12 Can We Recover the Cover?

sk+1 6= sk, either gk+1 ≤ gk/2 or hk+1 ≤ 3hk/4. Moreover, as the latter condition arises only
in the case hk ≤ 2gk (see the proof of Lemma 15), it follows that the sequence of lengths
g1 > g2 > . . . of strings on which the Abrahamson-Kosaraju algorithm is applied satisfies
gk+4 < gk/4. Since g1 ≤ m, the total complexity of this step is at most O(n

√
m logm).

We now analyze the dynamic programming phase. The main loop of the dynamic
programming is performed for all 1 ≤ i ≤ n−m− |s1|, i.e., O(n) times. For each i, we go
over the m∗ strings sj , and for each of them, we perform a few simple operations (i.e., table
lookups and comparisons). Hence, the time complexity of this phase is O(n ·m∗).

Therefore, the total time complexity of the algorithm is O(n ·m∗ + n
√
m logm). J

This completes the proof of Theorem 28.

I Theorem 28. Given a text T of length n a candidate cover C of length m over alphabet
Σ. Then, the candidate relaxation of the approximate cover problem of T can be solved in
O(n ·m∗ + n

√
m logm) time, where m∗ is the number of set bits in the mask M of C.

Theorem 28 has the following useful applications to the ACP (Corollary 29) and CRP
(Corollary 30).

I Corollary 29. Let T be a text of length n over alphabet Σ. Denote by γ(T) the maximum
of m∗ +

√
m logm over all primitive substrings C of T with length m < n, where m∗ is the

number of set bits in the mask M of C. Assume that the error distribution guarantees that
at least one occurrence of an approximate cover of the text is without errors. Then, the
approximate cover problem of T can be solved in O(n3 · γ(T)) time.

Proof. The condition implies that C is a substring of T . Take each of the O(n2) primitive
substrings of T of length less than n as a candidate cover in the algorithm and run the dynamic
programming algorithm of Figure 1. The corollary then follows from Theorem 28. J

I Corollary 30. Let S be a n-long string and ε > 0. Denote by γ(S) the maximum of
m∗ +

√
m logm over all primitive substrings C of S with length m < n, where m∗ is the

number of set bits in the mask M of C. Then, a set of at most log1+ε n different m-length
approximate covers C of S such that none is a seed of another, each with at most n

(2+ε)·m
errors, can be constructed in O(n3 · γ(S)) time.

Proof. Use the same algorithm as in the proof of Corollary 29 but retain as candidates in
the output set only m-length approximate covers C of S, for which the candidate relaxation
algorithm finds at most n

(2+ε)·m errors. From this set retain only candidates that do not have
a shorter or same length candidates as seeds. J

5 Open Problems

In this paper we initiated the study of the CRP as well as a new relaxation of the ACP.
Some interesting questions and open problems are:

Since the ACP is proved to be NP-hard, it is interesting to find other polynomial time
relaxations of the ACP, besides the candidate relaxation studied in this paper. Such a
study will broaden our understanding as well as suggest practical solutions.
In this paper we considered the Hamming distance as a metric in the definition of
approximate cover. Other string metrics can be considered as well. It is interesting to see
if and how the complexity of the problem changes with the use of other string metrics.

A. Amir, A. Levy, M. Lewenstein, R. Lubin, and B. Porat 25:13

References

1 Karl R. Abrahamson. Generalized string matching. SIAM J. Comput., 16(6):1039–1051,
1987. doi:10.1137/0216067.

2 Amihood Amir, Mika Amit, Gad M. Landau, and Dina Sokol. Period recovery over
the Hamming and edit distances. In Evangelos Kranakis, Gonzalo Navarro, and Edgar
Chávez, editors, Proceedings of the 12th Latin American Symposium on Theoretical In-
formatics (LATIN 2016), volume 9644 of LNCS, pages 55–67. Springer, 2016. doi:
10.1007/978-3-662-49529-2_5.

3 Amihood Amir, Estrella Eisenberg, and Avivit Levy. Approximate periodicity. In Otfried
Cheong, Kyung-Yong Chwa, and Kunsoo Park, editors, Proceedings of the 21st Interna-
tional Symposium on Algorithms and Computation (ISAAC 2010), volume 6506 of LNCS,
pages 25–36. Springer, 2010. doi:10.1007/978-3-642-17517-6_5.

4 Amihood Amir, Estrella Eisenberg, Avivit Levy, Ely Porat, and Natalie Shapira. Cycle
detection and correction. ACM Trans. Algorithms, 9(1):13:1–13:20, 2012. doi:10.1145/
2390176.2390189.

5 Amihood Amir, Avivit Levy, Ronit Lubin, and Ely Porat. Approximate cover of strings.
In Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter, editors, Proceedings of
the 28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017), volume 78
of LIPIcs, pages 26:1–26:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017.
doi:10.4230/LIPIcs.CPM.2017.26.

6 Pavlos Antoniou, Maxime Crochemore, Costas S. Iliopoulos, Inuka Jayasekera, and Gad M.
Landau. Conservative string covering of indeterminate strings. In Jan Holub and Jan
Zdárek, editors, Proceedings of the Prague Stringology Conference (PSC 2008), pages 108–
115. Czech Technical University in Prague, 2008. URL: http://www.stringology.org/
event/2008/p10.html.

7 Alberto Apostolico and Dany Breslauer. Of periods, quasiperiods, repetitions and covers.
In Jan Mycielski, Grzegorz Rozenberg, and Arto Salomaa, editors, Structures in Logic and
Computer Science: A Selection of Essays in Honor of Andrzej Ehrenfeucht, volume 1261
of LNCS, pages 236–248. Springer, 1997. doi:10.1007/3-540-63246-8_14.

8 Alberto Apostolico and Andrzej Ehrenfeucht. Efficient detection of quasiperiodicities
in strings. Theor. Comput. Sci., 119(2):247–265, 1993. doi:10.1016/0304-3975(93)
90159-Q.

9 Alberto Apostolico, Martin Farach, and Costas S. Iliopoulos. Optimal superprimitivity
testing for strings. Inf. Process. Lett., 39(1):17–20, 1991. doi:10.1016/0020-0190(91)
90056-N.

10 Dany Breslauer. An on-line string superprimitivity test. Inf. Process. Lett., 44(6):345–347,
1992. doi:10.1016/0020-0190(92)90111-8.

11 Dany Breslauer. Testing string superprimitivity in parallel. Inf. Process. Lett., 49(5):235–
241, 1994. doi:10.1016/0020-0190(94)90060-4.

12 Manolis Christodoulakis, Costas S. Iliopoulos, Kunsoo Park, and Jeong Seop Sim. Approx-
imate seeds of strings. J. Autom. Lang. Comb., 10(5/6):609–626, 2005.

13 Tim Crawford, Costas S. Iliopoulos, and Rajeev Raman. String-matching techniques for
musical similarity and melodic recognition. In Walter B. Hewlett and Eleanor S. Field, ed-
itors, Melodic Similarity: Concepts, Procedures, and Applications, volume 11 of Computing
in Musicology, pages 73–100. MIT Press, Cambridge, Massachusetts, 1998.

14 Maxime Crochemore, Costas S. Iliopoulos, Solon P. Pissis, and German Tischler. Cover
array string reconstruction. In Amihood Amir and Laxmi Parida, editors, Proceedings of
the 21st Annual Symposium on Combinatorial Pattern Matching (CPM 2010), volume 6129
of LNCS, pages 251–259. Springer, 2010. doi:10.1007/978-3-642-13509-5_23.

CPM 2017

http://dx.doi.org/10.1137/0216067
http://dx.doi.org/10.1007/978-3-662-49529-2_5
http://dx.doi.org/10.1007/978-3-662-49529-2_5
http://dx.doi.org/10.1007/978-3-642-17517-6_5
http://dx.doi.org/10.1145/2390176.2390189
http://dx.doi.org/10.1145/2390176.2390189
http://dx.doi.org/10.4230/LIPIcs.CPM.2017.26
http://www.stringology.org/event/2008/p10.html
http://www.stringology.org/event/2008/p10.html
http://dx.doi.org/10.1007/3-540-63246-8_14
http://dx.doi.org/10.1016/0304-3975(93)90159-Q
http://dx.doi.org/10.1016/0304-3975(93)90159-Q
http://dx.doi.org/10.1016/0020-0190(91)90056-N
http://dx.doi.org/10.1016/0020-0190(91)90056-N
http://dx.doi.org/10.1016/0020-0190(92)90111-8
http://dx.doi.org/10.1016/0020-0190(94)90060-4
http://dx.doi.org/10.1007/978-3-642-13509-5_23

25:14 Can We Recover the Cover?

15 Maxime Crochemore, Costas S. Iliopoulos, and Hiafeng Yu. Algorithms for computing
evolutionary chains in molecular and musical sequences. In Costas S. Iliopoulos, editor,
Proceedings of the 9th Australian Workshop on Combinatorial Algorithms (AWOCA 1998),
pages 172–184, France, 1998. URL: https://hal-upec-upem.archives-ouvertes.fr/
hal-00619988/file/9807-EC.pdf.

16 Tomás Flouri, Costas S. Iliopoulos, Tomasz Kociumaka, Solon P. Pissis, Simon J. Puglisi,
William F. Smyth, and Wojciech Tyczyński. Enhanced string covering. Theor. Comput.
Sci., 506:102–114, 2013. doi:10.1016/j.tcs.2013.08.013.

17 Ondřej Guth and Bořivoj Melichar. Using finite automata approach for searching approx-
imate seeds of strings. In Xu Huang, Sio-Iong Ao, and Oscar Castillo, editors, Intelligent
Automation and Computer Engineering, volume 52 of Lecture Notes in Electrical Engineer-
ing, pages 347–360. Springer Netherlands, 2010. doi:10.1007/978-90-481-3517-2_27.

18 Ondřej Guth, Bořivoj Melichar, and Miroslav Balík. Searching all approximate covers and
their distance using finite automata. In Peter Vojtáš, editor, Proceedings of the Conference
on Theory and Practice of Information Technologies (ITAT 2008), volume 414 of CEUR
Workshop Proceedings, pages 21–26, 2009. URL: http://ceur-ws.org/Vol-414/paper4.
pdf.

19 Costas S. Iliopoulos, Dennis W.G. Moore, and Kunsoo Park. Covering a string. Algorith-
mica, 16(3):288–297, 1996. doi:10.1007/BF01955677.

20 Costas S. Iliopoulos and Laurent Mouchard. Quasiperiodicity and string covering. Theor.
Comput. Sci., 218(1):205–216, 1999. doi:10.1016/S0304-3975(98)00260-6.

21 Costas S. Iliopoulos and William F. Smyth. An on-line algorithm of computing a minimum
set of k-covers of a string. In Costas S. Iliopoulos, editor, Proceedings of the 9th Australian
Workshop on Combinatorial Algorithms (AWOCA 1998), pages 97–106, 1998.

22 Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern matching in
strings. SIAM J. Comput., 6(2):323–350, 1977. doi:10.1137/0206024.

23 Tomasz Kociumaka, Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, and Tomasz
Waleń. Fast algorithm for partial covers in words. Algorithmica, 73(1):217–233, 2015.
doi:10.1007/s00453-014-9915-3.

24 Roman M. Kolpakov and Gregory Kucherov. Finding approximate repetitions under Ham-
ming distance. Theor. Comput. Sci., 1(303):135–156, 2003. doi:10.1016/S0304-3975(02)
00448-6.

25 Gad M. Landau and Jeanette P. Schmidt. An algorithm for approximate tandem repeats. In
Alberto Apostolico, Maxime Crochemore, Zvi Galil, and Udi Manber, editors, Proceedings
of the 4th Annual Symposium on Combinatorial Pattern Matching (CPM 1993), volume
684 of LNCS, pages 120–133. Springer, 1993. doi:10.1007/BFb0029801.

26 Gad M. Landau, Jeanette P. Schmidt, and Dina Sokol. An algorithm for approximate
tandem repeats. J. Comput. Biol., 8(1):1–18, 2001. doi:10.1089/106652701300099038.

27 Yin Li and William F. Smyth. Computing the cover array in linear time. Algorithmica,
32(1):95–106, 2002. doi:10.1007/s00453-001-0062-2.

28 M. Lothaire, editor. Combinatorics on words. Cambridge Mathematical Library. Cambridge
University Press, 1997. doi:10.1017/CBO9780511566097.

29 Dennis Moore and William F. Smyth. An optimal algorithm to compute all the covers of
a string. Inf. Process. Lett., 50(5):239–246, 1994. doi:10.1016/0020-0190(94)00045-X.

30 Dennis Moore and William F. Smyth. A correction to “An optimal algorithm to com-
pute all the covers of a string”. Inf. Process. Lett., 54(2):101–103, 1995. doi:10.1016/
0020-0190(94)00235-Q.

31 Jeong Seop Sim, Costas S. Iliopoulos, Kunsoo Park, and William F. Smyth. Approx-
imate periods of strings. Theor. Comput. Sci., 262(1):557–568, 2001. doi:10.1016/
S0304-3975(00)00365-0.

https://hal-upec-upem.archives-ouvertes.fr/hal-00619988/file/9807-EC.pdf
https://hal-upec-upem.archives-ouvertes.fr/hal-00619988/file/9807-EC.pdf
http://dx.doi.org/10.1016/j.tcs.2013.08.013
http://dx.doi.org/10.1007/978-90-481-3517-2_27
http://ceur-ws.org/Vol-414/paper4.pdf
http://ceur-ws.org/Vol-414/paper4.pdf
http://dx.doi.org/10.1007/BF01955677
http://dx.doi.org/10.1016/S0304-3975(98)00260-6
http://dx.doi.org/10.1137/0206024
http://dx.doi.org/10.1007/s00453-014-9915-3
http://dx.doi.org/10.1016/S0304-3975(02)00448-6
http://dx.doi.org/10.1016/S0304-3975(02)00448-6
http://dx.doi.org/10.1007/BFb0029801
http://dx.doi.org/10.1089/106652701300099038
http://dx.doi.org/10.1007/s00453-001-0062-2
http://dx.doi.org/10.1017/CBO9780511566097
http://dx.doi.org/10.1016/0020-0190(94)00045-X
http://dx.doi.org/10.1016/0020-0190(94)00235-Q
http://dx.doi.org/10.1016/0020-0190(94)00235-Q
http://dx.doi.org/10.1016/S0304-3975(00)00365-0
http://dx.doi.org/10.1016/S0304-3975(00)00365-0

A. Amir, A. Levy, M. Lewenstein, R. Lubin, and B. Porat 25:15

32 William F. Smyth. Repetitive perhaps, but certainly not boring. Theor. Comput. Sci.,
249(2):343–355, 2000. doi:10.1016/S0304-3975(00)00067-0.

33 Hui Zhang, Qing Guo, and Costas S. Iliopoulos. Algorithms for computing the lambda-
regularities in strings. Fundam. Inform., 84(1):33–49, 2008. URL: http://content.
iospress.com/articles/fundamenta-informaticae/fi84-1-04.

34 Hui Zhang, Qing Guo, and Costas S. Iliopoulos. Varieties of regularities in weighted se-
quences. In Bo Chen, editor, Proceedings of the 6th International Conference on Algorithmic
Aspects in Information and Management (AAIM 2010), volume 6124 of LNCS, pages 271–
280. Springer, 2010. doi:10.1007/978-3-642-14355-7_28.

CPM 2017

http://dx.doi.org/10.1016/S0304-3975(00)00067-0
http://content.iospress.com/articles/fundamenta-informaticae/fi84-1-04
http://content.iospress.com/articles/fundamenta-informaticae/fi84-1-04
http://dx.doi.org/10.1007/978-3-642-14355-7_28

Approximate Cover of Strings
Amihood Amir1, Avivit Levy2, Ronit Lubin3, and Ely Porat4

1 Bar-Ilan University, Ramat Gan, Israel; and
Johns Hopkins University, Baltimore, MD, USA
amir@cs.biu.ac.il

2 Shenkar College, Ramat Gan, Israel
avivitlevy@shenkar.ac.il

3 Bar-Ilan University, Ramat Gan, Israel
ronit.moldovan@gmail.com

4 Bar-Ilan University, Ramat Gan, Israel
porately@cs.biu.ac.il

Abstract
Regularities in strings arise in various areas of science, including coding and automata theory,
formal language theory, combinatorics, molecular biology and many others. A common notion
to describe regularity in a string T is a cover, which is a string C for which every letter of T lies
within some occurrence of C. The alignment of the cover repetitions in the given text is called
a tiling. In many applications finding exact repetitions is not sufficient, due to the presence of
errors. In this paper, we use a new approach for handling errors in coverable phenomena and
define the approximate cover problem (ACP), in which we are given a text that is a sequence
of some cover repetitions with possible mismatch errors, and we seek a string that covers the
text with the minimum number of errors. We first show that the ACP is NP-hard, by studying
the cover-size relaxation of the ACP, in which the requested size of the approximate cover is
also given with the input string. We show this relaxation is already NP-hard. We also study
another two relaxations of the ACP, which we call the partial-tiling relaxation of the ACP and
the full-tiling relaxation of the ACP, in which a tiling of the requested cover is also given with
the input string. A given full tiling retains all the occurrences of the cover before the errors,
while in a partial tiling there can be additional occurrences of the cover that are not marked
by the tiling. We show that the partial-tiling relaxation has a polynomial time complexity and
give experimental evidence that the full-tiling also has polynomial time complexity. The study
of these relaxations, besides shedding another light on the complexity of the ACP, also involves a
deep understanding of the properties of covers, yielding some key lemmas and observations that
may be helpful for a future study of regularities in the presence of errors.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Com-
binatorics, G.4 Mathematical Software, I.5.2 Design Methodology

Keywords and phrases periodicity, quasi-periodicity, cover, approximate cover

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.26

1 Introduction

Regularities in strings arise in various areas of science, including coding and automata
theory, formal language theory, combinatorics, molecular biology and many others. A typical
form of regularity is periodicity, meaning that a “long” string T can be represented as a
concatenation of copies of a “short” string P , possibly ending in a prefix of P . Periodicity
has been extensively studied in Computer Science over the years (see [26]).

© Amihood Amir, Avivit Levy, Ronit Lubin, and Ely Porat;
licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 26; pp. 26:1–26:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.26
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

26:2 Approximate Cover of Strings

For many phenomena, it is desirable to broaden the definition of periodicity and study
wider classes of repetitive patterns in strings. One common such notion is that of a cover,
defined as follows.

I Definition 1 (Cover). A length m substring C of a string T of length n, is said to be a
cover of T , if n > m and every letter of T lies within some occurrence of C.

Note that by the definition of cover, the string C is both a prefix and a suffix of the string
T . For example, consider the string T = abaababaaba. Clearly, T is “almost” periodic with
period aba, however, as it is not completely periodic, the algorithms that exploit repetitions
cannot be applied to it. On the other hand, the string C = aba is a cover of T , which allows
applying to T cover-based algorithms. In this paper we study coverable phenomena in the
presence of errors.

There are related regularity types and several approaches to handle errors in regularities.
Quasi-periodicity was introduced by Ehrenfeucht in 1990 (according to [5]). The earliest
paper in which it was studied is by Apostolico, Farach and Iliopoulos [7], which defined the
quasi-period of a string to be the length of its shortest cover and presented an algorithm
for computing the quasi-period of a given string in O(n) time and space. The new notion
attracted immediately several groups of researchers (e.g. [8], [27, 28], [25], [9]). An overview
on the first decade of the research on covers can be found in the surveys [5, 19, 30].

While covers are a significant generalization of the notion of periods as formalizing
regularities in strings, they are still restrictive, in the sense that it remains unlikely that an
arbitrary string has a cover shorter than the word itself. Due to this reason, different variants
of quasi-periodicity have been introduced. These include seeds [18], maximal quasi-periodic
substring [6], the notion of k-covers [20], λ-cover [31], enhanced covers [15], partial cover [21].
Other recently explored directions include the inverse problem for cover arrays [13], extensions
to strings in which not all letters are uniquely defined, such as indeterminate strings [4] or
weighted sequences [32]. Some of the related problems are NP-hard (see e.g., [4, 10, 21]).

In applications such as molecular biology and computer-assisted music analysis, finding
exact repetitions and covers is not always sufficient. A more appropriate notion is that of
approximate repetitions, where errors are allowed (see, e.g., [12, 14]). This notion was first
studied in 1993 by Landau and Schmidt [23, 24] who concentrated on approximate tandem
repeats. Note that, the natural definition of an approximate repetition is not clear. One
possible definition is that the distance between any two adjacent repeats is small. Another
possibility is that all repeats lie at a small distance from a single “original”. Such a definition of
approximate seeds is studied in [10, 17, 16]. Indeed, all these definitions along with other ones
were proposed and studied (see [1, 22, 29]). Yet another possibility is that all repeats must
be equal, but we allow a fixed total number of mismatches. The possibility presented in [1]
is a global one, assuming that an original unknown string is a sequence of repeats without
errors, but the process of sequence creation or transmission incurs errors to the sequence
of repeats, and, thus, the examined input string is not a sequence of repeats. Therefore, a
(smallest) repeat generating a string with the minimum total number of mismatches with
the input string is sought. Extension of this definition approach to approximate covers is the
topic of this paper.

1.1 Our Results
In this paper we extend the approach of [1] to the notion of covers and define the approximate
cover problem (ACP), in which we are given a text that is a sequence of some cover repetitions
with possible mismatch errors, and we seek a string that covers the text with the minimum

A. Amir, A. Levy, R. Lubin, and E. Porat 26:3

number of errors. The alignment of the cover repetitions in the given text is called a tiling.
We prove that the ACP is NP-hard by studying a relaxation of this problem, which we call
the cover-size relaxation of the ACP. In this relaxation the requested size of the approximate
cover is also given with the input string. We prove that this relaxation is already NP-hard,
thus proving the NP-hardness of ACP.

We also study another two relaxations of the problem, which we call the partial-tiling
relaxation of the ACP and the full-tiling relaxation of the ACP. In this relaxations a tiling
of the requested cover is also given, and we seek a string such that when using the given
tiling to align it with the given text, the number of mismatches is minimized. The full
tiling retains all the occurrences of the cover before the errors, while in the partial tiling
there can be additional occurrences of the cover that are not marked by the tiling. We
examine these relaxations and show the partial-tiling has polynomial time complexity and
give experimental evidence that the full-tiling also has polynomial time complexity. The
study of these relaxations, besides shedding another light on the complexity of the ACP,
also involves a deep understanding of the properties of covers and seeds, yielding some key
lemmas and observations (such as [2]) that may be helpful for a future study of regularities
in the presence of errors.

Paper Contributions. The main contributions of this paper are:
Proving that the ACP is NP-hard.
Formalizing the partial-tiling relaxation of the ACP and proving it is polynomial time
computable.
Formalizing the full-tiling relaxation of the ACP and suggesting a polynomial time
algorithm for its computation, while giving an experimental evidence for the correctness
of this algorithm.

The paper is organized as follows. In Section 2, we give formal definitions. In Section 3,
we study the cover-size relaxation of the ACP and prove the NP-hardness of the ACP.
In Section 4, we study the partial-tiling relaxation of the ACP and show it is polynomial-
time computable. In Section 5, we study the full-tiling relaxation of the ACP, suggest a
polynomial-time algorithm for this problem and experimentally test its correctness. We
conclude with some open problems in Section 6.

2 Preliminaries

In this section we give the needed formal definitions.

I Definition 2 (Tiling). Let T be a string over alphabet Σ such that the string C over
alphabet Σ is a cover of T . Then, the sorted list of indices representing the start positions of
occurrences of the cover C in the text T is called the tiling of C in T .

In this paper we have a text T which may have been introduced to errors and, therefore,
is not coverable. However, we would like to refer to a retained tiling of an unknown string C
in T although C does not cover T because of mismatch positions. The following definition
makes a distinction between a list of indices that may be assumed to be a tiling of the text
before mismatch errors occurred and a list of indices that cannot be such a tiling.

I Definition 3 (A Valid Tiling). Let T be an n-length string over alphabet Σ and let L be
a sorted list of indices L ⊂ {1, ..., n}. Let m = n+ 1− Llast, where Llast is the last index
in L. Then, L is called a valid tiling of T , if i1 = 1 and for every ik, ik+1 ∈ L, it holds that
ik+1 − ik ≤ m.

CPM 2017

26:4 Approximate Cover of Strings

I Notation 1. Let C be an m length string over alphabet Σ. Denote by S(C) a string of
length n, n > m, such that C is a cover of S(C).

Note that S(C) is not uniquely defined even for a fixed n > m, since every different valid
tiling of the m-length string C generates a different n-length string S(C). A unique version
can be obtained if a valid tiling L is also given.

I Notation 2. Let T be an n-length string over alphabet Σ and let L be a valid tiling of
T . Let m = n + 1 − Llast, where Llast is the last index in the tiling L. For any m-length
string C ′, let SL(C ′) be the n-length string obtained using C ′ as a cover and L as the tiling
as follows: SL(C ′) begins with a copy of C ′ and for each index i in L a new copy of C ′ is
concatenated starting from index i of SL(C ′) (maybe running over a suffix of the last copy of
C ′).

I Definition 4. Let T be a string of length n over alphabet Σ. Let H be the Hamming
distance. The distance of T from being covered is:

dist = min
C∈Σ∗,|C|<n,S(C)∈Σn

H(S(C), T).

We will also refer to dist as the number of errors in T .

I Definition 5. Let T be an n-long string over alphabet Σ. An m-long string C over Σ,
m ∈ N, m < n, is called an m-length approximate cover of T , if for every string C ′ of length
m over Σ, minS(C′)∈Σn H(S(C ′), T) ≥ minS(C)∈Σn H(S(C), T), where H is the hamming
distance of the given strings.
We refer to minS(C)∈Σn H(S(C), T) as the number of errors of an m-length approximate
cover of T .

I Definition 6 (Approximate Cover). Let T be a string of length n over alphabet Σ. A string
C over alphabet Σ is called an approximate cover of T if:
1. C is an m-length approximate cover of T for some m ∈ N, m < n, for which

min
S(C)∈Σn

H(S(C), T) = dist.

2. for every m′-length approximate cover of T , C ′, s.t. minS(C′)∈Σn H(S(C ′), T) = dist, it
holds that: m′ ≥ m.

Primitivity. By definition, an approximate cover C should be primitive, i.e., it cannot be
covered by a string other than itself (otherwise, T has a cover with a smaller length). Note
that a periodic string can be covered by a smaller string (not necessarily the period), and
therefore, is not primitive.

I Definition 7. The Approximate Cover Problem (ACP) is the following:
INPUT: String T of length n over alphabet Σ.
OUTPUT: An approximate cover of T , C, and the number of errors in T .

3 N P-Hardness of the ACP

In this section we prove the NP-hardness of the ACP. To this end, we study a variant of
the problem where m, the length of a requested approximate cover, is also given together
with the input string T , and we are requested to find a string C of length m that is an

A. Amir, A. Levy, R. Lubin, and E. Porat 26:5

m-length approximate cover of T , i.e., C covers T with the minimum number of errors over
all strings of length m. We call this problem the cover-size relaxation of the ACP. Clearly, if
the cover-size relaxation of the ACP is already NP-hard, then so is the ACP.

Our hardness proof uses a reduction from the 3-SAT problem, in which the input is a
logical formula ϕ on N variables in 3-CNF (each clause has exactly three literals), and we
need to decide whether ϕ is satisfiable or not. The NP-hardness of 3-SAT is well-known
(see e.g. [11]).

3.1 The Reduction from 3-SAT
Given a 3-CNF formula ϕ on N variables, x1, . . . , xN , with ` clauses. Assume without loss
of generality that the literals in each clause are sorted by the index of their variables. We
need to define a text T of length n over an alphabet Σ and to specify the size m of the
requested approximate cover. We will then show that ϕ is satisfiable if and only if T has an
m-approximate cover with at most some specified number of errors to be defined.

We begin by defining the alphabet Σ to include all the variables and their negation
together with 4 additional dummy variables: x0, x−1, xN+1, xN+2 and also a special padding
character p. Formally,

Σ = {xi, x̄i|i ∈ [1..N]} ∪ {x−1, x0, xN+1, xN+2, p}.

The definition of the text T has two parts: a header and a body, where the body of T is
defined according to the clauses of the given logical formula ϕ, and the header preceding this
body imposes a structure on an m-approximate cover for T .

The definition of the body of T follows directly from the formula ϕ. For each clause
Cj = Lj1 ∨ L

j
2 ∨ L

j
3 of ϕ, 1 ≤ j ≤ `, we add to the body of T the substring Lj1L

j
2L

j
3,

preceded and followed by a padding of 2N + 14 occurrences of the character p. The role
of this padding is to avoid overlaps between occurrences of an approximate cover covering
substrings originating from different clauses. The header is composed of `(N+3) copies of the
following string: B = p . . . pxN+2xN+1x̄N . . . x̄1x0x−1p . . . pxN+2xN+1xN . . . x1x0x−1p . . . p,
where each padding contains N + 7 occurrences of p.

We define the size of the requested approximate cover m to be 3N + 18. Note that the
size of T and m as well as their construction are polynomial in N and `. Lemma 8 assures
the correctness of the reduction.

I Lemma 8. ϕ is satisfiable if and only if T has an m-approximate cover with at most
`(N + 3)(N + 1) errors.

We have, therefore, proven Theorem 9.

I Theorem 9. ACP is NP-hard.

4 The Partial-Tiling Relaxation of the ACP

In this section we study another relaxation of the approximate cover problem: the partial-
tiling relaxation, in which we are given a retained tiling of the cover before the errors has
occurred together with the input string itself. In order to formally define the relaxation we
need Definitions 10 and 11.

I Definition 10. Let T be an n-length string over alphabet Σ and let L be a valid tiling
of T . Let m = n + 1 − Llast, where Llast is the last index in the tiling L. Then, an

CPM 2017

26:6 Approximate Cover of Strings

L-approximate cover of T is a primitive string C such that for every string C ′ of length m
over Σ, H(SL(C ′), T) ≥ H(SL(C), T), where H is the hamming distance of the given strings.
minC∈Σm H(SL(C), T) is the number of errors of an L approximate cover of T .

I Definition 11. Let T be an n-length string over alphabet Σ. Let L be a valid tiling of T
and let L′ be a valid tiling of T such that L ⊆ L′. Let m′ = n+ 1− L′last, where L′last is the
last index in the tiling L′. Then, a partial L-approximate cover of T is a primitive string C of
length m′ such that for every string C ′ of length m′ over Σ, H(SL′(C ′), T) ≥ H(SL′(C), T),
where H is the hamming distance of the given strings.
minC∈Σm′ H(SL′(C), T) is the number of errors of a partial L-approximate cover of T .

I Definition 12 (The Partial-Tiling Relaxation of the ACP).
INPUT: String T of length n over alphabet Σ, and a valid tiling L of T .
OUTPUT: A partial L-approximate cover C of T .

We describe an algorithm for the partial-tiling relaxation of the approximate cover problem
in two parts. We first describe the mandatory part of the algorithm, which we call the
Histogram Greedy Algorithm. This algorithm does the main work in finding an approximate
cover subject to the tiling L. It returns a candidate for the final L approximate cover to be
output. This candidate is legal if it is primitive and illegal, otherwise. We then describe the
second part, which we call the Partial-Tiling Primitivity Coercion. In this part, the legality
of the candidate is checked, and if needed, the candidate is corrected in order to coerce the
primitivity requirement.

4.1 The Histogram Greedy Algorithm
This part of the algorithm performs the following steps given the text T and the valid tiling L:
1. Find m, the length of an approximate cover subject to the tiling L, by computing the

difference between n + 1, and the last index in the tiling L, Llast, which indicates the
last occurrence of the cover in T .

2. Compute the m-length mask M of an approximate cover, by initializing M to zeroes,
settingM [1] = 1, then reading the tiling L from beginning to end and for each ik, ik+1 ∈ L
setting M [ik+1 − ik] = 1.

3. Compute the m-long string VC of variables from an auxiliary alphabet

ΣV = {v1, v2, . . . , vm}.

First, we initialize the m-long string VC to v1v2 . . . vm. Then, we read the mask M

from end to beginning, and for every j such that M [j] = 1, we update the string VC by
equalizing the substrings VC [1..m− j+ 1] and VC [j..m]. In the equalization process, when
we obtain an equation vk = v` for k < `, we replace both letters by vk. The resulting
string VC represents C in the following sense: for any pair of indices 1 ≤ i < j ≤ m, if
VC [i] = VC [j] then C[i] = C[j]. However, it can be that VC [i] 6= VC [j], while C[i] = C[j].
In other words, VC carries the information on equalities imposed by the mask M between
indices of C.

4. Compute the n-long string VT of variables from the auxiliary alphabet ΣV , which is a
string covered by VC according to the tiling L of T . VC is computed using the tiling L
and VC as follows: it begins with a copy of VC and for each index i in L a new copy of
VC is concatenated starting from index i of VT (maybe running over a suffix of the last
copy of VC).

A. Amir, A. Levy, R. Lubin, and E. Porat 26:7

5. Compute the histogram HistVC ,Σ using the alignment of T with VT and counting for each
variable V ∈ VC and each σ ∈ Σ, the number of indices i in T, VT for which VT [i] = V

and T [i] = σ.
6. Compute an L approximate cover candidate C greedily according to the histogram

HistVC ,Σ, as follows: for every index 1 ≤ i ≤ m, set C[i] = σ0, whereHistVC ,Σ[VC [i], σ0] =
maxσ∈ΣHistVC ,Σ[VC [i], σ], i.e., for each index in C we choose the alphabet symbol that
minimizes the number of mismatch errors between SL(C) and T in the relevant indices
according to the tiling L.

The algorithm outputs the m-length string C from its last step and the histogram table
HistVC ,Σ.

Lemma 13 describes a property of the output C returned by the Histogram Greedy
algorithm, and immediately follows from the greedy criterion used in step 6 of the algorithm.
Lemma 14 describes the algorithm time complexity.

I Lemma 13. Let C be the output of the Histogram Greedy algorithm. Then,

H(T, SL(C)) = min
C′∈Σm

H(T, SL(C ′)).

I Lemma 14. The time complexity of the Histogram Greedy algorithm is: O(|Σ| ·m+ n).

Despite Lemma 13, the output C of the Histogram Greedy algorithm might not be an L
approximate cover of T , because it might not be primitive, as the following example shows.

Example: Assume that VC = XY ZWXY and Σ = {a, b} and that the histogram HistVC ,Σ
computed by the algorithm is the following:

VC�Σ a b
X 4 1
Y 2 3
Z 2 1
W 0 3

Then, the Histogram Greedy algorithm chooses: X = a, Y = b, Z = a, W = b, and outputs
C = ababab, which cannot be considered a legal cover since it is not primitive, i.e., C itself
can be covered by the shorter string ab. However, the partial L-approximate cover can have
a tiling L′, such that L ⊆ L′, which exactly is the case with ab. Therefore, ab should be
returned as the partial L-approximate cover of T . The Partial-Tiling Primitivity Coercion
algorithm described in Subsection 4.2 is responsible for checking the legality of the output
string received from the Histogram Greedy algorithm and returning a partial L-approximate
cover.

Note, that the input tiling L requires an m-length string as an output. Therefore, the
(primitive) 2-length approximate cover ab is precluded as an L-approximate cover. Assuming
that the input tiling L is the retained tiling of the cover of the original text before the errors
occurred, such a case means that, though ab is a string covering T subject to a partial tiling
L with the least number of errors, it does not cover T with L as a full tiling. In this sense, L
is an evidence that the original cover is of larger length than ab and that more errors actually
happened. Section 5 is devoted to finding an L-approximate cover.

4.2 The Partial-Tiling Primitivity Coercion Algorithm
This part of the algorithm gets as input the string C returned by the Histogram Greedy
algorithm and performs the following steps:

CPM 2017

26:8 Approximate Cover of Strings

1. Check the primitivity of C (using the linear-time algorithm of [7]). If C is primitive,
return C.

2. Else, return the primitive cover C ′ of C (found using the linear-time algorithm of [7] in
the first step).

The time complexity of the Partial-Tiling Primitivity Coercion algorithm is immediate
from the linear-time complexity of the algorithm in [7]. Thus, we get:

I Lemma 15. The time complexity of the Partial-Tiling Primitivity Coercion algorithm is
O(m).

Theorem 16 follows.

I Theorem 16. Given a text T of length n over alphabet Σ and a valid tiling L. Let Llast
be the last index in L. Then, the partial-tiling relaxation of the approximate cover problem of
T can be solved in O(|Σ| ·m+ n) time, where m = n+ 1− Llast.

5 The Full-Tiling Relaxation of the ACP

In this section we study another relaxation of the approximate cover problem: the full-tiling
relaxation, in which we are given a retained tiling of the cover before the errors have occurred
together with the input string itself. Unlike the situation in the problem of the previous
section, this tiling is assumed to be exact. Therefore, the algorithm cannot return as cover a
string that in order to cover T must have repetitions that are not marked in the tiling L.
The formal definition of the problem is as follows.

I Definition 17 (The Full-Tiling Relaxation of the ACP).
INPUT: String T of length n over alphabet Σ, and a valid tiling L of T .
OUTPUT: An L-approximate cover C of T .

In order to impose the requirement of the definition of an L-approximate cover of T
to be a primitive string such that all its repetitions to cover T (with minimum number of
errors) are marked in the tiling L, we need a different primitivity coercion algorithm than
the one described in the previous section. This algorithm is described in Subsection 5.1.
Unfortunately, proving the correctness of this algorithm requires a deep understanding of
the properties of coverability in the presence of mismatch errors. Although we are making
progress in proving this needed background (see, for example [2]), a lack in the complete
understanding of the phenomenon prevents us from proving the correctness formally. Hence,
in Subsection 5.2, we resort to experimental evidence of the correctness.

5.1 The Full-Tiling Primitivity Coercion Algorithm
This part of the algorithm gets as input the string C returned by the Histogram Greedy
algorithm (Subsection 4.1) and performs the following steps:
1. Check the primitivity of C (using the linear-time algorithm of [7]). If C is primitive,

return C.
2. Else, find Vk ∈ VC such that if the assignment of Vk is changed from the symbol with the

largest value in the row of Vk in HistVC ,Σ to the symbol with the second largest value
in this row, thus obtaining a new m-length candidate string C ′, such that the difference
H(SL(C ′), T)−H(SL(C), T) is minimized and where C ′ is primitive.

A. Amir, A. Levy, R. Lubin, and E. Porat 26:9

Lemma 18 below describes the time complexity of the Full-Tiling Primitivity Coercion
algorithm and immediately follows from the linear-time complexity of the algorithm [7] we
use in the first step and the description of the second step.

I Lemma 18. The time complexity of the Full-Tiling Primitivity Coercion algorithm is
O(|Σ| ·m).

Remark: Note that we can use a different algorithm that instead of checking the change of
single variables to the second best assignment and choosing the one that gives primitivity
with the least number of errors (as our algorithm does), checks the changing to the second
best assignment of all subsets of variables and chooses the set that gives primitivity with the
least number of errors. This algorithm is obviously correct , i.e., assures primitivity with the
least number of errors, however, it has an exponential-time complexity. On the other hand,
our algorithm is assured to have polynomial-time complexity, so a proof of its correctness
will assure the polynomial-time complexity of the full-tiling relaxation of the ACP.

5.2 Experimental Tests of the Full-Tiling Relaxation Algorithm
Experiment were designed to test the full-tiling relaxation algorithm, which is composed of
the algorithms of Subsections 4.1 and 5.1. In particular, we also wanted to experimentally
test how many times the full-tiling primitivity coercion is necessary. Note that, due to the
result of [3], this algorithm is only of interest to test under a rather high error rate, in which
there is an error in every occurrence of the approximate cover of the text, otherwise, the
dynamic programming algorithm solving the candidate-relaxation of the ACP is applicable,
where trying every substring of T as a candidate cover [3]. In order to comprehensively test
the algorithm, the inputs for the tests were classified according to the following criteria:

cover size: A cover C of size m is constructed, where m is small (less than 10), medium
(10-100) or large (100-400). Covers of size more than 400 were not created due to space
limitations.

alphabet size: The alphabet size was chosen to be either small (at most
√
m) or large (more

than
√
m).

tiling style: Given a cover C and its mask M , a tiling L for the text SL(C) is constructed
where the decision of the next index in L is made according to the following styles:
random – an equal priority is given to every set bit in M , left priority – a decreasing
priority is given to the set bits in M , right priority – an increasing priority is given to
the set bits in M .

error rate: The input string T is constructed from SL(C) by inserting mismatch errors
according the following error rates: medium (in every m characters at least one error),
high (in every m characters at least

√
m errors).

error style: The mismatching character is determined according to the following style: ran-
dom (replacing by a uniformly at random choice of another character from the alphabet)
or priority (replacing by another character with priority to the first character in the
alphabet, and if the first character is to be replaced then by a uniformly at random chosen
different character).

These criteria guarantee that the inputs created for testing the algorithm all have a coverable
original string, that its valid tiling is retained. This original string is then introduced with a
sufficiently high error rate to produce the current string together with the valid tiling as inputs
for the tiling relaxation algorithm. Therefore, all the tested inputs have an L approximate

CPM 2017

26:10 Approximate Cover of Strings

cover and our tiling relaxation algorithm is indeed applicable for them. Moreover, the above
criteria for input generation also aim at neutralizing the effect of the cover size, the alphabet
size, the tiling style, the error rate or the error style on the validity of the hypothesis, by
exhaustively using all reasonable alternatives.

A total of 372000 texts T were constructed as described above and served as inputs
(together with the tiling L) to the full-tiling relaxation algorithm. The results are given in
Tables 1 and 2 (see Appendix). The column “Percent of Inputs” describes how many of the
input texts had each row’s characteristics. Numbers are rounded to two digits after decimal
point. The column “Identical” describes in how many of the input texts the Histogram
Greedy algorithm of Subsection 4.1 returned the original cover C of the text SL(C) built
prior to the error insertion process. The column “Primitive” describes in how many of the
input texts the Histogram Greedy algorithm of Subsection 4.1 returned a primitive cover and
there was no need to proceed with the second phase of the Full-Tiling Primitivity Coercion
algorithm of Subsection 5.1. The column “Non-Primitive” describes in how many of the
input texts the Histogram Greedy algorithm of Subsection 4.1 returned a non-primitive
string and, therefore, the second phase of the Full-Tiling Primitivity Coercion algorithm of
Subsection 5.1 was performed. This latter case happened in 8912 texts, which are about 2%
of the texts.

Experiments Conclusion: Primitivity coercion was necessary in 2% of the total tested
inputs. In a 100% of the tests the returned string after the Full-Tiling Primitivity Coercion
algorithm was indeed an L-approximate cover of the input string.

6 Open Problems

In this paper we initiated the study of the approximate cover problem using a new approach.
We proved that the some relaxations (the cover size relaxation) of the approximate cover
problem are NP-hard, thus proving that the ACP is NP-hard, while other relaxations (the
partial-tiling relaxation and the full-tiling relaxation) are polynomial-time computable. Some
interesting questions and open problems are:

Our NP-hardness proof uses unbounded-size alphabet. Is the ACP still NP-hard for
finite alphabet?
It is interesting to define other relaxations of the ACP and to study their complexity in
order to have a deeper understanding of the ACP.
In this paper we only experimentally checked the correctness of our full-tiling relaxation
algorithm. We would like to have a formal proof of its correctness.
In this paper we considered the Hamming distance as a metric in the definition of
approximate cover. Other string metrics can be considered as well. It is interesting to see
if and how the complexity of the problem changes with the use of other string metrics.

References
1 Amihood Amir, Estrella Eisenberg, and Avivit Levy. Approximate periodicity. In Otfried

Cheong, Kyung-Yong Chwa, and Kunsoo Park, editors, Proceedings of the 21st Interna-
tional Symposium on Algorithms and Computation (ISAAC 2010), volume 6506 of LNCS,
pages 25–36. Springer, 2010. doi:10.1007/978-3-642-17517-6_5.

2 Amihood Amir, Costas S. Iliopoulos, and Jakub Radoszewski. Two strings at Hamming
distance 1 cannot be both quasiperiodic, 2017. arXiv:1703.00195.

3 Amihood Amir, Avivit Levy, Moshe Lewenstein, Ronit Lubin, and Benny Porat. Can
we recover the cover? In Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter,

http://dx.doi.org/10.1007/978-3-642-17517-6_5
http://arxiv.org/abs/1703.00195

A. Amir, A. Levy, R. Lubin, and E. Porat 26:11

editors, Proceedings of the 28th Annual Symposium on Combinatorial Pattern Matching
(CPM 2017), volume 78 of LIPIcs, pages 25:1–25:15. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2017. doi:10.4230/LIPIcs.CPM.2017.25.

4 Pavlos Antoniou, Maxime Crochemore, Costas S. Iliopoulos, Inuka Jayasekera, and Gad M.
Landau. Conservative string covering of indeterminate strings. In Jan Holub and Jan
Zdárek, editors, Proceedings of the Prague Stringology Conference (PSC 2008), pages 108–
115. Czech Technical University in Prague, 2008. URL: http://www.stringology.org/
event/2008/p10.html.

5 Alberto Apostolico and Dany Breslauer. Of periods, quasiperiods, repetitions and covers.
In Jan Mycielski, Grzegorz Rozenberg, and Arto Salomaa, editors, Structures in Logic and
Computer Science: A Selection of Essays in Honor of Andrzej Ehrenfeucht, volume 1261
of LNCS, pages 236–248. Springer, 1997. doi:10.1007/3-540-63246-8_14.

6 Alberto Apostolico and Andrzej Ehrenfeucht. Efficient detection of quasiperiodicities
in strings. Theor. Comput. Sci., 119(2):247–265, 1993. doi:10.1016/0304-3975(93)
90159-Q.

7 Alberto Apostolico, Martin Farach, and Costas S. Iliopoulos. Optimal superprimitivity
testing for strings. Inf. Process. Lett., 39(1):17–20, 1991. doi:10.1016/0020-0190(91)
90056-N.

8 Dany Breslauer. An on-line string superprimitivity test. Inf. Process. Lett., 44(6):345–347,
1992. doi:10.1016/0020-0190(92)90111-8.

9 Dany Breslauer. Testing string superprimitivity in parallel. Inf. Process. Lett., 49(5):235–
241, 1994. doi:10.1016/0020-0190(94)90060-4.

10 Manolis Christodoulakis, Costas S. Iliopoulos, Kunsoo Park, and Jeong Seop Sim. Approx-
imate seeds of strings. J. Autom. Lang. Comb., 10(5/6):609–626, 2005.

11 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, Second Edition, chapter NP-Completeness, pages 966–1021. The MIT Press,
2001.

12 Tim Crawford, Costas S. Iliopoulos, and Rajeev Raman. String-matching techniques for
musical similarity and melodic recognition. In Walter B. Hewlett and Eleanor S. Field, ed-
itors, Melodic Similarity: Concepts, Procedures, and Applications, volume 11 of Computing
in Musicology, pages 73–100. MIT Press, Cambridge, Massachusetts, 1998.

13 Maxime Crochemore, Costas S. Iliopoulos, Solon P. Pissis, and German Tischler. Cover
array string reconstruction. In Amihood Amir and Laxmi Parida, editors, Proceedings of
the 21st Annual Symposium on Combinatorial Pattern Matching (CPM 2010), volume 6129
of LNCS, pages 251–259. Springer, 2010. doi:10.1007/978-3-642-13509-5_23.

14 Maxime Crochemore, Costas S. Iliopoulos, and Hiafeng Yu. Algorithms for computing
evolutionary chains in molecular and musical sequences. In Costas S. Iliopoulos, editor,
Proceedings of the 9th Australian Workshop on Combinatorial Algorithms (AWOCA 1998),
pages 172–184, France, 1998. URL: https://hal-upec-upem.archives-ouvertes.fr/
hal-00619988/.

15 Tomás Flouri, Costas S. Iliopoulos, Tomasz Kociumaka, Solon P. Pissis, Simon J. Puglisi,
William F. Smyth, and Wojciech Tyczyński. Enhanced string covering. Theor. Comput.
Sci., 506:102–114, 2013. doi:10.1016/j.tcs.2013.08.013.

16 Ondřej Guth and Bořivoj Melichar. Using finite automata approach for searching approx-
imate seeds of strings. In Xu Huang, Sio-Iong Ao, and Oscar Castillo, editors, Intelligent
Automation and Computer Engineering, volume 52 of Lecture Notes in Electrical Engineer-
ing, pages 347–360. Springer Netherlands, 2010. doi:10.1007/978-90-481-3517-2_27.

17 Ondřej Guth, Bořivoj Melichar, and Miroslav Balík. Searching all approximate covers and
their distance using finite automata. In Peter Vojtáš, editor, Proceedings of the Conference
on Theory and Practice of Information Technologies (ITAT 2008), volume 414 of CEUR

CPM 2017

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.25
http://www.stringology.org/event/2008/p10.html
http://www.stringology.org/event/2008/p10.html
http://dx.doi.org/10.1007/3-540-63246-8_14
http://dx.doi.org/10.1016/0304-3975(93)90159-Q
http://dx.doi.org/10.1016/0304-3975(93)90159-Q
http://dx.doi.org/10.1016/0020-0190(91)90056-N
http://dx.doi.org/10.1016/0020-0190(91)90056-N
http://dx.doi.org/10.1016/0020-0190(92)90111-8
http://dx.doi.org/10.1016/0020-0190(94)90060-4
http://dx.doi.org/10.1007/978-3-642-13509-5_23
https://hal-upec-upem.archives-ouvertes.fr/hal-00619988/
https://hal-upec-upem.archives-ouvertes.fr/hal-00619988/
http://dx.doi.org/10.1016/j.tcs.2013.08.013
http://dx.doi.org/10.1007/978-90-481-3517-2_27

26:12 Approximate Cover of Strings

Workshop Proceedings, pages 21–26, 2009. URL: http://ceur-ws.org/Vol-414/paper4.
pdf.

18 Costas S. Iliopoulos, Dennis W.G. Moore, and Kunsoo Park. Covering a string. Algorith-
mica, 16(3):288–297, 1996. doi:10.1007/BF01955677.

19 Costas S. Iliopoulos and Laurent Mouchard. Quasiperiodicity and string covering. Theor.
Comput. Sci., 218(1):205–216, 1999. doi:10.1016/S0304-3975(98)00260-6.

20 Costas S. Iliopoulos and William F. Smyth. An on-line algorithm of computing a minimum
set of k-covers of a string. In Costas S. Iliopoulos, editor, Proceedings of the 9th Australian
Workshop on Combinatorial Algorithms (AWOCA 1998), 1998.

21 Tomasz Kociumaka, Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, and Tomasz
Waleń. Fast algorithm for partial covers in words. Algorithmica, 73(1):217–233, 2015.
doi:10.1007/s00453-014-9915-3.

22 Roman M. Kolpakov and Gregory Kucherov. Finding approximate repetitions under Ham-
ming distance. Theor. Comput. Sci., 1(303):135–156, 2003. doi:10.1016/S0304-3975(02)
00448-6.

23 Gad M. Landau and Jeanette P. Schmidt. An algorithm for approximate tandem repeats. In
Alberto Apostolico, Maxime Crochemore, Zvi Galil, and Udi Manber, editors, Proceedings
of the 4th Annual Symposium on Combinatorial Pattern Matching (CPM 1993), volume
684 of LNCS, pages 120–133. Springer, 1993. doi:10.1007/BFb0029801.

24 Gad M. Landau, Jeanette P. Schmidt, and Dina Sokol. An algorithm for approximate
tandem repeats. J. Comput. Biol., 8(1):1–18, 2001. doi:10.1089/106652701300099038.

25 Yin Li and William F. Smyth. Computing the cover array in linear time. Algorithmica,
32(1):95–106, 2002. doi:10.1007/s00453-001-0062-2.

26 M. Lothaire, editor. Combinatorics on words. Cambridge Mathematical Library. Cambridge
University Press, 1997. doi:10.1017/CBO9780511566097.

27 Dennis Moore and William F. Smyth. An optimal algorithm to compute all the covers of
a string. Inf. Process. Lett., 50(5):239–246, 1994. doi:10.1016/0020-0190(94)00045-X.

28 Dennis Moore and William F. Smyth. A correction to "An optimal algorithm to com-
pute all the covers of a string". Inf. Process. Lett., 54(2):101–103, 1995. doi:10.1016/
0020-0190(94)00235-Q.

29 Jeong Seop Sim, Costas S. Iliopoulos, Kunsoo Park, and William F. Smyth. Approx-
imate periods of strings. Theor. Comput. Sci., 262(1):557–568, 2001. doi:10.1016/
S0304-3975(00)00365-0.

30 William F. Smyth. Repetitive perhaps, but certainly not boring. Theor. Comput. Sci.,
249(2):343–355, 2000. doi:10.1016/S0304-3975(00)00067-0.

31 Hui Zhang, Qing Guo, and Costas S. Iliopoulos. Algorithms for computing the lambda-
regularities in strings. Fundam. Inform., 84(1):33–49, 2008. URL: http://content.
iospress.com/articles/fundamenta-informaticae/fi84-1-04.

32 Hui Zhang, Qing Guo, and Costas S. Iliopoulos. Varieties of regularities in weighted se-
quences. In Bo Chen, editor, Proceedings of the 6th International Conference on Algorithmic
Aspects in Information and Management (AAIM 2010), volume 6124 of LNCS, pages 271–
280. Springer, 2010. doi:10.1007/978-3-642-14355-7_28.

http://ceur-ws.org/Vol-414/paper4.pdf
http://ceur-ws.org/Vol-414/paper4.pdf
http://dx.doi.org/10.1007/BF01955677
http://dx.doi.org/10.1016/S0304-3975(98)00260-6
http://dx.doi.org/10.1007/s00453-014-9915-3
http://dx.doi.org/10.1016/S0304-3975(02)00448-6
http://dx.doi.org/10.1016/S0304-3975(02)00448-6
http://dx.doi.org/10.1007/BFb0029801
http://dx.doi.org/10.1089/106652701300099038
http://dx.doi.org/10.1007/s00453-001-0062-2
http://dx.doi.org/10.1017/CBO9780511566097
http://dx.doi.org/10.1016/0020-0190(94)00045-X
http://dx.doi.org/10.1016/0020-0190(94)00235-Q
http://dx.doi.org/10.1016/0020-0190(94)00235-Q
http://dx.doi.org/10.1016/S0304-3975(00)00365-0
http://dx.doi.org/10.1016/S0304-3975(00)00365-0
http://dx.doi.org/10.1016/S0304-3975(00)00067-0
http://content.iospress.com/articles/fundamenta-informaticae/fi84-1-04
http://content.iospress.com/articles/fundamenta-informaticae/fi84-1-04
http://dx.doi.org/10.1007/978-3-642-14355-7_28

A. Amir, A. Levy, R. Lubin, and E. Porat 26:13

Table 1 Experimental Tests of the Full-Tiling Relaxation Algorithm for Small Alphabets.

Cover Tiling Error Error Percent Identical Primitive Non-
Size Style Rate Style of Inputs Primitive

small left medium random 1.57 80.89 13.04 6.07
small left medium priority 1.57 80.55 31.51 5.95
small random medium random 1.57 78.80 15.28 5.93
small random medium priority 1.57 78.30 15.46 6.24
small right medium random 1.57 76.20 17.47 6.32
small right medium priority 1.57 76.13 17.82 6.05
small left high random 1.57 5.55 77.78 16.67
small left high priority 1.57 1.87 81.39 16.74
small random high random 1.57 5.24 78.57 16.19
small random high priority 1.57 1.68 82.18 16.13
small right high random 1.57 4.74 80.41 14.85
small right high priority 1.57 1.27 84.28 14.45

medium left medium random 3.22 100 0 0
medium left medium priority 3.22 100 0 0
medium random medium random 3.22 100 0 0
medium random medium priority 3.22 100 0 0
medium right medium random 3.22 100 0 0
medium right medium priority 3.22 100 0 0
medium left high random 3.22 89.80 10.17 0.03
medium left high priority 3.22 87.87 12.09 0.03
medium random high random 3.22 89.39 10.59 0.02
medium random high priority 3.22 87.42 12.54 0.05
medium right high random 3.22 89.07 10.90 0.33
medium right high priority 3.22 86.63 13.35 0.03

large left medium random 0.81 100 0 0
large left medium priority 0.81 100 0 0
large random medium random 0.81 100 0 0
large random medium priority 0.81 100 0 0
large right medium random 0.81 100 0 0
large right medium priority 0.81 100 0 0
large left high random 0.81 100 0 0
large left high priority 0.81 100 0 0
large random high random 0.81 100 0 0
large random high priority 0.81 100 0 0
large right high random 0.81 100 0 0
large right high priority 0.81 100 0 0

CPM 2017

26:14 Approximate Cover of Strings

Table 2 Experimental Tests of the Full-Tiling Relaxation Algorithm for Large Alphabets.

Cover Tiling Error Error Percent Identical Primitive Non-
Size Style Rate Style of Inputs Primitive

small left medium random 0.59 89.45 9.59 0.96
small left medium priority 0.59 76.51 21.93 1.56
small random medium random 0.59 87.57 11.24 1.19
small random medium priority 0.59 76.15 22.39 1.47
small right medium random 0.59 86.56 12.89 0.55
small right medium priority 0.59 75.51 23.40 1.10
small left high random 0.59 25.55 70.78 3.67
small left high priority 0.59 1.84 84.45 13.72
small random high random 0.59 24.82 70.96 4.22
small random high priority 0.59 2.06 86.15 11.79
small right high random 0.59 23.76 72.75 3.49
small right high priority 0.59 1.88 85.32 12.80

medium left medium random 1.62 100 0 0
medium left medium priority 1.62 100 0 0
medium random medium random 1.62 100 0 0
medium random medium priority 1.62 100 0 0
medium right medium random 1.62 100 0 0
medium right medium priority 1.62 100 0 0
medium left high random 1.62 99.77 0.23 0
medium left high priority 1.62 85.11 14.89 0
medium random high random 1.62 99.75 0.25 0
medium random high priority 1.62 84.19 15.81 0
medium right high random 1.62 99.90 0.10 0
medium right high priority 1.62 84.11 15.90 0

large left medium random 0.54 100 0 0
large left medium priority 0.54 100 0 0
large random medium random 0.54 100 0 0
large random medium priority 0.54 100 0 0
large right medium random 0.54 100 0 0
large right medium priority 0.54 100 0 0
large left high random 0.54 100 0 0
large left high priority 0.54 100 0 0
large random high random 0.54 100 0 0
large random high priority 0.54 100 0 0
large right high random 0.54 100 0 0
large right high priority 0.54 100 0 0

Beyond Adjacency Maximization: Scaffold Filling
for New String Distances∗

Laurent Bulteau1, Guillaume Fertin2, and Christian Komusiewicz3

1 LIGM UMR 8049, Université Paris-Est, Marne-la-Vallée, France
laurent.bulteau@u-pem.fr

2 LS2N UMR CNRS 6004, Université de Nantes, Nantes, France
guillaume.fertin@univ-nantes.fr

3 Friedrich-Schiller-Universität Jena, Jena, Germany
christian.komusiewicz@uni-jena.de

Abstract
In Genomic Scaffold Filling, one aims at polishing in silico a draft genome, called scaffold. The
scaffold is given in the form of an ordered set of gene sequences, called contigs. This is done
by confronting the scaffold to an already complete reference genome from a close species. More
precisely, given a scaffold S, a reference genome G and a score function f() between two genomes,
the aim is to complete S by adding the missing genes from G so that the obtained complete
genome S∗ optimizes f(S∗, G). In this paper, we extend a model of Jiang et al. [CPM 2016]
(i) by allowing the insertions of strings instead of single characters (i.e., some groups of genes may
be forced to be inserted together) and (ii) by considering two alternative score functions: the
first generalizes the notion of common adjacencies by maximizing the number of common k-mers
between S∗ and G (k-Mer Scaffold Filling), the second aims at minimizing the number
of breakpoints between S∗ and G (Min-Breakpoint Scaffold Filling). We study these
problems from the parameterized complexity point of view, providing fixed-parameter (FPT)
algorithms for both problems. In particular, we show that k-Mer Scaffold Filling is FPT
wrt. parameter `, the number of additional k-mers realized by the completion of S—this answers
an open question of Jiang et al. [CPM 2016]. We also show that Min-Breakpoint Scaffold
Filling is FPT wrt. a parameter combining the number of missing genes, the number of gene
repetitions and the target distance.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Combi-
natorics

Keywords and phrases computational biology, strings, FPT algorithms, kernelization

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.27

1 Introduction

The recent development and continuous improvement of NGS technologies has increased our
ability to produce, rapidly and inexpensively, a first draft of any genome. However, the cost
of polishing such drafts to obtain a complete genome has not decreased at the same rate,
thus many species are left with a genome in its scaffold form: a scaffold may be represented
as a sequence of contigs (each being a contiguous sequence of genes), separated by unknown

∗ Christian Komusiewicz gratefully acknowledges support from the DFG, project MAGZ (KO 3669/4-1).
A visit from Laurent Bulteau and Christian Komusiewicz which initiated this study was funded by PEPS
INS2I from CNRS and Internationalisation des Laboratoires – Action 1 from Université de Nantes.

© Laurent Bulteau, Guillaume Fertin, and Christian Komusiewicz;
licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 27; pp. 27:1–27:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.27
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

27:2 Beyond Adjacency Maximization: Scaffold Filling for New String Distances

gaps, sometimes with an indication on the length of the gap. It is thus natural to ask for
methods that reconstruct the complete original genome starting from its scaffold form. This
is usually done with the help of a reference genome G, that is, the complete genome of a
close-enough species, in the following way: turn the scaffold S into a complete genome S∗
by adding, in between the contigs of S, genes that are present in G but not in S, in such a
way that some predefined score function between S∗ and G is optimized. The score function
is usually defined so as to follow the parsimony principle: when S∗ and G are as close as
possible, the score is optimized.

Formally, a genome G is a string built on some alphabet Σ (each character in the alphabet
representing a gene or gene family), and a scaffold S is defined as sequence (C1, . . . , Cm) of
contigs, where each Ci, 1 ≤ i ≤ m, is itself a string over Σ. For a string S of length n, we
let c(S) be the multiset of characters it contains, and a(S) := {S[i, i+ 1] | i ∈ [n− 1]} be the
multiset of adjacencies in S. By extension, if S is a scaffold, c(S) (resp. a(S)) denotes the
multiset of characters (resp. adjacencies) contained in the contigs of S. For two strings S
and T , let a(S, T) := a(S) ∩ a(T) denote the multiset of common adjacencies in S and T .
For a scaffold S and a multiset T of strings, we use S + T to denote the set of strings that
can be obtained from S by inserting the strings of T in between the contigs of S. The
One-Sided-Scaffold-Filling problem, introduced in [13], was the first serious attempt at
modeling scaffolds as a sequence of contigs with repeats.

One-Sided-Scaffold-Filling
Input: A complete genome G and a scaffold S=(C1, . . . , Cm) over alphabet Σ, and a
multiset T = c(G)− c(S) of characters.
Task: Find S∗ ∈ S + T s.t. |a(S∗, G)| is maximized.

Note that Jiang et al. [13] also considered the variant in which only a subset T ′ ⊆ T of
the letters of T needs to be inserted. In this paper, we study two alternative problems.

k-Mer Scaffold Filling. The first one generalizes both of the problems considered by Jiang
et al. [13] in several ways. First, we do not constrain the multiset of letters to insert to
be c(G)− c(S). Instead, the set T could contain letters in higher or lower multiplicity than
in c(G)− c(S). This is helpful if it is known, for example, that some genes occur in higher
multiplicity in the desired genome than in G. Second, we allow that T contains strings
instead of only letters. This allows to incorporate knowledge about the gene order that is
not present in the tuple of scaffold contigs. For example, one may now deal with contigs
whose position relative to the other contigs is not known. Third, we allow that the number
of strings to insert can be prespecified as an input constraint. More precisely, in our variant
the input contains two numbers t1, t2 and we search for a solution that inserts at least t1
and at most t2 strings from T . This way, one can guarantee for example that the size of the
resulting genome lies within some predetermined range. If we want all of T to be inserted
in S, it suffices to set t1 := |T | =: t2. The second variant of Jiang et al. [13] in which an
arbitrary subset of T may be inserted is obtained by setting t1 := 1 and t2 := |T |.

Finally, as similarity measurement we do not restrict ourselves to maximizing the number
of common adjacencies. Instead, we maximize, for a predetermined parameter k, the number
of common k-mers (the term k-mer is usually used for DNA strings; we thus extend its use
here in the context of gene sequences): indeed, as illustrated in Figure 1, a higher value of k
tends to increase the accuracy of the result.

For a string S of length n and a positive integer k, let ak(S) := {S[i, i+ k] | i ∈ [n− k]}
denote the multiset of k-mers in S. For two strings S and T , ak(S, T) := ak(S) ∩ ak(T)

L. Bulteau, G. Fertin, and C. Komusiewicz 27:3

S :
(C1)
abcb

(C2)
aa

(C3)
b

(C4)
d

T : c a

G : a a b c a a b c b d

S∗
2 : abcbcaaabd

aa
aa
ab

ab
bc
bc

bd
ca
cb

a2(G)
= a2(S∗2)
= a2(S∗2 , G)

S∗
3 : abcbaabcad

aab
caa
cbd

aab
abc
abc
bca
bcb

baa
cad
cba

a3(G) a3(S∗3)

∩ : a3(S∗3 , G)

Figure 1 Left: an example instance of k-Mer-SF, for k = 2 and k = 3, with scaffold S containing
4 contigs, T containing 2 length-1 strings to be inserted, t1 = t2 = 2, and a reference genome G.
An optimal solution for k = 2 (resp. k = 3) inserts the strings from T as indicated by dotted
(resp. dashed) arcs to create S∗

2 (resp. S∗
3). Top-right: the 2-mers of S∗

2 and G: note that the
maximum number of common 2-mers is reached, although the strings S∗

2 and G are quite different.
Bottom-right: the 3-mers of S∗

3 and G (there are 5 common 3-mers). Note that neither solution is
optimal for both values of k, since |a2(S∗

3 , G)| = 7 < 9, and |a3(S∗
2 , G)| = 4 < 5. In this example, S∗

3
should be more relevant than S∗

2 , since the former can be obtained from G with a single transposition
event (by swapping factors aabca and abcb).

denotes the multiset of common k-mers in S and T . Note that counting common adjacencies
is the special case k = 2. The problem we are interested in is thus defined as follows (see
Figure 1 for an illustration with k = 2 and k = 3).

k-Mer Scaffold Filling (k-Mer-SF)
Input: A complete genome G and a scaffold S of contigs (C1, . . . , Cm) over alphabet Σ,
a multiset T of strings over Σ and integers, t1, t2 s.t. t1 ≤ t2 ≤ |T |.
Task: Find T ′ ⊆ T , t1 ≤ |T ′| ≤ t2, and S∗ ∈ S + T ′ s.t. |ak(S∗, G)| is maximized.

Min-Breakpoint Scaffold Filling. The second problem we study here differs from One-
Sided-Scaffold-Filling in two ways: first, just as k-Mer-SF, we allow that T contains
strings instead of only letters. Second, instead of maximizing the number of common
adjacencies, we aim at minimizing the number of breakpoints. We need additional definitions:
given two strings S and T such that c(S) = c(T), thus of same length n, and a bijection
π : [n] → [n] such that S[i] = T [π(i)], the breakpoint distance wrt. π between S and T is
|{i | π(i+ 1) 6= π(i), 1 ≤ i < n}|. The string breakpoint distance between S and T , denoted
b(S, T), is the minimum over all bijections π of the breakpoint distance of S and T wrt. π.
We are now ready to define our second problem, which is also illustrated in Figure 2.

Min-Breakpoint Scaffold Filling (Min-Bkpt-SF)
Input: A complete genome G and a scaffold S over alphabet Σ and a multiset T of
strings over Σ.
Task: Find S∗ ∈ S + T s.t. b(S∗, G) is minimized.

Note that there exists attempts at defining breakpoints in strings in the context of scaffold
filling [15, 16]. In that case, just as in permutations, breakpoints are defined as the dual of
common adjacencies. This differs from the present definition: in our case, there exist strings

CPM 2017

27:4 Beyond Adjacency Maximization: Scaffold Filling for New String Distances

S :
(C1)
ab

(C2)
cdebcd

(C3)
bd

(C4)
ade

T : ac c e ec

G : c d e c b d c a d e a b a c b c d e e

S∗ : abac cde bcdee cbdcade

G : cde cbdcade abac bcdee

Figure 2 Left: an example instance of Min-Bkpt-SF, with scaffold S containing 4 contigs, T
containing 4 strings of length 1 and 2 to be inserted, and a reference genome G. An optimal solution
inserts the strings from T as indicated by dashed arcs to create S∗. Right: the resulting string S∗ is
at breakpoint distance 3 from G: the letters of S and G can be matched together to form 4 common
blocks (hence 4− 1 = 3 breakpoints).

S and T of length n such that a(S, T) + b(S, T) = n + k with k = Ω(n). Moreover, our
definition of breakpoints is of particular interest when S and T are very close: for instance,
the number of common adjacencies cannot discriminate the case S = T from S 6= T (take
e.g. S =aabbab and T =abaabb), whereas our definition of breakpoints does, and even allows
to estimate how S differs from T .

Finally, note that following the motivation in genomic scaffolding, we demand that no
insertions are made before C1 or after Cm. This variant is more general than the one where
insertions are allowed everywhere since we can simply add two additional contigs which have
letters not occurring in G, one in the beginning and one in the end. Then, there is always an
optimal solution that does not insert before the first or after the last contig.

k-Mer-SF and Min-Bkpt-SF are studied here from the parameterized (or multivariate)
complexity point of view [5, 8, 10]. The main parameters that will be used in the following
are: k, the length of the k-mers; ` := ak(S∗, G) − ak(S, G), the number of additional
common k-mers brought by completion; d, the duplication number, that is, the maximum
number of times a letter appears in G; m, the number of contigs in S; t2, the upper bound on
number of letters to insert; λ, an upper bound on the length of the strings in T ; b = b(S∗, G),
the sought breakpoint distance.

Related work and our contribution. Genomic Scaffold Filling (GSF) has been introduced
by Muñoz et al. [20] in 2010. The problem has initially been defined for permutations,
i.e. genomes are modeled as duplication-free sequences. Under this setting, GSF is polynomial-
time solvable for the DCJ distance [20] and for maximizing the number of adjacencies [16, 19]
(or, equivalently, minimizing the breakpoint distance). This method has been validated
through simulations and the comparison of two plant genomes [20].

When scaffolds are modeled as strings (thus allowing gene repetitions), it becomes
harder to compute relevant parsimony measures, hence almost all works are concerned with
maximizing the number of common adjacencies. In many cases with this model, the “contig”
constraint has been lifted, so that a scaffold has been modeled as a simple string, and
insertion can be done between any pair of consecutive letters. For GSF, Jiang et al. [17, 16]
showed the problem to be NP-hard, and from then on several approximation algorithms have
been given – the best to date achieves a ratio of 1.2 [14]. Bulteau et al. [3] showed that GSF
is FPT in the sought number of adjacencies `.

More recently, as in this paper, scaffolds were considered to be a sequence (C1, . . . , Cm)
of contigs. Jiang et al. [13] considered GSF under this model, again with the maximum
adjacency measure. They proved the problem to be NP-hard even if only two contigs
are given, gave a 2-approximation for the problem, and showed the problem to be FPT

L. Bulteau, G. Fertin, and C. Komusiewicz 27:5

wrt. the combined parameter `, the number of sought common adjacencies, and d, the
duplication number. A short survey of the most recent results concerning GSF under the
maximum adjacency setting can be found in [21]. In particular, the following question was
raised [13, 21]: what is the FPT status of the problem when the parameter is the number of
adjacencies?

In this paper, we study k-Mer-SF and Min-Bkpt-SF from a parameterized complexity
point of view. In particular, we show that k-Mer-SF is W[1]-hard wrt. parameter t2, and
FPT wrt. parameter `, thereby answering the above open question positively. We also provide
a polynomial kernel for the parameter `+m for the case where t2 = |T |, λ = 1 and k = 2,
which corresponds to earlier definitions of the GSF problem. Concerning Min-Bkpt-SF, we
provide hardness results even in some restricted cases (e.g. when b = 0 and m = 2), and we
provide several FPT results wrt. combinations of some of the input parameters.

Preliminaries. For a string S, we use S[i] to denote the letter at position i and S[i, j] to
denote the substring starting at position i and ending at position j; if i > j, then S[i, j] is
defined as the empty string. We use Sk[i] := S[i, i+ k − 1] to denote the length-k substring
of S starting at position i. For two strings S and T we denote the concatenation of S and T
by S ◦T . For a multiset or tuple of strings S, we use ||S|| to denote the sum of the lengths of
the strings contained in S. We use [n] := {1, . . . , n} to denote the numbers from 1 through n.
For a multiset X over a universe U and an element u of U , let m(X,u) denote the multiplicity
of u in X. If m(X,u) ≥ 1, then we write x ∈ X, if m(X,u) = 0, then we write u /∈ X.
We extend the definition of functions in a natural way to work with multiset domains.
That is, a function f : X → Y with X a multiset is defined as a function fS : SX → Y

where SX := {(x, i) : x ∈ X, i ∈ [m(X,x)]} is a set containing, for each x ∈ X, m(X,x)
many different elements corresponding to x. We write f(x) := {fS((x, i)) : i ∈ [m(X,x)}]}
to denote the set of images of x. Throughout the paper, n := |G| will denote the length of
the input genome G both in k-Mer-SF and Min-Bkpt-SF.

For the relevant definitions of parameterized complexity theory, refer to [8, 10].

2 The Relation between k-Mer Scaffold Filling and Partial Set Cover

In the following, we describe a reduction from the following variant of Set Cover to
k-Mer-SF.

Partial Set Cover
Input: A family F = {F1, . . . , Fm} of subsets of a universe U = {u1, . . . , un} and
integers κ and τ .
Task: Find a subfamily F ′ ⊆ F of size at most κ such that |

⋃
Fi∈F ′ Fi| ≥ τ .

On the positive side, Partial Set Cover can be solved in (2e)τ · |U | · |F | time [2]. For the
parameter κ, however, Partial Set Cover is W[1]-hard [12].

I Lemma 1. For each k ≥ 2, there is a polynomial-time reduction from Partial Set
Cover to k-Mer-SF such that t2 = κ and |G| = O(n).

Proof. Given an instance of Partial Set Cover, construct an instance of k-Mer-SF
for k = 2 as follows. For each ui, introduce two letters ai and bi and introduce a further
letter x. Now let G be the string a1b1xa2b2x · · ·xanbn. Observe that each element in U

corresponds to exactly one adjacency in G.

CPM 2017

27:6 Beyond Adjacency Maximization: Scaffold Filling for New String Distances

Now, for each Fi ∈ F , construct a string Ti and add it to T . The string Ti contains the
substring ajbj for each uj ∈ Fi. More precisely, if Fi = {u1

i , . . . , u
q
i }, then Ti = a1

i b
1
i · · · a

q
i b
q
i .

Now add two contigs C1 = C2 = y to the scaffold S and set t1 = 0 and t2 = κ. This
concludes the construction of the k-Mer-SF instance. It remains to show the correctness of
the reduction, that is,

(F , κ, τ) is a yes-instance of Partial Set Cover ⇔ there is a solution S∗ of
(G,S, T , 0, κ) for k-Mer-SF such that |ak(S∗, G)| ≥ τ .

(⇒) Let F ′ be a solution of Partial Set Cover. Then, for each Fi ∈ F ′, insert the
string Ti in S (in arbitrary order) and denote the resulting string by S∗. Since the scaffold S
contains no letters from G, all adjacencies of G are missing in S. Let U ′ denote the elements
that are covered by F ′. For each uj ∈ U ′, there is some Fi containing uj and thus some Ti
containing the adjacency ajbj which is an adjacency of G. Thus, S∗ contains at least |U ′|
many adjacencies.

(⇐) Let S∗ be a solution such that |ak(S∗, G)| ≥ τ . Observe that every common adjacency
of S∗ and G is of the form ajbj , since all other adjacencies of G contain the letter x. Since
each adjacency is of the form ajbj , there are thus at least τ distinct indices j such that S∗
contains the adjacency ajbj . Moreover, every such adjacency is contained in some Ti ∈ T ′.
By construction of T , uj is contained in the set Fi. Therefore, the set F ′ := {Fi | Ti ∈ T ′}
covers at least τ elements of U . Since T ′ ≤ κ, there are thus at most κ sets in F that cover
at least τ elements of U .

To obtain the reduction for arbitrary k > 2, one may adapt the construction by repre-
senting each ui by a string of length k. J

Lemma 1 directly implies the following hardness result for the parameter t2 that bounds
the number of strings to insert.

I Corollary 2. For each k ≥ 2, k-Mer-SF is W[1]-hard with respect to the parameter t2.

Next, observe that Partial Set Cover is a special case of Set Cover. This implies
that Partial Set Cover does not admit a polynomial kernel with respect to |U | + κ

unless coNP ⊆ NP/poly [9]. Together with Lemma 1 and the facts that the decision version
of k-Mer-SF is contained in NP and that Set Cover is NP-complete, we thus obtain the
following.

I Corollary 3. For each k ≥ 2, k-Mer-SF does not admit a kernel with respect to |G|+λ+t2
unless coNP ⊆ NP/poly.

3 A Fixed-Parameter Algorithm for k-Mer Scaffold Filling

We now show how to solve k-Mer-SF in 2O(`) · nO(1) time. Let pk(S, G) := ak(G) \ ak(S)
denote the multiset of k-mers that is in G but not in the scaffold S. We call these the
potential common k-mers. Also, for a solution S∗ we will call the common k-mers of S∗
and G that are not k-mers of S the realized k-mers. The algorithm that we describe is
based on a combination of dynamic programming and color-coding [1]. It has running
time O(n2 · m · k3 · ` · |T | · 8.16` · 5.44t2). Thus, it is a fixed-parameter algorithm for
the combined parameter ` + t2. As the following reduction rules show, this also gives a
fixed-parameter algorithm for the parameter k + `.

I Reduction Rule 1. If t1 > k · ` + 1, then set t1 = k · ` + 1. If t2 > k · ` + 1, then
set t2 = k · `+ 1.

L. Bulteau, G. Fertin, and C. Komusiewicz 27:7

Proof of Correctness. First, consider the change of t1. The reduction rule decreases the
value of the lower bound t1 for |T ′|. Thus, every feasible solution for the original instance is
a feasible solution for the reduced instance that realizes the same number of common k-mers.
To show correctness, we must thus only show that for every feasible solution of the reduced
instance, there is a feasible solution of the original instance that realizes the same number of
common k-mers. To this end, let T ∗ be an optimal feasible solution of the new instance and
let S∗ denote the resulting string. Let K := ak(S∗, G) \ (ak(S) ∪ ak(G)) denote the multiset
of potential common k-mers that are realized by S∗. By definition of `, we have ` = |K|.
Consider an injective mapping from K to the k-mers in S∗ that contain at least one position
from an inserted string T ∈ T ∗. Observe that the total number of positions in these k-mers
of S∗ is at most k · `. By pigeonhole principle, there is thus at least one string T ∈ T ∗ such
that none of the k-mers containing T is an image of the mapping. Now obtain a solution for
the original instance by adding t2− (k · `+ 1) strings from T \ T ∗ directly after T . This does
not affect any k-mers that are images of the mapping. Thus, the number of realized k-mers
does not decrease, and the decrease of t1 is correct.

Next, consider the case that the rule increases the value of the upper bound t2 for |T ′|.
Thus, every feasible solution for the reduced instance is a feasible solution for the original
instance that realizes the same number of common k-mers. To show correctness, we must
thus show that for every feasible solution of the original instance, there is a feasible solution
of the reduced instance that realizes the same number of common k-mers. To this end, let T ′
be an optimal feasible solution of the original instance and assume that T ′ is the smallest
among all optimal solutions. If |T ′| ≤ k · `+ 1, then T ′ gives also a feasible solution for the
reduced instance. Otherwise, as in the proof for the reduction of t1, there is at least one
string T ∈ T ′ such that none of the k-mers containing T is an image of the mapping from the
realized k-mers. Now obtain a solution for the original instance by removing T . This does
not affect any k-mers that are images of the mapping. Thus, the number of realized k-mers
does not decrease. Moreover, since t1 ≤ k · `+ 1, |T ′ \{T}| ≥ t1. Thus, |T ′ \{T}| is a feasible
solution for the original instance which contradicts the assumption that T ′ is a smallest such
solution. J

Color Coding. Somewhat deviating from the standard color-coding, we use two random
colorings α and β. Here, α : pk(S, G) → [`] is a coloring of the potential common k-mers
and β : T → [t2] is a coloring of the strings that may be inserted. The idea is that there is
a significant chance for the two random colorings that all of the realized common k-mers
and inserted strings have different colors. Under this assumption, we can use dynamic
programming on S to reconstruct a solution that realizes ` of the potential common k-mers.

Dynamic Programming. In the dynamic programming routine, we gradually find partial
solutions of increasing size, inserting strings from T into the scaffold in a left-to-right manner.
That is, we first insert between the first and second contig, then between the second and
third and so on. We use the coloring to avoid inserting some string of T twice. We fill a
five-dimensional table Q[i, j, κ, A,B] with 0/1-entries corresponding to partial solutions. In
this table:

the index i ∈ [m] corresponds to the set of contigs that precede the last character that
was inserted,
the indices j ∈ [|G|] and κ ∈ {0, . . . , k} are used to identify the longest common suffix
between the partial solution and G,

CPM 2017

27:8 Beyond Adjacency Maximization: Scaffold Filling for New String Distances

the color sets A ⊆ [`] and B ⊆ [t2] denote the colors of the k-mers that were realized and
the colors of the strings that were inserted.

We define the meaning of table Q as follows. A table entry Q[i, j, κ, A,B] = 1 if and only if
there is a set p′ ⊆ pk(S, G) and a set T ′ ⊆ T such that
1. α(p′) = A and |p′| = |A|,
2. β(T ′) = B and |T ′| = |B|,
3. there is a string S∗ ∈ Si + T ′ such that a(S∗, G) \ a(S, G) ⊆ p′ and Gκ[j] is the longest

common substring of G that is a suffix of S∗, among all substrings of length at most k
of G.

Here, Si := (C1, . . . , Ci) denotes the scaffold consisting of the first i contigs in the same
order as in S and Gκ[j] denotes the length-κ substring of G starting at position j. Before
we describe the recurrence in detail, consider the following. When extending a partial
solution S∗, we have two choices: either add a string from T at the end of S∗ or add the
next contig, that is, add Ci if the last contig in S∗ is Ci−1. The resulting string contains
additional k-mers as substrings and some of these k-mers may be potential common k-mers
with G. Clearly, to determine the set of additional k-mers it suffices to know the length-k
suffix of S∗ and the string that we add. The number of different length-k suffixes, however,
is |Σ|k. Therefore, storing these in a dynamic programming table would incur a substantial
overhead for both running time and space consumption. To be more efficient, we make use
of the following fact.

I Fact 1. Let S, T and G be strings such that the longest substring of S that is a suffix
of G has length at most κ, and let S′ = (S ◦ T)[i, j] be a substring of S ◦ T such that i ≤ |S|
and j > |S|. If S′ is a substring of G, then i ≥ |S| − κ.

Hence, the set of additional common k-mers of S∗ ◦ T and G are completely determined
by the combination of T and the longest suffix of S∗ that is also a substring of G. Finally,
the additional realized k-mers are those that are not yet realized by S∗. For our dynamic
programming table, we are thus interested in the k-mers that have a certain color set. To
determine the possible contribution of adding a string T we use a table P [j, κ,A, T]. An
entry P [j, κ,A, T] of P has value 1 if there is a surjective mapping

ψ : ak(Gκ[j] ◦ T,G)→ A

from the multiset of common k-mers of Gκ[j] ◦ T and G to the color set A ⊆ [`] such
that ψ(x) ⊆ α(x) for all x ∈ ak(Gκ[j] ◦ T,G). Otherwise, the entry has value 0. Informally,
the table P tells us whether adding T to a partial solution helps to realize potential k-mers
with the colors of A. If we add a contig Ci, then we may count only those common k-mers
that are not completely contained in Ci. Accordingly, the entries P [j, κ,A,Ci] have value 1
if there is a surjective mapping

ψ : (ak(Gκ[j] ◦ Ci+1, G) \ ak(Ci))→ A

such that ψ(x) ⊆ α(x) for all x ∈ ak(Gκ[j] ◦ T,G) \ ak(Ci).

I Lemma 4. The value of each entry of P can be computed in O(k · |T |+ |T | · |A|2) time if
the multiset of k-mers of G is stored in a trie.

Proof. First, in O(k + |T |) time, compute the string T ′ = Gκ[j] ◦ T . Then compute the
multiset ak(T ′, G) of common k-mers of T ′ and G. This can be done in O(k · |T |) time:
the number of k-mers in T ′ is at most |T | and for each k-mer, we may use the trie to

L. Bulteau, G. Fertin, and C. Komusiewicz 27:9

check whether it is in G and to count the number of k-mers of T ′ that are equivalent. The
multiset of common k-mers is then given by determining for each k-mer, the minimum of the
multiplicities in T ′ and in G.

Now, we can determine whether there is a mapping ψ by computing a maximum matching
in the graph that is defined by the restriction of α to ak(T ′, G), that is, the bipartite
graph constructed as follows: For each k-mer K of ak(T ′, G) we introduce m(ak(T ′, G),K)
vertices corresponding to K; this gives one part VT ′ of the bipartition. The other part of
the bipartition is given by A. We draw an edge between v ∈ VT ′ and u ∈ A if v ∈ α(Kv),
where Kv is the k-mer corresponding to v. Then we compute a maximum matching in this
graph. Since this matching has at most |A| edges and since the graph has size O(|T | · |A|),
this can be done in time O(|T | · |A|2). If every vertex of A is contained in a matching edge,
then the table entry is set to 1, otherwise it is 0. J

With the table P at hand, we use the following recurrence to fill Q. Informally, the table
entry has value 1 if some string T or the next contig Ci can be used, together with a previous
partial solution, to realize common k-mers of the desired colors and if the resulting partial
solution has a suffix as specified by the values of j and κ.

Q[i, j, κ, A,B] =

1 ∃j′, κ′, A′ ⊆ A, T ∈ T :
Q[i, j′, κ′, A′, B \ β(T)] = 1∧
P [j′, κ′, A \A′, T] = 1∧
Gκ[j] = len(G,Gκ′ [j′] ◦ T)

1 ∃j′, κ′, A′ :
Q[i− 1, j′, κ′, A′, B] = 1∧
P [j′, κ′, A \A′, Ci] = 1∧
Gκ[j] = len(G,Gκ′ [j′] ◦ Ci)

0 otherwise.

Here, for two strings S and T we use len(S, T) to denote the longest substring of S that is a
suffix of length at most k of T .

I Theorem 5. k-Mer-SF can be solved in O(n2 ·m · k2 · |T | · 8.16` · 5.44t2) time.

Proof. The overall number of entries in P is O(n · k · |T | · 2t2). Each entry of P can be
computed in O(k · |T | + |T | · |A|2) time by Lemma 4. This gives an overall running time
of O(n·k2 ·||T ||·2t2 ·(t2)2) for filling P . The overall number of entries in Q is O(m·n·k ·2` ·2t2).
For each entry Q[i, j, κ, A,B], we consider O(n · k · 2|A| · |T |) cases in the recurrence. The
first two conditions of each case can be determined in O(1) time, the third condition can be
computed in O(1) time after a preprocessing in which we compute len(G,Gκ[j] ◦ T) for each
combination of T , κ and j. This can be done in O(n2 · k · |T |) time overall. Thus, the total
running time for filling Q including preprocessing is O(n2 ·m · k2 · |T | · 3` · 2t2). After Q is
filled, we can determine whether there is a solution realizing ` potential common k-mers
by considering Q[m, j, κ, [`], B] for all B with t1 ≤ |B| ≤ t2. The overall running time of
the algorithm now follows from the number of trials that are necessary to obtain a constant
false-negative error probability, as shown by Alon et al. [1], these are exactly e`+t2 many. J

I Corollary 6. k-Mer-SF can be solved in O(n2 ·m · k2 · |T | · 8.16` · 5.44k`) time.

CPM 2017

27:10 Beyond Adjacency Maximization: Scaffold Filling for New String Distances

4 A Polynomial Kernel for a Special Case

As an additional result, we obtain a polynomial problem kernel for the special case when t2 ≥
2` + 1, λ = 1 and k = 2 and the parameter is the combination of ` and m. Observe
that t2 ≥ 2`+ 1 essentially means that there are no upper-bound constraints on the solution
size. Thus, our kernel also works for the natural case that t2 = |T |. The details are given
in Appendix. Moreover, observe that even though the problem setting is very restricted
compared to the general k-Mer Scaffold Filling, it contains the GSF problem of Jiang
et al. [13] as a special case.

I Theorem 7. For k = 2, λ = 1 and t2 ≥ 2` + 1, k-Mer-SF admits a problem kernel of
size O(`3 · (`+m)2) that can be computed in polynomial time.

5 Minimizing the Number of Breakpoints

In this section, we consider the Min-Bkpt-SF problem. Another formulation of the string
breakpoint distance between S and T is via minimum common string partitions [7]. Intuitively,
the breakpoint distance is b if the strings S and T can each be partitioned into b+ 1 factors,
so that both partitions use the same multiset of factors. For example, strings aabcda and
bcaada have a breakpoint distance of 2 since they can both be partitioned into the size-three
factor set {aa, bc, da} (see also Figure 2 for another example). This distance is NP-hard
to compute [11], however, several FPT algorithms can be used. We will make use of the
following two:

An FPT algorithm for the parameter combining b, the breakpoint distance, and d, the
number of duplications of any letter [4];
An FPT algorithm for parameter b alone [6] (which is mainly of theoretical interest, as
the exponential running time on b is rather prohibitive).

We first give two NP-hardness results, each one using a different approach giving different
constraints on the values of the parameters. We then introduce two FPT algorithms using
|T | as a parameter (as well as the breakpoint distance b, and either the number of contigs m
or the duplication number d). Without parameter |T |, we show that the problem is in XP
for parameter b when all strings in T have length 1.

NP-hardness for |T | = 0, m = 1, and either d = 2 or |Σ| = 2. The first hardness
result below directly follows from the fact that the string breakpoint distance is hard to
compute. Hence, any parameterized algorithm needs to put some restriction on the target
distance b.

I Theorem 8. Min-Bkpt-SF is NP-hard with |T | = 0, m = 1 even when either d = 2 or
|Σ| = 2.

Proof. With an empty set T and a single contig C1, Min-Bkpt-SF comes down to computing
the breakpoint distance between two strings. It is NP-hard even in special cases of binary
alphabet [18], as well as when any letter occurs at most twice [11]. J

NP-hardness for m = 2 and b = 0. When b = 0, we look for a way of inserting strings of
T in S in order to obtain exactly G. This problem turns out to be NP-hard, hence, again,
any parameterized algorithm needs not only to put a bound on the the target distance b, but
also some restriction on the set of missing strings.

L. Bulteau, G. Fertin, and C. Komusiewicz 27:11

I Theorem 9. Min-Bkpt-SF is NP-hard even when m = 2 and b = 0.

Proof. We propose a reduction from Unary Bin Packing:

Input: A list of n integers (x1, x2, . . . , xn), given in unary, integers B and k such that,
kB =

∑
xi.

Task: Find a partition (P1, . . . , Pk) of [n] such that, for all j ∈ [k],
∑
i∈Pj

xi = B.

We reduce to Min-Bkpt-SF as follows: let G = (10B)k1, S consist of m = 2 contigs C1
and C2 with C1 = C2 = 1, let T contain k− 1 strings 1 and strings 0xi for all i ∈ [n]. Finally,
set b = 0. Consider S∗ ∈ S + T ; S∗ yields a partition of [n] into k subsets Pj , where i ∈ Pj
if string 0xi from T is inserted between the (j − 1)th and jth string 1 of T (or before the
first/after the last for j = 1 and j = k respectively). Then b(S∗, G) = 0 if and only if each
Pj , j ∈ [k], is such that

∑
i∈Pj

xi = B. Conversely, any such partition of [n] yields a string
in S + T at distance 0 from G. Hence, the instance (S, T , G, b = 0) of Min-Bkpt-SF is a
yes-instance if and only if the original Unary Bin Packing instance is a yes-instance. J

An FPT Algorithm for the parameter (|T |,m, b). We now present an algorithm for the
case that the parameter combines the number τ of strings in T , the number of contigs m,
and the breakpoint distance b.

I Theorem 10. Min-Bkpt-SF is FPT for parameters |T |, b and m.

Proof. If we consider parameters |T | and m, then together they allow the exhaustive
enumeration of all possible strings in S+T : First, compute the |T |! possible arrangements of
strings in T , then split the resulting string into at most m blocks without breaking substrings
corresponding to the strings in T (this creates at most

(|T |
m

)
≤ 2|T | branches), then consider

all choices to insert them between the contigs of S (this creates at most 2m branches).
Once a candidate S∗ is known, it remains to compute the breakpoint distance with G in

time f(b)nO(1) [6]. Overall, this gives an FPT algorithm for parameters |T |, b and m. J

An FPT Algorithm for the parameter (|T |, d, b). The next algorithm is more efficient if
the number of duplications d is small and avoids the dependency on the contig number m.

I Theorem 11. Min-Bkpt-SF can be solved in time O((4|T |d2)|T |d2bbn2).

Proof. Given an optimal solution S∗, we call T -factor a maximal factor of S∗ containing
strings from T (a T -factor is the concatenation of all substrings inserted between two contigs).
A T -factor is left-joined (resp. right-joined) if there is no breakpoint to its left, i.e., between
the last letter of the previous contig and its own first letter (resp., to its right). A T -factor is
stand-alone if it is neither left- nor right-joined. We can assume wlog. that there is a single
stand-alone T -factor, as any two such factors can be inserted in the same gap between two
contigs, so that they are merged into one without increasing the distance.

The first step of our algorithm is to guess the T -factors (using |T ||T | branches). They
will be denoted f1, . . . , fh. For each T -factor, we guess whether it is left-joined, and whether
it is right-joined (using 4|T | branches). We first deal with the single stand-alone T -factor,
if any: guess the correct gap where it should be inserted (among m ≤ n choices), insert it
there and merge it with the surrounding two contigs. Consider now a T -factor fj , assume
that it is left-joined (otherwise it is necessarily right-joined, then processed symmetrically).
Let u be the first letter of fj . Guess the position i such that G[i] is matched to u (among d
options). Let u′ be the letter at position i− 1 in G. Since there is no breakpoint before u, fj

CPM 2017

27:12 Beyond Adjacency Maximization: Scaffold Filling for New String Distances

must be inserted after a contig ending with u′. There are at most d such contigs, so we can
enumerate all options. There are at most d2 branches for each T -factor, and d2|T | branches
overall. The branching above allows to enumerate all candidate strings for a solution, it
remains to check whether any of them has breakpoint distance b to G. We compute this
distance for each candidate, using an FPT algorithm [4] with running time O(d2bbn). The
overall running time is O((4|T |d2)|T |d2bbn2). J

An XP Algorithm for the parameter b when λ = 1

I Theorem 12. Min-Bkpt-SF can be solved in time O(nb+1(b+ 1)!) when all strings in T
have length 1.

Proof. The algorithm runs as follows: first enumerate all possible positions of the breakpoints
in G, using |G|b branches. The optimal string S∗ can be guessed by trying all possible
rearrangements of the b+ 1 factors separated by breakpoints, using (b+ 1)! branches.

It remains to check that S∗ ∈ S + T , i.e., some filling of S gives S∗. This task is NP-hard
in the general case (see Theorem 9) however, it is straightforwardly achieved in linear time
when all strings in T have length 1: it suffices to check that all contigs in S are factors of S∗
in the correct order, and that T contains exactly the multi-set of missing letters. J

6 Conclusion

For k-Mer-SF, the most interesting direction seems to be to extend the problem kernelization
to more general cases by allowing either k > 2 (that is, considering k-mer distance for
general k), λ > 1 (that is, allowing the insertion of strings or letters), or considering the
case where the number of scaffold contigs is unbounded. For Min-Bkpt-SF it remains
open whether the problem is FPT for other parameters than |T |, for example m, b or d. We
conjecture that the FPT algorithm for MCSP with parameters b and d [4] can be extended
for our problem with this combination of parameters. Hopefully some new techniques might
reduce the complexity to achieve fixed-parameter tractability for b+ d or b+ ` only.

Finally, from a broader point of view, the problems that we consider here are fundamental
on strings. Indeed, they belong to a larger family of problems that can be described as
follows: Given a string G and a partial string S, complete the partial string S such that it is
as close as possible to G. Investigating this type of problems more systematically could be a
rewarding topic.

References

1 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.
doi:10.1145/210332.210337.

2 Markus Bläser. Computing small partial coverings. Inf. Process. Lett., 85(6):327–331, 2003.
doi:10.1016/S0020-0190(02)00434-9.

3 Laurent Bulteau, Anna Paola Carrieri, and Riccardo Dondi. Fixed-parameter algorithms for
scaffold filling. Theor. Comput. Sci., 568:72–83, 2015. doi:10.1016/j.tcs.2014.12.005.

4 Laurent Bulteau, Guillaume Fertin, Christian Komusiewicz, and Irena Rusu. A fixed-
parameter algorithm for minimum common string partition with few duplications. In
Aaron E. Darling and Jens Stoye, editors, Proceedings of the 13th International Work-
shop on Algorithms in Bioinformatics (WABI 2013), volume 8126 of LNCS, pages 244–258.
Springer, 2013. doi:10.1007/978-3-642-40453-5_19.

http://dx.doi.org/10.1145/210332.210337
http://dx.doi.org/10.1016/S0020-0190(02)00434-9
http://dx.doi.org/10.1016/j.tcs.2014.12.005
http://dx.doi.org/10.1007/978-3-642-40453-5_19

L. Bulteau, G. Fertin, and C. Komusiewicz 27:13

5 Laurent Bulteau, Falk Hüffner, Christian Komusiewicz, and Rolf Niedermeier. Multivariate
algorithmics for NP-hard string problems. Bull. EATCS, 114, 2014. URL: http://eatcs.
org/beatcs/index.php/beatcs/article/view/310.

6 Laurent Bulteau and Christian Komusiewicz. Minimum common string partition parameter-
ized by partition size is fixed-parameter tractable. In Chandra Chekuri, editor, Proceedings
of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2014), pages
102–121. SIAM, 2014. doi:10.1137/1.9781611973402.8.

7 Xin Chen, Jie Zheng, Zheng Fu, Peng Nan, Yang Zhong, Stefano Lonardi, and Tao Jiang.
Assignment of orthologous genes via genome rearrangement. IEEE/ACM Trans. Comput.
Biol. Bioinform., 2(4):302–315, October 2005. doi:10.1109/TCBB.2005.48.

8 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

9 Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Kernelization lower bounds through
colors and IDs. ACM Trans. Algorithms, 11(2):13:1–13:20, 2014. doi:10.1145/2650261.

10 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

11 Avraham Goldstein, Petr Kolman, and Jie Zheng. Minimum common string partition
problem: Hardness and approximations. Electron. J. Comb., 12, 2005. URL: http://www.
combinatorics.org/Volume_12/Abstracts/v12i1r50.html.

12 Jiong Guo, Rolf Niedermeier, and Sebastian Wernicke. Parameterized complexity of
vertex cover variants. Theory Comput. Syst., 41(3):501–520, 2007. doi:10.1007/
s00224-007-1309-3.

13 Haitao Jiang, Chenglin Fan, Boting Yang, Farong Zhong, Daming Zhu, and Binhai Zhu.
Genomic scaffold filling revisited. In Roberto Grossi and Moshe Lewenstein, editors, Pro-
ceedings of the 27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016),
volume 54 of LIPIcs, pages 15:1–15:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2016. doi:10.4230/LIPIcs.CPM.2016.15.

14 Haitao Jiang, Jingjing Ma, Junfeng Luan, and Daming Zhu. Approximation and nonap-
proximability for the one-sided scaffold filling problem. In Dachuan Xu, Donglei Du, and
Ding-Zhu Du, editors, Proceedings of the 21st International Conference on Computing and
Combinatorics (COCOON 2015), volume 9198 of LNCS, pages 251–263. Springer, 2015.
doi:10.1007/978-3-319-21398-9_20.

15 Haitao Jiang, Chunfang Zheng, David Sankoff, and Binhai Zhu. Scaffold filling under the
breakpoint distance. In Eric Tannier, editor, Proceedings of the International Workshop on
Comparative Genomics (RECOMB-CG 2010), volume 6398 of LNCS, pages 83–92. Springer,
2010. doi:10.1007/978-3-642-16181-0_8.

16 Haitao Jiang, Chunfang Zheng, David Sankoff, and Binhai Zhu. Scaffold filling under the
breakpoint and related distances. IEEE/ACM Trans. Comput. Biol. Bioinform., 9(4):1220–
1229, 2012. doi:10.1109/TCBB.2012.57.

17 Haitao Jiang, Farong Zhong, and Binhai Zhu. Filling scaffolds with gene repetitions: Maxi-
mizing the number of adjacencies. In Raffaele Giancarlo and Giovanni Manzini, editors, Pro-
ceedings of the 22nd Annual Symposium on Combinatorial Pattern Matching (CPM 2011),
volume 6661 of LNCS, pages 55–64. Springer, 2011. doi:10.1007/978-3-642-21458-5_7.

18 Haitao Jiang, Binhai Zhu, Daming Zhu, and Hong Zhu. Minimum common string partition
revisited. J. Comb. Optim., 23(4):519–527, 2012. doi:10.1007/s10878-010-9370-2.

19 Nan Liu, Peng Zou, and Binhai Zhu. A polynomial time solution for permutation scaf-
fold filling. In T.-H. Hubert Chan, Minming Li, and Lusheng Wang, editors, Proceed-
ings of the 10th International Conference on Combinatorial Optimization and Applica-

CPM 2017

http://eatcs.org/beatcs/index.php/beatcs/article/view/310
http://eatcs.org/beatcs/index.php/beatcs/article/view/310
http://dx.doi.org/10.1137/1.9781611973402.8
http://dx.doi.org/10.1109/TCBB.2005.48
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1145/2650261
http://dx.doi.org/10.1007/978-1-4471-5559-1
http://www.combinatorics.org/Volume_12/Abstracts/v12i1r50.html
http://www.combinatorics.org/Volume_12/Abstracts/v12i1r50.html
http://dx.doi.org/10.1007/s00224-007-1309-3
http://dx.doi.org/10.1007/s00224-007-1309-3
http://dx.doi.org/10.4230/LIPIcs.CPM.2016.15
http://dx.doi.org/10.1007/978-3-319-21398-9_20
http://dx.doi.org/10.1007/978-3-642-16181-0_8
http://dx.doi.org/10.1109/TCBB.2012.57
http://dx.doi.org/10.1007/978-3-642-21458-5_7
http://dx.doi.org/10.1007/s10878-010-9370-2

27:14 Beyond Adjacency Maximization: Scaffold Filling for New String Distances

tions (COCOA 2016), volume 10043 of LNCS, pages 782–789. Springer, 2016. doi:
10.1007/978-3-319-48749-6_60.

20 Adriana Muñoz, Chunfang Zheng, Qian Zhu, Victor A. Albert, Steve Rounsley, and David
Sankoff. Scaffold filling, contig fusion and comparative gene order inference. BMC Bioin-
formatics, 11:304, 2010. doi:10.1186/1471-2105-11-304.

21 Binhai Zhu. Genomic scaffold filling: A progress report. In Daming Zhu and Sergey
Bereg, editors, Proceedings of the 10th International Workshop on Frontiers in Algorith-
mics (FAW 2016), volume 9711 of LNCS, pages 8–16. Springer, 2016. doi:10.1007/
978-3-319-39817-4_2.

A Kernelization Algorithm from Section 4

In this section, we present an kernelization algorithm for the parameter ` and the special
case when t2 =≥ 2`+ 1, λ = 1 and k = 2 and m is a constant.

To obtain a problem kernel, we need to reduce the size of three objects: the genome G,
the scaffold S, and the multiset T of letters that we may add. We will achieve this in two
steps: First, we will reduce the number of copies of letters in T and of copies of adjacencies
and the size of S. After this reduction step, we observe that it only remains to reduce the
number of different letters in the instance. Consequently, this is what we reduce in the
remainder of the algorithm.

Throughout the description of the algorithm, let x denote a letter that does not occur
in S and not in T and let y denote a letter that does not occur in G.

The first rule for the kernel removes superfluous copies of letters from T . It is obviously
correct, since no solution can add such letters.

I Reduction Rule 2. If T contains a letter b more than t2 times, remove a copy of b from T .

The next rule, Rule 3 aims at separating the adjacencies in G and keeping only the potential
adjacencies in G. This will be useful to reduce the size of G but also to reduce the size
of S, which is done by Rule 4. Recall that the potential common k-mers of an instance are
the k-mers which are contained in G not in S. For k = 2, we may speak of potential common
adjacencies. Also, for a solution S∗ we will call the common adjacencies of S∗ and G that
are not adjacencies of S the realized adjacencies.

I Reduction Rule 3. Let x be a letter that is not contained in any contig of S and not
contained in any string of T , and let p(S, G) := {P1, . . . , Pq} = a(G) \ a(S) denote the
potential common adjacencies of G and S. Replace G by P1 ◦ x ◦ P2 ◦ · · · ◦ Pq−1 ◦ x ◦ Pq.

I Reduction Rule 4. Let y be a letter not contained in G. Replace every contig Ci of length
at least 2 by Ci[1] ◦ y ◦ Ci[|Ci|].

I Lemma 13. Let I = (G,S, T , t1, t2) be an instance of k-Mer-SF, and let
I ′ = (G′,S ′, T ′, t′1, t′2) be the instance obtained from I by applying Rules 3 and 4 to I.
Then, I and I ′ are equivalent.

Proof. A solution for I realizing at least ` adjacencies, directly gives a solution for I ′ realizing
at least ` adjacencies: Every realized adjacency for I is from p(S, G) = a(G) \ a(S) and thus
contained in a(G′). Moreover, it is not contained in a(S ′) and thus it is a potential common
adjacency in I ′. Now since T = T ′ and since, for any solution of I, all realized adjacencies
contain either only letters from T or only the first or the last letter from some contig Ci,
they can be realized in I ′ as well by inserting the letters in the same order and between the
same contigs as in I. The converse direction follows from the same arguments. J

http://dx.doi.org/10.1007/978-3-319-48749-6_60
http://dx.doi.org/10.1007/978-3-319-48749-6_60
http://dx.doi.org/10.1186/1471-2105-11-304
http://dx.doi.org/10.1007/978-3-319-39817-4_2
http://dx.doi.org/10.1007/978-3-319-39817-4_2

L. Bulteau, G. Fertin, and C. Komusiewicz 27:15

Observe that after application of Rule 4, the scaffold has size O(m).
After separating the potential adjacencies in G with the help of Rule 3, we may now

speak of removing a copy of a potential adjacency bc from G, which means to replace

G = P1 ◦ y ◦ · · · ◦ Pi−1 ◦ y ◦ bc ◦ y ◦ Pi+1 · · · ◦ Pq

by

P1 ◦ y ◦ · · · ◦ Pi−1 ◦ y ◦ Pi+1 · · · ◦ Pq

for some arbitrary Pi = bc.

I Reduction Rule 5. If there is a potential adjacency bc that occurs more than ` times in G,
then remove a copy of this adjacency from G.

Proof of Correctness. Let I denote the original instance and let I ′ denote the instance
obtained by the application of the rule. We need to show only that if I has a solution, then
so does I ′, as the other direction is trivial. Thus, assume that I has a solution realizing at
least ` adjacencies. Choose an arbitrary multiset P of ` realized adjacencies and observe
that there is at least one copy of the adjacency bc in G that is not in P . Thus, removing
this adjacency from G gives a new genome G∗ such that a(G∗) \ a(S) ≥ |P | ≥ ` since the
adjacencies of P are contained in a(G∗). Since the multiset of potential common adjacencies
of G∗ and of the genome in I ′ are the same and since the scaffold S and the set T are not
changed by the rule, I ′ has a solution realizing at least ` common adjacencies. J

As the following lemma shows, we have already achieved the goal of the first step, that is, we
have reduced the number of copies of all letters in I.

I Lemma 14. Let I be an instance that is reduced with respect to Rules 1–5, and let c denote
the number of different letters occurring in G, S, and T . Then, |G| ≤ 3`c2 and ||T || ≤
c · (2`+ 1).

Proof. First, we bound the size of G. If the overall number of letters is c, then there are at
most c2 different adjacencies in G. Moreover, by the construction of G, every third adjacency
does not contain x. Thus, if |G| > 3` · c2, then there is some adjacency that does not contain
the letter x and that occurs more than ` times. This contradicts the assumption that the
instance is reduced with respect to Rule 5.

The bound on the total length of T follows from the fact that T contains at most c many
different letters, each of which occurs at most 2`+ 1 times since the instance is reduced with
respect to Rule 1 and 2. J

According to Lemma 14, to obtain a polynomial problem kernel it is sufficient to reduce the
number of letters in the instance to `O(1). Consequently, this is our aim in the second step
of the kernelization algorithm.

First, we remove those letters from G and T which are useless in the sense that they
occur in no adjacencies which can become common adjacencies of a solution S∗ and G.

I Definition 15. We call an adjacency bc realizable if bc occurs in G, and
b ∈ T and c ∈ T , or
b = Ci[|Ci|] and c ∈ T for some contig Ci, or
b = Ci[|Ci|] and c = Ci+1[1] for some contig Ci, or
b ∈ T and c = Ci[1] for some contig Ci.

CPM 2017

27:16 Beyond Adjacency Maximization: Scaffold Filling for New String Distances

We now remove those letters that do not occur in realizable adjacencies.

I Reduction Rule 6. If |T | > t1 and T contains a letter b that occurs in no realizable
adjacency, then remove a copy of b from T .

If G contains an adjacency bc that does not contain x and that cannot be realized, then
remove bc from G.

The correctness of the rule above follows in a straightforward manner from the fact that we
will never insert a letter that is removed by the rule or realize an adjacency that is removed
by the rule.

For the final step of the kernelization, we build an auxiliary letter-adjacency graph H =
(V,E) as follows. For each letter in T , G, and S, add one vertex to H. Make two vertices b
and c adjacent in this graph if the adjacency bc or the adjacency cb is realizable. Observe
that after application of Rule 6, every vertex in H except x,y, and possibly the 2m − 2
vertices corresponding to letters of contigs, has at least one neighbor. Thus, our aim in the
following is to reduce the number of vertices in H that have at least one neighbor.

I Reduction Rule 7. Let M be a maximum matching in G. If |M | ≥ ` + 1, then answer
“yes”.

Proof of Correctness. We show how to construct a solution for the k-Mer-SF instance.
Let {{b1, c1}, {b2, c2}, . . . , {b`+1, c`+1}} be a set of `+ 1 edges contained in M and assume
without loss of generality that bici is a realizable adjacency for each i.

First, assume that for all i ∈ [`+ 1] either bi ∈ T or ci ∈ T . For each i, do the following.
If bi ∈ T and ci ∈ T , add bici between C1 and C2. If bi ∈ T and ci = Cj [1] for some Cj , then
add bi directly in front of Cj . If bi = Cj [|Cj |] and ci ∈ T , then add ci directly after Cj . The
set of inserted letters realizes at least `+1 adjacencies, since the `+1 pairs {bi, ci} are disjoint
and since for each we realize one adjacency. To obtain a feasible solution, insert t1 − (`+ 1)
further letters at an arbitrarily chosen position. This breaks at most one adjacency thus
giving a solution that realizes at least ` adjacencies.

If for some i, we have bi = Cj [|Cj |] and ci = Cj+1[1], then choose an arbitrary such i and
add all adjacencies bqcq with bq ∈ T and cq ∈ T between Cj and Cj+1. Add t1 − (` + 1)
further letters right before Cj+1. Insert all other letters as described above. The number of
realized adjacencies is at least `. All adjacencies of M except the adjacency bici are realized:
if at least one letter in the adjacency is from T , then they are realized because this letter is
inserted in the right position. If neither bj nor cj are from T , then the adjacency is realized
because no letters are inserted between the consecutive contigs that contain bj and cj . J

Now let V (M) denote the endpoints of the matching. We show that if |V \ V (M)| >
(2`+m) · |V (M)|, then we can safely remove some adjacency from G.

To apply the next rule, we build two bipartite graphs H1 and H2. In both graphs, the
vertex parts are B := V (M) and C := (V \ V (M)). In H1, we add an edge between b ∈ B
and c ∈ C when bc is a realizable adjacency. In H2, we add an edge between b ∈ B and c ∈ C
when cb is a realizable adjacency.

I Reduction Rule 8.
If there is a vertex b ∈ B of degree at least 2`+m+1 in H1, then remove the adjacency bc
from G, where c is an arbitrary neighbor of b.
If there is a vertex b ∈ B of degree at least 2`+m+1 in H2, then remove the adjacency cb
from G, where c is an arbitrary neighbor of b.

L. Bulteau, G. Fertin, and C. Komusiewicz 27:17

Proof of Correctness. We show the correctness for the first part of the rule, the second
part is symmetric. Consider an instance before application of the rule and assume it has
a solution realizing at least ` adjacencies. If none of these adjacencies is bc, the adjacency
removed from G by the rule, then this solution directly implies a solution for the reduced
instance. Otherwise, fix an arbitrary minimal set P of positions containing a letter of the `
many realized adjacencies. Observe that |P | ≤ 2` and there are at most ` pairs of consecutive
contigs that have nonempty intersection with these positions. Now, consider the adjacency bc
that is contained in the solution but not contained in G. There are at least m+ 1 letters d
that are adjacent to b in H1 such that not all copies of d are contained in P . Of these, at
most m are letters from contings. Thus, there is a d such that d ∈ T and not all copies of d
are contained in P . Therefore, inserting d behind b destroys the adjacency bc, but instead
creates the adjacency bd. This adjacency is also contained in G and not realized by any
position of P . This restores the number of realized adjacencies to `. J

I Theorem 7. For k = 2, λ = 1 and t2 ≥ 2` + 1, k-Mer-SF admits a problem kernel of
size O(`3 · (`+m)2) that can be computed in polynomial time.

Proof. Consider an instance that is reduced with respect to all presented reduction rules.
By Lemma 14, our claim follows if we show that the number of letters in I is O(` · (`+m)).
This can be seen by considering the graph H: the graph H has O(m) vertices that have no
neighbors. The number of further vertices is O(` · (`+m)): After applying Rule 7, the size
of the matching M is O(`). Any vertex in H that is incident with at least one edge and not
an endpoint of M is adjacent to a vertex of M either in H1 or in H2. After applying Rule 8,
the number of these vertices is at most |V (M)| · 2 · (2`+m+ 1) = O(` · (`+m)). This gives
the bound on the number of vertices in G and thus on the instance size.

The running time follows from the fact that all reduction rules can be clearly performed
in polynomial time. J

CPM 2017

On the Weighted Quartet Consensus Problem∗

Manuel Lafond1 and Celine Scornavacca2

1 Department of Mathematics and Statistics, University of Ottawa, Ottawa,
Canada
mlafond2@uottawa.ca

2 Institut des Sciences de l’Evolution, Université Montpellier, CNRS, IRD,
EPHE, Montpellier, France
celine.scornavacca@umontpellier.fr

Abstract
In phylogenetics, the consensus problem consists in summarizing a set of phylogenetic trees
that all classify the same set of species into a single tree. Several definitions of consensus exist
in the literature; in this paper we focus on the Weighted Quartet Consensus problem, a
problem with unknown complexity status so far. Here we prove that the Weighted Quartet
Consensus problem is NP-hard and we give a 1/2-factor approximation for this problem. During
the process, we propose a derandomization procedure of a previously known randomized 1/3-
factor approximation. We also investigate the fixed-parameter tractability of this problem.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Com-
binatorics, G.2.2 Graph Theory

Keywords and phrases phylogenetic tree, consensus tree, quartets, complexity, fixed-parameter
tractability

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.28

1 Introduction

Phylogenetics is the branch of biology that studies evolutionary relationships among different
species. These relationships are represented via phylogenetic trees – acyclic connected graphs
with leaves labeled by species – which are reconstructed from molecular and morphological
data [12]. One fundamental problem in phylogenetics is to summarize the information
contained in a set of unrooted trees T classifying the same set of species into a single tree T .
The set T can consist of optimal trees for a single data set, of trees issued from a bootstrap
analysis of a unique data set, or even of trees issued from the analysis of different data sets.
Several consensus methods have been proposed in the past, the probably most known are
the strict consensus [23, 18] and the majority-rule consensus [17, 3]. For a survey, see [7].

In this paper we focus on the Weighted Quartet Consensus (WQC) problem [19],
also called the Median Tree with Respect to Quartet Distance problem [2] and
Quartet Consensus problem in [16]. Roughly speaking, this problem consists in finding a
consensus tree maximizing the weights of the 4-leaf trees – quartets – it displays, where the
weight of a quartet is defined as its frequency in the set of input trees (for a more formal
definition, see next section).

More general versions of this problem, where the input trees are allowed to have missing
species or where the weight of a quartet is not defined w.r.t. a set of trees, are known to be

∗ This work was partially supported by the Natural Sciences and Engineering Research Council of Canada
(NSERC) and the Mitacs Globalink Campus France program.

© Manuel Lafond and Celine Scornavacca;
licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 28; pp. 28:1–28:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.28
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

28:2 On the Weighted Quartet Consensus Problem

NP-hard [24] (and in fact, even Max-SNP-Hard), but the complexity of the WQC problem
has remained open so far. This problem has been conjectured to be NP-hard [2, 19], and
heuristics have recently been implemented and widely used, for instance ASTRAL [20], which
is a practical implementation of Bryant and Steel’s work from[8] (in fact, we show that the
ASTRAL algorithm is a 2-approximation for the minimization version of WQC). So far, the
best known approximation algorithm for the WQC problem consists in choosing a random
tree as a solution [16]. This tree is expected to contain a third of the quartets from the input
trees, and so it is a randomized factor 1/3 approximation. In [2], the minimization version
of the problem is studied, where the objective is to find a median tree T minimizing the sum
of quartet distances between T and the input trees (the quartet distance between two trees
T1 and T2 is defined as the number of quartets in T1 that are not in T2). A 2-approximation
algorithm is given, based on the fact that the quartet distance is a metric [9, 2].

A related problem that has received more attention is the Complete Maximum Quartet
Compatibility problem (CMQC) (see [5, 4, 16, 14, 25, 26, 10, 21, 22]). In the CMQC problem,
we are given, for each set S of four species, exactly one quartet on S, and the objective
is to find a tree containing a maximum number of quartets from the input. This can be
seen as a version of WQC in which each set of four species has one quartet of weight 1,
and the others have weight 0. The CMQC and WQC are however fundamentally different.
Although one could apply an algorithm for CMQC to WQC (by keeping only the most
frequent quartet on each set of four taxa), maximizing the most-frequent quartets may
enforce the presence of many low-frequency quartets. A better solution may prefer more of
the middle-frequency quartets, and we give an example of this phenomenon. It was shown in
[16] that the CMQC problem admits a polynomial time approximation scheme (PTAS), but
it can only be extended to WQC intances on a constant number of trees. Also, CMQC was
shown in [14, 10] to be fixed-parameter tractable w.r.t. the parameter “number of quartets
to reject from the input”.

The main result of this paper is to establish the NP-hardness of the WQC problem. In
Section 2, we introduce preliminary notions, and in Section 3 we propose a reduction from
the NP-hard Cyclic Ordering problem to WQC. It can be shown that this hardness result
transfers to the rooted setting, in which case we want to optimize triplets (3-leaf rooted trees)
rather than quartets. In Section 4, we discuss how being in a consensus setting, i.e. having
weights based on a set of input trees on the same leaf set rather than arbitrary weights,
does not necessarily make the problem easier, as one could expect: We list some structural
properties that, surprisingly, are not satisfied by optimal solutions of a WQC instance.
Nevertheless, in Section 5 we devise a factor 1/2 approximation algorithm for WQC running
in time O(k2n2 + kn4 +n5), where k is the number of trees and n the number of species (the
best known randomized algorithm in the non-consensus setting is a factor 1/3 one). As a
matter of fact, our algorithm includes a derandomization of this procedure, which had never
been done before. Finally in Section 6, we show that the known FPT algorithms for the
CMQC problem can be extended to the consensus setting. This yields an FPT algorithm that
is efficient on instances in which there is not too much ambiguity, i.e. when few competing
quartets on the same 4 species appear with the same frequency. We then conclude with some
remarks and open problems related to the quartet consensus problem.

2 Preliminaries

An unrooted phylogenetic tree T consists of vertices connected by edges, in which every pair
of nodes is connected by exactly one path and no vertex is of degree two. The leaves of a tree

M. Lafond and C. Scornavacca 28:3

T , denoted by L(T) are the set of vertices of degree one. Each leaf is associated to a label;
the set of labels associated to the leaves of a tree T is denoted by L(T). We suppose that
there is a bijection between L(T) and L(T). Due to this bijectivity, we will refer to leaves
and labels interchangeably. We denote |L(T)| as |T |. In the following, we will often omit
the word “phylogenetic” and, unless otherwise stated, all trees are leaf-labeled. A binary
unrooted tree has only vertices with degree three and vertices with degree one. A rooted
(binary) phylogenetic tree is defined in the same way, except that it has exactly one node of
degree two called the root, denoted by r(T). Note that sometimes in the literature, rooted
trees are seen as directed and such that all arcs are oriented away from the root. Unless
stated otherwise, all trees in this paper are unrooted.

Given an unrooted phylogenetic tree T and a subset Y ⊆ L(T), we denote by T |Y the tree
obtained from the minimal subgraph of T connecting Y when contracting degree-2 vertices.
A quadset is a set of four labels. For a quadset {a, b, c, d}, there are three non-isomorphic1
unrooted binary trees, called quartets, which are denoted respectively by ab|cd, ac|bd, and
ad|bc, depending on how the central edge splits the four labels. We say that an unrooted
tree T displays the quartet ab|cd if T |{a, b, c, d} is ab|cd. We denote the set of quartets that
an unrooted tree T displays by Q(T). Note that if T is binary, then |Q(T)| =

(|L(T)|
4
)
. A set

of quartets Q on a set L is said to be complete if for each quadset {a, b, c, d} ⊆ L, there is in
Q exactly one quartet among ab|cd, ac|bd, and bc|ad.

We are now ready to state our optimization problem. The Weighted Quartet
Consensus problem asks for a tree that has as many quartets as possible in common with a
given set of trees on the same set of labels X :

Weighted Quartet Consensus (WQC) problem
Input: a set of unrooted trees T = {T1, . . . , Tk} such that L(T1) = . . . = L(Tk) = X .
Output: a binary unrooted tree M with L(M) = X that maximizes

∑
T∈T |Q(M) ∩Q(T)|.

The problem is weighted as each quartet on X is weighted by frequency in T , see below.
In this paper we will focus on the particular case where the input trees are all binary. In

fact, proving the problem NP-hard for this restricted case implies NP-hardness of the general
problem. Note however that relaxing the requirement of the output M to be binary leads to
a different problem, as one needs to define how unresolved quartets in M are weighted.

In the remainder of the article, we will sometimes consider multi-sets of quartets, that
are sets in which the same quartet can appear multiple times. Denote by fQ(q) the number
of times that a quartet q appears in a multi-set Q (we may write f(q) if Q is unambiguous).
We say that a tree T contains k quartets of Q if there are distinct quartets q1, . . . , qp ∈ Q(T)
such that

∑p
i=1 f(qi) = k. The Weighted Quartet Consensus problem can be rephrased

as follows: given trees T1, . . . , Tk, finding a tree M that contains a maximum number of
quartets from Q(T1)]Q(T2)] . . .]Q(Tk), where] denotes multiset union. We will implicitly
work with the decision version of WQC, i.e. for a given integer q, is there a consensus tree
M containing at least q quartets from Q(T1)]Q(T2)] . . .]Q(Tk)?

Given a quadset {a, b, c, d}, we say that ab|cd is dominant (w.r.t. f) if f(ab|cd) ≥ f(ac|bd)
and f(ab|cd) ≥ f(ad|bc). We say that ab|cd is strictly dominant if both inequalities are strict.

1 Isomorphism preserving labels.

CPM 2017

28:4 On the Weighted Quartet Consensus Problem

3 NP-hardness of the Weighted Quartet Consensus problem

In this section, we present a reduction from the Cyclic ordering problem. This problem
has been used in phylogenetics before in [15] in the context of inferring rooted binary trees
from rooted triplets that are not required to originate from a set of trees on the same leaf set.

But beforehand, we need some additional notation. A caterpillar is an unrooted binary
tree obtained by taking a path P = p1p2 . . . pr, then adding a leaf `i adjacent to pi for each
1 ≤ i ≤ r, then adding another leaf `′1 adjacent to p1 and a leaf `′r adjacent to pr. The two
leaves `′1 and `′r inserted last are called the ends of the caterpillar. An augmented caterpillar
T is a binary tree obtained by taking a caterpillar, then replacing each leaf by a binary
rooted tree (replacing a leaf ` by a tree T ′ means replacing ` by r(T ′)). If T1, T2 are the two
trees replacing the ends of the caterpillar, then T is called a (T1, T2)-augmented caterpillar.
Note that every binary tree is a (T1, T2)-augmented caterpillar for some T1, T2. Let T be
a caterpillar with leaves (`1, `2, . . . , `k) taken in the order in which we encounter them on
the path between the two ends l1 and lk (more precisely, traverse the `1 − `k path, and
each time an internal node is encountered, append its adjacent leaves to the sequence), and
let T1, . . . , Tk be rooted binary trees. We denote by (T1|T2| . . . |Tk) the (T1, Tk)-augmented
caterpillar obtained by replacing `i by r(Ti), 1 ≤ i ≤ k. This notation gives rise to a natural
ordering of its subtrees, and we say that Ti < Tj if i < j (i.e. Ti appears before Tj in the
given ordering of the caterpillar subtrees). Note that by reversing such an ordering, we
obtain the same unrooted tree. However, in the proofs the given ordering will be important.
Also, since T1, T2, and Tk−1, Tk are interchangeable, we will simply say that these two pairs
are incomparable. If each Ti consists of a single leaf `i for 2 ≤ i ≤ k − 1, then we may write
(T1|`2| . . . |`k−1|Tk), and `i < `j in T to indicate that `i appears before `j in the ordering.

We are now ready to describe the Cyclic Ordering problem. Let L = (s1, . . . , sn) be a
linear ordering of a set S of at least 3 elements, and let (a, b, c) be an ordered triple, with
a, b, c ∈ S. We say that L satisfies (a, b, c) if one of the following holds in L: a < b < c, b <

c < a or c < a < b. If C is a set of ordered triples we say that L satisfies C if it satisfies every
element of C. Intuitively speaking, L satisfies (a, b, c) when, by turning L into a directed
cyclic order by attaching sn to s1, one can go from a to b, then to c and then to a. This
leads to the following problem definition:

Cyclic Ordering problem
Input: A set S of n elements and a set C of m ordered triples (a, b, c) of distinct members of
S.
Question: Does there exist a linear ordering L = (s1, . . . , sn) of S that satisfies C?

The Cyclic Ordering problem is NP-hard [13]. In the rest of this section, we let S and
C be the input set and triples, respectively, of a Cyclic Ordering problem instance. We
denote n = |S| and m = |C|. We shall use the following simple yet useful characterization.

I Lemma 1. A linear ordering L of S satisfies C if and only if for each (a, b, c) ∈ C, exactly
two of the following relations hold in L: a < b, b < c, c < a.

Proof. (⇒): let L be a linear ordering satisfying C, and let (a, b, c) ∈ C. Thus in L, one of
a < b < c, b < c < a or c < a < b holds. It is straightforward to verify that in each case,
exactly two of a < b, b < c, c < a hold.
(⇐): suppose that L does not satisfy C. Then there is some (a, b, c) ∈ C such that one of
a < c < b, b < a < c or c < b < a does not hold. Again, one can easily verify that each of
these cases satisfies only one of a < b, b < c and c < a. J

M. Lafond and C. Scornavacca 28:5

Now, from S and C we construct a set of unrooted binary trees T on the same set of
labels (we will omit the straightforward verification that this construction can be carried out
in polynomial time). First let W and Z be two rooted binary trees each on (nm)100 leaves
(the topology is arbitrary, and the 100 exponent could be optimized). Our trees are defined
on the leaf set X = S ∪L(W)∪L(Z) (note that S,L(W),L(Z) are disjoint). Let C ∈ C with
C = (a, b, c). We construct 6 trees from C, that is, 3 pairs of trees:

The “a < b” trees: let (s1, . . . , sn−2) be an arbitrary ordering of S \ {a, b}. Then we build
the trees TC(ab) = (W |a|b|s1|s2| . . . |sn−2|Z) and ←−T C(ab) = (W |sn−2|sn−3| . . . |s1|a|b|Z).
The “b < c” trees: let (ŝ1, . . . , ŝn−2) be an arbitrary ordering of S \ {b, c}. Then we build
the trees TC(bc) = (W |b|c|ŝ1|ŝ2| . . . |ŝn−2|Z) and ←−T C(bc) = (W |ŝn−2|ŝn−3| . . . |ŝ1|b|c|Z).
The “c < a” trees: let (s̄1, . . . , s̄n−2) be an arbitrary ordering of S \ {c, a}. Then we build
the trees TC(ca) = (W |c|a|s̄1|s̄2| . . . |s̄n−2|Z) and ←−T C(ca) = (W |s̄n−2|s̄n−3| . . . |s̄1|c|a|Z).

Denote by T (C) the set of 6 constructed trees for C ∈ C. In this section, the input for our
Weighted Quartet Consensus instance constructed from S and C is T =

⋃
C∈C T (C).

Note that |T | = 6m.
Observe that each tree of T (C) is a (W,Z)-augmented caterpillar. Moreover, note that

the majority of ordered pairs are “balanced” in the pairs of constructed trees: Let a, b ∈ S
and x, y ∈ S \ {a, b}, and let {TC(ab),←−T C(ab)} be an “a < b” tree-pair. Then we have x < y

in TC(ab) if and only if y < x in ←−T C(ab). Similarly for any x ∈ S \ {a, b}, a < x, b < x in
TC(ab) but x < a, x < b in ←−T C(ab). Only a < b holds in both trees.

Let T ∈ T , and let B(T) denote the set of quartets of T that have at least two members
of L(W), or at least two members of L(Z). Thus B(T) consists in all the quartets of the
form w1w2|xy and z1z2|xy of T , where w1, w2 ∈ L(W), z1, z2 ∈ L(Z) and x, y ∈ X (note
that no quartet of B(T) has the form w1x|yw2 for x, y /∈ L(W), nor the form z1x|yz2 for
x, y /∈ L(Z)). Note that for any tree T ′ ∈ T , B(T) = B(T ′). Let K := 6m|B(T)| be the total
number of such quartets in T , i.e. K is the size of

⊎
T∈T B(T). We observe the following:

I Remark. Any (W,Z)-augmented caterpillar on X contains the K quartets
⊎

T∈T B(T).
Now, denote Ô := 3m|W ||Z|

((
n−2

2
)

+ 2(n− 2)
)
. Let T ∈ T and suppose that T is an “a < b”

tree, for some a, b ∈ S. For w ∈ L(W) and z ∈ L(Z), x, y ∈ S, a quartet wx|yz displayed by
T is called an out-quartet of T if {x, y} 6= {a, b}, and an in-quartet of T if x = a and y = b

(note that x = b and y = a is not possible, by construction). Let out(T) and in(T) denote
the set of out-quartets and in-quartets, respectively, of T . Note that each tree T has |W ||Z|
in-quartets and |W ||Z|

((
n−2

2
)

+ 2(n− 2)
)
out-quartets (because there are

(
n−2

2
)

+ 2(n− 2)
ways to choose {x, y} 6= {a, b}). Thus Ô is half the total number of out-quartets.

I Lemma 2. Any weighted quartet consensus tree M for T contains at most Ô quartets from⊎
T∈T out(T). Moreover, if M is a (W,Z)-augmented caterpillar (W |s1| . . . |sn|Z), where

S = {s1, . . . , sn}, then M contains exactly Ô quartets from
⊎

T∈T out(T).

Proof. Let w ∈ L(W) and z ∈ L(Z). Let {TC(ab),←−T C(ab)} be an “a < b” tree-pair of T ,
for some a, b ∈ S, and let x, y ∈ S such that {x, y} 6= {a, b}. Because x < y in TC(ab) if
and only if y < x in ←−T C(ab), we get that the out-quartet wx|yz is in TC(ab) if and only if
wy|xz is in←−T C(ab). Since M can only contain one of the two quartets, it follows that M can
contain at most half of the quartets from out(TC(ab))] out(←−T C(ab)). Thus M contains at
most half the quartets from

⊎
T∈T out(T), which is 3m|W ||Z|

((
n−2

2
)

+ 2(n− 2)
)

= Ô. As
for the second assertion, if M = (W |s1| . . . |sn|Z) then M contains one of wx|yz or wy|xz
for each x, y ∈ S. Thus if M does not contain the out-quartet wx|yz from TC(ab), then it

CPM 2017

28:6 On the Weighted Quartet Consensus Problem

contains the out-quartet wy|xz from ←−T C(ab). We deduce that M contains at least half the
quartets from out(TC(ab))] out(←−T C(ab)), and thus half the quartets from

⊎
T∈T out(T). J

What follows is a key Lemma. The proof is not so straightforward and can be found in
Appendix B.1.

I Lemma 3. Any optimal consensus tree for T is a (W,Z)-augmented caterpillar.

We finally arrive at our main result.

I Theorem 4. The Weighted Quartet Consensus problem is NP-hard.

Proof. We show that there exists a linear ordering of S satisfying C if and only if there
exists a weighted quartet consensus tree M for T that contains at least K + Ô + 4m|W ||Z|
quartets from

⊎
T∈T Q(T). For the rest of the proof, we let w ∈ L(W) and z ∈ L(Z) be

arbitrary leaves of W and Z, respectively.
(⇒): let L = (s1, s2, . . . , sn) be a linear ordering of S satisfying C. Then we claim that

the weighted quartet consensus tree M = (W |s1|s2| . . . |sn|Z) contains the desired number of
quartets. Since M is a (W,Z)-augmented caterpillar, M contains K quartets of T that have
two or more elements from L(W), or two or more elements from L(Z), see remark on page 5.
Moreover by Lemma 2, M contains Ô quartets from

⊎
T∈T out(T). As for the in-quartets, let

(a, b, c) ∈ C and let T ((a, b, c)) be the set of 6 trees corresponding to (a, b, c). By Lemma 1, L
satisfies two of the relations a < b, b < c, c < a . This implies that M has exactly two of the
following quartets: wa|bz, wb|cz, wc|az. Since, for every w ∈ L(W) and z ∈ L(Z), each of
these three quartets appears as an in-quartet in exactly two trees of T ((a, b, c)) (e.g. wa|bz is
an in-quartet of T(a,b,c)(ab) and ←−T (a,b,c)(ab)), it follows that M contains 4|W ||Z| quartets of⊎

T∈T ((a,b,c)) in(T). As this holds for every (a, b, c) ∈ C, M contains 4m|W ||Z| quartets of⊎
T∈T in(T). Summing up, we get that M has at least K + Ô + 4m|W ||Z| quartets from T .

(⇐): suppose that no linear ordering of S satisfies C. Let M be an optimal consensus
tree for T . By Lemma 3, we may assume that M is a (W,Z)-augmented caterpillar. We
bound the number of quartets of T that can be contained in M .

First, by Lemma 3, M contains K quartets of T that have at least two elements of
L(W) or at least two elements of L(Z). As for the quartets with one or zero elements from
L(W) ∪ L(Z), in any tree T ∈ T there are at most (|W | + |Z|)n3 quartets of the form
wa|bc or za|bc with a, b, c ∈ S, and at most n4 quartets of the form ab|cd with a, b, c, d ∈ S.
Thus M contains at most 6m((|W |+ |Z|)n3 + n4) < (|W |+ |Z|)mn5 quartets of T that are
of the form wa|bc, za|bc or ab|cd with a, b, c ∈ S (the inequality holds because n ≥ 3 and
|W | = |Z| = (nm)100). Also, by Lemma 2,M contains at most Ô quartets from

⊎
T∈T out(T).

It remains to count the in-quartets.
Let (a, b, c) ∈ C. The following in-quartets appear, each twice, in T ((a, b, c)): wa|bz,

wb|cz, wc|az. It is easy to check that these three quartets are incompatible, i.e. no tree can
contain all three of them, and hence M can have at most two of them. We deduce that
there must be at least two trees T,←−T of T ((a, b, c)) such that M contains no quartet from
in(T)] in(←−T). Therefore M contains at most 4|W ||Z| quartets from

⊎
T∈T ((a,b,c)) in(T),

and thus at most 4m|W ||Z| quartets from
⊎

T∈T in(T) assuming that the 4|W ||Z| bound is
attained for every (a, b, c) ∈ C. We will however show that there must be some (a, b, c) ∈ C
such that M contains only 2|W ||Z| of the quartets in

⊎
T∈T ((a,b,c)) in(T).

Now, since M is a (W,Z)-augmented caterpillar, we write M = (W |T1|T2| . . . |Tk|Z).
For some a ∈ S, let T (a) be the tree of {T1, . . . , Tk} that contains a as a leaf. Then a
quartet wa|bz is in Q(M) if and only if T (a) < T (b). Let L be a linear ordering of S such

M. Lafond and C. Scornavacca 28:7

that T (a) < T (b) ⇒ a < b in L. Since no linear ordering of S can satisfy C, by Lemma 1
there must be some (a, b, c) ∈ C such that only one of a < b, b < c, c < a holds in L. This
also means that at most one of T (a) < T (b), T (b) < T (c), T (c) < T (a) holds (because
¬(a < b)⇒ ¬(T (a) < T (b))). Thus M has at most one of the wa|bz, wb|cz, wc|az quartets.
It follows that there are at least 2|W ||Z| quartets from

⊎
T∈T ((a,b,c)) in(T) that M does not

contain. Therefore M contains at most 4m|W ||Z| − 2|W ||Z| quartets of
⊎

T∈T in(T).
In total, the number of quartets that M contains from the input is bounded by K + Ô +

(|W |+ |Z|)mn5 + (4m− 2)|W ||Z| < K + Ô + 4m|W ||Z|, by our choice of |W | and |Z|. J

The implications of these results for the Weighted Triplet Consensus (WTC) problem are
presented in Appendix A. The same techniques can be used to show that WTC is NP-hard.

4 The (non)-structure of WQC

In the rest of this paper, we aim at designing algorithms building on the fact that the weight
of each quartet is not arbitrary, and is rather based on a set of input trees on the same leaf
set. When designing optimized algorithms for a problem, understanding the relationship
between the input and the optimal solution(s) can be of great help. In phylogenetics, several
problems are harder in the supertree setting, i.e. when the input trees do not all contain
the same species, than in the consensus setting as in the WQC problem. An example is the
problem of finding an unrooted phylogenetic tree containing as minors a set of unrooted
phylogenetic trees – the compatibility problem – which is NP-hard in the supertree setting
[24] and polynomially solvable in the consensus setting [1]. Despite the NP-hardness of WQC,
there may exist some properties inherent to the consensus setting that are useful for devising
efficient FPT algorithm, or for establishing lower bounds on the value of an optimal solution
in order to develop approximation algorithms.

In attempt to establish useful properties of the weights of quartets in the consensus
setting, we initially conjectured that the following relationships between the input trees and
the solution(s) hold. Despite being seemingly reasonable, we prove all these conjectures false.

1. let D be the set of strictly dominant quartets of the input multiset Q, i.e. the quartets
ab|cd such that f(ab|cd) > f(ac|bd) and f(ab|cd) > f(ad|bc). Then there is a constant
α > 0 such that there exists an optimal solution containing at least α|D| quartets of D;

2. if a quartet ab|cd has a higher weight than the sum of the other quartets on the same
quadset, i.e. f(ab|cd) > f(ac|bd) + f(ad|bc), then some optimal solution contains ab|cd;

3. more generally, there exists β > 0 such that if a quartet ab|cd is in a fraction β of the
input trees, then ab|cd must be in some optimal solution. In particular, if ab|cd is in
every input tree, then there is some optimal solution that contains ab|cd;

4. if a quartet ab|cd is in no input tree, then no optimal solution contains ab|cd.
5. call ab|cd a strictly least-frequent quartet if f(ab|cd) < f(ac|bd) and f(ab|cd) < f(ad|bc).

Suppose that there exists a tree T ∗ on leaf set X that contains no strictly least-frequent
quartet, and choose such a T ∗ that contains a maximum number of quartets from the
input. Then T ∗ is an optimal solution for WQC.

Unfortunately, we answered negatively to all conjectures, see Appendix B.2.

5 Approximability of WQC

In this section, we show that WQC admits a factor 1/2 approximation algorithm that runs
in polynomial time. Hereafter, the input set of trees is T = {T1, . . . , Tk} and we denote

CPM 2017

28:8 On the Weighted Quartet Consensus Problem

Q = Q(T1)] . . .]Q(Tk). We say that a minimization (resp. maximization) problem P can
be approximated within a factor α > 1 (resp. β < 1) if there is an algorithm that, for every
instance I of P , runs in polynomial time and outputs a solution of value APP (I) such that
APP (I) ≤ αOPT (I) (resp. APP (I) ≥ βOPT (I)), where OPT (I) is the optimal value of I.

As mentioned before, the Complete Maximum Quartet Compatibility (CMQC) problem
admits a PTAS, though it can only be applied to the WQC problem when the number
of input trees is constant. There does not seem to exist an easy extension of the PTAS
algorithm for the case of an unbounded number of trees, which makes WQC seem “harder”
than CMQC. Nevertheless, we give a simple factor 1/2 approximation algorithm, which is
better than the (randomized) factor 1/3 approximation, the best known so far, for the general
Maximum Quartet Consistency problem in which the given quartet set is not necessarily
complete. We borrow ideas from [9] to show that this can be achieved by taking the best
solution from either a 1/3 approximation to WQC, or a factor 2 approximation to WMQI,
the minimization version of WQC (see below). For two unrooted binary trees T1, T2 on leaf
set X , denote dQ(T1, T2) = |Q(T1) \Q(T2)|. The WMQI problem is defined as follows:

Weighted Minimum Quartet Inconsistency (WMQI) problem
Input: a set of unrooted trees T = {T1, . . . , Tk} such that L(T1) = . . . = L(Tk) = X .
Output: a tree M with L(M) = X that minimizes

∑
T∈T dQ(M,T).

Note that the WMQI problem is equivalent to finding a minimum (in the multiset sense)
number of quartets to discard from Q so that it is compatible.

It is not hard to show that dQ is a metric. In particular, dQ satisfies the triangle inequality,
i.e. for any 3 trees T1, T2, T3 on the same leaf set, dQ(T1, T3) ≤ dQ(T1, T2) + dQ(T2, T3). This
leads to a factor 2 approximation algorithm for WMQI obtained by simply returning the best
tree from the input. Intuitively, the input tree that is the closest to the others cannot be too
far from the best solution, which is a median tree in the metric space. See [2] for details.

I Theorem 5 ([2]). The following is a factor 2 approximation algorithm for WMQI: output
the tree T ∈ T that minimizes

∑
Ti∈T dQ(T, Ti).

In [2], the authors explain how to compute dQ(T1, T2) in time O(n2). Therefore the
factor 2 approximation can be implemented to run in time O(k2n2), by simply computing
dQ between every pair of trees.

Theorem 5 has a direct implication on the approximation guarantees of the ASTRAL
algorithm in [20], an implementation of the work from Bryant and Steel [8]. This algorithm
finds, in polynomial time, an optimal solution M for a restricted version of WMQI where
every bipartition of M is also a bipartition in at least one of the input trees. The solution T
returned by the algorithm of Theorem 5 above trivially satisfies this condition. Thus, M is
at least as good as T , implying the following.

I Corollary 6. The ASTRAL algorithm is a factor 2 approximation for WMQI.

We do not know whether the factor 2 is tight for the ASTRAL algorithm - we conjecture
that ASTRAL can actually achieve a better approximation ratio. As shown in the rest of
this section, this would have interesting applications for the approximability of WQC.

Indeed, both WQC and WMQI share the same set of optimal solutions, but the two
problems are not necessarily identical in terms of approximability. We show however that
WMQI can be used to approximate WQC. As stated earlier, there is a trivial factor 1/3
randomized approximation for WQC: output a random tree T . Each quartet of Q has a 1/3
chance of being contained by T , and so the expected number of quartets of Q contained by

M. Lafond and C. Scornavacca 28:9

T is |Q|/3 = k
(

n
4
)
/3 (here |Q| denotes the multiset cardinality). Call this the “random-tree-

algorithm”. For the sake of having a deterministic algorithm, we show the following:

I Lemma 7. The “random-tree-algorithm” can be derandomized, i.e. there is a deterministic
algorithm that, in time O(kn4 + n5), finds a tree containing at least |Q|/3 quartets from Q.

Proof. We derandomize the factor 1/3 algorithm using the standard method of conditional
expectation. For the simplicity of exposition, we will construct a rooted tree T in a top-down
manner (T can be unrooted after the construction). Call a rooted tree T internally binary if
the only nodes of T that have more than two children have only leaves as children. We start
with a fully unresolved internally binary tree T on leaf set X (i.e. T consists of a root whose
n children are in bijection with X). We then iteratively split each unresolved node v of T
into two subtrees so as to maximize the expected number of quartets that T contains. We
stop when T is a binary tree.

To describe the algorithm more precisely, suppose that T is an internally binary tree on
leaf set X , and let v be a node of T with more than 2 children, say {v1, . . . , vm} ⊆ X (if no
such v exists, then T is binary and we can stop). We split v by first removing {v1, . . . , vm}
from T , adding two children x and y to v, and reinserting v1, . . . , vm one after another, each
as either a child of x or a child of y. We describe how this choice is made. Suppose that
for i ≥ 1, v1, . . . , vi−1 have been reinserted, resulting in the tree Ti−1, and that we need
to process vi. Denote by Ti,x (resp. Ti,y) the tree obtained by inserting vi as a child of x
(resp. of y) in Ti−1. We then define a random binary tree T ′i,x from Ti,x as follows: for each
v′ ∈ {vi+1, . . . , vm}, reinsert v′ as a child of x with probability 1/2, or as a child of y with
probability 1/2. Then, replace each non-binary node w with children X ′ by a rooted binary
tree on leaf set X ′ chosen uniformly at random. We define the random binary tree T ′i,y from
Ti,y using the same process.

For a random tree T ′ obtained by the above process and for q ∈ Q, let I(q, T ′) be an
indicator variable for whether q ∈ Q(T ′). That is, I(q, T ′) = 1 if q ∈ Q(T ′), and I(q, T ′) = 0
otherwise. Let I(T ′) =

∑
q∈Q I(q, T ′)fQ(q) 2. We seek

max
T ′∈{T ′

i,x
,T ′

i,y
}
E [I(T ′)] = max

T ′∈{T ′
i,x

,T ′
i,y
}
E

∑
q∈Q

I(q, T ′)fQ(q)

= max

T ′∈{T ′
i,x

,T ′
i,y
}

∑
q∈Q

Pr [q ∈ Q(T ′)] fQ(q) .

If T ′i,x attains this maximum, we insert vi below x, and otherwise we insert vi below
y. After every child vi of v has been inserted, we process the next non-binary node. This
concludes the algorithm description (we shall detail how to compute Pr[q ∈ Q(T ′)] below).

If T is an internally binary tree, by a slight abuse of notation define E [I(T)] = E [I(T ′)],
where T ′ is the random binary tree obtained by replacing each non-binary node of T on leaf
set X ′ by a random binary tree on leaf set X ′.

I Claim 1. Let T be an internally binary tree, and suppose that E[I(T)] ≥ |Q|/3. Let v
be a non-binary node of T , and let Tv be the tree obtained after splitting v using the above
algorithm. Then E[I(Tv)] ≥ |Q|/3.

2 Observe that here, q ∈ Q means that there exists at least one occurrence of q in the multisetQ, and so
each quartet present in Q is considered once in the summation, independently of fQ(q).

CPM 2017

28:10 On the Weighted Quartet Consensus Problem

Let {v1, . . . , vm} be the children of v. To prove the claim, we use induction on the
number of processed children of v to show that after each insertion of a child vi, the obtained
tree Ti ∈ {Ti,x, Ti,y} satisfies E[I(T ′i)] ≥ |Q|/3, where T ′i ∈ {T ′i,x, T ′i,y} is the random tree
corresponding to Ti obtained from the above process (i.e. reinserting vi+1, . . . , vm randomly
under x or y, and resolving non-binary nodes randomly). This proves the statement since
Tm = Tv (and thus E [I(Tv)] = E [I(Tm)] = E[I(T ′

m)] ≥ |Q|/3). As a base case, if i = 1 it
is easy to see that T ′1,x and T ′1,y are identical, and that E[I(T ′1,x)] = E[I(T ′1,y)] = E[I(T)] ≥
|Q|/3. For i > 1, let Ti−1 be the tree obtained after inserting vi−1, and suppose without
loss of generality that Ti−1 = Ti−1,x. Because, in T ′i−1,x, we insert vi below x or y each with
probability 1

2 , we have

E
[
I(T ′i−1,x)

]
= 1

2E
[
I(T ′i−1,x)|vi is a child of x

]
+ 1

2E
[
I(T ′i−1,x)|vi is a child of y

]
= 1

2
(
E
[
I(T ′i,x)

]
+ E

[
I(T ′i,y)

])
.

By induction, we also have E[I(T ′i−1,x)] ≥ |Q|/3. Combined with the above equality, we
obtain 1

2
(
E
[
I(T ′i,x)

]
+ E

[
I(T ′i,y)

])
≥ |Q|/3. This implies that one of E[I(T ′i,x)] or E[I(T ′i,y)]

must be at least |Q|/3. J
Since the fully unresolved tree T from which we start satisfies E[I(T)] ≥ |Q|/3, Claim 1

shows that the algorithm does terminate with a tree containing at least |Q|/3 quartets from
Q. It remains to be show how to compute, when reinserting a node vi, the expectations for
T ′i,x and T ′i,y.

In fact, it suffices to be able to compute, for a given quartet q = ab|cd, the probability
Pr[q ∈ Q(T ′)] for T ′ ∈ {T ′i,x, T ′i,y}. Moreover, if Pr[q ∈ Q(T ′i,x)] = Pr[q ∈ Q(T ′i,y)], then this
probability does not contribute to determining which scenario maximizes expectation, and in
this case we do not need to consider q. In particular, if none of a, b, c, d is equal to vi, then
Pr[q ∈ Q(T ′i,x)] = Pr[q ∈ Q(T ′i,y)]. Therefore, it is enough to consider only quartets in which
vi is included. We will assume that vi = a. Moreover, we may assume that two or three of
{b, c, d} are children of v in T (recall that v is the parent of vi in T), because otherwise the
probability that ab|cd is in T ′ is unaffected by whether a is a child of x or a child of y.

There are still multiple cases depending on which of b, c and d are children of v, and which
have been reinserted or have not, but this probability can be easily found algorithmically.
Let U = {b, c, d} ∩ {vi+1, . . . , vm}, i.e. the leaves in {b, c, d} that have not been reinserted
yet in T ′. We obtain new trees S′1, . . . , S′h by reinserting, in T ′, the members of U below x or
y in every possible way – there are only 2|U | ≤ 8 possibilities, so h ≤ 8. Then, for 1 ≤ j ≤ h
denote by S′j |q the tree S′j restricted to {a, b, c, d} (i.e. obtained by removing every leaf not
in {a, b, c, d}, then contracting degree 2 vertices). Note that S′j |q may be non-binary. We get
Pr[q ∈ Q(T ′)] =

∑h
j=1

1
h Pr[q ∈ Q(S′j |q)]. This is because every leaf in vi+1, . . . , vm other

than b, c, d is reinserted independently from the choice for b, c, d, and every non-binary node
remaining after the reinsertions is resolved uniformly. The probability Pr[q ∈ Q(S′j |q)] is
straightforward to compute, as only a constant number of cases can occur since S′j |q has only
4 leaves. We omit the details.

Time complexity: we must first preprocess the input in order to compute fQ(q) for each
quartet q. This takes time O(kn4). As for the computation of Pr[q ∈ Q(T ′)], assume that
the lowest common ancestor (lca) of two leaves can be found in constant time. This can be
achieved naively by simply storing the lca for each pair of leaves in a table of size O(n2), and
updating the table in time O(n) each time a decision on some vi is made (this does not hinder
the total time complexity of the algorithm, though there are more clever ways to handle

M. Lafond and C. Scornavacca 28:11

dynamic tree lca queries [11]). Then the restrictions S′1|q, . . . , S′h|q can be computed in
constant time. It is then straightforward to see that, by the above process, Pr[q ∈ Q(T ′)] can
be computed in constant time. Each time a node vi needs to be reinserted, this probability
must be computed for the O(n3) quartets containing vi. There are n−1 splits to be performed,
and each split requires inserting O(n) nodes. Thus the “binarization” process takes total
time O(n5), and altogether the derandomization takes time O(kn4 + n5). J

The above leads to a (deterministic) 1/3- approximation. This can be used to show the
following. The proof is similar to that of [9, Theorem 2] and is relegated to Appendix B.3.

I Theorem 8. If WMQI can be approximated within a factor α, then WQC can be approx-
imated within a factor β = α/(3α− 2).

Combined with Theorem 5 and letting α = 2 in Theorem 8 we get the following.

I Corollary 9. WQC can be approximated within a factor 1/2 in time O(k2n2 + kn4 + n5).

6 Fixed-parameter tractability of WQC

In this section we describe how, based on previous results on the minimum quartet incompat-
ibility problem on complete sets, WQC can be solved in time O(4d′+k′

2+k′
3n+ n4). Here k′2

and k′3 are the number of quadsets that have 2 and 3 dominant quartets, respectively, and d′ is
the number of strictly dominant quartets that we are allowed to reject. The algorithm makes
direct use of the Gramm-Niedermeyer algorithm [14], henceforth called the GN algorithm.

The GN algorithm solves the following problem: given a complete set of quartets Q, find,
if it exists, a complete and compatible set of quartets Q′ such that at most d quartets of Q′
are not in the input set Q (i.e. |Q′ \Q| ≤ d). This is accomplished by repeatedly applying
the following theorem:

I Theorem 10 ([14]). Let Q be a complete set of quartets. Then Q is compatible if and only
if for each set of five taxa {a, b, c, d, e} ⊆ X , ab|cd ∈ Q implies ab|ce ∈ Q or ae|cd ∈ Q.

The idea behind the GN algorithm is as follows: find a set of five taxa {a, b, c, d, e} that
does not satisfy the condition of Theorem 10, then correct the situation by branching into
the four possible choices:
1. remove ab|cd from Q and add ac|bd to Q;
2. remove ab|cd from Q and add ad|bc to Q;
3. remove {ac|be,ae|bc} ∩Q from Q and add ab|ce to Q;
4. remove {ac|de,ad|ce} ∩Q from Q and add ae|cd to Q.
The quartets added to Q will not be questioned in the following branchings. With some
optimization, this leads to a O(4dn+ n4) FPT algorithm.

In [14], the authors also note that this algorithm can be extended to sets of quartets Q
that contain ambiguous quadsets, i.e. sets {a, b, c, d} for which 2 or 3 of the possible quartets
on {a, b, c, d} are in Q. Suppose there are k2 and k3, respectively, quadsets that have 2 and 3
quartets in Q. The modified algorithm then, in a first phase, branches into the 2k23k3 ways
of choosing one quartet per such quadset, thereby obtaining a complete set of quartets for
each possibility. The GN algorithm is thus applied to the so-obtained complete sets. This
yields a O(2k2 · 3k3 · 4dn+ n4) algorithm.

It is not hard to see that this gives an FPT algorithm for WQC, where the parameter k2
(resp. k3) is the number of quadsets such that 2 (resp. 3) possible quartets appear in the
input trees, and d is the number of quartets ab|cd that appear in every input tree, and that

CPM 2017

28:12 On the Weighted Quartet Consensus Problem

we are allowed to discharge. Note however that, in the consensus setting, there is no reason
to believe that k2 and k3 are low - in we fact we believe that k2 + k3 typically takes values in
Θ(n4). One reason is that even the slightest amount of noise on a quadset makes it included
in the count of either k2 or k3 (e.g. if k− 1 trees agree on ab|cd and only one contains ac|bd).

The GN algorithm can, however, be used on a more interesting set of parameters. Define
k′2 (resp. k′3) as the number of quadsets that have exactly 2 (resp. 3) dominant quartets,
and let d′ be the number of strictly dominant quartets that we are allowed to discharge. It is
reasonable to believe that, if each tree of the input is close to the true tree T ∗, most “true”
quartets will appear as strictly dominant in the input, and there should not be too many
ambiguous quadsets. There is a very simple algorithm achieving time O(4d′+k′

2+k′
3n+ n4).

Construct a complete set of quartets Q as follows: for each quadset {a, b, c, d}, choose a
dominant quartet on {a, b, c, d} and add it to Q (if multiple choices are possible, choose
arbitrarily). Then, run the GN algorithm on Q with the following modification: each time
a quartet q is removed from Q and replaced by another quartet q′, decrement either d′, k′2
or k′3, depending on whether q belongs to a quadset with 1, 2 or 3 dominant quartets. It
follows that if there exists a complete and compatible set of quartets Q′ such that at most d′
strictly dominant quartets are rejected, then the modified algorithm will find it. It should be
noted however that finding such a set Q′ does not guarantee that the corresponding tree is
an optimal solution. Indeed, since quartets are weighted, two solutions Q′ and Q′′ may both
reject only d′ strictly dominant quartets, yet one has higher weight than the other. However,
the correctness of the algorithm follows from the fact that the GN algorithm finds the set
of every solution discarding at most d′ dominant quartets - and thus it suffices to pick the
solution from this set that has optimal weight.

We finally mention that the FPT algorithms published in [10] are improved versions of
the GN algorithm, can also return every solution and thus can be modified in the same
manner. These yield FPT algorithms that can solve WQC in time O(3.0446d′+k′

2+k′
3n+ n4)

and O(2.0162d′+k′
2+k′

3n3 + n5).

7 Conclusion

In this paper, we have shown that the WQC problem is NP-hard, answering a question of [19]
and [2]. In the latter, the authors also propose a variant of the problem in which the output
tree T is not required to be binary. In this case, one needs to assign a cost p to the unresolved
quartets. Our reduction can be extended to show that hardness holds for high enough p,
but the complexity of the general case remains open. We have also shown that WQC can
be approximated within a factor 1/2. One open question is whether the problem admits a
PTAS as the related CMQC problem. The fixed-parameter tractability aspects of WQC
also deserve further investigation. This would require identifying some structural properties
that are present in the consensus setting and that can be used for designing practical exact
algorithms. But as we have shown, this might not be an easy task, as many properties which
seem reasonable for the consensus setting do not hold.

References

1 Alfred V. Aho, Yehoshua Sagiv, Thomas G. Szymanski, and Jeffrey D. Ullman. Inferring
a tree from lowest common ancestors with an application to the optimization of relational
expressions. SIAM J. Comput., 10(3):405–421, 1981. doi:10.1137/0210030.

http://dx.doi.org/10.1137/0210030

M. Lafond and C. Scornavacca 28:13

2 Mukul S. Bansal, Jianrong Dong, and David Fernández-Baca. Comparing and aggregating
partially resolved trees. Theor. Comput. Sci., 412(48):6634–6652, 2011. doi:10.1016/j.
tcs.2011.08.027.

3 Jean-Pierre Barthélemy and Fred R. McMorris. The median procedure for n-trees. J.
Classif., 3(2):329–334, 1986. doi:10.1007/BF01894194.

4 Vincent Berry, David Bryant, Tao Jiang, Paul Kearney, Ming Li, ToddWareham, and Haoy-
ong Zhang. A practical algorithm for recovering the best supported edges of an evolutionary
tree (extended abstract). In David B. Shmoys, editor, Proceedings of the 11th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 2000), pages 287–296. ACM/SIAM, 2000.
URL: http://dl.acm.org/citation.cfm?id=338219.338265.

5 Vincent Berry, Tao Jiang, Paul Kearney, Ming Li, and Todd Wareham. Quartet cleaning:
Improved algorithms and simulations. In Jaroslav Nešetřil, editor, Proceedings of the 7th
Annual European Symposium on Algorithms (ESA 1999), volume 1643 of LNCS, pages
313–324. Springer Berlin Heidelberg, 1999. doi:10.1007/3-540-48481-7_28.

6 David Bryant. Building trees, hunting for trees, and comparing trees. PhD thesis, University
of Canterbury, New Zealand, 1997. URL: http://hdl.handle.net/10092/7914.

7 David Bryant. A classification of consensus methods for phylogenetics. In Melvin F. Janow-
itz, François-Joseph Lapointe, Fred R. McMorris, Boris Mirkin, and Fred S. Roberts, ed-
itors, Proceedings of DIMACS Working Group Meetings on Bioconsensus, volume 61 of
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 163–
184. Americal Mathematical Society, 2003. doi:10.1090/dimacs/061/11.

8 David Bryant and Mike Steel. Constructing optimal trees from quartets. J. Algorithms,
38(1):237–259, 2001. doi:10.1006/jagm.2000.1133.

9 Jaroslaw Byrka, Sylvain Guillemot, and Jesper Jansson. New results on optimizing rooted
triplets consistency. Discrete Appl. Math., 158(11):1136–1147, 2010. doi:10.1016/j.dam.
2010.03.004.

10 Maw-Shang Chang, Chuang-Chieh Lin, and Peter Rossmanith. New fixed-parameter al-
gorithms for the minimum quartet inconsistency problem. Theory Comput. Syst., 47(2):342–
367, 2010. doi:10.1007/s00224-009-9165-y.

11 Richard Cole and Ramesh Hariharan. Dynamic LCA queries on trees. SIAM J. Comput.,
34(4):894–923, 2005. doi:10.1137/S0097539700370539.

12 Joseph Felsenstein. Inferring phylogenies. Sinauer Associates Sunderland, 2004.
13 Zvi Galil and Nimrod Megiddo. Cyclic ordering is NP-complete. Theor. Comput. Sci.,

5(2):179–182, 1977. doi:10.1016/0304-3975(77)90005-6.
14 Jens Gramm and Rolf Niedermeier. Minimum quartet inconsistency is fixed parameter

tractable. In Amihood Amir, editor, Proceedings of the 12th Annual Symposium of Com-
binatorial Pattern Matching (CPM 2001), volume 2089 of LNCS, pages 241–256. Springer
Berlin Heidelberg, 2001. doi:10.1007/3-540-48194-X_23.

15 Jesper Jansson. On the complexity of inferring rooted evolutionary trees. Electron. Notes
Discrete Math., 7:50–53, 2001. doi:10.1016/S1571-0653(04)00222-7.

16 Tao Jiang, Paul Kearney, and Ming Li. A polynomial time approximation scheme for
inferring evolutionary trees from quartet topologies and its application. SIAM J. Comput.,
30(6):1942–1961, 2001. doi:10.1137/S0097539799361683.

17 Timothy Margush and Fred R. McMorris. Consensus n-trees. Bull. Math. Biol., 43(2):239–
244, 1981. doi:10.1007/BF02459446.

18 Fred R. McMorris, David B. Meronk, and Dean A. Neumann. A view of some con-
sensus methods for trees. In Joseph Felsenstein, editor, Proceedings of the NATO Ad-
vanced Study Institute on Numerical Taxonomy, volume 1 of NATO Advanced Science
Institutes Series, Series G: Ecological Sciences, pages 122–126. Springer, 1983. doi:
10.1007/978-3-642-69024-2_18.

CPM 2017

http://dx.doi.org/10.1016/j.tcs.2011.08.027
http://dx.doi.org/10.1016/j.tcs.2011.08.027
http://dx.doi.org/10.1007/BF01894194
http://dl.acm.org/citation.cfm?id=338219.338265
http://dx.doi.org/10.1007/3-540-48481-7_28
http://hdl.handle.net/10092/7914
http://dx.doi.org/10.1090/dimacs/061/11
http://dx.doi.org/10.1006/jagm.2000.1133
http://dx.doi.org/10.1016/j.dam.2010.03.004
http://dx.doi.org/10.1016/j.dam.2010.03.004
http://dx.doi.org/10.1007/s00224-009-9165-y
http://dx.doi.org/10.1137/S0097539700370539
http://dx.doi.org/10.1016/0304-3975(77)90005-6
http://dx.doi.org/10.1007/3-540-48194-X_23
http://dx.doi.org/10.1016/S1571-0653(04)00222-7
http://dx.doi.org/10.1137/S0097539799361683
http://dx.doi.org/10.1007/BF02459446
http://dx.doi.org/10.1007/978-3-642-69024-2_18
http://dx.doi.org/10.1007/978-3-642-69024-2_18

28:14 On the Weighted Quartet Consensus Problem

19 Siavash Mirarab. Novel scalable approaches for multiple sequence alignment and phylo-
genomic reconstruction. PhD thesis, University of Texas at Austin, 2015. URL: http:
//hdl.handle.net/2152/31377.

20 Siavash Mirarab, Rezwana Reaz, Md. Shamsuzzoha Bayzid, Théo Zimmermann, M. Shel
Swenson, and Tandy Warnow. ASTRAL: genome-scale coalescent-based species tree estim-
ation. Bioinformatics, 30(17):i541–i548, 2014. doi:10.1093/bioinformatics/btu462.

21 António Morgado and Joao Marques-Silva. A pseudo-boolean solution to the maximum
quartet consistency problem, 2008. arXiv:0805.0202.

22 António Morgado and Joao Marques-Silva. Combinatorial optimization solutions for the
maximum quartet consistency problem. Fundam. Inform., 102(3-4):363–389, 2010. doi:
10.3233/FI-2010-311.

23 Robert R. Sokal and F. James Rohlf. Taxonomic congruence in the leptopodomorpha
re-examined. Syst. Zool., 30(3):309–325, 1981. doi:10.2307/2413252.

24 Michael Steel. The complexity of reconstructing trees from qualitative characters and
subtrees. J. Classif., 9(1):91–116, 1992. doi:10.1007/BF02618470.

25 Gang Wu, Jia-Huai You, and Guohui Lin. A lookahead branch-and-bound algorithm for
the maximum quartet consistency problem. In Rita Casadio and Gene Myers, editors, Pro-
ceedings of the 5th International Workshop on Algorithms in Bioinformatics (WABI 2005),
volume 3692 of LNCS, pages 65–76. Springer, Springer, 2005. doi:10.1007/11557067_6.

26 Gang Wu, Jia-Huai You, and Guohui Lin. Quartet-based phylogeny reconstruction with
answer set programming. IEEE/ACM Trans. Comput. Biol. Bioinform., 4(1):139–152, 2007.
doi:10.1109/TCBB.2007.1008.

A Implications for the Weighted Triplet Consensus problem

For each set of three labels {a, b, c}, there are three non-isomorphic3 rooted binary trees
called triplets. They are denoted by ab|c, ac|b and bc|a, depending on the leaf having the
root as father (c, b and a respectively). We say that a tree T induces or displays the triplet
ab|c if T |{a, b, c} = ab|c. For a rooted tree R, denote by tr(R) the set of triplets of R.

When the consensus is sought for rooted trees, the objective is to find a rooted tree M
that induces a maximum number of triplets contained in the input trees. The Weighted
Triplet Consensus (WTC) is defined as follows.

Weighted Triplet Consensus (WTC) problem
Input: a set of rooted trees R = {R1, . . . , Rk} such that L(R1) = . . . = L(Rk) = X .
Output: a binary rooted tree M with L(M) = X that maximizes

∑
R∈R |tr(M) ∩ tr(R)|.

As in the unrooted problem, other versions of WTC where the input trees may have missing
species or where the weight of a triplet is not defined w.r.t. a set of trees, are known to be
NP-hard [6]. The WTC problem is conjectured to be NP-hard in [2] (we note that a more
general version where the output can be non-binary is also conjectured NP-hard).

We give the main idea behind the proof of the hardness of WTC. Let T =
⋃

C∈C T (C)
be the set of unrooted trees constructed in the reduction above. For a tree T ∈ T , let e be
the edge separating Z from the rest of the tree (i.e. by removing e from T , one connected
component is exactly Z). Obtain a rooted tree R from T by rooting T at e, that is subdivide
e, thereby creating a degree 2 vertex which is the root of R. The set of rooted trees R is
obtained by applying this rooting to every T ∈ T (the Z subtree could be removed but we
keep it here to make the correspondence easier to see).

3 Isomorphism preserving labels and the root node.

http://hdl.handle.net/2152/31377
http://hdl.handle.net/2152/31377
http://dx.doi.org/10.1093/bioinformatics/btu462
http://arxiv.org/abs/0805.0202
http://dx.doi.org/10.3233/FI-2010-311
http://dx.doi.org/10.3233/FI-2010-311
http://dx.doi.org/10.2307/2413252
http://dx.doi.org/10.1007/BF02618470
http://dx.doi.org/10.1007/11557067_6
http://dx.doi.org/10.1109/TCBB.2007.1008

M. Lafond and C. Scornavacca 28:15

Similarly as above, it can be shown that since every input tree is a rooted (W,Z)-
caterpillar, then any solution must also have this form. This implies in turn that there exists
a linear ordering of S satisfying C if and only if there is a solution M to WTC containing
every triplet from the input on 2 or 3 members of L(W), every triplet containing at least
one member of L(Z), plus at least 4m|W |+ 3m|W |

((
n−2

2
)

+ 2(n− 2)
)
triplets of the form

wa|b with a, b ∈ S. This is obtained by defining the notions of in-triplets and out-triplets
analogously as in the previous section, but with respect to W only. That is, in a “a < b” tree,
for a, b, c, d ∈ S,w ∈ L(W) and {c, d} 6= {a, b}, wa|b would be an in-triplet, whereas wc|d or
wd|c would be out-triplets. One can argue that for a cyclic triple (a, b, c) ∈ C and the set of
trees T ((a, b, c)), an optimal consensus tree can contain 4|W | of the 6|W | possible in-triplets,
plus at most half of the 6m|W |

((
n−2

2
)

+ 2(n− 2)
)
possible out-triplets. The arguments are

essentially the same as the ones given in the hardness proof of WQC, and so we omit the
details.

I Theorem 11. The Weighted Triplet Consensus problem is NP-hard.

B Deferred proofs

B.1 Proof of Lemma 3
Despite the Lemma 3 statement being quite intuitive, it requires a surprising amount of care.
We start by a simple proposition that will be needed.

I Proposition 12. Let X,Y be two non-empty sets such that Y 6⊆ X. Then |X| · |Y \X| ≥
|Y | − 1.

Proof. Suppose first that X ∩ Y = ∅. Then clearly |X||Y \X| = |X||Y | ≥ |Y | − 1. Suppose
otherwise thatX∩Y 6= ∅, and denoteX ′ = X∩Y . Then |Y \X| = |Y |−|X ′| and since Y 6⊆ X,
we must have |Y | ≥ |X ′|+ 1. We also have |X||Y \X| = |X|(|Y | − |X ′|) ≥ |X ′|(|Y | − |X ′|);
we claim the latter term to be at least |Y | − 1. Let us assume for contradiction that
|X ′|(|Y | − |X ′|) < |Y | − 1. If |X ′| = 1, this is clearly impossible, so assume |X ′| > 1.
Then we get |X ′||Y | − |Y | < |X ′|2 − 1 leading to |Y | < |X′|2−1

|X′|−1 = |X ′| + 1, contradicting
|Y | ≥ |X ′|+ 1. J

Before proceeding, we must introduce the notion of a rooted subtree of a binary unrooted
tree T . Note that by removing an edge e = {u, v} of T , we obtain two disjoint rooted subtrees
T1 and T2, respectively rooted at u and v. Call T ′ a rooted subtree of T if T ′ is a rooted tree
that can be obtained by removing an edge of T . For X ⊂ L(T), a rooted subtree for X is
a rooted subtree T ′ of T such that X ⊆ L(T ′). We denote by T [X] the rooted subtree for
X that contains a minimum number of leaves (if there are multiple choices, choose T [X]
arbitrarily among the possible choices). Note that T [X] may contain leaves other than X.

We now prove that any optimal solution to T as constructed in our reduction must be a
(W,Z)-augmented caterpillar. Suppose that M is an optimal solution for T , and that M is
not a (W,Z)-augmented caterpillar. Denote MW = M [L(W)] and MZ = M [L(Z)]. If M is a
(W ′, Z ′)-augmented caterpillar (W ′|T1| . . . |Tk|Z ′) for some trees W ′, Z ′ with L(W ′) = L(W)
and L(Z ′) = L(Z), it is not hard to see that M ′ = (W |T1| . . . |Tk|Z) is a better solution
than M , a contradiction. Thus, M is not such a caterpillar, and this implies that either
L(MW) 6= L(W) or L(MZ) 6= L(Z) (or both). That is, the rooted subtrees containing L(W)
and/or L(Z) have “outsider” leaves. Suppose first that L(MW) 6= L(W) holds. Then there
exists a node x with children xl and xr in MW such that all leaves Xl below xl are in L(W)
with L(W) 6⊆ Xl (otherwise MW = M [L(W)] would be chosen incorrectly), and no leaf Xr

CPM 2017

28:16 On the Weighted Quartet Consensus Problem

below xr belongs to L(W) (this can be seen by observing that the minimal node x of MW

having leaves both in W and not in W has this property).
We claim that L(Z) 6⊆ Xr. Suppose otherwise that L(Z) ⊆ Xr. Then |Xr| ≥ |Z| and

so |MW | ≥ |W | + |Z|. However in M , by removing the xxr edge we obtain two rooted
trees, one of which is a rooted subtree for L(W). Moreover, this subtree has at most
|W | + |S| < |W | + |Z| leaves, which contradicts the minimality of MW = M [L(W)]. We
deduce that L(Z) is not a subset of Xr.

Now, observe thatM contains the quartet w1y|w2z for each w1 ∈ Xl, y ∈ Xr, w2 ∈ L(W)\
Xl, z ∈ L(Z)\Xr. There are at least |Xl||Xr|(|L(W)\Xl|)(|L(Z)\Xr|) ≥ (|W |− 1)(|Z|− 1)
such quartets (the inequality is obtained by applying Proposition 12 to |Xl| · |L(W) \Xl|
and |Xr| · |L(Z) \ Z|). Moreover, each input tree of T contains the quartet w1w2|yz instead,
and hence in total in T there are at least 6m(|W | − 1)(|Z| − 1) quartets of the form w1w2|yz
that M does not contain. In the same manner, if the case L(MZ) 6= L(Z) holds, then there
are at least 6m(|W | − 1)(|Z| − 1) quartets of the form z1z2|yw that M does not contain,
where here z1, z2 ∈ L(Z), y /∈ L(Z), w ∈ L(W).

Now, let ρ(M) be the number of quartets that M contains from
⊎

T∈T Q(T) that have
the form wx|yz, where w ∈ L(W), z ∈ L(Z), x, y ∈ S. Formally,

ρ(M) =
∑

wx|yz∈Q(M)
x,y∈S

w∈L(W)
z∈L(Z)

f(wx|yz)

where f(wx|yz) denotes the number of trees of T that contain the wx|yz quartet. For a
given u ∈ L(W) ∪ L(Z), let ρ(M,u) denote the number of quartets counted in ρ(M) that
contain u. Formally, if w ∈ L(W), we have

ρ(M,w) =
∑

wx|yz∈Q(M)
x,y∈S

z∈L(Z)

f(wx|yz) .

The definition of ρ(M, z) is the same for z ∈ L(Z), except that z gets fixed instead of
w in the summation. Notice that ρ(M) =

∑
w∈L(W) ρ(M,w) =

∑
z∈L(Z) ρ(M, z). Let

w∗ = arg maxw∈L(W){ρ(M,w)}. We obtain an alternative solution M ′ from M in the
following manner: remove all leaves of L(W) \ {w∗} from M , delete the degree 2 nodes, and
replace w∗ by the W tree. Note that if w∗x|yz is a quartet of M , then wx|yz is a quartet
of M ′ for all w ∈ L(W), and so ρ(M ′, w) ≥ ρ(M,w) for all such w by the choice of w∗.
Consequently, ρ(M ′) ≥ ρ(M). We repeat the same operation on M ′ for the Z tree and
obtain our final tree M∗. That is, we find z∗ = arg maxz∈L(Z){ρ(M ′, z)}, and replace z∗ by
the Z tree. As above, we obtain ρ(M∗) ≥ ρ(M ′). Since M∗ has W and Z as rooted subtrees,
it follows that M∗ is a (W,Z)-augmented caterpillar.

We argue that M∗ contains more quartets from the input trees than M . First observe
that the quartets on which M and M∗ differ must contain a member of L(W) ∪ L(Z), since
only these leaves switched position. The tree M∗ contains every quartet of

⊎
T∈T Q(T)

that have at least two members of L(W), or two members of L(Z). This includes the
aforementioned (at least) 6m(|W | − 1)(|Z| − 1) quartets of the form w1w2|yz or z1z2|yw
that M does not contain. As for the quartets that contain one member of L(W) and one
member of L(Z), M∗ contains at least as many such quartets as M since in

⊎
T∈T Q(T),

these quartets are all of the form wx|yz, and we have ρ(M∗) ≥ ρ(M). Finally, each tree of
T has at most (|W |+ |Z|)n3 quartets that have exactly one member of L(W) ∪ L(Z). Thus

M. Lafond and C. Scornavacca 28:17

a

e

b
c

d
⇥2

a

e

c

b

d
⇥2

a

e

d

b

c
⇥3

b

e

a
c

d
⇥1

c

e

a

b

d
⇥9

d

e

a

b

c
⇥5

a

b

e
c

d
⇥8

a

d

e

b

c
⇥4

b

e

d
a

c
⇥2

b

e

c
a

d
⇥4

d

e

b
a

c
⇥4

Figure 1 An instance of WQC such that the optimal solution (the third tree on the first row)
contains no strictly dominant quartet. The numbers correspond to the number of times that each
tree appears in the input.

a

a

a

a

a

b

b

b

b
b

c

c

c
c

c

d d d
d

d
e

e

e

e

e

f

f

f

f

f

g

g

g

g

g

h

h

h

h

h

Figure 2 The first four trees form an instance of WQC in which every tree contains ab|cd. The
rightmost tree is the unique optimal solution to the WQC instance (every possible solution was
verified computationally).

at most 6m(|W |+ |Z|)n3 quartets of this type are contained by M and not contained by
M∗, but since this is smaller than 6m(|W | − 1)(|Z| − 1) for our choice of |W | and |Z|, M∗
contains more quartets from the input than M .

B.2 Proofs of Section 4
Conjecture 1 is disproved by Theorem 13, and Conjecture 3 by Theorem 14, which implies
that Conjectures 2 and 4 are also false; finally Conjecture 5 is disproved by Theorem 15.

I Theorem 13. There exists an instance of WQC such that every optimal solution contains
none of the strictly dominant quartets.

Figure 1 shows an instance of WQC demonstrating Theorem 13. In this instance, for
every quadset S, there is a strictly dominant quartet appearing 17 times, whereas the
second-most and third-most quartets appear in 16 and 11 trees, respectively. For example,
f(ac|bd) = 17, f(ad|bc) = 16 and f(ab|cd) = 11. One can check that the best tree is the third
one on the top row (the ae|bc with d grafted on the middle branch). Call this tree T ∗. For
every quadset S, T ∗ contains the second-most frequent quartet on S. The reason why T ∗
is optimal is that, in the particular instance of Figure 1, any other tree T that contains a
strictly dominant quartet for some quadset S must also contain a least frequent quartet on

CPM 2017

28:18 On the Weighted Quartet Consensus Problem

some other quadset S′. Hence, as there are 5 quadsets, T contains at most 4 · 17 + 11 = 79
quartets from the input, whereas T ∗ contains 5 · 16 = 80. Note that this example consists of
trees on only 5 leaves. We do not know if such instances exist for any n > 5 leaves.

I Theorem 14. There exists an instance of WQC such that there is a quartet q that appears
in every input tree, but q is not a quartet of any optimal solution.

Figure 2 shows an instance of WQC proving Theorem 14. Each input tree contains the
ab|cd quartet, whereas the optimal solution, which is unique, does not. The rightmost tree
contains 180 quartets from the input multiset Q, whereas any other tree has at most 176.

Finally, we note that the main interest behind Conjecture 5 is the following: if it holds,
in cases where the set F of strictly least-frequent quartets is complete we could tell in
polynomial time – using results of [8] – whether there is a tree T ∗ that contains no quartet
from F . Conjecture 5 could then lead to interesting approximations or FPT algorithms.
However, least-frequent quartets cannot be excluded automatically.

I Theorem 15. There exists an instance of WQC such that every optimal solution contains
a strictly least-frequent quartet, even if there exists a tree T ∗ with no such quartet.

The instance corresponding to Theorem 15 is obtained from the instance shown in
Figure 1, by removing all occurrences of the third tree on the top row (i.e. this tree now
appears 0 times instead of 3 times). The second-most frequent quartets now appear 13 times
each, and so the tree T ∗ that contains all these quartets has a total weight of 5 · 13 = 65.
However, there are trees with a total weight of 75, which are optimal (for instance, the tree
of cardinality 9 in the figure). Each such tree contains a strictly dominant quartet, and as
mentioned before, also a strictly least-frequent quartet.

B.3 Proof of Theorem 8
Let N := k

(
n
4
)
, i.e. the total number of quartets in Q, let p be the maximum number of

quartets that can be preserved from Q for compatibility, and let d be the minimum number
of quartets to discard from Q in order to attain compatibility (here p and d refer to multiset
cardinalities). Note that d = N − p. We show that taking the best tree between the one
obtained from the factor α algorithm for WMQI and the one obtained from the “random-
tree-algorithm” achieves a factor β for WQC. Suppose first that p ≤ N/(3β). By Lemma 7,
the “random-tree-algorithm” yields a tree containing at least |Q|/3 = N/3 quartets from Q,
and since N/3 = βN/(3β) ≥ βp, it yields a solution to WQC within a factor β from optimal.
Thus we may assume that p > N/(3β) = N(3α−2)/(3α). Since we have an α approximation
for WMQI, we may obtain a solution discarding at most αd = α(N − p) quartets. This
solution preserves at least N − (α(N − p)) = αp + (1 − α)N quartets from Q. We claim
that this attains a factor β approximation. Suppose instead that αp+ (1− α)N < βp. Then
p < (α− 1)N/(α− β) which, with a little work, yields p < N(3α− 2)/(3α), contradicting
our assumption on p. Thus, the WMQI approximation preserves at least βp quartets.

Optimal Omnitig Listing for Safe and Complete
Contig Assembly∗

Massimo Cairo†1, Paul Medvedev2, Nidia Obscura Acosta3,
Romeo Rizzi‡4, and Alexandru I. Tomescu§5

1 University of Trento, Trento, Italy
massimo.cairo@unitn.it

2 The Pennsylvania State University, State College, PA, USA
pashadag@cse.psu.edu

3 Helsinki Institute for Information Technology HIIT, Department of Computer
Science, University of Helsinki, Helsinki, Finland
obscura.nidia@helsinki.fi

4 Department of Computer Science, University of Verona, Verona, Italy
romeo.rizzi@univr.it

5 Helsinki Institute for Information Technology HIIT, Department of Computer
Science, University of Helsinki, Helsinki, Finland
alexandru.tomescu@helsinki.fi

Abstract
Genome assembly is the problem of reconstructing a genome sequence from a set of reads from
a sequencing experiment. Typical formulations of the assembly problem admit in practice many
genomic reconstructions, and actual genome assemblers usually output contigs, namely substrings
that are promised to occur in the genome. To bridge the theory and practice, Tomescu and
Medvedev [RECOMB 2016] reformulated contig assembly as finding all substrings common to
all genomic reconstructions. They also gave a characterization of those walks (omnitigs) that
are common to all closed edge-covering walks of a (directed) graph, a typical notion of genomic
reconstruction. An algorithm for listing all maximal omnitigs was also proposed, by launching
an exhaustive visit from every edge.

In this paper, we prove new insights about the structure of omnitigs and solve several open
questions about them. We combine these to achieve an O(nm)-time algorithm for outputting all
the maximal omnitigs of a graph (with n nodes and m edges). This is also optimal, as we show
families of graphs whose total omnitig length is Ω(nm). We implement this algorithm and show
that it is 9-12 times faster in practice than the one of Tomescu and Medvedev [RECOMB 2016].

1998 ACM Subject Classification G.2.2 Graph Theory, E.1 Data Structures, J.3 Life and Med-
ical Sciences

Keywords and phrases genome assembly, graph algorithm, edge-covering walk, strong bridge

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.29

∗ We acknowledge partial support from the Academy of Finland grant 274977 to A.I.T. and grant
284598 (CoECGR) to N.O.A., from the European Union’s Horizon 2020 Marie Skłodowska-Curie
grant agreement No 690941 to M.C. and A.I.T., and from NSF awards DBI-1356529, CCF-1439057,
IIS-1453527, and IIS-1421908 to P.M.

† First author contribution.
‡ Shared last author contribution.
§ Shared last author contribution.

© Massimo Cairo, Paul Medvedev, Nidia Obscura Acosta, Romeo Rizzi, and Alexandru I. Tomescu;
licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 29; pp. 29:1–29:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.29
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

29:2 Optimal Omnitig Listing for Safe and Complete Contig Assembly

1 Introduction

Genome assembly is the problem of reconstructing a genome sequence from a set of reads
from a sequencing experiment. It is one of the oldest problems in bioinformatics, but many
challenges remain. For example, assemblers for novel sequence technologies such as Oxford
nanopore are still only in development. Assembly of heterogeneous tumor data is also a
challenge. Many of these challenges can be met by building on top of existing assembly
algorithms. However, recent directions to improve the theoretical underpinning of assembly
have the potential to improve assembly across a wide breadth of scenarios.

Genome graphs have been the basis of most assembly algorithms. There is the edge-centric
de Bruijn graph [2, 15], where every k-mer (string of length k) of the reads becomes a node
and every (k + 1)-mer of the reads becomes an edge, or the node-centric de Bruijn graph,
where the nodes are the same but the edges are (k − 1)-overlaps between nodes. In a string
graph, every read becomes a node and large enough non-transitive overlaps between reads
are represented as edges [11, 16]. In a recent paper [17], these graphs were unified under
the “genome graph” model. Theoretical formulations of the assembly problem define what
a genome reconstruction is: typically, this is a walk in a genome graph, subject to some
constraints. For example, a genome reconstruction could be a closed (i.e., circular) walk
covering every edge of the genome graph exactly once [14, 8, 13] (to be called edge-covering
in the ongoing), or a closed Eulerian walk [9, 10, 12, 5].

However, algorithms to find an entire genome reconstruction are rarely implemented
in practice, because there is usually more than one valid genome reconstruction. When
assemblers have no way to distinguish different reconstructions, they instead output contigs,
which are stretches of DNA that are assumed to be in the genome. To bridge theory and
practice, Tomescu and Medvedev proposed in [17] an alternative formulation of the contig
assembly problem. A string is considered safe if it is guaranteed to occur in every valid genome
reconstruction. A contig assembly algorithm should ideally be safe (i.e., only outputting safe
strings) and complete (i.e., every safe string should be output by the algorithm).

Previous work. The notion of a safe and complete algorithm embodies several previous
results. Contig assembly was first approached by finding unitigs [6], namely those paths
whose internal nodes have in- and out-degree one. Later, some generalizations of unitigs have
been considered. For example, [15] considered paths whose internal nodes have out-degree
one, with no restriction on their in-degree; [10, 4, 7] considered the unitigs of a genome graph
simplified with the so-called Y-to-V transformation (we further discuss this at the end of
Section 4). Although no underlying notion of genomic reconstruction was explicit in these
studies, it can be shown that the resulting paths are safe for closed edge-covering walks.
However, as [17] notices, such approaches do not find all the safe strings. Other studies have
indeed given safe and complete algorithms for some reconstruction notions. Nagarajan and
Pop [12] attribute to [18] the characterization of the walks common to all closed Eulerian
walks. For edge-weighted genome graphs, [12] claims that a simple algorithm exists for
finding all those walks common to all shortest closed edge-covering walks.

Tomescu and Medvedev [17] considered the genomic reconstruction notion of a closed
edge-covering walk. This model is strictly more general than the above two ones, and thus
safe strings for it are also safe for them. Moreover, it is also more realistic, because the
Eulerian notion assumes that all positions in the genome are sequenced exactly the same
number of times, while the minimality criterion from other notion may over-collapse repeated
regions. However, it still assumes that the reads are error-free, single-stranded, come from a
circular genome, and every position in the genome appears in some read.

M. Cairo, P. Medvedev, N. Obscura Acosta, R. Rizzi, and A. I. Tomescu 29:3

In [17] a characterization of those walks common to all such genomic reconstructions was
given. These walks were called omnitigs (see Definition 1), and an algorithm for finding all
maximal omnitigs was presented. We refer to [17] for further details on the practical merits
of omnitigs, as opposed to e.g., unitigs. The asymptotic running time of this algorithm was
not fully analyzed in [17] except to say it was polynomial time. However, it is based on
launching an exhaustive visit from every edge of the graph, and extending all such possible
walks as long as they are omnitigs. Its running time remained several orders of magnitude
slower than finding unitigs, and improving it was recognized as an important open problem.

Contributions and approach of this paper. The main result of this paper is an algorithm
(Algorithm 3) running in time O(nm) for outputting all maximal omnitigs of a graph (m is
the number of edges, n is the number of nodes, and in this paper all graphs are directed).
This algorithm is also optimal, in the sense that there are families of graphs for which the
total length of their omnitigs is Ω(nm) (see e.g., Figure 4).

This algorithm is based on three insights.
1. A structural result connecting branches of a graph (i.e., edges whose source node has

out-degree at least two) with left-maximal omnitigs (Theorem 8). In particular, there
can be only one left-maximal omnitig ending with a given branch, and the structure
of such omnitigs is almost fully characterizable. This also implies that the number of
maximal omnitigs is at most m and their individual lengths are bounded by 3n− 1. We
also give families of graphs that achieve these upper bounds, showing that they are tight.
Previously, only an upper bound of nm was known on the number of maximal omnitigs
and an upper bound of nm on their lengths [17]. This is encouraging also from a practical
point of view, because the popular (maximal) unitigs have the same tight asymptotic
bounds on their number and individual length (but not on their total length, which is m).

2. A partial order between branches, based on whether or not they are connected by “simple”
omnitigs (Definition 13), which we prove to be acyclic. This allows us to reuse computation
when recursively computing the left-maximal omnitig ending with a given branch.

3. A connection between omnitigs and strong bridges of a graph (i.e., those edges whose
removal disrupts strong connectivity [3]). In particular, omnitigs that do not start with a
strong bridge are easy to find (Lemma 17). Since there are at most O(n) strong bridges
in a graph, this implies that also the number of hard cases is O(n), and not O(m).

We also implement the new algorithm, and show in Section 5 that it is 9-12 times faster
in practice than the one of [17]. Finally, at the end of Section 4 we demonstrate that the
Y-to-V transformation, used as pre-processing step in the implementation of [17] to simplify
the input, can result in shorter maximal omnitigs. This transformation is a well-known
method (e.g. [10, 4, 7]) for reducing the genome graph, maintaining the property that its
unitigs spell safe strings.

2 Background and notation

In this paper, a graph is a tuple G = (V,E, s, t), where V is a finite set of nodes, E is a
finite set of edges, and s, t : E → V assign to each edge e ∈ E its source node s(e) and its
destination node t(e). Parallel edges and self-loops are allowed. We say that an edge e goes
from s(e) to t(e). The reverse graph of G is defined as GR = (V,E, t, s).

A walk on G is a sequence w = (v0, e1, v1, e2, . . . , v`−1, e`, v`), ` ≥ 0, where v0, v1, . . . , v` ∈
V are nodes and each ei is an edge from vi−1 to vi. We say that w goes from s(w) = v0
to t(w) = v` and has length |w| = `. A walk w is called empty if |w| = 0, and non-empty

CPM 2017

29:4 Optimal Omnitig Listing for Safe and Complete Contig Assembly

e1 e2 e3 e4 e5

f2f3f4f5

f1f6

e1 e2

f2

f1f3

e1 e2 e3 e4 e5

f

e1 e2

f

Figure 1 Examples of walks e1 · · · e` which are not omnitigs, due to the existence of a path p

satisfying the conditions of Definition 1. In the first row, p = f1 · · · f|p| with |p| > 1. In the second
row, p = f . In the left column, p is a non-empty open path. In the right column, p is a closed path.

otherwise. (There exists exactly one empty walk εv = (v) for every node v ∈ V , and
s(εv) = t(εv) = v.) A walk w is called closed if it is non-empty and s(w) = t(w), otherwise
it is open. A path is a walk whose nodes v0, v1, . . . , v` are all distinct, except that v` = v0
is allowed (in which case we have either a closed or an empty path). A graph is strongly
connected if there is a path (or, equivalently, a walk) from any node to any other node.

In the rest of this paper, a strongly connected graph G = (V,E, s, t) is given, with |V | = n

and |E| = m ≥ n. We adopt the following conventions. Letters u, v denote nodes, letters
e, f, g, h denote edges, which are identified with the corresponding length-1 walks, letters
p, q, r denote paths, and letters w, x, y, z denote generic walks (each letter possibly with
subscripts or superscripts). Juxtaposition ww′ denotes the concatenation of walks w and w′,
where t(w) = s(w′) is implicitly assumed. We start from the following definition of omnitigs
offered in [17].

I Definition 1 (Omnitig). A non-empty walk w = e1 · · · e` is an omnitig if, for every
1 ≤ i < j ≤ `, there is no non-empty path from s(ej) to t(ei), with first edge different from
ej , and last edge different from ei.

The main result from [17] is that those walks that are sub-walks of all closed edge-covering
walks of a strongly connected graph are precisely its omnitigs. Clearly every edge is an
omnitig and any proper subwalk of an omnitig is an omnitig. Figure 1 illustrates examples
of walks that are not omnitigs. An omnitig w is right-maximal (resp., left-maximal) if there
is no walk we (resp., ew) which is an omnitig. An omnitig is maximal if it is both left- and
right-maximal. We note that in [17] two types of omnitigs were considered, depending on
the genome model used. Here, we use omnitigs to refer the edge-centric omnitigs from [17].

3 Structure of maximal omnitigs

In this section we prove some structural properties of maximal omnitigs. To better understand
the ways in which omnitigs might possibly overlap, we propose the notion of branch and
univocal walk. A node u is called branching if its out-degree is more than one. In this
case, any edge e with s(e) = u is called a branch, and any two distinct edges e 6= e′ with
s(e) = s(e′) = u are called siblings. The set of all branches is denoted by B ⊆ E. An edge is
called an R-branch if it is a branch in GR. A walk is called univocal if none of its edges is a
branch and R-univocal if none of its edges is an R-branch.

We start by showing some facts about branches and univocal walks.

I Lemma 2. If G contains at least a branch, then every univocal walk is an open path.

M. Cairo, P. Medvedev, N. Obscura Acosta, R. Rizzi, and A. I. Tomescu 29:5

Proof. A minimal counterexample is a univocal closed path p. Since every path from s(p)
is a prefix of p, and G is strongly connected, then p contains every node in the graph, and
there are no branches. J

I Lemma 3. If w is an omnitig and q is a univocal path from t(w), then wq is an omnitig.

Proof. Let p be a path certifying that wq is not an omnitig by Definition 1. If s(p) is a node
of q, then a whole suffix of q is a prefix of p, since q is univocal; in this way, the property
that the first edge of p differs from ej would be contradicted. Therefore s(p) is a node of w,
but then p is a path actually certifying that w is not an omnitig, again a contradiction. J

I Lemma 4. Every left-maximal omnitig contains a branch.

Proof. Let w be a counterexample, i.e., a left-maximal omnitig which is univocal. Let e be
any edge with t(e) = s(w) (at least one exists since G is strongly connected). The edge e is
an omnitig, and thus by Lemma 3 ew is an omnitig, violating the left-maximality of w. J

The crucial observation underlying our algorithm is that any omnitig containing a branch
can be extended in an unique way to the left to obtain a left-maximal omnitig. This is
expressed in Theorem 8 below. To prove Theorem 8, we need the following lemmas.

I Lemma 5. Let fqe be an omnitig where q is an open path and e is a branch. Take any
sibling e′ of e and a closed path e′p starting with e′. Then, fq is a suffix of e′p.

Proof. Let fqe be a minimal counterexample. Then, fqe and qe are both omnitigs, and by
minimality q is a suffix of e′p, whereas fq is not. Since q is an open path, then q 6= e′p, so q
is actually a suffix of p. Thus we can regard e′p as obtained by concatenating its suffix q to
its remaining prefix r, i.e., e′p = rq. Here, r is a non-empty path and fulfills all conditions
stated in Definition 1: it starts with e′ 6= e, and ends with an edge f ′ 6= f (otherwise fq
would be a suffix of rq = e′p). This shows that fqe is not an omnitig: a contradiction. J

I Lemma 6. Let e′pe be a walk where e and e′ are siblings and e′p is a closed path. Then,
e′pe is an omnitig iff p is univocal and e′ is the only sibling of e.

Proof. (⇐=) The only path satisfying Definition 1 must start with e′, and hence be a
prefix of e′p. (=⇒). First we show that e′ is the only sibling of e. Let e′′ be any sibling
of e, and take any closed path e′′p′. Then, e′p is a suffix of e′′p′ by Lemma 5. Being both
closed paths, we have e′p = e′′p′ and in particular e′′ = e′.

We now prove that p is univocal. Assume not, and write p = qfr where f is any branch.
Let f ′ be a sibling of f , and f ′p′ a closed path. Clearly, s(f ′) = s(f) 6= s(e), hence f ′ does
not appear in the closed path e′p = e′qfr. Let q′ be the shortest prefix of p′ where t(q′) is a
node of p. Observe that q′ exists since t(p′) = s(f ′) = s(f) is a node of p. Moreover, the last
edge of q′, if any, does not appear in e′p. Notice that t(q′) is either a node of q or a node of
r. If t(q′) is a node of q, then the path f ′q′ shows that e′qf is not an omnitig. Otherwise, if
t(q′) is a node of r, then the path e′qf ′q′ shows that fre is not an omnitig. In either case
e′pe = e′qfre is not an omnitig: a contradiction. J

I Lemma 7. There is no omnitig of the form fqrqe where qr is a closed path, r is non-empty,
e is a branch, and f is an R-branch.

Proof. Assume for a contradiction that fqrqe is an omnitig violating the claim of the lemma.
Let e′ be the first edge of r. We will prove that e′ 6= e. Write r = e′r′ and observe that r′q
is an open path, so e′r′qe satisfies the hypothesis of Lemma 5. Let e′′ 6= e be a sibling of e,

CPM 2017

29:6 Optimal Omnitig Listing for Safe and Complete Contig Assembly

f1 f2 e

e0

g1

g2

f1 f2 e

e0

g1

g2 f 0
2

Figure 2 Example of graphs where the two cases of Theorem 8 occur, for p = g1g2f1f2 and
p′ = f1f2. In the first case (left), p is univocal and the left-maximal omnitig is we = p′e′pe =
f1f2e′g1g2f1f2e. In the second case (right) p is not univocal due to the edge f ′

2, and the left-maximal
omnitig is we = g1g2f1f2e. Omnitigs we are shown in red and have solid edges.

and e′′p a closed path. Then, by Lemma 5, e′r′q is a suffix of e′′p. In fact, since both e′r′q
and e′′p are closed paths, then e′r′q = e′′p and e′ = e′′ 6= e, as claimed.

The very same argument applies on the reverse graph, since the notion of omnitig is
symmetric, as well as the statement of the lemma. Therefore, also the last edge f ′ of r is
distinct from f . Now, r is a non-empty path with first edge e′ 6= e and last edge f ′ 6= f .
Hence, r satisfies the conditions of Definition 1, showing that fqrqe is not an omnitig. J

I Theorem 8. There exists a unique left-maximal omnitig we, ending with a given branch e.
Moreover, for any sibling e′ of e and a closed path e′p, either:

we = p′e′pe, where p′ is the longest R-univocal path to s(e), or
we is a suffix of pe,

where the first case occurs iff e′ is the only sibling of e and p is univocal.

Proof. Consider any omnitig we. We show that we is either a suffix of pe or of the form
we = p′′e′pe, where p′′ is an R-univocal path. This suffices to show that there is a unique
left-maximal omnitig we, and that one of the two cases occurs.

If w is an open path then we is a suffix of pe by Lemma 5. Otherwise, take the shortest
suffix e′′p of w which is not an open path. Since p is an open path (e′′p is the shortest suffix
of w which is not), then e′′ = e′ by Lemma 5.

Hence, a minimal counterexample for our claim is an omnitig of the form we = fqe′pe

where q is R-univocal (hence an open path by Lemma 2 applied to the reversed graph) and
f is an R-branch. Since t(q) = t(p) and q is R-univocal, then q is a suffix of e′p. In fact, q
is a suffix of p, since it is open. Hence, we can write e′p = rq, where r is non empty, and
we = fqrqe, violating Lemma 7.

Finally, the conditions in which the first case occurs are stated in Lemma 6, noticing that
p′e′pe is an omnitig iff e′pe is an omnitig, by Lemma 3 applied in the reverse graph. J

I Corollary 9. There are at most m maximal omnitigs.

Proof. Any maximal omnitig has a branch by Lemma 4; hence it has the form w = w′er,
where e is its last branch and r is univocal. By Theorem 8, w′ is uniquely determined by e,
and, by Lemma 3, r is the longest univocal path from t(e), also uniquely determined by e.
In conclusion, every omnitig has a last branch and every branch is the last branch of at most
one maximal omnitig. J

I Corollary 10. Every maximal omnitig traverses any node at most three times, and thus
has length at most 3n− 1.

M. Cairo, P. Medvedev, N. Obscura Acosta, R. Rizzi, and A. I. Tomescu 29:7

f1 f2 e

e0

g1

g2

f1 f2 e

e0

g1

g2 f 0
2

f1 f2 fk

e

e0

. . .

ek�1 ek e2k�1e1 ek+1

f1 f1f2 f2fk�1 fk�1fk fk

· · · · · ·

Figure 3 A family of graphs parametrized by k ≥ 0 where the bound given in Corollary 10 is
tight. Let p = f1 · · · fk. The maximal omnitigs are pepe′p and pe′pep: both traverse each node
exactly three times; pepe′p is marked in red.

f1 f2 e

e0

g1

g2

f1 f2 e

e0

g1

g2 f 0
2

f1 f2 fk

e

e0

. . .

ek�1 ek e2k�1e1 ek+1

f1 f1f2 f2fk�1 fk�1fk fk

· · · · · ·

Figure 4 A family of sparse graphs Gk parametrized by k ≥ 1 where there are Θ(k) nodes and
edges, and the total length of maximal omnitigs is Θ(k2). This shows that the bound given in
Corollary 11 is tight, in the sparse case. Indeed, the walk wi = eiei+1 · · · ei+kei+k is a maximal
omnitig, for 1 ≤ i ≤ k − 1, and has length k + 1; walk w1 is marked in red.

Proof. Any maximal omnitig has the form w = w′er where e is its last branch. By Theorem 8,
either w′ is an open path, or w = p′e′per where p′, p, r are univocal, and hence open paths
by Lemma 2. Consider that open paths visit each node at most once. J

I Corollary 11. The total length of maximal omnitigs is O(nm).

In a complete graph with node set V , |V | ≥ 3, and edge set V × V every single edge is a
maximal omnitig, hence the bound given in Corollary 9 is tight. Figures 3 and 4 demonstrate
graph families showing that the bounds of Corollary 10 and Corollary 11 are also tight. That
is, they contain maximal omnitigs of length 3n − 1, and the total length of the maximal
omnitigs can be Ω(nm).

4 The algorithm

We start by considering a procedure LongestSuffix that takes an omnitig w′ and an edge e
with s(e) = t(w′), and computes the longest suffix of w = w′e that is still an omnitig. A
pseudo-code for such a procedure is shown in Algorithm 1, and it is an adaptation of the
ideas given in [17].

I Lemma 12. The function LongestSuffix can be implemented in O(m).

The strategy of our algorithm is to first pick a branch e, since by Lemma 4 every maximal
omnitig contains one, and then construct the only left-maximal omnitig ending with e,
according to Theorem 8. To this end, we may need to compute the longest suffix of e′p which
is an omnitig; however, this could require quadratic time to output a single left-maximal
omnitig. Instead, we show that it is possible to recycle the computational effort among
different branches, in order to pay linear time per-branch. We introduce the following notion
of order between branches.

I Definition 13. For any two distinct non-sibling branches e, f ∈ B, write f ≺ e if there
exists an omnitig fpe where p is univocal.

CPM 2017

29:8 Optimal Omnitig Listing for Safe and Complete Contig Assembly

Algorithm 1: Function LongestSuffix.
1 Function LongestSuffix(w)

Input :A non-empty walk w = w′e where w′ is an omnitig and e is a branch.
Returns :The longest suffix of w which is an omnitig.

2 Denote w = w′e = f1 · · · f`e.
3 Compute the set Se ⊆ V of nodes reachable from s(e) without using e.
4 Let ı̂ be the largest index i ∈ {1, . . . , `} such that there exists an edge g /∈ {e, fi}

with s(g) ∈ Se and t(g) = t(fi), taking ı̂ = 0 if no such index exists.

5 return fı̂+1 · · · f`e

I Lemma 14. For any e ∈ B there is at most one f ∈ B such that f ≺ e.

Proof. Take a sibling e′ of e and a closed path e′p. Let f be the last branch on e′p (it exists
since its first edge e′ is a branch) and let fq be the suffix of e′p starting with f , where q is
univocal. Assume f̃ ≺ e and let f̃ q̃e be an omnitig with q̃ univocal. By Lemma 2, q̃ is an
open path, and by Lemma 5, f̃ q̃e is a suffix of e′pe, thus f̃ = f and q̃ = q. J

Our algorithm for computing the left-maximal omnitig ending with a given branch e

works as follows. We first check whether the first case of Theorem 8 occurs, by verifying the
condition provided therein. If not, then we consider the suffix fq of e′p defined as in the
proof of Lemma 14. We have two cases.

fqe is not an omnitig. Then, an invocation of LongestSuffix(fqe) yields the only left-
maximal omnitig ending with e.
fqe is an omnitig. Then, s(f) 6= s(e) since fq is open, thus f ≺ e. In this case, we
apply the procedure recursively to the branch f , obtaining an omnitig w′′. Then, the
left-maximal omnitig ending with e must be a suffix of w′′qe, and can be obtained as
LongestSuffix(w′′qe).

Lemma 15 is crucial in showing that the recursion is well-founded. As we will show later,
thanks to memoization, this recursive application allows to reuse the computational effort
and leads to a faster worst-case running time.

I Lemma 15. The relation ≺ is acyclic.

To achieve the claimed O(nm) running time, we need a further improvement. We recall
the definition of strong bridge in a strongly connected graph [3].

I Definition 16. An edge e is a strong bridge if, by removing e, the graph is no longer
strongly connected. Equivalently, there is a pair of nodes u, v, such that every path from u

to v contains e.

The lemma below states that omnitigs containing non-strong-bridges have a simpler structure.

I Lemma 17. If fq is an omnitig and an open path, and f is not a strong bridge, then q is
univocal.

Proof. A minimal counterexample is an omnitig fqe, where fqe is an open path and e is
a branch. Fix a sibling e′ of e, and take a closed path e′p such that p does not contain f ,
which exists since f is not a strong bridge. By Theorem 8, fq is a suffix of p: a contradiction
since p does not contain f . J

M. Cairo, P. Medvedev, N. Obscura Acosta, R. Rizzi, and A. I. Tomescu 29:9

Algorithm 2: Computing the only left-maximal omnitig ending with a branch e.
1 Function OmnitigEndingWith(e)

Input :A branch e.
Returns :The only left-maximal omnitig we.

2 Let e′ be any sibling of e and e′p be any closed path starting with e′.
3 Let f be the last branch of e′p (possibly f = e′) and fq the suffix of e′p starting

with f .
4 Let p′ be the longest R-univocal path to s(e).

5 if e has only one sibling e′ and p is univocal then return p′e′pe

6 if e is not a strong bridge then return p′e

7 w′ ← LongestSuffix(fqe)
8 if w′ 6= fqe then return w′

9 w′′ ← OmnitigEndingWith(f) . OmnitigEndingWith is memoized
10 return LongestSuffix(w′′qe)

Algorithm 3: Computing all the maximal omnitigs.
1 W ← ∅
2 for e ∈ B do
3 w ← OmnitigEndingWith(e)
4 Let p be the longest univocal path from t(e).

5 W ←W ∪ {wp}
6 end
7 Remove from W the non-right-maximal walks.
8 return W

It is known that there are at most 2n− 2 = O(n) strong bridges in a given graph, and
they can be computed in O(m) time [3, 1]. The observation of Lemma 17 allows to handle
those branches e which are not strong bridges is a special way, and apply the full algorithm
only on the O(n) strong bridges. The procedure just described is illustrated in Algorithm 2.

I Lemma 18. The function OmnitigEndingWith in Algorithm 2 is correct.

The full algorithm (Algorithm 3) amounts to computing, for each branch e ∈ B, the
left-maximal omnitig ending with e, and then appending the longest possible univocal suffix.

I Theorem 19. Algorithm 3 is correct and can be implemented to run in time O(nm).

Proof. It is clear from Lemma 18 and Lemma 3 that Algorithm 3 terminates and returns a
set W containing only left-maximal omnitigs. For correctness, we only need to show that,
after the for-loop, W contains all the maximal omnitigs. Consider any maximal omnitig
w. By Lemma 4, w contains a branch. Let e be the last branch of w, and write w = w′ep

where p is univocal. By Lemma 3, w′e is left-maximal (otherwise also w = w′ep is not
left-maximal), and p is the longest univocal path from t(e), (otherwise w = w′ep is not
right-maximal). By Lemma 18, in the iteration of the for-loop, relative to the branch e ∈ B,
the call OmnitigEndingWith(e) returns w′e, and w′ep is added to W .

To prove our bound on the running time, we observe that, when the function
OmnitigEndingWith returns before line 7, then it takes O(n) time only. Indeed, the length of

CPM 2017

29:10 Optimal Omnitig Listing for Safe and Complete Contig Assembly

e2 e3 e4

f 0

f

e1

u Y to V����!
e2 e3

e4kf 0

e4kf

e1

Figure 5 Left: the walk e1e2e3e4 is a maximal omnitig. Right: after applying the Y-to-V
reduction to node u, only the omnitig e1e2e3 is maximal, and e3e4 does not appear in any omnitig.

the open paths p and p′ is O(n). Moreover, when the condition at line 5 occurs, then the
path p is univocal, and its construction can be performed in O(n) time, without running a
full visit of the graph. These executions of OmnitigEndingWith account for an overall running
time O(nm), due to memoization, since there are O(m) branches.

The execution continues after line 7 only O(n) times, since the number of strong bridges
is O(n). In this case, the running time is dominated by the calls to LongestSuffix, which
take O(m) time each by Lemma 12. Again, due to memoization, the overall running time is
O(nm). The set of strong bridges is computed once at the beginning, in linear time.

It remains to show how to implement line 7 in time O(nm). First, the total length of the
walks in W is O(nm), because to each of the O(m) walks returned by OmnitigEndingWith,
each of length O(n) (by Corollary 10), we append a path, thus having length O(n). One way
to remove the non-right-maximal omnitigs from W is to regard each walk in W as a string
over the alphabet E, construct a trie containing them, in time O(nm), and remove those
ending in an internal node. J

Finally, we would like to remark on the Y-to-V reduction. Let v be a node that has exactly
one in-neighbor u and more than one out-neighbors w1, . . . , wd. The Y-to-V reduction applied
to v removes v and its incident edges and adds an edge from u to wi, for all 1 ≤ i ≤ d. The
Y-to-V reduction was suggested as a pre-processing step to the omnitig algorithm in [17] to
improve the running time. However, this reduction can destroy some omnitigs, see Figure 5.

5 Experimental results

We implemented Algorithm 3 using the code base of [17].1 We focused our experiments on
measuring the running time improvements, since the practical merits of omnitigs for genome
assembly were discussed in [17]. The algorithms were run on a machine with Intel Xeon
2.10GHz CPUs. Because the Y-to-V transformation is not omnitig-preserving, we disabled it
from the code of [17]. We circularized three reference sequences of human chromosomes 2,
10, and 14. Each had a length of 243, 136 and 107 million nucleotides, respectively. We built
the edge-centric de Bruijn graph for each, using k = 55. This is a typical genome graph on
which contig assembly is performed.

As shown in Table 1, our algorithm was 9–12 times faster on a single thread, suggesting
that our theoretical improvements indeed translate into faster running times. For the largest
dataset, our algorithm took just over 2 hours, while [17] took over 22 hours. We also observe,
as expected, that the running time depends on the size of the graph and the number of
omnitigs, and not on their length.

1 Available at https://github.com/alexandrutomescu/complete-contigs.

https://github.com/alexandrutomescu/complete-contigs

M. Cairo, P. Medvedev, N. Obscura Acosta, R. Rizzi, and A. I. Tomescu 29:11

Table 1 Wall-clock running time comparison between the omnitig algorithm of [17] and our
Algorithm 3.For fairness of comparison, the algorithms were run on a single thread, though we note
that [17] supports parallelization.

nodes # edges time by [17] time by Algorithm 3 # omnitigs avg len (bp)
chr2 696,209 887,295 1,342 min 138 min 304,760 838
chr10 369,448 467,517 433 min 36 min 158,396 887
chr14 223,694 283,798 137 min 11 min 96,434 968

6 Conclusion

Apart from its application to genome assembly, the problem addressed in this paper is
a fundamental graph theoretical one. It also fits into a line of research for finding all
partial solutions common to natural notions of walks in graphs, such as Eulerian walks [18]
or shortest edge-covering walks [12]. We presented here an optimal O(nm) algorithm for
finding all maximal omnitigs and showed that it can be an order of magnitude faster than a
previous one based on exhaustive visits. When applied to genome assembly, our algorithm
remains significantly slower than finding unitigs. However, we believe that an embarrassingly
parallel implementation is possible, and that it will improve running time by another order
of magnitude in practice.

Acknowledgements. We thank Martin Milanič for pointing us to persistent solutions and
blockers.

References
1 Donatella Firmani, Giuseppe F. Italiano, Luigi Laura, Alessio Orlandi, and Federico

Santaroni. Computing strong articulation points and strong bridges in large scale graphs.
In Ralf Klasing, editor, Proceedings of the 11th International Symposium on Experimental
Algorithms (SEA 2012), volume 7276 of LNCS, pages 195–207, Berlin, Heidelberg, 2012.
Springer-Verlag. doi:10.1007/978-3-642-30850-5_18.

2 Ramana M. Idury and Michael S. Waterman. A new algorithm for DNA sequence assembly.
J. Comput. Biol., 2(2):291–306, 1995. doi:10.1089/cmb.1995.2.291.

3 Giuseppe F. Italiano, Luigi Laura, and Federico Santaroni. Finding strong bridges and
strong articulation points in linear time. Theor. Comput. Sci., 447:74–84, August 2012.
doi:10.1016/j.tcs.2011.11.011.

4 Benjamin Grant Jackson. Parallel methods for short read assembly. PhD thesis, Iowa State
University, 2009. URL: http://lib.dr.iastate.edu/etd/10704.

5 Evgeny Kapun and Fedor Tsarev. De Bruijn superwalk with multiplicities problem is NP-
hard. BMC Bioinformatics, 14(S-5):S7, 2013. doi:10.1186/1471-2105-14-S5-S7.

6 John D. Kececioglu and Eugene W. Myers. Combinatorial algorithms for DNA sequence
assembly. Algorithmica, 13(1/2):7–51, 1995. doi:10.1007/BF01188580.

7 Carl Kingsford, Michael C. Schatz, and Mihai Pop. Assembly complexity of proka-
ryotic genomes using short reads. BMC Bioinformatics, 11(1):21, 2010. doi:10.1186/
1471-2105-11-21.

8 Yuri P. Lysov, Vladimir L. Florentiev, Alexandr A. Khorlin, Konstantin R. Khrapko, and
Valentine V. Shik. Determination of the nucleotide sequence of dna using hybridization
with oligonucleotides. A new method. Dokl. Akad. Nauk SSSR, 303(6):1508–1511, 1988.
URL: http://view.ncbi.nlm.nih.gov/pubmed/3250844.

CPM 2017

http://dx.doi.org/10.1007/978-3-642-30850-5_18
http://dx.doi.org/10.1089/cmb.1995.2.291
http://dx.doi.org/10.1016/j.tcs.2011.11.011
http://lib.dr.iastate.edu/etd/10704
http://dx.doi.org/10.1186/1471-2105-14-S5-S7
http://dx.doi.org/10.1007/BF01188580
http://dx.doi.org/10.1186/1471-2105-11-21
http://dx.doi.org/10.1186/1471-2105-11-21
http://view.ncbi.nlm.nih.gov/pubmed/3250844

29:12 Optimal Omnitig Listing for Safe and Complete Contig Assembly

9 Paul Medvedev and Michael Brudno. Maximum likelihood genome assembly. J. Comput.
Biol., 16(8):1101–1116, 2009. doi:10.1089/cmb.2009.0047.

10 Paul Medvedev, Konstantinos Georgiou, Gene Myers, and Michael Brudno. Comput-
ability of models for sequence assembly. In Raffaele Giancarlo and Sridhar Hannen-
halli, editors, Proceedings of the 7th International Workshop on Algorithms in Bioin-
formatics (WABI 2007), volume 4645 of LNCS, pages 289–301. Springer, 2007. doi:
10.1007/978-3-540-74126-8_27.

11 Gene Myers. Efficient local alignment discovery amongst noisy long reads. In Daniel G.
Brown and Burkhard Morgenstern, editors, Proceedings of the 14th International Work-
shop on Algorithms in Bioinformatics (WABI 2014), volume 8701 of LNCS, pages 52–67.
Springer, 2014. doi:10.1007/978-3-662-44753-6_5.

12 Niranjan Nagarajan and Mihai Pop. Parametric complexity of sequence assembly: Theory
and applications to next generation sequencing. J. Comput. Biol., 16(7):897–908, 2009.
doi:10.1089/cmb.2009.0005.

13 Giuseppe Narzisi, Bud Mishra, and Michael C. Schatz. On algorithmic complexity of
biomolecular sequence assembly problem. In Adrian-Horia Dediu, Carlos Martín-Vide, and
Bianca Truthe, editors, Proceedings of the 1st International Conference on Algorithms for
Computational Biology (AlCoB 2014), volume 8542 of LNCS, pages 183–195. Springer, 2014.
doi:10.1007/978-3-319-07953-0_15.

14 Pavel A. Pevzner. L-Tuple DNA sequencing: computer analysis. J. Biomol. Struct.
Dyn., 7(1):63–73, August 1989. URL: http://www.tandfonline.com/doi/abs/10.1080/
07391102.1989.10507752.

15 Pavel A. Pevzner, Haixu Tang, and Michael S. Waterman. An Eulerian path approach
to DNA fragment assembly. Proc. Natl. Acad. Sci. U.S.A., 98(17):9748–9753, 2001. doi:
10.1073/PNAS.171285098.

16 Jared T. Simpson and Richard Durbin. Efficient de novo assembly of large genomes using
compressed data structures. Genome Res., 22(3):549–556, 2012. doi:10.1101/GR.126953.
111.

17 Alexandru I. Tomescu and Paul Medvedev. Safe and complete contig assembly via omni-
tigs. In Mona Singh, editor, Proceedings of the 20th Annual Conference on Research in
Computational Molecular Biology (RECOMB 2016), volume 9649 of LNCS, pages 152–163.
Springer, 2016. doi:10.1007/978-3-319-31957-5_11.

18 Michael S. Waterman. Introduction to Computational Biology: Maps, Sequences and Gen-
omes, volume 1 of Chapman & Hall/CRC Interdisciplinary Statistics. CRC Press, 1995.
URL: https://www.crcpress.com/9780412993916.

http://dx.doi.org/10.1089/cmb.2009.0047
http://dx.doi.org/10.1007/978-3-540-74126-8_27
http://dx.doi.org/10.1007/978-3-540-74126-8_27
http://dx.doi.org/10.1007/978-3-662-44753-6_5
http://dx.doi.org/10.1089/cmb.2009.0005
http://dx.doi.org/10.1007/978-3-319-07953-0_15
http://www.tandfonline.com/doi/abs/10.1080/07391102.1989.10507752
http://www.tandfonline.com/doi/abs/10.1080/07391102.1989.10507752
http://dx.doi.org/10.1073/PNAS.171285098
http://dx.doi.org/10.1073/PNAS.171285098
http://dx.doi.org/10.1101/GR.126953.111
http://dx.doi.org/10.1101/GR.126953.111
http://dx.doi.org/10.1007/978-3-319-31957-5_11
https://www.crcpress.com/9780412993916

Dynamic Elias-Fano Representation∗

Giulio Ermanno Pibiri1 and Rossano Venturini2

1 Computer Science Department, University of Pisa, Pisa, Italy
giulio.pibiri@di.unipi.it

2 Computer Science Department, University of Pisa, Pisa, Italy
rossano.venturini@unipi.it

Abstract
We show that it is possible to store a dynamic ordered set S(n, u) of n integers drawn from
a bounded universe of size u in space close to the information-theoretic lower bound and yet
preserve the asymptotic time optimality of the operations. Our results leverage on the Elias-
Fano representation of S(n, u) which takes EF(S(n, u)) = ndlog u

ne+ 2n bits of space and can be
shown to be less than half a bit per element away from the information-theoretic minimum.

Considering a RAM model with memory words of Θ(log u) bits, we focus on the case in
which the integers of S are drawn from a polynomial universe of size u = nγ , for any γ =
Θ(1). We represent S(n, u) with EF(S(n, u)) + o(n) bits of space and: 1. support static pre-
decessor/successor queries in O(min{1 + log u

n , log logn}); 2. make S grow in an append-only
fashion by spending O(1) per inserted element; 3. support random access in O(logn/ log logn)
worst-case, insertions/deletions in O(logn/ log logn) amortized and predecessor/successor quer-
ies in O(min{1 + log u

n , log logn}) worst-case time. These time bounds are optimal.

1998 ACM Subject Classification E.1 Data Structures, E.4 Coding and Information Theory,
F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases succinct data structures, integer sets, predecessor problem, Elias-Fano

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.30

1 Introduction

The problem we consider is the one of representing in compressed space a dynamic ordered
set S of n integer keys, which is a fundamental textbook problem (see the introduction to
parts III and V of [8]). In general, any self-balancing search tree data structure, e.g., AVL or
Red-Black tree, solves the problem optimally in the comparison model, by implementing all
operations in O(logn) worst-case time and using linear space [8]. However, by exploiting
the fact that the stored keys are integers drawn from a bounded universe of size u, the
problem is known to admit more efficient solutions in terms of asymptotic time complexity
while still retaining linear space [8, 23, 26, 30, 13, 14]. Classical examples include the van
Emde Boas tree [26, 27, 28], x/y-fast trie [30] and the fusion tree [14], that was the first data
structure able to surpass the information-theoretic lower bound, by exhibiting an optimal [13]
amount of time per operation within a number of memory words proportional to the size
of the input. Some efforts have been spent in trying to reduce the space requirements of
the representation [16, 18, 25] but known compressed solutions do not closely match the
information-theoretic lower bound of the underlying integer set.

∗ This work was partially supported by the EU H2020 Program under the scheme INFRAIA-1-2014-2015:
Research Infrastructures, grant agreement #654024 SoBigData: Social Mining & Big Data Ecosystem
and by the Pegaso Project, POR FSE 2014-2020.

© Giulio Ermanno Pibiri and Rossano Venturini;
licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 30; pp. 30:1–30:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.30
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

30:2 Dynamic Elias-Fano Representation

In this paper we show that it is possible to preserve the optimal bounds for the operations
under almost optimal space requirements. The key ingredient of our data structures is the
Elias-Fano representation of monotone integer sequences [10, 11]. In particular, Elias-Fano
encodes a monotone integer sequence S(n, u) in EF(S(n, u)) = ndlog u

ne+ 2n bits, which can
be shown to be less than half a bit per element away from optimality [10], maintaining the
capability of randomly access an integer in O(1) worst-case time. The query Predecessor,
which, given an integer x, returns max{y ∈ S : y < x}, is possible as well over the compressed
sequence in O(1 + log u

n) worst-case time. These properties make Elias-Fano extremely
efficient on crucial practical applications, e.g., inverted indexes compression, just to mention
the most noticeable one. Since inverted indexes can indeed be regarded as being a collection
of sorted integer sequences, recent works [29, 20] have shown that Elias-Fano exhibits the
best time/space trade-off thanks to its efficient search capabilities and strong theoretical
guarantees. For this specific application, the operation that has to be supported efficiently
is Successor(x) = min{y ∈ S : y ≥ x}, which is commonly called NextGEQ (Next Greater
or EQual) [29, 20]. Throughout the paper we adopt the classical nomenclature and discuss
Predecessor(x) as it is well known that the twin query Successor(x) is solved in a similar way.

The natural question is whether it is possible to extend the static Elias-Fano representation
to dynamic scenarios, in which integers can also be inserted/deleted in/from S. To this end,
we consider the case in which the n integers of S are drawn from a polynomial universe of
size u = nγ , for any γ = Θ(1). This is the classical operational setting as considered by
Fredman and Saks [13] (list representation problem) and let us concentrate on the typical
case of practical interest. In order to characterize the asymptotic complexity of the data
structures described in the paper and review the literature, we use a RAM model with word
size w = Θ(log u) bits. We also adopt the usual trans-dichotomous assumption [14], making
w grow with n as needed. We maintain S(n, u) using EF(S(n, u)) + o(n) bits of space, hence
introducing a sublinear space overhead with respect to its static Elias-Fano representation,
and show how:
1. static predecessor/successor queries can be supported in O(min{1 + log u

n , log logn})
worst-case time (note that the first term of the bound, i.e., O(1 + log u

n), is optimal only
for polynomial universes of size u = nγ with 1 ≤ γ ≤ 1 + log logn/ logn);

2. to extend S in an append-only fashion, i.e., by assuming that integers are inserted in the
data structure in sorted order, using a constant amount of work per integer;

3. to maintain S in a fully dynamic way, supporting random access in O(logn/ log logn)
worst-case, insertions/deletions in O(logn/ log logn) amortized and predecessor/successor
queries in O(min{1 + log u

n , log logn}) worst-case time.

2 Related Work

We organize the discussion of the related work in three parts. The first part concerns the
review of the results about the static predecessor problem. The second one explains in details
the (static) Elias-Fano representation of monotone integer sequences because it forms the
backbone of our solutions. The last part finally describes the results closest to our work for
the maintenance of a dynamic integer set.

2.1 Static Predecessor Problem
We could solve the static predecessor problem in O(1) worst-case by storing all results to
every possible query using perfect hashing [12] in O(u) words of space. In order to not

G. E. Pibiri and R. Venturini 30:3

trivialize the problem, assume we have a polynomial space budget, e.g., we deal with a data
structure occupying O(nO(1)) words.

Ajtai [1] proved the first ω(1) lower bound, claiming that ∀w, ∃n that gives Ω(
√

logw)
query time. Only ten years later Beame and Fich [3, 4] proved two strong bounds for any
cell-probe data structure1. They proved that ∀w, ∃n that gives Ω(logw/ log logw) query time
and that ∀n, ∃w that gives Ω(

√
logn/ log logn) query time. They also gave a static data

structure achieving O(min{logw/ log logw,
√

logn/ log logn}) which is, therefore, optimal.
Building on a long line of research, Pǎtraşcu and Thorup [21, 22] finally proved the following
optimal space-time trade-off for a static data structure taking m = n2aw bits of space, with
a = log m

n − logw

Θ
(

min
{

logw n, log w − logn
a

,
log w

a

log(a
logn log w

a) ,
log w

a

log(log w
a / log logn

a)

})
. (1)

This lower bound holds for cell-probe, RAM, trans-dichotomous RAM, external memory and
communication game models. The first branch of the trade-off indicates that, whenever we
are in RAM or external memory with one integer fitting in one memory word, fusion trees
are optimal, as these require O(logw n) = O(logn/ logw) query time. The second branch
holds for polynomial universes, i.e., whenever u = nγ , for any γ = Θ(1). In such case we have
that w = Θ(log u) = γ logn, therefore y-fast tries [30] and van Emde Boas trees [26, 27, 28]
are optimal with query time O(log log u) = O(log logn). Finally, the last two branches of
the trade-off treat the case for super-polynomial universes. In particular, the third branch
matches the lower bound by Beame and Fich [3, 4] that requires nO(1) words of space; the
fourth branch improves this space occupancy, showing that n1+1/ exp(log1−ε logu) words are
sufficient, for any ε > 0.

2.2 Static Elias-Fano Representation
The integer encoding we describe in this section was independently proposed by Peter
Elias [10] and Robert Mario Fano [11], hence its name. Given a monotonically increasing
sequence S(n, u) of n positive integers drawn from a universe of size u (i.e., S[i−1] ≤ S[i], for
any 1 ≤ i < n, with S[n−1] ≤ u), we write each S[i] in binary using dlog ue bits. Each binary
representation is then split into two parts: a high part consisting in the first dlogne most
significant bits that we call high bits and a low part consisting in the remaining ` = blog u

nc
bits that we similarly call low bits. Let us call hi and `i the values of high and low bits of
S[i] respectively. The Elias-Fano representation of S is given by the encoding of the high and
low parts. The array L = [`0, . . . , `n−1] is stored in fixed-width and represents the encoding
of the low parts. Concerning the high bits, we represent them in negated unary2 using a
bit vector of n+ d u2` e ≤ 2n bits as follows. We start from a 0-valued bit vector H and set
the bit in position hi + i, for all i ∈ [0, n). The effect is that now the k-th unary integer
m of H indicates that m integers of S have high bits equal to k. Finally the Elias-Fano
representation of S is given by the concatenation of H and L and overall takes

EF(S(n, u)) = n
⌈

log u
n

⌉
+ 2n bits. (2)

1 In the cell-probe computational model, described by Yao [31], computation is for free given that we
only take into account word reads. It is not a very realistic model of computation, but it is useful to
prove lower bounds because it is a stronger model than RAM and trans-dichotomous RAM.

2 The negated unary representation of an integer x, is the bitwise NOT of its unary representation U(x).
An example: U(5) = 00001 and NOT(U(5)) = 11110.

CPM 2017

30:4 Dynamic Elias-Fano Representation

While we can opt for an arbitrary split ranging from 0 to dlog ue into high and low parts,
it can be shown that the value ` = blog u

nc minimizes the overall space occupancy of the
encoding [10]. As the information theoretic lower bound for a monotone sequence of n
elements drawn from a universe of size u is dlog

(
u+n
n

)
e ≈ n log u+n

n + n log e bits, it can be
shown that less than half a bit is wasted per element by the space bound in (2) [10]. Since we
set a bit for every i ∈ [0, n) in H and each hi is extracted in O(1) time from S[i], it follows
that S gets encoded with Elias-Fano in Θ(n) time.

Despite the simplicity of the encoding, it is possible to randomly access an integer from a
sequence encoded with Elias-Fano without decompressing it. We refer to this operation as
Access(i) in the following, which returns the i-th (smallest) element of the sequence. The
operation is supported using an auxiliary data structure that is built on bit vector H, able
to efficiently answer Select1(i) queries, that return the position in H of the i-th 1 bit. This
auxiliary data structure is succinct in the sense that it is negligibly small compared to
EF(S(n, u)), requiring only o(n) additional bits [7, 29].

Using the Select1 primitive, it is possible to implement Access(i), which returns S[i] for
any i ∈ [0, n), in O(1). We basically have to re-link together the high and low bits of an
integer, previously split up during the encoding phase. The low bits `i are trivial to retrieve
as we need to read the range of bits [i`, (i+ 1)`) from L. Note that we also need to store
the quantity `: a global redundancy of O(log u) bits is sufficient. The retrieval of the high
bits deserve, instead, a bit more care. Since we write in negated unary how many integers
share the same high part, we have a bit set for every integer of S and a zero for every
distinct high part. Therefore, to retrieve the high bits of the i-th integer, we need to know
how many zeros are present in H[0, Select1(i)). This quantity is evaluated on H in O(1)
as Rank0(Select1(i)) = Select1(i)− i. Notice, therefore, that the succinct rank/select data
structure does not have to support Rank. Finally, linking the high and low bits is as simple
as: Access(i) = ((Select1(i) − i) � `) ∨ `i, where � is the left shift operator and ∨ is the
bitwise OR.

The query Successor(x) is supported in O(1 + log u
n) time3, as follows. Let hx be the

high bits of x, i.e., its first dlogne most significant bits. Then p1 = Select0(hx) − hx
represents the number of integers in S whose high bits are less than hx. On the other
hand, p2 = Select0(hx + 1) − hx − 1 gives us the position at which the elements having
high bits greater than hx start. These two preliminary operations take O(1). We can now
determine the successor of x by binary searching in this interval which may contain up to
u/n integers. The algorithm for Predecessor(x) runs in a similar way. In particular, it could
be that Predecessor(x) lies before the interval [p1, p2): in this case S[p1 − 1] is the element to
return.

2.3 Dynamic Problems
We now review the most important results concerning the maintenance of a dynamic set of
integers/binary strings, following the chronological order of their proposal.

The van Emde Boas tree is a recursive data structure that maintains S in O(u) words of
space and supports the operations: Search which tests whether a given integer is present or
not in S, Insert/Delete and Predecessor/Successor all in O(logw) worst-case time [26, 27, 28].
Willard [30] improved the space bound to O(n) words by introducing the y-fast trie that
supports Search and Predecessor/Successor queries in O(logw) worst-case time, Insert/Delete
in amortized O(logw) time.

3 We report the bound as O(1 + log u
n), instead of O(log u

n), to cope with the case n = u.

G. E. Pibiri and R. Venturini 30:5

The work by Fredman and Saks [13] is useful to understand which lower bounds apply to
the problem we consider in the paper. They described the list representation problem, i.e., how
to maintain S under the triad of operations Access/Insert/Delete, and proved that it can be
solved in Ω(logn/ log logn) amortized time per operation if w ≤ logγ n for some γ. No space
bound is posed on such problem. Their lower bound does not apply to dynamic predecessor
queries and holds for the cell-probe computational model [31]. Extending the result to the
dynamic predecessor problem, they proved that any cell-probe data structure representing
S using (log u)O(1) bits per memory cell and nO(1) worst-case time for insertions, requires
Ω(
√

logn/ log logn) worst-case query time. They also proved that on a RAM, the dynamic
predecessor problem can be solved in O(min{log logn · logw/ log logw,

√
logn/ log logn}),

using O(n) words. This bound was matched by Andersson and Thorup [2] with the so-called
exponential search tree. This data structure has an optimal bound of O(

√
logn/ log logn)

worst-case time for searching and updating S, using polynomial space. Raman, Raman and
Rao [24] also addressed the list representation problem4 for arrays of length n by providing
two solutions. Their first data structure supports Access in O(1) and Insert/Delete in O(nε)
worst-case time for any fixed positive ε < 1; the second data structure implements all the
three operations in O(logn/ log logn) amortized time. Both data structures use o(n) bits of
redundancy and the time bounds are optimal.

Fredman and Willard [14] showed that dynamic predecessor queries can be answered
in O(logn/ log logn) time by using the fusion tree. This data structure is a B-tree with
branching factor B = Θ(logn) that stores in each internal node a fusion node, a small data
structure able of answering predecessor queries in O(1) for sets up to w1/5 integers. Updating
a fusion node takes, however, O(B4) time. The overall space of the data structure is O(n)
words. The work by Pǎtraşcu and Thorup [23] has recently shown that it is possible to
“dynamize” the fusion node, by supporting Insert and Delete in O(1). As a result, they have
proposed a data structure representing S in O(n) words and optimal O(logn/ logw) running
time for the operations Insert, Delete, Predecessor, Successor, Rank and Select.

We also mention a few additional results, that will be useful in the following. Bille et
al. [5] recently combined the static solution of Demaine and Pǎtraşcu [9] with the one by
Pǎtraşcu and Thorup [23] to support dynamic prefix sums over an array of size n in optimal
O(logn/ log(w/δ)) time per operation and linear space, where δ is the number of bits needed
to encode the quantity that we sum to the elements of the array. Though not devised for
integer sets, the extended CRAM (Compressed Random Access Memory) data structure
described by Jansson, Sadakane and Sung [17] allows a string S of length n to be stored
using its k-th order empirical entropy nHk(S) plus a redundancy of O(n log σ(k log σ + (k +
1) log logn)/ logn) bits for every 0 ≤ k < logσ n, where σ is the size of the alphabet, in
such a way that Insert/Delete of characters and Access to any consecutive logσ n bits are
all supported in optimal O(logn/ log logn) worst-case time. We will exploit the part of
this work dedicated to the memory management. Grossi et al. [15] improved the previous
space bound by using nHk(S) +O(n log logn/ logσ n) bits and maintaining the asymptotic
optimality for all operations. The paper by Navarro and Nekrich [19] illustrates a data
structure supporting Access, Rank/Select queries, as well as symbol insertions/deletions on
S in optimal O(logn/ log logn) time and taking nH0(S) +O(n+ σ(log σ+ log1+ε n)) bits of
space. Of particular interest for our purposes, is the data structure described in Appendix
A.1 concerning the organization of data in small blocks. The high-level idea is to maintain a

4 In their paper [24], the authors refer to the list representation problem, as introduced by Fredman and
Saks [13], as the dynamic array problem. Also, the operation Access is named Index.

CPM 2017

30:6 Dynamic Elias-Fano Representation

tree of constant height with node degree logδ n, for some 0 < δ < 1, and leaves containing
o(logn) elements each. As each internal node can fit in one machine word, the tree supports
basic search operations in O(1) time by using a small pre-computed table. In Section 5 we
will make use of a similar data structure, in order to handle mini blocks of sorted integers,
which avoids the use of pre-computed tables.

3 Static Predecessor Queries in Optimal Time

In this section we are interested in determining the optimal running time of Predecessor for
the Elias-Fano space bound in (2). As mentioned in Section 1, our focus is on polynomial
universes, i.e., u = nγ for any γ = Θ(1), for which the second branch of the time/space
trade-off in (1) becomes optimal. The following theorem shows that adding o(n) bits of
redundancy to EF(S(n, u)) is enough to support Predecessor queries in optimal time.

I Theorem 1. There exists a data structure representing an ordered set S(n, u) of n integers
drawn from a polynomial universe of size u = nγ , for any γ = Θ(1), that takes EF(S(n, u)) +
o(n) bits of space and supports Access in O(1) worst-case and Predecessor/Successor queries
in optimal O(min{1 + log u

n , log logn}) worst-case time.

We resort on the time/space trade-off (1) by Pǎtraşcu and Thorup [21, 22]. In our case,
a = log(dlog u

ne + 2) and w = Θ(log u) = γ logn. In such setting, the second term of the
trade-off becomes log w−logn

a = log((γ−1) logn/ log(dlog u
ne+ 2) = O(log logn). This proves

that y-fast tries and van Emde Boas trees are optimal for static Predecessor queries within
the Elias-Fano space bound. However, such bound only depends on n, whereas the plain
Elias-Fano bound for Predecessor of O(1 + log u

n), introduced in Subsection 2.2, depends
on both n and u. On the other hand, the relation u = nγ relates the two parameter by
means of the constant γ = Θ(1). It is clear that varying γ one of the two bounds becomes
optimal. Indeed, comparing 1 + log u

n with log logn, we have that 1 + log u
n ≤ log logn

whenever u ≤ n
2 logn, i.e., when nγ−1 ≤ 1

2 logn. From this last condition we derive that
the plain Elias-Fano is faster than van Emde Boas whenever 1 ≤ γ ≤ 1 + log logn

logn . In this
case the static Elias-Fano representation does not need to be augmented. When, instead,
γ > 1 + log logn

logn , the query time O(log logn) is optimal and exponentially better than plain
Elias-Fano. Therefore, O(min{1 + log u

n , log logn}) is an accurate characterization of the
Predecessor time bound.

We are left to describe a data structure matching the bound of O(log logn), within
o(n) bits of additional space. We divide S into dn/ log2 ue blocks of log2 u integers each
(the last block may contain less integers). We can solve Predecessor queries in a block in
O(log log u) = O(log logn) time by applying binary search. Now, we need a data structure
on top of S that allows us to identify the proper block in O(log logn) time. Call the first
element of a block its lower bound. We attach to S an y-fast trie storing the lower bounds of
the blocks. More precisely, each leaf in the y-fast trie holds the lower bound of a block and
its position in S. The integers stored in the y-fast trie are dn/ log2 ue, therefore its space is
O(n

log2 u
log u) = o(n) bits. To identify the block where the predecessor of x lies in, we answer

a partial Predecessor(x) query among the integers stored in the y-fast trie in O(log logn)
worst-case time. The position p in S of the block’s lower bound, associated to the identified
partial answer, indicates that the search must continue in the block S[p,min{p+ log2 u, n}).

Concluding this section, observe that the time bound for Predecessor queries is always
at most O(log logn) except when 1 ≤ γ ≤ 1 + log logn

logn : in this case, the plain Elias-Fano

G. E. Pibiri and R. Venturini 30:7

representation beats the time bound of O(log logn). Therefore, in what follows we report
the bound as O(min{1 + log u

n , log logn}) but discuss the case for γ > 1 + log logn
logn .

4 Extensible Elias-Fano Representation

When the integers are inserted in sorted order, we obtain an efficient extensible representation
as these can only be added at the end of the sequence by means of an Append operation.
This is a scenario of practical interest as it is the operational setting of append-only inverted
indexes, e.g., the one of Twitter [6].

I Theorem 2. There exists a data structure representing an ordered set S(n, u) of n integers,
drawn from a polynomial universe of size u = nγ , for any γ = Θ(1), that takes EF(S(n, u)) +
o(n) bits of space and supports: Append in O(1) amortized, Access in O(1) worst-case and
Predecessor/Successor queries in optimal O(min{1 + log u

n , log logn}) worst-case time.

We maintain an array B of size m in which integers are appended uncompressed. This
array acts as a buffer, which is periodically encoded with Elias-Fano in Θ(m) time and
dumped, so that new integers can be successfully appended. Each compressed representation
of the buffer is appended in an array of blocks encoded with Elias-Fano. More precisely,
when B becomes full we encode with Elias-Fano its corresponding differential buffer, i.e.,
the buffer whose values are B[i]−B[0], 0 ≤ i < m. Each time the buffer is compressed, we
append in another array C the pair 〈base, low_bits〉 = 〈B[0], dlog(B[m − 1]/m)e〉, i.e., the
buffer lower bound value and the number of bits needed to encode the average gap of the
Elias-Fano representation of the buffer.

Apart from the space taken by the compressed blocks, the space of the data structure is
given by the following contributions:

(m+ 1) log u bits for the buffer B of uncompressed integers and its size;
O(d nme logn) bits for pointers to rank/select data structures, low and high bit arrays;
O(d nme log u) bits for the array C.

Summing up, the redundancy is O((m+1+d nme) log u) bits. We use a buffer of sizem = log2 u

and, as done in Section 3, we index the buffer lower bounds in an y-fast trie. More precisely,
each leaf of the fast trie stores a buffer lower bound and the index of the compressed block to
which the lower bound belongs to. The values stored in the y-fast trie are dn/ log2 ue, thus
requiring o(n) bits of space. The redundancy O((m+ 1 + d nme) log u) becomes o(n) bits for
n = ω(log3 u), which is already satisfied by requiring that γ = Θ(1).

To take into account the space taken by the representation of the blocks, we use the
property that splitting a block encoded with Elias-Fano into two sub-blocks never increases
the cost of representation of the block. This is possible because each sub-block can be
encoded with a universe relative to the sub-block, which is smaller than the original block
universe, by subtracting to each integer the lower bound of the sub-block. The following
property can be easily extended to work with an arbitrary number of splits.

I Property 1. Consider a monotone sequence S of n integers. Let S[i, j) indicate the range
of S delimited by endpoints i and j. Then for any i, k and j such that 0 ≤ i < k < j < n,
we have EF(S[i, k)) + EF(S[k, j)) ≤ EF(S[i, j)).

Proof. Let m and u be respectively size and universe of the sub-sequence S[i, j), and,
similarly, let m1,m2, u1, u2 be the sizes and universes of the two sub-sequences S[i, k) and
S[k, j) respectively. We have that m = m1 + m2 and u = u1 + u2. From Subsection 2.2,
we know that EF(S[i, j)) takes mφ+m+ d u2φ e. Similarly EF(S[i, k)) = m1φ1 +m1 + d u1

2φ1 e

CPM 2017

30:8 Dynamic Elias-Fano Representation

and EF(S[k, j)) = m2φ2 +m2 + d u2
2φ2 e. EF(S[i, k)) and EF(S[k, j)) are minimized by setting

φ1 = blog u1
m1
c and φ2 = blog u2

m2
c respectively [10], therefore, by replacing φ1 and φ2 with φ,

we have that EF(S[i, k))+EF(S[k, j)) ≤ m1φ+m2φ+m1 +m2 +du1
2φ e+d

u2
2φ e = mφ+m+d u2φ e

= EF(S[i, j)). J

The operations are supported as follows. Since we compress the buffer each time it fills
up (by taking Θ(m) time), Append is performed in O(1) amortized time. Appending new
integers in the buffer accumulates a credit of O(log2 u) which largely pays the amortized
cost O(log log u) of inserting a buffer lower bound into the y-fast trie. To Access the i-th
integer, we retrieve the element x in position i − jm from the compressed block of index
j = b imc. This is done in O(1) worst-case time, since we know how many low bits are
required to perform the access by reading C[j].low_bits. We finally return the integer x +
C[j].base. Predecessor queries are supported similarly as in the description of Theorem 1.
Given the integer x, we first resolve a partial Predecessor(x) query in the y-fast trie to
identify the index j of the compressed block in which the predecessor is located. Then we
return C[j].base + Predecessor(x − C[j].base) by binary searching the block of index j in
O(log log u) = O(log logn) worst-case time.

From Theorem 2, the following corollary easily follows.

I Corollary 3. There exists a data structure representing an ordered set S(n, u) of n =
ω(log2 u) integers drawn from a universe of size u that takes EF(S(n, u)) + o(n) bits of space
and supports Append and Access operations in O(1) worst-case time.

Without using the y-fast trie we are able to achieve a worst-case running time for the
Append operation in Corollary 3 by using a classical de-amortization argument (note, however,
that Predecessor queries are not supported in optimal time anymore). We maintain two
buffers, B1 and B2, instead of one. When one is full we use the other to store the elements
that must be appended. Suppose B1 is full. For each of the successive m Append operations,
we compress one element from B1 and append the new integer in B2. These two steps require
O(1) worst-case time each.

5 Dynamic Elias-Fano Representation

In this section we describe how the static Elias-Fano representation can be turned into an
efficient dynamic data structure, i.e., supporting Access, Insert, Delete, Minimum, Maximum,
Predecessor and Successor in optimal time and taking EF(S(n, u)) + o(n) bits of space.

As already discussed in Subsection 2.3, Fredman and Saks [13] proved that O(logn
log logn)

amortized time is optimal for any data structure maintaining a set of integers subject to
Access, Insert and Delete (list representation problem). Their result holds when w ≤ logγ n
for some γ, which covers the case of polynomial universes u = nγ since γ ≤ logγ−1 n, for
any γ ≥ 1 and n ≥ 2. We operate, therefore, in the same setting as Theorems 1 and 2,
considering integers drawn from a polynomial universe of size u = nγ , for any γ = Θ(1). In
this setting, Pǎtraşcu and Thorup [21] showed that O(log logn) query time of y-fast tries
and van Emde Boas trees is optimal for the dynamic predecessor problem too.

I Theorem 4. There exists a data structure representing an ordered set S(n, u) of n integers
drawn from a polynomial universe of size u = nγ , for any γ = Θ(1), that takes EF(S(n, u)) +
o(n) bits of space and supports: Access in O(logn/ log logn) worst-case; Insert/Delete in
O(logn/ log logn) amortized; Minimum/Maximum in O(1) and Predecessor/Successor queries
in O(min{1 + log u

n , log logn}) worst-case time. These time bounds are optimal.

G. E. Pibiri and R. Venturini 30:9

In what follows, we first describe the layout of the data structure and then analyze its space
and time complexities.

5.1 Data Structure Description
We begin our description by showing how to handle a dynamic collection of mini blocks in
succinct space, which is a key tool to obtain the full dynamic data structure. This result
builds on an idea from [19], Appendix A.1.

5.1.1 Maintaining a Sorted Collection of Mini Blocks
Let C be a collection of k = O(polylogn) blocks of sorted integers, with the following
properties. The blocks of C form a total order, i.e., uj ≤ fj+1, for all j = 1, . . . , k − 1, where
fj and uj indicate, respectively, the first and last element of the j-th block in the total order.
Each block supports random access to its elements in constant time and is of size Θ(b) = ρb

with 1
2 ≤ ρ ≤ 2 and b = O(polylogn).

I Lemma 5. The total order of the blocks of C can be maintained by using a data structure
that takes O(polylogn · log logn) bits of space and supports the following operations in
O(log logn) worst-case time: Search(x) which returns a pointer to the block containing the
integer x; Access(i) which returns the i-th integer of the total order; Insert/Delete of a block.

Pointers of O(log logn) bits to blocks are stored in the leaves of a τ -ary tree T , with
τ = Θ(logσ n) for some 0 < σ < 1. Given that we have O(polylogn) leaves, the height of
T is constant and equal to O(1/σ). T operates as a B-tree, in which internal nodes have
Θ(τ) = ρτ children.

Logically, we divide the information stored at each internal node into two levels of
representation. For each of the two levels we store Θ(τ) pairs, where the i-th pair maintains
information about the sub-tree rooted in the i-th child. The pairs are stored following the
order of the upper bounds of the blocks indexed in the sub-trees rooted in the node’s children.
In the lower level, each pair contains a pointer to the sub-tree rooted in the child and the size
of such sub-tree. The Θ(τ) children sizes are kept in prefix sums to enable binary search. In
the upper level, each pair contains a pointer to the right-most block indexed in the sub-tree
rooted in its child and the size of such sub-tree. Each leaf holds, of course, only the lower level
of information. Each node uses O(τ(log logn + log polylogn)) = O(τ log logn) = o(logn)
bits, thus fitting in (less than) a machine word. The space taken by whole data structure is,
therefore, O(τO(1/σ) log logn) = O(polylogn · log logn) bits.

We now detail how the operations are implemented. To support Search(x), i.e., determin-
ing the block where the integer x is comprised, we percolate T , locating the correct child at
each node in O(log τ) = O(log logn) by binary searching on blocks’ upper bounds. Specific-
ally, if the upper bounds of the i-th block is needed for comparison for some 1 ≤ i ≤ Θ(τ),
we access the block following the pointer (to the right-most block) of the i-th pair stored
in the upper level of the node and we retrieve the upper bound in O(1), given that we also
know the size of the block. When we have to insert/delete an integer, we identify the proper
block of the total order in/from which the integer must be inserted/deleted in O(log logn)
time (as described for the Search operation) and update the pairs along the path from the
root in constant time, as these pairs fits in o(logn) bits overall. If a split or merge of a block
happens, it is handled as usual and solved in a constant number of O(1)-time operations.
During an Access(i) query, we follow the proper root-to-leaf path in T . The traversal of the
data structure does not need to access the blocks directly, but instead uses their sizes to

CPM 2017

30:10 Dynamic Elias-Fano Representation

determine the correct child at each level. By binary searching the sizes, we traverse the data
structure in O(log logn) time. During the traversal of the path we also compute the sum ∆
of the sizes of the preceding blocks by summing to the current value of ∆, at each level, the
value stored in the (j − 1)-th pair of the lower level if the j-th child is traversed. Finally we
retrieve the (i−∆)-th integer from the identified block in O(1), as the blocks of C support
random access.

5.1.2 Full Data Structure Layout
Let ` be logn/ log logn for the rest of the paper. We logically divide the sorted sequence
S(n, u) into mini blocks of Θ(`) = ρ` integers each. We organize the dynamic layout into
two levels.

Lower level. We group O(log2 n) consecutive mini blocks together and index such collection
using the data structure T described in Lemma 5. We refer to this collection as a “block” and
say that T stores a block of O(log2 n) mini blocks. The set {Tj}k

′

j=1, with k′ = n/O(` log2 n),
of all such data structures forms the lower level of the dynamic layout. Each Tj also stores
the lower bound fj of its block and the number of low bits required by its Elias-Fano
representation in Θ(log u) bits, so that we can subtract fj to all the integers belonging to
the mini blocks of Tj .

Upper level. The set {fj}k
′

j=1 of all the lower bounds of the blocks are indexed using an
y-fast trie. The sizes of the blocks are maintained, instead, using the dynamic prefix sums
data structure described in [5], which is a B-tree in which each node stores a dynamic prefix
sums data structure operating on a small set of integers in O(1) time. In particular we use
the operation Update(i,∆) of P as implemented in [5], which sums to the i-th integer of the
data structure the quantity ∆ (that fits in δ bits) and runs in optimal O(logn/ log(w/δ))
worst-case time. In our setting this operation is supported in O(`) given that δ = ∆ = 1.

These two data structures, respectively named Y and P in the following, form the upper
level of the dynamic layout. The j-th leaf of Y and P stores a O(logn)-bit pointer to the
data structure Tj in the lower level.

To handle the memory allocation for the mini blocks, we employ a different technique to
manage the high and low part of their Elias-Fano representation. Recall from Subsection 2.2
that, given a sequence S(n, u), the high part of EF(S(n, u)) consists in a bitvector of at most
2n bits, whereas the low part is given by a vector of n dlog u

ne-bit integers. In our case, the
high part of each mini block requires at most 2` = O(w) bits and is stored using the data
structure of Theorem 6 from [17] that allows to address and allocate the high part of a mini
block in O(1) worst-case time. The low part of a mini block is instead stored using the data
structure of Corollary 3 from [24] that supports Access in O(1) and Insert/Delete in O(`ε)
worst-case time for any fixed positive ε < 1.

5.2 Space Analysis
The space required by the introduced layout will be clearly given by the contribution of:

the data structures Y and P used in the upper level and the data structures T of Lemma 5
used in the lower level;
the cost of representation of the mini blocks encoded with Elias-Fano;
the overhead given by the mini blocks memory management.

G. E. Pibiri and R. Venturini 30:11

In the following we separately analyze each contribution.

The space taken by the data structures Y and P in the upper level isO(n
` log2 n

log u) = o(n)
bits. All the data structures T of Lemma 5 require O(n

` log2 n
log2 n log logn) = o(n) bits too.

We now analyze the space taken by the encoding of the mini blocks. Since the universe
of representation of a mini block could be as large as the one of its comprising block, i.e., u,
storing the lower bounds of the mini blocks in order to use reduced universes (as already
done for the blocks), would require O(n` log u) bits, which is too much. In what follows we
show that it is not necessary to re-map the mini blocks using Property 1, hence these are
kept encoded with the universe relative to their comprising block, if we carefully set the
number of bits required to represent each low part in the Elias-Fano space bound (2). As
pointed out previously, each low part in the Elias-Fano representation of a sequence S(n, u)
is encoded using dlog u

ne bits, which is the number of bits needed to encode the average gap
u/n of S. The number of bits for the average gap of a block is therefore dme = dlog u

` log2 n
e.

The idea is to choose a number of bits dm′e for the encoding of the average gap of the
mini blocks such that dm′e = dme for a sufficiently long sequence of p insertions/deletions.
After p insertions/deletions have been performed, we rebuild the mini blocks using dme bits
for the average gap. In other words, we want to guarantee that encoding the mini blocks
with dm′e bits for the average gap, instead of dme, does not introduce any extra space.
Since m′ lies in the interval [l, r] = [log u

` log2 n+p , log u
` log2 n−p], m′ must be chosen in order

to satisfy dme − 1 < m′ < dme, which indeed implies dm′e = dme. Precisely, we satisfy this
condition by fixing m′ = m± θ with dme − l < ±θ < dme − r + 1. To derive this condition,
we distinguish three possible cases.
1. [l, r] ⊂ [dme− 1, dme). In this case the condition dme− 1 < m′ < dme is already satisfied.

The other two cases are symmetric.
2. dle = dme − 1. In this case we set m′ = m+ θ. To let dme − 1 < m′ < dme holds, θ must

be at least dme − l and at most dme+ 1− r.
3. dre = dme+ 1. In this case we set m′ = m− θ. To let dme− 1 < m′ < dme holds, θ must

be at least r − dme − 1 and at most l − dme.
Cases 2. and 3. together yield the condition dme − l < ±θ < dme − r + 1.

Finally, we have to determine the proper number p of insertions/deletions before triggering
the rebuilding of the mini blocks in order to attain to optimal insert/delete amortized time
O(`). As blocks are of size Θ(` log2 n), p is chosen to be O(log2 n).

The techniques used to manage the memory allocation for the mini blocks introduce an
overall redundancy of o(n) bits. Precisely, the data structure of Theorem 6 from [17] has an
overhead of O(w4 + n

logn log2 w) = o(n) bits, while the one of Corollary 3 from [24] uses o(n)
bits by choosing a proper positive ε < 1.

In conclusion, by the above discussion and the use of Property 1, the space taken by the
mini blocks can be safely upper bounded by EF(S(n, u)) and the redundancy sums up to
o(n) bits, so that the whole data structure requires EF(S(n, u)) + o(n) bits of space.

5.3 Operations
In this subsection we describe how the operations of Theorem 4 are implemented. As stated
before, ` is a short-hand for logn/ log logn.

To Access the i-th integer, we first resolve Search(i) on P in O(`): Search(i) = j indicates
that the j-th block contains the i-th integer given that Sum(j − 1) < i ≤ Sum(j), where
Sum(j) equals the sum of the sizes of the first j blocks. We then follow the pointer stored in

CPM 2017

30:12 Dynamic Elias-Fano Representation

the j-th leaf of P, which points to the data structure Tj . We finally Access the integer x of
index i− Sum(j − 1) from Tj in O(log logn) and return x+ fj . The overall complexity is,
therefore, O(`). To Insert/Delete an integer x, we perform the following steps: 1. identify
the proper data structure Tj by resolving a partial Successor(x) query on Y in O(log logn)
and following the pointer retrieved at the identified leaf of Y; 2. identify the correct mini
block by Search(x− fj) in Tj in O(log logn); 3. Insert/Delete x− fj in Tj by rebuilding the
proper mini block in Θ(`); 4. update P in O(`). During the third step, split or merge of a
mini block can happen and it is handled in O(`) worst-case time by the data structure Tj ;
rebuilding of the mini blocks can happen as pointed out in the previous section and it is
handled in O(`) amortized time. If split/merge of a block happens, the lower bound of the
block is inserted/removed from Y in O(log logn) time. The overall complexity is, therefore,
O(`) amortized. The query Predecessor(x) is supported as follows (Successor(x) runs in a
similar way). We identify the proper data structure Tj in O(log logn) by answering a partial
Predecessor(x) query on Y and following the pointer retrieved at the identified leaf of Y.
Then we identify the proper mini block by Search(x − fj) in Tj in O(log logn) time. We
finally return fj + Predecessor(x− fj) by binary searching on the identified mini block. The
overall complexity is O(log logn) worst-case. The minimum and maximum elements of S
are stored uncompressed using Θ(log u) bits and returned when requested in O(1). Upon
insertion/deletions these are updated as needed.

6 Conclusions

In this paper we have shown how the Elias-Fano representation of a monotone integer
sequence S can be adapted to obtain optimal data structures in terms of query time
and almost optimal in terms of space. In particular, when integers are drawn from a
polynomial universe of size u = nγ , for any γ = Θ(1), our data structures take the same
asymptotic space of the plain, static, Elias-Fano representation, i.e., EF(S(n, u)) + o(n) bits
and support: 1. static Predecessor/Successor queries in optimal worst-case time O(min{1 +
log u

n , log logn}) (Section 3); 2. a O(1) worst-case amount of work for Append when integers
are inserted in sorted order (Section 4); 3. Access in optimalO(logn/ log logn) worst-case time,
Insert/Delete in optimal O(logn/ log logn) amortized time, Predecessor/Successor queries in
optimal O(min{1 + log u

n , log logn}) worst-case time (Section 5).
As a last note, we observe that the data structure described in Section 5 allows us to

support all operations in time O(log log u) when non-polynomial universes are considered,
i.e., when n and u are not necessarily related by means of the formula u = nγ for any
γ = Θ(1). In this setting, the data structure of Lemma 5 will take O(polylog u · log log u)
bits and operate in O(log log u) time. In order to guarantee an overall redundancy of o(n)
bits, we let mini blocks be of size Θ((log log u)2) and group O(log2 u) consecutive mini blocks
into a block. The high part of a mini block fits into one machine word, whereas we can
insert/delete a low part in O((log log u)2ε) for Corollary 3 of [24], which is O(log log u) as
soon as ε < 1

2 . Therefore, the following corollary matches the asymptotic time bounds of
y-fast tries and van Emde Boas trees but in almost optimally compressed space.

I Corollary 6. There exists a data structure representing an ordered set S(n, u) of n integers
drawn from a universe of size u that takes EF(S(n, u))+o(n) bits of space and supports: Access
and Predecessor/Successor queries in O(log log u) worst-case; Insert/Delete in O(log log u)
amortized and Minimum/Maximum in O(1).

G. E. Pibiri and R. Venturini 30:13

References
1 Miklós Ajtai. A lower bound for finding predecessors in Yao’s cell probe model. Combin-

atorica, 8(3):235–247, 1988. doi:10.1007/BF02126797.
2 Arne Andersson and Mikkel Thorup. Dynamic ordered sets with exponential search trees.

J. ACM, 54(3):13, 2007. doi:10.1145/1236457.1236460.
3 Paul Beame and Faith E. Fich. Optimal bounds for the predecessor problem. In Jeffrey Scott

Vitter, Lawrence L. Larmore, and Frank Thomson Leighton, editors, Proceedings of the 31st
Annual ACM Symposium on Theory of Computing (STOC 1999), pages 295–304. ACM,
1999. doi:10.1145/301250.301323.

4 Paul Beame and Faith E. Fich. Optimal bounds for the predecessor problem and related
problems. J. Comput. Syst. Sci., 65(1):38–72, 2002. doi:10.1006/jcss.2002.1822.

5 Philip Bille, Patrick Hagge Cording, Inge Li Gørtz, Frederik Rye Skjoldjensen, Hjalte Wedel
Vildhøj, and Søren Vind. Dynamic relative compression, 2015. arXiv:1504.07851.

6 Michael Busch, Krishna Gade, Brian Larson, Patrick Lok, Samuel Luckenbill, and Jimmy
Lin. Earlybird: Real-time search at Twitter. In Anastasios Kementsietsidis and Marcos
Antonio Vaz Salles, editors, Proceedings of the 28th IEEE International Conference on
Data Engineering (ICDE 2012), pages 1360–1369. IEEE Computer Society, 2012. doi:
10.1109/ICDE.2012.149.

7 David Clark. Compact Pat Trees. PhD thesis, University of Waterloo, Canada, 1996. URL:
http://hdl.handle.net/10012/64.

8 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. MIT Press, 3rd edition, 2009. URL: http://mitpress.mit.edu/books/
introduction-algorithms.

9 Erik D. Demaine and Mihai Pǎtraşcu. Tight bounds for the partial-sums problem. In
J. Ian Munro, editor, Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2004), pages 20–29. SIAM, 2004. URL: http://dl.acm.org/citation.
cfm?id=982792.982796.

10 Peter Elias. Efficient storage and retrieval by content and address of static files. J. ACM,
21(2):246–260, 1974. doi:10.1145/321812.321820.

11 Robert Mario Fano. On the number of bits required to implement an associative memory.
Technical Report Memorandum 61, Computer Structures Group, MIT, Cambridge, MA,
1971. URL: http://csg.csail.mit.edu/pubs/memos/Memo-61/Memo-61.pdf.

12 Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with O(1)
worst-case access time. J. ACM, 31(3):538–544, 1984. doi:10.1145/828.1884.

13 Michael L. Fredman and Michael E. Saks. The cell probe complexity of dynamic data
structures. In David S. Johnson, editor, Proceedings of the 21st Annual ACM Symposium
on Theory of Computing (STOC 1989), pages 345–354. ACM, 1989. doi:10.1145/73007.
73040.

14 Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic bound with
fusion trees. J. Comput. Syst. Sci., 47(3):424–436, 1993. doi:10.1016/0022-0000(93)
90040-4.

15 Roberto Grossi, Rajeev Raman, Srinivasa Rao Satti, and Rossano Venturini. Dynamic
compressed strings with random access. In Fedor V. Fomin, Rusins Freivalds, Marta Z.
Kwiatkowska, and David Peleg, editors, Proceedings of the 40th International Colloquium
on Automata, Languages, and Programming (ICALP 2013), volume 7965 of LNCS, pages
504–515. Springer, 2013. doi:10.1007/978-3-642-39206-1_43.

16 Ankur Gupta, Wing-Kai Hon, Rahul Shah, and Jeffrey Scott Vitter. Compressed data
structures: Dictionaries and data-aware measures. Theor. Comput. Sci., 387(3):313–331,
2007. doi:10.1016/j.tcs.2007.07.042.

CPM 2017

http://dx.doi.org/10.1007/BF02126797
http://dx.doi.org/10.1145/1236457.1236460
http://dx.doi.org/10.1145/301250.301323
http://dx.doi.org/10.1006/jcss.2002.1822
http://arxiv.org/abs/1504.07851
http://dx.doi.org/10.1109/ICDE.2012.149
http://dx.doi.org/10.1109/ICDE.2012.149
http://hdl.handle.net/10012/64
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
http://dl.acm.org/citation.cfm?id=982792.982796
http://dl.acm.org/citation.cfm?id=982792.982796
http://dx.doi.org/10.1145/321812.321820
http://csg.csail.mit.edu/pubs/memos/Memo-61/Memo-61.pdf
http://dx.doi.org/10.1145/828.1884
http://dx.doi.org/10.1145/73007.73040
http://dx.doi.org/10.1145/73007.73040
http://dx.doi.org/10.1016/0022-0000(93)90040-4
http://dx.doi.org/10.1016/0022-0000(93)90040-4
http://dx.doi.org/10.1007/978-3-642-39206-1_43
http://dx.doi.org/10.1016/j.tcs.2007.07.042

30:14 Dynamic Elias-Fano Representation

17 Jesper Jansson, Kunihiko Sadakane, and Wing-Kin Sung. CRAM: Compressed random
access memory. In Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger Watten-
hofer, editors, Proceedings of the 39th International Colloquium on Automata, Languages,
and Programming (ICALP 2012), volume 7391 of LNCS, pages 510–521. Springer, 2012.
doi:10.1007/978-3-642-31594-7_43.

18 Veli Mäkinen and Gonzalo Navarro. Rank and select revisited and extended. Theor. Com-
put. Sci., 387(3):332–347, 2007. doi:10.1016/j.tcs.2007.07.013.

19 Gonzalo Navarro and Yakov Nekrich. Optimal dynamic sequence representations. In San-
jeev Khanna, editor, Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA 2013), pages 865–876. SIAM, 2013. doi:10.1137/1.9781611973105.62.

20 Giuseppe Ottaviano and Rossano Venturini. Partitioned Elias-Fano indexes. In Shlomo
Geva, Andrew Trotman, Peter Bruza, Charles L. A. Clarke, and Kalervo Järvelin, ed-
itors, Proceedings of the 37th International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR 2014), pages 273–282. ACM, 2014. doi:
10.1145/2600428.2609615.

21 Mihai Pǎtraşcu and Mikkel Thorup. Time-space trade-offs for predecessor search. In
Jon M. Kleinberg, editor, Proceedings of the 38th Annual ACM Symposium on Theory of
Computing (STOC 2006), pages 232–240. ACM, 2006. doi:10.1145/1132516.1132551.

22 Mihai Pǎtraşcu and Mikkel Thorup. Randomization does not help searching predecessors.
In Nikhil Bansal, Kirk Pruhs, and Clifford Stein, editors, Proceedings of the 18th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2007), pages 555–564. SIAM, 2007.
URL: http://dl.acm.org/citation.cfm?id=1283383.1283443.

23 Mihai Pǎtraşcu and Mikkel Thorup. Dynamic integer sets with optimal rank, select, and
predecessor search. In Boaz Barak, editor, Proceedings of the 55th IEEE Annual Symposium
on Foundations of Computer Science (FOCS 2014), pages 166–175. IEEE Computer Society,
2014. doi:10.1109/FOCS.2014.26.

24 Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct dynamic data struc-
tures. In Frank K. H. A. Dehne, Jörg-Rüdiger Sack, and Roberto Tamassia, editors, Proceed-
ings of the 7th International Workshop on Algorithms and Data Structures (WADS 2001),
volume 2125 of LNCS, pages 426–437. Springer, 2001. doi:10.1007/3-540-44634-6_39.

25 Kunihiko Sadakane and Roberto Grossi. Squeezing succinct data structures into entropy
bounds. In Clifford Stein, editor, Proceedings of the 17th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2006), pages 1230–1239. SIAM, 2006. doi:10.1145/1109557.
1109693.

26 Peter van Emde Boas. Preserving order in a forest in less than logarithmic time. In
Daniel J. Rosenkrantz, editor, Proceedings of the 16th Annual Symposium on Foundations
of Computer Science (FOCS 1975), pages 75–84. IEEE Computer Society, 1975. doi:
10.1109/SFCS.1975.26.

27 Peter van Emde Boas. Preserving order in a forest in less than logarithmic time and linear
space. Inf. Process. Lett., 6(3):80–82, 1977. doi:10.1016/0020-0190(77)90031-X.

28 Peter van Emde Boas, Robert Kaas, and Erik Zijlstra. Design and implementation of an
efficient priority queue. Math. Syst. Theory, 10:99–127, 1977. doi:10.1007/BF01683268.

29 Sebastiano Vigna. Quasi-succinct indices. In Stefano Leonardi, Alessandro Panconesi,
Paolo Ferragina, and Aristides Gionis, editors, Proceedings of the 6th ACM International
Conference on Web Search and Data Mining (WSDM 2013), pages 83–92. ACM, 2013.
doi:10.1145/2433396.2433409.

30 Dan E. Willard. Log-logarithmic worst-case range queries are possible in space Θ(N). Inf.
Process. Lett., 17(2):81–84, 1983. doi:10.1016/0020-0190(83)90075-3.

31 Andrew Chi-Chih Yao. Should tables be sorted? J. ACM, 28(3):615–628, 1981. doi:
10.1145/322261.322274.

http://dx.doi.org/10.1007/978-3-642-31594-7_43
http://dx.doi.org/10.1016/j.tcs.2007.07.013
http://dx.doi.org/10.1137/1.9781611973105.62
http://dx.doi.org/10.1145/2600428.2609615
http://dx.doi.org/10.1145/2600428.2609615
http://dx.doi.org/10.1145/1132516.1132551
http://dl.acm.org/citation.cfm?id=1283383.1283443
http://dx.doi.org/10.1109/FOCS.2014.26
http://dx.doi.org/10.1007/3-540-44634-6_39
http://dx.doi.org/10.1145/1109557.1109693
http://dx.doi.org/10.1145/1109557.1109693
http://dx.doi.org/10.1109/SFCS.1975.26
http://dx.doi.org/10.1109/SFCS.1975.26
http://dx.doi.org/10.1016/0020-0190(77)90031-X
http://dx.doi.org/10.1007/BF01683268
http://dx.doi.org/10.1145/2433396.2433409
http://dx.doi.org/10.1016/0020-0190(83)90075-3
http://dx.doi.org/10.1145/322261.322274
http://dx.doi.org/10.1145/322261.322274

Synergistic Solutions on MultiSets∗

Jérémy Barbay1, Carlos Ochoa2, and Srinivasa Rao Satti3

1 Departamento de Ciencias de la Computación, Universidad de Chile, Santiago,
Chile
jeremy@barbay.cl

2 Departamento de Ciencias de la Computación, Universidad de Chile, Santiago,
Chile
cochoa@dcc.uchile.cl

3 Department of Computer Science and Engineering, Seoul National University,
Seoul, South Korea
ssrao@cse.snu.ac.kr

Abstract
Karp et al. (1988) described Deferred Data Structures for Multisets as “lazy” data structures
which partially sort data to support online rank and select queries, with the minimum amount of
work in the worst case over instances of size n and number of queries q fixed. Barbay et al. (2016)
refined this approach to take advantage of the gaps between the positions hit by the queries (i.e.,
the structure in the queries). We develop new techniques in order to further refine this approach
and take advantage all at once of the structure (i.e., the multiplicities of the elements), some
notions of local order (i.e., the number and sizes of runs) and global order (i.e., the number and
positions of existing pivots) in the input; and of the structure and order in the sequence of queries.
Our main result is a synergistic deferred data structure which outperforms all solutions in the
comparison model that take advantage of only a subset of these features. As intermediate results,
we describe two new synergistic sorting algorithms, which take advantage of some notions of
structure and order (local and global) in the input, improving upon previous results which take
advantage only of the structure (Munro and Spira 1979) or of the local order (Takaoka 1997) in
the input; and one new multiselection algorithm which takes advantage of not only the order and
structure in the input, but also of the structure in the queries.

1998 ACM Subject Classification E.1 Data Structures, F.2.2 Nonnumerical Algorithms and
Problems, H.3.3 Information Search and Retrieval

Keywords and phrases deferred data structure, multivariate analysis, quick sort, select

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.31

1 Introduction

Consider a multiset M of size n. The multiplicity of an element x ofM is the number mx of
occurrences of x inM. We call the distribution of the multiplicities of the elements inM the
input structure. As early as 1976, Munro and Spira [19] described a variant of the algorithm
MergeSort using counters, which optimally takes advantage of the input structure when
sorting a multisetM of n elements. Munro and Spira measure the “difficulty” of the instance
in terms of the “input structure” by the entropy function H(m1, . . . ,mσ) =

∑σ
i=1

mi

n log n
mi

,

∗ C. Ochoa is supported by CONICYT-PCHA/Doctorado Nacional/2013-63130161 (Chile). J. Barbay
is supported by the project Fondecyt Regular no 1170366 from Conicyt and the Millennium Nucleus
RC130003 “Information and Coordination in Networks” with code P10-024-F.

© Jérémy Barbay, Carlos Ochoa, and Srinivasa Rao Satti;
licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 31; pp. 31:1–31:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.31
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

31:2 Synergistic Solutions on MultiSets

where σ is the number of distinct elements inM and m1, . . . ,mσ are the multiplicities of
the σ distinct elements inM (such that

∑σ
i=1 mi = n), respectively. The time complexity of

the algorithm is within O(n(1 +H(m1, . . . ,mσ))) ⊆ O(n(1+ log σ)) ⊆ O(n logn).
Any array A representing a multiset lists its element in some order, which we call the

input order and denote by a tuple. Maximal sorted subblocks in A are a local form of input
order and are called runs [16]. As early as 1973, Knuth [16] described a variant of the
algorithm MergeSort using a prepossessing step taking linear time to detect runs in the
array A. Takaoka [20] described a new sorting algorithm that optimally takes advantage of
the distribution of the sizes of the runs in the array A, which yields a time complexity within
O(n(1 +H(r1, . . . , rρ))) ⊆ O(n(1+ log ρ)) ⊆ O(n logn), where ρ is the number of runs in A
and r1, . . . , rρ are the sizes of the ρ runs in A (such that

∑ρ
i=1 ri = n), respectively.

Given an element x of a multisetM and an integer j ∈ [1..n], the rank rank(x) of x is the
number of elements smaller than x inM, and selecting the j-th element inM corresponds
to computing the value select(j) of the j-th smallest element (counted with multiplicity) in
M. Those operations are central to the navigation of the Burrows-Wheeler transform [17] of
a text when searching for occurrences of a pattern in it. As early as 1961, Hoare [12] showed
how to support rank and select queries in average linear time, a result later improved
to worst case linear time by Blum et al. [7]. Twenty years later, Dobkin and Munro [10]
described a MultiSelection algorithm that supports several select queries and whose
running time is optimal in the worst case over all multisets of size n and all sets of q queries
hitting positions in the multisets separated by gaps (differences between consecutive select
queries in sorted order) of sizes g0, . . . , gq. Karp et al. [15] further extended Dobkin and
Munro’s result [10] to the online context, where the multiple rank and select queries arrive
one by one. They called their solution a Deferred Data Structure and describe it as
“lazy”, as it partially sorts data, performing the minimum amount of work necessary in the
worst case over all instances for a fixed n and q. Barbay et al. [2] refined this result by taking
advantage of the gaps between the positions hit by the queries (i.e., the query structure).

This suggests the following questions:
1. Is there a sorting algorithm for multisets which takes the best advantage of both its

input order and its input structure in a synergistic way, so that it performs as good as
previously known solutions on all instances, and much better on instances where it can
take advantage of both at the same time?

2. Is there a multiselection algorithm and/or a deferred data structure for answering rank
and select queries which takes the best advantage not only of both of those notions of
easiness in the input, but also of notions of easiness in the queries, such as the query
structure and the query order?

We answer both questions affirmatively: In the context of Sorting, this improves
upon both algorithms from Munro and Spira [19] and Takaoka [20]. In the context of
MultiSelection and Deferred Data Structure for rank and select on Multisets,
this improves upon Barbay et al.’s results [2] by adding three new measures of difficulty
(input order, input structure and query order) to the single one previously considered (query
structure). Additionally, we correct the analysis of the Sorted Set Union algorithm by
Demaine et al. [9] (Section 2.2), and we define a simple yet new notion of “global” input
order (Section 2.4), not mentioned in previous surveys [11, 18] nor extensions [3].

We present our results incrementally, each building on the previous one, such that the
most complete and complex result is in Section 4. In Section 2 we describe how
to measure the interaction of the order (local and global) with the structure in the input,
and two new synergistic Sorting algorithms based on distinct paradigms (i.e., merging vs

J. Barbay, C. Ochoa, and S. R. Satti 31:3

splitting) which take advantage of both the input order and structure. We refine the second
of those results in Section 3 with the analysis of a MultiSelection algorithm which takes
advantage of not only the order and structure in the input, but also of the query structure, in
the offline setting. In Section 4 we analyze an online Deferred Data Structure taking
advantage of the order and structure in the input on one hand, and of the order and structure
in the queries on the other hand. We conclude with a discussion of our results in Section 5.

2 Sorting Algorithms

We review in Section 2.1 the algorithms MergeSort with Counters described by Munro
and Spira [19] and Minimal MergeSort described by Takaoka [20]: each takes advantage of
distinct features in the input. In Sections 2.2 and 2.3, we describe two synergistic Sorting
algorithms, which outperform both MergeSort with Counters and Minimal MergeSort by
taking advantage of both the order (local and global) and the structure in the input, in a
synergistic way.

2.1 Known Algorithms

The algorithm MergeSort with Counters described by Munro and Spira [19] is an adapta-
tion of the traditional sorting algorithm MergeSort that optimally takes advantage of the
input structure when sorting a multiset M of size n. The algorithm divides M into two
parts of equal size, sorts both parts recursively, and then merges the two sorted lists. When
two elements of same value v are found, one is discarded and a counter holding the number
of occurrences of v is updated. Munro and Spira measure the “difficulty” of the instance
in terms of the input structure by the entropy function H(m1, . . . ,mσ) =

∑σ
i=1

mi

n log n
mi

,
where σ is the number of distinct elements inM and m1, . . . ,mσ are the multiplicities of
the σ distinct elements inM (such that

∑σ
i=1 mi = n), respectively. The time complexity of

the algorithm is then within O(n(1 +H(m1, . . . ,mσ))) ⊆ O(n(1+ log σ)) ⊆ O(n logn).
The algorithm Minimal MergeSort described by Takaoka [20] optimally takes advantage

of the local input order, as measured by the decomposition into runs when sorting an array
A of size n. The main idea is to detect the runs first and then merge them pairwise. The
runs are detected in linear time. Merging the two shortest runs at each step further reduces
the number of comparisons, making the running time of the merging process adaptive to the
entropy of the sequence formed by the sizes of the runs. If the array A is formed by ρ runs
and r1, . . . , rρ are the sizes of the ρ runs (such that

∑ρ
i=1 ri = n), then the algorithm sorts

A in time within O(n(1 +H(r1, . . . , rρ))) ⊆ O(n(1+ log ρ)) ⊆ O(n logn).
The algorithms MergeSort with Counters and Minimal MergeSort are incomparable,

in the sense that neither one performs always better than the other. Simple modifications
and combinations of these algorithms do not take full advantage of both the local input order
and the input structure (see the extended version [5] for detailed counter examples).

In the following sections we describe two sorting algorithms that take the best advantage
of both the order (local and global) and structure in the input all at once when sorting a
multiset. The first one is a straightforward application of previous results, while the second
one prepares the ground for the MultiSelection algorithm (Section 3) and the Deferred
Data Structures (Section 4), which take advantage of the order (local and global) and
structure in the input and of the order and structure in the queries.

CPM 2017

31:4 Synergistic Solutions on MultiSets

g1 g3

g2

g4

g5

g6
g7

g8

ρ

Figure 1 An instance of the Sorted Set Union problem with ρ = 3 sorted sets. In each sorted
set A, the entry A[i] is represented by a point of x-coordinate A[i]. The sizes (gi)i∈[1..8] of the blocks
that form the sets are indicated. The sizes g4, g5 and g6 are 1 because they correspond to elements
of equal value and they determine the 4-th member of the partition π with value m4 equals 3. The
vertical bars separate the members of π.

2.2 “Kind-of-new” Sorting Algorithm DLM Sort

In 2000, Demaine et al. [9] described the algorithm DLM Union, an instance optimal algorithm
that computes the union of ρ sorted sets. The algorithm scans the sets from left to right
identifying blocks of consecutive elements in the sets that are also consecutive in the sorted
union (see Figure 1 for a graphical representation of such a decomposition on a particular
instance of the Sorted Set Union problem). In a minor way we refine their analysis as
follows:

These blocks determine a partition π of the output into intervals such that any singleton
corresponds to a value that has multiplicity greater than 1 in the input, and each other
interval corresponds to a block as defined above. Each member i of π has a value mi

associated with it: if the member i of π is a block, then mi is 1, otherwise, if the member i
of π is a singleton corresponding to a value of multiplicity q, then mi is q. If the instance is
formed by δ blocks of sizes g1, . . . , gδ such that these blocks determine a partition π of size χ
whose members have values m1, . . . ,mχ, we express the time complexity of DLM Union as
within Θ(

∑δ
i=1 log gi +

∑χ
i=1 log

(
ρ
mi

)
). This time complexity is within a constant factor of

the complexity of any other algorithm computing the union of these sorted sets (i.e., the
algorithm is instance optimal).

We adapt the DLM Union algorithm for sorting a multiset. The algorithm DLM Sort
detects the runs first through a linear scan and then applies the algorithm DLM Union. After
that, transforming the output of the union algorithm to yield the sorted multiset takes only
linear time. The following corollary follows from our refined analysis above:

I Corollary 1. Given a multiset M of size n formed by ρ runs and δ blocks of sizes
g1, . . . , gδ such that these blocks determine a partition π of size χ of the output whose
members have values m1, . . . ,mχ, the algorithm DLM Sort performs within n+O(

∑δ
i=1 log gi+∑χ

i=1 log
(
ρ
mi

)
) data comparisons. This number of comparisons is optimal in the worst case

over multisets of size n formed by ρ runs and δ blocks of sizes g1, . . . , gδ such that these blocks
determine a partition π of size χ of the output whose members have values m1, . . . ,mχ.

While the algorithm DLM Sort answers the Question 1 from Section 1, it does not yield
a MultiSelection algorithm nor a Deferred Data Structure answering Question
2. In the following section we describe another sorting algorithm that also optimally takes
advantage of the local order and structure in the input, but which is based on a distinct
paradigm, more suitable to such extensions.

J. Barbay, C. Ochoa, and S. R. Satti 31:5

Algorithm 1 Quick Synergy Sort

Input: A multisetM of size n
Output: A sorted sequence ofM
1: Compute the ρ runs of respective sizes (ri)i∈[1..ρ] inM such that

∑ρ
i=1 ri = n;

2: Compute the median µ of the middles of the runs, note j ∈ [1..ρ] the run containing µ;
3: Perform doubling searches for the value µ in all runs except the j-th, starting at both

ends of the runs in parallel;
4: Find the maximum max` (minimum minr) among the elements smaller (resp., greater)

than µ in all runs except the j-th;
5: Perform doubling searches for the values max` and minr in the j-th run, starting at the

position of µ;
6: Recurse on the elements smaller than or equal to max` and on the elements greater than

or equal to minr.

2.3 New Sorting Algorithm Quick Synergy Sort

Given a multisetM, the algorithm Quick Synergy Sort identifies the runs in linear time
through a scanning process. It computes a pivot µ, which is the median of the set formed by
the middle elements of each run, and partitions each run by µ. This partitioning process
takes advantage of the fact that the elements in each run are already sorted. The insertion
ranks of the pivots in the runs are identified by doubling searches [6]. It then recurses on the
elements smaller than µ and on the elements greater than µ. (See Algorithm 1 for a more
formal description).

I Definition 2 (Median of the middles). Given a multisetM formed by runs, the “median
of the middles” is the median element of the set formed by the middle elements of each run.

The number of data comparisons performed by the algorithm Quick Synergy Sort is
asymptotically the same as the number of data comparisons performed by the algorithm DLM
Sort described in the previous section. We divide the proof into two lemmas. We first bound
the number of data comparisons performed by all the doubling searches of the algorithm
Quick Synergy Sort (i.e., steps 3 and 5 of the Algorithm 1).

I Lemma 3. Let g1, . . . , gk be the sizes of the k blocks that form the r-th run. The overall
number of data comparisons performed by the doubling searches of the algorithm Quick
Synergy Sort to find the values of the medians of the middles in the r-th run is within
O(
∑k
i=1 log gi).

Proof. Every time the algorithm finds the insertion rank of one of the medians of the middles
in the r-th run, it partitions the run by a position separating two blocks. The doubling
search steps can be represented as a tree. Each node of the tree corresponds to a step. Each
internal node has two children, which correspond to the two subproblems into which the step
partitions the run. The cost of the step is less than four times the logarithm of the size of
the child subproblem with smaller size, because of the two doubling searches in parallel. The
leaves of the tree correspond to the blocks themselves.

We prove that at each step the total cost is bounded by eight times the sum of the
logarithms of the sizes of the leaf subproblems. This is done by induction over the number
of steps. If the number of steps is zero then there is no cost. For the inductive step, if the
number of steps increases by one, a new doubling search step is done and a leaf subproblem is
partitioned into two new subproblems. At this step, a leaf of the tree is transformed into an

CPM 2017

31:6 Synergistic Solutions on MultiSets

mv

ρ

Figure 2 A multiset M formed by ρ runs. Each entry M[i] is represented by a point of x-
coordinate M[i]. There is an element of multiplicity mv present in the last mv runs and the rest of
the runs are formed by only one block.

internal node and two new leaves are created. Let a and b such that a ≤ b be the sizes of the
new leaves created. The cost of this step is less than 4 log a. The cost of all the steps then
increases by 4 lg a, and hence the sum of the logarithms of the sizes of the leaves increases by
8(lg a+ lg b)− 8 lg(a+ b). But if a ≥ 4 and b ≥ a, then 2 lg(a+ b) ≤ lg a+ 2 lg b. The result
follows. J

As shown in the following lemma, the overall number of data comparisons performed
during the computation of the medians of the middles (i.e., step 2 of the Algorithm 1) is
within O(

∑χ
i=1 log

(
ρ
mi

)
), where m1, . . . ,mχ are the values of the member of the partition π

(see Section 2.2 for the definition of π) and ρ is the number of runs inM.
Consider the instance depicted in Figure 2 for an example illustrating from where the

term log
(
ρ
mv

)
comes. In this instance, there is a value v that has multiplicity mv > 1 inM

and the rest of the values have multiplicity 1. The elements with value v are present at the
end of the last mv runs and the rest of the runs are formed by only one block. The elements
of the i-th run are greater than the elements of the (i+ 1)-th run. During the computation of
the medians of the middles, the number of data comparisons that involve elements of value v
is within O(log

(
ρ
mv

)
). The algorithm computes the median µ of the middles and partitions

the runs by the value of µ. In the recursive call that involves elements of value v, the number
of runs is reduced by half. This is repeated until one occurrence of µ belongs to one of the
last mv runs. The number of data comparisons that involve elements of value v up to this
step is within O(mv log ρ

mv
) = O(log

(
ρ
mv

)
), where log ρ

mv
corresponds to the number of steps

where µ does not belong to the last mv runs. The next recursive call will necessarily choose
one element of value v as the median of the middles.

I Lemma 4. Let M be a multiset formed by ρ runs and δ blocks such that these blocks
determine a partition π of size χ of the output whose members have values m1, . . . ,mχ.
Consider the steps that compute the medians of the middles and the steps that find the
elements max` and minr in the algorithm Quick Synergy Sort, the overall number of data
comparisons performed during these steps is within O(

∑χ
i=1 log

(
ρ
mi

)
).

Proof. We prove this lemma by induction over the size χ of π and the number of runs
ρ. The number of data comparisons performed by one of these steps is linear in the
number of runs in the sub-instance (i.e., ignoring all the empty sets of this sub-instance).
Let T (π, ρ) be the overall number of data comparisons performed during the steps 2 and
4 of the algorithm Quick Synergy Sort. We prove that T (π, ρ) ≤

∑χ
i=1 mi log ρ

mi
− ρ.

Let µ be the first median of the middles computed by the algorithm. Let ` and r be
the number of runs that are completely to the left and to the right of µ, respectively.
Let b be the number of runs that are split in the doubling searches for the value of µ

J. Barbay, C. Ochoa, and S. R. Satti 31:7

in all runs. Let π` and πr be the partitions determined by the blocks yielded to the
left and to the right of µ, respectively. Then, T (π, ρ) = T (π`, ` + b) + T (πr, r + b) + ρ

because of the two recursive calls and the step that computes µ. By Induction Hypothesis,
T (π`, ` + b) ≤

∑χ`

i=1 mi log `+b
mi
− ` − b and T (πr, r + b) ≤

∑χr

i=1 mi log r+b
mi
− r − b. Hence,

we need to prove that `+ r ≤
∑χ`

i=1 mi log
(

1 + r
`+b

)
+
∑χr

i=1 mi log
(

1 + `
r+b

)
, but this is a

consequence of
∑χ`

i=1 mi ≥ `+ b,
∑χr

i=1 mi ≥ r + b (the number of blocks is greater than or
equal to the number of runs); ` ≤ r + b, r ≤ `+ b (at least ρ

2 runs are left to the left and to
the right of µ); and log

(
1 + y

x

)x ≥ y for y ≤ x. J

Consider the step that performs doubling searches for the values max` and minr in the
run that contains the median µ of the middles, this step results in the finding of the block g
that contains µ in at most 4 log |g| data comparisons, where |g| is the size of g. Combining
Lemma 3 and Lemma 4 yields an upper bound on the number of data comparisons performed
by the algorithm Quick Synergy Sort:

I Theorem 5. Let M be a multiset of size n formed by ρ runs and δ blocks of sizes
g1, . . . , gδ such that these blocks determine a partition π of size χ of the output whose
members have values m1, . . . ,mχ. The algorithm Quick Synergy Sort performs within
n+O(

∑δ
i=1 log gi +

∑χ
i=1 log

(
ρ
mi

)
) data comparisons onM. This number of comparisons

is optimal in the worst case over multisets of size n formed by ρ runs and δ blocks of sizes
g1, . . . , gδ such that these blocks determine a partition π of size χ of the output whose members
have values m1, . . . ,mχ.

We extend these results to take advantage of the global order of the multiset in a way
that can be combined with the notion of runs (local order).

2.4 Taking Advantage of Global Order
Given a multisetM, a pivot position is a position p inM such that all elements in previous
position are smaller than or equal to all elements at p or in the following positions. In 1962,
Iverson [13] described an improved version of BubbleSort [16] that identifies such pivot
positions (as pair of consecutive elements that the algorithm have placed at their final positions
and on which it does not make further comparisons). We show that detecting such positions
also yields an improved version of QuickSort in general, and of our QuickSort-inspired
solutions in particular. More formally:

I Definition 6 (Pivot positions). Given a multiset M = (x1, . . . , xn) of size n, the “pivot
positions” are the positions p such that xa ≤ xb for all a, b such that a ∈ [1..p − 1] and
b ∈ [p..n].

Existing pivot positions in the input order ofM divide the input into subsequences of
consecutive elements such that the range of positions of the elements at each subsequence
coincide with the range of positions of the same elements in the sorted sequence ofM: the
more there are of such positions, the more “global” order there is in the input. Detecting
such positions takes only a linear number of comparisons by applying the first phase of the
algorithm BubbleSort [16], which sequentially compares the elements, from left to right in a
first phase and then from right to left in a second phase. The positions of the elements that
do not interchange their values during both executions are the pivot positions inM.

When there are φ such positions, they simply divide the input of size n into φ+ 1 sub-
instances of sizes n0, . . . , nφ (such that

∑φ
i=0 ni = n). Each sub-instance Ii for i ∈ [0..φ] then

CPM 2017

31:8 Synergistic Solutions on MultiSets

has its own number of runs ri and alphabet size σi, on which the synergistic solutions described
in this work can be applied, from mere Sorting (Section 2) to supporting MultiSelection
(Section 3) and the more sophisticated Deferred Data Structures (Section 4).

I Corollary 7. Let M be a multiset of size n with φ pivot positions. Let n0, . . . , nφ be
integers such that the φ pivot positions divideM into φ+ 1 sub-instances of sizes n0, . . . , nφ
(such that

∑φ
i=0 ni = n). Let ρi and δi be such that each sub-instance Ii of size ni is formed

by ρi runs and δi blocks of sizes gi1, . . . , giδi such that these blocks determine a partition
πi of size χi of the output whose members have values mi1, . . . ,miχi

for i ∈ [0..φ]. There
exists an algorithm that performs within 3n+O(

∑φ
i=0

{∑δi

j=1 log gij +
∑χi

j=1 log
(
ρi

mij

)}
) data

comparisons for sortingM. This number of comparisons is optimal in the worst case over
multisets of size n with φ pivot positions which divide the multiset into φ+ 1 sub-instances
of sizes n0, . . . , nφ (such that

∑φ
i=0 ni = n) and each sub-instance Ii of size ni is formed by

ρi runs and δi blocks of sizes gi1, . . . , giδi
such that these blocks determine a partition πi of

size χi of the output whose members have values mi1, . . . ,miχi for i ∈ [0..φ].

Next, we generalize the algorithm Quick Synergy Sort to an offline multiselection
algorithm that partially sorts a multiset according to the set of select queries given as input.
This serves as a pedagogical introduction to the online Deferred Data Structures for
answering rank and select queries presented in Section 4.

3 MultiSelection Algorithm

Given a linearly ordered multiset M and a sequence of ranks r1, . . . , rq, a multiselection
algorithm must answer the queries select(r1), . . . , select(rq) inM, hence partially sorting
M. We describe a MultiSelection algorithm based on the sorting algorithm Quick
Synergy Sort introduced in Section 2.3. This algorithm is an intermediate result leading to
the Deferred Data Structure described in Section 4.

Given a multiset M and a set of q select queries, the algorithm Quick Synergy
MultiSelection follows the same first steps as the algorithm Quick Synergy Sort. But
once it has computed the ranks of all elements in the block that contains the pivot µ, it
determines which select queries correspond to elements smaller than or equal to max` and
which ones correspond to elements greater than or equal to minr (see Algorithm 1 for the
definitions of max` and minr). It then recurses on both sides.

We extend the notion of blocks to the context of partial sorting. Next, we introduce the
definitions of pivot blocks and selection blocks (see Figure 3 for a graphical representation of
these definitions).

I Definition 8 (Pivot Blocks). Given a multiset M formed by ρ runs and δ blocks. The
“pivot blocks” are the blocks ofM that contain the pivots and the elements of value equals
to the pivots during the steps of the algorithm Quick Synergy MultiSelection.

In each run, between the pivot blocks and the insertion ranks of the pivots, there are
consecutive blocks that the algorithm Quick Synergy MultiSelection has not identified
as separated blocks, because no doubling searches occurred inside them.

I Definition 9 (Selection Blocks). Given the i-th run, formed of various blocks, and q select
queries, the algorithm Quick Synergy MultiSelection computes ξ pivots in the process
of answering the q queries. During the doubling searches, the algorithm Quick Synergy
MultiSelection finds the insertion ranks of the ξ pivots inside the i-th run. These positions

J. Barbay, C. Ochoa, and S. R. Satti 31:9

p1p2

s
ρ

m

Figure 3 An instance of the MultiSelection problem where the multiset M is formed by ρ = 5
runs. In each run R, the entry R[i] is represented by a point of x-coordinate R[i]. The dash lines
represent the answers of the two select queries. The solid vertical lines represent the positions
p1 and p2 of the first two pivots computed by the Quick Synergy MultiSelection algorithm. The
pivot blocks corresponding to the pivots p1 and p2 are marked by contiguous open disks. The
algorithm divides the runs into selection blocks. s = 7 is the size of the second selection block, from
left to right, into which the third run is divided by the algorithm. m = 2 is the number of pivot
blocks of size 1 corresponding to the pivot p2.

determine a partition of size ξ + 1 of the i-th run where each element of the partition is
formed by consecutive blocks or is empty. We call the elements of this partition “selection
blocks”. The set of all selection blocks contains the set of all pivot blocks.

Using these definitions, we generalize the results proven in Section 2.3 to the more general
problem of MultiSelection.

I Theorem 10. Given a multisetM of size n formed by ρ runs and δ blocks; and q offline
select queries overM corresponding to elements of ranks r1, . . . , rq. Let ξ be the number of
pivots computed by the algorithm Quick Synergy MultiSelection in the process of answer-
ing the q queries. Let s1, . . . , sβ be the sizes of the β selection blocks determined by these ξ
pivots in all runs. Let m1, . . . ,mλ be the numbers of pivot blocks corresponding to the values of
the λ pivots with multiplicity greater than 1, respectively. Let ρ0, . . . , ρξ be the sequence where
ρi is the number of runs that have elements with values between the pivots i and i+1 sorted by
ranks, for i ∈ [1..ξ]. The algorithm Quick Synergy MultiSelection answers the q select

queries performing within n+O
(∑β

i=1 log si + β log ρ−
∑λ
i=1 mi logmi −

∑ξ
i=0 ρi log ρi

)
⊆

O (n logn−
∑q
i=0 ∆i log ∆i) data comparisons, where ∆i = ri+1 − ri, r0 = 0 and rq+1 = n.

Proof. The pivots computed by the algorithm Quick Synergy MultiSelection for answer-
ing the queries are a subset of the pivots computed by the algorithm Quick Synergy Sort
for sorting the whole multiset. Suppose that the selection blocks determined by every two
consecutive pivots form a multisetMj such that for every pair of selection blocks inMj

the elements of one are smaller than the elements of the other one. The algorithm Quick
Synergy Sort would perform within n + O

(∑β
i=1 log si + β log ρ−

∑λ
i=1 mi logmi

)
data

comparisons in this supposed instance (see the proof of Lemmas 3 and 4 analyzing the
algorithm Quick Synergy Sort for details). The number of comparisons needed to sort the
multisetsMj is within Θ(

∑ξ
i=0 ρi log ρi). The result follows. J

The process of detecting the φ pre-existing pivot positions seen in Section 2.4 can be
applied as the first step of the multiselection algorithm. The φ pivot positions divide the
input of size n into φ + 1 sub-instances of sizes n0, . . . , nφ. For each sub-instance Ii for
i ∈ [0..φ], the multiselection algorithm determines which select queries correspond to Ii

CPM 2017

31:10 Synergistic Solutions on MultiSets

and applies then the steps of the algorithm Quick Synergy MultiSelection inside Ii in
order to answer these queries.

The Quick Synergy MultiSelection algorithm takes advantage of the number and sizes
of the runs (i.e., the local input order), the number and positions of the pre-existing pivot
positions (i.e., the global order), the multiplicities of the elements in the multiset (i.e., the
input structure) and the differences between consecutive select queries in sorted order (i.e.,
the query structure).

In the result above, the queries are given all at the same time (i.e., offline). In the context
where they arrive one at the time (i.e., online), we define a Deferred Data Structure
for answering online rank and select queries, inspired by the algorithm Quick Synergy
MultiSelection.

4 Rank and Select Deferred Data Structures

We describe the Full-Synergistic Deferred Data Structure that answers a set of
rank and select queries, arriving one at the time, over a multisetM, progressively sorting
M. This deferred data structure is based in the Quick Synergy MultiSelection algorithm
described in the previous section. This data structure takes advantage of the order (local
and global) and structure in the input, and of the order and structure in the queries.

By “query order”, we mean to consider the “distances” between consecutive queries. To
take advantage of the query order, we introduce a data structure that finds the nearest
pivots to the left and to the right of a position p ∈ [1..n], while taking advantage of the
distance between the position of the last computed pivot and p, as measured by the number
of computed pivot blocks between the two positions. For that we use a finger search tree [8]
maintaining fingers (i.e., pointers) to elements in the search tree and supporting efficient
updates and searches in the vicinity of those. Brodal [8] described an implementation of
finger search trees that searches for an element x, starting the search at the element given by
the finger f in time within O(log d), where d is the distance between x and f in the set (i.e,
the difference between rank(x) and rank(f) in the set). This operation returns a finger to x
if x is contained in the set, otherwise a finger to the largest element smaller than x in the
set. This implementation supports the insertion of an element x immediately to the left or
to the right of a finger in worst-case constant time.

Given a multisetM of size n, the Full-Synergistic Deferred Data Structure
includes a finger search tree Fselect, in which it marks the elements inM that have been
computed as pivots when it answers the online queries. For each pivot p in Fselect, the data
structure stores pointers to the insertion ranks of p in each run, to the beginning and to the
end of the block g to which p belongs, and to the position of p inside g. This finger search
tree is also used to find the two successive pivots between which the query fits.

Once a pivot block g is computed, every element in g is a valid pivot for the rest of the
elements inM. In order to capture this idea, we modify the finger search tree Fselect so
that it contains the pivot blocks (i.e., a sequence of consecutive values) instead of singleton
pivots. This modification allows the Full-Synergistic Deferred Data Structure to
answer select queries, taking advantage of the structure and order in the queries and of the
structure and order in the input. But in order to answer rank queries taking advantage of
the features in the queries and the input, the data structure needs another finger search tree
Frank. In Frank the data structure stores, for each block g identified, the value of one of the
elements in g, and pointers inM to the beginning and to the end of g, and in each run to
the position where the elements of g partition the run.

J. Barbay, C. Ochoa, and S. R. Satti 31:11

p1p2

ρ

p3q1 q2

d

g

Figure 4 The state of the Full-Synergistic Deferred Data Structure on an instance where
the multiset M is formed by ρ = 5 runs. In each run, the entry M[i] is represented by a point
of x-coordinate M[i]. The dash lines represent the positions q1 and q2 of the answers of the first
two queries. The solid vertical lines represent the positions p1, p2 and p3 of the first three pivots
computed by the Full-Synergistic Deferred Data Structure. The pivot blocks corresponding
to the pivots p1, p2 and p3 are marked by contiguous open disks. d = 4 is the distance (i.e., the
number of computed pivot blocks) between the queries q1 and q2. If q1 is a rank query, then g = 4
is the size of the identified block that contains the answer of the query q1.

I Theorem 11. Consider a multisetM of size n formed by ρ runs and δ blocks. Let γ and
r1, . . . , rq be the number of pivot blocks computed by the Full-Synergistic Deferred
Data Structure in the process of answering q online rank and select queries overM,
and the ranks of the elements corresponding to these queries, respectively. Let s1, . . . , sβ
be the sizes of the β selection blocks determined by the pivots in the γ blocks in all runs.
Let m1, . . . ,mλ be the numbers of pivot blocks corresponding to the values of the λ pivots
with multiplicity greater than 1, respectively. Let ρ0, . . . , ργ be the sequence where ρi is
the number of runs that have elements with values between the elements in the blocks i
and i + 1 sorted by ranks, for i ∈ [1..γ]. Let d1, . . . , dq−1 be the sequence where dj is
the number of computed pivot blocks between the block that answers the (j − 1)-th query
and the one that answers the j-th query before starting the steps to answer the j-th query,
for j ∈ [2..q]. Let u and g1, . . . , gu be the number of rank queries and the sizes of the
computed and searched pivot blocks in the process of answering the u rank queries, respectively.
The Full-Synergistic Deferred Data Structure answers the q online queries by
performing within n+O(

∑β
i=1 log si+β log ρ−

∑λ
i=1 mi logmi−

∑γ
i=0 ρi log ρi+

∑q−1
i=1 log di+∑u

i=1 log gi) ⊆ O (n logn−
∑q
i=0 ∆i log ∆i + q logn) data comparisons, where r0 = 0, rq+1 =

n, and ∆i = ri+1 − ri, for all i ∈ [1..n].

Proof. The algorithm answers a new select(i) query by searching in Fselect for the nearest
pivots to the left and right of the query position i. If i is contained in an element of Fselect,
then the block g that contains the element in the position i has already been computed. If i
is not contained in an element of Fselect, then the returned finger f points the nearest block
b to the left of i. The block that follows f in Fselect is the nearest block to the right of i.
It then applies the same steps as the algorithm Quick Synergy MultiSelection in order
to answer the query. Given f , the algorithm inserts in Fselect each pivot block computed
in the process of answering the query in constant time, and stores the respective pointers
to positions inM. In Frank the algorithm searches for the value of one of the elements in
b. Once the algorithm obtains the finger returned by this search, the algorithm inserts in
Frank the value of one of the elements of each pivot block in constant time, and stores the
respective pointers to positions inM (see Figure 4 for a graphical representation of some of
the parameters used in the analysis).

CPM 2017

31:12 Synergistic Solutions on MultiSets

The algorithm answers a new rank(x) query by finding the selection block sj in the
j-th run such that x is between the smallest and the greatest value of sj for all j ∈ [1..ρ].
For that the algorithm searches for the value x in Frank. The number of data comparisons
performed by this searching process is within O(log d), where d is the number of blocks in
Frank between the last inserted or searched block and the returned finger f . Given the finger
f , there are three possibilities for the rank r of x: (i) r is between the ranks of the elements
at the beginning and at the end of the block pointed by f , (ii) r is between the ranks of the
elements at the beginning and at the end of the block pointed by the finger following f , or
(iii) r is between the ranks of the elements in the selection blocks determined by f and the
finger following f . In the cases (i) and (ii), a binary search inside the block yields the answer
of the query. In the case (iii), the algorithm applies the same steps as the algorithm Quick
Synergy MultiSelection in order to compute the median µ of the middles, and partitions
the selection blocks by µ. The algorithm then decides to which side x belongs. Similar to
the algorithm for answering a select query, the data structure inserts in Fselect every block
computed in the process of answering the rank query. J

The process of detecting the φ pivot positions seen in Section 2.4 allows the Full-
Synergistic Deferred Data Structure to insert these pivots in Fselect and Frank. For
each pivot position p in Fselect and Frank, the data structure stores pointers to the end of
the runs detected on the left of p; to the beginning of the runs detected on the right of p;
and to the position of p in the multiset. This concludes the description of our synergistic
results. In the next section, we discuss how these results relate to various past results and
future work.

5 Discussion

Kaligosi et al.’s multiselection algorithm [14] and Barbay et al’s deferred data structure [2]
use the very same concept of runs as the one described in this work. The difference is, we
describe algorithms that detect the existing runs in the input in order to take advantage of
them, while the algorithms described by those previous works do not take into consideration
any pre-existing runs in the input, and rather build and maintain such runs as a strategy
to minimize the number of comparisons performed while partially sorting the multiset. We
leave the combination of both approaches as a topic for future work, which could probably
shave a constant factor off the number of comparisons performed by the Sorting and
MultiSelection algorithms and by the Deferred Data Structures supporting rank
and select queries on Multisets.

Barbay and Navarro [3] described how any Sorting algorithm taking advantage of
specificities in the input, directly implies a compressed encoding for permutations. By using
the similarity of the execution tree of the algorithm MergeSort with the Wavelet Tree data
structure, they described a compressed data structure for permutations taking advantage
of the local order, i.e., using space proportional to H(r1, . . . , rρ) and supporting direct
access (i.e. π()) and inverse access (i.e. π−1()) in worst time within O(1 + lg ρ) and
average time within O(1 +H(r1, . . . , rρ)). We leave as future work the extension of our work
into a compressed data structure for multisets taking advantage of both its structure and
(local and global) order.

Another perspective is to generalize the synergistic results to related problems in computa-
tional geometry: Karp et al. [15] defined the first deferred data structure not only to support
rank and select queries on multisets, but also to support online queries in a deferred way
on Point Membership in a Convex Hull in two dimensions and online Dominance

J. Barbay, C. Ochoa, and S. R. Satti 31:13

queries on sets of multi-dimensional vectors. Preliminary results [4] show that one can refine
the results from Karp et al. [15] to take advantage of the blocks between queries (i.e., the
structure in the queries) as Barbay et al. [2] did for multisets; but also of the relative position
of the points (i.e., the structure in the input) as Afshani et al. [1] did for Convex Hulls
and Maxima; of the order in the points (i.e., the order in the input), as computing the
convex hull in two dimensions takes linear time if the points are sorted; and potentially of
the order in the queries.

References
1 Peyman Afshani, Jérémy Barbay, and Timothy M. Chan. Instance-optimal geometric al-

gorithms. J. ACM, 64(1):3:1–3:38, March 2017. doi:10.1145/3046673.
2 Jérémy Barbay, Ankur Gupta, Srinivasa Rao Satti, and Jonathan Sorenson. Near-optimal

online multiselection in internal and external memory. J. Discrete Algorithms, 36:3–17,
2016. doi:10.1016/j.jda.2015.11.001.

3 Jérémy Barbay and Gonzalo Navarro. On compressing permutations and adaptive sorting.
Theor. Comput. Sci., 513:109–123, 2013. doi:10.1016/j.tcs.2013.10.019.

4 Jérémy Barbay and Carlos Ochoa. Synergistic computation of planar maxima and convex
hull, 2017. arXiv:1702.08545.

5 Jérémy Barbay, Carlos Ochoa, and Srinivasa Rao Satti. Synergistic sorting and deferred
data structures on multisets, August 2016. arXiv:1608.06666.

6 Jon Louis Bentley and Andrew Chi-Chih Yao. An almost optimal algorithm for unbounded
searching. Inf. Process. Lett., 5(3):82–87, 1976. doi:10.1016/0020-0190(76)90071-5.

7 Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest, and Robert E.
Tarjan. Time bounds for selection. J. Comput. Syst. Sci., 7(4):448–461, 1973. doi:10.
1016/S0022-0000(73)80033-9.

8 Gerth S. Brodal. Finger search trees with constant insertion time. In Howard J. Karloff, ed-
itor, Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
1998), pages 540–549. ACM/SIAM, 1998. URL: http://dl.acm.org/citation.cfm?id=
314613.314842.

9 Erik D. Demaine, Alejandro López-Ortiz, and J. Ian Munro. Adaptive set intersections,
unions, and differences. In David B. Shmoys, editor, Proceedings of the 11th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 2000), pages 743–752. ACM/SIAM, 2000.
URL: http://dl.acm.org/citation.cfm?id=338219.338634.

10 David P. Dobkin and J. Ian Munro. Optimal time minimal space selection algorithms. J.
ACM, 28(3):454–461, 1981. doi:10.1145/322261.322264.

11 Vladimir Estivill-Castro and Derick Wood. A survey of adaptive sorting algorithms. ACM
Comput. Surv., 24(4):441–476, 1992. doi:10.1145/146370.146381.

12 Charles A.R. Hoare. Algorithm 65: Find. Commun. ACM, 4(7):321–322, 1961. doi:
10.1145/366622.366647.

13 Kenneth E. Iverson. A Programming Language. John Wiley & Sons, Inc., New York,
NY, USA, 1962. URL: http://www.softwarepreservation.org/projects/apl/Books/
APROGRAMMING%20LANGUAGE.

14 Kanela Kaligosi, Kurt Mehlhorn, J. Ian Munro, and Peter Sanders. Towards optimal
multiple selection. In Luís Caires, Giuseppe F. Italiano, Luís Monteiro, Catuscia Palam-
idessi, and Moti Yung, editors, Proceedings of the 32nd International Colloquium on Auto-
mata, Languages, and Programming (ICALP 2005), volume 3580 of LNCS, pages 103–114.
Springer, 2005. doi:10.1007/11523468_9.

15 Richard Karp, Rajeev Motwani, and Prabhakar Raghavan. Deferred data structuring.
SIAM J. Comput., 17(5):883–902, 1988. doi:10.1137/0217055.

CPM 2017

http://dx.doi.org/10.1145/3046673
http://dx.doi.org/10.1016/j.jda.2015.11.001
http://dx.doi.org/10.1016/j.tcs.2013.10.019
http://arxiv.org/abs/1702.08545
http://arxiv.org/abs/1608.06666
http://dx.doi.org/10.1016/0020-0190(76)90071-5
http://dx.doi.org/10.1016/S0022-0000(73)80033-9
http://dx.doi.org/10.1016/S0022-0000(73)80033-9
http://dl.acm.org/citation.cfm?id=314613.314842
http://dl.acm.org/citation.cfm?id=314613.314842
http://dl.acm.org/citation.cfm?id=338219.338634
http://dx.doi.org/10.1145/322261.322264
http://dx.doi.org/10.1145/146370.146381
http://dx.doi.org/10.1145/366622.366647
http://dx.doi.org/10.1145/366622.366647
http://www.softwarepreservation.org/projects/apl/Books/APROGRAMMING%20LANGUAGE
http://www.softwarepreservation.org/projects/apl/Books/APROGRAMMING%20LANGUAGE
http://dx.doi.org/10.1007/11523468_9
http://dx.doi.org/10.1137/0217055

31:14 Synergistic Solutions on MultiSets

16 Donald E. Knuth. Art of Computer Programming, Volume 3: Sorting and Searching (2nd
Edition). Addison-Wesley Professional, April 1998.

17 Veli Mäkinen and Gonzalo Navarro. Rank and select revisited and extended. Theor. Com-
put. Sci., 387(3):332–347, 2007. doi:10.1016/j.tcs.2007.07.013.

18 Alistair Moffat and Ola Petersson. An overview of adaptive sorting. Aust. Comput. J.,
24(2):70–77, 1992. URL: http://50years.acs.org.au/__data/assets/pdf_file/0017/
111464/ACJ-V24-N02-199205.pdf.

19 J. Ian Munro and Philip M. Spira. Sorting and searching in multisets. SIAM J. Comput.,
5(1):1–8, 1976. doi:10.1137/0205001.

20 Tadao Takaoka. Partial solution and entropy. In Rastislav Královic and Damian Niwiński,
editors, Proceedings of the 34th International Symposium on Mathematical Foundations of
Computer Science (MFCS 2009), volume 5734 of LNCS, pages 700–711. Springer, 2009.
doi:10.1007/978-3-642-03816-7_59.

http://dx.doi.org/10.1016/j.tcs.2007.07.013
http://50years.acs.org.au/__data/assets/pdf_file/0017/111464/ACJ-V24-N02-199205.pdf
http://50years.acs.org.au/__data/assets/pdf_file/0017/111464/ACJ-V24-N02-199205.pdf
http://dx.doi.org/10.1137/0205001
http://dx.doi.org/10.1007/978-3-642-03816-7_59

	p00-frontmatter
	Preface
	Programme Committee

	p01-Manzini
	p02-Jez
	p03-Mucha
	p04-Navarro
	Introduction
	Our contribution

	Related work
	Basic Concepts
	Listing the different elements in a range
	Wavelet trees
	Range minimum queries on arrays with runs
	Grammar compression
	Grammar-based indexing

	Our Document Listing Index
	Structure
	Document listing

	Analysis in a Repetitive Scenario
	Space
	Time

	Conclusions
	Proof of Correctness

	p05-Gagie
	Introduction
	Background
	Rank and select on bitvectors
	Permutations and functions
	Path queries on trees
	Range queries on arrays
	Range queries in two dimensions

	Positive Paths
	Negative Path Points
	Negative Paths
	Conclusions
	Pseudocodes
	Functions Without Labels

	p06-Bille
	Introduction
	Setup and result

	Preliminaries
	Deterministic hashing and predecessor
	Suffix tree
	Suffix array

	Deterministic index for packed strings
	Packed matching in SA-S
	Handling short patterns
	Handling long patterns
	Data structure
	Answering queries

	p07-Belazzougui
	Introduction
	Preliminaries
	Graphs
	Strings
	CDAWG
	Representing the suffix tree with the CDAWG

	Additional suffix tree operations
	Extensions and conclusion

	p08-Diptarama
	Introduction
	Notation
	Position Heap
	Parameterized Position Heap
	Definition and Property of Parameterized Position Heap
	Online Construction Algorithm of Parameterized Position Heap
	Augmented Parameterized Position Heaps
	Parameterized Pattern Matching with Augmented Parameterized Position Heaps

	Conclusion and Future Work

	p09-Grossi
	Introduction
	Definitions
	Algorithmic Tools
	Algorithm
	Bit-Vector Algorithm
	Experimental Results
	Final Remarks

	p10-Dudek
	Introduction
	Preliminaries
	Greedy Algorithm
	Algorithm for Small k
	3-approximation Based on Maximum Matching for k
	2.67-approximation for k

	(2+eps)-approximation

	p11-Komusiewicz
	Introduction
	Reduction to a Path Finding Problem
	A Randomized Algorithm based on Narrow Sieves
	Deterministic Algorithm: Representative Sets
	A Cubic Problem Kernel
	Proofs of Section 3
	Proofs of Section 4
	Proofs of Section 5

	p12-Bringmann
	Introduction
	Context-free grammars
	Our contribution
	Techniques

	Preliminaries on tree-adjoining grammars
	Encoding graphs
	Programming with trees
	Basic programs
	Writing characters
	Testing equality
	Writing anything

	Detecting Cliques
	Detecting claws
	Detecting claws of cliques
	Detecting almost-4k-cliques
	Detecting 6k-cliques

	p13-Starikovskaya
	Introduction
	Our results
	Related work

	Communication complexity
	Periodicity under edit distance
	Communication complexity protocol

	Streaming
	Prefixes
	Suffixes
	Algorithm

	Conclusion

	p14-Castelli
	Introduction
	Preliminaries
	Complexity of LFCS
	Approximating LFCS
	An FPT Algorithm
	Conclusion

	p15-Bille
	Introduction
	Sliding Window Parsing
	Approximate Rightmost Parsing

	Lempel-Ziv in a Sliding Window
	Bounded Phrase Length
	Parsing
	Correctness

	Unbounded Phrase Length
	Correctness and Analysis

	Implementation and Analysis

	Approximate Rightmost Matching
	Algorithm
	Analysis
	Approximation
	Space
	Time

	p16-Bille
	Introduction
	Our Results

	Preliminaries
	Prefix Search
	Data Structure

	Distinguishing Occurrences
	Long Primary Occurrences
	Data Structure
	Searching
	Prefix Search Verification
	Verification Technique

	Short Primary Occurrences
	The Secondary Index
	The Compressed Index
	Trade-offs
	Preprocessing

	Appendix
	Verification Technique
	Secondary Index

	p17-Policriti
	Introduction
	Basics
	From RLBWT to LZ77
	From LZ77 to RLBWT
	Dynamic functions
	The algorithm

	Conclusions

	p18-I
	Introduction
	Preliminaries
	LCE data structure built from uncompressed texts
	TtoG: Grammar compression based on recompression
	Popped sequences

	LCE data structure built from SLPs
	SimTtoG: Simulating TtoG on CFGs
	PComp on CFGs
	BComp on CFGs
	The complexities of SimTtoG

	GtoG: O(n*lg(N/n))-time recompression
	Proof of Theorem 2

	Appendix: Omitted proofs
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Lemma 8
	Proof of Lemma 9
	Proof of Lemma 11

	p19-Cunha
	Introduction
	Preliminaries
	Basic Indexing
	Witnessing Index
	Reducing Workspace

	p20-Kuboi
	Introduction
	Preliminaries
	Algorithm
	Deorowicz's O(MN) Algorithm
	Our Algorithm via RLE
	Case |RLE(C)|>1
	Case |RLE(C)|=1

	Conclusion

	p21-Duchon
	Introduction
	Preliminaries
	Number of gapped patterns
	Framework
	Generating series for the expected number of patterns
	From generating series to asymptotics

	Longest pattern
	Uniform distribution
	Memoryless sources

	A remark on the number of distinct factors
	Conclusions

	p22-Bannai
	Introduction
	Definitions
	A Compact Representation of the LPF Array
	The Set of All Distinct Squares
	Algorithm Computing the Set of All Distinct Squares
	Need for RMQ on LPF
	Practical Evaluation
	Online Variant

	Applications
	Decorating the Suffix Tree with All Squares
	Computing the Tree Topology of the MAST in Linear Time

	Algorithm Execution with one Step at a Time
	More Evaluation
	Proofs
	Pseudo Code

	p23-Borozdin
	Introduction
	Preliminaries

	High-Level Description of the Algorithm
	Naive approach
	Algorithm working in O(n*log(n)) time
	Sketch of the linear algorithm
	Organization of the arrays ans and pre

	Implementation of the Main Functions
	Function predict
	Function precalc

	p24-Mieno
	Introduction
	Shortest unique substring (SUS) problems
	Our contribution
	Related work

	Preliminaries
	Notations
	MUSs and SUSs

	Bounds on the number of point SUSs
	Upperbound A
	Upperbound B
	Matching upper and lower bounds
	Lower bound for fixed-size alphabet

	Bounds on the number of interval SUSs
	Conclusions and open questions

	p25-Amir
	Introduction
	Regularities and Data Recovery
	Related Work
	Our Results

	Preliminaries
	Characterization of the Cover Recovery Problem Approximation
	The Candidate Relaxation of the ACP
	The preparation phase
	The dynamic programming phase

	Open Problems

	p26-Amir
	Introduction
	Our Results

	Preliminaries
	NP-Hardness of the ACP
	The Reduction from 3-SAT

	The Partial-Tiling Relaxation of the ACP
	The Histogram Greedy Algorithm
	The Partial-Tiling Primitivity Coercion Algorithm

	The Full-Tiling Relaxation of the ACP
	The Full-Tiling Primitivity Coercion Algorithm
	Experimental Tests of the Full-Tiling Relaxation Algorithm

	Open Problems

	p27-Bulteau
	Introduction
	The Relation between k-Mer Scaffold Filling and Partial Set Cover
	A Fixed-Parameter Algorithm for k-Mer Scaffold Filling
	A Polynomial Kernel for a Special Case
	Minimizing the Number of Breakpoints
	Conclusion
	Kernelization Algorithm from Section 4

	p28-Lafond
	Introduction
	Preliminaries
	NP-hardness of the Weighted Quartet Consensus problem
	The (non)-structure of WQC
	Approximability of WQC
	Fixed-parameter tractability of WQC
	Conclusion
	Implications for the Weighted Triplet Consensus problem
	Deferred proofs
	Proof of Lemma 3
	Proofs of Section 4
	Proof of Theorem 8

	p29-Cairo
	Introduction
	Background and notation
	Structure of maximal omnitigs
	The algorithm
	Experimental results
	Conclusion

	p30-Pibiri
	Introduction
	Related Work
	Static Predecessor Problem
	Static Elias-Fano Representation
	Dynamic Problems

	Static Predecessor Queries in Optimal Time
	Extensible Elias-Fano Representation
	Dynamic Elias-Fano Representation
	Data Structure Description
	Maintaining a Sorted Collection of Mini Blocks
	Full Data Structure Layout

	Space Analysis
	Operations

	Conclusions

	p31-Barbay
	Introduction
	Sorting Algorithms
	Known Algorithms
	``Kind-of-new'' Sorting Algorithm DLM Sort
	New Sorting Algorithm Quick Synergy Sort
	Taking Advantage of Global Order

	MultiSelection Algorithm
	Rank and Select Deferred Data Structures
	Discussion

